

Advanced Information GS8170S18/36/72B-333/300/275/250

209-Bump BGA Commercial Temp Industrial Temp

$\sum_{RAM} \frac{1M \times 18,512K \times 36,256K \times 72}{16Mb \text{ Synchronous SRAM}}$

333 MHz 1.8 V V_{DD} 1.8 V and 1.5 V I/O

Features

- User-configurable Early, Late, and Double Late Write modes
- User-configurable pipelined and flow through operation
- Observes the Sigma RAM pinout standard
- 1.8 V +150/-100 mV core power supply
- 1.5 V or 1.8 V I/O supply
- Dual Cycle Deselect in Pipeline mode
- Burst Synchronous operation
- Fully coherent read and write pipelines
- Echo Clock outputs track data output drivers in Pipeline mode
- ZQ mode pin for user-selectable output drive strength
- Byte write operation (9-bit bytes) in EW, LW, and DLW modes
- 2 User programmable chip enable inputs for easy depth expansion.
- IEEE 1149.1 JTAG-compatible Boundary Scan
- 209-bump, 14 mm x 22 mm, 1 mm bump pitch BGA package
- Pin compatible with future 32M, 64M, and 128M devices

		- 333
Pipeline mode	tKHKH	3.0 ns
r ipenne mode	tKHQV	1.5 ns
Flow Through mode	tKHKH	7 ns
	tKHQV	5 ns

Sigma RAM Family Overview

The GS8170S18/36/72B Σ RAMs are built in compliance with the Sigma RAM pinout standard for synchronous SRAMs. They are 18,874,368-bit (16Mb) SRAMs. These are the first in a family of wide, very low voltage CMOS I/O SRAMs designed to operate at the speeds needed to implement economical high performance networking systems.

GSI's Σ RAMs are offered in a number of configurations that emulate other synchronous SRAMs, such as Burst RAMs, NBT RAMs, Late Write, or Double Data Rate (DDR) SRAMs. The logical differences between the protocols employed by these RAMs hinge mainly on various combinations of address bursting, output data registering and write cueing. Σ RAMs allow a user to implement the interface protocol best suited to the task at hand.

0000000000000000000	0
0	0
000000000000000000000000000000000000000	0
000000000000000000000000000000000000000	0
000000000000000000000000000000000000000	0
000000000000000000000000000000000000000	0
000000000000000000000000000000000000000	0
000000000000000000000000000000000000000	0
000000000000000000000000000000000000000	0
000000000000000000000000000000000000000	0
000000000000000000000000000000000000000	0

Bottom View

209-Bump, 14 mm x 22 mm BGA 1 mm Bump Pitch, 11 x 19 Bump Array

Functional Description

Because a Sigma RAM is a synchronous device, address, data Inputs, and read/write control inputs are captured on the rising edge of the input clock. Output Enable is the only asynchronous control input. Output Enable can be used to override the synchronous control of the output drivers and turn the RAM's output drivers off at any time. Write cycles are internally self-timed and initiated by the rising edge of the clock input. This feature eliminates complex off-chip write pulse generation required by asynchronous SRAMs and simplifies input signal timing.

A Σ RAM may be configured by the user to read in Pipeline or Flow Through mode. In Pipeline mode, an ordinary single data rate RAM incorporates a rising-edge-riggered output register. For read cycles, a pipelined SRAM's output data is temporarily stored by the edge-triggered output register during the access cycle and then released to the output drivers at the next rising edge of clock.

GS817x18/36/72B ΣRAMs are implemented with GSI's high performance CMOS technology and are packaged in a 209bump BGA.

