User's Manual

μ PD784046 Subseries

16-bit Single-chip Microcontrollers

Hardware

μ ΡD784044	μ ΡD784044(A)
μ ΡD784046	μ PD784044(A1)
μ PD78F4046	μ PD784044(A2)
	μ PD784046(A)
	μ PD784046(A1)
	μ PD784046(A2)

Document No. U11515EJ3V0UD00 (3rd edition) Date Published March 2003 N CP(K) Printed in Japan

 $\ensuremath{\mathbb{C}}$ NEC Electronics Corporation 1996, 2003 Printed in Japan

[MEMO]

① PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

FIP and IEBus are trademarks of NEC Electronics Corporation.

Windows and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

Ethernet is a trademark of Zerox Corporation.

TRON is an abbreviation of The Realtime Operating system Nucleus.

ITRON is an abbreviation of Industrial TRON.

These commodities, technology or software, must be exported in accordance with the export administration regulations of the exporting country. Diversion contrary to the law of that country is prohibited.

- The information in this document is current as of November, 2002. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC Electronics product in your application, please contact the NEC Electronics office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics America, Inc. (U.S.) • Filiale Italiana

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Europe) GmbH Duesseldorf, Germany

Tel: 0211-65 03 01 Fax: 0211-65 03 327

• Sucursal en España Madrid, Spain Tel: 091-504 27 87 Fax: 091-504 28 60

• Succursale Française Vélizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

Filiale Italiana Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

- Branch The Netherlands Eindhoven, The Netherlands Tel: 040-244 58 45 Fax: 040-244 45 80
- Tyskland Filial Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388
- United Kingdom Branch Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Shanghai, Ltd. Shanghai, P.R. China Tel: 021-6841-1138 Fax: 021-6841-1137

NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC Electronics Singapore Pte. Ltd.

Novena Square, Singapore Tel: 6253-8311 Fax: 6250-3583

MAJOR REVISIONS IN THIS EDITION

Page	Contents
Throughout	Completion of development of the following products
	μPD784046, 78F4046, 784046(A), 784046(A1), 784046(A2)
	CHAPTER 1 GENERAL
p. 33	Update of 78K/IV Product Lineup
	CHAPTER 2 PIN FUNCTIONS
p. 54	Addition of description on BWD pin in Table 2-6 I/O Circuit Type of Each Pin and Recommended Processing of Unused Pins
	CHAPTER 14 ASYNCHRONOUS SERIAL INTERFACE/3-WIRE SERIAL I/O
p. 354	Addition of cautions on start bit during UART transmission to 14.5 Cautions
	CHAPTER 18 STANDBY FUNCTION
p. 459	Modification of Figure 18-1 Diagram of Standby Mode Transition
p. 472	Modification of description in 18.6 (5) A/D converter
	CHAPTER 20 PROGRAMMING μ PD78F4046
p. 478	Addition of description on Flashpro III
p. 480	Addition of 20.4 Cautions
p. 518	Addition of CHAPTER 22 ELECTRICAL SPECIFICATIONS (µPD784044, 784046)
p. 524	Addition of CHAPTER 23 ELECTRICAL SPECIFICATIONS (µPD784044(A), 784046(A))
p. 530	Addition of CHAPTER 24 ELECTRICAL SPECIFICATIONS (µPD784044(A1), 784046(A1))
p. 536	Addition of CHAPTER 25 ELECTRICAL SPECIFICATIONS (µPD784044(A2), 784046(A2))
p. 542	Addition of CHAPTER 26 ELECTRICAL SPECIFICATIONS (µPD78F4046)
p. 548	Addition of CHAPTER 27 TIMING CHARTS
p. 553	Addition of CHAPTER 28 PACKAGE DRAWING
p. 554	Addition of CHAPTER 29 RECOMMENDED SOLDERING CONDITIONS
	APPENDIX A DEVELOPMENT TOOLS
p. 557	Addition of description on host machines and OSs
pp. 560, 561	Addition of SP78K4 to A.1 Language Processing Software, modification of description in Remark
p. 561	Addition of description on Flashpro III in Remark in A.2 Flash Memory Writing Tools
pp. 562, 563	Addition and modification of description in A.3.1 Hardware
p. 564	Modification of description in Remark in A.3.2 Software Addition of A.4 Cautions on Designing Target System
p. 565	
p. 569	Modification of description in APPENDIX B EMBEDDED SOFTWARE

The mark \star shows major revised points.

INTRODUCTION

Intended Reader

This manual is intended for user engineers who understand the functions of the μ PD784046 subseries and wish to design application systems using this subseries.

The relevant products are the following μ PD784046 subseries products.

- Standard products : μPD784044, 784046, 78F4046
- Special products : μPD784044(A), 784044(A1), 784044(A2), 784046(A), 784046(A1), 784046(A2)

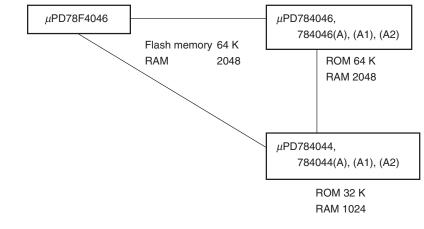
Purpose

The purpose of this manual is to give users an understanding of the various hardware functions of the μ PD784046 subseries.

Organization

The μ PD784046 subseries manual is divided into two volumes – the hardware volume (this manual) and the instruction volume.

Hardware volume	Instruction volume
Pin functions	CPU functions
Internal block functions	Addressing
Interrupts	Instruction set
Other on-chip peripheral functions	
Electrical specifications	
Certain operating precautions apply to	these products.


These precautions are stated at the relevant points in the text of each chapter, and are also summarized at the end of each chapter. Be sure to read them.

How to Read This Manual

Readers are required a general knowledge of electrical and logic circuits and microcomputers.

To readers using this manual for other than μ PD784046:

 \rightarrow This manual covers the functions of the μ PD784046 subseries. The relationship between these products is shown below.

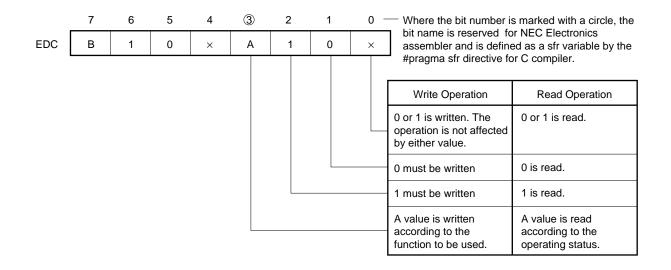
On-Chip Flash Memory Product On-Chip

• If there are no particular differences in terms of function:

The μ PD784046 is treated as the representative model. Therefore, when using this manual for other products of the μ PD784046 subseries, μ PD784046 should be read as each product name as appropriate. For the differences between products, refer to **1.8 Differences between** μ PD784046, **and 78F4046**, **1.9 Differences between** μ PD784046 and μ PD784046(A), and **1.10 Differences between** μ PD784046(A), 784046(A), and 784046(A).

• If there are functional differences:

A separate description is given, mentioning the product name.


The application examples presented in this manual are for the "standard" quality models in general-purpose electronic systems. If you wish to use the applications presented in this manual for electronic systems that require "special" quality models, thoroughly study the parts and circuits to be actually used, and their quality grade.

- To check the details of a register when the register name is known:
 - → Use APPENDIX C REGISTER INDEX.
- If the device operates strangely after debugging:
 - \rightarrow Cautions are summarized at the end of each chapter, so refer to the **Cautions** for the relevant function.
- For a general understanding of the functions
 - \rightarrow Read in accordance with the **CONTENTS**.
- For the details of the instruction functions:
 - → Refer to the separate 78K/IV Series User's Manual Instruction (U10905E).
- To find out about electrical specifications
 - $\rightarrow~$ Refer to the each chapter of electrical specifications.
- To find out about application examples of each function,
 - \rightarrow Refer to the **Application Note** separately available.

Legend

Significance in data notation :	High-order digit on left, low-order digit on right
Active-low notation :	$\overline{\times \times \times}$ (Line above pin or signal name)
Note :	Explanation of item marked with Note in the text
Caution :	Item to be especially noted
Remark :	Supplementary information
Numeric notations :	Binary $\times \times \times \times B$ or $\times \times \times \times$
	Decimal ××××
	Hexadecimal ××××H

Register Notation

Code combinations marked "Setting prohibited" in the register notations in the text must not be written.

Easily confused characters : 0 (Zero), O (Letter O) : 1 (One), I (Lower-case letter L), I (Upper-case letter I)

Related Documents The related documents in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents Related to Devices

Document Name	Document No.
μ PD784046 Subseries User's Manual - Hardware	This manual
78K/IV Series Application Note - Software Fundamentals	U10095E
78K/IV Series User's Manual - Instructions	U10905E

Documents Related to Development Tools (User's Manuals)

Document Name		Document No.
RA78K4 Assembler Package	Operation	U15254E
	Language	U15255E
	Structured Assembler Preprocessor	U11743E
CC78K4 C Compiler	Operation	U15557E
	Language	U15556E
SM78K Series Ver. 2.30 or Later System Simulator	Operation (Windows [™] Based)	U15373E
	External Part User Open Interface Specification	U15802E
ID78K Series Integrated Debugger Ver. 2.30 or Later	Operation (Windows Based)	U15185E
RX78K4 Real-time OS	Fundamentals	U10603E
	Installation	U10604E
Project Manager Ver 3.12 or Later (Windows Based)		U14610E

Documents Related to Development Hardware Tools (User's Manuals)

Document Name	Document No.
IE-78K4-NS In-Circuit Emulator	U13356E
IE-784046-NS-EM1 Emulation Board	U13744E
IE-784000-R In-Circuit Emulator	U12903E
IE-784046-R-EM1 Emulation Board	U11677E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

Documents Related to Flash Memory Writing (User's Manuals)

Document Name	Document No.
PG-FP3 Flash Memory Programmer User's Manual	U13502E

Other Related Documents

Document Name	Document No.
SEMICONDUCTOR SELECTION GUIDE - Products & Packages -	X13769X
Semiconductor Device Mount Manual	Note
Quality Grades on NEC Semiconductor Devices	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E

Note See the following website.

Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

CONTENTS

CHAPTER	1 GENERAL	. 32
1.1	Features	. 34
1.2	Ordering Information	. 35
1.3	Quality Grades	. 35
1.4	Pin Configuration (Top View)	. 36
1.5	System Configuration Example (AC Servo Motor Control)	. 38
1.6	Block Diagram	. 39
1.7	List of Functions	. 40
1.8	Differences between μ PD784044, 784046, and 78F4046	. 41
1.9	Differences between μ PD784046 and μ PD784046(A)	. 41
1.10	Differences between μ PD784046(A), 784046(A1), and 784046(A2)	. 41
CHAPTER	2 PIN FUNCTIONS	. 42
2.1	List of Pin Functions	. 42
2.2	Description of Pin Functions	. 46
2.3	I/O Circuits of Pins and Processing of Unused Pins	. 53
CHAPTER	3 CPU ARCHITECTURE	. 56
3.1	Memory Space	. 56
3.2	Internal ROM Area	
3.3	Base Area	. 60
	3.3.1 Vector table area	. 61
	3.3.2 CALLT instruction table area	. 62
	3.3.3 CALLF instruction entry area	. 62
3.4	Internal Data Area	
	3.4.1 Internal RAM area	. 63
	3.4.2 Special function register (SFR) area	. 66
	3.4.3 External SFR area	. 66
3.5	External Memory Space	. 66
3.6	Memory Mapping of µPD78F4046	. 67
3.7	Control Registers	. 68
	3.7.1 Program counter (PC)	
	3.7.2 Program status word (PSW)	. 68
	3.7.3 Use of RSS bit	
	3.7.4 Stack pointer (SP)	. 73
3.8	General Registers	. 77
	3.8.1 Configuration	
	3.8.2 Functions	. 79
3.9	Special Function Registers (SFRs)	. 82
3.10	Cautions	. 88

4.1	Confie	guration and Function	89
4.2		ol Registers	91
	4.2.1	Standby control register (STBC)	91
	4.2.2	Oscillation stabilization time specification register (OSTS)	92
4.3		Generator Operation	93
	4.3.1	Clock oscillator	93
	4.3.2	Frequency divider	93
4.4	Cautio	ons	94
	4.4.1	When an external clock is input	94
	4.4.2	When crystal/ceramic oscillation is used	95
CHAPTEI	R 5 POF	RT FUNCTIONS	98
5.1	Digita	I Input/Output Port	98
5.2	-	· ·	100
	5.2.1	Hardware configuration	100
	5.2.2	Input/output mode/control mode setting	10
	5.2.3	Operating status	102
	5.2.4	Internal pull-up resistors	104
5.3	Port 1		106
	5.3.1	Hardware configuration	10
	5.3.2	Setting I/O mode/control mode	108
	5.3.3	Operating status	109
5.4	Port 2		112
	5.4.1	Hardware configuration	11:
	5.4.2	Setting I/O mode/control mode	115
	5.4.3	Operating status	116
5.5	Port 3		119
	5.5.1	Hardware configuration	120
	5.5.2	Input/output mode/control mode setting	122
	5.5.3	Operating status	124
5.6	Port 4	4	127
	5.6.1	Hardware Configuration	12
	5.6.2	Input/output mode/control mode setting	128
	5.6.3	Operating status	129
	5.6.4	Internal pull-up resistors	13
5.7	Port \$	5	133
	5.7.1	Hardware configuration	133
	5.7.2	Input/output mode/control mode setting	134
	5.7.3	Operating status	135
	5.7.4	Internal pull-up resistors	137
5.8		6	139
	5.8.1	Hardware configuration	139
	5.8.2	Setting of I/O mode/control mode	140
	5.8.3	Operating status	141
	5.8.4	Internal pull-up resistors	143

5	.9	Port 7		145
		5.9.1	Hardware configuration	145
		5.9.2	Notes	145
5.	.10	Port 8		146
		5.10.1	Hardware configuration	146
		5.10.2	Cautions	146
5	.11	Port 9		147
		5.11.1	Hardware configuration	148
		5.11.2	Setting of I/O mode/control mode	150
		5.11.3	Operating status	151
		5.11.4	Internal pull-up resistor	153
5	.12	Port O	utput Data Check Function	155
5			ns	158
CHAP	TER	6 REA	L-TIME OUTPUT FUNCTION	160
6	.1	Config	uration and Function	160
6	.2	Real-T	ime Output Port Control Register (RTPC)	161
6			ion	162
6		•	le of Use	163
6	.5	Cautio	ns	165
CHAP ⁻	TER	7 OUT	LINE OF TIMER/COUNTER	166
CHAP ⁻	TER	8 TIME	R 0	170
8	.1	Functi	on	170
8	.2	Config	uration	171
8	.3	Timer	0 Control Register	174
8	.4	Operat	ion of Timer Register 0 (TM0)	177
		8.4.1	Basic operation	177
		8.4.2	Clear operation	179
8	.5	Operat	ion of Capture/Compare Register	180
		8.5.1	Compare operation	180
		8.5.2	Capture operation	182
8	.6	Basic	Operation of Output Control Circuit	184
		8.6.1	Basic operation	186
		8.6.2	Toggle output	186
		8.6.3	Set/reset output	187
8	7	Examn	les of Use	188
		LAUNP		
		8.7.1	Operation as interval timer	188
			Operation as interval timer Pulse width measurement operation	188 191
-		8.7.1 8.7.2	-	
-		8.7.1 8.7.2	Pulse width measurement operation	191
8	.8	8.7.1 8.7.2 Cautio	Pulse width measurement operation	191
8	.8	8.7.1 8.7.2 Cautio	Pulse width measurement operation ns	191 194
8 CHAP	3.8 TER 9	8.7.1 8.7.2 Cautio 9 TIME	Pulse width measurement operation ns	191 194

	9.3	Timer	1 Control Register	200
	9.4	Opera	tion of Timer Register 1 (TM1)	203
		9.4.1	Basic operation	203
		9.4.2	Clear Operation	205
	9.5	Opera	tion of Compare Register	207
	9.6	Basic	Operation of Output Control Circuit	210
		9.6.1	Basic operation	211
		9.6.2	Toggle output	211
		9.6.3	Set/reset output	212
	9.7	Exam	ples of Use	213
		9.7.1	Operation as interval timer (1)	213
		9.7.2	Operation as interval timer (2)	216
	9.8	Cautio	ons	218
СНА	APTER	10 TIN	IERS/COUNTERS 2 AND 3	221
	10.1	Functi	ion	222
	10.2	Config	guration	223
	10.3	Timer/	Counter 2 Control Register	226
	10.4	Opera	tion of Timer Register 2 (TM2)	230
		10.4.1	Basic operation	230
		10.4.2	Clear operation	232
	10.5	Exterr	nal Event Counter Function	234
	10.6	Opera	tion of Compare Register	236
	10.7	Basic	Operation of Output Control Circuit	239
		10.7.1	Basic operation	239
		10.7.2	Toggle output	239
		10.7.3	PWM output	241
		10.7.4	PPG output	246
	10.8	Exam	ples of Use	252
		10.8.1	Operation as interval timer (1)	252
		10.8.2	Operation as Interval Timer (2)	255
		10.8.3	Operation as PWM output	258
		10.8.4	Operation as PPG output	262
		10.8.5	Operation as external event counter	267
	10.9	Cautio	ons	269
СНА	APTER	11 TIN	/IER 4	271
	11.1	Functi	ion	271
	11.2	Config	guration	271
	11.3		4 Control Register	274
	11.4	Opera	tion of Timer Register 4 (TM4)	276
		11.4.1	Basic operation	276
		11.4.2	Clear operation	278
	11.5	Opera	tion of Compare Register	280
	11.6	Exam	ple of Use	282
		11.6.1	Operation as interval timer (1)	282

	11.6.2 Operation as interval timer (2)	285
11.7	Cautions	287
CHAPTER	12 WATCHDOG TIMER FUNCTION	289
12.1	Configuration	289
12.2	Watchdog Timer Mode Register (WDM)	290
12.3		292
	12.3.1 Count operation	292
	12.3.2 Interrupt priorities	292
12.4	Cautions	293
12.7	12.4.1 General cautions on use of watchdog timer	293
	12.4.2 Cautions on μ PD784046 subseries watchdog timer	
	12.4.2 Cautions on μ D704040 subseries watchdog timer	290
	13 A/D CONVERTER	294
CHAFTEN		234
13.1	Configuration	294
13.1	A/D Converter Mode Register (ADM)	294
13.2	A/D Conversion Result Registers (ADR) through ADCR7)	290 301
13.3		303
13.4	•	
		303
	13.4.2 Select mode	307
	13.4.3 Scan mode	309
	13.4.4 A/D Conversion Operation Start by Software	311
10 5	13.4.5 A/D Conversion Operation Start by Hardware	313
13.5		
13.6	Cautions	316
CHAPTER	14 ASYNCHRONOUS SERIAL INTERFACE/3-WIRE SERIAL I/O	318
	Outlinking holes on Assessment Outlinking and Made and	
14.1	Switching between Asynchronous Serial Interface Mode and	
		319
14.2	Asynchronous Serial Interface Mode	320
	14.2.1 Configuration in asynchronous serial interface mode	320
	14.2.2 Asynchronous serial interface control registers	323
	14.2.3 Data format	327
	14.2.4 Parity types and operations	328
	14.2.5 Transmission	329
	14.2.6 Reception	330
	14.2.7 Receive errors	331
	14.2.8 Transmitting/receiving data with macro service	333
14.3	3-wire Serial I/O Mode	335
	14.3.1 Configuration in 3-Wire Serial I/O Mode	335
	14.3.2 Clocked serial interface mode registers (CSIM1, CSIM2)	338
	14.3.3 Basic operation timing	339
	14.3.4 Operation when transmission only is enabled	341
	14.3.5 Operation when reception only is enabled	342
	14.3.6 Operation when transmission/reception is enabled	343
	14.3.7 Corrective action in case of slippage of serial clock and shift operations	343

14.4	Baud	Rate Generator	344
	14.4.1	Baud rate generator configuration	344
	14.4.2	Baud Rate Generator Control Register	346
	14.4.3	Baud Rate Generator Operation	348
	14.4.4	Baud Rate Setting in Asynchronous Serial Interface Mode	350
14.5	Cautio	ons	353
CHAPTER	15 ED	GE DETECTION FUNCTION	359
15.1	Edge	Detection Function Control Registers	359
	15.1.1	External interrupt mode registers (INTM0, INTM1)	359
	15.1.2	Interrupt valid edge flag registers (IEF1, IEF2)	362
	15.1.3	Noise protection control register (NPC)	364
15.2	Edge	Detection for Pin P20	365
15.3	Pin Ec	dge Detection for Pins P21 to P27	366
15.4	Cautio	ons	367
CHAPTER	16 INT	TERRUPT FUNCTIONS	368
16.1	Interru	upt Request Sources	369
	16.1.1	Software interrupts	
	16.1.2	Operand error interrupts	
	16.1.3	Non-maskable interrupts	
	16.1.4	Maskable interrupts	
16.2	-	upt Processing Modes	
	16.2.1	Vectored interrupt processing	
	16.2.2	Macro service	
	16.2.3	Context switching	
16.3	Interru	upt Processing Control Registers	
	16.3.1	Interrupt control registers	
	16.3.2	Interrupt mask registers (MK0, MK1)	
	16.3.3	In-service priority register (ISPR)	
	16.3.4	Interrupt mode control register (IMC)	
	16.3.5	Watchdog timer mode register (WDM)	
	16.3.6	Program status word (PSW)	
16.4	Softwa	are Interrupt Acknowledgment Operations	
	16.4.1	BRK instruction software interrupt acknowledgment operation	
	16.4.2	BRKCS instruction software interrupt (software context switching)	
		acknowledgment operation	387
16.5	Opera	nd Error Interrupt Acknowledgment Operation	
16.6	-	laskable Interrupt Acknowledgment Operation	
16.7		able Interrupt Acknowledgment Operation	
	16.7.1	Vectored interrupt	
	16.7.2	Context switching	
	16.7.3	Maskable interrupt priority levels	
16.8	Macro	Service Function	
	16.8.1	Outline of macro service function	
	16.8.2	Types of macro service	403

	16.8.3 Basic operation of macro service (except CPU monitor modes 0 and 1)	407
	16.8.4 Operation on completion of macro servicing (except CPU monitor modes 0 and 1)	408
	16.8.5 Macro service control register	409
	16.8.6 Macro service mode	411
	16.8.7 Operation of macro service	411
16.9	When Interrupt Request and Macro Service Are Temporarily Held Pending	423
16.10	Instructions Whose Execution Is Temporarily Suspended	
	by an Interrupt or Macro Service	425
16.11	Interrupt and Macro Service Operation Timing	425
	16.11.1 Interrupt acceptance processing time	426
	16.11.2 Processing time of macro service	427
	Restoring Interrupt Function To Initial State	428
16.13	Cautions	429
СНАРТЕР	17 LOCAL BUS INTERFACE FUNCTION	431
		401
17.1	Memory Extension Function	431
	17.1.1 Memory extension mode register (MM)	431
	17.1.2 Memory map with external memory extension	433
	17.1.3 Basic Operation of Local Bus Interface	437
17.2	Wait Function	440
	17.2.1 Wait function control registers	440
	17.2.2 Address waits	446
	17.2.3 Access waits	449
17.3	Bus Sizing Function	456
	17.3.1 Bus width specification register (BW)	456
17.4	Cautions	458
CHAPTER	18 STANDBY FUNCTION	459
18.1	Configuration and Function	459
18.2	Control Registers	461
	18.2.1 Standby control register (STBC)	461
	18.2.2 Oscillation stabilization time specification register (OSTS)	462
18.3	HALT Mode	464
	18.3.1 HALT mode setting and operating states	464
	18.3.2 HALT mode release	464
18.4	STOP Mode	467
	18.4.1 STOP mode setting and operating states	467
	18.4.2 STOP mode release	468
18.5	IDLE Mode	469
	18.5.1 IDLE mode setting and operating states	469
	18.5.2 IDLE Mode Release	470
18.6	Check Items When STOP Mode/IDLE Mode Is Used	471
18.7	Cautions	473

