

TS4990

1.2 W audio power amplifier with active low standby mode

Features

- Operating range from $V_{CC} = 2.2 \text{ V to } 5.5 \text{ V}$
- 1.2 W output power @ V_{CC} = 5 V, THD = 1%, F = 1 kHz, with 8Ωload
- Ultra-low consumption in standby mode (10 nA)
- 62 dB PSRR @ 217 Hz in grounded mode
- Near-zero pop & click
- Ultra-low distortion (0.1%)
- Unity gain stable
- Available in 9-bump flip-chip, miniSO-8 and DFN8 packages

Applications

- Mobile phones (cellular / cordless)
- Laptop / notebook computers
- PDAs
- Portable audio devices

Description

The TS4990 is designed for demanding audio applications such as mobile phones to reduce the number of external components.

This audio power amplifier is capable of delivering 1.2 W of continuous RMS output power into an 8Ω load @ 5 V.

An externally controlled standby mode reduces the supply current to less than 10 nA. It also includes an internal thermal shutdown protection.

The unity-gain stable amplifier can be configured by external gain setting resistors.

Contents

1	Abso	Absolute maximum ratings and operating conditions							
2	Туріс	al application schematics	. 4						
3	Electi	electrical characteristics5							
4	Application information								
	4.1	BTL configuration principle	18						
	4.2	Gain in a typical application	18						
	4.3	Low and high frequency response	18						
	4.4	Power dissipation and efficiency	19						
	4.5	Decoupling of the circuit	20						
	4.6	Wake-up time (t _{WU})	20						
	4.7	Shutdown time	21						
	4.8	Pop performance	21						
	4.9	Application example: differential input, BTL power amplifier	22						
5	Packa	age information	24						
	5.1	Flip-chip package	24						
	5.2	MiniSO-8 package mechanical data	27						
	5.3	DFN8 package mechanical data	28						
	5.4	SO-8 package mechanical data	29						
6	Order	ing information	30						
7	Revis	ion history	30						

1 Absolute maximum ratings and operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾	6	V
Vi	Input voltage ⁽²⁾	GND to V_{CC}	V
T _{oper}	Operating free air temperature range	-40 to + 85	°C
T _{stg}	Storage temperature	-65 to +150	°C
Тj	Maximum junction temperature	150	°C
R _{thja}	Thermal resistance junction to ambient Flip-chip ⁽³⁾ MiniSO-8 DFN8	250 215 120	°C/W
P _{diss}	Power dissipation	Internally limited	
ESD	Human body model	2	kV
ESD	Machine model	200	V
	Latch-up immunity	200 mA	
	Lead temperature (soldering, 10sec) Lead temperature (soldering, 10sec) for Lead- free version	250 260	°C

Table 1. Absolute maximum ratings (AMR)

1. All voltage values are measured with respect to the ground pin.

2. The magnitude of the input signal must never exceed V_{CC} + 0.3V / GND - 0.3V.

3. The device is protected in case of over temperature by a thermal shutdown active @ 150°C.

Table 2.Operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	2.2 to 5.5	V
V _{ICM}	Common mode input voltage range	1.2V to V _{CC}	V
V _{STBY}	Standby voltage input: Device ON Device OFF	$\begin{array}{l} 1.35 \leq V_{STBY} \leq V_{CC} \\ \text{GND} \leq V_{STBY} \leq 0.4 \end{array}$	V
RL	Load resistor	≥ 4	Ω
R _{OUT-GND}	Resistor output to GND (V _{STBY} = GND)	≥ 1	MΩ
T _{SD}	Thermal shutdown temperature	150	°C
R _{thja}	Thermal resistance junction to ambient Flip-chip ⁽¹⁾ MiniSO-8 DFN8 ⁽²⁾	100 190 40	°C/W

