

8K X 8 REPROGRAMMABLE PROM

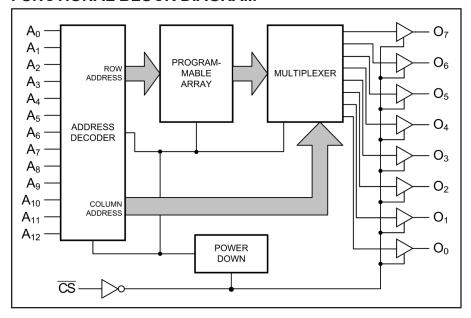
FEATURES

- **■** EPROM Technology for reprogramming
- High Speed
 - 25/35/45/55 ns (Commercial)
 - 25/35/45/55 ns (Military)
- Low Power Operation:
 - 660 mW Commercial
 - 770 mW Military
- Single 5V±10% Power Supply

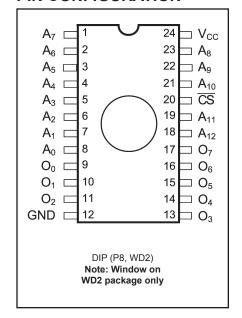
- Windowed devices for reprogramming
- Fully TTL Compatible Inputs and Outputs
- Standard Pinout (JEDEC Approved)
 - 24-Pin 300 mil Windowed CERDIP (PY263)
 - 24-Pin 300 mil Non-Windowed Plastic DIP (PY263)
 - 24-Pin 600 mil Windowed CERDIP (PY264)
 - 24-Pin 600 mil Non-Windowed Plastic DIP (PY264)

DESCRIPTION

The PY263 and PY264 are 8Kx8 CMOS PROMs. The devices are available in windowed packages which when exposed to UV light, the memory content in the PROM is erased and can be reprogrammed. EPROM technology is used in the memory cells for programming. The EPROM requires a 12.5V for programming. Devices are tested to insure that performance of the device meets the DC and AC specification limits after customer programming.


To perform a read operation from the device, \overline{CS} is LOW. The memory contents in the address established by the Address pins (A₀ to A₁₂) will become available on the outputs (O₀ to O₇).

The PY263 is available in 24-pin 300 mil Ceramic DIPs (Windowed) and Plastic DIPs (Non-Windowed).


The PY264 is available in 24-pin 600 mil Ceramic DIPs (Windowed) and Plastic DIPs (Non-Windowed).

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

MAXIMUM RATINGS(1)

Sym	Parameter	Value	Unit
V _{cc}	Power Supply Pin with Respect to GND	-0.5 to +7	V
V _{TERM}	Terminal Voltage with Respect to GND (up to 7.0V)	-0.5 to VCC + 0.5	V
V _{PP}	Program Voltage	13	V
T _A	Operating Temperature	-55 to +125	°C
T _{BIAS}	Temperature Under Bias	-55 to +125	°C
T _{STG}	Storage Temperature	-65 to +150	°C
P _T	Power Dissipation	1.0	W
I _{out}	DC Output Current	50	mA

RECOMMENDED OPERATING CONDITIONS

Grade ⁽²⁾	Ambient Temp	GND	V _{cc}
Commercial	0°C to 70°C	0V	5.0V ± 10%
Military	-55°C to +125°C	0V	5.0V ± 10%

CAPACITANCES⁽⁴⁾

 $(V_{CC} = 5.0V, T_A = 25^{\circ}C, f = 1.0MHz)$

Sym	Parameter	Conditions	Тур	Unit
C _{IN}	Input Capacitance	V _{IN} =0V	10	pF
C _{OUT}	Output Capacitance	V _{OUT} =0V	10	pF

DC ELECTRICAL CHARACTERISTICS

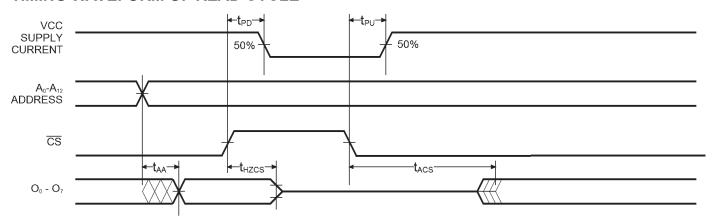
(Over Recommended Operating Temperature & Supply Voltage)(2)

