

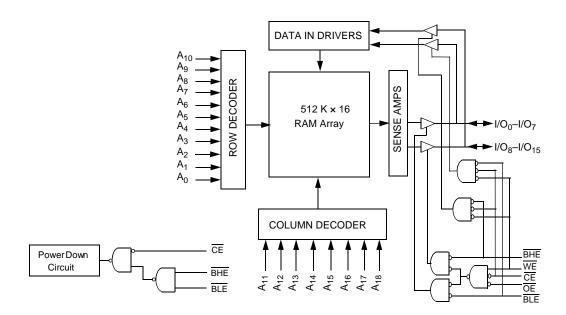
CY62157ESL MoBL[®] 8-Mbit (512 K × 16) Static RAM

Features

- Very high speed: 45 ns
- Wide voltage range: 2.2 V to 3.6 V and 4.5 V to 5.5 V
- Ultra low standby power
 Typical Standby current: 2 μA
 Maximum Standby current: 8 μA
- Ultra low active power
 Typical active current: 1.8 mA at f = 1 MHz
- Easy memory expansion with \overline{CE} and \overline{OE} features
- Automatic power down when deselected
- Complementary metal oxide semiconductor (CMOS) for optimum speed and power
- Available in Pb-free 44-pin thin small outline package (TSOP) II package

Functional Description

The CY62157ESL is a high performance CMOS static RAM organized as 512K words by 16 bits. This device features advanced circuit design to provide ultra low active current. This is ideal for providing More Battery Life™ (MoBL[®]) in portable applications. The device also has an automatic power down feature that significantly reduces power consumption when


addresses are not toggling. Place the device into standby mode when deselected (CE HIGH or both BHE and BLE are HIGH). The input or output pins (I/O₀ through I/O₁₅) are placed in a high impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), both the Byte High Enable and the Byte Low Enable are disabled (BHE, BLE HIGH), or during an active write operation (CE LOW and WE LOW).

<u>To write</u> to the device, take Chip Enable $\overline{(CE)}$ and Write Enable $\overline{(WE)}$ inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₀ through I/O₇) is written into the location specified <u>on</u> the address pins (A₀ through A₁₈). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A₀ through A₁₈).

To read from the device, take Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins appear on I/O₀ to I/O₇. If Byte High Enable (BHE) is LOW, then data from memory appears on I/O₈ to I/O₁₅. See the Truth Table on page 11 for a complete description of read and write modes.

The CY62157ESL device is suitable for interfacing with processors that have TTL I/P levels. It is not suitable for processors that require CMOS I/P levels. Please see Electrical Characteristics on page 4 for more details and suggested alternatives.

Logic Block Diagram

198 Champion Court

San Jose, CA 95134-1709

Contents

Pin Configurations	3
Product Portfolio	3
Maximum Ratings	4
Operating Range	4
Electrical Characteristics	4
Capacitance	5
Thermal Resistance	
AC Test Loads and Waveforms	5
Data Retention Characteristics	
Data Retention Waveform	6
Switching Characteristics	
Switching Waveforms	

Truth Table1	1
Ordering Information1	2
Ordering Code Definitions1	2
Package Diagram1	
Acronyms	
Document Conventions1	4
Units of Measure1	4
Document History Page1	5
Sales, Solutions, and Legal Information1	7
Worldwide Sales and Design Support1	7
Products1	7
PSoC Solutions1	7

Pin Configurations

Figure 1. 44-pin TSOP II pinout (Top View)

	А ₅
	A ₆
A ₂ 3 42	A ₇
$A_1 \square 4$ $41 \square$	OE
	BHE
	BLE
	I/O ₁₅
	I/O ₁₄
	I/O ₁₄
	I/O ₁₃
	V
	V _{SS}
	V _{CC}
	I/O ₁₁
$1/O_5 \square 14$ 31 \square	I/O ₁₀
	I/O ₉
	I/O ₈
WE 17 28	A ₈
A ₁₈ □ 18 27 □	A ₉
A ₁₇ □ 19 26 □	A ₁₀
	A ₁₁
	A ₁₂
$A_{14} \square 22 \qquad 23 \square 4$	A ₁₃

