
2002

1.Package Dimension(F-11 SMD)



| NO. | Function     |
|-----|--------------|
| 1   | Output/Input |
| 2   | GND          |
| 3   | GND          |
| 4   | Input/Output |

Unit:mm

2. Marking

## NDR433.92

- 2-1.Color: Black or Blue
- 2-2.Center Frequency(MHz):433.92
- 3.Performance
  - 3-1.Maximum Rating

| DC Voltage V <sub>DC</sub> | 10V            |  |  |
|----------------------------|----------------|--|--|
| AC Voltage V <sub>PP</sub> | 10V(50Hz/60Hz) |  |  |
| Operation Temperature      | -40°C to +85°C |  |  |
| Storage Temperature        | -40°C to +85°C |  |  |
| RF Power Dissipation       | 0 dBm          |  |  |

| Characteristic                                       |                                   | Sym                       | Minimum | Typical | Maximum | Unit     |
|------------------------------------------------------|-----------------------------------|---------------------------|---------|---------|---------|----------|
| Center<br>Frequency(+25 [] )                         | Absolute Frequency                | fc                        | 433.845 |         | 433.995 | MHz      |
|                                                      | Tolerance from 433.92 MHz         | Δfc                       |         | ±75     |         | kHz      |
| Insertion Loss                                       |                                   |                           |         | 1.5     | 2.0     | dB       |
| Quality Factor                                       | Unloaded Q                        | $\mathbf{Q}_{\mathrm{U}}$ |         | 12,800  |         |          |
|                                                      | 50 Ω Loaded Q                     | QL                        |         | 2,000   |         |          |
| Temperature<br>Stability                             | Turnover Temperature              | T <sub>0</sub>            | 24      | 39      | 54      | °C       |
|                                                      | Turnover Frequency                | $f_0$                     |         | fc+2.7  |         | kHz      |
|                                                      | Frequency Temperature Coefficient | FTC                       |         | 0.037   |         | ppm/ 🗆 2 |
| Frequency Aging Absolute Value during the First Year |                                   |                           |         | ≤10     |         | ppm/yr   |
| DC Insulation Resistance between Any Two Pins        |                                   |                           | 1.0     |         |         | MΩ       |
| RF Equivalent<br>RLC Model                           | Motional Resistance               | R <sub>M</sub>            |         | 18      | 26      | Ω        |
|                                                      | Motional Inductance               | L <sub>M</sub>            |         | 86.0075 |         | μH       |
|                                                      | Motional Capacitance              | См                        |         | 1.56417 |         | fF       |
|                                                      | Pin 1 to Pin 2 Static Capacitance | Co                        |         | 1.9     |         | pF       |

## **3-2**Electronic Characteristics

© CAUTION: Electrostatic Sensitive Device. Observe precautions for handling NOTES:

1.Frequency aging is the change in  $f_c$  with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.

2. The frequency  $f_c$  id the frequency of minimum IL with the resonator in the specified test fixture in a 50  $\Omega$  test system with VSWR  $\leq 1.2$ : 1. Typically,  $f_{oscillator}$  or  $f_{transmitter}$  is less than the resonator  $f_c$ .

3. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.

4.Unless noted otherwise , case temperature  $T_c=+22^{\circ}C \pm 2^{\circ}C$ .

5. The design, manufacturing process, and specifications of this device are subject to change without notice. 6. Derived mathematically from one or more of the following directly measured parameters:  $f_c$ , IL, 3 dB bandwidth,  $f_c$  versus  $T_c$ , and  $C_0$ .

7.Turnover temperature,  $T_0$ , is the temperature of maximum (or turnover) frequency,  $f_0$  The nominal center frequency at any case temperature, TC, may be calculated from : $f = f_0 = 1$ -FTC ( $T_0$ -T  $_c$ )<sup>2</sup> .Typically, oscillator  $T_0$  is 20° less than the specified resonator  $T_0$ .

8. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance  $C_0$  is the measured static (nonmotional) capacitance between either pin 1 and ground or pin 4 and ground. The measurement includes case parasitic capacitance. One-port SAW Resonator For wireless Remote Controller 2002

Note: Reference temperature shall be  $25 \pm 2^{\circ}$ C.However, the measurement may be carried out at 5°C to 35°C unless there is a dispute.

## 4.Reliability

- 4.1 Mechanical Shock: The components shall remain within the electrical specifications after 1000 shocks, acceleration 392m/s<sup>2</sup>, duration 6 milliseconds.
- 4.2 Vibration Fatigue: The components shall remain within the electrical specifications after loaded vibration at 20 Hz , amplitude 1.5mm , for 2 hours.
- 4.3 Terminal Strength: The components shall remain within the electrical specifications after pulled 2 Kgs weight for 10 seconds towards an axis of each terminal.
- 4.4 High Temperature Storage: The components shall remain within the electrical specifications after being kept at the  $85^{\circ}C \pm 2^{\circ}C$  for 48 hours, then kept at room temperature for 2 hours.
- 4.5 Low Temperature Storage: The components shall remain within the electrical specifications after being kept at the  $-25^{\circ}C \pm 2^{\circ}C$  for 48 hours ,then kept room temperature for 2 hours.
- 4.6 Temperature Cycle: The components shall remain within the electrical specifications after 5 cycles of high and low temperature testing(one cycle: 80°C for 30 minutes → 25°C for 5 minutes → -25°C for 30 minutes ) than kept at room temperature for 2 hours.
- 4.7 Solder-heat Resistance : The components shall remain within the electrical specifications after dipped in the solder at 260°C for 10±1seconds, then kept at room temperature for 2 hours .(Terminal must be dipped leaving 1.5 mm from the case).
- 4.8 Solder ability: Solder ability of terminal shall be kept at more than 80% after dipped in the solder flux at  $230^{\circ}C \pm 5^{\circ}C$  for 5±1 seconds.

## 5. Remarks

5.1Static voltage

Static voltage between signal load & ground may cause deterioration & destruction of the component. Please avoid static voltage .

5.2Ultrasonic cleaning

Ultrasonic vibration may cause deterioration & destruction of the component. Please avoid ultrasonic cleaning.

5.3Soldering

Only leads of component may be soldered. Please avoid soldering another part of component.