Sym	Parameter	Test Conditions	PY263	/ PY264	Unit
Sylli	Parameter	Test Conditions	Min	Max	
V_{IH}	Input High Voltage		2.0	V _{cc}	V
$V_{\rm IL}$	Input Low Voltage		-0.5 ⁽³⁾	0.8	V
V_{HC}	CMOS Input High Voltage		V _{CC} - 0.2	V _{CC} + 0.5	V
V_{LC}	CMOS Input Low Voltage		-0.5 ⁽³⁾	0.2	V
V_{OL}	Output Low Voltage (TTL Load)	I _{oL} =+16 mA, V _{cc} = Min.		0.4	V
V_{OH}	Output High Voltage (TTL Load)	I _{OH} = - 4 mA, V _{CC} = Min	2.4		V
	Input Lockago Current	COM	-10	+10	μΑ
l _{LI}	Input Leakage Current	$V_{CC} = Max, V_{IN} = GND \text{ to } V_{CC}$	-40	+40	μΑ
	Output Looks as Current	$V_{CC} = Max, \overline{CE} = V_{IH},$	-10	+10	μΑ
I _{LO}	Output Leakage Current	$V_{OUT} = GND \text{ to } V_{CC}$ MIL	-40	+40	μΑ
V _{PP}	Programming Supply Voltage		12	13	V
I _{PP}	Programming Supply Current			50	mA
V _{IHP}	Input HIGH Programming Voltage		4.75		V
V _{ILP}	Input LOW Programming Voltage			0.4	V

POWER DISSIPATION CHARACTERISTICS VS. SPEED

Sym	Parameter	Temperature Range	-25	-35	-45	-55	Unit
	Dynamia Operating Current	Commercial	120	100	100	100	mA
CC	Dynamic Operating Current	Military	140	120	120	120	mA

^{*} V_{CC} = 5.5V. Tested with outputs open. f = Max. Switching inputs are 0V and 3V. \overline{CS} = V_{IL} .



AC ELECTRICAL CHARACTERISTICS—READ CYCLE

 $(V_{CC} = 5V \pm 10\%, All Temperature Ranges)^{(2)}$

Curre	Baramatar	-2	25	-3	35	-4	15	-5	55	11
Sym	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{AA}	Address to Output Valid		25		35		45		55	ns
t _{HZCS}	Chip Select Inactive to High Z		12		20		30		35	ns
t _{ACS}	Chip Select Active to Output Valid		12		20		30		35	ns
t _{PU}	Chip Select Active to Power-Up	0		0		0		0		ns

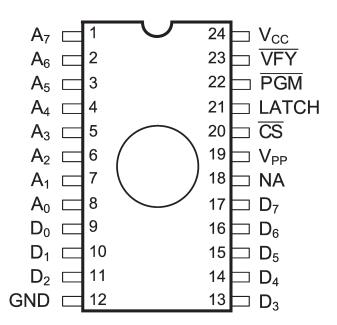
TIMING WAVEFORM OF READ CYCLE

Notes:

- Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to MAXIMUM rating conditions for extended periods may affect reliability.
- 2. Extended temperature operation guaranteed with 400 linear feet per minute of air flow.
- 3. Transient inputs with $\rm V_{IL}$ and $\rm I_{IL}$ not more negative than $-3.0\rm V$ and $-100\rm mA$, respectively, are permissible for pulse widths up to 20 ns.
- 4. This parameter is sampled and not 100% tested.

DEVICE ERASURE

If the device is subjected to wavelengths of light below 4000 Angstroms, device erasure will commence. It is therefore recommended to use an opaque label over the window in the event the device will be exposed to lighting for a long time. The UV dose for erasure requires a wavelength of 2,537 Angstroms for a minimum dose of 25 Wsec/cm². If using a UV lamp of 12 mW/cm², the exposure time is estimated to be 35 minutes. Devices should be positioned within 1 inch of the lamp during the erasure process. Permanent damage can occur to the devices if exposed to UV light for an extended period of time.


READ MODE

Reading the addressed content is the normal operating mode for a programmed device. Signals are at normal TTL levels. Addressing is applied to the 13 address pins and $\overline{\text{CS}}$ is LOW. Under these conditions, the addressed location contents are presented to the output pins.

