512K x 8 (4-MBIT) DYNAMIC RAM WITH EDO PAGE MODE

APRIL 2005

FEATURES

- TTL compatible inputs and outputs
- Refresh Interval: 1024 cycles/16 ms
- Refresh Mode : $\overline{\mathrm{RAS}}-$ Only, $\overline{\mathrm{CAS}}$-before-RAS (CBR), and Hidden
- JEDEC standard pinout
- Single power supply: $3.3 \mathrm{~V} \pm 10 \%$
- Lead-free available

DESCRIPTION

The ISSI IS41LV85120B is $524,288 \times 8$-bit high-performance CMOS Dynamic Random Access Memory. Both products offer accelerated cycle access EDO Page Mode. EDO Page Mode allows 512 random accesses within a single row with access cycle time as short as 10 ns per 8 -bit word. The Byte Write control, of upper and lowerbyte, makes the IS41LV85120B ideal for use in 16 and 32-bit wide data bus systems.

These features make the IS41LV85120B ideally suited for high band-width graphics, digital signal processing, highperformance computing systems, and peripheral applications.
The IS41LV85120B are available in a 28 -pin, 400 -mil SOJ packages.

PIN CONFIGURATION 28-Pin SOJ

FUNCTIONAL BLOCK DIAGRAM

TRUTHTABLE

Function	$\overline{\text { RAS }}$	$\overline{\text { CAS }}$	$\bar{W} \bar{E}$	$\overline{O E}$	Address tr/tc	I/O
Standby	H	H	X	X	X	High-Z
Read: Word	L	L	H	L	ROW/COL	Dout
Read: Lower Byte	L	L	H	L	ROW/COL	Lower Byte, Dout Upper Byte, High-Z
Read: Upper Byte	L	H	H	L	ROW/COL	Lower Byte, High-Z Upper Byte, Dout
Write: Word (Early Write)	L	L	L	X	ROW/COL	Din
Write: Lower Byte (Early Write)	L	L	L	X	ROW/COL	Lower Byte, Din Upper Byte, High-Z
Write: Upper Byte (Early Write)	L	H	L	X	ROW/COL	Lower Byte, High-Z Upper Byte, Din
Read-Write ${ }^{(1,2)}$	L	L	$\mathrm{H} \rightarrow \mathrm{L}$	$\mathrm{L} \rightarrow \mathrm{H}$	ROW/COL	Dout, Din
EDO Page-Mode Read ${ }^{(2)}$ Dout	1st Cycle:	L	$\mathrm{H} \rightarrow \mathrm{L}$	H	L	ROW/COL
	2nd Cycle: Any Cycle:	$\stackrel{L}{L}$	$\begin{aligned} & \mathrm{H} \rightarrow \mathrm{~L} \\ & \mathrm{~L} \rightarrow \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\stackrel{L}{L}$	NA/COL Dout NA/NA Dout
EDO Page-Mode Write ${ }^{(1)}$	1st Cycle: 2nd Cycle:	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \rightarrow \mathrm{~L} \\ & \mathrm{H} \rightarrow \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline X \\ & X \end{aligned}$	ROW/COL Din NA/COL DIN
EDO Page-Mode Dout, Din Read-Write ${ }^{(1,2)}$	1st Cycle:	L	$\mathrm{H} \rightarrow \mathrm{L}$ $\mathrm{H} \rightarrow \mathrm{L}$	$H \rightarrow L$ $H \rightarrow L$	$\mathrm{L} \rightarrow \mathrm{H}$ $\mathrm{L} \rightarrow \mathrm{H}$	ROW/COL NA/COL Dout, Din
Hidden Refresh ${ }^{2}$ Dout	Read	$\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$	L	H	L	ROW/COL
	Dout					ROW/COL
$\overline{\text { RAS-Only Refresh }}$	L	H	X	X	ROW/NA	High-Z
CBR Refresh ${ }^{(3)}$	$\mathrm{H} \rightarrow \mathrm{L}$	L	X	X	X	High-Z

Notes:

1. These WRITE cycles may also be BYTE WRITE cycles (either $\overline{\text { LCAS }}$ or UCAS active).
2. These READ cycles may also be BYTE READ cycles (either LCAS or UCAS active).
3. At least one of the two CAS signals must be active (LCAS or UCAS).