	CHAPTER	19 RESET FUNCTION	474
	19.1	Reset Function	474
	19.2	Caution	
	CHAPTER	20 PROGRAMMING μ PD78F4046	478
	20.1	Selecting Communication Mode	478
	20.2	Function of Flash Memory Programming	479
	20.3	Connecting Flashpro II/Flashpro III	479
*	20.4	Cautions	480
	CHAPTER	21 INSTRUCTION OPERATIONS	482
	21.1	Legend	482
	21.2	List of Operations	486
	21.3	Instructions Listed by Type of Addressing	512
*	CHAPTER	22 ELECTRICAL SPECIFICATIONS (μPD784044, 784046)	518
*	CHAPTER	23 ELECTRICAL SPECIFICATIONS (μPD784044(A), 784046(A))	524
*	CHAPTER	24 ELECTRICAL SPECIFICATIONS (μPD784044(A1), 784046(A1))	530
*	CHAPTER	25 ELECTRICAL SPECIFICATIONS (μPD784044(A2), 784046(A2)	536
*	CHAPTER	26 ELECTRICAL SPECIFICATIONS (µPD78F4046)	542
*	CHAPTER	27 TIMING CHARTS	548
*	CHAPTER	28 PACKAGE DRAWING	553
*	CHAPTER	29 RECOMMENDED SOLDERING CONDITIONS	554
	CHAPTER	30 CAUTIONS ON USING DEVELOPMENT TOOLS	556
	APPENDI	X A DEVELOPMENT TOOLS	557
	A.1	Language Processing Software	560
	A.2	Flash Memory Writing Tools	561
	A.3	Debugging Tools	562
		A.3.1 Hardware	562
		A.3.2 Software	564
*	A.4	Cautions on Designing Target System	565
	A.5	Deminsions of Conversion Socket (EV-9200GC-80)	
		and Recommended Board Mounting Pattern	567

APPENDIX B	EMBEDDED SOFTWARE	569
APPENDIX C	REGISTER INDEX	570
APPENDIX D	REVISION HISTORY	574

LIST OF FIGURES (1/8)

Figure No.	Title	Page
2-1	I/O Circuits of Pins	
3-1	μPD784044 Memory Map	
3-2	μPD784046 Memory Map	
3-3	Internal RAM Memory Map	
3-4	Format of Internal Memory Size Select Register (IMS)	
3-5	Format of Program Counter (PC)	
3-6	Format of Program Status Word (PSW)	
3-7	Format of Stack Pointer (SP)	
3-8	Data Saved to Stack Area	74
3-9	Data Restored from Stack Area	
3-10	Format of General-Purpose Register	
3-11	General-Purpose Register Addresses	
4-1	Block Diagram of Clock Generator	
4-2	Clock Oscillator External Circuitry	
4-3	Standby Control Register (STBC) Format	
4-4	Format of Oscillation Stabilization Time Specification Register (OSTS)	
4-5	Signal Extraction with External Clock Input	
4-6	Cautions on Resonator Connection	
4-7	Incorrect Example of Resonator Connection	
5-1	Port Configuration	
5-2	Block Diagram of Port 0	
5-3	Format of Port 0 Mode Register (PM0)	
5-4	Format of Real-Time Output Port Control Register (RTPC)	
5-5	Port Specified as Output Port	
5-6	Port Specified as Input Port	
5-7	Pull-Up Resistor Option Register L (PUOL) Format	
5-8	Pull-Up Resistor Specification (Port 0)	
5-9	Block Diagram of Port 1	
5-10	Format of Port 1 Mode Register (PM1)	
5-11	Format of Port 1 Mode Control Register (PMC1)	
5-12	Port Specified as Output Port	109
5-13	Port Specified as Input Port	
5-14	Control Specification	111
5-15	Block Diagram of P20 (Port 2)	113
5-16	Block Diagram of P21 to P24 (Port 2)	114
5-17	Block Diagram of P25 to P27 (Port 2)	114
5-18	Format of Port 2 Mode Register (PM2)	115
5-19	Format of Port 2 Mode Control Register (PMC2)	
5-20	Port in Output Port Mode	116
5-21	Port in Input Port Mode	117

LIST OF FIGURES (2/8)

Figure No.	Title	Page
5-22	Port in Control Mode	118
5-23	Block Diagram of P30, P31, P33 and P36 (Port 3)	
5-24	Block Diagram of P32 and P35 (Port 3)	
5-25	Block Diagram of P34 and P37 (Port 3)	
5-26	Format of Port 3 Mode Register (PM3)	
5-27	Format of Port 3 Mode Control Register (PMC3)	
5-28	Port Specified as Output Port	
5-29	Port Specified as Input Port	
5-30	Control Specification	
5-31	Block Diagram of Port 4	
5-32	Format of Port 4 Mode Register (PM4)	
5-33	Port Specified as Output Port	
5-34	Port Specified as Input Port	
5-35	Format of Pull-up Resistor Option Register L (PUOL)	
5-36	Pull-Up Resistor Specification (Port 4)	
5-37	Block Diagram of Port 5	
5-38	Format of Port 5 Mode Register (PM5)	134
5-39	Port Specified as Output Port	135
5-40	Port Specified as Input Port	136
5-41	Format of Pull-Up Resistor Option Register L (PUOL)	137
5-42	Pull-Up Resistor Specification (Port 5)	138
5-43	Block Diagram of Port 6	139
5-44	Format of Port 6 Mode Register (PM6)	140
5-45	Port Specified as Output Port	141
5-46	Port Specified as Input Port	142
5-47	Format of Pull-Up Resistor Option Register L (PUOL)	143
5-48	Pull-Up Resistor Specification (Port 6)	144
5-49	Block Diagram of Port 7	145
5-50	Block Diagram of Port 8	146
5-51	Block Diagram of P90 to P93 (Port 9)	148
5-52	Block Diagram of P94 (Port 9)	149
5-53	Format of Port 9 Mode Register (PM9)	150
5-54	Format of Port 9 Mode Control Register (PMC9)	150
5-55	Port in Output Port Mode	151
5-56	Port in Input Port Mode	152
5-57	Format of Pull-up Resistor Option Register H (PUOH)	153
5-58	Specifying Pull-up Resistor (port 9)	154
5-59	Format of Port Read Control Register (PRDC)	155
5-60	Concept of Control (in output port mode)	156
6-1	Block Diagram of Real-time Output Port	160
6-2	Format of Real-Time Output Port Control Register (RTPC)	161
6-3	Operation Timing of Real-Time Output Port	162

LIST OF FIGURES (3/8)

Figure No.	Title	Page
6-4	Operation Timing of Real-Time Output Port	163
6-5	Settings for Real-Time Output Function Control Register	
6-6	Setting Procedure of Real-Time Output Function	
6-7	Interrupt Request Processing when Real-Time Output Function Is Used	
7-1	Block Diagram of Timer/Counter	167
8-1	Block Diagram of Timer 0	172
8-2	Format of Timer Unit Mode Register 0 (TUM0)	174
8-3	Format of Timer Mode Control Register (TMC)	175
8-4	Format of Timer Output Control Register 0 (TOC0)	175
8-5	Format of Prescaler Mode Register (PRM)	176
8-6	Basic Operation of Timer Register 0 (TM0)	178
8-7	Clear Operation of Timer Register 0 (TM0)	179
8-8	Compare Operation (timer 0)	181
8-9	Capture Operation (timer 0)	182
8-10	Block Diagram of Timer Output Operation of Timer 0	185
8-11	Operation of Toggle Output	186
8-12	Operation of Set/Reset Output (timer 0)	187
8-13	Timing of Interval Timer Operation	188
8-14	Set Contents of Control Register for Interval Timer Operation	189
8-15	Setting Procedure of Interval Timer Operation	190
8-16	Interrupt Request Processing of Interval Timer Operation	190
8-17	Timing of Pulse Width Measurement	191
8-18	Control Register Settings for Pulse Width Measurement	192
8-19	Pulse Width Measurement Setting Procedure	193
8-20	Interrupt Request Processing that Calculates Pulse Width	193
8-21	Operation When Counting Is Started	194
8-22	Operation When Compare Register (CC00 to CC03) Is Set to 0000H	195
9-1	Block Diagram of Timer 1	198
9-2	Format of Timer Unit Mode Register 0 (TUM0)	200
9-3	Format of Timer Mode Control Register (TMC)	201
9-4	Format of Timer Output Control Register 1 (TOC1)	201
9-5	Format of Prescaler Mode Register (PRM)	202
9-6	Basic Operation of Timer Register 1 (TM1)	204
9-7	TM1 Clear Operation by Match with Compare Register (CM10)	205
9-8	TM1 Clear Operation When CE1 Bit is Cleared (0)	206
9-9	Compare Operation (timer 1)	208
9-10	Clearing TM1 after Detection of Match	209
9-11	Block Diagram of Timer Output Operation of Timer 1	210
9-12	Operation of Toggle Output	211
9-13	Operation of Set/Reset Output (timer 1)	212

LIST OF FIGURES (4/8)

Figure No.	Title	Page
9-14	Timing of Interval Timer Operation (1)	213
9-15	Control Register Settings for Interval Timer Operation (1)	
9-16	Setting Procedure of Interval Timer Operation (1)	
9-17	Interrupt Request Processing of Interval Timer Operation (1)	
9-18	Timing of Interval Timer Operation (2)	
9-19	Control Register Settings for Interval Timer Operation (2)	
9-20	Setting Procedure of Interval Timer Operation (2)	
9-21	Operation When Counting Is Started	
9-22	Operation When Compare Register (CM10, CM11) Is Set to 0000H	
10-1	Block Diagram of Timer/Counter 2	224
10-2	Format of Timer Unit Mode Register 2 (TUM2)	226
10-3	Format of Timer Mode Control Register 2 (TMC2)	227
10-4	Format of Timer Output Control Register 2 (TOC2)	228
10-5	Format of Prescaler Mode Register 2 (PRM2)	229
10-6	Basic Operation of Timer Register 2 (TM2)	231
10-7	TM2 Clear Operation by Match With Compare Register (CM20/CM21)	
10-8	TM2 Clear Operation When CE2 Bit is Cleared (0)	233
10-9	Timing of Timer/Counter 2 External Event Count	234
10-10	Compare Operation (timer/counter 2)	237
10-11	TM2 Clearance after Match Detection	
10-12	Operation of Toggle Output	239
10-13	PWM Pulse Output	
10-14	Example of PWM Output Using TM2	242
10-15	Example of PWM Output When CM20 = FFFFH	
10-16	Example of Compare Register (CM20) Rewrite	
10-17	Example of 100 % Duty With PWM Output	
10-18	When Timer/Counter 2 is Stopped During PWM Signal Output	245
10-19	Example of PPG Output Using TM2	247
10-20	Example of Compare Register (CM20) Rewrite	
10-21	Example of 100 % Duty With PPG Output	
10-22	Example of Extended PPG Output Cycle	250
10-23	When Timer/Counter 2 is Stopped During PPG Signal Output	251
10-24	Timing of Interval Timer Operation (1)	252
10-25	Control Register Settings for Interval Timer Operation (1)	253
10-26	Setting Procedure of Interval Timer Operation (1)	254
10-27	Interrupt Request Processing of Interval Timer Operation (1)	254
10-28	Timing of Interval Timer Operation (2)	255
10-29	Control Register Settings for Interval Timer Operation (2)	256
10-30	Setting Procedure of Interval Timer Operation (2)	257
10-31	Example of Timer/Counter 2 PWM Signal Output	
10-32	Control Register Settings for PWM Output Operation	259
10-33	Setting Procedure of PWM Output	

LIST OF FIGURES (5/8)

Figure No.	Title	Page
10-34	Changing PWM Output Duty	
10-35	Example of Timer/Counter 2 PPG Signal Output	
10-36	Control Register Settings for PPG Output Operation	
10-37	Setting Procedure of PPG Output	
10-38	Changing PPG Output Duty	
10-39	External Event Counter Operation	
10-40	Control Register Settings for External Event Counter Operation	
10-41	Setting Procedure of External Event Counter Operation	
10-42	Operation When Counting Is Started	
10-43	Operation When Compare Register (CM20, CM21) Is Set to 0000H	
11-1	Block Diagram of Timer 4	272
11-2	Format of Timer Mode Control Register 4 (TMC4)	
11-3	Format of Prescaler Mode Register 4 (PRM4)	
11-4	Basic Operation of Timer Register 4 (TM4)	277
11-5	TM4 Clear Operation by Match with Compare Register (CM40, CM41)	
11-6	Clear Operation of TM4 When CE4 Bit is Cleared (0)	279
11-7	Compare Operation (timer 4)	
11-8	TM4 Clearance after Match Detection	
11-9	Timing of Interval Timer Operation (1)	
11-10	Set Contents of Control Registers for Interval Timer Operation (1)	
11-11	Setting Procedure of Interval Timer Operation (1)	
11-12	Interrupt Request Processing of Interval Timer Operation (1)	
11-13	Timing of Interval Timer Operation (2)	
11-14	Set Contents of Control Register for Interval Timer Operation (2)	
11-15	Setting Procedure of Interval Timer Operation (2)	
11-16	Operation When Count Starts	
11-17	Operation When Compare Register (CM40, CM41) Is Set to 0000H	
12-1	Block Diagram of Watchdog Timer	289
12-2	Format of Watchdog Timer Mode Register (WDM)	291
13-1	Block Diagram of A/D Converter	
13-2	Example of Capacitor Connection on A/D Converter Pins	
13-3	Format of A/D Converter Mode Register (ADM)	
13-4	Word Access to A/D Conversion Result Register	
13-5	Byte Access to A/D Conversion Result Register	
13-6	Basic Operation of A/D Converter	
13-7	Relationship Between Analog Input Voltage and A/D Conversion Result	
13-8	Operating Timing in Select Mode (1-buffer mode)	
13-9	Operation Timing in Select Mode (4-buffer mode)	
13-10	Operation Timing in Scan Mode	310
13-11	A/D Conversion in Select Mode (1-buffer mode) Started by Software	

LIST OF FIGURES (6/8)

Figure No.	Title	Page
13-12	A/D Conversion in Select Mode (4-buffer mode) Started by Software	
13-13	A/D Conversion in Scan Mode Started by Software	
13-14	A/D Conversion in Select Mode (1-buffer mode) Started by Hardware	-
13-15	A/D Conversion in Select Mode (4-buffer mode) Started by Hardware	
13-16	A/D Conversion in Scan Mode Started by Hardware	
13-17	Example of Capacitor Connection on A/D Converter Pins	
14-1	Switching Between Asynchronous Serial Interface Mode and 3-Wire Serial I/O Mode	319
14-2	Block Diagram of Asynchronous Serial Interface	321
14-3	Formats of Asynchronous Serial Interface Mode Register (ASIM) and	
	Asynchronous Serial Interface Mode Register 2 (ASIM2)	324
14-4	Formats of Asynchronous Serial Interface Status Register (ASIS) and	
	Asynchronous Serial Interface Status Register 2 (ASIS2)	326
14-5	Data Format of Asynchronous Serial Interface Transmit/Receive	327
14-6	Interrupt Timing of Asynchronous Serial Interface Transmission Completion	329
14-7	Interrupt Timing of Asynchronous Serial Interface Reception Completion	330
14-8	Timing of Receive Error	331
14-9	Transmission/Reception with Macro Service	334
14-10	Example of 3-Wire Serial I/O System Configuration	335
14-11	Block Diagram of 3-Wire Serial I/O Mode	336
14-12	Formats of Clocked Serial Interface Mode Register 1 (CSIM1) and	
	Clocked Serial Interface Mode Register 2 (CSIM2)	338
14-13	Timing of 3-Wire Serial I/O Mode	339
14-14	Example of Connection to 2-Wire Serial I/O	340
14-15	Block Diagram of Baud Rate Generator	345
14-16	Formats of Baud Rate Generator Control Register (BRGC) and	
	Baud Rate Generator Control Register 2 (BRGC2)	347
15-1	Format of External Interrupt Mode Register 0 (INTM0)	360
15-2	Format of External Interrupt Mode Register 1 (INTM1)	361
15-3	Format of Interrupt Valid Edge Flag Register 1 (IEF1)	362
15-4	Format of Interrupt Valid Edge Flag Register 2 (IEF2)	363
15-5	Format of Noise Protection Control Register (NPC)	364
15-6	Edge Detection for Pin P20	365
15-7	Edge Detection for Pins P21 to P27	366
16-1	Interrupt Control Registers (××ICn)	377
16-2	Format of Interrupt Mask Registers (MK0, MK1)	382
16-3	Format of In-Service Priority Register (ISPR)	383
16-4	Format of Interrupt Mode Control Register (IMC)	384
16-5	Format of Watchdog Timer Mode Register (WDM)	385
16-6	Format of Program Status Word (PSWL)	386
16-7	Context Switching Operation by Execution of a BRKCS Instruction	387

LIST OF FIGURES (7/8)

Figure No.	Title	Page
16-8	Return from BRKCS Instruction Software Interrupt (RETCSB Instruction Operation)	
16-9	Operations of Non-Maskable Interrupt Request Acknowledgment	
16-10	Algorithm of Interrupt Acknowledgment Processing	
16-11	Context Switching Operation by Generation of an Interrupt Request	
16-12	Return from Interrupt that Uses Context Switching by Means of RETCS Instruction	
16-13	Examples of Processing When Another Interrupt Request	
	Is Generated During Interrupt Processing	
16-14	Examples of Processing of Simultaneously Generated Interrupts	
16-15	Differences in Level 3 Interrupt Acknowledgment According	
	to Setting of Interrupt Mode Control Register (IMC)	402
16-16	Differences between Vectored Interrupt and Macro Service Processing	403
16-17	Example of Macro Service Processing Sequence	407
16-18	Operation on Completion of Macro Service	408
16-19	Basic Configuration of Macro Service Control Word	409
16-20	Format of Macro Service Control Word	410
16-21	Interrupt Request Generation and Acknowledgment (Unit: Clocks)	425
17-1	Format of Memory Expansion Mode Register (MM)	432
17-2	μPD784044 Memory Map	433
17-3	μPD784046 Memory Map	435
17-4	Read Timing (8 Bits)	437
17-5	Write Timing (8 Bits)	437
17-6	Read Timing (16 Bits, Even Address Access)	438
17-7	Write Timing (16 Bits, Even Address Access)	438
17-8	Read Timing (16 Bits, Odd Address Access)	439
17-9	Write Timing (16 Bits, Odd Address Access)	439
17-10	Format of Memory Extension Mode Register (MM)	440
17-11	Format of Programmable Wait Control Register 1 (PWC1)	442
17-12	Format of Programmable Wait Control Register 2 (PWC2)	444
17-13	Read/Write Timing of Address Wait Function	446
17-14	Format of Port 9 Mode Control Register (PMC9)	449
17-15	Wait Control Spaces	450
17-16	Read Timing of Access Wait Function	451
17-17	Write Timing of Access Wait Function	453
17-18	Timing with External Wait Signal	455
17-19	Format of Bus Width Specification Register (BW)	457
18-1	Diagram of Standby Mode Transition	
18-2	Diagram of Standby Function Block	
18-3	Standby Control Register (STBC) Format	
18-4	Format of Oscillation Stabilization Time Specification Register (OSTS)	463
18-5	STOP Mode Release by NMI Input	
18-6	Example of Address/Data Bus Processing	

LIST OF FIGURES (8/8)

Figure No.	Title	Page
19-1	Acknowledgment of Reset Signal	474
19-2	Power-On Reset Operation	474
19-3	Timing on Reset Input	475
20-1	Selecting Format of Communication Mode	478
20-2	Connecting Flashpro II/Flashpro III in 3-Wire Serial I/O Mode	479
20-3	Connecting Flashpro II/Flashpro III in UART Mode	480
A-1	Development Tool Configuration	558
A-2	Distance Between In-Circuit Emulator and Conversion Socket	565
A-3	Target System Connection Conditions	566
A-4	Dimensions of EV-9200GC-80 (reference)	567
A-5	Recommended Board Mounting Pattern of EV-9200GC-80 (reference)	568

LIST OF TABLES (1/3)

Table No.	Title	Page
1-1	Differences between μ PD784044, 784046, and 78F4046	
1-2	Differences between µPD784046 and µPD784046(A)	
1-3	Differences between μ PD784046(A), 784046(A1), and 784046(A2)	
2-1	Operation Mode of Port 0	
2-2	Operation Mode of Port 1	
2-3	Operation Mode of Port 2	
2-4	Operation Mode of Port 3	
2-5	Operation Mode of Port 9	
2-6	I/O Circuit Type of Each Pin and Recommended Processing of Unused Pins	53
3-1	Internal ROM Area	
3-2	Vector Table	61
3-3	Internal RAM Area	63
3-4	Register Bank Selection	
3-5	Correspondence between Function Names and Absolute Names	81
3-6	Special Function Registers (SFRs) List	
5-1	Port Function	
5-2	Operation Mode of Port 0	100
5-3	Port 1 Operating Modes	106
5-4	Operation Mode of Port 2	112
5-5	Port 3 Operating Modes	119
5-6	Operation Mode of Port 4	128
5-7	Operation Mode of Port 5	134
5-8	Operation Mode of Port 6	140
5-9	Operation Mode of Port 9	147
5-10	Operation Mode of P90 through P93	150
7-1	Operations of Timer/Counters	166
8-1	Interval Time of Timer 0	170
8-2	Pulse Width Measurement Range of Timer 0	171
8-3	Interrupt Request Signal from Compare Register (timer 0)	
8-4	Operation Mode of Timer Output Pin (timer 0)	180
8-5	Capture Trigger Signal to Capture Register (timer 0)	
8-6	Toggle Signal of Timer Output Pin (timer 0)	
8-7	Set/Reset Signal of Timer Output Pin (timer 0)	
8-8	Toggle Output of TO00 through TO03 (fcLK = 16 MHz)	187
9-1	Interval Time of Timer 1	197
9-2	Interrupt Request Signal from Compare Register (timer 1)	207
9-3	Operation Mode of Timer Output Pin (timer 1)	207

LIST OF TABLES (2/3)

Table No.	Title	Page
9-4	Toggle Signal of Timer Output Pin (timer 1)	210
9-5	Set/Reset Signal of Timer Output Pin (timer 1)	
9-6	Toggle Output of TO10 and TO11 (fcLK = 16 MHz)	
10-1	Differences in Name between Timer/Counter 2 and Timer/Counter 3	221
10-2	Interval Time of Timer/Counter 2	222
10-3	Programmable Square Wave Output Range of Timer/Counter 2	222
10-4	Clock That Can Be Input to Timer/Counter 2	223
10-5	Interrupt Request Signal from Compare Register (timer/counter 2)	236
10-6	Interrupt Request Signal from Compare Register (timer/counter 3)	236
10-7	Toggle Output of TO20 and TO21 (fcLk = 16 MHz)	240
10-8	PWM Cycle of TO20 and TO21 (fcLK = 16 MHz)	241
10-9	Setting PPG Output (timer/counter 2)	246
10-10	Setting PPG Output (timer/counter 3)	246
10-11	PPG Output of TO20 and TO21 (fcLk = 16 MHz)	247
11-1	Interval Time of Timer 4	271
11-2	Interrupt Request Signal from Compare Register (timer 4)	280
13-1	Conversion Time Set by FR Bit	300
13-2	Time of A/D Conversion	306
13-3	Correspondence between Analog Input and A/D Conversion Result Register (select mode: 1-buffer mode)	307
13-4	Correspondence between Analog Input and A/D Conversion Result Register	
-	(select mode: 4-buffer mode)	308
13-5	Correspondence between Analog Input and A/D Conversion Result Register (scan mode)	
14-1	Differences Between UART/IOE1 and UART2/IOE2 Names	318
14-2	Causes of Receive Error	331
14-3	Methods of Baud Rate Setting	350
14-4	Examples of BRGC Settings When Baud Rate Generator Is Used	351
14-5	Examples of Settings When External Baud Rate Input (ASCK) Is Used	
15-1	Pins P20 to P27 and Use of Detected Edge	359
16-1	Processing Modes of Interrupt Request	368
16-2	Sources of Interrupt Request	369
16-3	Control Registers	373
16-4	Interrupt Control Register Flags Corresponding to Interrupt Sources	374
16-5	Multiple Interrupt Processing	397
16-6	Interrupts for Which Macro Service Can Be Used	404
16-7	Classification of Macro Service Mode	411
16-8	Specifying Operation of Counter Mode	412

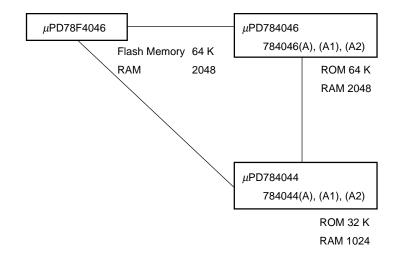
LIST OF TABLES (3/3)

Table No.	Title	Page
16-9	Specifying Operation in Block Transfer Mode	413
16-10	Specifying Operation in Block Transfer Mode (with memory pointer)	
16-11	Interrupt Acceptance Processing Time	
16-12	Macro Service Processing Time	
18-1	Operating States in HALT Mode	464
18-2	HALT Mode Release and Operations after Release	465
18-3	Operating States in STOP Mode	467
18-4	STOP Mode Release and Operations after Release	468
18-5	Operating States in IDLE Mode	469
18-6	IDLE Mode Release and Operations after Release	470
19-1	Pin Status during Reset Input and after Clearing Reset	475
19-2	State of Hardware after Reset	476
20-1	Communication Modes	478
20-2	Major Functions of Flash Memory Programming.	479
21-1	List of Instructions by 8-Bit Addressing	512
21-2	List of Instructions by 16-Bit Addressing	514
21-3	List of Instructions by 24-Bit Addressing	516
21-4	List of Instructions by Bit Manipulation Instruction Addressing	516
21-5	List of Instructions by Call/Return Instruction / Branch Instruction Addressing	517
29-1	Surface Mounting Type Soldering Conditions	554

CHAPTER 1 GENERAL

The μ PD784046 subseries comprises 78K/IV series products that incorporates 10-bit A/D converter. The 78K/IV series comprises 16-bit single-chip microcontrollers equipped with a high-performance CPU that has a function such as accessing a 1M-byte memory space.

