

Document Title

1Mx16 bit Uni-Transistor Random Access Memory

Revision History

Revision No.HistoryDraft DateRemark0.0Initial DraftOctober 17, 2002Advanced

The attached datasheets are provided by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications and products. SAMSUNG Electronics will answer to your questions about device. If you have any questions, please contact the SAMSUNG branch offices.

1M x 16 bit Uni-Transistor CMOS RAM

FEATURES

Process Technology: CMOSOrganization: 1M x16 bit

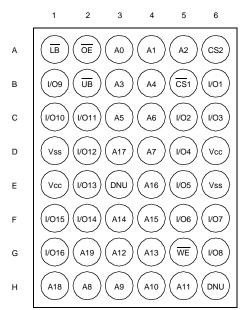
• Power Supply Voltage: 1.7V~2.2V

• Three State Outputs

• Compatible with Low Power SRAM

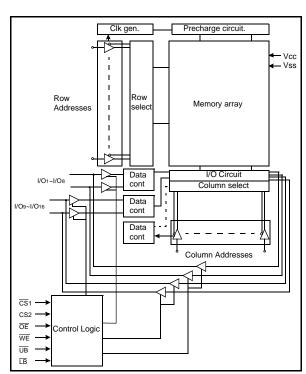
• Dual Chip selection support

• Package Type: 48-TBGA-6.00x7.00


GENERAL DESCRIPTION

The K1S1616B1M is fabricated by SAMSUNG's advanced CMOS technology using one transistor memory cell. The device supports Industrial temperature range and 48 ball Chip Scale Package for user flexibility of system design. The device also supports dual chip selection for user interface.

PRODUCT FAMILY


				Power Dis	ssipation	
Product Family	Operating Temp.	Vcc Range	Speed	Standby (ISB1, Max.)	Operating (Icc2, Max.)	PKG Type
K1S1616B1M-I	Industrial(-40~85°C)	1.7V~2.2V	70/85ns	60μΑ	25mA	48-TBGA-6.00x7.00

PIN DESCRIPTION

48-TBGA: Top View(Ball Down)

FUNCTIONAL BLOCK DIAGRAM

Name	Function	Name	Function
CS1,CS2	Chip Select Inputs	Vcc	Power
ŌĒ	Output Enable Input	Vss	Ground
WE	Write Enable Input	UB	Upper Byte(I/O9~16)
A0~A19	Address Inputs	LB	Lower Byte(I/O1~8)
I/O1~I/O16	Data Inputs/Outputs	DNU	Do Not Use1)

¹⁾ Reserved for future use.

SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice.

PRODUCT LIST

Industrial Temperature Products(-40~85°C)					
Part Name	Function				
K1S1616B1M-EI70	48-TBGA-6.00x7.00, 70ns				
K1S1616B1M-EI85	48-TBGA-6.00x7.00, 85ns				

POWER UP SEQUENCE

- 1. Apply power.
- 2. Maintain stable power(Vcc min.=1.7V) for a minimum 200µs with CS1=high.or CS2=low.
- 3. Issue read operation at least twice.

FUNCTIONAL DESCRIPTION

CS ₁	CS2	OE	WE	LB	UB	I/O1~8	I/O9~16	Mode	Power
Н	X ¹⁾	High-Z	High-Z	Deselected	Standby				
X ¹⁾	L	X ¹⁾	X ¹⁾	X ¹⁾	X ¹⁾	High-Z	High-Z	Deselected	Standby
X ¹⁾	X ¹⁾	X ¹⁾	X ¹⁾	Н	Н	High-Z	High-Z	Deselected	Standby
L	Н	Н	Н	L	X ¹⁾	High-Z	High-Z	Output Disabled	Active
L	Н	Н	Н	X ¹⁾	L	High-Z	High-Z	Output Disabled	Active
L	Н	L	Н	L	Н	Dout	High-Z	Lower Byte Read	Active
L	Н	L	Н	Н	L	High-Z	Dout	Upper Byte Read	Active
L	Н	L	Н	L	L	Dout	Dout	Word Read	Active
L	Н	X ¹⁾	L	L	Н	Din	High-Z	Lower Byte Write	Active
L	Н	X ¹⁾	L	Н	L	High-Z	Din	Upper Byte Write	Active
L	Н	X ¹⁾	L	L	L	Din	Din	Word Write	Active