Functional Description

The IS41LV85120B is a CMOS DRAM optimized for highspeed bandwidth, low power applications. During READ or WRITE cycles, each bit is uniquely addressed through the 19 address bits. The first ten address bits (A0-A9) are entered as row address and latter nine bits nine address bits (A0-A8) are entered as column address. The row address is latched by the Row Address Strobe ($\overline{\mathrm{RAS}}$). The column address is latched by the Column Address Strobe ($\overline{\mathrm{CAS}}) . \overline{\mathrm{RAS}}$ is used to latch the first nine bits and $\overline{\mathrm{CAS}}$ is used the latter nine bits.

Memory Cycle

A memory cycle is initiated by bring $\overline{\text { RAS }}$ LOW and it is terminated by returning both RAS and CAS HIGH. To ensures proper device operation and data integrity any memory cycle, once initiated, must not be ended or aborted before the minimum tras time has expired. A new cycle must not be initiated until the minimum precharge time trP, tcP has elapsed.

Read Cycle

A read cycle is initiated by the falling edge of $\overline{\mathrm{CAS}}$ or $\overline{\mathrm{OE}}$, whichever occurs last, while holding WE HIGH. The column address must be held for a minimum time specified by tar. Data Out becomes valid only when trac, taA, tcac and toea are all satisfied. As a result, the access time is dependent on the timing relationships between these parameters.

Write Cycle

A write cycle is initiated by the falling edge of $\overline{C A S}$ and $\overline{\mathrm{WE}}$, whichever occurs last. The input data must be valid at or before the falling edge of $\overline{\mathrm{CAS}}$ or $\overline{\mathrm{WE}}$, whichever occurs last.

Refresh Cycle

To retain data, 1024 refresh cycles are required in each 16 ms period. There are two ways to refresh the memory.

1. By clocking each of the 1024 row addresses (A0 through A9) with $\overline{\text { RAS }}$ at least once every 16 ms . Any read, write, read-modify-write or RAS-only cycle refreshes the addressed row.
2. Using a $\overline{\mathrm{CAS}}$-before- $\overline{\mathrm{RAS}}$ refresh cycle. $\overline{\mathrm{CAS}}$-beforeRAS refresh is activated by the falling edge of RAS, while holding CAS LOW. In CAS-before-RAS refresh cycle, an internal 10-bit counter provides the row addresses and the external address inputs are ignored.
$\overline{\text { CAS-before- }} \overline{\text { RAS }}$ is a refresh-only mode and no data access or device selection is allowed. Thus, the output remains in the High-Z state during the cycle.

Extended Data Out Page Mode

EDO page mode operation permits all 512 columns within a selected row to be randomly accessed at a high data rate.

In EDO page mode read cycle, the data-out is held to the next $\overline{\text { CAS }}$ cycle's falling edge, instead of the rising edge. For this reason, the valid data output time in EDO page mode is extended compared with the fast page mode. In the fast page mode, the valid data output time becomes shorter as the $\overline{\text { CAS }}$ cycle time becomes shorter. Therefore, in EDO page mode, the timing margin in read cycle is larger than that of the fast page mode even if the $\overline{\mathrm{CAS}}$ cycle time becomes shorter.
InEDO page mode, due to the extended data function, the $\overline{\text { CAS }}$ cycle time can be shorter than in the fast page mode if the timing margin is the same.
The EDO page mode allows both read and write operations during one $\overline{\text { RAS }}$ cycle, but the performance is equivalent to that of the fast page mode in that case.

Power-On

After application of the Vod supply, an initial pause of $200 \mu \mathrm{~s}$ is required followed by a minimum of eight initialization cycles (any combination of cycles containing a $\overline{\text { RAS }}$ signal).
During power-on, it is recommended that $\overline{\text { RAS }}$ track with VDD or be held at a valid V_{IH} to avoid current surges.