The following nine models are available in the μ PD784046 subseries:


- Standard models: μPD784044, 784046, 78F4046
- Special models : μPD784044(A), 784044(A1), 784044(A2), 784046(A), 784046(A1), 784046(A2)

The μ PD784046 incorporates 64K-byte mask ROM and 2048-byte RAM, plus high-performance timer/counters, a 10-bit A/D converter, two independent serial interface channels, etc.

The μ PD784044 is a version of the μ PD784046 with 32K-byte mask ROM, and with 1024-byte RAM.

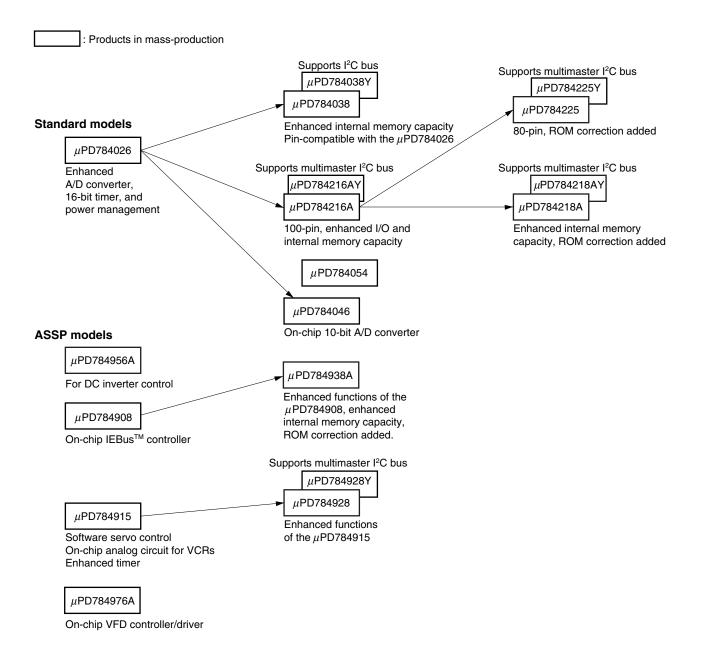
The μ PD78F4046 has on-chip flash memory instead of the mask ROM of the μ PD784046.

The μ PD784044(A), 784044(A1), 784044(A2), 784046(A), 784046(A1), and 784046(A2) are the "special" quality versions of the μ PD784044 and 784046.

On-Chip Flash Memory Product

On-Chip Mask ROM Products

These products can be used in the following application areas:


[Standard models]

- Water heaters, vending machines
- · FA field such as robots, and automatic machine tools

[Special models]

· Control units of automotive appliances

★ 78K/IV Series Product Lineup

Remark VFD (Vacuum Florescent Display) is referred to as FIPTM (Florescent Indicator Panel) in some documents, but the functions of the two are the same.

1.1 Features

- 78K/IV series
- Minimum instruction execution time: 125 ns (at internal 16-MHz)
- Internal memory
 - ROM

Mask ROM : 64K bytes (µPD784046)

32K bytes (µPD784044)

Flash memory : 64K bytes (µPD78F4046)

- RAM : 2048 bytes (μPD784046, 78F4046) 1024 bytes (μPD784044)
- I/O port: 65 pins
- Timer/counter : 16-bit timer/counter unit x 2 units
 - 16-bit timer x 3 units
- Watchdog timer: 1 channel
- A/D converter: 10-bit resolution x 16 channels (AVDD = 4.5 to 5.5 V)
- Serial interface UART/IOE (3-wire serial I/O): 2 channels (with baud rate generator)
- Interrupt controller (4 priority levels)
 Vectored interrupt/macro service/context switching

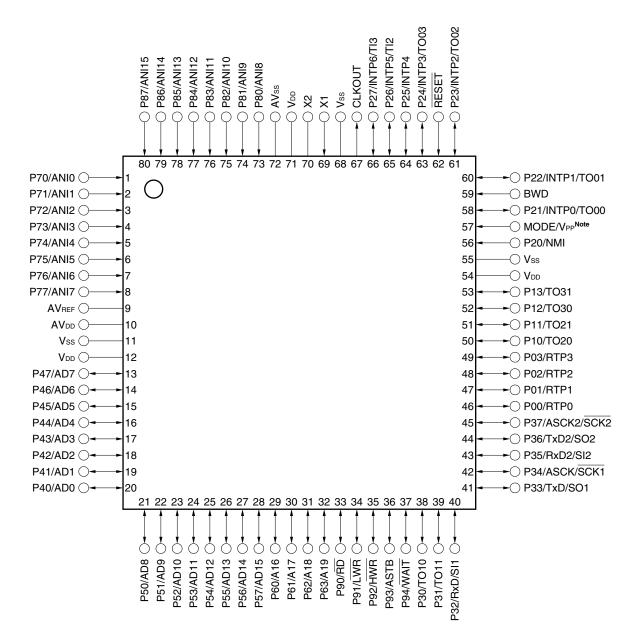
 Standby function HALT/STOP/IDLE mode

• Supply voltage: VDD = 4.5 to 5.5 V

* 1.2 Ordering Information

Part Number	Package	Internal ROM
μPD784044GC-×××-3B9	80-pin plastic QFP (14 x 14)	Mask ROM
μPD784046GC-×××-3B9	80-pin plastic QFP (14 x 14)	Mask ROM
μPD78F4046GC-3B9	80-pin plastic QFP (14 x 14)	Flash memory
μPD784044GC(A)-×××-3B9	80-pin plastic QFP (14 x 14)	Mask ROM
μPD784044GC(A1)-×××-3B9	80-pin plastic QFP (14 x 14)	Mask ROM
μPD784044GC(A2)-×××-3B9	80-pin plastic QFP (14 x 14)	Mask ROM
μPD784046GC(A)-×××-3B9	80-pin plastic QFP (14 x 14)	Mask ROM
μPD784046GC(A1)-×××-3B9	80-pin plastic QFP (14 x 14)	Mask ROM
μPD784046GC(A2)-×××-3B9	80-pin plastic QFP (14 x 14)	Mask ROM

* 1.3 Quality Grades

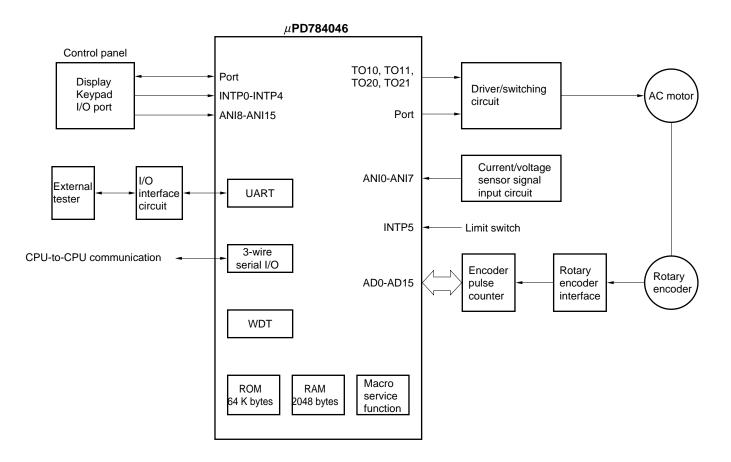

Part Number	Package	Internal ROM
μPD784044GC-×××-3B9	80-pin plastic QFP (14×14)	Standard
μPD784046GC-×××-3B9	80-pin plastic QFP (14 $ imes$ 14)	Standard
μPD78F4046GC-3B9	80-pin plastic QFP (14 $ imes$ 14)	Standard
μPD784044GC(A)-×××-3B9	80-pin plastic QFP (14 $ imes$ 14)	Special
μPD784044GC(A1)-×××-3B9	80-pin plastic QFP (14 $ imes$ 14)	Special
μPD784044GC(A2)-×××-3B9	80-pin plastic QFP (14 $ imes$ 14)	Special
μPD784046GC(A)-×××-3B9	80-pin plastic QFP (14 $ imes$ 14)	Special
μPD784046GC(A1)-×××-3B9	80-pin plastic QFP (14 $ imes$ 14)	Special
μPD784046GC(A2)-×××-3B9	80-pin plastic QFP (14 $ imes$ 14)	Special

Remark ××× indicates ROM code suffix.

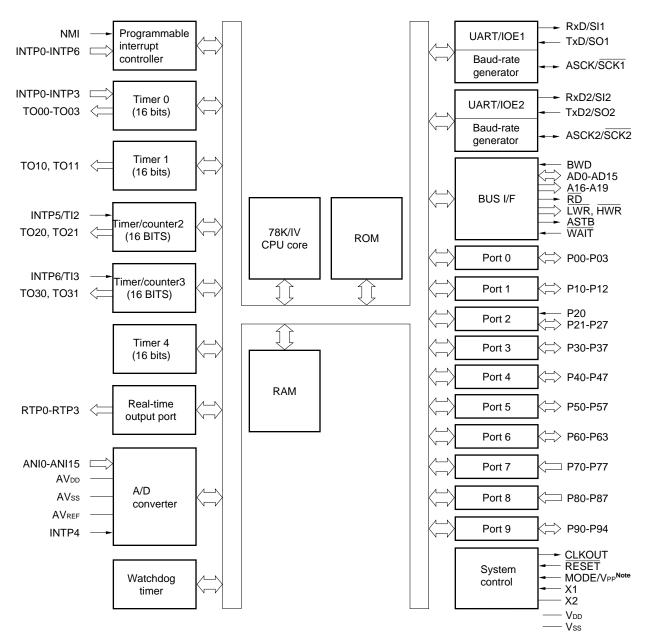
Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Electronics Corporation to know the specification of quality grade on the devices and its recommended applications.

1.4 Pin Configuration (Top View)

 80-pin plastic QFP (14 x 14) μPD784044GC-xxx-3B9, 784044GC(A)-xxx-3B9, 784044GC(A1)-xxx-3B9, 784044GC(A2)-xxx-3B9 μPD784046GC-xxx-3B9, 784046GC(A)-xxx-3B9, 784046GC(A1)-xxx-3B9, 784046GC(A2)-xxx-3B9 μPD78F4046GC-3B9



Note VPP is provided to the μ PD78F4046 only.


Caution Do not directly connect the MODE/VPP pin to Vss in the normal operation mode.

A16-A19	: Address Bus	P60-P63	: Port 6
AD0-AD15	: Address/Data Bus	P70-P77	: Port 7
ANIO-ANI15	: Analog Input	P80-P87	: Port 8
ASCK, ASCK2	: Asynchronous Serial Clock	P90-P94	: Port 9
ASTB	: Address Strobe	RD	: Read Strobe
AVdd	: Analog Power Supply	RESET	: Reset
AVref	: Analog Reference Voltage	RTP0-RTP3	: Real-Time Port
AVss	: Analog Ground	RxD, RxD2	: Receive Data
BWD	: Bus Width Definition	SCK1, SCK2	: Serial Clock
CLKOUT	: Clock Out	SI1, SI2	: Serial Input
HWR	: High Address Write Strobe	SO1, SO2	: Serial Output
INTP0-INTP6	: Interrupt from Peripherals	TI2, TI3	: Timer Input
LWR	: Low Address Write Strobe	TO00-TO03, TO10, TO11,	
MODE	: Mode	TO20, TO21, TO30, TO31	: Timer Output
NMI	: Non-maskable Interrupt	TxD, TxD2	: Transmit Data
P00-P03	: Port 0	Vdd	: Power Supply
P10-P13	: Port 1	Vpp	: Programming Power Supply
P20-P27	: Port 2	Vss	: Ground
P30-P37	: Port 3	WAIT	: Wait
P40-P47	: Port 4	X1, X2	: Crystal
P50-P57	: Port 5		

1.5 System Configuration Example (AC Servo Motor Control)

1.6 Block Diagram

Note VPP is only for μ PD78F4046.

Remark The internal ROM and RAM capacities differ depending on the products.

1.7 List of Functions

Item		Part Number	μPD784044		μPD784046		μPD78F4046
Number of basic instructions (mnemonics)		113					
General-pu	rpose reg	jister	8 bits \times 16 registers \times 8 ba	anks, c	r 16 bits \times 8 registers \times 8	banks (memory mapping)
Minimum in	struction	execution time	125 ns (at internal 16 MHz	z opera	ition)		
Internal memory	ROM		32 KB (mask ROM)		64 KB (mask ROM)		64 KB (flash memory)
	RAM		1024 B		2048 B		I
Memory sp	ace		1 MB with program and da	ata me	mories combined		
I/O port	Total		65 lines				
	Input		17 lines				
	I/O		48 lines				
Pins with a functions ^N	-	Pin with pull- up resistor	29 pins				
Real-time o	utput por	t	4 bits × 1				
Timer/counter			Timer 0 (16 bits)		er register × 1 ure/Compare register × 4		output oggle output set/Reset output
			Timer 1 (16 bits)		r register $ imes$ 1 pare register $ imes$ 2		output oggle output Set/Reset output
			Timer/counter 2 (16 bits)		r register $ imes$ 1 pare register $ imes$ 1		output oggle output WM/PPG output
			Timer/counter 3 (16 bits)		r register × 1 pare register × 2		output oggle output WM/PPG output
A/D conver	ter		10-bit resolution \times 16 channels (AV _{DD} = 4.5 to 5.5 V)				
Serial interf	ace		UART/IOE (3-wire serial I/	/O): 2 (channels (with baud rate g	generato	or)
Watchdog t	imer		1 channel				
Interrupt	Hardwa	are source	27 (internal: 23, external: 8 (shared with internal: 4)				
	Softwa	re source	BRK instruction, BRKCS instruction, operand error				
Non-maskable Maskable			Internal: 1, external : 1				
			Internal: 22, external: 7 (shared with internal: 4)				
			 4 priority levels Three processing formats: vectored interrupt/macro service/context switching				
Bus sizing			8 bits/16 bits external data bus width selectable				
Standby			HALT/STOP/IDLE mode				
Supply volta	age		V _{DD} = 4.5 to 5.5 V				
Package			80-pin plastic QFP (14 x 14)				

Note The pins with ancillary functions are included in the I/O pins.

1.8 Differences between μ PD784044, 784046, and 78F4046

The only difference between the μ PD784044 and μ PD784046 is the internal memory capacity. The μ PD78F4046 is a version of the μ PD784046 with internal ROM replaced by a flash memory. The differences are shown in Table 1-1.

Table 1-1. Differences between μ PD784044, 784046, and 78F4046

Part Number Item	μPD784044	μPD784046	μPD78F4046
Internal ROM	32K bytes (mask ROM)	64K bytes (mask ROM)	64K bytes (flash memory)
Internal RAM	1024 bytes	2048 bytes	
Function of pin 57	MODE		MODE/Vpp

1.9 Differences between μ PD784046 and μ PD784046(A)

Part Number	μPD784044, 784046, 78F4046	μPD784044(A), 784046(A)	
Quality grade	Standard	Special	
Operating ambient temperature (T _A)	–10 to +70 °C	-40 to +85 °C	
Operating frequency	8 to 32 MHz 8 to 25 MHz		
Minimum instruction execution time	125 ns (operates at 16 MHz internally)	160 ns (operates at 12.5 MHz internally)	
DC characteristics	VDD supply current differs.		
AC characteristics	Bus timing and serial operation differ.		
A/D converter characteristics	Conversion time and sampling time differ.		

Table 1-2. Differences between μ PD784046 and μ PD784046(A)

1.10 Differences between *µ*PD784046(A), 784046(A1), and 784046(A2)

Table 1-3. Differences between *µ*PD784046(A), 784046(A1), and 784046(A2)

Part Number	μPD784046(A)	μPD784046(A1)	μPD784046(A2)		
Operating ambient temperature (TA)	–40 to +85 °C	–40 to +110 °C	–40 to +125 °C		
Operating frequency	8 to 25 MHz	8 to 20 MHz			
Minimum instruction execution time	160 ns (operates at 12.5 MHz internally)	200 ns (operates at 10 MHz internally)			
DC characteristics	Analog pin input leakage current, VDD supply current, and data retention current diffe				
AC characteristics	Bus timing and serial operati	on differ.			
A/D converter characteristics	AVREF current, A/D converter data retention current differ.				

Remark The differences between the μ PD784044(A), 784044(A1), and 784044(A2) are the same as those in the table shown above.

CHAPTER 2 PIN FUNCTIONS

2.1 List of Pin Functions

(1) Port (1/2)

Pin Name	I/O	Dual-Function Pins	Fur	nction
P00-P03	I/O	_	 Port 0 (P0): 4-bit I/O port Can be set in input/output mode bit-wise. Pins in input mode can all be connected to pull-up resistors at once by software settings. 	
P10	I/O	TO20	Port 1 (P1):	
P11		TO21	 4-bit I/O port 	
P12		TO30	• Can be set in input/output mode	bit-wise.
P13		TO31		
P20	Input	NMI	Port 2 (P2):	Input only
P21	I/O	INTP0/TO00	 8-bit I/O port 	Can be set in input/output mode
P22		INTP1/TO01		bit-wise.
P23		INTP2/TO02		
P24	_	INTP3/TO03		
P25	_	INTP4		
P26	_	INTP5/TI2		
P27	_	INTP6/TI3		
P30	I/O	TO10	Port 3 (P3):	
P31	_	T011	8-bit I/O port	
P32	_	RxD/SI1	• Can be set in input/output mode	bit-wise.
P33	_	TxD/SO1		
P34	_	ASCK/SCK1		
P35		RxD2/SI2		
P36		TxD2/SO2		
P37		ASCK2/SCK2		
P40-P47	I/O	AD0-AD7	 Port 4 (P4): 8-bit I/O port Can be set in input/output mode bit-wise. Pins in input mode can all be connected to pull-up resistors at once by software settings. 	
P50-P57	I/O	AD8-AD15	 Port 5 (P5): 8-bit I/O port Can be set in input/output mode bit-wise. Pins in input mode can all be connected to pull-up resistors at once by software settings. 	
P60-P63	I/O	A16-A19	 Port 6 (P6): 4-bit I/O port Can be set in input/output mode bit-wise. Pins in input mode can all be connected to pull-up resistors at once by software settings. 	

(1) Port (2/2)

Pin Name	I/O	Dual-Function Pins	Function
P70-P77	Input	ANI0-ANI7	Port 7 (P7):
			8-bit input port
P80-P87	Input	ANI8-ANI15	Port 8 (P8):
			8-bit input port
P90	I/O	RD	Port 9 (P9):
P91		LWR	• 5-bit I/O port
P92		HWR	Can be set in input/output mode bit-wise.
P93		ASTB	Pins in input mode can all be connected to pull-up resistors at once
P94		WAIT	by software settings.

(2) Pins other than port pins (1/2)

Pin Name	I/O	Dual-Function Pins	Function		
RTP0-RTP3	Output	P00 to P03	Real-time output		
NMI	Input	P20	Non-maskable interrupt request input		
INTP0		P21/TO00	External interrupt	Capture trigger signal of CC00	
INTP1]	P22/TO01	request input	Capture trigger signal of CC01	
INTP2]	P23/TO02		Capture trigger signal of CC02	
INTP3		P24/TO03		Capture trigger signal of CC03	
INTP4		P25		Conversion start trigger input of A/D converter	
INTP5]	P26/TI2		_	
INTP6		P27/TI3			
ТО00	Output	P21/INTP0	Timer output from til	mer/counter	
TO01		P22/INTP1			
TO02		P23/INTP2			
ТО03		P24/INTP3			
TO10		P30			
TO11		P31			
TO20		P10			
TO21		P11			
TO30		P12			
TO31	1	P13			
TI2	Input	P26/INTP5	External count clock	input to timer/counter 2	
TI3		P27/INTP6	External count clock	input to timer/counter 3	
RxD	Input	P32/SI1	Serial data input (UA	ARTO)	
RxD2		P35/SI2	Serial data input (UA	ART2)	
TxD	Output	P33/SO1	Serial data output (L	JART0)	
TxD2]	P36/SO2	Serial data output (L	JART2)	
ASCK	Input	P34/SCK1	Baud rate clock inpu	ut (UART0)	
ASCK2		P37/SCK2	Baud rate clock inpu	ut (UART2)	
SI1	Input	P32/RxD	Serial data input (3-	wire serial I/O1)	
SI2		P35/RxD2	Serial data input (3-	wire serial I/O2)	
SO1	Output	P33/TxD	Serial data output (3	B-wire serial I/O1)	
SO2		P36/TxD2	Serial data output (3	8-wire serial I/O2)	
SCK1	I/O	P34/ASCK	Serial clock input/ou	Itput (3-wire serial I/O1)	
SCK2	1	P37/ASCK2	Serial clock input/ou	Itput (3-wire serial I/O2)	
AD0-AD7	I/O	P40 to P47	Lower multiplexed a	ddress/data bus when external memory is connected	
AD8-AD15 ^{Note}	I/O	P50 to P57	• When 8-bit bus is	specified	
			-	us when external memory is connected	
			When external 16 Higher multiplexed		
A16-A19 ^{Note}	Output	P60 to P63		l address/data bus when external memory is connected	
RD	Output	P90 10 P63	Higher address bus when external memory is connected		
ND	Output	F 90	Read strobe to exter	mai memory	

Note The number of pins used as address bus pins differs depending on the external address space (refer to CHAPTER 17 LOCAL BUS INTERFACE FUNCTION).

