1.2 W audio power amplifier with active low standby mode

Features

- Operating range from $\mathrm{V}_{\mathrm{CC}}=2.2 \mathrm{~V}$ to 5.5 V
- 1.2 W output power @ $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, THD $=1 \%$, $\mathrm{F}=1 \mathrm{kHz}$, with 8Ω load
- Ultra-low consumption in standby mode (10 nA)
- 62 dB PSRR @ 217 Hz in grounded mode
- Near-zero pop \& click
- Ultra-low distortion (0.1\%)
- Unity gain stable
- Available in 9-bump flip-chip, miniSO-8 and DFN8 packages

Applications

- Mobile phones (cellular / cordless)
- Laptop / notebook computers
- PDAs
- Portable audio devices

Description

The TS4990 is designed for demanding audio applications such as mobile phones to reduce the number of external components.
This audio power amplifier is capable of delivering 1.2 W of continuous RMS output power into an 8Ω load @ 5 V.

An externally controlled standby mode reduces the supply current to less than 10 nA . It also includes an internal thermal shutdown protection.
The unity-gain stable amplifier can be configured by external gain setting resistors.

TS4990IJT/TS4990EIJT - Flip-chip 9 bumps

TS4990IST - MiniSO-8

TS4990IQT - DFN8

TS4990ID/TS4990IDT - SO-8

Contents

1 Absolute maximum ratings and operating conditions 3
2 Typical application schematics 4
3 Electrical characteristics 5
4 Application information 18
4.1 BTL configuration principle 18
4.2 Gain in a typical application 18
4.3 Low and high frequency response 18
4.4 Power dissipation and efficiency 19
4.5 Decoupling of the circuit 20
4.6 Wake-up time (t_{wu}) 20
4.7 Shutdown time 21
4.8 Pop performance 21
4.9 Application example: differential input, BTL power amplifier 22
5 Package information 24
5.1 Flip-chip package 24
5.2 MiniSO-8 package mechanical data 27
5.3 DFN8 package mechanical data 28
5.4 SO-8 package mechanical data 29
6 Ordering information 30
7 Revision history 30

Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings (AMR)

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage ${ }^{(1)}$	6	V
V_{i}	Input voltage ${ }^{(2)}$	GND to V_{CC}	V
$\mathrm{T}_{\text {oper }}$	Operating free air temperature range	-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{j}	Maximum junction temperature	150	${ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {thja }}$	Thermal resistance junction to ambient Flip-chip ${ }^{(3)}$ MiniSO-8 DFN8	$\begin{aligned} & 250 \\ & 215 \\ & 120 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{P}_{\text {diss }}$	Power dissipation	Internally limited	
ESD	Human body model	2	kV
ESD	Machine model	200	V
	Latch-up immunity	200 mA	
	Lead temperature (soldering, 10sec) Lead temperature (soldering, 10 sec) for Leadfree version	$\begin{aligned} & 250 \\ & 260 \end{aligned}$	${ }^{\circ} \mathrm{C}$

1. All voltage values are measured with respect to the ground pin.
2. The magnitude of the input signal must never exceed $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V} / \mathrm{GND}-0.3 \mathrm{~V}$.
3. The device is protected in case of over temperature by a thermal shutdown active @ $150^{\circ} \mathrm{C}$.

Table 2. Operating conditions

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage	2.2 to 5.5	V
$V_{\text {ICM }}$	Common mode input voltage range	1.2 V to V_{CC}	V
$\mathrm{V}_{\text {STBY }}$	Standby voltage input: Device ON Device OFF	$\begin{aligned} & 1.35 \leq V_{\mathrm{STBY}} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{GND} \leq \mathrm{V}_{\mathrm{STBY}} \leq 0.4 \end{aligned}$	V
R_{L}	Load resistor	≥ 4	Ω
ROUT-GND	Resistor output to GND ($\mathrm{V}_{\text {STBY }}=$ GND)	≥ 1	$\mathrm{M} \Omega$
$\mathrm{T}_{\text {SD }}$	Thermal shutdown temperature	150	${ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {thja }}$	Thermal resistance junction to ambient $\begin{aligned} & \text { Flip-chip }{ }^{(1)} \\ & \text { MiniSO--8 } \\ & \text { DFN8 }{ }^{(2)} \end{aligned}$	$\begin{gathered} 100 \\ 190 \\ 40 \end{gathered}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^0]
2 Typical application schematics