8170S72 Pinout

256K x 72 Common I/O—Top View

1	2	3	4	5	6	7	8	9	10	11
DQg	DQg	Α	E2	<mark>A</mark> (16M)	ADV	A (8M)	E3	Α	DQb	DQb
DQg	DQg	Bc	Bg	NC	W	Α	Bb	Bf	DQb	DQb
DQg	DQg	Bh	Bd	NC (128M)	E1	NC	Be	Ba	DQb	DQb
DQg	DQg	V _{SS}	NC	NC	G	NC	NC	V _{SS}	DQb	DQb
DQPg	DQPc	V _{DDQ}	V _{DDQ}	V _{DD}	V _{DD}	V _{DD}	V _{DDQ}	V _{DDQ}	DQPf	DQPb
DQc	DQc	V _{SS}	V _{SS}	V _{SS}	ZQ	V _{SS}	V _{SS}	V _{SS}	DQf	DQf
DQc	DQc	V _{DDQ}	V _{DDQ}	V _{DD}	EP2	V _{DD}	V _{DDQ}	V _{DDQ}	DQf	DQf
DQc	DQc	V _{SS}	V _{SS}	V _{SS}	EP3	V _{SS}	V _{SS}	V _{SS}	DQf	DQf
DQc	DQc	V _{DDQ}	V _{DDQ}	V _{DD}	M4	V _{DD}	V _{DDQ}	V _{DDQ}	DQf	DQf
CQ2	CQ2	СК	NC	V _{SS}	MCL	V _{SS}	NC	NC	CQ1	CQ1
DQh	DQh	V _{DDQ}	V _{DDQ}	V _{DD}	M2	V _{DD}	V _{DDQ}	V _{DDQ}	DQa	DQa
DQh	DQh	V _{SS}	V _{SS}	V _{SS}	M3	V _{SS}	V _{SS}	V _{SS}	DQa	DQa
DQh	DQh	V _{DDQ}	V _{DDQ}	V _{DD}	МСН	V _{DD}	V _{DDQ}	V _{DDQ}	DQa	DQa
DQh	DQh	V _{SS}	V _{SS}	V _{SS}	MCL	V _{SS}	V _{SS}	V _{SS}	DQa	DQa
DQPd	DQPh	V _{DDQ}	V _{DDQ}	V _{DD}	V _{DD}	V _{DD}	V _{DDQ}	V _{DDQ}	DQPa	DQPe
DQd	DQd	V _{SS}	NC	NC	MCL	NC	NC	V _{SS}	DQe	DQe
DQd	DQd	NC	Α	NC (64M)	Α	NC (32M)	Α	NC	DQe	DQe
DQd	DQd	Α	Α	Α	A1	Α	Α	Α	DQe	DQe
DQd	DQd	TMS	TDI	Α	A 0	Α	TDO	ТСК	DQe	DQe
	DQg DQg DQg DQPg DQC DQC DQC CQ2 DQC CQ2 DQh DQh DQh DQh DQh DQh DQh DQh DQh DQh	DQgDQgDQgDQgDQgDQgDQgDQgDQgDQgDQPDQCDQCDQCDQCDQCDQCDQCDQCDQCDQCDQCDQCQQCDQCQQCDQCQQCDQCQQCDQCQQCDQCDQCDQADQADQhDQhDQhDQhDQADQHDQADQADQADQADQADQADQADQADQADQADQADQADQADQA	DQgDQgADQgDQgBcDQgDQgBhDQgDQgVssDQqDQPcVDDQDQcDQcVssDQcDQcVssDQcDQcVssDQcDQcVssDQcDQcVssDQcCQ2CQ2CQ2CQ2CKDQhDQhVssDQhDQhVssDQhDQhVssDQhDQhVssDQhDQhVssDQhDQhVssDQhDQhVssDQdDQHVssDQdDQANCDQdDQdADQdDQdTMS	DQgDQgAE2DQgDQgBcBgDQgDQgDQgBhBdDQgDQgVssNCDQPDQPcVDDQVDDQDQcDQcVssVssDQcDQcVssVssDQcDQcVssVssDQcDQcVDDQVDDQDQcDQcVDDQVDDQDQcDQcVssVssDQcDQcVDDQVDDQDQcDQcVDDQVDDQDQhDQhVDDQVDDQDQhDQhVDDQVDDQDQhDQhVssVssDQhDQhVbDQVDDQDQhDQhVbDQVDDQDQhDQhVbDQNCDQdDQHVbDQNCDQdDQdAADQdDQdAADQdDQdTMSTDI	DQgDQgDQgE2A (16M)DQgDQgBcBgNCDQgDQgBhBdNC (128M)DQgDQgVssNCNCDQgDQgVssNCNCDQgDQcVpdQVpdQVpdDQcDQcVssVssVssDQcDQcVpdQVpdQVpdDQcDQcVssVssVssDQcDQcVpdQVpdQVpdDQcDQcVpdQVpdQVpdDQcDQcVpdQVpdQVpdDQcDQcVpdQVpdQVpdDQcDQhVpdQVpdQVpdDQhDQhVpdQVpdQVpdDQhDQhVpdQVpdQVpdDQhDQhVpdQVpdQVpdDQhDQhVpdQVpdVpdDQhDQhVpdQVpdVpdDQhDQhVpdQVpdVpdDQhDQhVpdQNCADQdDQdNCAADQdDQdAAADQdDQdAAA	DQgDQgAE2A (16M)ADV (16M)DQgDQgBcBgNCWDQgDQgBhBdNC (128M)E1DQgDQgVSSNCNCGDQgDQgVSSNCNCGDQgDQcVDQQVDQQVDDVDDDQcDQCVSSVSSVSSZQDQcDQCVDQQVDQVDDEP2DQcDQCVDQVDQVDDM4CQ2CQ2CKNCVSSMCLDQhDQhVDQVDQVDDM2DQhDQhVDQVDQVDDM2DQhDQhVDQVDQVDDM2DQhDQhVDQVDQVDDMCHDQhDQhVDQVDQVDDMCHDQhDQhVSSVSSVSSMS1DQhDQhVDQVDQVDDMCHDQhDQhVSSNCNCMCLDQdDQhVSSNCNCMCLDQdDQhVSSNCAADQdDQdNCAAA1DQdDQdAAAA1DQdDQdTMSTDIAA0	DQgDQgAE2A (16M)ADVA (8M)DQgDQgBcBgNCWADQgDQgBhBdNC (128M)E1NCDQgDQgVssNCNCGNCDQgDQgVssNCNCGNCDQgDQgVssNCNCGNCDQgDQcVpDQVpDQVpDVpDVpDDQcDQcVpDQVpDQVpDEP2VpDDQcDQcVpDQVpDQVpDM4VpDDQcDQcVpDQVpDQVpDM4VpDDQcDQcVpDQVpDQVpDM2VpDDQcDQhVpDQVpDQVpDM2VpDDQhDQhVpDQVpDQVpDMCHVpDDQhDQhVpDQVpDMCHVpDDQhDQhVssVssMSMcLVssDQhDQhVpDQVpDVpDVpDVpDDQhDQhVssNCNCMCLNCDQdDQhVpDQNpDNpDNpDNpDDQhDQhVpDNpDNpDNpDNpDDQhDQhVpDNpDNpDNpDNpDDQhDQhVpDNpDNpDNpDNpDDQdDQdNCANCAA <td< td=""><td>DQgDQgAE2A (16M)ADVA (8M)E3DQgDQgBcBgNCWABbDQgDQgBhBdNC (128M)E1NCBeDQgDQgVssNCNCGNCNCDQgDQgVssNCNCGNCNCDQgDQgVssVDQVDDVDDVDDVDDDQcDQcVssVssVssZQVssVssDQcDQcVssVssVssEP3VssVssDQcDQcVDQVDQVDDM4VDDVDQDQcQCVssVssVssMCLVssNcDQcDQcVDQVDQVDDM4VDDVDQDQcQCVSsVssMSMSVssNcDQcQQVDQVDQNDM2VDDVDQDQcQQVDQVDQNDM2VDVDQDQhDQhVDQVDQVDDMCHVDVDQDQhDQhVDQVDQVDDMCHVDVDQDQhDQhVDQVDQVDDVDDVDQVDQDQhDQhVDQVDQVDDMCHVDVDQDQhDQhVDQVDQVDDVDDVDDVDQDQhDQhVDQVDQNC<td< td=""><td>DQgDQgAE2A (16M)ADVA (8M)E3ADQgDQgBcBgNCWABbBfDQgDQgBhBdNC (128M)E1NCBeBaDQgDQgVssNCNCGNCNCVssDQgDQgVssNCNCGNCNCVssDQgDQcVssVssVssVssVppVppDQcDQcVssVssVssZQVssVssDQcDQcVssVssVssZQVssVssDQcDQcVssVssVssSsVssVssDQcDQcVppqVppqVppEP2VppVppqDQcDQcVssVssVssVssVssDQcDQcVppqVppqMAVppVppqDQcQCVssVssNCNCNCDQcDQcVppqVppM4VppVppqDQhDQhVppqVppM2VppVppqDQhDQhVppqVppMCLVssVssDQhDQhVppqVppMCLVppVppqDQhDQhVppqVppVppVppVppqDQhDQhVppqVppVppVppVppqDQhDQhVppqVppVppVppVppq<!--</td--><td>DQgDQgAE2A (16M)ADV (16M)A (8M)E3ADQbDQgDQgBcBgNCWABbBfDQbDQgDQgBhBdNC (128M)FiNCBeBaDQbDQgDQgVssNCNCGNCNCNCVbDVbDQVbDQDQgDQgVssNCNCGNCNCNCDQbDQgDQgVbpQVbpQVbpVbpVbpQVbpQDQbDQrDQcVbpQVbpQVbpVbpVbpQVbpQDQfDQcDQcVssVssVssZQVssVssVssDQfDQcDQcVbpQVbpQVbpEP2VbpVbpQVbpQDQfDQcDQcVbpQVbpQVbpM4VbpVbpQVbpQDQfDQcDQcVbpQVbpQVbpM2VbpQVbpQDQfDQcDQcVbpQVbpQVbpM2VbpQVbpQDQfDQcDQcVbpQVbpQVbpM4VbpVbpQVbpQDQfDQcDQcVbpQVbpQVbpM2VbpQVbpQDQfDQcCQ2CQ2CKNCVssM3VssVssVssDQaDQhDQhVbpQVbpQVbpQMCHVbpQVbpQ<!--</td--></td></td></td<></td></td<>	DQgDQgAE2A (16M)ADVA (8M)E3DQgDQgBcBgNCWABbDQgDQgBhBdNC (128M)E1NCBeDQgDQgVssNCNCGNCNCDQgDQgVssNCNCGNCNCDQgDQgVssVDQVDDVDDVDDVDDDQcDQcVssVssVssZQVssVssDQcDQcVssVssVssEP3VssVssDQcDQcVDQVDQVDDM4VDDVDQDQcQCVssVssVssMCLVssNcDQcDQcVDQVDQVDDM4VDDVDQDQcQCVSsVssMSMSVssNcDQcQQVDQVDQNDM2VDDVDQDQcQQVDQVDQNDM2VDVDQDQhDQhVDQVDQVDDMCHVDVDQDQhDQhVDQVDQVDDMCHVDVDQDQhDQhVDQVDQVDDVDDVDQVDQDQhDQhVDQVDQVDDMCHVDVDQDQhDQhVDQVDQVDDVDDVDDVDQDQhDQhVDQVDQNC <td< td=""><td>DQgDQgAE2A (16M)ADVA (8M)E3ADQgDQgBcBgNCWABbBfDQgDQgBhBdNC (128M)E1NCBeBaDQgDQgVssNCNCGNCNCVssDQgDQgVssNCNCGNCNCVssDQgDQcVssVssVssVssVppVppDQcDQcVssVssVssZQVssVssDQcDQcVssVssVssZQVssVssDQcDQcVssVssVssSsVssVssDQcDQcVppqVppqVppEP2VppVppqDQcDQcVssVssVssVssVssDQcDQcVppqVppqMAVppVppqDQcQCVssVssNCNCNCDQcDQcVppqVppM4VppVppqDQhDQhVppqVppM2VppVppqDQhDQhVppqVppMCLVssVssDQhDQhVppqVppMCLVppVppqDQhDQhVppqVppVppVppVppqDQhDQhVppqVppVppVppVppqDQhDQhVppqVppVppVppVppq<!--</td--><td>DQgDQgAE2A (16M)ADV (16M)A (8M)E3ADQbDQgDQgBcBgNCWABbBfDQbDQgDQgBhBdNC (128M)FiNCBeBaDQbDQgDQgVssNCNCGNCNCNCVbDVbDQVbDQDQgDQgVssNCNCGNCNCNCDQbDQgDQgVbpQVbpQVbpVbpVbpQVbpQDQbDQrDQcVbpQVbpQVbpVbpVbpQVbpQDQfDQcDQcVssVssVssZQVssVssVssDQfDQcDQcVbpQVbpQVbpEP2VbpVbpQVbpQDQfDQcDQcVbpQVbpQVbpM4VbpVbpQVbpQDQfDQcDQcVbpQVbpQVbpM2VbpQVbpQDQfDQcDQcVbpQVbpQVbpM2VbpQVbpQDQfDQcDQcVbpQVbpQVbpM4VbpVbpQVbpQDQfDQcDQcVbpQVbpQVbpM2VbpQVbpQDQfDQcCQ2CQ2CKNCVssM3VssVssVssDQaDQhDQhVbpQVbpQVbpQMCHVbpQVbpQ<!--</td--></td></td></td<>	DQgDQgAE2A (16M)ADVA (8M)E3ADQgDQgBcBgNCWABbBfDQgDQgBhBdNC (128M)E1NCBeBaDQgDQgVssNCNCGNCNCVssDQgDQgVssNCNCGNCNCVssDQgDQcVssVssVssVssVppVppDQcDQcVssVssVssZQVssVssDQcDQcVssVssVssZQVssVssDQcDQcVssVssVssSsVssVssDQcDQcVppqVppqVppEP2VppVppqDQcDQcVssVssVssVssVssDQcDQcVppqVppqMAVppVppqDQcQCVssVssNCNCNCDQcDQcVppqVppM4VppVppqDQhDQhVppqVppM2VppVppqDQhDQhVppqVppMCLVssVssDQhDQhVppqVppMCLVppVppqDQhDQhVppqVppVppVppVppqDQhDQhVppqVppVppVppVppqDQhDQhVppqVppVppVppVppq </td <td>DQgDQgAE2A (16M)ADV (16M)A (8M)E3ADQbDQgDQgBcBgNCWABbBfDQbDQgDQgBhBdNC (128M)FiNCBeBaDQbDQgDQgVssNCNCGNCNCNCVbDVbDQVbDQDQgDQgVssNCNCGNCNCNCDQbDQgDQgVbpQVbpQVbpVbpVbpQVbpQDQbDQrDQcVbpQVbpQVbpVbpVbpQVbpQDQfDQcDQcVssVssVssZQVssVssVssDQfDQcDQcVbpQVbpQVbpEP2VbpVbpQVbpQDQfDQcDQcVbpQVbpQVbpM4VbpVbpQVbpQDQfDQcDQcVbpQVbpQVbpM2VbpQVbpQDQfDQcDQcVbpQVbpQVbpM2VbpQVbpQDQfDQcDQcVbpQVbpQVbpM4VbpVbpQVbpQDQfDQcDQcVbpQVbpQVbpM2VbpQVbpQDQfDQcCQ2CQ2CKNCVssM3VssVssVssDQaDQhDQhVbpQVbpQVbpQMCHVbpQVbpQ<!--</td--></td>	DQgDQgAE2A (16M)ADV (16M)A (8M)E3ADQbDQgDQgBcBgNCWABbBfDQbDQgDQgBhBdNC (128M)FiNCBeBaDQbDQgDQgVssNCNCGNCNCNCVbDVbDQVbDQDQgDQgVssNCNCGNCNCNCDQbDQgDQgVbpQVbpQVbpVbpVbpQVbpQDQbDQrDQcVbpQVbpQVbpVbpVbpQVbpQDQfDQcDQcVssVssVssZQVssVssVssDQfDQcDQcVbpQVbpQVbpEP2VbpVbpQVbpQDQfDQcDQcVbpQVbpQVbpM4VbpVbpQVbpQDQfDQcDQcVbpQVbpQVbpM2VbpQVbpQDQfDQcDQcVbpQVbpQVbpM2VbpQVbpQDQfDQcDQcVbpQVbpQVbpM4VbpVbpQVbpQDQfDQcDQcVbpQVbpQVbpM2VbpQVbpQDQfDQcCQ2CQ2CKNCVssM3VssVssVssDQaDQhDQhVbpQVbpQVbpQMCHVbpQVbpQ </td

• 2000.02.18

11 x 19 Bump BGA—14 x 22 mm² Body—1 mm Bump Pitch

8170S36 Pinout

512K x 36 Common I/O—Top View

	1	2	3	4	5	6	7	8	9	10	11
Α	NC	NC	Α	E2	<mark>A</mark> (16M)	ADV	Α	E3	Α	DQb	DQb
В	NC	NC	Bc	NC	Α	W	Α	Bb	NC	DQb	DQb
С	NC	NC	NC	Bd	NC (128M)	E1	NC	NC	Ba	DQb	DQb
D	NC	NC	V _{SS}	NC	NC	G	NC	NC	V _{SS}	DQb	DQb
E	NC	DQPc	V _{DDQ}	V _{DDQ}	V _{DD}	V _{DD}	V _{DD}	V _{DDQ}	V _{DDQ}	NC	DQPb
F	DQc	DQc	V _{SS}	V _{SS}	V _{SS}	ZQ	V _{SS}	V _{SS}	V _{SS}	NC	NC
G	DQc	DQc	V _{DDQ}	V _{DDQ}	V _{DD}	EP2	V _{DD}	V _{DDQ}	V _{DDQ}	NC	NC
н	DQc	DQc	V _{SS}	V _{SS}	V _{SS}	EP3	V _{SS}	V _{SS}	V _{SS}	NC	NC
J	DQc	DQc	V _{DDQ}	V _{DDQ}	V _{DD}	M4	V _{DD}	V _{DDQ}	V _{DDQ}	NC	NC
к	CQ2	CQ2	СК	NC	V _{SS}	MCL	V _{SS}	NC	NC	CQ1	CQ1
L	NC	NC	V _{DDQ}	V _{DDQ}	V _{DD}	M2	V _{DD}	V _{DDQ}	V _{DDQ}	DQa	DQa
М	NC	NC	V _{SS}	V _{SS}	V _{SS}	M3	V _{SS}	V _{SS}	V _{SS}	DQa	DQa
Ν	NC	NC	V _{DDQ}	V _{DDQ}	V _{DD}	МСН	V _{DD}	V _{DDQ}	V _{DDQ}	DQa	DQa
Р	NC	NC	V _{SS}	V _{SS}	V _{SS}	MCL	V _{SS}	V _{SS}	V _{SS}	DQa	DQa
R	DQPd	NC	V _{DDQ}	V _{DDQ}	V _{DD}	V _{DD}	V _{DD}	V _{DDQ}	V _{DDQ}	DQPa	NC
т	DQd	DQd	V _{SS}	NC	NC	MCL	NC	NC	V _{SS}	NC	NC
U	DQd	DQd	NC	Α	NC (64M)	Α	NC (32M)	Α	NC	NC	NC
v	DQd	DQd	Α	Α	Α	A1	Α	Α	Α	NC	NC
W	DQd	DQd	TMS	TDI	Α	A 0	Α	TDO	ТСК	NC	NC