MODE SELECTION

		Pin Function						
Mode	Read or Output Disable	A ₁₂	A ₁₁	A ₁₀	A ₉	A ₈	<u>CS</u>	O ₇ -O ₀
Wiode	Program	NA	V _{PP}	LATCH	PGM	VFY	<u>CS</u>	D ₇ -D ₀
Read		A ₁₂	A ₁₁	A ₁₀	A ₉	A ₈	V _{IL}	O ₇ -O ₀
Output Disa	able	A ₁₂	A ₁₁	A ₁₀	A ₉	A ₈	V _{IH}	High Z
Program		V _{ILP}	V _{PP}	V _{ILP}	V _{ILP}	V _{IHP}	$V_{\rm ILP}$	D ₇ -D ₀
Program In	hibit	V _{ILP}	V _{PP}	V _{ILP}	V _{IHP}	V _{IHP}	$V_{\rm ILP}$	High Z
Program Ve	erify	V _{ILP}	V _{PP}	V _{ILP}	V _{IHP}	V _{ILP}	$V_{\rm ILP}$	O ₇ -O ₀
Blank Chec	ck	V _{ILP}	V _{PP}	V _{ILP}	V _{IHP}	V _{ILP}	V _{ILP}	O ₇ -O ₀

PROGRAMMING PINOUTS

 R_{TH} = 100 Ω

 $V_{TH} = 2.0 \ V$

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise and Fall Times	3ns
Input Timing Reference Level	1.5V
Output Timing Reference Level	1.5V
Output Load	See Figures 1 and 2

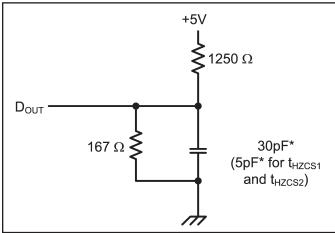


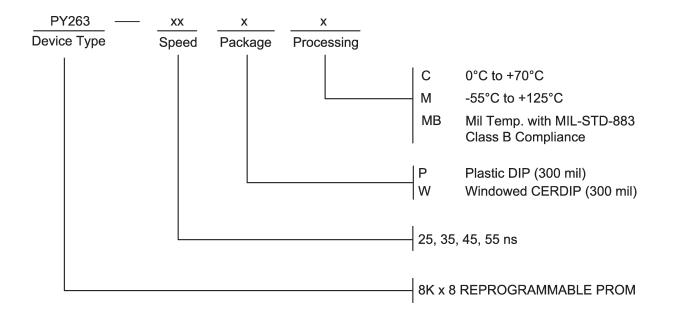
Figure 1. Output Load

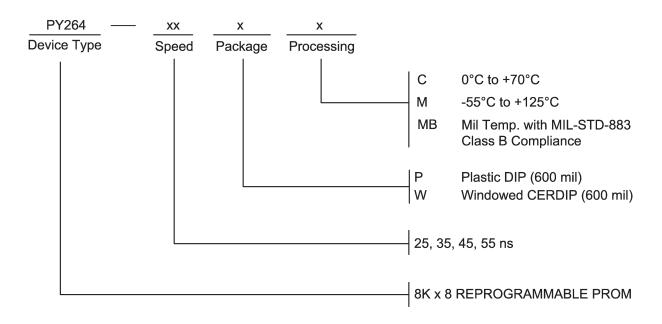
30pF* (5pF* for t_{HZCS1} and t_{HZCS2})

D_{OUT} .

Figure 2. Thevenin Equivalent

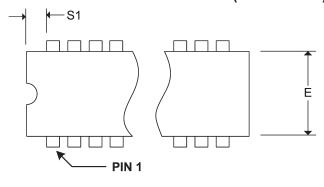
Note:

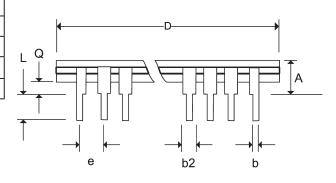

Because of the ultra-high speed of the PY263/PY264, care must be taken when testing this device; an inadequate setup can cause a normal functioning part to be rejected as faulty. Long high-inductance leads that

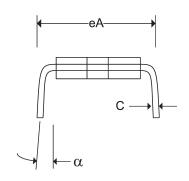

cause supply bounce must be avoided by bringing the $V_{\rm CC}$ and ground planes directly up to the contactor fingers. A 0.01 μF high frequency capacitor is also required between $V_{\rm CC}$ and ground.

^{*} including scope and test fixture.