^{1.} X means don't care.(Must be low or high state)

ABSOLUTE MAXIMUM RATINGS(1)

Item	Symbol	Ratings	Unit
Voltage on any pin relative to Vss	VIN, VOUT	-0.2 to Vcc+0.3V	V
Voltage on Vcc supply relative to Vss	Vcc	-0.2 to 2.5V	V
Power Dissipation	Pb	1.0	W
Storage temperature	Тѕтс	-65 to 150	°C
Operating Temperature	TA	-40 to 85	O°

^{1.} Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted to be used under recommended operating condition. Exposure to absolute maximum rating conditions longer than 1 second may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS(1)

Item	Symbol	Min	Тур	Max	Unit
Supply voltage	Vcc	1.7V	1.8V	2.2V	V
Ground	Vss	0	0	0	V
Input high voltage	Vih	1.4	-	Vcc+0.2 ²⁾	V
Input low voltage	VIL	-0.23)	-	0.4	V

- 1. Ta=-40 to 85°C, otherwise specified.

- 2. Overshoot: Vcc+1.0V in case of pulse width ≤20ns.

 3. Undershoot: -1.0V in case of pulse width ≤20ns.

 4. Overshoot and undershoot are sampled, not 100% tested.

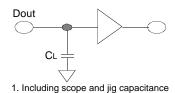
CAPACITANCE1)(f=1MHz, TA=25°C)

Item	Symbol	Test Condition	Min	Max	Unit
Input capacitance	CIN	Vin=0V	-	8	pF
Input/Output capacitance	Сю	Vio=0V	-	10	pF

^{1.} Capacitance is sampled, not 100% tested.

DC AND OPERATING CHARACTERISTICS

Item	Symbol	Test Conditions	Min	Тур	Max	Unit
Input leakage current	ILI	Vin=Vss to Vcc	-1	-	1	μΑ
Output leakage current	lLO	CS1=VIH or CS2=VIL or OE=VIH or WE=VIL or LB=UB=VIH, VIO=VSS to VCC	-1	-	1	μА
Average operating current	ICC1	Cycle time=1μs, 100% duty, Iιο=0mA, \overline{CS} 1≤0.2V, \overline{LB} ≤0.2V or/and \overline{UB} ≤0.2V, CS2≥Vcc-0.2V, VIN≤0.2V or VIN≥Vcc-0.2V	-	-	5	mA
Average operating current	ICC2	Cycle time=Min, IIo=0mA, 100% duty, \overline{CS} 1=VIL, CS2=VIH \overline{LB} =VIL or/and \overline{UB} =VIL, VIN=VIH or VIL	-	-	25	mA
Output low voltage	Vol	IOL = 0.1mA	-	-	0.2	V
Output high voltage	Voн	Iон = -0.1mA	1.4	-	-	٧
Standby Current(CMOS)	ISB1	Other inputs=0~Vcc 1) $\overline{CS}1\ge$ Vcc-0.2V, CS2 \ge Vcc-0.2V($\overline{CS}1$ controlled) or 2) $0V \le$ CS2 \le 0.2V(CS2 controlled)	-	-	60	μΑ


AC OPERATING CONDITIONS

TEST CONDITIONS(Test Load and Test Input/Output Reference)

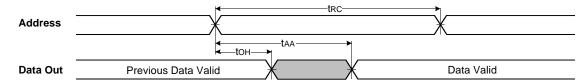
Input pulse level: 0.2 to Vcc-0.2V Input rising and falling time: 5ns