• 2000.02.18

11 x 19 Bump BGA—14 x 22 mm² Body—1 mm Bump Pitch

8170S18 Pinout

1M x 18 Common I/O—Top View

	1	2	3	4	5	6	7	8	9	10	11
Α	NC	NC	Α	E2	<mark>A</mark> (16M)	ADV	Α	E3	Α	NC	NC
В	NC	NC	Bb	NC	Α	W	Α	NC	NC	NC	NC
С	NC	NC	NC	NC	NC (128M)	E1	Α	NC	Ba	NC	NC
D	NC	NC	V _{SS}	NC	NC	G	NC	NC	V _{SS}	NC	NC
E	NC	DQPb	V _{DDQ}	V _{DDQ}	V _{DD}	V _{DD}	V _{DD}	V _{DDQ}	V _{DDQ}	NC	NC
F	DQb	DQb	V _{SS}	V _{SS}	V _{SS}	ZQ	V _{SS}	V _{SS}	V _{SS}	NC	NC
G	DQb	DQb	V _{DDQ}	V _{DDQ}	V _{DD}	EP2	V _{DD}	V _{DDQ}	V _{DDQ}	NC	NC
н	DQb	DQb	V _{SS}	V _{SS}	V _{SS}	EP3	V _{SS}	V _{SS}	V _{SS}	NC	NC
J	DQb	DQb	V _{DDQ}	V _{DDQ}	V _{DD}	M4	V _{DD}	V _{DDQ}	V _{DDQ}	NC	NC
к	CQ2	CQ2	СК	NC	V _{SS}	MCL	V _{SS}	NC	NC	CQ1	CQ1
L	NC	NC	V _{DDQ}	V _{DDQ}	V _{DD}	M2	V _{DD}	V _{DDQ}	V _{DDQ}	DQa	DQa
м	NC	NC	V _{SS}	V _{SS}	V _{SS}	M3	V _{SS}	V _{SS}	V _{SS}	DQa	DQa
Ν	NC	NC	V _{DDQ}	V _{DDQ}	V _{DD}	МСН	V _{DD}	V _{DDQ}	V _{DDQ}	DQa	DQa
Р	NC	NC	V _{SS}	V _{SS}	V _{SS}	MCL	V _{SS}	V _{SS}	V _{SS}	DQa	DQa
R	NC	NC	V _{DDQ}	V _{DDQ}	V _{DD}	V _{DD}	V _{DD}	V _{DDQ}	V _{DDQ}	DQPa	NC
т	NC	NC	V _{SS}	NC	NC	MCL	NC	NC	V _{SS}	NC	NC
U	NC	NC	NC	Α	NC (64M)	Α	NC (32M)	Α	NC	NC	NC
v	NC	NC	Α	Α	Α	A1	Α	Α	Α	NC	NC
w	NC	NC	TMS	TDI	Α	A0	Α	TDO	ТСК	NC	NC

• 2000.02.18

11 x 19 Bump BGA—14 x 22 mm² Body—1 mm Bump Pitch

Pin Description Table

Pin Location	Symbol	Description	Туре	Comments
A3, A5, A7, B7, U4, U6, U8, V3, V4, V5, V6, V7, V8, V9, W5, W6, W7	A	Address	Input	_
C7	A	Address	Input	x18 version only
B5	A	Address	Input	x18 and x36 versions
A6	ADV	Advance	Input	Active High
B3, C9	Bx	Byte Write Enable	Input	Active Low (all versions)
B8, C4	Bx	Byte Write Enable	Input	Active Low (x36 and x72 versions)
B4, B9, C3, C8	Bx	Byte Write Enable	Input	Active Low (x72 version only)
K3	СК	Clock	Input	Active High
K1, K11	CQ	Echo Clock	Output	Active High
K2, K10	CQ	Echo Clock	Output	Active Low
E2, F1, F2, G1, G2, H1, H2, J1, J2, L10, L11, M10, M11, N10, N11, P10, P11, R10	DQ	Data I/O	Input/Output	x18, x36, and x72 versions
A10, A11, B10, B11, C10, C11, D10, D11, E11, R1, T1, T2, U1, U2, V1, V2, W1, W2	DQ	Data I/O	Input/Output	x36 and x72 versions
A1, A2, B1, B2, C1, C2, D1, D2, E1, E10, F10, F11, G10, G11, H10, H11, J10, J11, L1, L2, M1, M2, N1, N2, P1, P2, R2, R11, T10, T11, U10, U11, V10, V11, W10, W11	DQ	Data I/O	Input/Output	x72 version only
C6	E1	Chip Enable	Input	Active Low
A4, A8	E2 & E3	Chip Enable	Input	Programmable Active High or Low
G6, H6	EP2 & EP3	Chip Enable Program Pin	Input	
D6	G	Asynchronous Output Enable	Input	Active Low
W9	TCK	Test Clock	Input	Active High
W4	TDI	Test Data In	Input	_
W8	TDO	Test Data Out	Output	
W3	TMS	Test Mode Select	Input	_
L6, M6, J6	M2, M3 & M4	Mode Control Pins	Input	-
N6	MCH	Must Connect High	Input	Active High
K6, P6, T6	MCL	Must Connect Low	Input	Active Low

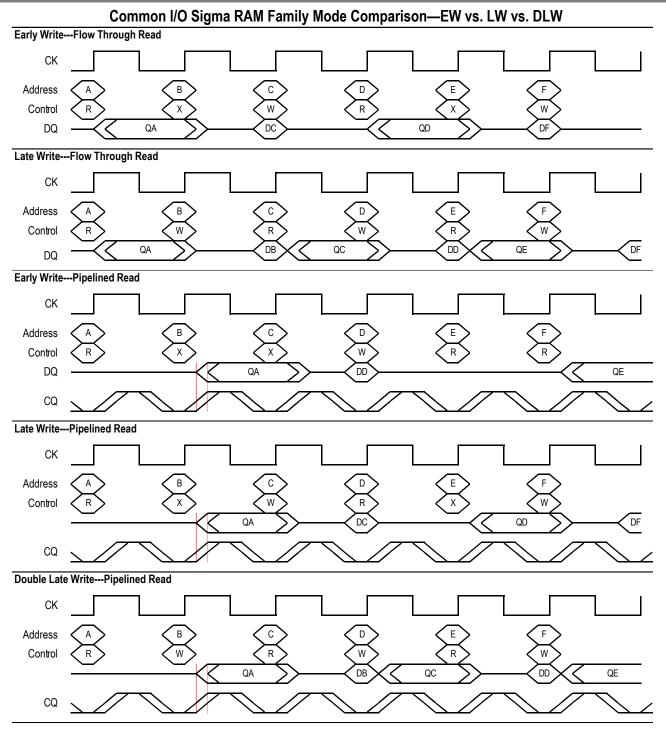
Rev: 1.01 11/2000

А

Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.

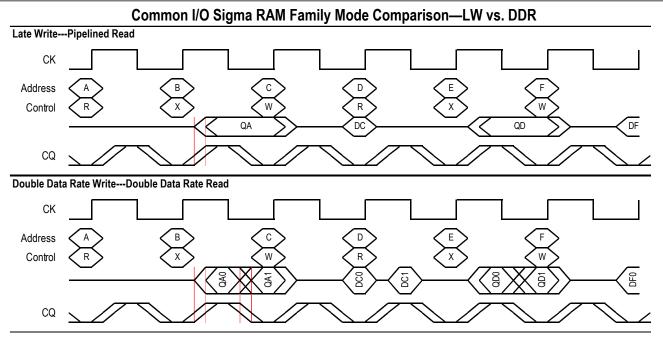
Pin Description Table

Pin Location	Symbol	Description	Туре	Comments
C5,D4, D5, D7, D8,K4, K8, K9, T4, T5, T7, T8,U3, U5, U7, U9	NC	No Connect	_	Not connected to die (all versions)
B5	NC	No Connect	_	Not connected to die (x72 version)
C7	NC	No Connect	—	Not connected to die (x72/x36 versions)
A1, A2, B1, B2, B4, B9, C1, C2, C3, C8, D1, D2, E1, E10, F10, F11, G10, G11, H10, H11, J10, J11, L1, L2, M1, M2, N1, N2, P1, P2, R2, R11, T10, T11, U10, U11, V10, V11, W10, W11	NC	No Connect	_	Not connected to die (x36/x18 versions)
A10, A11, B8, B10, B11, C4, C10, C11, D10, D11, E11, R1, T1, T2, U1, U2, V1, V2, W1, W2	NC	No Connect	_	Not connected to die (x18 version)
B6	W	Write	Input	Active Low
E5, E6, E7, G5, G7, J5, J7, L5, L7, N5, N7, R5, R6, R7	V _{DD}	Core Power Supply	Input	1.8 V Nominal
E3, E4, E8, E9, J3, J4, J8, J9, L3, L4, L8, L9, N3, N4, N8, N9, R3, R4, R8, R9	V _{DDQ}	Output Driver Power Supply	Input	1.8 V or 1.5 V Nominal
D3, D9, F3, F4, F5, F7, F8, F9, H3, H4, H5, H7, H8, H9, K5, K7, M3, M4, M5, M7, M8, M9, P3, P4, P5, P7, P8, P9, T3, T9	V _{SS}	Ground	Input	_
F6	ZQ	Output Impedance Control	Input	—


Background

The central characteristics of the GSI Σ RAMs are that they are extremely fast and consume very little power. Because both operating and interface power is low, Σ RAMs can be implemented in a wide (x72) configuration, providing very high single package bandwidth (in excess of 20 Gb/s in ordinary pipelined configuration) and very low random access latency (5 ns). The use of very low voltage circuits in the core and 1.8 V or 1.5 V interface voltages allow the speed, power and density performance of Σ RAMs.