1. This thermal resistance is reached with a 100mm² copper heatsink surface.

2. When mounted on a 4-layer PCB.

2 Typical application schematics

Table 3.Component descriptions

Component	Functional description
R _{in}	Inverting input resistor that sets the closed loop gain in conjunction with R_{feed} . This resistor also forms a high pass filter with C_{in} ($F_c = 1 / (2 \times Pi \times R_{in} \times C_{in})$).
C _{in}	Input coupling capacitor that blocks the DC voltage at the amplifier input terminal.
R _{feed}	Feed back resistor that sets the closed loop gain in conjunction with R _{in} .
Cs	Supply bypass capacitor that provides power supply filtering.
Cb	Bypass pin capacitor that provides half supply filtering.
C _{feed}	Low pass filter capacitor allowing to cut the high frequency (low pass filter cut-off frequency 1/ (2 x Pi x R_{feed} x C_{feed})).
A _V	Closed loop gain in BTL configuration = 2 x (R_{feed} / R_{in}).
Exposed pad	DFN8 exposed pad is electrically connected to pin 7. See <i>DFN8 package mechanical data on page 28</i> for more information.

3 **Electrical characteristics**

Electrical characteristics when V_{CC} = +5 V, GND = 0 V, T_{amb} = 25°C (unless otherwise specified) Table 4.

Symbol	Parameter	Min.	Тур.	Max.	Unit
I _{CC}	Supply current No input signal, no load		3.7	6	mA
I _{STBY}	Standby current $^{(1)}$ No input signal, V _{STBY} = GND, R _L = 8 Ω		10	1000	nA
V _{oo}	Output offset voltage No input signal, $R_L = 8\Omega$		1	10	mV
Pout	Output power THD = 1% max, F = 1kHz, $R_L = 8\Omega$	0.9	1.2		W
THD + N	Total harmonic distortion + noise $P_{out} = 1W_{rms}, A_V = 2, 20Hz \le F \le 20kHz, R_L = 8\Omega$		0.2		%
PSRR	Power supply rejection ratio ⁽²⁾ $R_L = 8\Omega$, $A_V = 2$, $V_{ripple} = 200mV_{pp}$, input grounded F = 217Hz F = 1kHz	55 55	62 64		dB
t _{WU}	Wake-up time ($C_b = 1\mu F$)		90	130	ms
t _{STBY}	Standby time ($C_b = 1\mu F$)		10		μs
V _{STBYH}	Standby voltage level high			1.3	V
V _{STBYL}	Standby voltage level low			0.4	V
Φ _M	Phase margin at unity gain $R_L = 8\Omega$, $C_L = 500$ pF		65		Degrees
GM	Gain margin $R_L = 8\Omega$, $C_L = 500pF$		15		dB
GBP	Gain bandwidth product $R_L = 8\Omega$		1.5		MHz

1. Standby mode is activated when $V_{\ensuremath{\mathsf{STBY}}}$ is tied to GND.

All PSRR data limits are guaranteed by production sampling tests. Dynamic measurements - 20*log(rms(V_{out})/rms(V_{ripple})). V_{ripple} is the sinusoidal signal superimposed upon V_{CC}.

Symbol	Parameter	Min.	Тур.	Max.	Unit
I _{CC}	Supply current No input signal, no load		3.3	6	mA
I _{STBY}	Standby current ⁽¹⁾ No input signal, V_{STBY} = GND, R_L = 8 Ω		10	1000	nA
V _{oo}	Output offset voltage No input signal, $R_L = 8\Omega$		1	10	mV
Pout	Output power THD = 1% max, F = 1kHz, $R_L = 8\Omega$	375	500		mW
THD + N	Total harmonic distortion + noise $P_{out} = 400 mW_{rms}, A_V = 2, 20Hz \le F \le 20kHz, R_L = 8\Omega$		0.1		%
PSRR	Power supply rejection ratio ⁽²⁾ $R_L = 8\Omega$, $A_V = 2$, $V_{ripple} = 200 mV_{pp}$, input grounded F = 217 Hz F = 1 kHz	55 55	61 63		dB
t _{WU}	Wake-up time (C _b = 1µF)		110	140	ms
t _{STBY}	Standby time ($C_b = 1\mu F$)		10		μs
V _{STBYH}	Standby voltage level high			1.2	V
V _{STBYL}	Standby voltage level low			0.4	V
Φ _M	Phase margin at unity gain $R_L = 8\Omega$, $C_L = 500$ pF		65		Degrees
GM	Gain margin R _L = 8Ω C _L = 500pF		15		dB
GBP	Gain bandwidth product $R_L = 8\Omega$		1.5		MHz

