Am2147/Am21L47

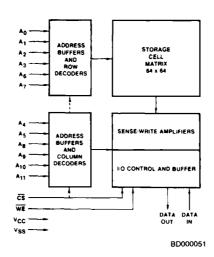
4096x1 Static RAM

DISTINCTIVE CHARACTERISTICS

- High speed access times down to 35 ns maximum
- · Automatic power-down when deselected
- Low power dissipation

- · High output drive
- TTL compatible interface levels
- No power-on current surge

GENERAL DESCRIPTION

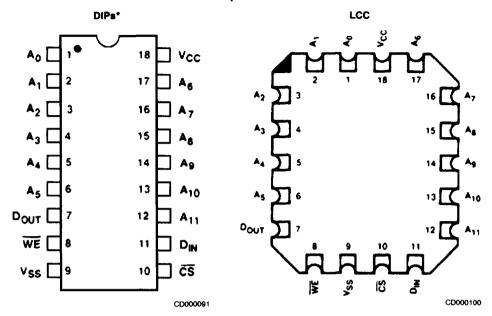

The Am2147/Am21L47 Series are high-performance, 4096 x 1-bit, static, read/write, random-access memories. It is organized as 4096 words by one bit per word. All interface signal levels are identical to TTL specifications, providing good noise immunity and simplified system design. All inputs are purely capacitive MOS loads. The outputs will drive up to seven standard TTL loads or up to six Schottky TTL loads.

Only a single +5-volt power supply is required. When deselected ($\overline{CS} \geqslant V_{IH}$), the Am2147 automatically enters a

power-down mode which reduces power dissipation by more than 85%. When selected, the chip powers up again with no access time penalty.

Data In and Data Out use separate pins on the standard 18pin package. Data Out is the same polarity as Data In. Data Out is a three-state signal allowing wired-or operation of several chips. Data In and Data Out may be connected together for operation in a common data bus environment.

BLOCK DIAGRAM

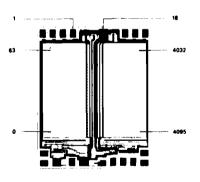


PRODUCT SELECTOR GUIDE

Part Number	Am2147-35	Am2147-45	Am21L47-45	Am2147-55	Am21L47-55	Am2147-70	Am21L47-70
Maximum Access time (ns)	35	45	45	55	55	70	70
Maximum Active Current (mA)	180	180	125	180	125	160 (180 mil)	125
Maximum Standby Current (mA)	30	30	15	30	15	20 (30 mil)	15
Full Military Operating Range Version		Yes		Yes		Yes	

Publication # Rev. Amendment 01940 E /0 Issue Date: January 1989

CONNECTION DIAGRAMS Top View



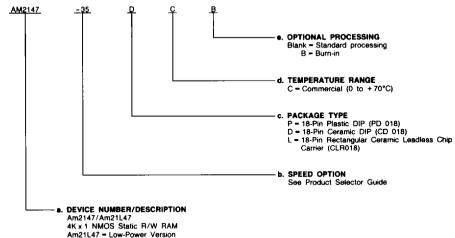
^{*}Also available for military customers in an 18-Pin Ceramic Flatpack. Pinout is identical to DIPs.

Note: Pin 1 is marked for orientation.

BIT MAP

Address [Designators				
External	Internal				
A ₀	A ₂				
A ₁	A ₅				
A ₂	A4				
A ₃	A ₃				
A ₄	A ₈				
A ₅	A ₇				
A 6	A ₁				
A ₇	A ₀				
A ₈	A ₁₁				
A ₉	Ag				
A ₁₀	A ₁₀				
A ₁₁	A ₆				

Die Size: 0.130 x 0.106


ORDERING INFORMATION

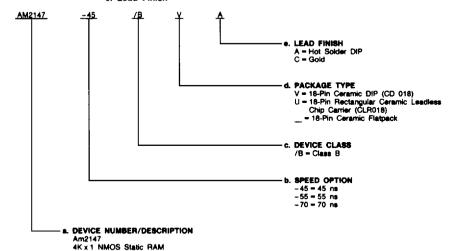
Standard Products

AMD standard products are available in several packages and operating ranges. The order number (Valid

- Combination) is formed by a combination of: a. Device Number
 - b. Speed Option (if applicable)
 - c. Package Type
 - d. Temperature Range

Valid (Combinations
AM2147-35	
AM2147-45	7
AM2147-55	7
AM2147-70	PC, PCB, DC, DCB,
AM21L47-45	
AM21L47-55	7
AM21L47-70	┑

Valid Combinations


Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, to check on newly released valid combinations, and to obtain additional data on AMD's standard military grade products.