Product Portfolio

Product					Power Dissipation						
		Range V	V _{CC} Range (V) ^[1]	Speed	(Operating	l I _{CC} , (mA))	Standby, I _{SB2} (μA)		
	Troduct	Nange		(ns)	f = 1MHz		f = f _{max}				
						Typ ^[2]	Max	Тур ^[2]	Max	Тур [2]	Max
	CY62157ESL	Industrial	2.2 V-3.6 V and 4.5 V-5.5 V	45	1.8	3	18	25	2	8	

Notes

1. Datasheet specifications are not guaranteed for V_{CC} in the range of 3.6 V to 4.5 V. 2. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = 3 V, and V_{CC} = 5 V, T_A = 25 °C.

Maximum Ratings

Exceeding the maximum ratings may impair the useful life of the device. These user guidelines are not tested.

Storage Temperature65 °C to +150 °C
Ambient Temperature with Power Applied55 °C to +125 °C
Supply Voltage to Ground Potential–0.5 V to 6.0 V
DC Voltage Applied to Outputs in High Z State $^{[3, 4]}$ 0.5 V to 6.0 V
in High Z State $^{[0, 4]}$ 0.5 V to 6.0 V
DC Input Voltage ^[3, 4] 0.5 V to 6.0 V

Output Current into Outputs (LOW)	.20 mA
Static Discharge Voltage	
(MIL-STD-883, Method 3015)>	∍2001 V
Latch up Current>	200 m A

Operating Range

Device	Range	Ambient Temperature	V_{CC} ^[5]
CY62157ESL	Industrial	–40 °C to +85 °C	2.2 V–3.6 V, and 4.5 V–5.5 V