Electrical characteristics when V_{CC} = +3.3 V, GND = 0 V, T_{amb} = 25°C (unless otherwise specified) Table 5.

1. Standby mode is activated when $V_{\mbox{STBY}}$ is tied to GND.

2.

All PSRR data limits are guaranteed by production sampling tests. Dynamic measurements - 20*log(rms(V_{out})/rms(V_{ripple})). V_{ripple} is the sinusoidal signal superimposed upon V_{CC} .

	otherwise specified)						
Symbol	Parameter	Min.	Тур.	Max.	Unit		
I _{CC}	Supply current No input signal, no load		3.1	6	mA		
I _{STBY}	Standby current $^{(1)}$ No input signal, V _{STBY} = GND, R _L = 8 Ω		10	1000	nA		
V _{oo}	Output offset voltage No input signal, $R_L = 8\Omega$		1	10	mV		
Pout	Output power THD = 1% max, F = 1kHz, $R_L = 8\Omega$	220	300		mW		
THD + N	Total harmonic distortion + noise $P_{out} = 200 mW_{rms}$, $A_V = 2$, $20Hz \le F \le 20kHz$, $R_L = 8\Omega$		0.1		%		
PSRR	Power supply rejection ratio ⁽²⁾ $R_L = 8\Omega$, $A_V = 2$, $V_{ripple} = 200mV_{pp}$, input grounded F = 217Hz F = 1kHz	55 55	60 62		dB		
t _{WU}	Wake-up time ($C_b = 1\mu F$)		125	150	ms		
t _{STBY}	Standby time ($C_b = 1\mu F$)		10		μs		
V _{STBYH}	Standby voltage level high			1.2	V		
V _{STBYL}	Standby voltage level low			0.4	V		
Φ_{M}	Phase margin at unity gain $R_L = 8\Omega C_L = 500 pF$		65		Degrees		
GM	Gain margin R _L = 8Ω C _L = 500pF		15		dB		
GBP	Gain bandwidth product $R_L = 8\Omega$		1.5		MHz		

Electrical characteristics when V_{CC} = 2.6V, GND = 0V, T_{amb} = 25°C (unless otherwise specified) Table 6.

1. Standby mode is activated when $V_{\ensuremath{\mathsf{STBY}}}$ is tied to GND.

2.

All PSRR data limits are guaranteed by production sampling tests. Dynamic measurements - 20*log(rms(V_{out})/rms(V_{ripple})). V_{ripple} is the sinusoidal signal superimposed upon V_{CC}.

57

Figure 13. PSRR vs. power supply

57

Figure 17. PSRR vs. DC output voltage

Figure 19. PSRR vs. DC output voltage

Figure 22. Output power vs. power supply voltage

Figure 24. PSRR at F = 217 Hz vs. bypass capacitor

Figure 25. Output power vs. power supply voltage

Figure 21. PSRR vs. DC output voltage

Figure 23. PSRR vs. DC output voltage

Figure 26. Output power vs. power supply voltage

Figure 31. Power dissipation vs. Pout

57

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Vout1 & Vout2 Clipping Voltage Low side (V)

5

Figure 32. Power dissipation vs. Pout Figure 33.

