


Preliminary Information

Agilent AMMP-5024 100 kHz – 40 GHz Traveling Wave Amplifier Data Sheet

Features

- 5x5mm Surface Mount Package
- Wide Frequency Range 100kHz 40GHz
- P-1dB of 23dBm
- High Gain of 15 dB
- 50 Ω match on Input and Output
- Integrated Output Power Detector

Applications

- Communication Systems
- Microwave Instrumentation
- Optical Systems

Description

• Broadband applications requiring flat gain group delay

_	
Pin	Function
1	V_g
2	V_d
3	DET _o
4	RF Out
5	DET _R
6	V_d
7	V _g
8	RF In

AMMP-5024 Absolute Maximum Ratings^[1]

BASE

GND

Symbol	Parameters/Conditions	Units	Min.	Max.
V _d 1	Positive Drain Voltage	V		8
Vg	Gate Supply Voltage	V	-3	0.5
d	First Stage Drain	mΑ		1500
	Current			
Pin	CW Input Power	dBm		23
Tch	Operating Channel	°C		+ 150
	Temp.			
Tstg	Storage Case Temp.	°C	-65	+ 150
T _{max}	Maximum Assembly	°C		+300
	Temp (60 sec max)			

flat gain and power as well as uniform group delay. E-beam lithography is used to produce uniform gate lengths of 0.15um and MBE technology assures precise semiconductor layer control.

Agilent's AMMP-5024 is a broadband PHEMT GaAs MMIC TWA designed for medium output power and high gain over the full 100 KHz to 40 GHz frequency range. The design employs a 9-stage, cascade-connected FET structure to ensure

Note:

1. Operation in excess of any one of these conditions may result in permanent damage to this device.

This preliminary data is provided to assist you in the evaluation of product(s) currently under development. Until Agilent Technologies releases this product for general sales, Agilent Technologies reserves the right to alter prices, specifications, features, capabilities, functions, release dates, and remove availability of the product(s) at anytime.

Revision Date: 28 Sept 2005 Revision Number: 1

AMMP-5024 DC Specifications/Physical Properties [1]

Symbol	Parameters and Test Conditions	Units	Min.	Typ.	Max.
L	Drain Supply Current	mA		200	
Id	$[V_d=7 \text{ V}, V_g=\text{ set for } I_d \text{ Typical}]$	IIIA		200	
$ heta_{2(ch-bs)}$	Thermal Resistance ^[2]	°C/W	14.5		
	[Channel-to-Backside at Tch = 150 $^{\circ}$ C]	C/ W		14.5	

Notes:

- 1. Ambient operational temperature $T_A = 25^{\circ}C$ unless otherwise noted.
- 2. Thermal resistance (°C/Watt) at a channel temperature T(°C) can be estimated using the equation:
- θ (T) $\cong \theta_{\text{ch-bs}}$ x [T (°C) + 273] / [150°C + 273].

AMMP-5024 RF Specifications [3,4]

 $T_{A} = 25^{\circ}C, \ V_{d} = 7V, \ I_{d(0)} = 200 \ mA, \ Z_{in} = Z_{0} = 50 \ \Omega$

Symbol	Parameters and Test Conditions	Units	Specifications			
			Min.	Тур.	Max.	
Freq	Operational Frequency	GHz	0.000001		40	
Gain	Small-signal Gain ^[3, 4]	dB		15		
P_{-1dB}	Output Power at 1dB Gain Compression [4]	dB		22		
IP_3	Third Order Intercept Point ^[4] ; $\Delta f = 0.1 GHz$;	dBm		30		
	Pin=-6 dBm					
RLin	Input Return Loss ^[4]	dB		10		
RLout	Output Return Loss ^[4]	dB		10		
Isolation	Min. Reverse Isolation	dB		28		

^{3.} Small/Large -signal data measured in wafer form $T_A = 25^{\circ}C$.

This preliminary data is provided to assist you in the evaluation of product(s) currently under development. Until Agilent Technologies releases this product for general sales, Agilent Technologies reserves the right to alter prices, specifications, features, capabilities, functions, release dates, and remove availability of the product(s) at anytime.

Revision Date: 28 Sept 2005