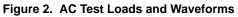
Electrical Characteristics

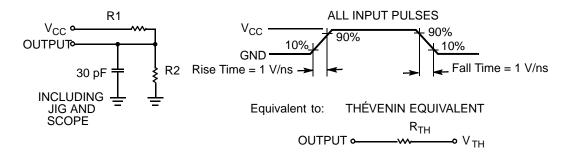
Over the Operating Range

Parameter	Description	Tost Conditions		45 ns		Unit
Parameter	Description	Test Conditions	Min	Тур ^[6]	Max	Unit
V _{OH}	Output high voltage	$2.2 \le V_{CC} \le 2.7$ $I_{OH} = -0.1 \text{ mA}$	2.0	-	—	V
		$2.7 \le V_{CC} \le 3.6$ $I_{OH} = -1.0 \text{ mA}$	2.4	-	-	
		$4.5 \le V_{CC} \le 5.5$ $I_{OH} = -1.0 \text{ mA}$	2.4	-	-	
		$4.5 \le V_{CC} \le 5.5$ $I_{OH} = -0.1 \text{ mA}$	-	-	3.4 ^[7]	
V _{OL}	Output low voltage	$2.2 \le V_{CC} \le 2.7$ $I_{OL} = 0.1 \text{ mA}$	_	-	0.4	V
		$2.7 \le V_{CC} \le 3.6$ $I_{OL} = 2.1 \text{ mA}$	_	-	0.4	
		$4.5 \le V_{CC} \le 5.5$ $I_{OL} = 2.1 \text{ mA}$	-	-	0.4	
V _{IH}	Input high voltage	$2.2 \le V_{CC} \le 2.7$	1.8	-	V _{CC} + 0.3	V
		$2.7 \le V_{CC} \le 3.6$	2.2	-	V _{CC} + 0.3	
		$4.5 \le V_{CC} \le 5.5$	2.2	-	V _{CC} + 0.5	
V _{IL} Input low voltage		$2.2 \le V_{CC} \le 2.7$	-0.3	-	0.6	V
		$2.7 \le V_{CC} \le 3.6$	-0.3	-	0.8	
		$4.5 \le V_{CC} \le 5.5$	-0.5	-	0.8	
I _{IX}	Input leakage current	$GND \le V_I \le V_{CC}$	-1	-	+1	μA
I _{OZ}	Output leakage current	$GND \leq V_O \leq V_{CC}$, Output Disabled	-1	-	+1	μA
I _{CC}	V _{CC} operating supply current	$f = f_{max} = 1/t_{RC}$ $V_{CC} = V_{CCmax}$	_	18	25	mA
		f = 1 MHz I _{OUT} = 0 mA, CMOS levels	_	1.8	3	
I _{SB1} ^[8]	Automatic CE power down	$\overline{CE} \ge V_{CC} - 0.2 V,$	_	2	8	μΑ
	current – CMOS inputs	$V_{IN} \ge V_{CC} - 0.2 \text{ V or } V_{IN} \le 0.2 \text{ V},$				
		$f = f_{max}$ (address and data only),				
		$f = 0$ (\overline{OE} , \overline{BHE} , \overline{BLE} and \overline{WE}),				
. [8]		$V_{CC} = V_{CC(max)}$				
I _{SB2} ^[8]	Automatic CE power down	$\overline{CE} \ge V_{CC} - 0.2 \text{ V},$	—	2	8	μA
	current – CMOS inputs	$V_{IN} \ge V_{CC} - 0.2 \text{ V or } V_{IN} \le 0.2 \text{ V},$				
		$f = 0, V_{CC} = V_{CC(max)}$				

Notes

Notes
V_{IL} (min) = -2.0 V for pulse durations less than 20 ns.
V_{IH} (max) = V_{CC} + 0.75 V for pulse durations less than 20 ns.
Full device AC operation assumes a 100 μs ramp time from 0 to V_{CC} (min) and 200 μs wait time after V_{CC} stabilization.
Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = 3 V, and V_{CC} = 5 V, T_A = 25 °C.
Please note that the maximum V_{OH} limit does not exceed minimum CMOS V_{IH} of 3.5 V. If you are interfacing this SRAM with 5 V legacy processors that require a minimum V_{IH} <u>of</u> 3.5 V, please refer to Application Note AN6081 for technical details and options you may consider.
Chip enable (CE) needs to be tied to CMOS levels to meet the I_{SB1}/I_{SB2} / I_{CCDR} spec. Other inputs can be left floating.


Capacitance

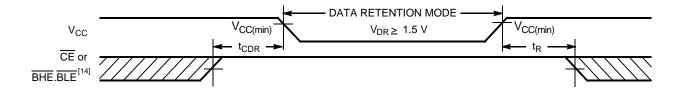

Parameter ^[9]	Description	Test Conditions	Max	Unit
C _{IN}	Input capacitance	$T_A = 25 \text{ °C}, f = 1 \text{ MHz}, V_{CC} = V_{CC(typ)}$	10	pF
C _{OUT}	Output capacitance		10	pF

Thermal Resistance

Parameter ^[9]	Description	Test Conditions	TSOP II	Unit
Θ_{JA}	Thermal resistance (junction to ambient)	Still Air, soldered on a 3×4.5 inch, two-layer printed circuit board	77	°C/W
Θ _{JC}	Thermal resistance (junction to case)		13	°C/W

AC Test Loads and Waveforms

Parameters	2.5 V	3.0 V	5.0 V	Unit
R1	16667	1103	1800	Ω
R2	15385	1554	990	Ω
R _{TH}	8000	645	639	Ω
V _{TH}	1.20	1.75	1.77	V