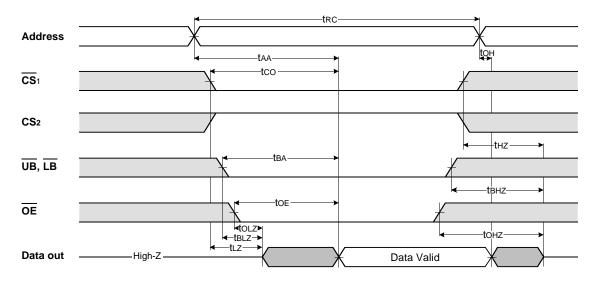
Input and output reference voltage: 0.5 x Vcc

Output load (See right): CL=50pF

AC CHARACTERISTICS(Vcc=1.7~2.2V, TA=-40 to 85°C)

				Spee	d Bins			
	Parameter List	Symbol	70	0ns	85ns		Units	
			Min	Max	Min	Max		
	Read Cycle Time	trc	70	-	85	-	ns	
	Address Access Time	taa	-	70	-	85	ns	
	Chip Select to Output	tco	-	70	-	85	ns	
	Output Enable to Valid Output	toe	-	35	-	40	ns	
	UB, LB Access Time	tва	-	70	-	85	ns	
Read	Chip Select to Low-Z Output	tLZ	10	-	10	-	ns	
Road	UB, LB Enable to Low-Z Output	tBLZ	10	-	10	-	ns	
	Output Enable to Low-Z Output	tolz	5	-	5	-	ns	
	Chip Disable to High-Z Output	tHZ	0	25	0	25	ns	
	UB, LB Disable to High-Z Output	tвнz	0	25	0	25	ns	
	Output Disable to High-Z Output	tonz	0	25	0	25	ns	
	Output Hold from Address Change	tон	5	-	5	-	ns	
	Write Cycle Time	twc	70	-	85	-	ns	
	Chip Select to End of Write	tcw	60	-	70	-	ns	
	Address Set-up Time	tas	0	-	0	-	ns	
	Address Valid to End of Write	taw	60	-	70	-	ns	
	UB, LB Valid to End of Write	tвw	60	-	70	-	ns	
Write	Write Pulse Width	twp	55 ¹⁾	-	60 ¹⁾	-	ns	
	Write Recovery Time	twr	0	-	0	-	ns	
	Write to Output High-Z	twnz	0	25	0	25	ns	
	Data to Write Time Overlap	tow	30	-	35	-	ns	
	Data Hold from Write Time	tDH	0	-	0	-	ns	
	End Write to Output Low-Z	tow	5	-	5	-	ns	

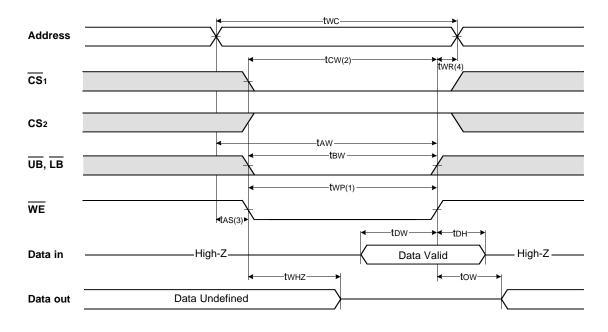

^{1.} tWP(min)=70ns for continuous write operation over 50 times.(Only in case of WE controlled write operation)



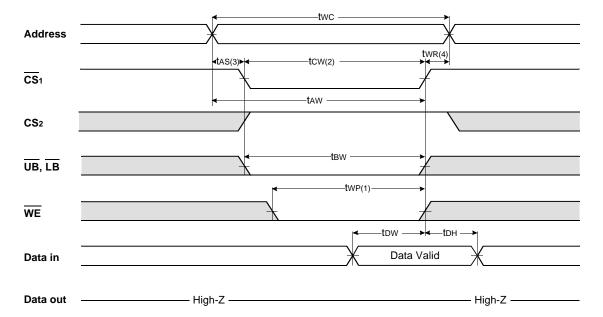
TIMING DIAGRAMS

TIMING WAVEFORM OF READ CYCLE(1) (Address Controlled, $\overline{CS}1=\overline{OE}=V_{IL}$, $\overline{CS}2=\overline{WE}=V_{IH}$, \overline{UB} or/and $\overline{LB}=V_{IL}$)