ORDERING INFORMATION

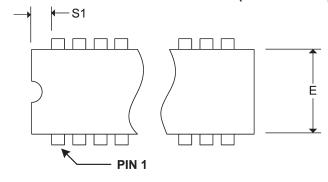


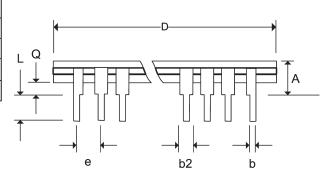


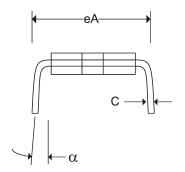


•			
Pkg #	W	D1	
# Pins	24 (300 mil)		
Symbol	Min	Max	
Α	-	0.200	
b	0.014	0.026	
b2	0.045	0.065	
С	0.008	0.018	
D	-	1.280	
Е	0.220	0.310	
eA	0.300	BSC	
е	0.100	BSC	
L	0.125	0.200	
Q	0.015	0.060	
S1	0.005	-	
α	0°	15°	
WD	0.1	75	

CERAMIC DUAL INLINE PACKAGE (WINDOWED)

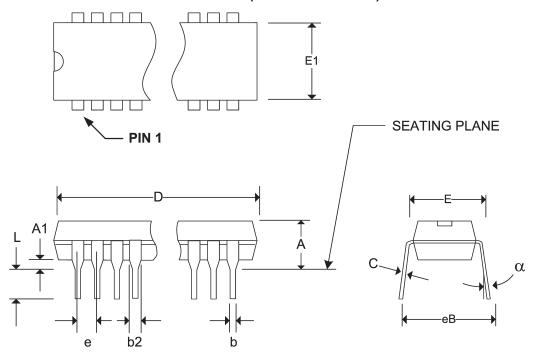


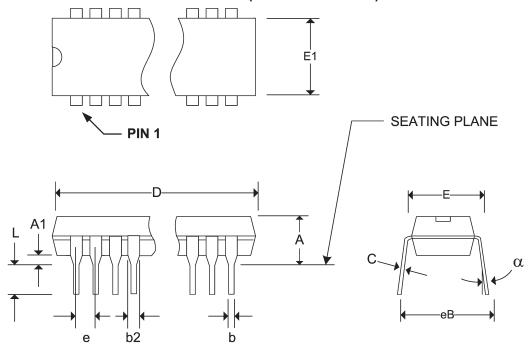




Pkg#	W	D2		
# Pins	24 (600 mil)			
Symbol	Min	Max		
Α	0.175	0.225		
b	0.015	0.020		
b2	0.045	0.065		
С	0.009	0.012		
D	-	1.280		
Е	0.505	0.550		
eA	0.600	BSC		
е	0.100	BSC		
L	0.125	0.200		
Q	0.015	0.060		
S1	0.005	-		
α	0°	15°		
WD	0.2	280		

CERAMIC DUAL INLINE PACKAGE (WINDOWED)




•					
Pkg #	P4				
# Pins	24 (300 Mil)				
Symbol	Min	Max			
Α	-	0.210			
A1	0.015	-			
b	0.014	0.022			
b2	0.045	0.070			
С	0.008	0.014			
D	1.230	1.280			
E1	0.240	0.280			
Е	0.280	0.325			
е	0.100	BSC			
eВ	-	0.430			
L	0.115	0.160			
α	٥°	15°			

PLASTIC DUAL INLINE PACKAGE (NON-WINDOWED)

Pkg #	P8			
# Pins	24 (600 mil)			
Symbol	Min	Max		
Α	0.155	0.200		
A1	0.015	0.060		
b	0.015	0.020		
b2	0.055	0.065		
С	0.009	0.012		
D	1.230	1.260		
E1	0.530	0.550		
Е	0.570	0.625		
е	0.100	BSC		
eВ	0.610	0.685		
L	0.115	0.160		
α	0°	15°		

PLASTIC DUAL INLINE PACKAGE (NON-WINDOWED)

REVISIONS

DOCUMENT NUMBER	EPROM102
DOCUMENT TITLE	PY263 / PY264 8K X 8 PROGRAMMABLE PROM

REV	ISSUE DATE	ORIGINATOR	DESCRIPTION OF CHANGE
OR	Jul-2007	JDB	New Data Sheet
А	Mar-2009	JDB	Added PY263 (300 mil)