Figure 1. Typical application schematics

Table 3. Component descriptions

Component	Functional description
$\mathrm{R}_{\text {in }}$	Inverting input resistor that sets the closed loop gain in conjunction with $\mathrm{R}_{\text {feed }}$. This resistor also forms a high pass filter with $\mathrm{C}_{\text {in }}\left(\mathrm{F}_{\mathrm{C}}=1 /\left(2 \times \mathrm{Pi} \times \mathrm{R}_{\text {in }} \times \mathrm{C}_{\text {in }}\right)\right.$).
$\mathrm{C}_{\text {in }}$	Input coupling capacitor that blocks the DC voltage at the amplifier input terminal.
$\mathrm{R}_{\text {feed }}$	Feed back resistor that sets the closed loop gain in conjunction with $\mathrm{R}_{\text {in }}$.
C_{s}	Supply bypass capacitor that provides power supply filtering.
C_{b}	Bypass pin capacitor that provides half supply filtering.
$\mathrm{C}_{\text {feed }}$	Low pass filter capacitor allowing to cut the high frequency (low pass filter cut-off frequency $1 /\left(2 \times\right.$ Pi $\left.\left.\times \mathrm{R}_{\text {feed }} \times \mathrm{C}_{\text {feed }}\right)\right)$.
A_{V}	Closed loop gain in BTL configuration $=2 \times\left(\mathrm{R}_{\text {feed }} / \mathrm{R}_{\text {in }}\right)$.
Exposed pad	DFN8 exposed pad is electrically connected to pin 7. See DFN8 package mechanical data on page 28 for more information.

3 Electrical characteristics

Table 4. Electrical characteristics when $\mathrm{V}_{\mathrm{Cc}}=+5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Unit
I_{CC}	Supply current No input signal, no load		3.7	6	mA
$I_{\text {StBy }}$	$\begin{array}{\|l} \hline \text { Standby current }{ }^{(1)} \\ \text { No input signal, } V_{\text {STBY }}=G N D, R_{L}=8 \Omega \end{array}$		10	1000	nA
$\mathrm{V}_{\text {oo }}$	Output offset voltage No input signal, $\mathrm{R}_{\mathrm{L}}=8 \Omega$		1	10	mV
$\mathrm{P}_{\text {out }}$	Output power $\mathrm{THD}=1 \% \max , \mathrm{~F}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega$	0.9	1.2		W
THD + N	Total harmonic distortion + noise $P_{\text {out }}=1 \mathrm{~W}_{\mathrm{rms}}, A_{V}=2,20 \mathrm{~Hz} \leq \mathrm{F} \leq 20 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		0.2		\%
PSRR	Power supply rejection ratio ${ }^{(2)}$ $\begin{aligned} & R_{L}=8 \Omega \quad A_{V}=2, \quad V_{\text {ripple }}=200 \mathrm{mV}_{\text {pp }}, \text { input grounded } \\ & F=217 \mathrm{~Hz} \\ & F=1 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 55 \\ & 55 \end{aligned}$	$\begin{aligned} & 62 \\ & 64 \end{aligned}$		dB
twu	Wake-up time ($\left.\mathrm{C}_{\mathrm{b}}=1 \mu \mathrm{~F}\right)$		90	130	ms
$\mathrm{t}_{\text {StBy }}$	Standby time ($\left.\mathrm{C}_{\mathrm{b}}=1 \mu \mathrm{~F}\right)$		10		$\mu \mathrm{s}$
$\mathrm{V}_{\text {STBYH }}$	Standby voltage level high			1.3	V
$\mathrm{V}_{\text {STBYL }}$	Standby voltage level low			0.4	V
Φ_{M}	Phase margin at unity gain $\mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		65		Degrees
GM	Gain margin $R_{L}=8 \Omega, C_{L}=500 \mathrm{pF}$		15		dB
GBP	Gain bandwidth product $\mathrm{R}_{\mathrm{L}}=8 \Omega$		1.5		MHz

1. Standby mode is activated when $\mathrm{V}_{\text {STBY }}$ is tied to GND.
2. All PSRR data limits are guaranteed by production sampling tests.