Data Retention Characteristics

Over the Operating Range

Parameter	Description	Conditions		Min	Typ ^[10]	Max	Unit
V _{DR}	V _{CC} for data retention			1.5	-	-	V
I _{CCDR} ^[10]	Data retention current	$\overline{\text{CE}} \ge \text{V}_{\text{CC}} - 0.2 \text{ V},$	V _{CC} = 1.5 V	_	2	5	μΑ
		$\label{eq:cell} \begin{split} \overline{\text{CE}} &\geq \text{V}_{\text{CC}} - 0.2 \text{ V}, \\ \text{V}_{\text{IN}} &\geq \text{V}_{\text{CC}} - 0.2 \text{ V} \text{ or} \\ \text{V}_{\text{IN}} &\leq 0.2 \text{ V} \end{split}$	V _{CC} = 2.0 V	_	2	8	
t _{CDR} ^[12]	Chip deselect to data retention time			0	-	-	ns
t _R ^[13]	Operation recovery time			45	_	_	ns

Data Retention Waveform

Figure 3. Data Retention Waveform

Notes

- 10. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = 3 V$, and $V_{CC} = 5 V$, $T_A = 25 °C$. 11. Chip enable (CE) needs to be tied to CMOS levels to meet the $I_{SB1}/I_{SB2} / I_{CCDR}$ spec. Other inputs can be left floating. 12. Tested initially and after any design or process changes that may affect these parameters. 13. <u>Full device</u> operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min)} \ge 100 \ \mu s$ or stable at $V_{CC(min)} \ge 100 \ \mu s$. 14. BHE.BLE is the AND of both BHE and BLE. Deselect the chip by either disabling chip enable signals or by disabling both BHE and BLE.

Switching Characteristics

Over the Operating Range

Parameter ^[15]	Description	45	Unit	
Farameter	Description	Min	Max	
Read Cycle				
t _{RC}	Read cycle time	45	-	ns
t _{AA}	Address to data valid	-	45	ns
t _{OHA}	Data hold from address change	10	-	ns
t _{ACE}	CE LOW to data valid	-	45	ns
t _{DOE}	OE LOW to data valid	-	22	ns
t _{LZOE}	OE LOW to Low Z ^[16]	5	-	ns
t _{HZOE}	OE HIGH to High Z ^[16, 17]	-	18	ns
t _{LZCE}	CE LOW to Low Z ^[16]	10	-	ns
t _{HZCE}	CE HIGH to High Z ^[16, 17]	-	18	ns
t _{PU}	CE LOW to power up	0	-	ns
t _{PD}	CE HIGH to power down	-	45	ns
t _{DBE}	BLE/BHE LOW to data valid	-	45	ns
t _{LZBE}	BLE/BHE LOW to Low Z ^[16, 18]	5	-	ns
t _{HZBE}	BLE/BHE HIGH to High Z ^[16, 17]	-	18	ns
Write Cycle [19]				
t _{WC}	Write cycle time	45	-	ns
t _{SCE}	CE LOW to write end	35	-	ns
t _{AW}	Address setup to write end	35	-	ns
t _{HA}	Address hold from write end	0	-	ns
t _{SA}	Address setup to write start	0	-	ns
t _{PWE}	WE pulse width	35	-	ns
t _{BW}	BLE/BHE LOW to write end	35	-	ns
t _{SD}	Data setup to write end	25	-	ns
t _{HD}	Data hold from write end	0	-	ns
t _{HZWE}	WE LOW to High Z ^[16, 17]	-	18	ns
t _{LZWE}	WE HIGH to Low Z ^[16]	10	-	ns

Notes

16. At any temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZBE} is less than t_{LZBE} , t_{HZCE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZWE} for any device. 17. t_{HZOE} , t_{HZEE} , d_{HZWE} transitions are measured when the outputs enter a high-impedance state. 18. If both byte enables are toggled together, this value is 10 ns.