(2) Pins other than port pins (2/2)

Pin Name	I/O	Dual-Function Pins	Function	
LWR	Output	P91	 When external 8-bit bus is specified Write strobe to external memory When external 16-bit bus is specified Write strobe to external memory located at lower position 	
HWR		P92	Write strobe to external memory located at higher position when external 16-bit bus is specified	
ASTB	Output	P93	Timing signal output to externally latch address information output from AD0 through AD15 pins to access external memory	
WAIT	Input	P94	Inserts wait.	
BWD	Input	-	Sets bus width.	
MODE	Input	V _{PP} Note	Directly connect this pin to $V_{\rm SS}$ in normal operating mode (this pin specifies test mode of IC).	
CLKOUT	Output	-	Clock output. Low level is output in the IDLE mode or STOP mode, otherwise fxx(oscillation frequency) is always output.	
X1	Input	-	Connect crystal for system clock oscillation (clock can be also input to X1	
X2	-	-		
RESET	Input	-	Chip reset	
ANI0-ANI7	Input	P70 to P77	Analog voltage input for A/D converter	
ANI8-ANI15		P80 to P87		
AVREF	-	-	Reference voltage for A/D converter	
AVDD		-	Positive power for A/D converter	
AVss		-	GND for A/D converter	
Vdd		-	Positive power	
V _{PP} Note	Input	MODE	Sets flash memory programming mode. Applies high voltage when program is written/verified.	
Vss	-	-	GND	

Note VPP is only for the μ PD78F4046.

2.2 Description of Pin Functions

(1) P00 through P03 (Port 0) ... 3-state I/O

Port 0 is a 4-bit I/O port with an output latch. This port can be set in the input or output mode in 1-bit units by using port 0 mode register (PM0). Each pin of this port is provided with a software programmable pull-up resistor. In addition to the I/O port function, port 0 also functions as a 4-bit real-time output port and can output the contents of port 0 buffer register (P0L) at any interval time. Whether port 0 is used as a normal output port or real-time output port is specified by real-time output port control register (RTPC).

When RESET is input, this port is set in the input mode (output high-impedance status), and the contents of the output latch are undefined.

Table 2-1. Operation Mode of Port 0

Pin Name	Port Mode	Port Mode Real-Time Output Port Mode Manipulation to Use Port 0 as Real-Time	
P00-P03	I/O port	RTP0-RTP3	Setting of P0ML bit of RTPC to 1

Romark	For details	refer to	CHAPTER	6 REAL-TIME	OUTPUT	FUNCTION
Remain	FUI details,		CHAFIER	O REAL-TIME	COTFOI	FUNCTION.

(2) P10 through P13 (Port 1) ... 3-state I/O

Port 1 is a 4-bit I/O port with an output latch. This port can be set in the input or output mode in 1-bit units by using port 1 mode register (PM1).

In addition to the I/O port function, port 1 also functions as the timer output pins of timers/counters 2 and 3. The operation mode of this port is specified in 1-bit units by using port 1 mode control register (PMC1), as shown in Table 2-2. The level of each pin can be read or tested regardless of the multiplexed function.

When RESET is input, this port is set in the input mode (output high-impedance status), and the contents of the output latch are undefined.

Pin Name	Port Mode	Control Signal Output Mode	Manipulation to Use Port 1 as Control Pins
P10	I/O port	TO20 output	Setting of PMC10 bit of PMC1 to 1
P11		TO21 output	Setting of PMC11 bit of PMC1 to 1
P12		TO30 output	Setting of PMC12 bit of PMC1 to 1
P13		TO31 output	Setting of PMC13 bit of PMC1 to 1

Table 2-2. Operation Mode of Port 1

(a) Port mode

Each pin of port 1 set in the port mode by the port 1 mode control register (PMC1) can be set in the input or output mode in 1-bit units by using the port 1 mode register (PM1).

(b) Control signal output mode

The pins of port 1 can be used as control pins in 1-bit units if so specified by the port 1 mode control register (PMC1).

(i) TO20, TO21

These pins are timer output pins of timer/counter 2.

(ii) TO30, TO31

These pins are timer output pins of timer/counter 3.

(3) P20 through P27 (Port 2) ... 3-state I/O

Port 2 is an 8-bit I/O port with an output latch. This port can be set in the input or output mode in 1-bit units by using port 2 mode register (PM2) (however, P20 is input-only).

In addition to the input/output port function, port 2 also functions as a control signal input pins such as for external interrupt signals, and to output the timer signal of timer 0 (refer to **Table 2-3**). P21 through P24 serve as the timer output pins of timer 0 if so specified by port 2 mode control register (PMC2). The level of each pin of this port can always be read or tested regardless of the multiplexed function. All the eight pins are Schmitt trigger input pins to prevent malfunctioning due to noise.

When RESET is input, this port is set in the input mode (output high-impedance status), and the contents of the output latch are undefined.

		•	(n = 0 to 7)
Mode		Port Mode	Control Signal Output Mode
Set condition		PMC2n = 0	PMC2n = 1
	PM2n = 0	PM2n = 1	PM2n = ×
P20	_	Input port/NMI input ^{Note}	-
P21	Output port	Input port/INTP0 input	TO00 output
P22		Input port/INTP1 input	TO01 output
P23		Input port/INTP2 input	TO02 output
P24		Input port/INTP3 input	TO03 output
P25		Input port/INTP4 input	_
P26		Input port/INTP5 input/TI2 input	
P27		Input port/INTP6 input/TI3 input	

Table 2-3	Operation	Mode of Port 2
I able Z-J.	Operation	

Note The NMI input pin accepts an interrupt request regardless of whether interrupts are enabled or disabled.

Remark ×: don't care

(a) Port mode

(i) Function as port pin

Each port pin set in the port mode by the port 2 mode control register (PMC2) can be set in the input or output mode in 1-bit units by the port 2 mode register (PM2) (however, P20 is fixed in input only).

(ii) Function as control signal input pins

If PMC2n (n = 0 to 7) bit of PMC2 is "0" and if PM2n (n = 0 to 7) bit of PM2 is "1", the pins of port 2 can be used as the following control signal input pins.

• NMI (Non-maskable Interrupt)

This pin inputs an external non-maskable interrupt request. Whether the interrupt request is detected at the rising or falling edge can be specified by using external interrupt mode register 0 (INTM0).

• INTP0 through INTP6 (Interrupt from Peripherals)

These pins input external interrupt requests. When the valid edge specified by external interrupt mode registers (INTM0 and INTM1) is detected on the INTP0 to INTP6 pins, an interrupt occurs (refer to **CHAPTER 15 EDGE DETECTION FUNCTION**).

The INTP0 through INTP4 pins can also be used as external trigger input pins of each function, as follows:

- INTP0 ... Capture trigger input pin of capture/compare register 00 (CC00) of timer 0
- INTP1 ... Capture trigger input pin of capture/compare register 01 (CC01) of timer 0
- INTP2 ... Capture trigger input pin of capture/compare register 02 (CC02) of timer 0
- INTP3 ... Capture trigger input pin of capture/compare register 03 (CC03) of timer 0
- INTP4 ... External trigger input pin of A/D converter

(iii) TI2, TI3 (Timer Input)

These are external clock input pins of timers/counters 2 and 3.

(b) Control signal output mode

The P21 through P24 pins can be used as the timer output pins (TO00 through TO03) of timer 0 in 1-bit units if so specified by the port 2 mode control register (PMC2).

(4) P30 through P37 (Port 3) ... 3-state I/O

Port 3 is an 8-bit I/O port with an output latch. This port can be set in the input or output mode in 1-bit units by using port 3 mode register (PM3).

In addition to the input/output port function, port 3 also has a function to input or output control signals. The operation mode of each pin can be specified by using port 3 mode control register (PMC3), as shown in Table 2-4. The level of each pin of this port can always be read or tested regardless of the multiplexed function.

When RESET is input, this port is set in the input mode (output high-impedance status), and the contents of the output latch are undefined.

		(n = 0 to 7)
Mode	Port Mode	Control Signal I/O Mode
Setting condition	PMC3n = 0	PMC3n = 1
P30	I/O port	TO10 output
P31		TO11 output
P32		RxD/SI1 input
P33		TxD/SO1 output
P34		ASCK input/SCK1 I/O
P35		RxD2/SI2 input
P36		TxD2/SO2 output
P37		ASCK2 input/SCK2 I/O

 Table 2-4.
 Operation Mode of Port 3

(a) Port mode

Each port pin set in the port mode by the port 3 mode control register (PMC3) can be set in the input or output mode by the port 3 mode register (PM3).

(b) Control signal I/O mode

Each pin of port 3 can be set in the control mode in 1-bit units by using the port 3 mode control register (PMC3).

(i) TO10, TO11 (Timer Output)

These are timer output pins of timer 1.

(ii) RxD, RxD2 (Receive Data)

These are serial data input pins of the asynchronous serial interface.

(iii) TxD, TxD2 (Transmit data)

These are serial data output pins of the asynchronous serial interface.

(iv) SI1, SI2 (Serial Input)

These are serial data input pins of the 3-wire serial I/O.

(v) SO1, SO2 (Serial Output)

These are serial data output pins of the 3-wire serial I/O.

(vi) ASCK, ASCK2 (Asynchronous Serial Clock)

These are external baud rate clock input pins.

(vii) SCK1, SCK2 (Serial Clock)

These are serial clock I/O pins of the 3-wire serial I/O.

(5) P40 through P47 (Port 4) ... 3-state I/O

Port 4 is an 8-bit I/O port with an output latch. This port can be set in the input or output mode in 1-bit units by using port 4 mode register (PM4). Each pin is provided with a software programmable pull-up resistor. Port 4 functions as the low-order multiplexed address/data bus (AD0 through AD7) if so specified by memory expansion mode register (MM) when an external memory or I/O is connected, in addition to the I/O port function. When RESET is input, this port is set in the input mode (output high-impedance status), and the contents of the output latch are undefined.

(6) P50 through P57 (Port 5) ... 3-state I/O

Port 5 is an 8-bit I/O port with an output latch. This port can be set in the input or output mode in 1-bit units by using port 5 mode register (PM5). Each pin is provided with a software programmable pull-up resistor. This port functions as follows if so specified by memory expansion mode register (MM) when an external memory or I/O is connected:

- When external 8-bit bus is specified As the high-order address bus (AD8 through AD15)
- When external 16-bit bus is specified As the high-order multiplexed address/data bus (AD8 through AD15).

When RESET is input, this port is set in the input mode (output high-impedance status), and the contents of the output latch are undefined.

(7) P60 through P63 (Port 6) ... 3-state I/O

Port 6 is a 4-bit I/O port with an output latch. This port can be set in the input or output mode in 1-bit units by using port 6 mode register (PM6). Each pin is provided with a software programmable pull-up resistor.

In addition to as an I/O port, this port also functions as the high-order address bus (A16 through A19) if so specified by the memory expansion mode register when an external memory or I/O is connected.

When RESET is input, this port is set in the input mode (output high-impedance status), and the contents of the output latch are undefined.

(8) P70 through P77 (Port 7) ... Input

Port 7 is an 8-bit input port. In addition to as input port pins, its pins also function as an A/D converter analog input (low-order 8 channels) pins (ANI0 through ANI7), and can always input analog signals. This port is set in the analog input mode by using A/D converter mode register (ADM).

The level of each pin of this port can always be read or tested, regardless of the multiplexed function.

(9) P80 through P87 (Port 8) ... Input

Port 8 is an 8-bit input port. In addition to functioning as input port pins, its pins also functions as an A/D converter analog input (high-order 8 channels) pins (ANI8 through ANI15), and can always input analog signals. This port is set in the analog input mode by using A/D converter mode register (ADM).

The level of each pin of this port can always be read or tested, regardless of the multiplexed function.

(10) P90 through P94 (Port 9) ... 3-state I/O

Port 9 is a 5-bit I/O port with an output latch. This port can be set in the input or output mode in 1-bit units by using port 9 mode register (PM9). Each pin is provided with a software programmable pull-up resistor.

In addition to the I/O port function, port 9 also functions as control signal pins (refer to **Table 2-5**). P90 through P93 function as read/write strobe signals and an address strobe signal if so specified by the memory extension mode register (MM) when an external memory or I/O is connected. P94 functions as a wait signal input pin if so specified by port 9 mode control register (PMC9).

When RESET is input, this port is set in the input mode (output high-impedance status), and the contents of the output latch are undefined.

Pin Name	Port Mode	Control Signal I/O Mode	Manipulation to Use Port 9 as Control Pins
P90	I/O Port	RD	Specifying external memory expansion mode by
P91		LWR	MM0 through MM3 bits of MM
P92		HWR	
P93		ASTB	
P94		WAIT	Setting of PMC94 bit of PMC9 to 1

Table 2-5. Operation Mode of Port 9

Remark For details, refer to CHAPTER 17 LOCAL BUS INTERFACE FUNCTION.

(a) Port mode

Each port pin not set in the control mode can be set in the input or output mode by using the port 9 mode register (PM9).

(b) Control signal I/O mode

(i) RD (Read Strobe)

This pin outputs a strobe signal to read an external memory. The operation of this pin is specified by the memory extension mode register (MM).

(ii) LWR, HWR (Low/High Write Strobe)

These pins output strobe signals to write an external memory. The operations of these pins are specified by the memory extension mode register (MM).

(iii) ASTB (Address Strobe)

This is a timing signal output pin to latch the address information output from the AD0 through AD15 pins to access the external memory. The operation of this pin is specified by the memory extension mode register (MM).

(iv) WAIT (Wait)

This pin inputs a wait signal. The operation of this pin is specified by the port 9 mode control register (PMC9).

(11) BWD (Bus Width Definition) ... Input

This pin specifies the width of the bus. Depending on the setting of this pin, the value of the bus width specification register (BW) at reset differs as follows:

BWD	External Bus Width	Value of BW at Reset
0	8 bits	0000H
1	16 bits	00FFH

(12) MODE (Mode) ... Input

This pin is used by NEC Electronics for testing IC. Be sure to directly connect this pin to Vss.

(13) CLKOUT (Clock Output) ... Output

Clock output. Low level is output in the IDLE mode or STOP mode, otherwise fxx (oscillation frequency) is always output

(14) X1, X2 (Crystal)

These pins are used to connect a crystal for internal clock oscillation. To supply an external clock, input the clock to the X1 pin. For the processing of the X2 pin at this time, refer to **CHAPTER 4 CLOCK GENERATOR**.

(15) RESET (Reset) ... Input

Active-low reset input

(16) AVREF (Analog Reference Voltage)

This pin inputs a reference voltage to the A/D converter.

(17) AVDD (Analog Power Supply)

This is the power supply pin of the A/D converter. Keep the potential at this pin same as that of the VDD pin.

(18) AVss (Analog Ground)

This is the GND pin of the A/D converter. Keep the potential at this pin same as that of the Vss pin.

(19) VDD (Power Supply)

This is a positive power supply. Connect all the VDD pins to a positive power supply.

(20) VPP^{Note} (Programming Power Supply)

This pin applies a flash memory programming voltage to the μ PD78F4046. If the input voltage of this pin is +5 V or higher, and the RESET signal goes low, the μ PD78F4046 enters the flash memory programming mode.

Note VPP is provided on the μ PD78F4046 only.

(21) Vss (Ground)

This is a GND pin. Ground all the Vss pins.

2.3 I/O Circuits of Pins and Processing of Unused Pins

Table 2-6 shows the I/O circuit type of each pin and recommended processing of the unused pins. For the I/O circuit type, refer to **Figure 2-1**.

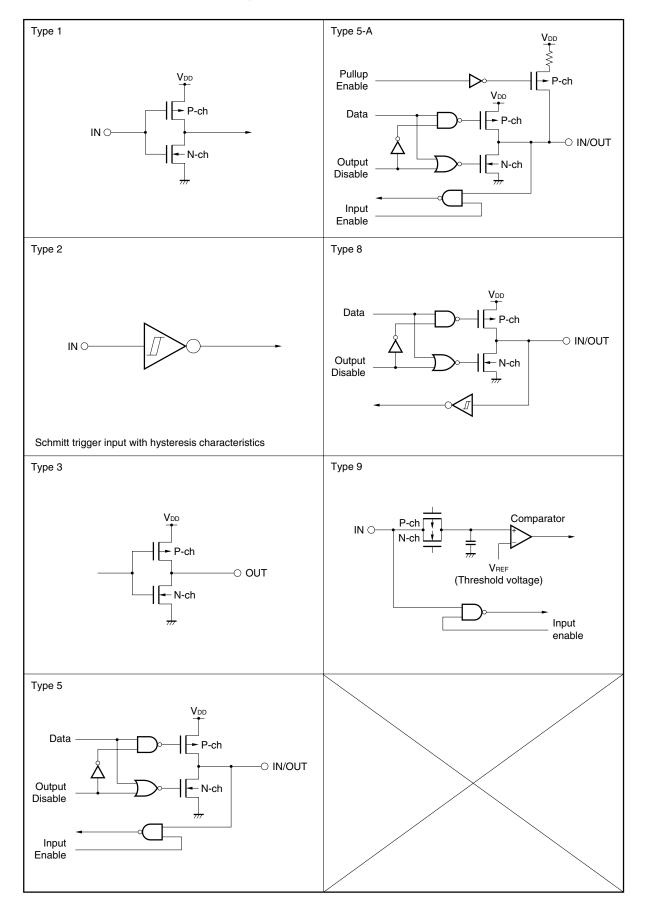

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P00/RTP0-P03/RTP3	5-A	I/O	Input: Individually connect to VDD or Vss via resistor.
P10 to P12	5		Output: Leave unconnected.
P11/TO21			
P12/TO30			
P13/TO31			
P20/NMI	2	Input	Connect to Vss.
P21/INTP0/TO00	8	I/O	Input: Individually connect to VDD or Vss via resistor.
P22/INTP1/TO01			Output: Leave unconnected.
P23/INTP2/TO02			
P24/INTP3/TO03]		
P25/INTP4]		
P26/INTP5/TI2]		
P27/INTP6/TI3			
P30/TO10	5		
P31/TO11			
P32/RxD/SI1			
P33/TxD/SO1			
P34/ASCK/SCK1	8		
P35/RxD2/SI2	5		
P36/TxD2/SO2			
P37/ASCK2/SCK2	8		
P40/AD0-P47/AD7	5-A		
P50/AD8-P57/AD15			
P60/A16-P63/A19]		
P70/ANI0-P77/ANI7	9	Input	Connect to Vss.
P80/ANI8-P87/ANI15]		
P90/RD	5-A	I/O	Input: Individually connect to VDD or Vss via resistor.
P91/LWR			Output: Leave unconnected.
P92/HWR]		
P93/ASTB]		
P94/WAIT]		

Table 2-6.	I/O Circuit Type	of Each Pin and	Recommended Proce	essing of Unused Pins (1/2)
	"e en ean ijpe			

Table 2-6. I/O Circuit Type of Each Pin and Recommended Processing of Unused Pins (2/2)

	Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
*	BWD	1	Input	Connect to VDD or Vss.
	MODE			Directly connect to Vss.
	(mask ROM product)			
	MODE/Vpp			
	(flash memory product)			
	RESET	2		_
	CLKOUT	3	Output	Leave unconnected.
	AVREF	_	-	Connect to Vss.
	AVss			
	AVDD			Connect to V _{DD} .

Remark The circuit type numbers are serial in the 78K series but are not always so with some models (because some models are not provided with particular circuits).

CHAPTER 3 CPU ARCHITECTURE

3.1 Memory Space

The μ PD784046 can access a 1 M-byte memory space. The mapping of the internal data area (special function registers and internal RAM) depends on the LOCATION instruction. A LOCATION instruction must be executed after reset release, and can only be used once.

The program after reset release must be as follows:

RSTVCT CSEG AT 0 DW RSTSTRT to INITSEG CSEG BASE RSTSTRT: LOCATION 0H; or LOCATION 0FH MOVG SP, #STKBGN

(1) When LOCATION 0H instruction is executed

The internal data area is mapped onto addresses 0F700H to 0FFFFH in the μ PD784046, and onto addresses 0FB00H to 0FFFFH in the μ PD784044.

Internal ROM is mapped onto addresses 0 to 0F5FFH in the μ PD784046, and onto addresses 0 to 07FFFH in the μ PD784044. The addresses 0F600H to 0FFFFH of the 64 K-byte ROM (00000H to 0FFFFH) incorporated in the μ PD784046 cannot be used as ROM when the LOCATION 0H instruction is executed.

External memory is accessed in external memory extension mode.

(2) When LOCATION 0FH instruction is executed

The internal data area is mapped onto addresses FF700H to FFFFFH in the μ PD784046, and onto addresses FF800H to FFFFFH in the μ PD784044.

Internal ROM is mapped onto addresses 0 to 0FFFFH in the μ PD784046, and onto addresses 0 to 07FFFH in the μ PD784044.

External memory is accessed in external memory extension mode.

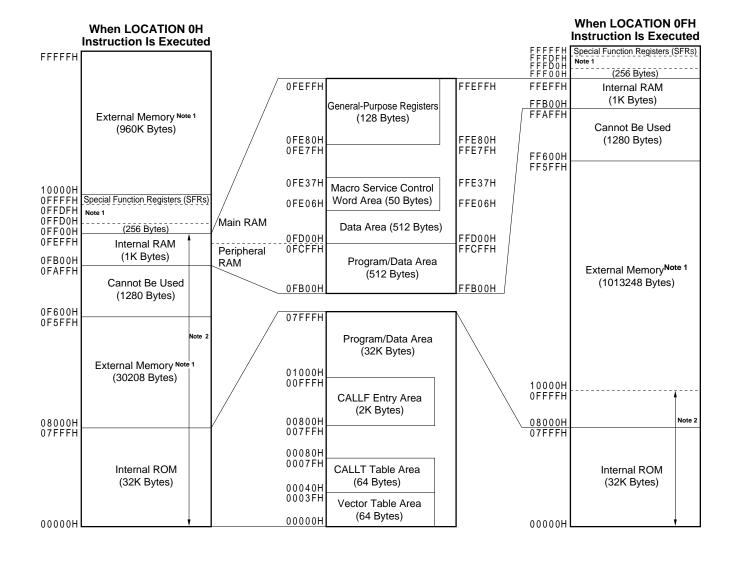


Figure 3-1. μ PD784044 Memory Map

Notes 1. Accessed in the external memory extension mode.

2. Base area or entry area by reset or interrupt. The internal RAM is not reset.

r	When LOCATION 0						FFFFFH	When LOCATION 0FH Instruction Is Executed Special Function Registers (SFRs)
FFFFFH							FFFDFH FFFD0H FFF00H	Note 1 (256 Bytes)
			/	OFEFFH		FFEFFH	FFEFFH	
	External Memory ^{Note 1} (960K Bytes)				General-Purpose Registers (128 Bytes)			Internal RAM (2K Bytes)
	(BOOK Dyles)			0FE80H		FFE80H	FF700H	
				0FE7FH		FFE7FH	FF6FFH	Cannot Be Used
							FF600H	(256 Bytes)
10000H				0FE37H	Macro Service Control	FFE37H	FF5FFH	
	Special Function Registers (S Note 1	SFRs)		0FE06H	Word Area (50 Bytes)	FFE06H		
OFFOOH	(256 Bytes)		/Main RAM		Data Area (512 Bytes)			
OFEFFH	· · ·	ł		0FD00H		FFD00H		
	Internal RAM (2K Bytes)		Peripheral RAM	0FCFFH	Program/Data Area (1536 Bytes)	FFCFFH		
0F700H				0F700H		FF700H		External Memory ^{Note 1}
0F6FFH	Cannot Be Used							(980480 Bytes)
0F600H	(256 Bytes)				Note 2	OFFFFH		(000400 Dytes)
0F5FFH				0F500H	Program/Data Area ^{Note 3}			
				01000H				
		Not	e 4	00FFFH	CALLF Entry Area (2K Bytes)			
	Internal ROM			01000H			10000H	
	(62976 Bytes)			007FFH			0FFFFH	↓ ↑
				00080H				
				0007FH	CALLT Table Area			Internal ROM
				00040H	(64 Bytes)			(64K Bytes) Note 4
				0003FH	Vector Table Area			
00000н		ł		00000H	(64 Bytes)		00000H	•

Figure 3-2. μ PD784046 Memory Map

Notes 1. Accessed in the external memory extension mode.