Dynamic measurements $-20^{\star} \log \left(\mathrm{rms}\left(\mathrm{V}_{\text {out }}\right) / \mathrm{rms}\left(\mathrm{V}_{\text {ripple }}\right)\right)$. $\mathrm{V}_{\text {ripple }}$ is the sinusoidal signal superimposed upon V_{CC}.

Table 5. Electrical characteristics when $\mathrm{V}_{\mathrm{Cc}}=+3.3 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Unit
I_{CC}	Supply current No input signal, no load		3.3	6	mA
$I_{\text {StBy }}$	Standby current ${ }^{(1)}$ No input signal, $\mathrm{V}_{\mathrm{STBY}}=\mathrm{GND}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		10	1000	nA
$\mathrm{V}_{\text {o }}$	Output offset voltage No input signal, $\mathrm{R}_{\mathrm{L}}=8 \Omega$		1	10	mV
$\mathrm{P}_{\text {out }}$	Output power $\mathrm{THD}=1 \% \max , \mathrm{~F}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega$	375	500		mW
THD + N	Total harmonic distortion + noise $P_{\text {out }}=400 \mathrm{~mW}_{\mathrm{rms}}, A_{V}=2,20 \mathrm{~Hz} \leq \mathrm{F} \leq 20 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		0.1		\%
PSRR	Power supply rejection ratio ${ }^{(2)}$ $\begin{aligned} & R_{L}=8 \Omega \quad A_{V}=2, \quad V_{\text {ripple }}=200 \mathrm{mV}_{\text {pp }} \text {, input grounded } \\ & F=217 \mathrm{~Hz} \\ & F=1 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 55 \\ & 55 \end{aligned}$	$\begin{aligned} & 61 \\ & 63 \end{aligned}$		dB
twu	Wake-up time ($\left.\mathrm{C}_{\mathrm{b}}=1 \mu \mathrm{~F}\right)$		110	140	ms
${ }^{\text {tstby }}$	Standby time ($\left.\mathrm{C}_{\mathrm{b}}=1 \mu \mathrm{~F}\right)$		10		$\mu \mathrm{s}$
$V_{\text {STBYH }}$	Standby voltage level high			1.2	V
$\mathrm{V}_{\text {STBYL }}$	Standby voltage level low			0.4	V
Φ_{M}	Phase margin at unity gain $R_{L}=8 \Omega, C_{L}=500 \mathrm{pF}$		65		Degrees
GM	Gain margin $\mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		15		dB
GBP	Gain bandwidth product $\mathrm{R}_{\mathrm{L}}=8 \Omega$		1.5		MHz

1. Standby mode is activated when $\mathrm{V}_{\mathrm{STBY}}$ is tied to GND.
2. All PSRR data limits are guaranteed by production sampling tests.

Dynamic measurements $-20^{*} \log \left(r m s\left(V_{\text {out }}\right) / r m s\left(V_{\text {ripple }}\right)\right) . V_{\text {ripple }}$ is the sinusoidal signal superimposed upon V_{CC}.

Table 6. Electrical characteristics when $\mathrm{V}_{\mathrm{CC}}=2.6 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Unit
I_{CC}	Supply current No input signal, no load		3.1	6	mA
$\mathrm{I}_{\text {StBy }}$	$\begin{aligned} & \text { Standby current }{ }^{(1)} \\ & \text { No input signal, } V_{\text {STBY }}=G N D, R_{L}=8 \Omega \end{aligned}$		10	1000	nA
$\mathrm{V}_{\text {oo }}$	Output offset voltage No input signal, $R_{L}=8 \Omega$		1	10	mV
$P_{\text {out }}$	Output power $\mathrm{THD}=1 \% \max , \mathrm{~F}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega$	220	300		mW
THD + N	Total harmonic distortion + noise $P_{\text {out }}=200 \mathrm{~mW}_{\text {rms }}, A_{V}=2,20 \mathrm{~Hz} \leq \mathrm{F} \leq 20 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		0.1		\%
PSRR	$\begin{aligned} & \text { Power supply rejection ratio }{ }^{(2)} \\ & R_{L}=8 \Omega \quad A_{V}=2, \quad V_{\text {ripple }}=200 \mathrm{mV}_{\text {pp }} \text {, input grounded } \\ & F=217 \mathrm{~Hz} \\ & \mathrm{~F}=1 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 55 \\ & 55 \end{aligned}$	$\begin{aligned} & 60 \\ & 62 \end{aligned}$		dB
twu	Wake-up time ($\left.\mathrm{C}_{\mathrm{b}}=1 \mu \mathrm{~F}\right)$		125	150	ms
$\mathrm{t}_{\text {StBy }}$	Standby time ($\left.\mathrm{C}_{\mathrm{b}}=1 \mu \mathrm{~F}\right)$		10		$\mu \mathrm{s}$
$\mathrm{V}_{\text {STBYH }}$	Standby voltage level high			1.2	V
$\mathrm{V}_{\text {STBYL }}$	Standby voltage level low			0.4	V
Φ_{M}	Phase margin at unity gain $R_{L}=8 \Omega, C_{L}=500 \mathrm{pF}$		65		Degrees
GM	Gain margin $R_{L}=8 \Omega, C_{L}=500 \mathrm{pF}$		15		dB
GBP	Gain bandwidth product $\mathrm{R}_{\mathrm{L}}=8 \Omega$		1.5		MHz