Although the Sigma RAM family of pinouts has been designed to support a number of different common read and write protocol options, not all Sigma RAM implementations will support all possible protocols. The following timing diagrams provide a quick comparison between read and write protocols options available in the context of the Sigma RAM standard. This particular data sheet covers the single data rate (non-DDR) Sigma RAM.

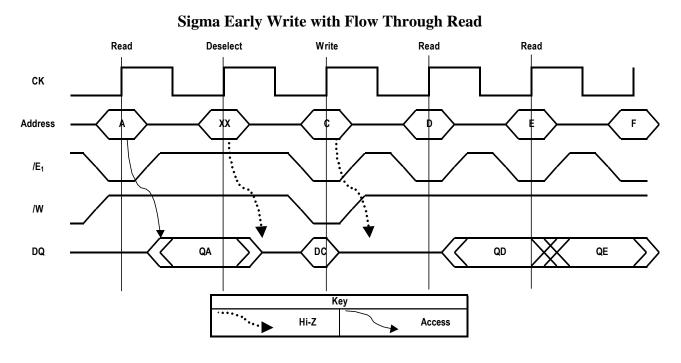


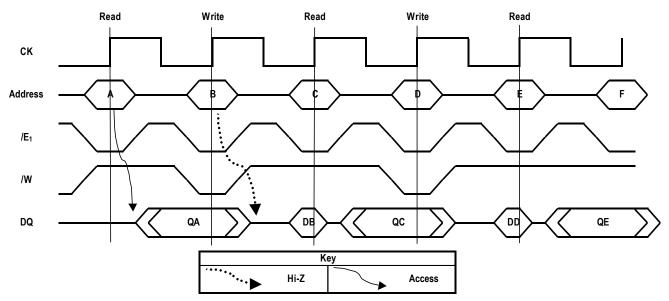
Advanced Information GS8170S18/36/72B-333/300/275/250

The character of the applications for fast synchronous SRAMs in networking systems are extremely diverse. Σ RAMs have been developed to address the diverse needs of the networking market in a manner that can be supported with a unified development and manufacturing infrastructure. Σ RAMs address each of the bus protocol options commonly found in networking systems. This allows the Σ RAM to find application in radical shrinks and speed-ups of existing networking chip sets that were designed for use with older SRAMs, like the Pipelined Synchronous Burst SRAM, as well as with new chip sets and ASIC's that employ the Echo Clocks and realize the full potential of the Σ RAMs.

Mode Selection Truth Table Standard

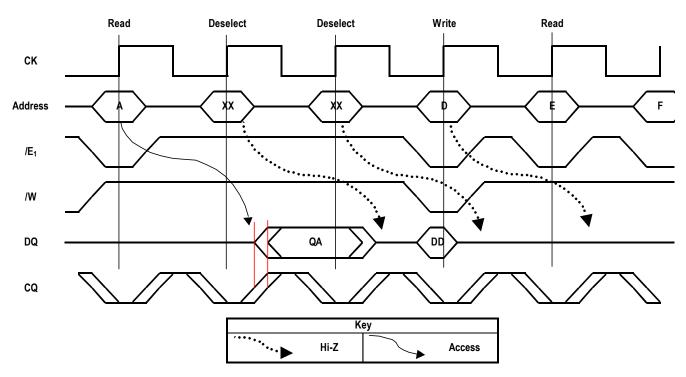
M2	M3	M4	Function	Analogous to	In This Data Sheet?
0	0	0	Early Write, Flow through Read	Flow through Burst RAM	Yes
0	0	1	Late Write, Flow through Read	Flow through NBT SRAM & Flow through Late Write SRAM	Yes
0	1	0	RFU		n/a
0	1	1	DDR	Double Data Rate SRAM	No
1	0	0	Early Write, Pipelined Read	Pipelined Burst RAM	Yes
1	0	1	Double Late Write, Pipelined Read	Pipelined NBT SRAM	Yes
1	1	0	Late Write, Pipelined Read	Pipelined Late Write SRAM	Yes
1	1	1	RFU	-	n/a


All address, data and control inputs (with the exception of \overline{G} , PE2, PE3, and the mode pins, M2–M4) are synchronized to rising clock edges. Read and write operations must be initiated with the Advance/Load pin (ADV) held low, in order to load the new address. Device activation is accomplished by asserting all three of the Chip Enable inputs (E1, E2, and E3). Deassertion of any one of the Enable inputs will deactivate the device. It should be noted that ONLY deactivation of the RAM via E2 and/or E3 deactivates the Echo Clocks, CQ1–CQn.


Read Operations

Flow Through Read

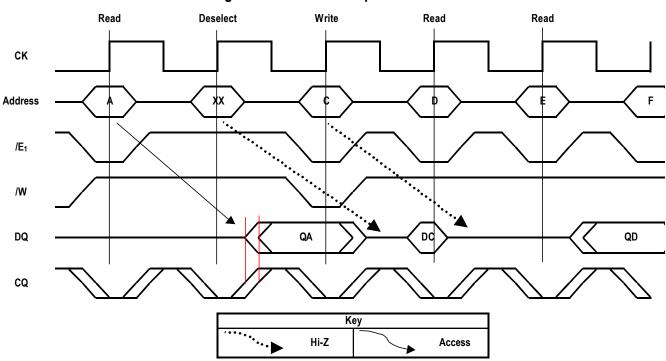
A Flow Through Read cycle sends data to the output drivers immediately after the address and read command are captured in the input registers. The main clock input, CK, need not ever fire again for data to be driven out. Normally, Flow Through mode is employed in situations where the latency of the RAM (the Flow Through tKHQV) is appreciably shorter than the bus frequency of the application.


Sigma Late Write with Flow Through Read

Pipelined Read

Read operation is initiated when the following conditions are satisfied at the rising edge of clock: All three chip enables $(\overline{E1}, E2, E2)$ and E3) are active, the write enable input signal (\overline{W}) is deasserted high, and ADV is asserted low. The address presented to the address inputs is latched into the address register and presented to the memory core and control logic. The control logic determines that a read access is in progress and allows the requested data to propagate to the input of the output register. At the next rising edge of clock the read data is allowed to propagate through the output register and onto the output pins.

Sigma Early Write with Pipelined Read

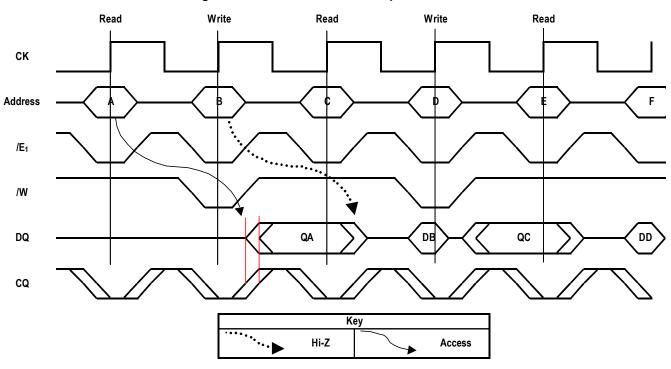

Write Operations

Write operation occurs when the following conditions are satisfied at the rising edge of clock: All three chip enables ($\overline{E1}$, E2, and E3) are active and the write enable input signal (\overline{W}) is asserted low.

Early Write

The classic "PB" (Pipelined Burst) SRAMs employed the "Early Write" protocol. This is to say that Address, Control (the write command), and Data In are all required on the same clock edge.

Sigma Late Write with Pipelined Read

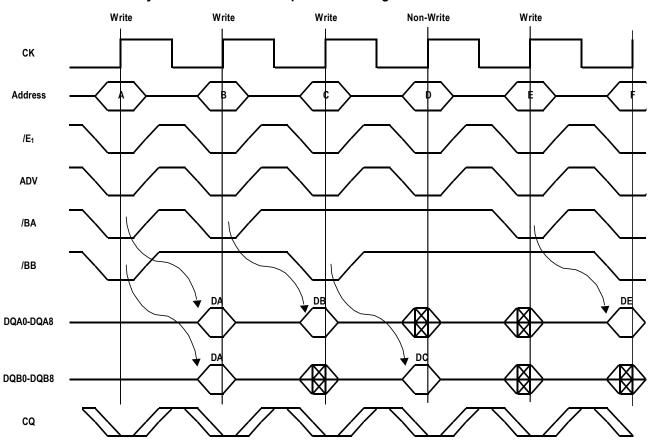

Late Write

In Late Write mode the RAM requires Data In one rising clock edge later than the edge used to load Address and Control. Late Write protocol has been employed on SRAMs designed for RISC processor L2 cache applications and in Flow Through mode NBT SRAMs.

Double Late Write

Double Late Write means that Data In is required on the third rising edge of clock. Double Late Write is used to implement Pipeline mode NBT SRAMs.

Sigma Double Late Write with Pipelined Read


Byte Write Control

The Byte Write Enable inputs (\overline{B}_X) determine which bytes will be written. All or none may be activated. A Write Cycle with no Byte Write inputs active is a no-op cycle.

Byte Write Truth Table

Function	W	B _A	B _B	B _C	B _D
Read	Н	Х	Х	Х	Х
Write Byte A	L	L	Н	Н	Н
Write Byte B	L	Н	L	Н	Н
Write Byte C	L	Н	Н	L	Н
Write Byte D	L	Н	Н	Н	L
Write all Bytes	L	L	L	L	L
Write Abort/NOP	L	Н	Н	Н	Н

Byte Write Control Example with x18 Sigma Late Write RAM

Special Functions

Burst Cycles

Although Σ RAMs can sustain 100% bus bandwidth by eliminating the bus turnaround cycle in both Late Write Flow through and Double Late Write Pipelined modes, multiple back-to-back reads or writes may also be performed. Σ RAMs provide an on-chip burst address generator that can be utilized, if desired, to further simplify burst read or write implementations. The ADV control pin, when driven high, commands the SRAM to advance the internal address counter and use the counter generated address to read or write the SRAM. The starting address for the first cycle in a burst cycle series is loaded into the SRAM by driving the ADV pin low, into Load mode.

Sigma Pipelined Burst Reads with Counter Wrap-around

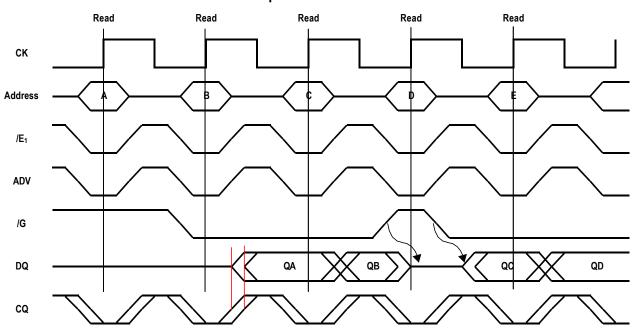
E(HNOLOGY

Rev: 1.01 11/2000 14/38 © 2000, Giga Semiconductor, Inc. Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.