Figure 36. Clipping voltage vs. power supply voltage and load resistor

Figure 37. Current consumption vs. power supply voltage

13/31

Figure 38. Current consumption vs. standby voltage @ $V_{CC} = 5V$

Figure 42. Current consumption vs. standby voltage @ $V_{CC} = 2.2V$

Figure 41. Current consumption vs. standby voltage @ $V_{CC} = 3.3V$

Figure 43. THD + N vs. output power

Figure 45. THD + N vs. output power

Figure 47. THD + N vs. output power

Figure 50. THD + N vs. output power

Vcc=2.2V, Po=150mW

Vcc=5V, Po=1.3W

Frequency (Hz)

1000

10000 20k

57

 $\begin{array}{l} \mathsf{RL}{=}4\Omega \\ \mathsf{Av}{=}2 \\ \mathsf{Cb} = 1\mu\mathsf{F} \\ \mathsf{Bw} < 125\mathsf{kHz} \end{array}$

THD + N (%)

0.1

20

Tamb = 25°C

100

Figure 56. Signal to noise ratio vs. power supply with a weighted filter

Figure 57.

Figure 58. Signal to noise ratio vs. power supply with a weighted filter

Figure 59. Output noise voltage device in Standby

Output noise voltage

device ON

4 Application information

4.1 BTL configuration principle

The TS4990 is a monolithic power amplifier with a BTL output type. BTL (bridge tied load) means that each end of the load is connected to two single-ended output amplifiers. Thus, we have:

Single-ended output $1 = V_{out1} = V_{out}$ (V) Single-ended output $2 = V_{out2} = -V_{out}$ (V) and $V_{out1} - V_{out2} = 2V_{out}$ (V)

The output power is:

$$P_{out} = \frac{\left(2V_{out_{RMS}}\right)^2}{R_L}$$

For the same power supply voltage, the output power in BTL configuration is four times higher than the output power in single-ended configuration.

4.2 Gain in a typical application

The typical application schematics are shown in Figure 1 on page 4.

In the flat region (no C_{in} effect), the output voltage of the first stage is (in Volts):

$$V_{out1} = (-V_{in}) \frac{R_{feed}}{R_{in}}$$

For the second stage: $V_{out2} = -V_{out1}$ (V)

The differential output voltage is (in Volts):

$$V_{out2} - V_{out1} = 2V_{in} \frac{R_{feed}}{R_{in}}$$

The differential gain named gain (G_v) for more convenience is:

$$G_{v} = \frac{V_{out2} - V_{out1}}{V_{in}} = 2\frac{R_{feed}}{R_{in}}$$

 V_{out2} is in phase with V_{in} and V_{out1} is phased 180° with V_{in} . This means that the positive terminal of the loudspeaker should be connected to V_{out2} and the negative to V_{out1} .

4.3 Low and high frequency response

In the low frequency region, C_{in} starts to have an effect. C_{in} forms with R_{in} a high-pass filter with a -3dB cut-off frequency. F_{CL} is in Hz.

$$F_{CL} = \frac{1}{2\pi R_{in}C_{in}}$$

In the high frequency region, you can limit the bandwidth by adding a capacitor (C_{feed}) in parallel with R_{feed} . It forms a low-pass filter with a -3dB cut-off frequency. F_{CH} is in Hz.

$$F_{CH} = \frac{1}{2\pi R_{feed} C_{feed}}$$

The graph in Figure 60 shows an example of C_{in} and C_{feed} influence.

Figure 60. Frequency response gain vs. C_{in} & C_{feed}

4.4 Power dissipation and efficiency

Hypotheses:

- Load voltage and current are sinusoidal (Vout and Iout).
- Supply voltage is a pure DC source (V_{CC}).