1. Standby mode is activated when $\mathrm{V}_{\text {STBY }}$ is tied to GND.
2. All PSRR data limits are guaranteed by production sampling tests.

Dynamic measurements $-20^{*} \log \left(\mathrm{rms}\left(\mathrm{V}_{\text {out }}\right) / \mathrm{rms}\left(\mathrm{V}_{\text {ripple }}\right)\right)$. $\mathrm{V}_{\text {ripple }}$ is the sinusoidal signal superimposed upon V_{CC}.

Figure 2. Open loop frequency response

Figure 3. Open loop frequency response

Figure 4. Open loop frequency response

Figure 5. Open loop frequency response

Figure 6. Open loop frequency response

Figure 8. PSRR vs. power supply

Figure 9. PSRR vs. power supply

Figure 10. PSRR vs. power supply

Figure 11. PSRR vs. power supply

Figure 12. PSRR vs. power supply

Figure 13. PSRR vs. power supply

Figure 14. PSRR vs. DC output voltage

Figure 16. PSRR vs. DC output voltage

Figure 18. PSRR vs. DC output voltage

Figure 19. PSRR vs. DC output voltage

Figure 20. PSRR vs. DC output voltage

Figure 21. PSRR vs. DC output voltage

Figure 22. Output power vs. power supply voltage

Figure 23. PSRR vs. DC output voltage

Figure 25. Output power vs. power supply

voltage

Figure 26. Output power vs. power supply voltage

Figure 28. Output power vs. load resistor

Figure 27. Output power vs. load resistor

Figure 29. Output power vs. power supply voltage

Figure 30. Output power vs. load resistor

Figure 31. Power dissipation vs. $\mathbf{P}_{\text {out }}$

Figure 32. Power dissipation vs. $\mathrm{P}_{\text {out }}$

Figure 33. Power derating curves

Figure 34. Clipping voltage vs. power supply voltage and load resistor

Figure 36. Clipping voltage vs. power supply voltage and load resistor

Figure 37. Current consumption vs. power supply voltage

Figure 38. Current consumption vs. standby voltage @ $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

Figure 40. THD + N vs. output power

Figure 41. Current consumption vs. standby voltage @ $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$

Figure 39. Current consumption vs. standby voltage $@ V_{C C}=2.6 \mathrm{~V}$

Figure 42. Current consumption vs. standby voltage @ $\mathrm{V}_{\mathrm{CC}}=2.2 \mathrm{~V}$

Figure 44. THD + N vs. output power

Figure 45. THD + N vs. output power

-

Figure 46. THD + N vs. output power

Figure 48. THD + N vs. output power

Figure 49. THD + N vs. output power

Figure 50. THD + N vs. output power

Figure 52. SNR vs. power supply with unweighted filter (20 Hz to 20 kHz)