Burst Order

The burst address counter wraps around to its initial state after four addresses (the loaded address and three more) have been accessed. Sigma RAMs always count in linear burst order.

Linear Burst Order


	A[1:0]	A[1:0]	A[1:0]	A[1:0]
1st address	00	01	10	11
2nd address	01	10	11	00
3rd address	10	11	00	01
4th address	11	00	01	10

Notes:

1. The burst counter wraps to initial state on the 5th rising edge of clock.

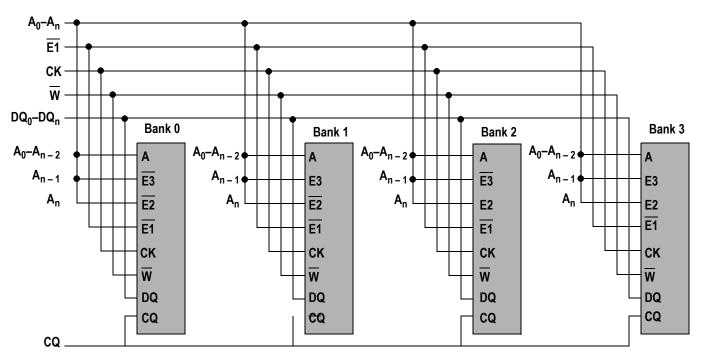
Output Enable Bus Control

Although the RAM is usually more easily operated in an entirely synchronous mode, a single asynchronous Output Enable pin, \overline{G} , is provided. \overline{G} High overrides all other controls and deselects the output drivers, forcing the drivers into a high impedance state. \overline{G} Low returns the RAM to normal synchronous control.

Output Enable Control

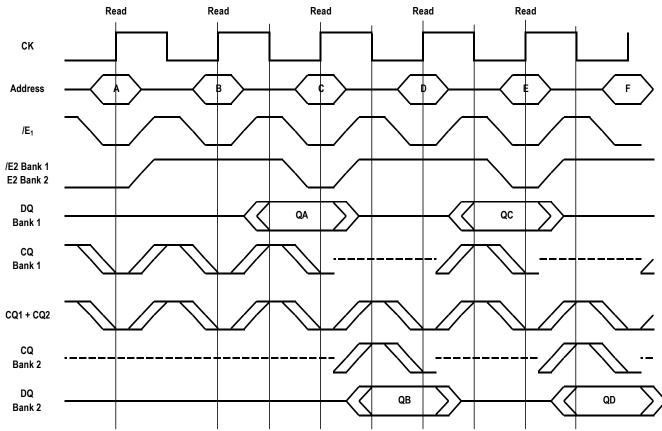
Echo Clock

 Σ RAMs feature Echo Clocks, CQ1,CQ2, $\overline{CQ1}$, and $\overline{CQ2}$ that track the performance of the output drivers. The Echo Clocks are delayed copies of the main RAM clock, CK. Echo Clocks are designed to track changes in output driver delays due to variance in die temperature and supply voltage. The Echo Clocks are designed to fire with the rest of the data output drivers. Sigma RAMs provide both in-phase, or true, Echo Clock outputs (CQ1 and CQ2) and inverted Echo Clock outputs (CQ1 and CQ2).



It should be noted that deselection of the RAM via E2 and E3 also deselects the Echo Clock output drivers. The deselection of Echo Clock drivers is always pipelined to the same degree as output data. **Deselection of the RAM via E1 does not deactivate the Echo Clocks.**

Programmable Enables

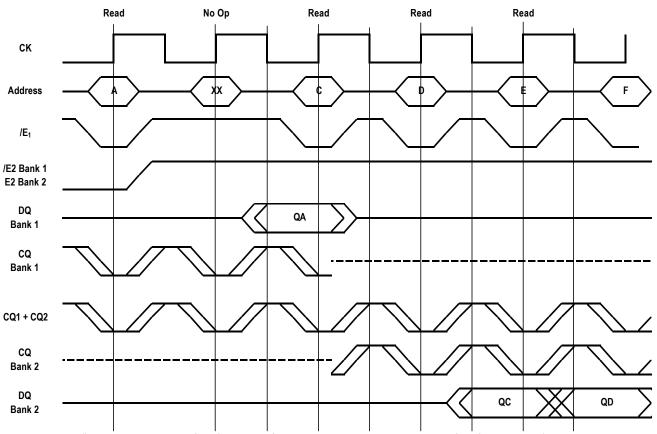

 Σ RAMs feature two user-programmable chip enable inputs, E2 and E3. The sense of the inputs, whether they function as active low or active high inputs, is determined by the state of the programming inputs, PE2 and PE3. For example, if PE2 is held at V_{DD}, E2 functions as an active high enable. If PE2 is held to V_{SS}, E2 functions as an active low chip enable input.

Programmability of E2 and E3 allows four banks of depth expansion to be accomplished with no additional logic. By programming the enable inputs of four Σ RAMs in binary sequence (00, 01, 10, 11) and driving the enable inputs with two address inputs, four Σ RAMs can be made to look like one larger RAM to the system.

Example Four Bank Depth Expansion Schematic

	EP2	EP3	E2	E3
Bank 0	V _{SS}	V _{SS}	Active Low	Active Low
Bank 1	V _{SS}	V _{DD}	Active Low	Active High
Bank 2	V _{DD}	V _{SS}	Active High	Active Low
Bank 3	V _{DD}	V_{DD}	Active High	Active High

Echo Clock Control in Two Banks of Sigma Pipelined SRAMs


E(#NOLOGY

Note: E1\ does not deselect the Echo Clock Outputs. Echo Clock outputs are synchronously deselected by E2 or E3 being sampled false.

It should be noted that deselection of the RAM via E2 and E3 also deselects the Echo Clock output drivers. The deselection of Echo Clock drivers is always pipelined to the same degree as output data. Deselection of the RAM via $\overline{E1}$ does not deactivate the Echo Clocks.

In some applications it may be appropriate to pause between banks; to deselect both RAMs with $\overline{E1}$ before resuming read operations. An $\overline{E1}$ deselect at a bank switch will allow at least one clock to be issued from the new bank before the first read cycle in the bank. Although the following drawing illustrates a $\overline{E1}$ read pause upon switching from Bank 1 to Bank 2, a write to Bank 2 would have the same effect, causing the RAM in Bank 2 to issue at least one clock before it is needed.

Pipelined Read Bank Switch with $\overline{E1}$ Deselect

Note: E1\ does not deselect the Echo Clock Outputs. Echo Clock outputs are synchronously deselected by E2 or E3 being sampled false.

FLXDrive™ Output Driver Impedance Control

The ZQ pin allows selection between Σ RAM nominal drive strength (ZQ low) for multi-drop bus applications and low drive strength (ZQ floating or high) point-to-point applications. See **"Output Driver Characteristics" on page 31** for details.

Σ RAM Synchronous Truth Table (\overline{G} Low)

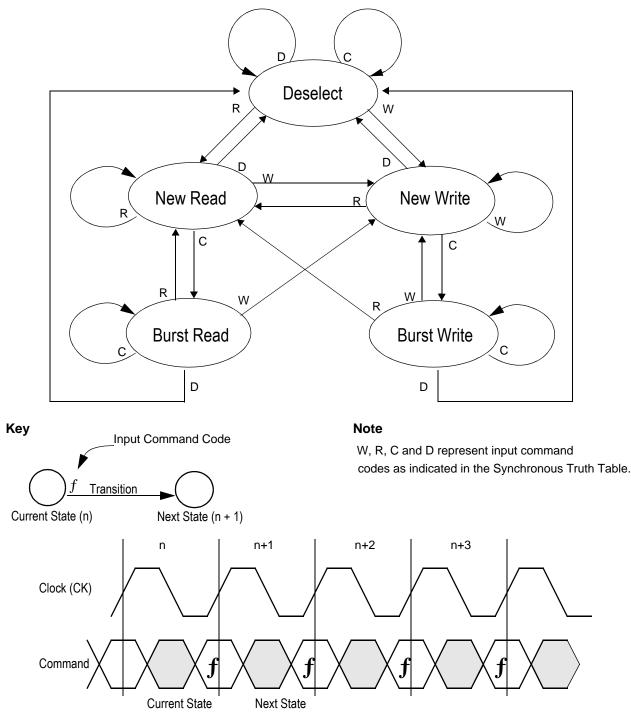
,		_				. '					
Previous Cycle	Input Type	\overline{E}_1	Е	ADV	W	Bx	Next Cycle	Address	DQ	CQ	Notes
N/A	D	Н	Т	L	Х	Х	X Deselect Cycle		Hi-Z	Q	_
Deselect	С	Х	Х	Н	Х	Х	X Deselect Cycle, Continue		Hi-Z	Q	_
N/A	Dx	Х	F	L	Х	Х	Bank Deselect Cycle	None	Hi-Z	Hi-Z	2
Bank Deselect	С	х	х	Н	Х	х	Bank Deselect Cycle, Continue	Next	Hi-Z	Hi-Z	_
N/A	R	L	Т	L	Н	Х	Read Cycle, Begin Burst	External	Q	Q	2
Read	С	Х	Х	Н	Х	Х	Read Cycle, Continue Burst	Next	Q	Q	_
N/A	W	L	Т	L	L	Т	Write Cycle, Begin Burst	External	D	Q	2, 3
N/A	W	L	Т	L	L	F	Non-Write Cycle, Begin Burst	External	Hi-Z	Q	2, 3, 4
Write	С	Х	Х	Н	Х	Т	Write Cycle, Continue Burst	Next	D	Q	3, 5, 6
Write	С	Х	Х	Н	Х	F	Non-Write Cycle, Continue Burst	Next	Hi-Z	Q	3, 4, 5, 6

Notes:

1. X = Don't Care, H = High, L = Low

2. <u>E</u> = T (True) if E2 = 1 and $\overline{E3}$ = 0; E = F (False) if E2 = 0 or $\overline{E3}$ = 1

3. $\overline{Bx} = F$ (False) if all Byte Write Enable pins are high. $\overline{Bx} = T (True)$ if any one Byte Write Enable pin is low.


4. In NBT RAMs, an active cycle that starts with $\overline{W} = 0$ but all $\overline{Bx} = False$ (high) is a Write Cycle (DQ's Hi-Z) but no data is written.