- 2. 2560 bytes in this area can be used as internal ROM only when the LOCATION 0FH instruction is executed.
- **3.** When the LOCATION 0H instruction is executed: 62976 bytes When the LOCATION 0FH instruction is executed: 65536 bytes
- 4. Base area or entry area by reset or interrupt. The internal RAM is not reset.

3.2 Internal ROM Area

The μ PD784046 subseries products incorporate ROM which is used to store programs, table data, etc.

If the internal ROM area and internal data area overlap when the LOCATION 0H instruction is executed, the internal data area is accessed, and the overlapping part of the internal ROM area cannot be accessed.

		Address Space		
Product Name	Internal ROM	Location 0H Instruction	Location 0FH Instruction	
μPD784044	32 K \times 8 bits	00000H-07FFFH	00000H-07FFFH	
μPD784046 μPD78F4046	64 K \times 8 bits	00000H-0F5FFH	00000H-0FFFFH	

Table 3-1. Internal ROM Area

The internal ROM can be accessed at high speed. Normally, fetches are performed at the same speed as external ROM, but if the IFCH bit of the memory extension mode register (MM) is set (1), the high-speed fetch function is used and internal ROM fetches are performed at high speed (2-byte fetch performed in 2 system clocks).

When the instruction execution cycle equal to an external ROM fetch is selected, wait insertion is performed by the wait function, but when high-speed fetches are used, wait insertion is not performed for internal ROM.

RESET input sets the instruction execution cycle equal to the external ROM fetch cycle.

3.3 Base Area

The space from 0 to FFFFH comprises the base area. The base area is the object for the following uses:

- Reset entry address
- Interrupt entry address
- CALLT instruction entry address
- 16-bit immediate addressing mode (with instruction address addressing)
- 16-bit direct addressing mode
- 16-bit register addressing mode (with instruction address addressing)
- 16-bit register indirect addressing mode
- Short direct 16-bit memory indirect addressing mode

The vector table area, CALLT instruction table area and CALLF instruction entry area are allocated to the base area. When the LOCATION 0H instruction is executed, the internal data area is located in the base area. Note that, in the internal data area, program fetches cannot be performed from the internal high-speed RAM area or special function register (SFR) area. Also, internal RAM area data should only be used after initialization has been performed.

3.3.1 Vector table area

The 64-byte area from 00000H to 0003FH is reserved as the vector table area. The vector table area stores the program start addresses used when a branch is made as the result of $\overrightarrow{\text{RESET}}$ input or generation of an interrupt request. When context switching is used by an interrupt, the number of the register bank to be switched to is stored here.

Any portion not used as the vector table can be used as program memory or data memory.

16-bit values can be written to the vector table. Therefore, branches can only be made within the base area.

Vector Table Address	Interrupt Cause
0003CH	Operand error
0003EH	BRK
00000H	Reset (RESET input)
00002H	NMI
00004H	INTWDT
00006H	INTOV0
00008H	INTOV1
0000AH	INTOV4
0000CH	INTP0/INTCC00
0000EH	INTP1/INTCC01
00010H	INTP2/INTCC02
00012H	INTP3/INTCC03
00014H	INTP4
00016H	INTP5
00018H	INTP6
0001AH	INTCM10
0001CH	INTCM11
0001EH	INTCM20
00020H	INTCM21
00022H	INTCM30
00024H	INTCM31
00026H	INTCM40
00028H	INTCM41
0002AH	INTSER
0002CH	INTSR/INTCSI1
0002EH	INTST
00030H	INTSER2
00032H	INTSR2/INTCSI2
00034H	INTST2
00036H	INTAD

Table 3	3-2. V	ector	Table
---------	--------	-------	-------

3.3.2 CALLT instruction table area

The 1-byte call instruction (CALLT) subroutine entry addresses can be stored in the 64-byte area from 00040H to 0007FH. The CALLT instruction references this table, and branches to a base area address written in the table as a subroutine. As the CALLT instruction is one byte in length, use of the CALLT instruction for subroutine calls written frequently throughout the program enables the program object size to be reduced. The table can contain up to 32 subroutine entry addresses, and therefore it is recommended that they be recorded in order of frequency.

If this area is not used as the CALLT instruction table, it can be used as ordinary program memory or data memory.

3.3.3 CALLF instruction entry area

A subroutine call can be made directly to the area from 00800H to 00FFFH with the 2-byte call instruction (CALLF). As the CALLF instruction is a two-byte call instruction, it enables the object size to be reduced compared with use of the direct subroutine call CALL instruction (3 or 4 bytes).

Writing subroutines directly in this area is an effective means of exploiting the high-speed capability of the device.

If you wish to reduce the object size, writing an unconditional branch (BR) instruction in this area and locating the subroutine itself outside this area will result in a reduced object size for subroutines that are called from five or more points. In this case, only the 4 bytes of the BR instruction are occupied in the CALLF entry area, enabling the object size to be reduced with a large number of subroutines.

3.4 Internal Data Area

The internal data area consists of the internal RAM area and special function register area (refer to **Figures 3-1** and **3-2**).

The final address of the internal data area can be specified by means of the LOCATION instruction as either 0FFFFH (when a LOCATION 0H instruction is executed) or FFFFH (when a LOCATION 0FH instruction is executed). Selection of the addresses of the internal data area by means of the LOCATION instruction must be executed once immediately after reset release, and once the selection is made, it cannot be changed. The program after reset release must be as shown in the example below. If the internal data area and another area are allocated to the same addresses, the internal data area cannot be accessed.

Example	RSTVCT	CSEG	AT 0
		DW	RSTSTRT
		to	
	INITSEG	CSEG	BASE
	RSTSTRT:	LOCATIO	N 0H; or LOCATION 0FH
		MOVG	SP, #STKBGN

Caution When the LOCATION 0H instruction is executed, it is necessary to ensure that the program after reset release does not overlap the internal data area. It is also necessary to make sure that the entry addresses of the processing routines for non-maskable interrupts such as NMI do not overlap the internal data area. Also, initialization must be performed for maskable interrupt entry areas, etc., before the internal data area is referenced.

3.4.1 Internal RAM area

The μ PD784046 incorporates general-purpose static RAM.

This area is configured as follows:

Peripheral RAM (PRAM)

Internal RAM area

-Internal high-speed RAM (IRAM)

Table 3-3. Internal RAM Area

Internal RAM	Internal RAM Area		
Product Name		Peripheral RAM: PRAM	Internal High-Speed RAM: IRAM
μPD784044	1024 bytes (0FB00H-0FEFFH)	512 bytes (0FB00H-0FCFFH)	512 bytes (0FD00H-0FEFFH)
μPD784046	2048 bytes	1536 bytes	
μPD78F4046	(0F700H-0FEFFH)	(0F700H-0FCFFH)	

Remark The addresses in the table are the values that apply when the LOCATION 0H instruction is executed. When the LOCATION 0FH instruction is executed, 0F0000H should be added to the values shown above.

The internal RAM memory map is shown in Figure 3-3.

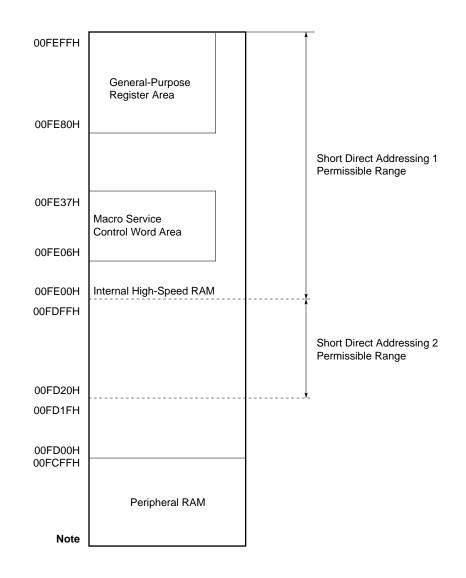


Figure 3-3. Internal RAM Memory Map

- **Note** μPD784044 00FB00H μPD784046, 78F4046 00F700H
- **Remark** The addresses in the figure are the values that apply when the LOCATION 0H instruction is executed. When the LOCATION 0FH instruction is executed, 0F0000H should be added to the values shown above.

(1) Internal high-speed RAM (IRAM)

The internal high-speed RAM (IRAM) allows high-speed accesses to be made. The short direct addressing mode for high-speed accesses can be used on FD20H to FEFFH in this area. There are two kinds of short direct addressing mode, short direct addressing 1 and short direct addressing 2, according to the target address. The function is the same in both of these addressing modes. With some instructions, the word length is shorter with short direct addressing 1. Refer to the **78K/IV Series User's Manual – Instruction** for details. A program fetch cannot be performed from IRAM. If a program fetch is performed from an address onto which IRAM is mapped, CPU inadvertent loop will result.

The following areas are reserved in IRAM.

- General-purpose register area : FE80H to FEFFH
- Macro service control word area : FE06H to FE37H
- Macro service channel area : FE00H to FEFFH (the address is specified by the macro service control word)

If the reserved function is not used in these areas, they can be used as ordinary data memory.

Remark The addresses in this text are those that apply when the LOCATION 0H instruction is executed. When the LOCATION 0FH instruction is executed, 0F0000H should be added to the values shown in the text.

(2) Peripheral RAM (PRAM)

The peripheral RAM (PRAM) is used as ordinary program memory or data memory. When used as program memory, the program must be written to the peripheral RAM beforehand by a program. Program fetches from peripheral RAM are fast, with a 2-byte fetch being executed in 2 clocks.

3.4.2 Special function register (SFR) area

The on-chip peripheral hardware special function registers (SFRs) are mapped onto the area from 0FF00H to 0FFFFH (refer to **Figures 3-1** and **3-2**).

The area from 0FFD0H to 0FFDFH is mapped as an external SFR area, and allows externally connected peripheral I/ Os, etc., to be accessed in external memory extension mode (specified by the memory extension mode register (MM)).

- Caution Addresses onto which SFRs are not mapped should not be accessed in this area. If such an address is accessed by mistake, the CPU may become deadlocked. A deadlock can only be released by reset input.
- **Remark** The addresses in this text are those that apply when the LOCATION 0H instruction is executed. When the LOCATION 0FH instruction is executed, 0F0000H should be added to the values shown in the text.

3.4.3 External SFR area

In μ PD784046 subseries products, the 16-byte area from 0FFD0H to 0FFDFH in the SFR area (when the LOCATION 0H is executed; 0FFFD0H to 0FFFDFH when the LOCATION 0FH instruction is executed) is mapped as an external SFR area. When the external memory extension mode is externally connected peripheral I/Os, etc., can be accessed using the address bus or address/data bus, etc.

As the external SFR area can be accessed by SFR addressing, peripheral I/O and similar operations can be performed easily, the object size can be reduced, and macro service can be used.

Bus operations for accesses to the external SFR area are performed in the same way as for ordinary memory accesses.

3.5 External Memory Space

The external memory space is a memory space that can be accessed in accordance with the setting of the memory extension mode register (MM). It can store programs, table data, etc., and can have peripheral I/O devices allocated to it.

3.6 Memory Mapping of μ PD78F4046

The μ PD78F4046 has 64K bytes of flash memory and 2048 bytes of internal RAM.

The μ PD78F4046 has a function to not use part of the internal memory (memory size select function). This function is effected by software.

The memory size is changed by using the internal memory size select register (IMS).

This register can be read or written by using an 8-bit manipulation instruction. Data can be only written to the IMS of the μ PD78F4046, however. The IMS of the μ PD784044 and 784046 retains the value at reset even if data is written to it.

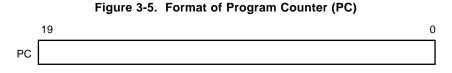
Therefore, the value of the IMS at $\overrightarrow{\text{RESET}}$ differs depending on the model. In the case of the μ PD784044, it is CDH. The value of the IMS of the μ PD784046 and 78F4046 is set to DEH at $\overrightarrow{\text{RESET}}$.

Address	: OFFF	СН	On res	et: Not	e	R/W		
_	7	6	5	4	3	2	1	0
IMS	1	1	ROM1	ROM0	1	1	RAM1	RAM0
-						÷		
		ROM1	ROM0	Sele	ects I	nternal RO	M Capa	icity
				μPD784	4044	μPD7840	46 µPD	78F4046
		0	0	32K byt	es	Invalid	32K	bytes
		0	1	Invalid 64K bytes 64		64K	bytes	
		Other		Setting prohibited				
		RAM1	RAM0	Selects Peripheral RAM Capacity			acity	
				μPD784044 μ		μPD784046 μPD78F		78F4046
		0	1	512 byt	es	Invalid	768	bytes
		1	0	Invalid		1.5K byte	s 1.5K	bytes
		Other		Setting prohibited				

Figure 3-4. Format of Internal Memory Size Select Register (IMS)

Note The value at reset differs depending on the model. μ PD784044 : CDH μ PD784046, 78F4046 : DEH

- Cautions 1. Writing to the internal memory size select register (IMS) is valid only with the μ PD78F4046. The IMS of the μ PD784044 and 784046 holds the value at RESET even if data is written to it.
 - 2. To develop a program for the μ PD784044 using the μ PD78F4046, set the value of the IMS to CDH. When the value of the IMS is set to CDH, the peripheral RAM capacity of the μ PD78F4046 is 768 bytes, but the peripheral RAM capacity of the μ PD784044 is 512 bytes. When using a mask ROM, therefore, exercise care that addresses 0FA00H through 0FAFFH of the peripheral RAM area of the μ PD78F4046 are not used (when the LOCATION 0H instruction is executed).


3.7 Control Registers

Control registers consist of the program counter (PC), program status word (PSW), and stack pointer (SP).

3.7.1 Program counter (PC)

This is a 20-bit binary counter that holds address information on the next program to be executed (refer to **Figure 3-5**). Normally, the PC is incremented automatically by the number of bytes in the fetched instruction. When an instruction associated with a branch is executed, the immediate data or register contents are set in the PC.

Upon RESET input, the 16-bit data in address 0 and 1 is set in the low-order 16 bits, and 0000 in the high-order 4 bits of the PC.

3.7.2 Program status word (PSW)

The program status word (PSW) is a 16-bit register comprising various flags that are set or reset according to the result of instruction execution.

Read accesses and write accesses are performed in high-order 8-bit (PSWH) and low-order 8-bit (PSWL) units. Individual flags can be manipulated by bit-manipulation instructions.

The contents of the PSW are automatically saved to the stack when a vectored interrupt request is acknowledged or a BRK instruction is executed, and automatically restored when an RETI or RETB instruction is executed. When context switching is used, the contents are automatically saved in RP3, and automatically restored when an RETCS or RETCSB instruction is executed.

RESET input resets (0) all bits.

"0" must always be written to the bits written as "0" in Figure 3-6. The contents of bits written as "-" are undefined when read.

Symbol	7	6	5	4	3	2	1	0
PSWH	UF	RBS2	RBS1	RBS0	-	_	-	-
	7	6	5	4	3	2	1	0
PSWL	S	Z	RSS	AC	IE	P/V	0	CY

Figure 3-6. Format of Program Status Word (PSW)

The flags are described below.

(1) Carry flag (CY)

The carry flag records a carry or borrow resulting from an operation.

This flag also records the shifted-out value when a shift/rotate instruction is executed, and functions as a bit accumulator when a bit-manipulation instruction is executed.

The status of the CY flag can be tested with a conditional branch instruction.

(2) Parity/overflow flag (P/V)

The P/V flag performs the following two kinds of operation associated with execution of an operation instruction. The status of the P/V flag can be tested with a conditional branch instruction.

• Parity flag operation

Set (1) when the number of bits set (1) as the result of execution of a logical operation instruction, shift/rotate instruction, or a CHKL or CHKLA instruction is even, and reset (0) if odd. When a 16-bit shift instruction is executed, however, only the low-order 8 bits of the operation result are valid for the parity flag.

Overflow flag operation

Set (1) only when the numeric range expressed as a two's complement is exceeded as the result of execution of a arithmetic operation instruction, and reset (0) otherwise. More specifically, the value of this flag is the exclusive OR of the carry into the MSB and the carry out of the MSB. For example, the two's complement range in an 8-bit arithmetic operation is 80H (-128) to 7FH (+127), and the flag is set (1) if the operation result is outside this range, and reset (0) if within this range.

Example The operation of the overflow flag when an 8-bit addition instruction is executed is shown below.

When the addition of 78H (+120) and 69H (+105) is performed, the operation result is E1H (+225), and the two's complement limit is exceeded, with the result that the P/V flag is set (1). Expressed as a two's complement, E1H is -31.

When the following two negative numbers are added together, the operation result is within the two's complement range, and therefore the P/V flag is reset (0).

FBH (-5) = 1111 1011
+) FOH (-16) = +) 1111 0000
1 1110 1011 = -21 P/V = 0
$$\uparrow$$

CY

(3) Interrupt request enable flag (IE)

This flag controls CPU interrupt request acknowledgment operations.

When "0", interrupts are disabled, and only non-maskable interrupts and unmasked macro service can be acknowledged. All other interrupts are disabled.

When "1", the interrupt enabled state is set, and enabling of interrupt request acknowledgment is controlled by the interrupt mask flags corresponding to the individual interrupt requests and the priority of the individual interrupts. The IE flag is set (1) by execution of an El instruction, and reset (0) by execution of a DI instruction or acknowledgment of an interrupt.

(4) Auxiliary carry flag (AC)

The AC flag is set (1) when there is a carry out of bit 3 or a borrow into bit 3 as the result of an operation, and reset (0) otherwise.

This flag is used when the ADJBA or ADJBS instruction is executed.

(5) Register set selection flag (RSS)

The RSS flag specifies the general-purpose registers that function as X, A, C and B, and the general-purpose register pairs (16-bit) that function as AX and BC.

This flag is provided to maintain compatibility with the 78K/III series, and must be set to 0 except when using a 78K/III series program.

(6) Zero flag (Z)

The Z flag records the fact that the result of an operation is "0".

It is set (1) when the result of an operation is "0", and reset (0) otherwise. The status of the Z flag can be tested with a conditional branch instruction.

(7) Sign flag (S)

The S flag records the fact that the MSB is "1" as the result of an operation.

It is set (1) when the MSB is "1" as the result of an operation, and reset (0) otherwise. The status of the S flag can be tested with a conditional branch instruction.

(8) Register bank selection flag (RBS0 to RBS2)

This is a 3-bit flag used to select one of the 8 register banks (register bank 0 to register bank 7) (refer to **Table 3-4**).

It stores 3-bit information which indicates the register bank selected by execution of a SEL RBn instruction, etc.

RBS2	RBS1	RBS0	Specified Register Bank
0	0	0	Register bank 0
0	0	1	Register bank 1
0	1	0	Register bank 2
0	1	1	Register bank 3
1	0	0	Register bank 4
1	0	1	Register bank 5
1	1	0	Register bank 6
1	1	1	Register bank 7

Table 3-4. Register Bank Selection

(9) User flag (UF)

This flag can be set and reset in the user program, and used for program control.

3.7.3 Use of RSS bit

Basically, the RSS bit should be fixed at 0 at all times.

The following explanation refers to the case where a 78K/III series program is used, and the program used sets the RSS bit to 1. This explanation can be skipped if the RSS bit is fixed at 0.

The RSS bit is provided to allow the functions of A (R1), X (R0), B (R3), C (R2), AX (RP0) and BC (RP1) to be used by registers R4 to R7 (RP2, RP3) as well. Effective use of this bit enables efficient programs to be written in terms of program size and program execution.

However, careless use can result in unforeseen problems. Therefore, the RSS bit should always be set to 0. The RSS bit should only be set to 1 when a 78K/III series program is used.

Use of the RSS bit set to 0 in all programs will improve programming and debugging efficiency.

Even when using a program in which the RSS bit set to 1 is used, it is recommended that the program be amended if possible so that it does not set the RSS bit to 1.

(1) RSS bit recommendations

- Registers used by instructions for which the A, X, B, C and AX registers are directly entered in the operand column
 of the operation list (refer to 21.2.)
- Registers specified as implied by instructions that use the A, AX, B and C registers by means of implied addressing
- Registers used in addressing by instructions that use the A, B and C registers in indexed addressing and based indexed addressing

The registers used in these cases are switched as follows according to the RSS bit.

- When RSS = 0
 A→R1, X→R0, B→R3, C→R2, AX→RP0, BC→RP1
- When RSS = 1 A \rightarrow R5, X \rightarrow R4, B \rightarrow R7, C \rightarrow R6, AX \rightarrow RP2, BC \rightarrow RP3

Registers used other than those mentioned above are always the same irrespective of the value of the RSS bit. With the NEC Electronics assembler (RA78K4), the register operation code generated when the A, X, B, C, AX and BC registers are described by those names is determined by the assembler RSS pseudo-instruction.

When the RSS bit is set or reset, an RSS pseudo-instruction must be written immediately before (or immediately after) the relevant instruction (refer to **example** below).

<Program example>

• When RSS is set to 0

RSS0; RSS pseudo-instructionCLR1PSWL.5MOVB, A; This code is equivalent to "MOV R3, R1".

When RSS is set to 1

RSS1; RSS pseudo-instructionSET1PSWL.5MOVB, A; This code is equivalent to "MOV R7, R5".

(2) Operation code generation method with RA78K4

- With RA78K4, if there is an instruction with the same function as an instruction for which A or AX is directly entered in the operand column of the instruction operation list, the operation code for which A or AX is directly entered in the operand column is generated first.
 - **Example** The function is the same when B is used as r in a MOV A,r instruction, and when A is used as r and B is used as r' in a MOVr,r' instruction, and the same code (MOV,A,B) is used in the assembler source program. In this case, RA78K4 generates code equivalent to the MOV A, r instruction.
- If A, X, B, C, AX or BC is written in an instruction for which r, r', rp and rp' are specified in the operand column, the A, X, B, C, AX and BC instructions generate an operation code that specifies the following registers according to the operand of the RA78K4 RSS pseudo-instruction.

Register	RSS = 0	RSS = 1
А	R1	R5
Х	R0	R4
В	R3	R7
С	R2	R6
AX	RP0	RP2
BC	RP1	RP3

- If R0 to R7 or RP0 to RP4 is written as r, r', rp or rp' in the operand column, an operation code in accordance with that specification is output (an operation code for which A or AX is directly entered in the operand column is not output.)
- R1, R3, R2 or R5, R7, R6 cannot be used for registers A, B and C used in indexed addressing and based indexed addressing.

(3) Operating precautions

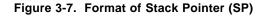
Switching the RSS bit has the same effect as having two register sets. However, when writing a program, care must be taken to ensure that the static program code and dynamic RSS bit changes at the time of program execution always coincide.

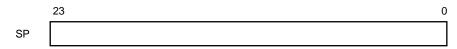
Also, a program that sets RSS to 1 cannot be used by a program that uses the context switching function, and therefore program usability is poor. Moreover, since different registers are used with the same name, program readability is poor and debugging is difficult. Therefore, if it is necessary to set RSS to 1, these disadvantages must be fully taken into consideration when writing a program.