Figure 54. THD + N vs. frequency

Figure 51. THD + N vs. frequency

Figure 53. THD + N vs. frequency

Figure 56. Signal to noise ratio vs. power supply with a weighted filter

Figure 58. Signal to noise ratio vs. power supply with a weighted filter

Figure 57. Output noise voltage device ON

Figure 59. Output noise voltage device in Standby

4 Application information

4.1 BTL configuration principle

The TS4990 is a monolithic power amplifier with a BTL output type. BTL (bridge tied load) means that each end of the load is connected to two single-ended output amplifiers. Thus, we have:

$$
\begin{aligned}
& \text { Single-ended output } 1=V_{\text {out1 }}=V_{\text {out }}(V) \\
& \text { Single-ended output } 2=V_{\text {out2 }}=-V_{\text {out }}(V) \\
& \text { and } V_{\text {out } 1}-V_{\text {out } 2}=2 V_{\text {out }}(V)
\end{aligned}
$$

The output power is:

$$
P_{\text {out }}=\frac{\left(2 \mathrm{~V}_{\text {out }_{\text {RMS }}}\right)^{2}}{R_{\mathrm{L}}}
$$

For the same power supply voltage, the output power in BTL configuration is four times higher than the output power in single-ended configuration.

4.2 Gain in a typical application

The typical application schematics are shown in Figure 1 on page 4.
In the flat region (no C_{in} effect), the output voltage of the first stage is (in Volts):

$$
V_{\text {out1 }}=\left(-V_{\text {in }}\right) \frac{R_{\text {feed }}}{R_{\text {in }}}
$$

For the second stage: $\mathrm{V}_{\text {out2 }}=-\mathrm{V}_{\text {out } 1}(\mathrm{~V})$
The differential output voltage is (in Volts):

$$
V_{\text {out } 2}-V_{\text {out } 1}=2 V_{\text {in }} \frac{R_{\text {feed }}}{R_{\text {in }}}
$$

The differential gain named gain $\left(G_{v}\right)$ for more convenience is:

$$
G_{v}=\frac{V_{\text {out } 2}-V_{\text {out } 1}}{V_{\text {in }}}=2 \frac{R_{\text {feed }}}{R_{\text {in }}}
$$

$V_{\text {out2 }}$ is in phase with $V_{\text {in }}$ and $V_{\text {out1 }}$ is phased 180° with $V_{\text {in }}$. This means that the positive terminal of the loudspeaker should be connected to $\mathrm{V}_{\text {out2 }}$ and the negative to $\mathrm{V}_{\text {out1 }}$.

4.3 Low and high frequency response

In the low frequency region, $\mathrm{C}_{\text {in }}$ starts to have an effect. $\mathrm{C}_{\text {in }}$ forms with $\mathrm{R}_{\text {in }}$ a high-pass filter with a - 3 dB cut-off frequency. F_{CL} is in Hz .

$$
\mathrm{F}_{\mathrm{CL}}=\frac{1}{2 \pi \mathrm{R}_{\mathrm{in}} \mathrm{C}_{\mathrm{in}}}
$$

In the high frequency region, you can limit the bandwidth by adding a capacitor $\left(\mathrm{C}_{\text {feed }}\right)$ in parallel with $R_{\text {feed }}$. It forms a low-pass filter with a $-3 d B$ cut-off frequency. $F_{C H}$ is in Hz .

$$
F_{\mathrm{CH}}=\frac{1}{2 \pi R_{\text {feed }} C_{\text {feed }}}
$$

The graph in Figure 60 shows an example of $\mathrm{C}_{\text {in }}$ and $\mathrm{C}_{\text {feed }}$ influence.
Figure 60. Frequency response gain vs. $\mathrm{C}_{\text {in }} \& \mathrm{C}_{\text {feed }}$

4.4 Power dissipation and efficiency

Hypotheses:

- Load voltage and current are sinusoidal ($\mathrm{V}_{\text {out }}$ and $\left.\mathrm{I}_{\text {out }}\right)$.
- Supply voltage is a pure DC source $\left(\mathrm{V}_{\mathrm{CC}}\right)$.