The load can be expressed as:

$$V_{out} = V_{PEAK} \sin \omega t$$
 (V)

and

$$I_{out} = \frac{V_{out}}{R_L}$$
 (A)

and

$$\mathsf{P}_{\mathsf{out}} = \frac{\mathsf{V}_{\mathsf{PEAK}}^{2}}{2\mathsf{R}_{\mathsf{L}}} \qquad (\mathsf{W})$$

Therefore, the average current delivered by the supply voltage is:

$$I_{CC_{AVG}} = 2 \frac{V_{PEAK}}{\pi R_{L}} \qquad (A)$$

The power delivered by the supply voltage is:

$$\mathsf{P}_{\mathsf{supply}} = \mathsf{V}_{\mathsf{CC}} \cdot \mathsf{I}_{\mathsf{CC}_{\mathsf{AVG}}} \qquad (\mathsf{W})$$

Therefore, the power dissipated by each amplifier is:

 $P_{diss} = P_{supply} - P_{out} (W)$

$$P_{diss} = \frac{2\sqrt{2}V_{CC}}{\pi\sqrt{R_L}}\sqrt{P_{out}} - P_{out}$$

and the maximum value is obtained when:

$$\frac{\delta P_{diss}}{\delta P_{out}} = 0$$

and its value is:

$$\mathsf{P}_{\mathsf{diss}_{\mathsf{max}}} = \frac{2\mathsf{V}_{\mathsf{CC}}^2}{\pi^2\mathsf{R}_1} \qquad (\mathsf{W})$$

Note:This maximum value is only dependent on power supply voltage and load values.The efficiency is the ratio between the output power and the power supply:

$$\eta = \frac{\mathsf{P}_{\mathsf{out}}}{\mathsf{P}_{\mathsf{supply}}} = \frac{\pi \mathsf{V}_{\mathsf{PEAK}}}{4\mathsf{V}_{\mathsf{CC}}}$$

The maximum theoretical value is reached when $V_{PEAK} = V_{CC}$, so:

 $\frac{\pi}{4} = 78.5\%$

4.5 Decoupling of the circuit

Two capacitors are needed to correctly bypass the TS4990: a power supply bypass capacitor C_s and a bias voltage bypass capacitor C_b .

 C_s has particular influence on the THD+N in the high frequency region (above 7kHz) and an indirect influence on power supply disturbances. With a value for C_s of 1µF, you can expect THD+N levels similar to those shown in the datasheet.

In the high frequency region, if C_s is lower than 1µF, it increases THD+N and disturbances on the power supply rail are less filtered.

On the other hand, if C_s is higher than 1μ F, those disturbances on the power supply rail are more filtered.

C_b has an influence on THD+N at lower frequencies, but its function is critical to the final result of PSRR (with input grounded and in the lower frequency region).

If C_b is lower than 1µF, THD+N increases at lower frequencies and PSRR worsens.

If C_b is higher than 1µF, the benefit on THD+N at lower frequencies is small, but the benefit to PSRR is substantial.

Note that C_{in} has a non-negligible effect on PSRR at lower frequencies. The lower the value of C_{in} , the higher the PSRR.

4.6 Wake-up time (t_{WU})

When the standby is released to put the device ON, the bypass capacitor C_b is not charged immediately. Because C_b is directly linked to the bias of the amplifier, the bias will not work properly until the C_b voltage is correct. The time to reach this voltage is called wake-up time or t_{WU} and specified in the electrical characteristics tables with $C_b = 1\mu F$.

If C_b has a value other than 1µF, refer to the graph in *Figure 60 on page 19* to establish the wake-up time.

Due to process tolerances, the maximum value of wake-up time can be established by the graph in *Figure 62*.

Note: The bypass capacitor C_b also has a typical tolerance of +/-20%. To calculate the wake-up time with this tolerance, refer to the graph above (considering for example for $C_b=1\mu F$ in the range of $0.8\mu F \le 1\mu F \le 1.2\mu F$).

4.7 Shutdown time

When the standby command is set, the time required to put the two output stages in high impedance and the internal circuitry in shutdown mode is a few microseconds.

In shutdown mode, the bypass pin and V_{in} pin are short-circuited to ground by internal switches. This allows a quick discharge of C_b and C_{in} capacitors.