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Symbol	Parameters	Rating	Unit	
V_{T}	Voltage on Any Pin Relative to GND	3.3 V	-0.5 to 4.6	V
$\mathrm{VDD}_{\mathrm{DD}}$	Supply Voltage	3.3 V	-0.5 to 4.6	V
lout	Output Current	50	mA	
PD	Power Dissipation	1	W	
$\mathrm{~T}_{\mathrm{A}}$	Commercial Operation Temperature	0 to +70	${ }^{\circ} \mathrm{C}$	
TsTG	Storage Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$	

Note:

1. Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED OPERATING CONDITIONS (Voltages are referenced to GND.)

Symbol	Parameter		Min.	Typ.	Max.	Unit
VDD	Supply Voltage	$\mathbf{3 . 3 V}$	3.0	3.3	3.6	V
$\mathrm{~V}_{\text {IH }}$	Input High Voltage	$\mathbf{3 . 3 V}$	2.0	-	$\mathrm{VDD}+0.3$	V
$\mathrm{~V}_{\text {IL }}$	Input Low Voltage	$\mathbf{3 . 3 V}$	-0.3	-	0.8	V
$\mathrm{~T}_{\text {A }}$	Commercial Ambient Temperature		0	-	70	${ }^{\circ} \mathrm{C}$

CAPACITANCE ${ }^{(1,2)}$

Symbol	Parameter	Max.	Unit
CIN1	Input Capacitance: A0-A9	5	pF
CIN2	Input Capacitance: $\overline{\text { RAS, }} \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}, \overline{\mathrm{OE}}$	7	pF
Cıo	Data Input/Output Capacitance: $/$ /O0-I/O7	7	pF

Notes:

1. Tested initially and after any design or process changes that may affect these parameters.
2. Test conditions: $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,

ELECTRICAL CHARACTERISTICS ${ }^{(1)}$

(Recommended Operation Conditions unless otherwise noted.)

Symbol	Parameter	Test Condition	Speed	Min.	Max.	Unit
IIL	Input Leakage Current	Any input $0 \mathrm{~V} \leq \mathrm{VIN}^{\leq} \mathrm{VDD}$ Other inputs not under test $=0 \mathrm{~V}$		-10	10	$\mu \mathrm{A}$
Iı	Output Leakage Current	Output is disabled (Hi-Z) OV \leq Vout $\leq V_{\text {dD }}$		-10	10	$\mu \mathrm{A}$
Vон	Output High Voltage Level	$\mathrm{IOH}=-2 \mathrm{~mA}$		2.4	-	V
Vol	Output Low Voltage Level	$\mathrm{loL}=+2 \mathrm{~mA}$		-	0.4	V
Icc1	Stand-by Current: TTL	$\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}} \geq \mathrm{V}_{1} \quad$ Commercial	3 V	-	2	mA
Icc2	Stand-by Current: CMOS	$\overline{\text { RAS, }}$ CAS $\geq \mathrm{VDD}-0.2 \mathrm{~V}$	3 V	-	2	mA
Icc3	Operating Current: Random Read/Write ${ }^{(2,3,4)}$ Average Power Supply Current	$\overline{\text { RAS }}, \overline{\mathrm{CAS}}$, Address Cycling, trc $=\operatorname{trc}$ (min.)	-60	-	170	mA
Icc4	Operating Current: EDO Page Mode ${ }^{(2,3,4)}$ Average Power Supply Current	$\overline{\text { RAS }}=$ VIL, $\overline{\text { CAS }}$, Cycling tPC = tPC (min.)	-60	-	170	mA
Icc5	Refresh Current: RAS-Only ${ }^{(2,3)}$ Average Power Supply Current	$\overline{\text { RAS }}$ Cycling, $\overline{\mathrm{CAS}} \geq \mathrm{V}_{\mathrm{I}}$ $\operatorname{tRC}=\operatorname{tRC}$ (min.)	-60	-	170	mA
Icc6	Refresh Current: CBR ${ }^{(2,3,5)}$ Average Power Supply Current	$\overline{\text { RAS }}, \overline{\text { CAS }}$ Cycling $\operatorname{tRC}=\operatorname{tRC}$ (min.)	-60	-	170	mA

Notes:

1. An initial pause of 200μ s is required after power-up followed by eight $\overline{\text { RAS }}$ refresh cycles ($\overline{\mathrm{RAS}}-$ Only or CBR) before proper device operation is assured. The eight $\overline{\text { RAS }}$ cycles wake-up should be repeated any time the tREF refresh requirement is exceeded.
2. Dependent on cycle rates.
3. Specified values are obtained with minimum cycle time and the output open.
4. Column-address is changed once each EDO page cycle.
5. Enables on-chip refresh and address counters.