The load can be expressed as:

$$
V_{\text {out }}=V_{\text {PEAK }} \sin \omega t
$$

and

$$
\begin{equation*}
I_{\text {out }}=\frac{V_{\text {out }}}{R_{L}} \tag{A}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{\text {out }}=\frac{V_{\text {PEAK }}{ }^{2}}{2 R_{L}} \tag{W}
\end{equation*}
$$

Therefore, the average current delivered by the supply voltage is:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{CC}_{\mathrm{AVG}}}=2 \frac{\mathrm{~V}_{\mathrm{PEAK}}}{\pi R_{\mathrm{L}}} \tag{A}
\end{equation*}
$$

The power delivered by the supply voltage is:

$$
\begin{equation*}
P_{\text {supply }}=V_{C C} \cdot I_{\mathrm{CC}_{\mathrm{AVG}}} \tag{W}
\end{equation*}
$$

Therefore, the power dissipated by each amplifier is:

$$
\begin{aligned}
& P_{\text {diss }}=P_{\text {supply }}-P_{\text {out }}(W) \\
& P_{\text {diss }}=\frac{2 \sqrt{2} V_{C C}}{\pi \sqrt{R_{L}}} \sqrt{P_{\text {out }}}-P_{\text {out }}
\end{aligned}
$$

and the maximum value is obtained when:

$$
\frac{\delta \mathrm{P}_{\text {diss }}}{\delta \mathrm{P}_{\text {out }}}=0
$$

and its value is:

$$
\begin{equation*}
P_{\text {diss }_{\max }}=\frac{2 V_{\mathrm{CC}}^{2}}{\pi^{2} R_{\mathrm{L}}} \tag{W}
\end{equation*}
$$

Note: \quad This maximum value is only dependent on power supply voltage and load values.
The efficiency is the ratio between the output power and the power supply:

$$
\eta=\frac{P_{\text {out }}}{P_{\text {supply }}}=\frac{\pi V_{\text {PEAK }}}{4 V_{\text {CC }}}
$$

The maximum theoretical value is reached when $\mathrm{V}_{\text {PEAK }}=\mathrm{V}_{\mathrm{CC}}$, so:

$$
\frac{\pi}{4}=78.5 \%
$$

4.5 Decoupling of the circuit

Two capacitors are needed to correctly bypass the TS4990: a power supply bypass capacitor C_{s} and a bias voltage bypass capacitor C_{b}.
C_{s} has particular influence on the $\mathrm{THD}+\mathrm{N}$ in the high frequency region (above 7 kHz) and an indirect influence on power supply disturbances. With a value for C_{s} of $1 \mu \mathrm{~F}$, you can expect THD +N levels similar to those shown in the datasheet.

In the high frequency region, if C_{s} is lower than $1 \mu \mathrm{~F}$, it increases $\mathrm{THD}+\mathrm{N}$ and disturbances on the power supply rail are less filtered.

On the other hand, if C_{s} is higher than $1 \mu \mathrm{~F}$, those disturbances on the power supply rail are more filtered.
C_{b} has an influence on $\mathrm{THD}+\mathrm{N}$ at lower frequencies, but its function is critical to the final result of PSRR (with input grounded and in the lower frequency region).

If C_{b} is lower than $1 \mu \mathrm{~F}, \mathrm{THD}+\mathrm{N}$ increases at lower frequencies and PSRR worsens.
If C_{b} is higher than $1 \mu \mathrm{~F}$, the benefit on $\mathrm{THD}+\mathrm{N}$ at lower frequencies is small, but the benefit to PSRR is substantial.

Note that $\mathrm{C}_{\text {in }}$ has a non-negligible effect on PSRR at lower frequencies. The lower the value of C_{in}, the higher the PSRR.

4.6 Wake-up time (t_{wu})

When the standby is released to put the device $O N$, the bypass capacitor C_{b} is not charged immediately. Because C_{b} is directly linked to the bias of the amplifier, the bias will not work properly until the C_{b} voltage is correct. The time to reach this voltage is called wake-up time or $t_{W U}$ and specified in the electrical characteristics tables with $C_{b}=1 \mu \mathrm{~F}$.

If C_{b} has a value other than $1 \mu F$, refer to the graph in Figure 60 on page 19 to establish the wake-up time.

Figure 61. Typical wake-up time vs. C_{b}

Due to process tolerances, the maximum value of wake-up time can be established by the graph in Figure 62.