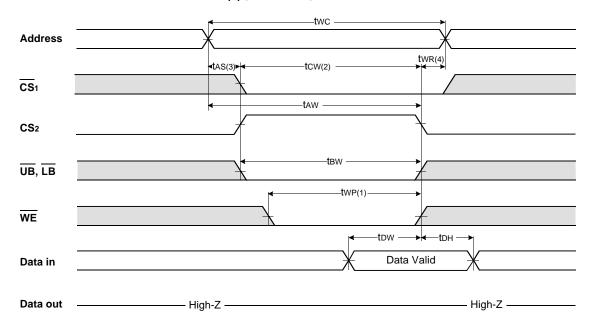
TIMING WAVEFORM OF READ CYCLE(2) (WE=VIH)



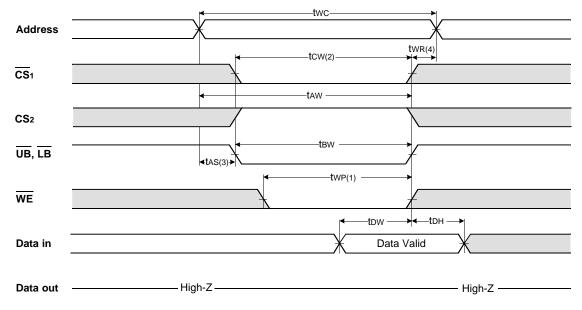
NOTES (READ CYCLE)


- 1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage
- 2. At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device interconnection.
- 3. If invalid address signals shorter than min. tRC are continuously repeated for over 4us, the device needs a normal read timing(tRC) or needs to sustain standby state for min. tRC at least once in every 4us.

TIMING WAVEFORM OF WRITE CYCLE(1) (WE Controlled)

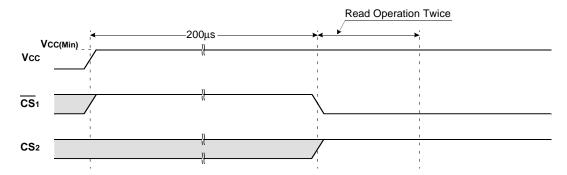


TIMING WAVEFORM OF WRITE CYCLE(2) (CS1 Controlled)



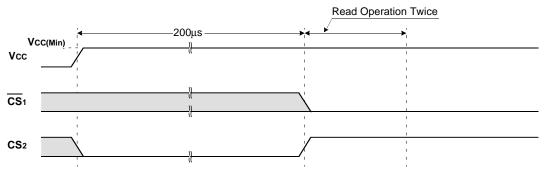
TIMING WAVEFORM OF WRITE CYCLE(3) (CS2 Controlled)

TIMING WAVEFORM OF WRITE CYCLE(4) (UB, LB Controlled)


NOTES (WRITE CYCLE)

- 1. <u>A write occurs during the overlap(twr)</u> of low $\overline{CS1}$ and low \overline{WE} . <u>A write begins when $\overline{CS1}$ goes low and \overline{WE} goes low with asserting UB or LB for single byte operation or simultaneously asserting UB and LB for double byte operation. A write ends at the earliest tran-</u> sition when CS1 goes high and WE goes high. The twp is measured from the beginning of write to the end of write.
- 2. tcw is measured from the CS1 going low to the end of write.