AC CHARACTERISTICS ${ }^{(1,2,3,4,5,5)}$

(Recommended Operating Conditions unless otherwise noted.)

Symbol	Parameter	-60		Units
		Min.	Max.	
trc	Random READ or WRITE Cycle Time	110	-	ns
trac	Access Time from $\overline{\text { RAS }}^{(6,7)}$	60	-	ns
tcac	Access Time from $\overline{\text { CAS }}^{(6,8,15)}$	-	15	ns
tAA	Access Time from Column-Address ${ }^{(6)}$	-	30	ns
tRAS	$\overline{\mathrm{RAS}}$ Pulse Width	60	10K	ns
trP	$\overline{\text { RAS Precharge Time }}$	40	-	ns
tcas	$\overline{\text { CAS }}$ Pulse Width ${ }^{(26)}$	10	10K	ns
tcp	$\overline{\text { CAS Precharge Time }}{ }^{(9,25)}$	10	-	ns
tcSH	$\overline{\text { CAS }}$ Hold Time ${ }^{(21)}$	60	-	ns
tric	$\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ Delay Time ${ }^{(10,20)}$	20	45	ns
task	Row-Address Setup Time	0	-	ns
trah	Row-Address Hold Time	10	-	ns
tasc	Column-Address Setup Time ${ }^{(20)}$	0	-	ns
tcat	Column-Address Hold Time ${ }^{(20)}$	10	-	ns
tAR	Column-Address Hold Time (referenced to $\overline{\mathrm{RAS}}$)	40	-	ns
trad	$\overline{\mathrm{RAS}}$ to Column-Address Delay Time ${ }^{(11)}$	15	30	ns
traL	Column-Address to $\overline{\text { RAS }}$ Lead Time	30	-	ns
tRPC	$\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ Precharge Time	5	-	ns
tRSH	$\overline{\text { RAS }}$ Hold Time ${ }^{(27)}$	15	10K	ns
tclz	$\overline{\text { CAS }}$ to Output in Low-Z ${ }^{(15,29)}$	0	-	ns
tckp	$\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ Precharge Time ${ }^{(21)}$	5	-	ns
tod	Output Disable Time ${ }^{(19,28,29)}$	3	12	ns
toe / toea	Output Enable Time ${ }^{(15,16)}$	-	15	ns
toенс	$\overline{\text { OE }}$ HIGH Hold Time from $\overline{\text { CAS }}$ HIGH	15	-	ns
toep	$\overline{\text { OE HIGH Pulse Width }}$	10	-	ns
toes	$\overline{\text { OE LOW }}$ to $\overline{\mathrm{CAS}}$ HIGH Setup Time	5	-	ns
trcs	Read Command Setup Time ${ }^{(17,20)}$	0	-	ns
tRRH	Read Command Hold Time (referenced to $\overline{\mathrm{RAS}})^{(12)}$	0	-	ns
trCH	Read Command Hold Time (referenced to $\overline{\mathrm{CAS}})^{(12,17,21)}$	0	-	ns
twch	Write Command Hold Time ${ }^{(17,27)}$	10	-	ns
twCR	Write Command Hold Time (referenced to $\overline{\text { RAS }})^{(17)}$	50	-	ns

AC CHARACTERISTICS (Continued) ${ }^{(1,2,3,4,5,6)}$

(Recommended Operating Conditions unless otherwise noted.)