Figure 62. Maximum wake-up time vs. C_{b}

Note: \quad The bypass capacitor C_{b} also has a typical tolerance of $+/-20 \%$. To calculate the wake-up time with this tolerance, refer to the graph above (considering for example for $C_{b}=1 \mu F$ in the range of $0.8 \mu F_{\leq 1 \mu} F_{\leq 1.2 \mu F) \text {. }}$

4.7 Shutdown time

When the standby command is set, the time required to put the two output stages in high impedance and the internal circuitry in shutdown mode is a few microseconds.
In shutdown mode, the bypass pin and $\mathrm{V}_{\text {in }}$ pin are short-circuited to ground by internal switches. This allows a quick discharge of C_{b} and $\mathrm{C}_{\text {in }}$ capacitors.

4.8 Pop performance

Pop performance is intimately linked with the size of the input capacitor C_{in} and the bias voltage bypass capacitor C_{b}.

The size of $\mathrm{C}_{\text {in }}$ is dependent on the lower cut-off frequency and PSRR values requested. The size of C_{b} is dependent on THD+N and PSRR values requested at lower frequencies.

Moreover, C_{b} determines the speed with which the amplifier turns ON. In order to reach near zero pop \& click, the equivalent input constant time,

$$
\tau_{\text {in }}=\left(R_{\text {in }}+2 k \Omega\right) \times C_{\text {in }}(s) \text { with } R_{\text {in }} \geq 5 k \Omega
$$

must not reach the $\tau_{\text {in }}$ maximum value as indicated in Figure 63 below.
Figure 63. $\tau_{\text {in }}$ max. versus bypass capacitor

By following the previous rules, the TS4990 can reach near zero pop and click even with high gains such as 20 dB .

Example:

With $\mathrm{R}_{\text {in }}=22 \mathrm{k} \Omega$ and a $20 \mathrm{~Hz},-3 \mathrm{~dB}$ low cut-off frequency, $\mathrm{C}_{\text {in }}=361 \mathrm{nF}$. So, $\mathrm{C}_{\text {in }}=390 \mathrm{nF}$ with standard value which gives a lower cut-off frequency equal to 18.5 Hz . In this case, $\left(R_{\text {in }}+2 k \Omega\right) \times C_{\text {in }}=9.36 \mathrm{~ms}$. By referring to the previous graph, if $\mathrm{C}_{\mathrm{b}}=1 \mu \mathrm{~F}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, we read 20 ms max. This value is twice as high as our current value, thus we can state that pop \& click will be reduced to its lowest value.

Minimizing both $\mathrm{C}_{\text {in }}$ and the gain benefits both the pop phenomena, and the cost and size of the application.

4.9 Application example: differential input, BTL power amplifier

The schematics in Figure 64 show how to configure the TS4990 to work in differential input mode.

The gain of the amplifier is:

$$
G_{\text {VDIFF }}=2 \frac{R_{2}}{R_{1}}
$$

In order to reach the best performance of the differential function, R_{1} and R_{2} should be matched at 1% max.

Figure 64. Differential input amplifier configuration

The input capacitor $\mathrm{C}_{\text {in }}$ can be calculated by the following formula using the -3 dB lower frequency required. (F_{L} is the lower frequency required).

$$
\begin{equation*}
\mathrm{C}_{\mathrm{in}} \approx \frac{1}{2 \pi \mathrm{R}_{1} \mathrm{~F}_{\mathrm{L}}} \tag{F}
\end{equation*}
$$

Note: \quad This formula is true only if:

$$
\begin{equation*}
F_{C B}=\frac{1}{2 \pi\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) \mathrm{C}_{\mathrm{B}}} \tag{Hz}
\end{equation*}
$$

is 5 times lower than F_{L}.

Example bill of materials

The following bill of materials is for the example of a differential amplifier with a gain of 2 and a -3dB lower cut-off frequency of about 80 Hz .

Pin name	Functional description
R_{1}	$20 \mathrm{k} / 1 \%$
R_{2}	$20 \mathrm{k} / 1 \%$
C_{in}	100 nF
$\mathrm{C}_{\mathrm{b}}=\mathrm{C}_{\mathrm{s}}$	$1 \mu \mathrm{~F}$
U 1	TS 4990

5 Package information

In order to meet environmental requirements, STMicroelectronics offers these devices in ECOPACK ${ }^{\circledR}$ packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics trademark. ECOPACK specifications are available at: www.st.com.