MILITARY ORDERING INFORMATION

APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) is formed by a combination of: a. Device Number

- b. Speed Option (if applicable)
- c. Device Class
- d. Package Type
- e. Lead Finish

Valid Co	/BVA /BUC	
AM2147-45		
AM2147-55	/BVA	
AM2147-70		
AM2147-45		
AM2147-55	/BUC	
AM2147-70		

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check for newly released valid combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11,

PIN DESCRIPTION

A₀ - A₁₁ Address Inputs

The address input lines select the RAM location to be read or written.

CS Chip Select (Input, Active LOW)

The Chip Select selects the memory device.

WE Write Enable (Input, Active LOW)
When WE is LOW and CS is also LOW, data is written into the location specified on the address pins.

DIN Data in (input)

This pin is used for entering data during write operations.

DOUT Data Out (Output, Three-State)

This pin is three state during write operations. It becomes active when CS is LOW and WE is HIGH.

V_{CC} Power Supply

Vss Ground

ABSOLUTE MAXIMUM RATINGS

Storage Temperature	65 to +150°C
Ambient Temperature with	
Power Applied	55 to +125°C
Supply Voltage	0.5 V to +7.0 V
Signal Voltages with	
respect to ground	3.5 V to +7.0 V
Power Dissipation	1.2 W
DC Output Current	20. mA

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

Absolute Maximum Ratings are for system-design reference; parameters given are not 100% tested.

OPERATING RANGES

(T _A) 0 to +70°C +4.5 V to +5.5 V
(T _A)*55 to +125°C +4.5 V to +5.5 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating ranges unless otherwise specified (for APL Products, Group A, Subgroups 1, 2, 3 are tested unless otherwise noted)

Daramatar	Parameter		Am2147-35 Am2147-45 Am2147-55		Am21L47-45 Am21L47-55 Am21L47-70		Am2147-70			
Symbol	Description	Test (Conditions	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Юн	Output High Current	V _{OH} = 2.4 V	V _{CC} = 4.5 V	-4		-4		-4		mA
1-	Output Low Current	V _{OL} = 0.4 V	T _A = 70°C	12		12		12		mA
IOH OU IOL OL VIH Inp VIL Inp IIX Inp Co OL Co OL ICC Su			T _A = 125°C	8		N/A		8		
VIH	Input High Voltage			2.0	6.0	2.0	6.0	2.0	6.0	٧
V _{IL}	Input Low Voltage			2.5	0.8	-2.5	0.8	- 2.5	0.8	٧
I _{IX}	Input Load Current	V _{SS} ≤ V _I ≤ V _{CC}		-10	10	-10	10	-10	10	μА
loz	Output Leakage Current	GND ≤ V _O ≤ V _{CC} Output Disables	T _A = -55 to+125°C	- 50	50	- 50	50	-50	50	μА
C ₁	Input Capacitance	Test Frequency = 1.0	MHz (Note 4)		5		5		5	
c _o	Output Capacitance	TA = 25°C, All pins a	at 0 V, V _{CC} = 5 V		6		6		6	pF
loc	V _{CC} Operating	Max. V _{CC} CS ≤ V _{IL}	TA = 0 to 70°C		180		125		160	mA
	Supply Current	Output Open	T _A = -55 to 125°C		180		N/A		180	1
lan	Automatic CS Power	Max. V _{CC} , (CS >	T _A = 0 to 70°C		30		15		20	mA
ISB	Down Current	VIH) (Note 3)	T _A = -55 to + 125°C		30		N/A		30	IIIA

- Notes: 1. Test conditions assume signal transition times of 10 ns or less, timing reference levels of 1.5 V, input pulse levels of 0 to 3.0 V and output loading of the specified I_{OL}/I_{OH} and 30 pF load capacitance. Output timing reference is 1.5 V.

 2. The internal write time of the memory is defined by the overlap of CS LOW and WE LOW. Both signals must be low to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

 3. A pull-up resistor to V_{CC} on the CS input is required to keep the device deselected during V_{CC} power up. Otherwise I_{SB} will
 - A purify resident to VCC on the CS input is required to keep the device deselected during VCC power up. Otherwise ISB w exceed values given.
 These parameters are not 100% tested, but guaranteed by characterization.
 Chip deselected greater than 55 ns prior to selection.
 Chip deselected less than 55 ns prior to selection.
 Transition is measured at 1.5 V on the input to V_{OH} > 500 mV and V_{OL} + 500 mV on the outputs using the load shown in Element Statistics Test Characterization.

 - Figure B under Switching Test Circuit. WE is HIGH for read cycle.

 - Device is continuously selected, CS = V_{IL}.
 Address valid prior to or coincident with CS transition LOW.

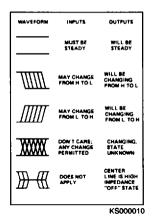
^{*}TA is defined as the "instant on" case temperature.

SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified (Note 1) (for APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted)

	Parameter	r Parameter Description		Am2147-35		Am2147-45 Am21L47-45		Am2147-55 Am21L47-55		Am2147-70 Am21L47-70		
No.	Symbol			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
R	EAD CYCLE						•					
1	^t RC	Address Valid to Address Do Time (Read Cycle Time)	Not Care	35		45		55		70		ns
2	IAA	Address Valid to Data Out \ (Address Access Time)	/alid Delay		35		45		55		70	ns
3	¹ ACS1	Chip Select LOW to Data	(Note 5)		35		45		55		70	
4	tACS2	Out Valid	(Note 6)		35		45		65		80	ns
5	tLZ	Chip Select LOW to Data O (Notes 4 & 7)	ut On	5		5		5		5		ns
6	tHZ	Chip Select HIGH to Data Out Off (Notes 4 & 7)		0	30	0	30	0	30	0	40	ns
7	tон	Output hold after address change		5		5		5		5		ns
8	tPD	Chip Select HIGH Power Down Delay (Note 4)			20		20		20		30	ns
9	tpu	Chip Select LOW to Power Up Delay (Note 4)		0		0		0		0		ns
V	VRITE CYCL	E										
10	twc	Address Valid to Address D (Write Cycle Time)	o Not Care	35		45		55		70		ns
11	twp	Write Enable LOW to Write Enable High (Note 2)		20		25		25		40		ns
12	twn	Write Enable HIGH to Addre	988	0		0		10		15		ns
13	twz	Write Enable LOW to Output in Hi Z (Notes 4 & 7)		0	20	0	25	0	25	0	35	ns
14	tow	Data In Valid to Write Enable HIGH		20		25		25		30		ns
15	toH	Data Hold Time		10		10		10		10		ns
16	lAS	Address Valid to Write Enable LOW		0		0		0		0		ns
17	tcw	Chip Select LOW to Write Enable HIGH (Note 2)		35		45		45		55		ns
18	tow	Write Enable HIGH to Output in Low Z (Notes 4 & 7)		0		0		0		0		ns
19	taw	Address Valid to End of Wr	ite	35		45		45		55		ns

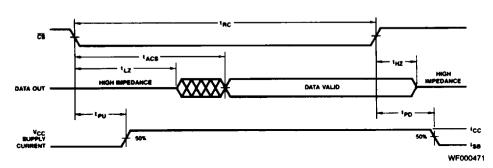
Notes: See notes following DC Characteristics table.

SWITCHING TEST CIRCUITS



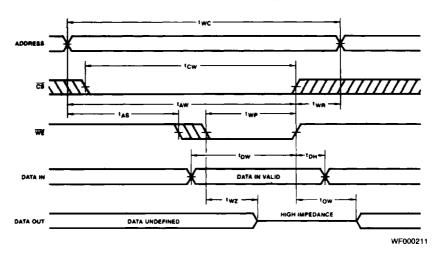
A. Output Load

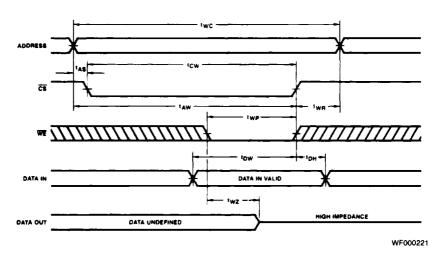
B. Output Load


for t_{HZ}, t_{LZ}, t_{OW}, t_{WZ}

SWITCHING WAVEFORMS KEY TO SWITCHING WAVEFORMS

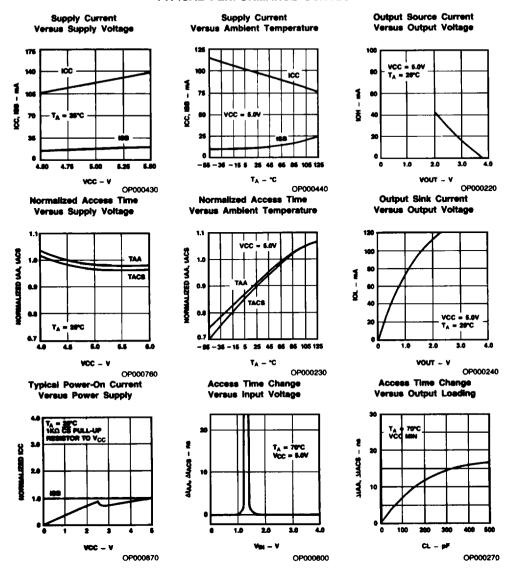
DATA OUT PREVIOUS DATA VALID WF000461


Read Cycle No. 1 (Notes 8, 9)


Read Cycle No. 2 (Notes 8, 10)

Notes: See notes following DC Characteristics table.

SWITCHING WAVEFORMS (Cont'd.)


Write Cycle No. 1 (WE Controlled)

Write Cycle No. 2 (CS Controlled)

Note: If $\overline{\text{CS}}$ goes HIGH simultaneously with $\overline{\text{WE}}$ high, the output remains in a high impedance state.

TYPICAL PERFORMANCE CURVES