A register not specified by the RSS bit can be accessed by writing its absolute name.

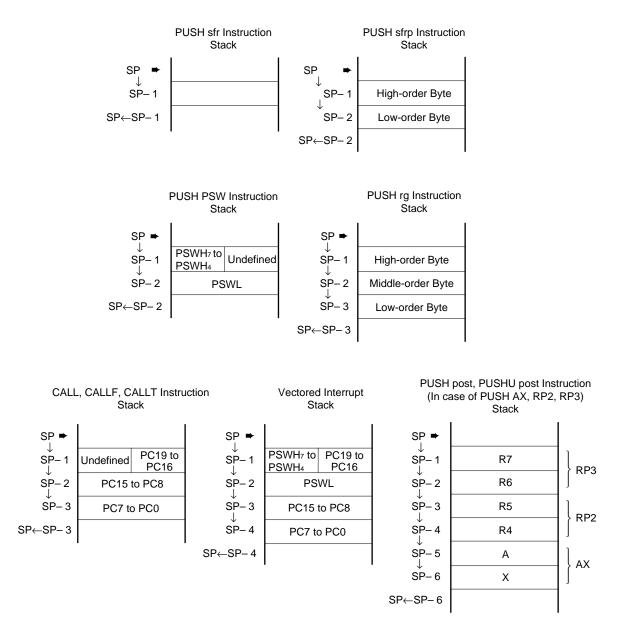
3.7.4 Stack pointer (SP)

The stack pointer is a 24-bit register that holds the start address of the stack area (LIFO type: 00000H to FFFFFH) (refer to **Figure 3-7**). It is used to address the stack area when subroutine processing or interrupt processing is performed. Be sure to write "0" in the high-order 4 bits.


The contents of the SP are decremented before a write to the stack area and incremented after a read from the stack area (refer to **Figures 3-8** and **3-9**).


The SP is accessed by dedicated instructions.

The SP contents are undefined after RESET input, and therefore the SP must always be initialized by an initialization program directly after reset release (before a subroutine call or interrupt acknowledgment).


Example SP initialization

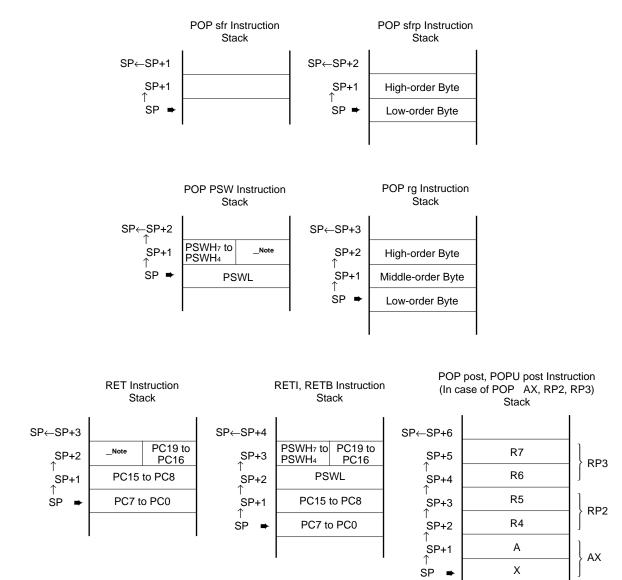

MOVG SP, #0FEE0H;SP \leftarrow 0FEE0H (when used from FEDFH)

Figure 3-9. Data Restored from Stack Area

Note This 4-bit data is ignored.

- Cautions 1. With stack addressing, the entire 1 M-byte space can be accessed but a stack area cannot be reserved in the SFR area or internal ROM area.
 - 2. The stack pointer (SP) is undefined after RESET input. Moreover, non-maskable interrupts can still be acknowledged when the SP is in an undefined state. An unanticipated operation may therefore be performed if a non-maskable interrupt request is generated when the SP is in the undefined state directly after reset release. To avoid this risk, the program after reset release must be written as follows.

RSTVCT CSEG AT 0 DW RSTSTRT to INITSEG CSEG BASE RSTSTRT : LOCATION 0H ; or LOCATION 0FH MOVG SP, #STKBGN

3.8 General Registers

3.8.1 Configuration

There are sixteen 8-bit general-purpose registers, and two 8-bit general-purpose registers can be used together as a 16-bit general-purpose register. In addition, four of the 16-bit general-purpose registers can be combined with an 8-bit register for address extension, and used as 24-bit address specification registers.

General-purpose registers other than the V, U, T and W registers for address extension are mapped onto internal RAM.

These register sets are provided in 8 banks, and can be switched by means of software or the context switching function. Upon RESET input, register bank 0 is selected. The register bank used during program execution can be checked by reading the register bank selection flag (RBS0, RBS1, RBS2) in the PSW.

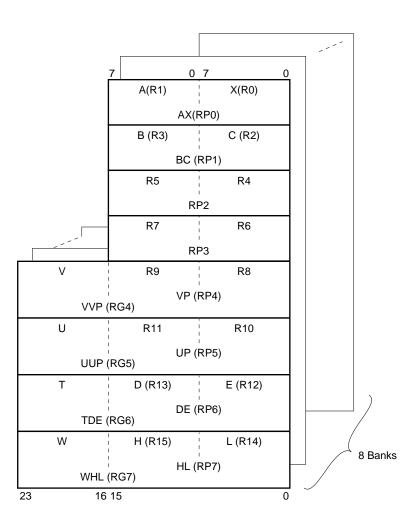
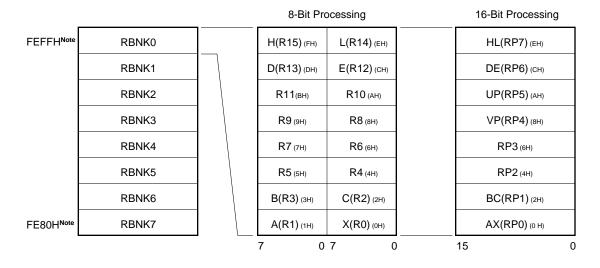



Figure 3-10. Format of General-Purpose Register

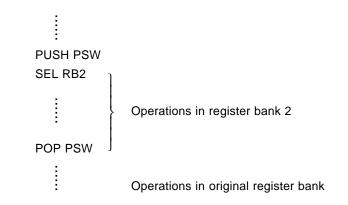

Remark Absolute names are shown in parentheses.

Figure 3-11. General-Purpose Register Addresses

- **Note** When the LOCATION 0H instruction is executed. When the LOCATION 0FH instruction is executed, 0F0000H should be added to the address values shown above.
- Caution R4, R5, R6, R7, RP2 and RP3 can be used as the X, A, C, B, AX and BC registers respectively by setting the RSS bit of the PSW to 1, but this function should only be used when using a 78K/III series program.
- **Remark** When the register bank is changed, and it is necessary to return to the original register bank, an SEL RBn instruction should be executed after saving the PSW to the stack with a PUSH PSW instruction. When returning to the original register bank, if the stack location does not change the POP PSW instruction should be used. When the register bank is changed by a vectored interrupt processing program, etc., the PSW is automatically saved to the stack when an interrupt is acknowledged and restored by an RETI or RETB instruction, so that, if only one register bank is used in the interrupt service routine, only an SEL RBn instruction needs be executed, and execution of a PUSH PSW and POP PSW instruction is not necessary.

Example When register bank 2 is specified

3.8.2 Functions

In addition to being manipulated in 8-bit units, the general-purpose registers can also be manipulated in 16-bit units by pairing two 8-bit registers. Also, four of the 16-bit registers can be combined with an 8-bit register for address extension and manipulated in 24-bit units.

Each register can be used in a general-purpose way for temporary storage of an operation result and as the operand of an inter-register operation instruction.

The area from 0FE80H to 0FEFFH (when the LOCATION 0H instruction is executed; 0FFE80H to 0FFEFFH when the LOCATION 0FH instruction is executed) can be given an address specification and accessed as ordinary data memory irrespective of whether or not it is used as the general-purpose register area.

As 8 register banks are provided in the 78K/IV series, efficient programs can be written by using different register banks for normal processing and processing in the event of an interrupt.

The registers have the following specific functions.

A (R1):

- Register mainly used for 8-bit data transfers and operation processing. Can be used in combination with all addressing modes for 8-bit data.
- Can also be used for bit data storage.
- Can be used as the register that stores the offset value in indexed addressing and based indexed addressing.

X (R0):

• Can be used for bit data storage.

AX (RP0):

 Register mainly used for 16-bit data transfers and operation processing. Can be used in combination with all addressing modes for 16-bit data.

AXDE:

• Used for 32-bit data storage when a DIVUX, MACW or MACSW instruction is executed.

B (R3):

- Has a loop counter function, and can be used by the DBNZ instruction.
- Can be used as the register that stores the offset value in indexed addressing and based indexed addressing.
- Used as the MACW and MACSW instruction data pointer.

C (R2):

- Has a loop counter function, and can be used by the DBNZ instruction.
- Can be used as the register that stores the offset value in based indexed addressing.
- Used as the counter in a string instruction and the SACW instruction.
- Used as the MACW and MACSW instruction data pointer.

RP2:

• Used to save the low-order 16 bits of the program counter (PC) when context switching is used.

RP3:

• Used to save the high-order 4 bits of the program counter (PC) and the program status word (PSW) (excluding bit 0 to bit 3 of PSWH) when context switching is used.

VVP (RG4):

• Has a pointer function, and operates as the register that specifies the base address in register indirect addressing, based addressing and based indexed addressing.

UUP (RG5):

- Has a user stack pointer function, and enables a stack separate from the system stack to be implemented by means of the PUSHU and POPU instructions.
- Has a pointer function, and operates as the register that specifies the base address in register indirect addressing and based addressing.

DE (RP6), HL (RP7):

• Operate as the registers that store the offset value in indexed addressing and based indexed addressing.

TDE (RG6):

- Has a pointer function, and operates as the register that specifies the base address in register indirect addressing and based addressing.
- Used as the pointer in a string instruction and the SACW instruction.

WHL (RG7):

- Register used mainly for 24-bit data transfers and operation processing.
- Has a pointer function, and operates as the register that specifies the base address in register indirect addressing and based addressing.
- Used as the pointer in a string instruction and the SACW instruction.

In addition to the function name that emphasizes the specific function of the register (X, A, C, B, E, D, L, H, AX, BC, VP, UP, DE, HL, VVP, UUP, TDE, WHL), each register can also be described by its absolute name (R0 to R15, RP0 to RP7, RG4 to RG7). The correspondence between these names is shown in Table 3-5.

(a) 8-bit registers

Absolute Name	Functior	n Name
Absolute Name	RSS = 0	RSS = 1 ^{Note}
R0	Х	
R1	A	
R2	С	
R3	В	
R4		Х
R5		А
R6		С
R7		В
R8		
R9		
R10		
R11		
R12	E	E
R13	D	D
R14	L	L
R15	Н	Н

(b) 16-bit registers

Absolute Name	Function Name				
Absolute Mame	RSS = 0	RSS = 1 ^{Note}			
RP0	AX				
RP1	BC				
RP2		AX			
RP3		BC			
RP4	VP	VP			
RP5	UP	UP			
RP6	DE	DE			
RP7	HL	HL			

(c) 24-bit registers

Absolute Name	Function Name
RG4	VVP
RG5	UUP
RG6	TDE
RG7	WHL

Note RSS should only be set to 1 when a 78K/III series program is used.

Remark R8 to R11 have no function name.

3.9 Special Function Registers (SFRs)

These are registers to which a special function is assigned, such as on-chip peripheral hardware mode registers, control registers, etc. They are mapped onto the 256-byte space from 0FF00H to 0FFFFH^{Note}.

- **Note** When the LOCATION 0H instruction is executed. When the LOCATION 0FH instruction is executed, the area is FFF00H to FFFFFH.
- Caution Addresses onto which SFRs are not assigned should not be accessed in this area. If such an address is as accessed by mistake, the µPD784046 may become deadlocked. A deadlock can only be released by reset input.

A list of special function registers (SFRs) is given in Table 3-6. The meaning of the items in the table is as explained below.

- R/W Indicates whether the corresponding SFR is read/write enabled.
 - R/W: Read/write enabled
 - R : Read-only
 - W : Write-only
- Manipulable Bit Units Indicates the applicable manipulation bit units when the corresponding SFR is manipulated.
 A 16-bit-manipulable SFR can be written in the operand "sfrp", and when specified by an
 address, an even address is specified.

A bit-manipulable SFR can be written in a bit manipulation instruction.

• On Reset Indicates the status of the register after RESET input.

Address ^{Note 1}	Special Function Register (SFR) Name	Symbol	R/W	Bit Units for Manipulation			On Reset
				1 bit	8 bits	16 bits	
0FF00H	Port 0	P0	R/W	0	0	_	Undefined
0FF01H	Port 1	P1		0	0	_	
0FF02H	Port 2	P2	Note 2	0	0	_	
0FF03H	Port 3	P3	R/W	0	0	_	
0FF04H	Port 4	P4		0	0	_	
0FF05H	Port 5	P5		0	0	_	
0FF06H	Port 6	P6		0	0	_	
0FF07H	Port 7	P7	R	0	0	_	
0FF08H	Port 8	P8		0	0	_	
0FF09H	Port 9	P9	R/W	0	0	_	
0FF0EH	Port 0 buffer register	P0L		0	0	_	
0FF10H	Timer register 0	TM0	R	_	-	0	0000H
0FF11H							
0FF12H	Capture/compare register 00	CC00	R/W	_	_	0	Undefined
0FF13H							
0FF14H	Capture/compare register 01	CC01		_	_	0	-
0FF15H							
0FF16H	Capture/compare register 02	CC02		_	_	0	-
0FF17H							
0FF18H	Capture/compare register 03	CC03		_	_	0	-
0FF19H							
0FF1AH	Timer register 1	TM1	R	_	_	0	0000H
0FF1BH							
0FF1CH	Compare register 10	CM10	R/W	_	-	0	Undefined
0FF1DH							
0FF1EH	Compare register 11	CM11		_	_	0	
0FF1FH							
0FF20H	Port 0 mode register	PM0		0	0	_	FFH
0FF21H	Port 1 mode register	PM1		0	0	_	
0FF22H	Port 2 mode register	PM2 ^{Note 3}		0	0	_	
0FF23H	Port 3 mode register	PM3		0	0	_	
0FF24H	Port 4 mode register	PM4		0	0	_	
0FF25H	Port 5 mode register	PM5	1	0	0	_	1
0FF26H	Port 6 mode register	PM6		0	0	_	1
0FF29H	Port 9 mode register	PM9		0	0	_	1
0FF2EH	Real-time output port control register	RTPC	-	0	0	_	00H
0FF2FH	Port read control register	PRDC	1	0	0	_	1

Table 3-6. Special Function Registers (SFRs) List (1/5)

Notes 1. When the LOCATION 0H instruction is executed. Add "F0000H" to this value when the LOCATION 0FH instruction is executed.

- 2. Bit 0 of P2 can only be read. Bits 1 through 7 can be read/written.
- 3. Bit 0 of PM2 is fixed to "1" by hardware.

Address ^{Note 1}	Special Function Register (SFR) Name	Symbol	R/W	Bit Units	Bit Units for Manipulation		On Reset
				1 bit	8 bits	16 bits	
0FF30H	Timer unit mode register 0	TUM0	R/W	0	0	-	00H
0FF31H	Timer mode control register	ТМС		0	0	-	
0FF32H	Timer output control register 0	TOC0		0	0	-	
0FF33H	Timer output control register 1	TOC1		0	0	_	
0FF34H	Timer unit mode register 2	TUM2		0	0	-	
0FF35H	Timer mode control register 2	TMC2		0	0	-	
0FF36H	Timer output control register 2	TOC2		0	0	-	
0FF37H	Timer mode control register 4	TMC4		0	0	-	
0FF38H	Prescaler mode register	PRM		_	0	-	
0FF39H	Prescaler mode register 2	PRM2		_	0	-	
0FF3AH	Prescaler mode register 4	PRM4		_	0	-	
0FF3BH	Noise protection control register	NPC		0	0	-	
0FF3CH	External interrupt mode register 0	INTM0		0	0	-	
0FF3DH	External interrupt mode register 1	INTM1		0	0	-	
0FF3EH	Interrupt valid edge flag register 1	IEF1		0	0	-	Undefined
0FF3FH	Interrupt valid edge flag register 2	IEF2		0	0	-	
0FF41H	Port 1 mode control register	PMC1		0	0	-	00H
0FF42H	Port 2 mode control register	PMC2 ^{Note 2}		0	0	-	
0FF43H	Port 3 mode control register	PMC3		0	0	-	
0FF49H	Port 9 mode control register	PMC9		0	0	-	
0FF4EH	Pull-up resistor option register L	PUOL		0	0	-	
0FF4FH	Pull-up resistor option register H	PUOH		0	0	-	
0FF50H	Timer register 2	TM2	R	-	-	0	0000H
0FF51H							
0FF52H	Compare register 20	CM20	R/W	-	-	0	Undefined
0FF53H							
0FF54H	Compare register 21	CM21		-	-	0	
0FF55H							
0FF56H	Timer register 3	TM3	R	-	-	0	0000H
0FF57H							
0FF58H	Compare register 30	CM30	R/W	_	-	0	Undefined
0FF59H							
0FF5AH	Compare register 31	CM31		-	-	0	
0FF5BH							
0FF60H	Timer register 4	TM4	R	-	-	0	0000H
0FF61H							

Table 3-6. Special Function Registers (SFRs) List (2/5)

Notes 1. When the LOCATION 0H instruction is executed. Add "F0000H" to this value when the LOCATION 0FH instruction is executed.

2. Bits 0, and 5 through 7 of PMC2 are fixed to "0" by hardware.

Address ^{Note}	Special Function Register (SFR) Name	Symbol	R/W	Bit Units for Manipulation			On Reset
				1 bit	8 bits	16 bits	
0FF62H	Compare register 40	CM40	R/W	-	-	0	Undefined
0FF63H							
0FF64H	Compare register 41	CM41		-	-	0	
0FF65H							
0FF6EH	A/D converter mode register	ADM		0	0	-	00H
0FF70H	A/D conversion result register 0	ADCR0	R	-	-	0	Undefined
0FF71H							
0FF71H	A/D conversion result register 0H	ADCR0H		-	0	-	
0FF72H	A/D conversion result register 1	ADCR1		-	-	0	
0FF73H							
0FF73H	A/D conversion result register 1H	ADCR1H		-	0	-	
0FF74H	A/D conversion result register 2	ADCR2		-	_	0	
0FF75H							
0FF75H	A/D conversion result register 2H	ADCR2H		_	0	-	
0FF76H	A/D conversion result register 3	ADCR3		_	_	0	
0FF77H							
0FF77H	A/D conversion result register 3H	ADCR3H		_	0	-	
0FF78H	A/D conversion result register 4	ADCR4		_	_	0	
0FF79H							
0FF79H	A/D conversion result register 4H	ADCR4H		-	0	-	
0FF7AH	A/D conversion result register 5	ADCR5		-	_	0	Undefined
0FF7BH							
0FF7BH	A/D conversion result register 5H	ADCR5H		-	0	-	
0FF7CH	A/D conversion result register 6	ADCR6		-	_	0	
0FF7DH							
0FF7DH	A/D conversion result register 6H	ADCR6H		_	0	-	
0FF7EH	A/D conversion result register 7	ADCR7		-	_	0	
0FF7FH							
0FF7FH	A/D conversion result register 7H	ADCR7H		_	0	-	
0FF84H	Clocked serial interface mode register 1	CSIM1	R/W	0	0	-	00H
0FF85H	Clocked serial interface mode register 2	CSIM2		0	0	-	1
0FF88H	Asynchronous serial interface mode register	ASIM		0	0	-	1
0FF89H	Asynchronous serial interface mode register 2	ASIM2		0	0	-	
0FF8AH	Asynchronous serial interface status register	ASIS	R	0	0	_	
0FF8BH	Asynchronous serial interface status register 2	ASIS2		0	0	_	

Table 3-6. Special Function Registers (SFRs) List (3/5)

Note When the LOCATION 0H instruction is executed. Add "F0000H" to this value when the LOCATION 0FH instruction is executed.

Address ^{Note 1}	Special Function Register (SFR) Name	Symbol	R/W	Bit Units	s for Man	ipulation	On Reset
				1 bit	8 bits	16 bits	
0FF8CH	Serial receive buffer: UART0	RXB	R	-	0	-	Undefined
	Serial transmit shift register: UART0	TXS	W	-	0	-	
	Serial shift register: IOE1	SIO1	R/W	-	0	-	
0FF8DH	Serial receive buffer: UART2	RXB2	R	-	0	-	
	Serial transmit shift register: UART2	TXS2	W	-	0	-	
	Serial shift register: IOE2	SIO2	R/W	-	0	-	
0FF90H	Baud rate generator control register	BRGC		-	0	-	00H
0FF91H	Baud rate generator control register 2	BRGC2		Ι	0	-	
0FFA8H	In-service priority register	ISPR	R	0	0	-	
0FFAAH	Interrupt mode control register	IMC	R/W	0	0	-	80H
0FFACH	Interrupt mask register 0L	MK0L		0	0	-	FFH
0FFACH	Interrupt mask register 0	MK0		-	_	0	FFFFH
0FFADH							
0FFADH	Interrupt mask register 0H	MK0H		0	0	-	FFH
0FFAEH	Interrupt mask register 1L	MK1L		0	0	-	
0FFAEH	Interrupt mask register 1	MK1		-	_	0	FFFFH
0FFAFH							
0FFAFH	Interrupt mask register 1H	MK1H		0	0	-	FFH
0FFC0H	Standby control registerNote 2	STBC		-	0	-	30H
0FFC2H	Watchdog timer mode register ^{Note 2}	WDM		-	0	-	00H
0FFC4H	Memory expansion mode register	MM		0	0	-	20H
0FFC7H	Programmable wait control register 1	PWC1		-	0	-	AAH
0FFC8H	Programmable wait control register 2	PWC2		-	_	0	AAAAH
0FFC9H							
0FFCAH	Bus width specification register	BW		-	_	0	Note 3
0FFCBH							
0FFCFH	Oscillation stabilization time specification register	OSTS		-	0	-	00H
0FFD0H-	External SFR area	-		0	0	-	Undefined
0FFDFH			_				
0FFE0H	Interrupt control register (INTOV0)	OVIC0	_	0	0	_	43H
0FFE1H	Interrupt control register (INTOV1)	OVIC1	_	0	0	-	
0FFE2H	Interrupt control register (INTOV4)	OVIC4		0	0	-	
0FFE3H	Interrupt control register (INTP0)	PIC0		0	0	-	
0FFE4H	Interrupt control register (INTP1)	PIC1		0	0		
0FFE5H	Interrupt control register (INTP2)	PIC2		0	0		

Table 3-6. Special Function Registers (SFRs) List (4/5)

Notes 1. When the LOCATION 0H instruction is executed. Add "F0000H" to this value when the LOCATION 0FH instruction is executed.