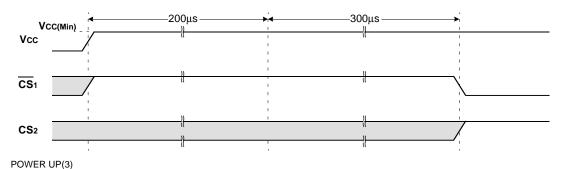
 3. tas is measured from the address valid to the beginning of write.
- 4. twr is measured from the end of write to the address change. twr is applied in case a write ends with $\overline{\text{CS}}$ 1 or $\overline{\text{WE}}$ going high.


TIMING WAVEFORM OF POWER UP(1) (CS1 controlled)

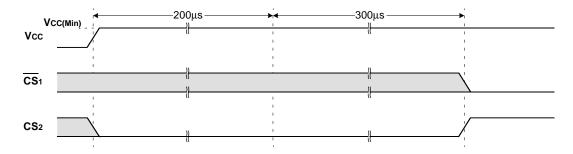
POWER UP(1)

- After Vcc reaches Vcc(Min.) following power application, wait 200µs with CS1 high and then toggle CS1 low and commit Read Operation at least twice. Then you get into the normal operation.
 Read operation should be executed after toggling CS1 pin low.
 The read operation must satisfy the specified tRC.

TIMING WAVEFORM OF POWER UP(2) (CS2 controlled)


POWER UP(2)

- After Vcc reaches Vcc(Min.) following power application, wait 200µs with CS2 high and then toggle CS2 low and commit Read Operation at least twice. Then you get into the normal operation.
 Read operation should be executed after toggling CS2 pin low.
- 3. The read operation must satisfy the specified tRC.



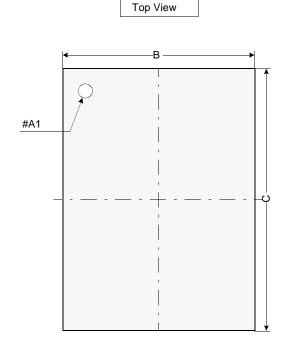
TIMING WAVEFORM OF POWER UP(3) (CS1 controlled)

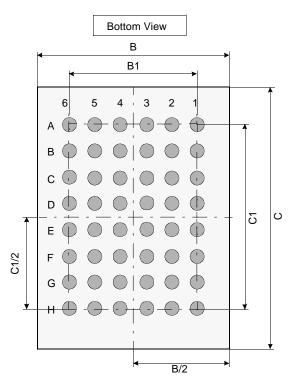
1. After Vcc reaches Vcc(Min.) following power app<u>lica</u>tion, wait 200µs and wait another 300µs with $\overline{CS}1$ high if you dont want to commit dummy read cycle. After total 500µs wait, toggle $\overline{CS}1$ low, then you get into the normal mode.

TIMING WAVEFORM OF POWER UP(4) (CS2 controlled)

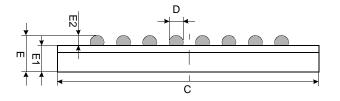
POWER UP(4)

1. After Vcc reaches Vcc(Min.) following power application, wait 200µs and wait another 300µs with CS2 low if you dont want to commit dummy read cycle. After total 500µs wait, toggle CS2 high, then you get into the normal mode.

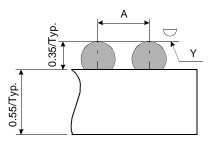




PACKAGE DIMENSION


Unit: millimeters

48 TAPE BALL GRID ARRAY(0.75mm ball pitch)



Side View

	Min	Тур	Max
Α	-	0.75	-
В	5.90	6.00	6.10
B1	-	3.75	-
С	6.90	7.00	7.10
C1	-	5.25	1
D	0.40	0.45	0.50
Е	-	0.90	1.00
E1	-	0.55	-
E2	0.30	0.35	0.40
Υ	-	-	0.08

Detail A

Notes.

- 1. Bump counts: 48(8 row x 6 column)
- 2. Bump pitch : $(x,y)=(0.75 \times 0.75)(typ.)$
- 3. All tolerence are ± 0.050 unless specified beside figures.
- 4. Typ: Typical
- 5. Y is coplanarity: 0.08(Max)