4.8 Pop performance

Pop performance is intimately linked with the size of the input capacitor C_{in} and the bias voltage bypass capacitor C_{b} .

The size of C_{in} is dependent on the lower cut-off frequency and PSRR values requested. The size of C_b is dependent on THD+N and PSRR values requested at lower frequencies.

Moreover, C_b determines the speed with which the amplifier turns ON. In order to reach near zero pop & click, the equivalent input constant time,

 $\tau_{in} = (R_{in} + 2k\Omega) \times C_{in} (s)$ with $R_{in} \ge 5k\Omega$

must not reach the τ_{in} maximum value as indicated in *Figure* 63 below.

By following the previous rules, the TS4990 can reach near zero pop and click even with high gains such as 20 dB.

Example:

With $R_{in} = 22 k\Omega$ and a 20 Hz, -3 dB low cut-off frequency, $C_{in} = 361 nF$. So, $C_{in} = 390 nF$ with standard value which gives a lower cut-off frequency equal to 18.5 Hz. In this case, $(R_{in} + 2k\Omega) \times C_{in} = 9.36ms$. By referring to the previous graph, if $C_b = 1 \mu F$ and $V_{CC} = 5 V$, we read 20 ms max. This value is twice as high as our current value, thus we can state that pop & click will be reduced to its lowest value.

Minimizing both C_{in} and the gain benefits both the pop phenomena, and the cost and size of the application.

4.9 Application example: differential input, BTL power amplifier

The schematics in *Figure 64* show how to configure the TS4990 to work in differential input mode.

The gain of the amplifier is:

$$G_{VDIFF} = 2\frac{R_2}{R_1}$$

In order to reach the best performance of the differential function, R_1 and R_2 should be matched at 1% max.

Figure 64. Differential input amplifier configuration

The input capacitor C_{in} can be calculated by the following formula using the -3dB lower frequency required. (F_L is the lower frequency required).

$$C_{in}\approx \frac{1}{2\pi R_1 F_L} \qquad (F)$$

Note: This formula is true only if:

$$F_{CB} = \frac{1}{2\pi(R_1 + R_2)C_B}$$
 (Hz)

is 5 times lower than F_L .

Example bill of materials

The following bill of materials is for the example of a differential amplifier with a gain of 2 and a -3dB lower cut-off frequency of about 80Hz.

Pin name	Functional description
R ₁	20k / 1%
R ₂	20k / 1%
C _{in}	100nF
C _b =C _s	1µF
U1	TS4990

5 Package information

In order to meet environmental requirements, STMicroelectronics offers these devices in ECOPACK[®] packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics trademark. ECOPACK specifications are available at: <u>www.st.com</u>.

5.1 Flip-chip package

Figure 65. Flip-chip silhouette and pin-out (top view)

Figure 67. Package mechanical data for 9-bump flip-chip

The daisy chain sample features two-by-two pin connections. The schematics above illustrate the way pins connect to each other. This sample is used to test continuity on your board. Your PCB needs to be designed the opposite way, so that pins that are unconnected in the daisy chain sample, are connected on your PCB. If you do this, by simply connecting an Ohmmeter between pin A1 and pin A3, the soldering process continuity can be tested.

57

Figure 69. TS4990 footprint recommendations

Device orientation

The devices are oriented in the carrier pocket with pin number A1 adjacent to the sprocket holes.