- **2.** These registers can be written only by using dedicated instructions MOV STBC, #byte and MOV WDM, #byte, and cannot be written by any other instructions.
- The value of this register on reset differs depending on the setting of the BWD pin.
 BWD = 0: 0000H

BWD = 1: 00FFH

Address ^{Note 1}	Special Function Register (SFR) Name	Symbol	R/W	Bit Units for Manipulation		On Reset	
				1 bit	8 bits	16 bits	
0FFE6H	Interrupt control register (INTP3)	PIC3	R/W	0	0	-	43H
0FFE7H	Interrupt control register (INTP4)	PIC4]	0	0	-	
0FFE8H	Interrupt control register (INTP5)	PIC5]	0	0	-	
0FFE9H	Interrupt control register (INTP6)	PIC6]	0	0	-	
0FFEAH	Interrupt control register (INTCM10)	CMIC10		0	0	-	
0FFEBH	Interrupt control register (INTCM11)	CMIC11		0	0	-	
0FFECH	Interrupt control register (INTCM20)	CMIC20		0	0	-	
0FFEDH	Interrupt control register (INTCM21)	CMIC21		0	0	-	
OFFEEH	Interrupt control register (INTCM30)	CMIC30		0	0	-	
OFFEFH	Interrupt control register (INTCM31)	CMIC31		0	0	-	
0FFF0H	Interrupt control register (INTCM40)	CMIC40		0	0	-	
0FFF1H	Interrupt control register (INTCM41)	CMIC41		0	0	-	
0FFF2H	Interrupt control register (INTSER)	SERIC		0	0	-	
0FFF3H	Interrupt control register (INTSR)	SRIC		0	0	-	
	Interrupt control register (INTCSI1)	CSIIC1		0	0	-	
0FFF4H	Interrupt control register (INTST)	STIC		0	0	-	
0FFF5H	Interrupt control register (INTSER2)	SERIC2		0	0	-	
0FFF6H	Interrupt control register (INTSR2)	SRIC2		0	0	-	
	Interrupt control register (INTCSI2)	CSIIC2		0	0	-	
0FFF7H	Interrupt control register (INTST2)	STIC2]	0	0	-	
0FFF8H	Interrupt control register (INTAD)	ADIC]	0	0	-	
0FFFCH	Internal memory size select registerNote 2	IMS		-	0	-	Note 3

Table 3-6.	Special	Function	Registers	(SFRs)	List (5/5)
	opeciai	1 unction	Registers	(011(3)	LISU	3131

Notes 1. When the LOCATION 0H instruction is executed. Add "F0000H" to this value when the LOCATION 0FH instruction is executed.

- 2. Writing to IMS is valid only with the flash memory model (μ PD78F4046). When writing to IMS with mask ROM models (μ PD784044, 784046), the value is not changed and remains the same as the value on reset.
- 3. The value on reset differs depending on the models.

μPD784044 : CDH μPD784046, 78F4046 : DEH

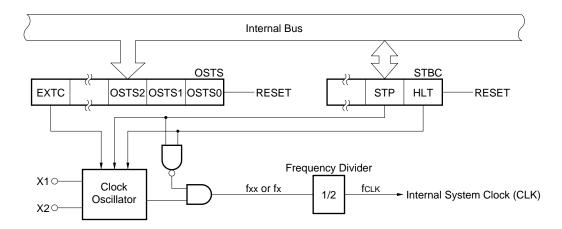
3.10 Cautions

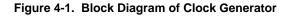
- (1) Program fetches cannot be performed from the internal high-speed RAM area (0FD00H to 0FEFFH when the LOCATION 0H instruction is executed; FFD00H to FFEFFH when the LOCATION 0FH instruction is executed).
- (2) Special function registers (SFRs) Addresses onto which SFRs are not assigned should not be accessed in the area 0FF00H to 0FFFFH^{Note}. If such an address is accessed by mistake, the μPD784046 may become deadlocked. A deadlock can only be released by reset input.
 - **Note** When the LOCATION 0H instruction is executed; FFF00H to FFFFFH when the LOCATION 0FH instruction is executed.
- (3) Writing to the internal memory size select register (IMS) is valid only with the μ PD78F4046. The IMS of the μ PD784044 and 784046 holds the value at RESET even if data is written to it.
- (4) To develop a program for the μPD784044 using the μPD78F4046, set the value of the IMS to CDH. When the value of the IMS is set to CDH, the peripheral RAM capacity of the μPD78F4046 is 768 bytes, but the peripheral RAM capacity of the μPD78F4046 is 768 bytes, but the peripheral RAM capacity of the μPD78F4044 is 512 bytes. When using a mask ROM, therefore, exercise care that addresses 0FA00H through 0FAFFH of the peripheral RAM area of the μPD78F4046 are not used (when the LOCATION 0H instruction is executed).

(5) Stack pointer (SP) operation

With stack addressing, the entire 1 M-byte space can be accessed, but a stack area cannot be reserved in the SFR area or internal ROM area.

(6) Stack pointer (SP) initialization


The SP is undefined after RESET input, while non-maskable interrupts can be acknowledged directly after reset release. Therefore, an unforeseen operation may be performed if a non-maskable interrupt request is generated while the SP is in the undefined state directly after reset release. To minimize this risk, the following program should be coded without fail after reset release.


RSTVCT CSEG AT 0 DW RSTSTRT to INITSEG CSEG BASE RSTSTRT : LOCATION 0H ; or LOCATION 0FH MOVG SP, #STKBGN

CHAPTER 4 CLOCK GENERATOR

4.1 Configuration and Function

The clock generator generates and controls the internal system clock (CLK) supplied to the CPU and on-chip hardware. The clock generator block diagram is shown in Figure 4-1.

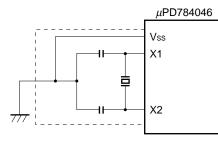
Remark fxx : crystal/ceramic oscillation frequency

fx : external clock frequency

fclk : internal system clock frequency

The clock oscillator oscillates by means of a crystal resonator/ceramic resonator connected to the X1 and X2 pins. When standby mode (STOP) is set, oscillation stops (refer to **CHAPTER 18 STANDBY FUNCTION**).

An external clock can also be input. In this case, input the clock signal to the X1 pin.


The processing of the X2 pin differs depending on the setting of the EXTC bit of the oscillation stabilization time specification register (OSTS), as follows:

EXTC bit = 1: Input a clock in reverse phase to the clock input to X1 pin to the X2 pin. EXTC bit = 0: Leave the X2 pin unconnected.

The frequency divider circuit divides the output (fxx or fx) of the clock oscillator by two, to generate an internal system clock (fcLk).

Figure 4-2. Clock Oscillator External Circuitry

(a) Crystal/ceramic oscillation

(b) External clock

EXTC bit of .OSTS = 0

Cautions 1. The oscillator should be as close as possible to the X1 and X2 pins.

2. No other signal lines should pass through the area enclosed by the dotted line.

Remark Use of crystal resonator and ceramic resonator

Generally speaking, the oscillation frequency of a crystal resonator is extremely stable. It is therefore ideal for performing high-precision time management (in clocks, frequency meters, etc.).

A ceramic resonator is inferior to a crystal resonator in terms of oscillation frequency stability, but it has three advantages: a fast oscillation start-up time, small size, and low price. It is therefore suitable for general use (when high-precision time management is not required). In addition, there are products with a built-in capacitor, etc., which enable the number of parts and mounting area to be reduced.

4.2 Control Registers

4.2.1 Standby control register (STBC)

STBC is a register used to set the standby mode. Refer to CHAPTER 18 STANDBY FUNCTION for details of the standby modes.

To prevent erroneous entry into standby mode due to an inadvertent program loop, the STBC register can only be written to by a dedicated instruction. This instruction is the MOV STBC, #byte instruction, and has a special code configuration (4 bytes). A write is only performed if the 3rd and 4th bytes of the op code are mutual complements. If the 3rd and 4th bytes of the op code are not mutual complements, a write is not performed, and an op error interrupt is generated. In this case, the return address saved in the stack area is the address of the instruction which is the source of the error. The error source address can thus be found from the return address saved on the stack area.

An endless loop will result if restore from an operand error is simply performed with an RETB instruction.

Since an operand error interrupt is only generated in the event of an inadvertent program loop (with the NEC Electronics assembler RA78K4, only the correct dedicated instruction is generated when the MOV STBC, #byte instruction is written), system initialization should be performed by the program.

Other write instructions ("MOV STBC, A", "AND STBC, # byte", "SET1 STBC.7", etc.) are ignored, and no operation is performed. That is, a write is not performed on the STBC, and an interrupt such as an operand error interrupt is not generated. The STBC can be read at any time with a data transfer instruction.

RESET input sets the STBC register contents to 30H.

The format of the STBC is shown in Figure 4-3.

Address	s: 0FFC	юн	On reset: 30H			R/W		
	7	6	5	4	3	2	1	0
STBC	0	0	1	1	0	0	STP	HLT

Figure 4-3. Standby Control Register (STBC) Format

STP	HLT	CPU Operating Mode Control
0	0	Normal mode
0	1	HALT mode
1	0	STOP mode
1	1	IDLE mode

Caution If the STOP mode is used when external clock input is used, the EXTC bit of the oscillation stabilization time specification register (OSTS) must be set (1) before setting the STOP mode. If the STOP mode is used when the EXTC bit of the OSTS is in the cleared (0) state when external clock input is used, the μPD784046 may be damaged or suffer reduced reliability.

When setting the EXTC bit to 1, be sure to input a clock in phase reverse to that of the clock input to the X1 pin, to the X2 pin.

4.2.2 Oscillation stabilization time specification register (OSTS)

OSTS is a register used to specify the operation of the oscillator. The EXTC bit of the OSTS specifies whether a crystal/ ceramic resonator or an external clock is used. The STOP mode can be set during use of external clock input, only when the EXTC bit is set (1).

The OSTS can be read/written to by an 8-bit manipulation instruction.

RESET input clears the OSTS register contents to 00H.

The format of the OSTS is shown in Figure 4-4.

Figure 4-4. Format of Oscillation Stabilization Time Specification Register (OSTS)

7 6 5 4 3 2 1 0 OSTS EXTC 0 0 0 0 OSTS2 OSTS1 OSTS1	Address : 0FFCFH			On res	et: 00⊢	1 1	R/W		
OSTS EXTC 0 0 0 0 OSTS2 OSTS1 OSTS		7	6	5	4	3	2	1	0
	OSTS	EXTC	0	0	0	0	OSTS2	OSTS1	OSTS0

EXTC	Selects External Clock				
0	Opens X2 pin when crystal/ceramic oscillation is used or when external clock is used.				
1	Inputs clock in reverse phase to clock input X1 pin to X2 pin.				
OSTS2	OSTS1	OSTS0	Selects oscillation stabilization time (for details, refer to Figure 18-4).		

- Cautions 1. When using a crystal/ceramic oscillation, the EXTC bit must be cleared (0). If the EXTC bit is set (1), oscillation will stop.
 - If the STOP mode is used with external clock input, the EXTC bit must be set (1) before setting the STOP mode. If the STOP mode is used when the EXTC bit is in the cleared (0) state, the μPD784046 may be damaged or suffer reduced reliability.
 - 3. When setting the EXTC bit to 1 during external clock input, be sure to input a clock in phase reverse to that of the clock input to the X1 pin, to the X2 pin. When the EXTC bit is set to 1, the μPD784046 operates on only the clock input to the X2 pin.

4.3 Clock Generator Operation

4.3.1 Clock oscillator

(1) When using crystal/ceramic oscillation

The clock oscillator starts oscillating when the RESET signal is input, and stops oscillation when the STOP mode is set by the standby control register (STBC). Oscillation is resumed when the STOP mode is released.

(2) When using external clock

The clock oscillator supplies the clock input from the X1 pin to the internal circuitry when the RESET signal is input. The oscillator operates as follows when the EXTC bit of the oscillation stabilization time specification register (OSTS) is set to 1.

- The clock oscillator supplies the clock input to the X2 pin to the internal circuitry.
- The necessary circuit stops operating during the crystal/ceramic oscillation of the clock oscillator, to reduce the power dissipation.
- The STOP mode can be used even when the external clock is input.
- Cautions 1. When using a crystal/ceramic oscillation, the EXTC bit of the Oscillation stabilization time specification register (OSTS) must be cleared (0). If the EXTC bit is set (1), oscillation will stop.
 - If the STOP mode is used with external clock input, the EXTC bit of the OSTS must be set (1) before setting the STOP mode. If the STOP mode is used when the EXTC bit is in the cleared (0) state, not only will the clock generator consumption current not be reduced, but the μPD784046 may also be damaged or suffer reduced reliability.
 - 3. When setting the EXTC bit of OSTS to 1, be sure to input a clock in phase reverse to that of the clock input to the X1 pin, to the X2 pin.

4.3.2 Frequency divider

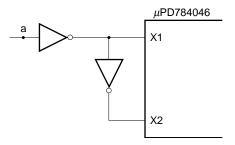
The frequency divider divides the output from the clock oscillator by two, and supplies the result to the CPU and peripheral hardware.

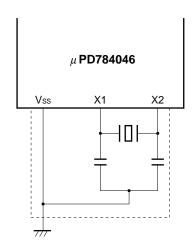
4.4 Cautions

The following cautions apply to the clock generator.

4.4.1 When an external clock is input

- If the STOP mode is used with external clock input, the EXTC bit of the oscillation stabilization time specification register (OSTS) must be set (1). If the STOP mode is used when the EXTC bit is in the cleared (0) state, the µPD784046 may be damaged or suffer reduced reliability.
- (2) When setting the EXTC bit of the OSTS to 1, be sure to input a clock in phase reverse to that of the clock input to the X1 pin, to the X2 pin.
- (3) When an external clock is input, this should be performed with a HCMOS device, or a device with the equivalent drive capability.
- (4) A signal should not be extracted from the X1 and X2 pins. If a signal is extracted, it should be extracted from point a in Figure 4-5.




Figure 4-5. Signal Extraction with External Clock Input

(5) The wiring connecting the X1 pin to the X2 pin via an inverter, in particular, should be made as short as possible.

4.4.2 When crystal/ceramic oscillation is used

- As the oscillator is a high-frequency analog circuit, considerable care is required. The following points, in particular, require attention.
 - The wiring should be kept as short as possible.
 - No other signal lines should be crossed.
 - Avoid lines carrying a high fluctuating current.
 - The oscillator capacitor grounding point should always be at the same potential as the Vss pin. Do not ground to a ground pattern carrying a high current.
 - A signal should not be taken from the oscillator.

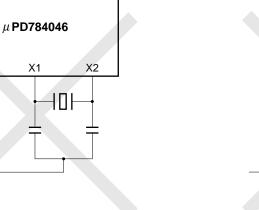
If oscillation is not performed normally and stably, the microcontroller will not be able to operate normally and stably, either. Also, if a high-precision oscillation frequency is required, consultation with the oscillator manufacturer is recommended.

- Cautions 1. The oscillator should be as close as possible to the X1 and X2 pins.
 - 2. No other signal lines should pass through the area enclosed by the dotted line.

Figure 4-7. Incorrect Example of Resonator Connection

(a) Wiring of connected circuits is too long

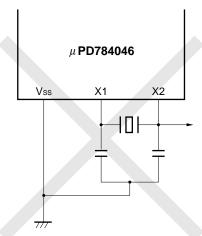
X1


Vss

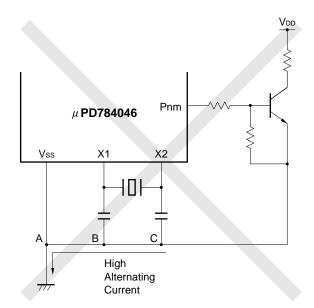
77

Pnm μ**PD784046** Х2 X1 Vss

(b) Crossed signal lines


777

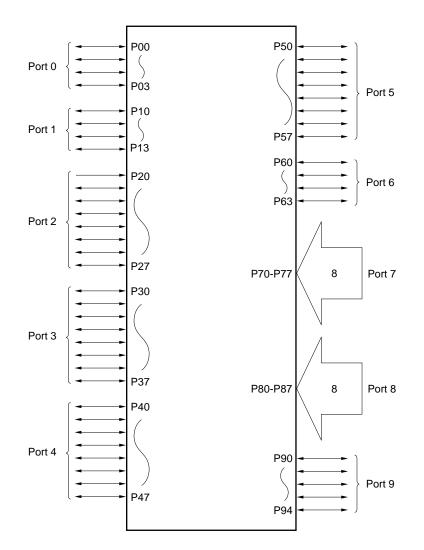
(c) Wiring near high alternating current



(e) Signal extracted

(d) Current flowing through ground line of oscillator (Potentials at points A, B, and C fluctuate)

-0


- (2) When the device is powered on, and when restoring from the STOP mode, sufficient time must be allowed for the oscillation to stabilize. Generally speaking, the time required for oscillation stabilization is several milliseconds when a crystal resonator is used, and several hundred microseconds when a ceramic resonator is used. An adequate oscillation stabilization period should be secured by the following means:
 - <1> When powering-on : RESET input (reset period)
 - <2> When returning from STOP mode :
 - (i) RESET input (reset period)
 - (ii) Time of the oscillation stabilization timer that automatically starts at the valid edge of NMI signal (set by the oscillation stabilization time specification register (OSTS))
- (3) The EXTC bit of the oscillation stabilization time specification register (OSTS) must be cleared (0). If the EXTC bit is set (1), oscillation will stop.

CHAPTER 5 PORT FUNCTIONS

5.1 Digital Input/Output Port

The μ PD784046 is provided with the ports shown in Figure 5-1, enabling various kinds of control to be performed. The function of each port is shown in Table 5-1. For port 0, ports 4 to 6, and port 9, connection of an internal pull-up resistor can be specified by software when used as input ports.

Port Name	Pin Name	Function	Specification of Pull-Up Resistor by Software
Port 0	P00-P03	Can be set in input or output mode bit-wise.	All pins in input mode
Port 1	P10-P13		-
Port 2	P20-P27	Can be set in input or output mode bit-wise (however, P20 is input-only).	_
Port 3	P30-P37	Can be set in input or output mode bit-wise.	
Port 4	P40-P47		All pins in input mode
Port 5	P50-P57		
Port 6	P60-P63		
Port 7	P70-P77	Input port	-
Port 8	P80-P87		
Port 9	P90-P94	Can be set in input or output mode bit-wise.	All pins in input mode

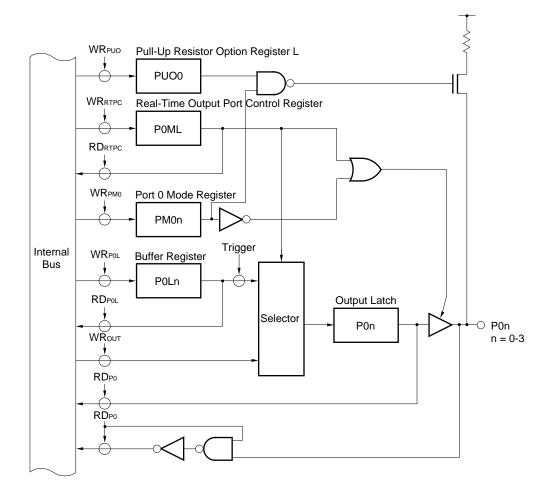
Table 5-1. Port Function

5.2 Port 0

Port 0 is a 4-bit input/output port with an output latch. Input/output can be specified bit-wise by means of the port 0 mode register (PM0). Each pin incorporates a software programmable pull-up resistor.

In addition to the I/O port function, port 0 can output the port 0 buffer register (P0L) contents at any time interval as 4bit real-time output ports. The real-time output port control register (RTPC) is used to select whether this port is used as a normal output port or a real-time output port.

When RESET is input, port 0 is set as an input port (output high-impedance state), and the output latch contents are undefined.


Table 5-2. Operation Mode of Port 0

Pin Name	Port Mode	Real-Time Output Port Mode	Manipulation to Use Port 0 as Real-Time Output Port Pin
P00-P03	I/O port	RTP0-RTP3	Setting of P0ML bit of RTPC to 1

Remark For details, refer to CHAPTER 6 REAL-TIME OUTPUT FUNCTION.

5.2.1 Hardware configuration

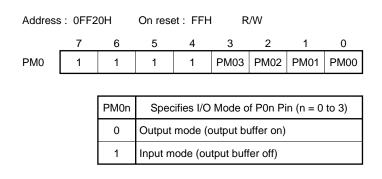

The port 0 hardware configuration is shown in Figure 5-2.

Figure 5-2. Block Diagram of Port 0

5.2.2 Input/output mode/control mode setting

The port 0 input/output mode is set by means of the port 0 mode register (PM0) as shown in Figure 5-3.

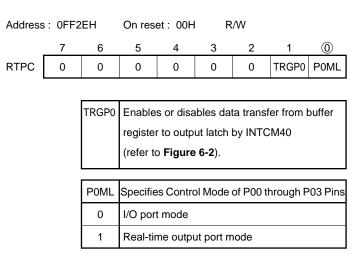


Figure 5-3. Format of Port 0 Mode Register (PM0)

When port 0 is used as a real-time output port, the P0ML bit of the real-time output port control register (RTPC) should be set (1) (refer to **Figure 5-4**).

When P0ML bit is set, the respective pin output buffer is turned on and the output latch contents are output to the pin irrespective of the contents of PM0.

5.2.3 Operating status

Port 0 is an input/output port

(1) When set as an output port

The output latch is enabled, and data transfers between the output latch and accumulator are performed by means of transfer instructions. The output latch contents can be freely set by means of logical operation instructions. Once data has been written to the output latch, it is retained until data is next written to the output latch^{Note}. Writes cannot be performed to the output latch of a port specified as a real-time output port. However, the output latch contents can be read even if it is set to the real-time output port mode.

Note Including the case where another bit of the same port is manipulated by a bit manipulation instruction.

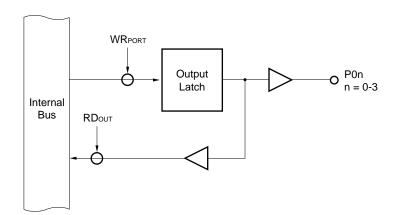
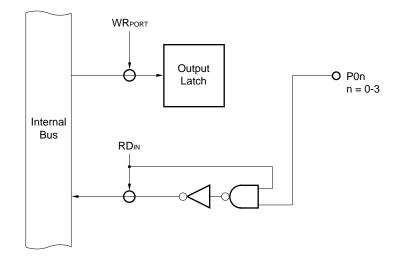



Figure 5-5. Port Specified as Output Port

(2) When set as an input port

The port pin level can be loaded into an accumulator by means of a transfer instruction, etc. In this case, too, writes can be performed to the output latch, and data transferred from the accumulator by a transfer instruction, etc., is stored in all output latches irrespective of the port input/output specification. However, since the output buffer of a bit specified as an input port is high-impedance, the data is not output to the port pin (when a bit specified as input is switched to an output port, the output latch contents are output to the port pin). Also, the contents of the output latch of a bit specified as an input port cannot be loaded into an accumulator.

Caution A bit manipulation instruction manipulates one bit as the result, but accesses the port in 8-bit units. Therefore, if a bit manipulation instruction is used on a port with a mixture of input and output pins, the contents of the output latch of pins specified as inputs will be undefined (excluding bits manipulated with a SET1 or CLR1 instruction, etc.). Particular care is required when there are bits which are switched between input and output.

Caution is also required when manipulating the port with other 8-bit manipulation instructions.

5.2.4 Internal pull-up resistors

Port 0 incorporates pull-up resistors. Use of these internal resistors when pull-up is necessary enables the number of parts and the mounting area to be reduced.

Whether or not an internal pull-up resistor is to be used can be specified for each pin by means of the PUO0 bit of the pull-up resistor option register L (PUOL) and the port 0 mode register (PM0).

When PUO0 bit is 1, the internal pull-up resistor of only the pin set in the input mode by the real-time output port control register (RTPC) and PM0 is valid when the PUO bit is 1.

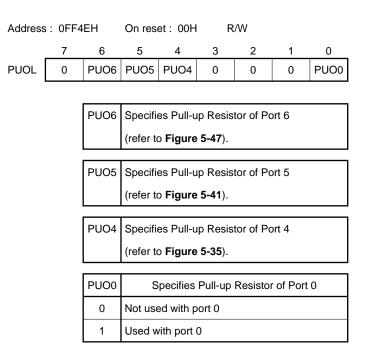


Figure 5-7. Pull-Up Resistor Option Register L (PUOL) Format

Caution When using port 0 as the real-time output port, be sure to reset the PUO0 bit to "0" to not connect the internal pull-up resistor.