		-60		
Symbol	Parameter	Min.	Max.	Units
twp	Write Command Pulse Width ${ }^{(17)}$	10	-	ns
twPZ	$\overline{\text { WE Pulse Widths to Disable Outputs }}$	10	-	ns
trwL	Write Command to $\overline{\mathrm{RAS}}$ Lead Time ${ }^{(17)}$	15	-	ns
tcw	Write Command to $\overline{\text { CAS }}$ Lead Time ${ }^{(17,21)}$	15	-	ns
twcs	Write Command Setup Time ${ }^{(14,17,20)}$	0	-	ns
tDHR	Data-in Hold Time (referenced to $\overline{\text { RAS }}$) Precharge during WRITE Cycle	40	-	ns
toen	$\overline{\mathrm{OE}}$ Hold Time from $\overline{\mathrm{WE}}$ during READ-MODIFY-WRITE cycle ${ }^{(18)}$	15	-	ns
tDs	Data-In Setup Time ${ }^{(15,22)}$	0	-	ns
tDH	Data-In Hold Time ${ }^{(15,22)}$	15	-	ns
trwc	READ-MODIFY-WRITE Cycle Time	155	-	ns
tRWD	$\overline{\text { RAS }}$ to $\overline{\text { WE }}$ Delay Time during READ-MODIFY-WRITECycle ${ }^{(14)}$	85	-	ns
tcw	$\overline{\mathrm{CAS}}$ to $\overline{\mathrm{WE}}$ Delay Time ${ }^{(14,20)}$	40	-	ns
tawd	Column-Address to $\overline{\text { WE }}$ Delay Time ${ }^{(14)}$	55	-	ns
tPC	EDO Page Mode READ or WRITE Cycle Time ${ }^{(24)}$	40	-	ns
trasp	$\overline{\text { RAS }}$ Pulse Width in EDO Page Mode	60	100K	ns
tcPA	Access Time from $\overline{\text { CAS Precharge }}{ }^{(15)}$	-	35	ns
tPRWC	EDO Page Mode READ-WRITE Cycle Time ${ }^{(24)}$	56	-	ns
tcoh/tDOH	Data Output Hold after $\overline{\mathbf{C A S}}$ LOW	5	-	ns
toFF	Output Buffer Turn-Off Delay from CAS or $\overline{\text { RAS }}{ }^{(13,15,19,29)}$	3	15	ns
twhz	Output Disable Delay from $\overline{\text { WE }}$	3	15	ns
tCLCH	Last $\overline{\text { CAS }}$ going LOW to First $\overline{\text { CAS }}$ returning $\mathrm{HIGH}^{(23)}$	10	-	ns
tCSR	$\overline{\text { CAS }}$ Setup Time (CBR REFRESH) ${ }^{(30,20)}$	5	-	ns
tchr	$\overline{\text { CAS }}$ Hold Time (CBR REFRESH) ${ }^{(30,21)}$	10	-	ns
tord	$\overline{\mathrm{OE}}$ Setup Time prior to $\overline{\mathrm{RAS}}$ during HIDDEN REFRESH Cycle	0	-	ns
treF	Refresh Period (1024 Cycles)	-	16	ms
tT	Transition Time (Rise or Fall) ${ }^{(2,3)}$	3	50	ns

Notes:

1. An initial pause of 200μ s is required after power-up followed by eight $\overline{\text { RAS }}$ refresh cycle ($\overline{\mathrm{RAS}}-\mathrm{Only}$ or CBR) before proper device operation is assured. The eight RAS cycles wake-up should be repeated any time the tref refresh requirement is exceeded.
2. $\mathrm{V}_{\mathrm{IH}}(\mathrm{MIN})$ and $\mathrm{V}_{\mathrm{IL}}(\mathrm{MAX})$ are reference levels for measuring timing of input signals. Transition times, are measured between V_{IH} and V_{IL} (or between VIL and V_{IH}) and assume to be 1 ns for all inputs.
3. In addition to meeting the transition rate specification, all input signals must transit between Vін and VIL (or between VIL and Vін) in a monotonic manner.
4. If $\overline{\mathrm{CAS}}$ and $\overline{\mathrm{RAS}}=\mathrm{V} \boldsymbol{\mathrm { I }}$, data output is High-Z.
5. If $\overline{C A S}=$ VIL, data output may contain data from the last valid READ cycle.
6. Measured with a load equivalent to one TTL gate and 50 pF .
7. Assumes that $\operatorname{tRCD}^{\operatorname{tr} C D}(\mathrm{MAX})$. If trCD is greater than the maximum recommended value shown in this table, trac will increase by the amount that trcD exceeds the value shown.
8. Assumes that $\operatorname{tRCD} \geq \operatorname{trCD}(M A X)$.
9. If $\overline{C A S}$ is LOW at the falling edge of RAS, data out will be maintained from the previous cycle. To initiate a new cycle and clear the data output buffer, $\overline{\text { CAS }}$ and $\overline{\text { RAS }}$ must be pulsed for tcp.
10. Operation with the trcd (MAX) limit ensures that trac (MAX) can be met. trcd (MAX) is specified as a reference point only; if trCD is greater than the specified trCD (MAX) limit, access time is controlled exclusively by tcac.
11. Operation within the trad (MAX) limit ensures that trcd (MAX) can be met. tRad (MAX) is specified as a reference point only; if trad is greater than the specified trad (MAX) limit, access time is controlled exclusively by taA.
12. Either trch or trin must be satisfied for a READ cycle.
13. toff (MAX) defines the time at which the output achieves the open circuit condition; it is not a reference to Vor or Vol.
14. twcs, trwd, tAwD and tcwD are restrictive operating parameters in LATE WRITE and READ-MODIFY-WRITE cycle only. If twcs \geq twcs (MIN), the cycle is an EARLY WRITE cycle and the data output will remain open circuit throughout the entire cycle. If trwd \geq trwD (MIN), tawd \geq tawd (MIN) and tcwd \geq tcwd (MIN), the cycle is a READ-WRITE cycle and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of I/O (at access time and until $\overline{\mathrm{CAS}}$ and $\overline{\mathrm{RAS}}$ or $\overline{\mathrm{OE}}$ go back to V^{\prime}) is indeterminate. $\overline{\mathrm{OE}}$ held HIGH and $\overline{\mathrm{WE}}$ taken LOW after $\overline{\mathrm{CAS}}$ goes LOW result in a LATE WRITE ($\overline{\mathrm{OE}}$-controlled) cycle.
15. Output parameter (I/O) is referenced to corresponding CAS input, I/O0-I/O7 by LCAS and I/O8-I/O15 by UCAS.
16. During a READ cycle, if $\overline{O E}$ is LOW then taken HIGH before $\overline{\mathrm{CAS}}$ goes $\mathrm{HIGH}, \mathrm{I} / \mathrm{O}$ goes open. If $\overline{\mathrm{OE}}$ is tied permanently LOW, a LATE WRITE or READ-MODIFY-WRITE is not possible.
17. Write command is defined as $\overline{\mathrm{WE}}$ going low.
18. LATE WRITE and READ-MODIFY-WRITE cycles must have both toD and toen met ($\overline{\text { OE }}$ HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The I/Os will provide the previously written data if CAS remains LOW and $\overline{\mathrm{OE}}$ is taken back to LOW after toen is met.
19. The I/Os are in open during READ cycles once tod or toff occur.
20. The first χ CAS edge to transition LOW.
21. The last $\chi \overline{\mathrm{CAS}}$ edge to transition HIGH.
22. These parameters are referenced to CAS leading edge in EARLY WRITE cycles and WE leading edge in LATE WRITE or READ-MODIFY-WRITE cycles.
23. Last falling $\chi \overline{\mathrm{CAS}}$ edge to first rising $\chi \overline{\mathrm{CAS}}$ edge.
24. Last rising $\chi \overline{\mathrm{CAS}}$ edge to next cycle's last rising $\chi \overline{\mathrm{CAS}}$ edge.
25. Last rising $\chi \overline{\mathrm{CAS}}$ edge to first falling $\chi \overline{\mathrm{CAS}}$ edge.
26. Each χ CAS must meet minimum pulse width.
27. Last $\chi \overline{\mathrm{CAS}}$ to go LOW.
28. I/Os controlled, regardless UCAS and LCAS.
29. The 3 ns minimum is a parameter guaranteed by design.
30. Enables on-chip refresh and address counters.