5.2 MiniSO-8 package mechanical data

	Dimensions						
Ref.		Millimeters			Inches		
A	Min.	Тур.	Max.	Min.	Тур.	Max	
А			1.1			0.043	
A1	0.05	0.10	0.15	0.002	0.004	0.006	
A2	0.78	0.86	0.94	0.031	0.034	0.037	
b	0.25	0.33	0.40	0.010	0.013	0.016	
с	0.13	0.18	0.23	0.005	0.007	0.009	
D	2.90	3.00	3.10	0.114	0.118	0.122	
Е	4.75	4.90	5.05	0.187	0.193	0.199	
E1	2.90	3.00	3.10	0.114	0.118	0.122	
е		0.65			0.026		
К	0°		6°	0°		6°	
L	0.40	0.55	0.70	0.016	0.022	0.028	
L1			0.10			0.004	
	Ш	c	0,25 mm .010 inch GAGE PLANE BURNE BURNE		L1		
			- 8		4 		

PIN 1 IDENTIFICATION

5.3 DFN8 package mechanical data

Note:

DFN8 exposed pad (E2 x D2) is connected to pin number 7. For enhanced thermal performance, the exposed pad must be soldered to a copper area on the PCB, acting as a heatsink. This copper area can be electrically connected to pin7 or left floating.

			Dimer	nsions		
Ref.		Millimeters		Mils		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А	0.80	0.90	1.00	31.5	35.4	39.4
A1		0.02	0.05		0.8	2.0
A2		0.70			25.6	
A3		0.20			7.9	
b	0.18	0.23	0.30	7.1	9.1	11.8
D	2.875	3.00	3.125		118.1	
D2	2.23	2.	2.48	87.8	90.7	97.7
E	2.875	3.00	3.125		118.1	
E2	1.49	1.64	1.74	58.7	64.6	68.5
е		0.65			25.6	
L	0.30	0.40	0.50	11.8	15.7	19.7

5.4 SO-8 package mechanical data

	Dimensions						
Ref.	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А			1.75			0.069	
A1	0.10		0.25	0.004		0.010	
A2	1.25			0.049			
b	0.28		0.48	0.011		0.019	
С	0.17		0.23	0.007		0.010	
D	4.80	4.90	5.00	0.189	0.193	0.197	
Н	5.80	6.00	6.20	0.228	0.236	0.244	
E1	3.80	3.90	4.00	0.150	0.154	0.157	
е		1.27			0.050		
h	0.25		0.50	0.010		0.020	
L	0.40		1.27	0.016		0.050	
k	1°		8°	1°		8°	
CCC			0.10			0.004	

57

6 Ordering information

Table	7.	Order	codes

Part number	Temperature range	Package	Packing	Marking
TS4990IJT TS4990EIJT ⁽¹⁾	-40°C, +85°C	Flip-chip, 9 bumps	Tape & reel	90
TSDC05IJT TSDC05EIJT ⁽²⁾		Flip-chip, 9 bumps	Tape & reel	DC3
TS4990IST		MiniSO-8	Tape & reel	K990
TS4990IQT		DFN8	Tape & reel	K990
TS4990EKIJT		FC + back coating	Tape & reel	90
TS4990ID/IDT		SO-8	Tube or tape & reel	TS4990I

1. Lead-free flip-chip part number.

2. Lead free daisy chain part number.

7 Revision history

Date	Revision	Changes	
Jul-2002	1	First release.	
Sep-2003	2	Update mechanical data.	
Oct-2004	3	Order code for back coating on flip-chip.	
Apr-2005	4	Typography error on page 1: Mini-SO-8 pin connection.	
May-2005	5	New marking for assembly code plant.	
Jul-2005	6	Error on Table 4 on page 5. Parameters in wrong column.	
Sep-2005	7	Updated mechanical coplanarity data to 50µm (instead of 60µm) (see <i>Figure 67 on page 25</i>).	
Mar-2006	8	SO-8 package inserted in the datasheet.	
21-Jul-2006	9	Update of <i>Figure 66 on page 24</i> . Disclaimer update.	
11-May-2007	10	Corrected value of PSRR in <i>Table 5 on page 6</i> from 1 to 61 (typical value). Moved <i>Table 3: Component descriptions</i> to <i>Section 2: Typical application schematics on page 4</i> . Merged daisy chain flip-chip order code table into <i>Table 7: Order codes on page 30</i> .	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

top

All rights reserved © 2007 STMicroelectronics :: Terms Of Use :: Privacy Policy