19. The internal write time of the memory is defined by the overlap of \overline{WE} , $\overline{CE} = V_{|L}$, \overline{BHE} , \overline{BLE} or both = $V_{|L}$. All signals must be active to initiate a write and any of these signals can terminate a write by going inactive. The data input setup and hold timing must be referenced to the edge of the signal that terminates the write.

^{15.} Test conditions for all parameters other than tri-state parameters assume signal transition time of 3 ns or less, timing reference levels of 1.5 V, input pulse levels of 0 to 3 V, and output loading of the specified IOL/IOH as shown in the Figure 2 on page 5.

Switching Waveforms

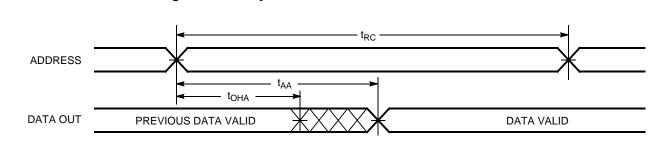
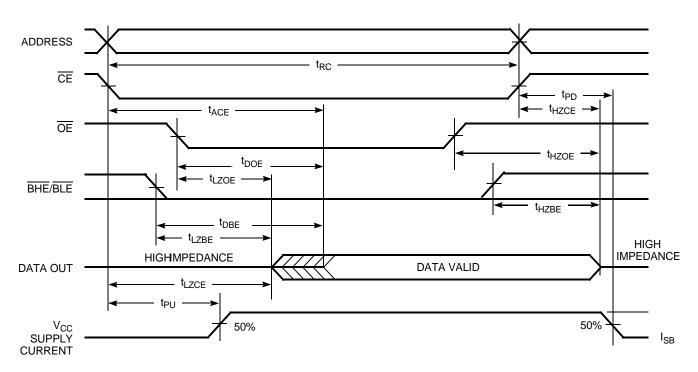
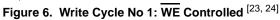
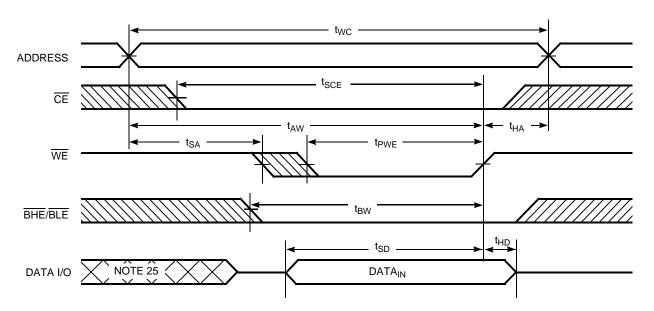



Figure 4. Read Cycle No.1: Address Transition Controlled. ^[20, 21]

Figure 5. Read Cycle No. 2: OE Controlled ^[21, 22]




Notes

- 20. The device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$, \overline{BHE} , \overline{BLE} , or both = V_{IL} . 21. WE is HIGH for read cycle. 22. Address valid before or similar to \overline{CE} , \overline{BHE} , \overline{BLE} transition LOW.



Switching Waveforms (continued)

Figure 7. Write Cycle 2: CE Controlled ^[23, 24]

Notes

23. The internal write time of the memory is defined by the overlap of WE, CE = V_{IL}, BHE, BLE or both = V_{IL}. All signals must be active to initiate a write and any of these signals can terminate a write by going inactive. The data input setup and hold liming must be referenced to the edge of the signal that terminates the write.
 24. If CE goes HIGH simultaneously with WE = V_{IH}, the output remains in a high impedance state.
 25. During this period, the I/Os are in output state. Do not apply input signals.