Rev. B
04/22/05

AC WAVEFORMS

READCYCLE

Note:

1. toff is referenced from rising edge of $\overline{\mathrm{RAS}}$ or $\overline{\mathrm{CAS}}$, whichever occurs last.

EARLY WRITE CYCLE ($\overline{\mathrm{OE}}=\mathrm{DON}$ 'T CARE)

READ WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE Cycles)

EDO-PAGE-MODE READ CYCLE

Note:

1. tpc can be measured from falling edge of $\overline{\mathrm{CAS}}$ to falling edge of $\overline{\mathrm{CAS}}$, or from rising edge of $\overline{\mathrm{CAS}}$ to rising edge of $\overline{\text { CAS }}$. Both measurements must meet the tpc specifications.

EDO-PAGE-MODE EARLY-WRITE CYCLE

EDO-PAGE-MODE READ-WRITE CYCLE (LATE WRITE and READ-MODIFY WRITE Cycles)

Note:

1. tpC can be measured from falling edge of $\overline{\text { CAS }}$ to falling edge of $\overline{\text { CAS }}$, or from rising edge of $\overline{\text { CAS }}$ to rising edge of $\overline{\text { CAS. Both }}$ measurements must meet the tPC specifications.

EDO-PAGE-MODE READ-EARLY-WRITE CYCLE (Psuedo READ-MODIFY WRITE)

READ CYCLE (With $\overline{\text { WE-Controlled Disable) }}$

$\overline{\text { RAS-ONLY REFRESH CYCLE (} \overline{O E}, \overline{W E}=}$ DON'T CARE)

$\overline{C B R}$ REFRESH CYCLE (Addresses; $\overline{\mathrm{WE}}, \overline{\mathrm{OE}}=\mathrm{DON}$ 'T CARE)

HIDDEN REFRESH CYCLE ($\overline{\mathrm{WE}}=\mathrm{HIGH} ; \overline{\mathrm{OE}}=$ LOW $)^{(1)}$

Notes:

1. A Hidden Refresh may also be performed after a Write Cycle. In this case, $\overline{\mathrm{WE}}=\mathrm{LOW}$ and $\overline{\mathrm{OE}}=\mathrm{HIGH}$.
2. toff is referenced from rising edge of $\overline{\text { RAS }}$ or $\overline{\mathrm{CAS}}$, whichever occurs last.

ORDERING INFORMATION : 3.3V
Commercial Range: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Speed (ns)	Order Part No.	Package
60	IS41LV85120B-60K	400 -mil SOJ
60	IS41LV85120B-60KL	400 -mil SOJ, Lead-free

400-mil Plastic SOJ

Package Code: K

Copyright © 2003 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

Symbol	Millimeters		Inches		Millimeters		Inches		Millimeters		Inches	
	Min	Max										
No. Leads	(N) 40				42				44			
A	3.25	3.75	0.128	0.148	3.25	3.75	0.128	0.148	3.25	3.75	0.128	0.148
A1	0.64	-	0.025	-	0.64	-	0.025	-	0.64	-	0.025	-
A2	2.08	-	0.082	-	2.08	-	0.082	-	2.08	-	0.082	-
B	0.38	0.51	0.015	0.020	0.38	0.51	0.015	0.020	0.38	0.51	0.015	0.020
b	0.66	0.81	0.026	0.032	0.66	0.81	0.026	0.032	0.66	0.81	0.026	0.032
C	0.18	0.33	0.007	0.013	0.18	0.33	0.007	0.013	0.18	0.33	0.007	0.013
D	25.91	26.16	1.020	1.030	27.18	27.43	1.070	1.080	28.45	28.70	1.120	1.130
E	11.05	11.30	0.435	0.445	11.05	11.30	0.435	0.445	11.05	11.30	0.435	0.445
E1	10.03	10.29	0.395	0.405	10.03	10.29	0.395	0.405	10.03	10.29	0.395	0.405
E2	9.40 BSC		0.370 BSC		9.40 BSC		0.370 BSC		9.40 BSC		0.370 BSC	
e	1.27 BSC		0.050 BSC		1.27 BSC		0.050 BSC		1.27 BSC		0.050 BSC	