5. The Byte Write Enable pins are only evaluated in a Continue cycle if the previous cycle was a Write.

Rev. 5

Read/Write Control State Diagram

Current State & Next State Definition for Read/Write Control State Diagram

Absolute Maximum Ratings

(All voltages reference to V_{SS})

Symbol	Description	Value	Unit
V _{DD}	Voltage on V _{DD} Pins	-0.5 to 2.5	V
V _{DDQ}	Voltage in V _{DDQ} Pins	–0.5 to V _{DD}	V
V _{I/O}	Voltage on I/O Pins	–0.5 to V _{DDQ} +0.5 (\leq 2.5 V max.)	V
V _{IN}	Voltage on Other Input Pins	–0.5 to V _{DDQ} +0.5 (\leq 2.5 V max.)	V
I _{IN}	Input Current on Any Pin	+/-100	mA dc
I _{OUT}	Output Current on Any I/O Pin	+/-100	mA dc
TJ	Maximum Junction Temperature	125	°C
T _{STG}	Storage Temperature	–55 to 125	°C

Note:

Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended Operating Conditions. Exposure to conditions exceeding the Recommended Operating Conditions, for an extended period of time, may affect reliability of this component.

Recommended Operating Conditions

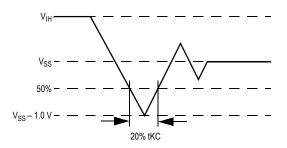
Power Supplies

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Supply Voltage	V _{DD}	1.7	1.8	1.95	V	
1.8 V I/O Supply Voltage	V _{DDQ}	1.7	1.8	V _{DD}	V	1
1.5 V I/O Supply Voltage	V _{DDQ}	1.4	1.5	1.6 V	V	1
Ambient Temperature (Commercial Range Versions)	T _A	0	25	70	°C	2
Ambient Temperature (Industrial Range Versions)	T _A	-40	25	85	°C	2

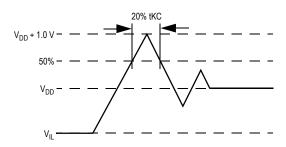
Notes:

1. Unless otherwise noted, all performance specifications quoted are evaluated for worst case at both 1.4 V \leq V_{DDQ} \leq 1.6V (i.e., 1.5 V I/O) and 1.7 V \leq V_{DDQ} \leq 1.95 V (i.e., 1.8 V I/O) and quoted at whichever condition is worst case.

2. Most speed grades and configurations of this device are offered in both Commercial and Industrial Temperature ranges. The part number of Industrial Temperature Range versions end the character "I". Unless otherwise noted, all performance specifications quoted are evaluated for worst case in the temperature range marked on the device.




CMOS I/O DC Input Characteristics


Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
CMOS Input High Voltage	V _{IH}	0.65 * V _{DDQ}	—	V _{DD} + 0.3	V	2
CMOS Input Low Voltage	V _{IL}	-0.3	—	0.35 * V _{DDQ}	V	2

Note: For devices supplied with CMOS input buffers. Compatible with both 1.8 V and 1.5 V I/O drivers.

Undershoot Measurement and Timing

Capacitance

 $(T_A = 25^{o}C, f = 1 \text{ MHz}, V_{DD} = 3.3 \text{ V})$

Parameter	Symbol	Test conditions	Тур.	Max.	Unit
Input Capacitance	C _{IN}	V _{IN} = 0 V	4	5	pF
Output Capacitance	C _{OUT}	V _{OUT} = 0 V	6	7	pF

Note: This parameter is sample tested.

Package Thermal Characteristics

Rating	Layer Board	Symbol	Max	Unit	Notes
Junction to Ambient (at 200 lfm)	single	R_{\ThetaJA}	TBD	°C/W	1,2
Junction to Ambient (at 200 lfm)	four	R_{\ThetaJA}	TBD	°C/W	1,2
Junction to Case (TOP)	n/a	$R_{\Theta JC}$	TBD	°C/W	3

Notes:

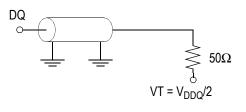
Junction temperature is a function of SRAM power dissipation, package thermal resistance, mounting board temperature, ambient. 1. Temperature air flow, board density, and PCB thermal resistance.

2. SCMI G-38-87

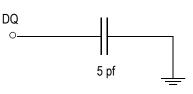
Average thermal resistance between die and top surface, MIL SPEC-883, Method 1012.1 3.

AC Test Conditions

Parameter	Conditions
Input high level	V _{DDQ}
Input low level	0 V
Max. input slew rate	2 V/ns
Input reference level	V _{DDQ} /2
Output reference level	V _{DDQ} /2


Notes:

1. Include scope and jig capacitance.


2. Test conditions as specified with output loading as shown unless otherwise noted.

AC Test Load Diagrams

Input and Output Leakage Characteristics

Parameter	Symbol	Test Conditions	Min.	Max	Notes
Input Leakage Current (except mode pins)	IIL	V _{IN} = 0 to V _{DD}	–2 uA	2 uA	_
Mode Pin Input Current	I _{INM}	$V_{DD} \ge V_{IN} \ge V_{IL}$ $0V \le V_{IN} \le V_{IL}$	–100 uA –2 uA	2 uA 2 uA	_
Output Leakage Current	I _{OL}	Output Disable, V _{OUT} = 0 to V _{DDQ}	–2 uA	2 uA	_

Selectable Impedance Output Driver DC Electrical Characteristics

Parameter	Symbol	Test Conditions	Min.	Max	Notes
Low Drive Output High Voltage	V _{OHL}	I _{OHL} =4 mA	V _{DDQ} – 0.4 V	—	1
Low Drive Output Low Voltage	V _{OLL}	I _{OLL} = 4 mA	—	0.4 V	1
High Drive Output High Voltage	V _{OHH}	I _{OHH} = –8 mA	V _{DDQ} – 0.4 V	—	2
High Drive Output Low Voltage	V _{OLH}	I _{OLH} = 8 mA	—	0.4 V	2

Operating Currents

Parameter	Test Conditions	Symbol		-333
Faiailletei	Test conditions	Symbol	0°C to 70°C	–40°C to +85°C
Operating Current	$\overline{E1} \leq V_{IL} Max.$ tKHKH \geq tKHKH Min. $\overline{G} \geq V_{IH}$ All other inputs $V_{IL} \geq V_{IN} \geq V_{IH}$	I _{DDP} Pipeline	TBD mA	TBD mA
		I _{DDF} Flow-through	TBD mA	TBD mA
Bank Deselect Current	E2 or E3 False tKHKH \geq tKHKH Min. $G \geq V_{IH}$ All other inputs $V_{IL} \geq V_{IN} \geq V_{IH}$	I _{SB1} Pipeline	TBD mA	TBD mA
		l _{SB1} Flow-through	TBD mA	TBD mA
Chip Disable Current	$\overline{E1} \ge V_{IH} \text{ Min.}$ $tKHKH \ge tKHKH \text{ Min.}$ $\overline{G} \ge V_{IH}$ All other inputs $V_{IL} \ge V_{IN} \ge V_{IH}$	I _{SB2} Pipeline	TBD mA	TBD mA
		l _{SB2} Flow-through	TBD mA	TBD mA
CMOS Deselect Current	Device Deselected All inputs V_{SS} + 0.10 V \geq V _{IN} \geq V _{DD} – 0.10 V	I _{DD3} Pipeline	TBD mA	TBD mA
		I _{DD3} Flow-through	TBD mA	TBD mA

AC Electrical Characteristics

[Demonster	0h.al	-3	33	-3	800	-2	275	-2	250	11	Nataa
	Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
	Clock Cycle Time	tKHKH	3.0		3.3	_	3.6		4.0		ns	_
-	Clock High to Output Valid	tKHQV		1.6		1.8		1.9		2.1	ns	_
	Clock High to Output in High-Z	tKHQZ	0.5	1.6	0.5	1.8	0.5	1.9	0.5	2.1	ns	1
	Clock High to Output Invalid	tKHQX	0.5	—	0.5	_	0.5	—	0.5	_	ns	_
	Clock High to Output in Low-Z	tKHQX1	0.5	_	0.5	_	0.5	_	0.5	_	ns	1
	Clock High to Echo Clock Low-Z	tKHCX1	0.5	_	0.5	_	0.5	_	0.5	_	ns	2, 4
Pipeline	Clock High to Echo Clock High	tKHCH	0.5	1.5	0.5	1.7	0.5	1.8	0.5	2.0	ns	4
Read	Clock Low to Echo Clock Low	tKLCL	0.5	1.7	0.5	1.9	0.5	2.0	0.5	2.3	ns	4
	Output Invalid to Echo Clock High	tCHQX	_	-0.5	_	-0.6	_	-0.6	_	-0.7	ns	2
	Echo Clock High to Output Valid	tCHQV	_	0.5	_	0.6	_	0.6	_	0.7	ns	2
	Clock High to Echo Clock High-Z	tKHCZ	0.5	1.5	0.5	1.7	0.5	1.8	0.5	2.0	ns	1, 2
	Clock Cycle Time	tKHKH	7.0	_	7.7	_	8.4	_	9.3	_	ns	_
Flow	Clock High to Output Valid	tKHQV		5.0		5.5	_	6.0		6.7	ns	_
Through	Clock High to Output in High-Z	tKHQZ	1.0	5.0	1.0	5.5	1.0	6.0	1.0	6.7	ns	1
Read	Clock High to Output Invalid	tKHQX	1.0	_	1.0	_	1.0	_	1.0	_	ns	_
	Clock High to Output in Low-Z	tKHQX1	0.5	_	0.5	_	0.5	_	0.5	_	ns	1
	Clock HIGH Time	tKHKL	1.2	_	1.3	_	1.4	_	1.6	_	ns	_
	Clock LOW Time	tKLKH	1.2	_	1.3	_	1.4	_	1.6	_	ns	_
	Address Valid to Clock High	tAVKH	0.6	_	0.7	_	0.7	_	0.8	_	ns	_
	Clock High to Address Don't Care	tKHAX	0.4	_	0.4	_	0.5	_	0.5	_	ns	_
	Enable Valid to Clock High	tEVKH	0.6	_	0.7	_	0.7	_	0.8	_	ns	_
	Clock High to Enable Don't Care	tKHEX	0.4	_	0.4	_	0.5	_	0.5	_	ns	_
	Write Valid to Clock High	tWVKH	0.6	_	0.7	_	0.7	_	0.8	_	ns	_
Ī	Clock High to Write Don't Care	tKHWX	0.4	_	0.4	_	0.5	_	0.5	_	ns	_
Ī	Byte Write Valid to Clock High	tBVKH	0.6	_	0.7	_	0.7	_	0.8	_	ns	_
	Clock High to Byte Write Don't Care	tKHBX	0.4	_	0.4	_	0.5	_	0.5	_	ns	_
	Data In Valid to Clock High	tDVKH	0.6	—	0.7	—	0.7	—	0.8	—	ns	—
	Clock High to Data In Don't Care	tKHDX	0.4	_	0.4	_	0.5	_	0.5	_	ns	_

Notes:

1. Measured at 100 mV from steady state. Not 100% tested.

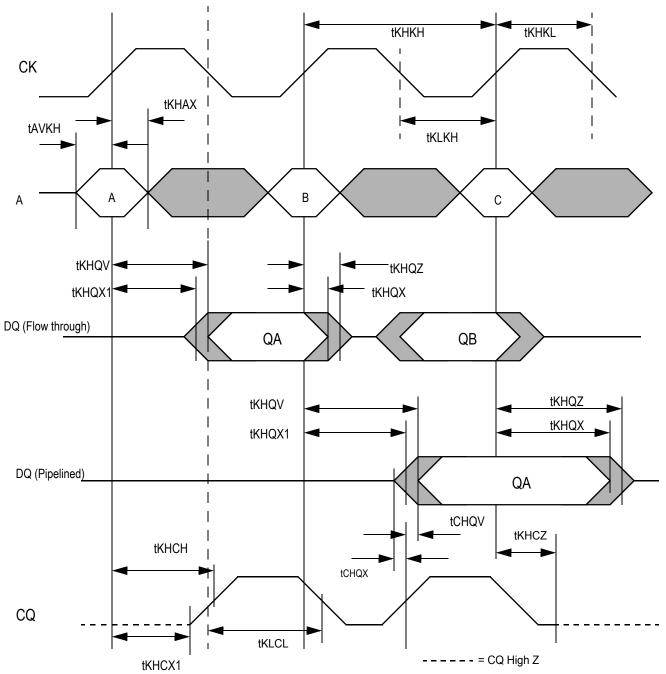
Guaranteed by design. Not 100% tested. 2.