5.1 Flip-chip package

Figure 65. Flip-chip silhouette and pin-out (top view)

Figure 66. Marking (top view)

$\triangle 7$ XXX YWW	Symbol for lead-free version	- ST logo - Product and assembly code: XXX A90 from Tours 90S from Shenzhen ■ Three-digit datecode: YWW - E symbol for lead-free only - The dot is for marking pin A1

Figure 67. Package mechanical data for 9-bump flip-chip

Figure 68. Daisy chain mechanical data

The daisy chain sample features two-by-two pin connections. The schematics above illustrate the way pins connect to each other. This sample is used to test continuity on your board. Your PCB needs to be designed the opposite way, so that pins that are unconnected in the daisy chain sample, are connected on your PCB. If you do this, by simply connecting an Ohmmeter between pin A1 and pin A3, the soldering process continuity can be tested.

Figure 69. TS4990 footprint recommendations

Figure 70. Tape \& reel specification (top view)

Device orientation

The devices are oriented in the carrier pocket with pin number A1 adjacent to the sprocket holes.

5.2 MiniSO-8 package mechanical data

5.3 DFN8 package mechanical data

Note: \quad DFN8 exposed pad (E2 x D2) is connected to pin number 7.
For enhanced thermal performance, the exposed pad must be soldered to a copper area on the PCB, acting as a heatsink. This copper area can be electrically connected to pin7 or left floating.

Ref.	Dimensions					
	Millimeters			Mils		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A	0.80	0.90	1.00	31.5	35.4	39.4
A1		0.02	0.05		0.8	2.0
A2		0.70			25.6	
A3		0.20			7.9	
b	0.18	0.23	0.30	7.1	9.1	11.8
D	2.875	3.00	3.125		118.1	
D2	2.23	2.	2.48	87.8	90.7	97.7
E	2.875	3.00	3.125		118.1	
E2	1.49	1.64	1.74	58.7	64.6	68.5
e		0.65			25.6	
L	0.30	0.40	0.50	11.8	15.7	19.7
P						

5.4 SO-8 package mechanical data

6 Ordering information

Table 7. Order codes

Part number	Temperature range	Package	Packing	Marking
$\begin{array}{\|l} \hline \text { TS4990IJT } \\ \text { TS4990EIJT } \end{array}$	$-40^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$	Flip-chip, 9 bumps	Tape \& reel	90
$\begin{array}{\|l\|} \hline \text { TSDC05IJT } \\ \text { TSDC05EIJT } \end{array}$		Flip-chip, 9 bumps	Tape \& reel	DC3
TS4990IST		MiniSO-8	Tape \& reel	K990
TS4990IQT		DFN8	Tape \& reel	K990
TS4990EKIJT		FC + back coating	Tape \& reel	90
TS4990ID/IDT		SO-8	Tube or tape \& reel	TS4990I

1. Lead-free flip-chip part number.
2. Lead free daisy chain part number.

7 Revision history

Date	Revision	Changes
Jul-2002	1	First release.
Sep-2003	2	Update mechanical data.
Oct-2004	3	Order code for back coating on flip-chip.
Apr-2005	4	Typography error on page 1: Mini-SO-8 pin connection.
May-2005	5	New marking for assembly code plant.
Jul-2005	6	Error on Table 4 on page 5. Parameters in wrong column.
Sep-2005	7	Updated mechanical coplanarity data to 50 (see Figure 67 on page 25).
Mar-2006	8	SO-8 package inserted in the datasheet.
21-Jul-2006 60	9	Update of Figure 66 on page 24. Disclaimer update.
11-May-2007	10	Corrected value of PSRR in Table 5 on page 6 from 1 to 61 (typical value). Moved Table 3: Component descriptions to Section 2: Typical application schematics on page 4. Merged daisy chain flip-chip order code table into Table 7: Order codes on page 30.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

STMicroelectronics								
About ST	Products	Applications	Support	Buy	News \& Events	ST Worldwide	Contact Us	Login
					P	ARCH	search the site	D

Part Number Search

Search For Part \#:

TS4990EIKJT
Example: *74*00*

Matching Documents: 1-1 of 1

Search time: 0.074 s

[^0]: 1. This thermal resistance is reached with a $100 \mathrm{~mm}^{2}$ copper heatsink surface.
 2. When mounted on a 4-layer PCB.