Switching Waveforms (continued)

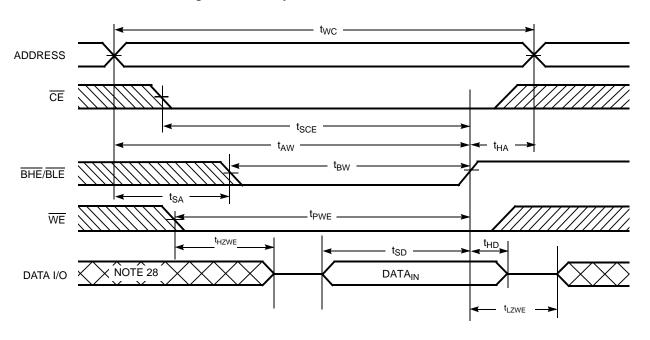


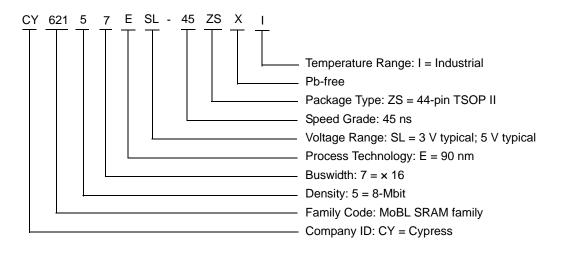
Figure 8. Write Cycle 3: BHE/BLE Controlled ^[26, 27]

Notes

Notes 26. The internal write time of the memory is defined by the overlap of \overline{WE} , $\overline{CE} = V_{IL}$, \overline{BHE} , \overline{BLE} or both = V_{IL} . All signals must be active to initiate a write and any of these signals can terminate a write by going inactive. The data input setup and hold timing must be referenced to the edge of the signal that terminates the write. 27. If CE goes HIGH simultaneously with $\overline{WE} = V_{IH}$, the output remains in a high impedance state. 28. During this period, the I/Os are in output state. Do not apply input signals.

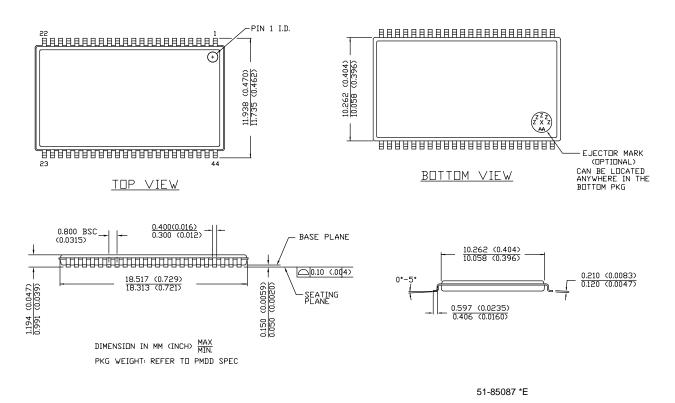
Truth Table

CE	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	High Z	Deselect/power down	Standby (I _{SB})
X ^[29]	Х	Х	Н	Н	High Z	Deselect/power down	Standby (I _{SB})
L	Н	L	L	L	Data Out (I/O ₀ –I/O ₁₅)	Read	Active (I _{CC})
L	Н	L	Н	L	Data Out (I/O ₀ –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Read	Active (I _{CC})
L	Н	L	L	Н	Data Out (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Read	Active (I _{CC})
L	Н	Н	L	L	High-Z	Output disabled	Active (I _{CC})
L	Н	Н	Н	L	High-Z	Output disabled	Active (I _{CC})
L	Н	Н	L	Н	High-Z	Output disabled	Active (I _{CC})
L	L	Х	L	L	Data In (I/O ₀ -I/O ₁₅)	Write	Active (I _{CC})
L	L	Х	Н	L	Data In (I/O ₀ –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Write	Active (I _{CC})
L	L	Х	L	Н	Data In (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Write	Active (I _{CC})


29. The 'X' (Don't care) state for the Chip enable in the truth table refers to the logic state (either HIGH or LOW). Intermediate voltage levels on this pin is not permitted.