3. For any specific temperature and voltage tKHCZ < tKHCX1.

Tested using AC Test Load B 4.

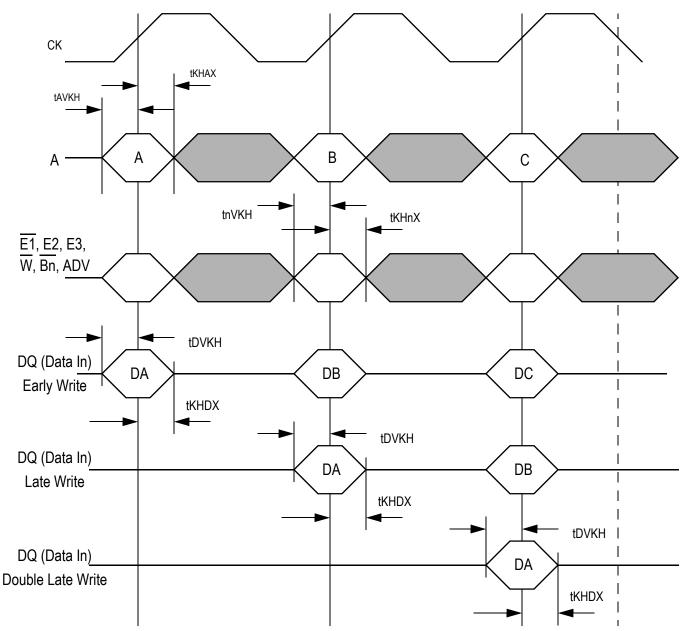
TECHNOLOGY

Advanced Information GS8170S18/36/72B-333/300/275/250


Devemeter	Symbol	-3	33	-3	00	-2	75	-2	50	Unit	Notes
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	
ADV Valid to Clock High	tadvVKH	0.6	_	0.7	_	0.7	_	0.8	_	ns	_
Clock High to ADV Don't Care	tKHadvX	0.4	—	0.4	—	0.5	—	0.5	-	ns	-
G to Output Valid	tGLQV	_	3.0	—	3.3	—	3.6	—	4.0	ns	-
G to output in Low-Z	tGLQX1	0.5	_	0.5	_	0.5	_	0.5	_	ns	1
G to output in High-Z	tGHQZ	_	3.0	_	3.3	_	3.6	_	4.0	ns	1

Notes:

- 1. Measured at 100 mV from steady state. Not 100% tested.
- 2. Guaranteed by design. Not 100% tested.
- 3. For any specific temperature and voltage tKHCZ < tKHCX1.
- 4. Tested using AC Test Load B



Timing Parameter Key—Read Cycle Timing

Timing Parameter Key—Control and Data In Timing

Note: tnVKH = tEVKH, tWVKH, tBVKH, etc. and tKHnX = tKHEX, tKHWX, tKHBX, etc.

JTAG Port Operation

Overview

The JTAG Port on this RAM operates in a manner consistent with IEEE Standard 1149.1-1990, a serial boundary scan interface standard (commonly referred to as JTAG), but does not implement all of the functions required for 1149.1 compliance. Unlike JTAG implementations that have been common among SRAM vendors for the last several years, this implementation does offer a form of EXTEST, known as Clock Assisted EXTEST, reducing or eliminating the "hand coding" that has been required to overcome the test program compiler errors caused by previous non-compliant implementations.

Disabling the JTAG Port

It is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless clocked. To assure normal operation of the RAM with the JTAG Port unused, TCK, TDI, and TMS may be left floating or tied to V_{DD} . TDO should be left unconnected.

JTAG Pin Descriptions

Pin	Pin Name	I/O	Description
ТСК	Test Clock	In	Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate from the falling edge of TCK.
TMS	Test Mode Select	In	The TMS input is sampled on the rising edge of TCK. This is the command input for the TAP controller state machine. An undriven TMS input will produce the same result as a logic one input level.
TDI	Test Data In	In	The TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers placed between TDI and TDO. The register placed between TDI and TDO is determined by the state of the TAP Controller state machine and the instruction that is currently loaded in the TAP Instruction Register (refer to the TAP Controller State Diagram). An undriven TDI pin will produce the same result as a logic one input level.
TDO	Test Data Out	Out	Output that is active depending on the state of the TAP state machine. Output changes in response to the falling edge of TCK. This is the output side of the serial registers placed between TDI and TDO.

Note:

This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is held high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up.

JTAG Port Registers

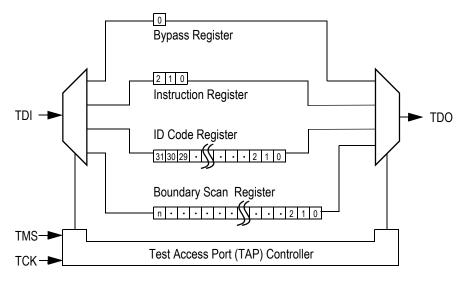
Overview

The various JTAG registers, refered to as TAP registers, are selected (one at a time) via the sequences of 1s and 0s applied to TMS as TCK is strobed. Each of the TAP registers are serial shift registers that capture serial input data on the rising edge of TCK and push serial data out on the next falling edge of TCK. When a register is selected, it is placed between the TDI and TDO pins.

Instruction Register

The Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle, or the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the controller is placed in Test-Logic-Reset state.

Bypass Register


The Bypass Register is a single-bit register that can be placed between TDI and TDO. It allows serial test data to be passed through the RAM's JTAG Port to another device in the scan chain with as little delay as possible.

Boundary Scan Register

Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM's input or I/O pins. The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port's TDO pin. The Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is in Capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. SAMPLE-Z, SAMPLE/PRELOAD and EXTEST instructions can be used to activate the Boundary Scan Register.

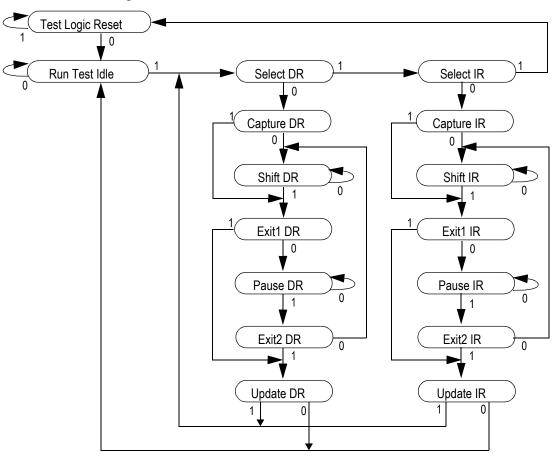
JTAG TAP Block Diagram

Identification (ID) Register

The ID Register is a 32-bit register that is loaded with a device and vendor specific 32-bit code when the controller is put in Capture-DR state with the IDCODE command loaded in the Instruction Register. The code is loaded from a 32-bit on-chip ROM. It describes various attributes of the RAM as indicated below. The register is then placed between the TDI and TDO pins when the controller is moved into Shift-DR state. Bit 0 in the register is the LSB and the first to reach TDO when shifting begins.

ID Register Contents

		Rev	ie ision ode						1	Not	Used	1					Co	ا/ا onfig	O uratio	on				ED	EC	chn Ve Cod	ndo					Presence Register
Bit #	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
x36	Х	Х	Х	Х	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	1	0	1	1	0	0	1	1
x09	Х	Х	Х	Х	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	1	1	0	1	1	0	0	1	1
x18	Х	Х	Х	Х	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	1	1	0	1	1	0	0	1	1


Tap Controller Instruction Set

Overview

There are two classes of instructions defined in the Standard 1149.1-1990—the standard (Public) instructions, and device specific (Private) instructions. Some Public instructions are mandatory for 1149.1 compliance. Optional Public instructions must be implemented in prescribed ways. Although the TAP controller in this device follows the 1149.1 conventions, it is not 1194.1-compliant because some of the mandatory instructions are uniquely implemented. The TAP on this device may be used to monitor all input and I/O pads, but cannot be used to load address, data or control signals into the RAM or to preload the I/O buffers.This device will not perform INTEST or the preload portion of the SAMPLE/PRELOAD command.

When the TAP controller is placed in Capture-IR state, the two least significant bits of the instruction register are loaded with 01. When the controller is moved to the Shift-IR state, the Instruction Register is placed between TDI and TDO. In this state the desired instruction is serially loaded through the TDI input (while the previous contents are shifted out at TDO). For all instructions, the TAP executes newly loaded instructions only when the controller is moved to Update-IR state. The TAP instruction set for this device is listed in the following table.

JTAG Tap Controller State Diagram

Instruction Descriptions

BYPASS

When the BYPASS instruction is loaded in the Instruction Register, the Bypass Register is placed between TDI and TDO. This occurs when the TAP controller is moved to the Shift-DR state. This allows the board level scan path to be shortened to facilitate testing of other devices

Rev: 1.01 11/2000	31/38	© 2000, Giga Semiconductor, Inc
Specifications cited are design targets	s and are subject to change without notice. For latest documentatio	n contact your GSI representative.

Advanced Information GS8170S18/36/72B-333/300/275/250

in the scan path.

SAMPLE/PRELOAD

SAMPLE/PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is loaded in the Instruction Register, moving the TAP controller into the Capture-DR state loads the data in the RAMs input and I/O buffers into the Boundary Scan Register. Because the RAM clock is independent from the TAP Clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents while the input buffers are in transition (i.e., in a metastable state). Although allowing the TAP to sample metastable inputs will not harm the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the TAP's input data capture set-up plus hold time (tTS plus tTH). The RAM's clock inputs need not be paused for any other TAP operation except capturing the I/O ring contents into the Boundary Scan Register. Moving the controller to Shift-DR state then places the Boundary Scan Register between the TDI and TDO pins. Because the PRELOAD portion of the command is not implemented in this device, moving the controller to the Update-DR state with the SAMPLE/PRELOAD instruction loaded in the Instruction Register has the same effect as the Pause-DR command. This functionality is not Standard 1149.1-compliant.

EXTEST (EXTEST-A)

EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction register, whatever length it may be in the device, is loaded with all logic 0s. The EXTEST implementation in this device does not, without further user intervention, actually move the contents of the scan chain onto the RAM's output pins. Therefore this device is not strictly 1149.1-compliant. Nevertheless, this RAM's TAP does respond to an all 0s instruction, EXTEST (000), by overriding the RAM's control inputs and activating the Data I/O output drivers. The RAM's main clock (CK) may then be used to transfer Boundary Scan Register contents associated with each I/O from the scan register to the RAM's output drivers and onto the I/O pins. A single CK transition is sufficient to transfer the data, but more transitions will do no harm.

IDCODE

The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in Capture-DR mode and places the ID register between the TDI and TDO pins in Shift-DR mode. The IDCODE instruction is the default instruction loaded in at power up and any time the controller is placed in the Test-Logic-Reset state.

SAMPLE-Z

If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive drive state (high-Z) and the Boundary Scan Register is connected between TDI and TDO when the TAP controller is moved to the Shift-DR state.

RFU

These instructions are reserved for future use. In this device they replicate the BYPASS instruction.

JTAG TAP Instruction Set Summary

Instruction	Code	Description	
EXTEST-A	000	Places the Boundary Scan Register between TDI and TDO. This RAM implements an Clock Assisted EXTEST function. *Not 1149.1 Compliant *	
IDCODE	001	reloads ID Register and places it between TDI and TDO.	
SAMPLE-Z	010	Captures I/O ring contents. Places the Boundary Scan Register between TDI and TDO. Forces all Data and Clock output drivers to High-Z.	1
RFU	011	Do not use this instruction; Reserved for Future Use. Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.	1
SAMPLE/ PRELOAD	100	Captures I/O ring contents. Places the Boundary Scan Register between TDI and TDO. This RAM does not implement 1149.1 PRELOAD function. *Not 1149.1 Compliant *	1
GSI	101	GSI Private instruction.	1
RELL LIO		Do not use this instruction; Reserved for Future Use. Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.	1
BYPASS	111	Places Bypass Register between TDI and TDO.	1

Notes:

1. Instruction codes expressed in binary, MSB on left, LSB on right.

2. Default instruction automatically loaded at power-up and in Test-Logic-Reset state.

JTAG Port Recommended Operating Conditions and DC Characteristics

Parameter	Symbol	Min.	Max.	Unit	Notes
Test Port Input High Voltage	V _{IHT}	0.65 * V _{DD}	V _{DD} +0.3	V	1
Test Port Input Low Voltage	V _{ILT}	-0.3	0.35 * V _{DD}	V	1
TMS, TCK and TDI Input Leakage Current	I _{INTH}	-100	2	uA	2
TMS, TCK and TDI Input Leakage Current	I _{INTL}	-2	2	uA	3
TDO Output Leakage Current	I _{OLT}	-2	2	uA	4
Test Port Output High Voltage	V _{OHT}	V _{DDQ} – 100 mV	—	V	5, 6
Test Port Output Low Voltage	V _{OLT}	—	100 mV	V	7

Notes:

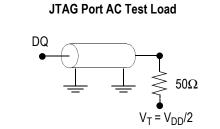
1. Input Under/overshoot voltage must be –1 V < Vi < V_{DD} + 1 V with a pulse width not to exceed 20% tTKC.

$$2. \quad V_{DD} \ge V_{IN} \ge V_{IL}$$

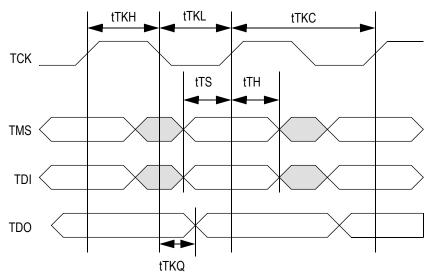
3. 0 V \leq V $_{IN}$ \leq V $_{IL}$

4. Output Disable, $V_{OUT} = 0$ to V_{DD}

- 5. The TDO output driver is served by the V_{DD} supply.
- 6. I_{OH} = -100 uA
- 7. I_{OL} = +100 uA


JTAG Port AC Test Conditions

Parameter	Conditions
Input high level	V _{DD} – 200 mV
Input low level	200 mV
Input slew rate	1 V/ns
Input reference level	V _{DD} /2
Output reference level	V _{DD} /2


Notes:

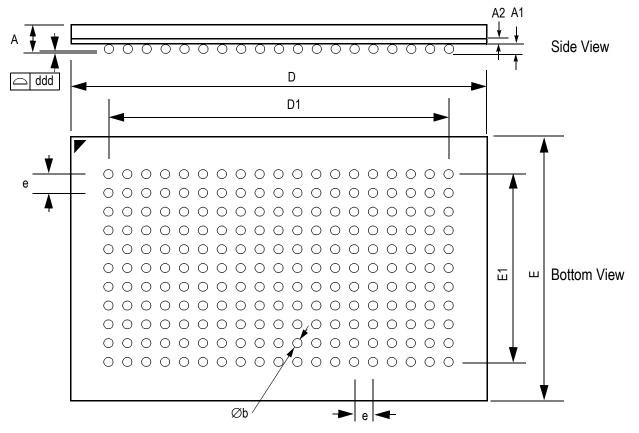
1. Include scope and jig capacitance.

2. Test conditions as as shown unless otherwise noted.

JTAG Port Timing Diagram

JTAG Port AC Electrical Characteristics

Parameter	Symbol	Min	Max	Unit	
TCK Cycle Time	tTKC	20	_	ns	
TCK Low to TDO Valid	tTKQ	_	10	ns	
TCK High Pulse Width	tTKH	10	_	ns	
TCK Low Pulse Width	tTKL	10	_	ns	
TDI & TMS Set Up Time	tTS	5	_	ns	
TDI & TMS Hold Time	tTH	5	_	ns	


Output Driver Characteristics

TBD

Package Dimensions—209-Bump BGA

14 mm x 22 mm Body, 1.0 mm Bump Pitch, 11 x 19 Bump Array

Symbol	Min.	Тур.	Max.	Units
Α	-	_	1.7	mm
A1	0.40	0.50	0.60	mm
A2	0.31	0.36	0.38	mm
b	0.50	0.60	0.70	mm
D	21.9	22.0	22.1	mm
D1	_	18.0 (BSC)	—	mm
E	13.9	14.0	14.1	mm
E1	—	10.0 (BSC)	—	mm
е	—	1.00 (BSC)	—	mm
ddd	—	0.15	—	mm
Rev 1.2				

Rev: 1.01 11/2000 36/38 © 2000, Giga Semiconductor, Inc. Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.

A

Ordering Information—GSI Sigma RAM

Org	Part Number ¹	Туре	Package	Speed ² (MHz/ns)	T _A ³
256K x 72	GS8170 S 72B-333	Common I/O ΣRAM	1 mm Pitch, 209-Pin BGA	333/5	С
256K x 72	GS8170 S 72B-300	Common I/O ΣRAM	1 mm Pitch, 209-Pin BGA	300/5.5	С
256K x 72	GS8170 S 72B-275	Common I/O ΣRAM	1 mm Pitch, 209-Pin BGA	275/6	С
256K x 72	GS8170 S 72B-250	Common I/O ΣRAM	1 mm Pitch, 209-Pin BGA	250/6.7	С
256K x 72	GS8170S72B-333I	Common I/O SRAM	1 mm Pitch, 209 Pin BGA	333/5	Ι
256K x 72	GS8170S72B-300I	Common I/O SRAM	1 mm Pitch, 209-Pin BGA	300/5.5	Ι
256K x 72	GS8170S72B-275I	Common I/O SRAM	1 mm Pitch, 209-Pin BGA	275/6	Ι
256K x 72	GS8170S72B-250I	Common I/O ΣRAM	1 mm Pitch, 209-Pin BGA	250/6.7	Ι
512K x 36	GS8170 S 36B-333	Common I/O ΣRAM	1 mm Pitch, 209-Pin BGA	333/5	С
512K x 36	GS8170 S 36B-300	Common I/O ΣRAM	1 mm Pitch, 209-Pin BGA	300/5.5	С
512K x 36	GS8170 S 36B-275	Common I/O ΣRAM	1 mm Pitch, 209-Pin BGA	275/6	С
512K x 36	GS8170 S 36B-250	Common I/O ΣRAM	1 mm Pitch, 209-Pin BGA	250/6.7	С
512K x 36	GS8170 S 36B-333I	Common I/O ΣRAM	1 mm Pitch, 209-Pin BGA	333/5	Ι
512K x 36	GS8170 S 36B-300I	Common I/O ΣRAM	1 mm Pitch, 209-Pin BGA	300/5.5	Ι
512K x 36	GS8170 S 36B-275I	Common I/O ΣRAM	1 mm Pitch, 209-Pin BGA	275/6	Ι
512K x 36	GS8170 S 36B-250I	Common I/O ΣRAM	1 mm Pitch, 209-Pin BGA	250/6.7	Ι
1Mx 18	GS8170S18B-333	Common I/O ΣRAM	1 mm Pitch, 209-Pin BGA	333/5	С
1Mx 18	GS8170S18B-300	Common I/O ΣRAM	1 mm Pitch, 209-Pin BGA	300/5.5	С
1Mx 18	GS8170S18B-275	Common I/O ΣRAM	1 mm Pitch, 209-Pin BGA	275/6	С
1Mx 18	GS8170S18B-250	Common I/O ΣRAM	1 mm Pitch, 209-Pin BGA	250/6.7	С
1Mx 18	GS8170S18B-333I	Common I/O ΣRAM	1 mm Pitch, 209-Pin BGA	333/5	Ι
1Mx 18	GS8170S18B-300I	Common I/O ΣRAM	1 mm Pitch, 209-Pin BGA	300/5.5	Ι
1Mx 18	GS8170S18B-275I	Common I/O ΣRAM	1 mm Pitch, 209-Pin BGA	275/6	Ι
1Mx 18	GS8170S18B-250I	Common I/O ΣRAM	1 mm Pitch, 209-Pin BGA	250/6.7	I

Notes:

1. Customers requiring delivery in Tape and Reel should add the character "T" to the end of the part number. Example: GS817x72B-300T.

2. The speed column indicates the cycle frequency (MHz) of the device in Pipelined mode and the latency (ns) in Flow Through mode. Each device is Pipeline/Flow Through mode selectable by the user.

3. T_A = C = Commercial Temperature Range. T_A = I = Industrial Temperature Range.

Revision History

Rev. Code: Old; New	Types of Changes Format of Content	Revisions
8170S183672_r1; 8170S183672_r1_01	Format	Updated format to comply with Technical Publications standards