Ordering Information

Spee (ns)	I Ordering Code	Package Diagram	Package Type	Operating Range
45	CY62157ESL-45ZSXI	51-85087	44-pin TSOP Type II (Pb-free)	Industrial


Ordering Code Definitions

Package Diagram

Figure 9. 44-pin TSOP Z44-II Package Outline, 51-85087

Acronyms

Acronym	Description			
BHE	Byte High Enable			
BLE	Byte Low Enable			
CE	Chip Enable			
CMOS	Complementary Metal Oxide Semiconductor			
I/O	Input/Output			
OE	Output Enable			
SRAM	Static Random Access Memory			
TSOP	Thin Small Outline Package			
WE	Write Enable			

Document Conventions

Units of Measure

Symbol	Unit of Measure			
°C	degrees Celsius			
MHz	megahertz			
μΑ	microampere			
mA	milliampere			
ns	nanosecond			
Ω	ohm			
pF	picofarad			
V	volt			
W	watt			

Document History Page

Rev.	ECN No.	Issue Date	Orig. of Change	Description of Change
**	1875228	See ECN	VKN / AESA	New data sheet.
*A	2943752	06/03/2010	VKN	Added Contents.
				Updated Electrical Characteristics: Added Note 8 and referred the same note in I_{SB2} parameter. Updated Truth Table: Added Note 29 and referred the same note in \overline{CE} column.
				Updated Package Diagram.
				Added Sales, Solutions, and Legal Information.
*В	3109266	12/13/2010	PRAS	Changed Table Footnotes to Footnotes.
				Added Ordering Code Definitions.
*C	3295175	06/29/2011	RAME	Updated Functional Description: Remove reference to AN1064 SRAM system guidelines.
				Updated Electrical Characteristics: Updated Note 8 (Added I_{SB1}) and referred the same note in I_{SB1} parameter
				Updated Capacitance: Added Note 9 and referred the same note in parameter column.
				Updated Thermal Resistance: Added Note 9 and referred the same note in parameter column.
				Updated Data Retention Characteristics: Added Note 11 and referred the same note in I _{CCDR} parameter.
				Updated Ordering Code Definitions.
				Added Units of Measure.
*D	3904207	02/14/2013	MEMJ	Updated Switching Waveforms: Updated Figure 6 (Removed \overline{OE} signal). Updated Figure 7 (Removed \overline{OE} signal). Removed the Note "Data I/O is high impedance if $\overline{OE} = V_{IH}$." and its reference in Figure 6, Figure 7. Removed the figure "Write Cycle 3: \overline{WE} controlled, \overline{OE} LOW". Updated Figure 8 (Removed "OE LOW" in caption only). Removed the Note "Data I/O is high impedance if $\overline{OE} = V_{IH}$." and its reference in Figure 8.
				Updated Package Diagram: spec 51-85087 – Changed revision from *C to *E.

Document History Page (continued)

Document Title: CY62157ESL MoBL [®] , 8-Mbit (512 K × 16) Static RAM Document Number: 001-43141					
Rev.	ECN No.	Issue Date	Orig. of Change	Description of Change	
۴E	4019657	06/04/2013	MEMJ	Updated Functional Description. Updated Electrical Characteristics: Added one more Test Condition " $4.5 \le V_{CC} \le 5.5$, $I_{OH} = -0.1$ mA" for V_{OH} parameter and added maximum value corresponding to that Test Condition. Added Note 7 and referred the same note in maximum value for V_{OH} parameter corresponding to Test Condition " $4.5 \le V_{CC} \le 5.5$, $I_{OH} = -0.1$ mA".	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
	cypress.com/go/plc
Memory	cypress.com/go/memory
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 5

© Cypress Semiconductor Corporation, 2008–2013. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-43141 Rev. *E

Revised June 4, 2013

Page 17 of 17

MoBL is a registered trademark and More Battery Life is a trademark of Cypress Semiconductor. All product and company names mentioned in this document are the trademarks of their respective holders