Remark When STOP mode is entered, setting 00H in PUOL is effective in reducing the current consumption.

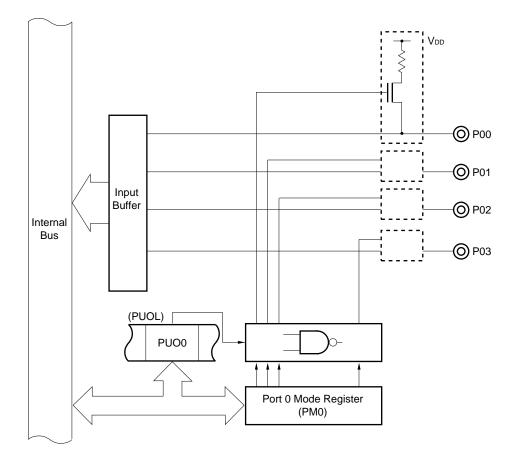


Figure 5-8. Pull-Up Resistor Specification (Port 0)

5.3 Port 1

Port 1 is a 4-bit input/output port with an output latch. Input/output can be specified bit-wise by means of the port 1 mode register (PM1).

In addition to their input/output port function, port also functions as timer output pins of timer/counter 2 and 3. The operating mode can be specified bit-wise by means of the port 1 mode control register (PMC1), as shown in Table 5-3. The level of any pin can be read and tested at any time irrespective of the dual-function pin operation.

When RESET is input, port 1 is set as an input port (output high-impedance state), and the output latch contents are undefined.

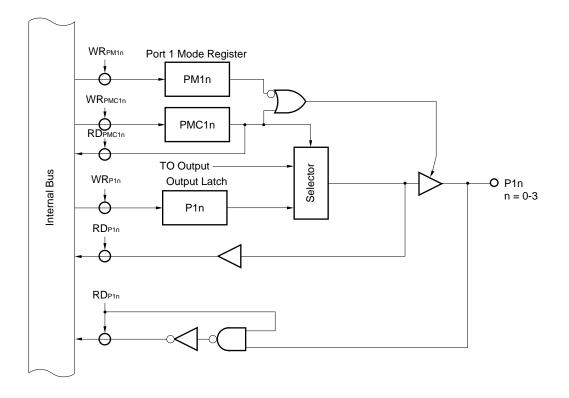
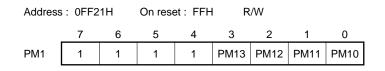
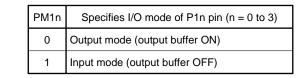

Pin Name	Port Mode	Control Signal Output Mode	Manipulation to Use Port 1 as Control Pins
P10	I/O port	TO20 output	Setting of PMC10 bit of PMC1 (1)
P11		TO21 output	Setting of PMC11 bit of PMC1 (1)
P12		TO30 output	Setting of PMC12 bit of PMC1 (1)
P13		TO31 output	Setting of PMC13 bit of PMC1 (1)

Table 5-3. Port 1 Operating Modes

5.3.1 Hardware configuration

The port 1 hardware configuration is shown in Figure 5-9.


Figure 5-9. Block Diagram of Port 1



5.3.2 Setting I/O mode/control mode

The input/output mode of port 1 is set by using the port 1 mode register (PM1) per pin, as shown in Figure 5-10. Port 1 also functions as the timer output pins of timers/counters 2 and 3, in addition to the I/O port function, and can be set in the control mode by using the port 1 mode control register (PMC1) as shown in Figure 5-11.

Figure 5-11. Format of Port 1 Mode Control Register (PMC1)

Address: 0FF41H			On rese	et: 00H	l R	/W		
	7	6	5	4	3	2	1	0
PMC1	0	0	0	0	PMC13	PMC12	PMC11	PMC10

PMC13	Specifies Control Mode of P13 Pin			
0	I/O port mode			
1	TO31 output mode			
PMC12	Specifies Control Mode of P12 Pin			
0	I/O port mode			
1	TO30 output mode			
PMC11	Specifies Control Mode of P11 Pin			
0	I/O port mode			
1	TO21 output mode			
PMC10	Specifies Control Mode of P10 Pin			
0	I/O port mode			
1	TO20 output mode			

5.3.3 Operating status

Port 1 is an input/output port, and also functions as timer output pins of timer/counter 2 and 3.

(1) When set as an output port

The output latch is enabled, and data transfers between the output latch and accumulator are performed by means of transfer instructions. The output latch contents can be freely set by means of logical operation instructions. Once data has been written to the output latch, it is retained until data is next written to the output latch^{Note}.

Note Including the case where another bit of the same port is manipulated by a bit manipulation instruction.

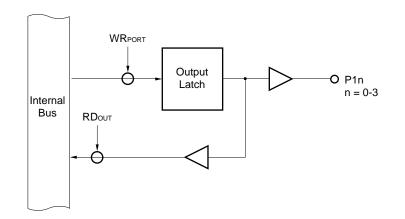
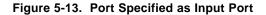
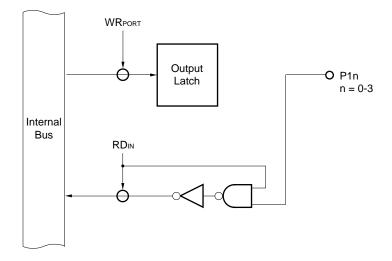
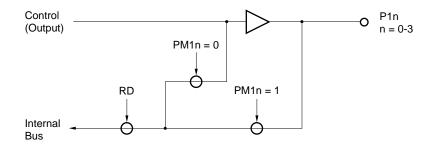




Figure 5-12. Port Specified as Output Port

(2) When set as an input port

The port pin level can be loaded into an accumulator by means of a transfer instruction, etc. In this case, too, writes can be performed to the output latch, and data transferred from the accumulator by a transfer instruction, etc., is stored in all output latches irrespective of the port input/output specification. However, since the output buffer of a bit specified as an input port is high-impedance, the data is not output to the port pin (when a bit specified as input is switched to an output port, the output latch contents are output to the port pin). Also, the contents of the output latch of a bit specified as an input port cannot be loaded into an accumulator.


Caution A bit manipulation instruction manipulates one bit as the result, but accesses the port in 8-bit units. Therefore, if a bit manipulation instruction is used on a port that has the I/O mode or port mode and control mode, the contents of the output latch of the pin set in the input mode or control mode become undefined (excluding bits manipulated with a SET1 or CLR1 instruction, etc.). Particular care is required when there are bits which are switched between input and output.

Caution is also required when manipulating the port with other 8-bit manipulation instructions.

(3) When specified as control signal output

By setting (1) bits of the port 1 mode control register (PMC1), the port 1 can be used as control signal outputs bitwise irrespective of the setting of the port 1 mode register (PM1). When a pin is used as a control signal, the control signal status can be seen by executing a port read instruction.

When PM1n (n = 0 to 3) bits of PM1 is set (1), the control signal pin level can be read by executing a port read instruction.

When PM1 is reset (0), the μ PD784046 internal control signal status can be read by executing a port read instruction.

5.4 Port 2

Port 2 is an 8-bit I/O port with an output latch. This port can be set in the input or output mode in 1-bit units by using port 2 mode register (PM2) (however, P20 is input-only).

In addition to the input/output port function, port 2 also has a function to input control signals such as external interrupt signals, and output the timer signal of timer 0 (refer to **Table 5-4**). P21 through P24 serve as the timer output pins of timer 0 if so specified by port 2 mode control register (PMC2). The level of each pin of this port can always be read or tested regardless of the multiplexed function.

All the eight pins are Schmitt trigger input pins to prevent malfunctioning due to noise.

When RESET is input, this port is set in the input mode (output high-impedance status), and the contents of the output latch are undefined.

			(n = 0 to 7)
Mode		Port Mode	Control Signal Output Mode
Set condition		PMC2n = 0	PMC2n = 1
	PM2n = 0	PM2n = 1	PM2n = ×
P20	-	Input port/NMI input ^{Note}	-
P21	Output port	Input port/INTP0 input	TO00 output
P22		Input port/INTP1 input	TO01 output
P23		Input port/INTP2 input	TO02 output
P24		Input port/INTP3 input	TO03 output
P25		Input port/INTP4 input	-
P26		Input port/INTP5 input/TI2 input	
P27		Input port/INTP6 input/TI3 input	

Table 5-4. Operation Mode of Port 2	Table	5-4.	Operation	Mode	of	Port 2
-------------------------------------	-------	------	-----------	------	----	--------

Note The NMI input pin accepts an interrupt request regardless of whether interrupts are enabled or disabled.

Remark ×: don't care

(1) Port mode

(a) Function as port pin

Each port pin set in the port mode by the port 2 mode control register (PMC2) can be set in the input or output mode in 1-bit units by the port 2 mode register (PM2) (however, P20 is fixed in the input mode).

(b) Function as control signal input pins

If PMC2n (n = 0 to 7) bit of PMC2 is "0" and if PM2n (n = 0-7) bit of PM2 is "1", the pins of port 2 can be used as the following control signal input pins.

(i) NMI (Non-maskable Interrupt)

This pin inputs an external non-maskable interrupt request. Whether the interrupt request is detected at the rising or falling edge can be specified by using external interrupt mode register 0 (INTM0).

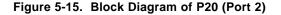
(ii) INTP0 through INTP6 (Interrupt from Peripherals)

These pins input external interrupt requests. When the valid edge specified by external interrupt mode registers (INTM0 and INTM1) is detected on the INTP0 to INTP6 pins, an interrupt occurs (refer to **CHAPTER 15 EDGE DETECTION FUNCTION**).

The INTP0 through INTP4 pins can also be used as external trigger input pins of each function, as follows:

- INTP0 ... Capture trigger input pin of capture/compare register 00 (CC00) of timer 0
- INTP1 ... Capture trigger input pin of capture/compare register 01 (CC01) of timer 0
- INTP2 ... Capture trigger input pin of capture/compare register 02 (CC02) of timer 0
- INTP3 ... Capture trigger input pin of capture/compare register 03 (CC03) of timer 0
- INTP4 ... External trigger input pin of A/D converter

(iii) TI2, TI3 (Timer Input)


These are external clock input pins of timers/counters 2 and 3.

(2) Control signal output mode

The P21 through P24 pins can be used as the timer output pins (TO00 through TO03) of timer 0 in 1-bit units if so specified by the port 2 mode control register (PMC2).

5.4.1 Hardware configuration

The port 2 hardware configuration is shown Figure 5-15 through 5-17.

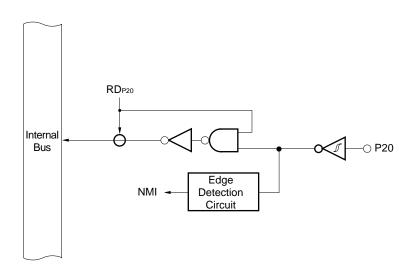


Figure 5-16. Block Diagram of P21 to P24 (Port 2)

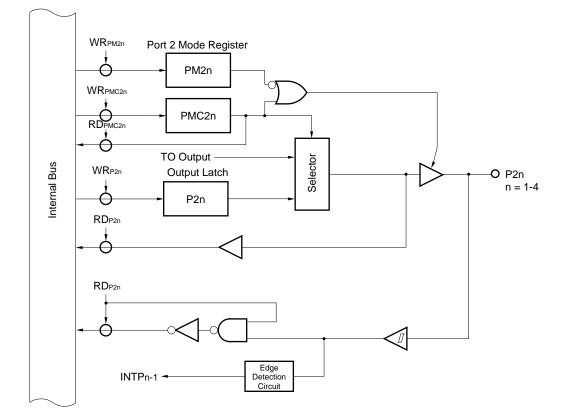
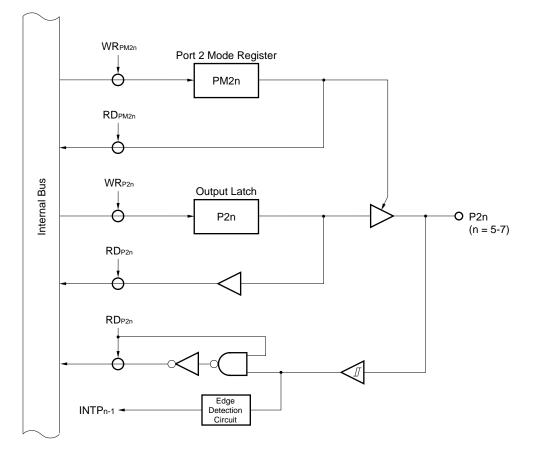
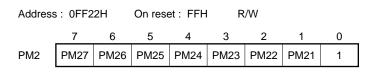



Figure 5-17. Block Diagram of P25 to P27 (Port 2)



5.4.2 Setting I/O mode/control mode

The input/output mode of P21 through P27 is set per pin by using the port 2 mode register (PM2), as shown in Figure 5-18. P20 is input-only.

P21 through P24 also functions as timer output pins of timer 0, in addition to as input/output port pins. To use these pins as timer output pins, set them in the control mode by using the port 2 mode control register (PMC2) as shown in Figure 5-19.

Figure 5-18. Format of Port 2 Mode Register (PM2)

PM2n	Specifies input/output mode of P2n pin (n = 1 to 7)
0	Output mode (output buffer ON)
1	Input mode (output buffer OFF)

Address: 0FF42H			On rese	et: 00H	R	/W		
	7	6	5	4	3	2	1	0
PMC2	0	0	0	PMC24	PMC23	PMC22	PMC21	0

PMC24	Specifies Control Mode of P24 Pin
0	I/O port mode/INTP3 input mode
1	TO03 output mode
PMC23	Specifies Control Mode of P23 Pin
0	I/O port mode/INTP2 input mode
1	TO02 output mode
PMC22	Specifies Control Mode of P22 Pin
0	I/O port mode/INTP1 input mode
1	TO01 output mode
PMC21	Specifies Control Mode of P21 Pin
0	I/O port mode/INTP0 input mode
1	TO00 output mode

- Cautions 1. Even when using the P21 through P27 pins in the output port mode or timer output mode, INTPn (n = 0 to 6) interrupt occurs depending on edge detection of the pin level. Therefore, mask the interrupt before using the pins.
 - 2. Even when using the P26 and P27 pins as TI2 and TI3 pins, interrupts INTP5 and INTP6 occur. Therefore, mask the interrupts before using the pins.

5.4.3 Operating status

Port 2 is an I/O port (however, the P20 pin is input-only). The P21 through P24 pins can also be used as timer output pins of timer 0.

(1) In output port mode

The output latch is valid, and data is transferred between the output latch and accumulator by a transfer instruction. The contents of the output latch can be freely set by a logical operation instruction. Data that has been written to the output latch is retained until new data is written to the output latch^{Note}.

Note Including when the other bits of the same port are manipulated by a bit manipulation instruction.

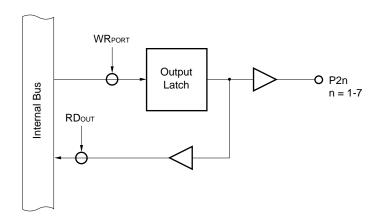
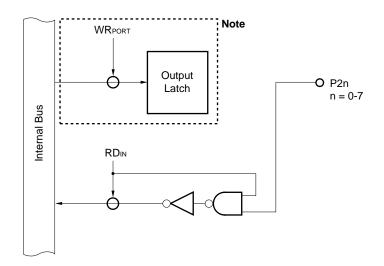



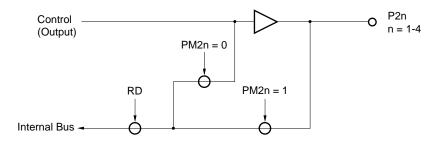
Figure 5-20. Port in Output Port Mode

(2) In input port mode

The level of a port pin can be loaded to the accumulator by using a transfer instruction. Even in this case, data can be written to the output latch. Data transferred from the accumulator by a transfer instruction is stored to all the output latches regardless of whether the input or output mode is specified. However, because the output buffer of a bit (pin) set in the input mode is in the high-impedance state, its contents are not output to the port pin (the contents of the output latch are output to the port pin when the mode of the pin is changed from input to output). The contents of the output latch of the pin set in the input port cannot be loaded to the accumulator.

Figure 5-21. Port in Input Port Mode

Note P20 does not have the circuit enclosed by the dotted line in the above figure.


Caution Although the result of a bit manipulation instruction is ultimately 1 bit manipulation, it accesses a port in 8-bit units. If such an instruction is executed to manipulate a port with some pins set in the input mode and the others in the control mode, the contents of the output latch are undefined (except when a pin is manipulated by the SET1 or CLR1 instruction). Especially, care must be exercised if the mode of some pins must be changed between input and output.

The same applies when manipulating the port by using the other 8-bit operation instructions.

(3) Pin in control mode

P21 to P24 can be used to output control signals in 1-bit units regardless of the setting of the port 2 mode register (PM2), if the corresponding bit of the port 2 mode control register (PMC2) is set (1). When using each pin as a control signal pin, the status of the control signal can be checked by executing an instruction that reads the port.

Figure 5-22. Port in Control Mode

If the PM2n (n = 1 to 4) bit of PM2 is set (1), and if an instruction that reads the port is executed, the level of the corresponding control signal pin can be read.

If the port read instruction is executed when the PM2n bit is reset (0), the status of the control signal in the μ PD784046 can be read.

5.5 Port 3

Port 3 is an 8-bit input/output port with an output latch. Input/output can be specified bit-wise by means of the port 3 mode register (PM3).

In addition to its function as an input/output port, port 3 also has various dual-function control signal pin functions.

The operating mode can be specified bit-wise by means of the port 3 mode control register (PMC3), as shown in Table 5-5. The pin level of all pins can always be read or tested regardless of the dual-function pin operation.

When RESET is input, port 3 is set as an input port (output high impedance state), and the output latch contents are undefined.

		(1 - 0.007)
Mode	Port Mode	Control Signal Input/Output Mode
Setting Condition	PMC3n = 0	PMC3n = 1
P30	Input/output port	TO10 output
P31		TO11 output
P32		RxD/SI1 input
P33		TxD/SO1 output
P34		ASCK input/SCK1 input/output
P35		RxD2/SI2 input
P36]	TxD2/SO2 output
P37		ASCK2 input/SCK2 input/output

Table 5-5. Port 3 Operating Modes

(n = 0 to 7)

(a) Port mode

Each port specified as port mode by the port 3 mode control register (PMC3) can be specified as input/output bitwise by means of the port 3 mode register (PM3).

(b) Control signal input/output mode

Pins can be set as control pins bit-wise by setting the port 3 mode control register (PMC3).

(i) TO10, TO11 (Timer Output)

These are timer output pins of timer 1.

(ii) RxD, RxD2 (Receive Data)

These are serial data input pins of the asynchronous serial interface.

(iii) TxD, TxD2 (Transmit Data)

These are serial data output pins of the asynchronous serial interface.

(iv) SI1, SI2 (Serial Input)

These are serial data input pins of the 3-wire serial I/O.

(v) SO1, SO2 (Serial Output)

These are serial data output pins of the 3-wire serial I/O.

(vi) ASCK, ASCK2 (Asynchronous Serial Clock)

These are external baud rate clock input pins.

(vii) SCK1, SCK2 (Serial Clock)

These are serial clock I/O pins of the 3-wire serial I/O.

5.5.1 Hardware configuration

The port 3 hardware configuration is shown in Figures 5-23 to 5-25.

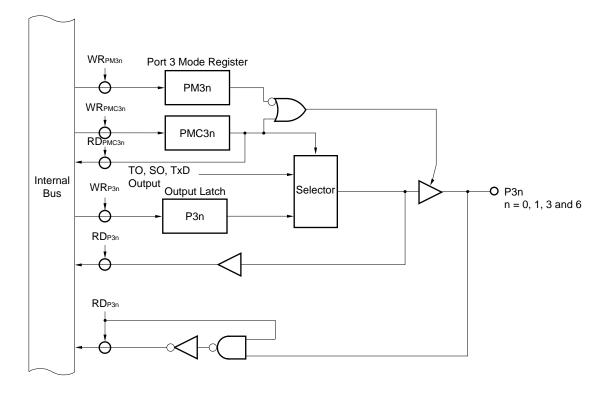
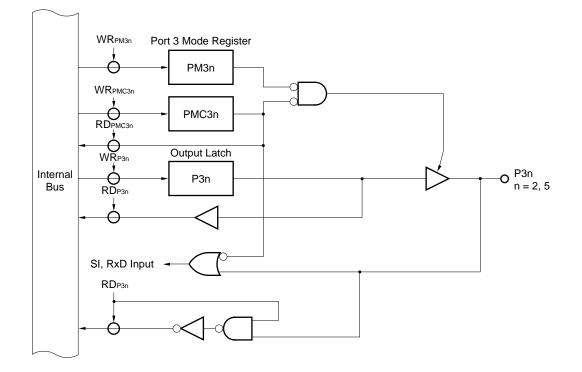



Figure 5-23. Block Diagram of P30, P31, P33 and P36 (Port 3)

Figure 5-24. Block Diagram of P32 and P35 (Port 3)

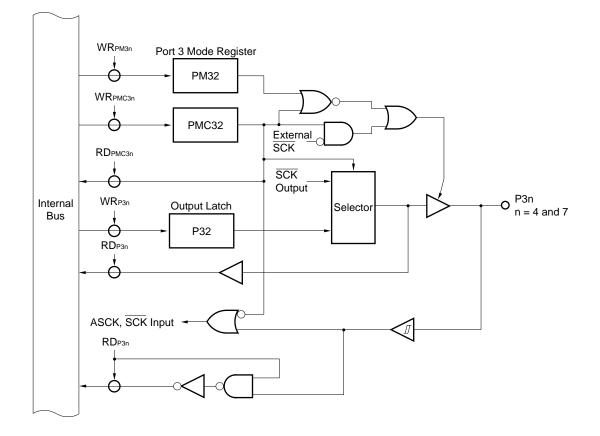
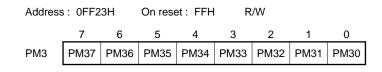



Figure 5-25. Block Diagram of P34 and P37 (Port 3)

5.5.2 Input/output mode/control mode setting

The port 3 input/output mode is set for each pin by means of the port 3 mode register (PM3) as shown in Figure 5-26. In addition to their input/output port function, port 3 pins also have a dual function as various control signal pins, and the control mode is specified by means of the port 3 mode control register (PMC3) as shown in Figure 5-27.

Figure 5-26. Format of Port 3 Mode Register (PM3)

PM3n	Specifies I/O Mode of P3n Pin (n = 0 to 7)
0	Output mode (output buffer ON)
1	Input mode (output buffer OFF)

Figure 5-27. Format of Port 3 Mode Control Register (PMC3)

Address : 0FF43H			On rese	et: 00H	R	/W		
	7	6	5	4	3	2	1	0
PMC3	PMC37	PMC36	PMC35	PMC34	PMC33	PMC32	PMC31	PMC30

PMC37	Specifies Control Mode of P37 Pin
0	I/O port mode
1	ASCK2/SCK2 I/O mode
PMC36	Specifies Control Mode of P36 Pin
0	I/O port mode
1	TxD2/SO2 output mode
PMC35	Specifies Control Mode of P35 Pin
0	I/O port mode
1	RxD2/SI2 input mode
PMC34	Specifies Control Mode of P34 Pin
0	I/O port mode
1	ASCK/SCK1 I/O mode
PMC33	Specifies Control Mode of P33 Pin
0	I/O port mode
1	TxD/SO1 output mode
PMC32	Specifies Control Mode of P32 Pin

0 I/O port mode 1 RxD/SI1 input mode

PMC31	Specifies Control Mode of P31 Pin
0	I/O port mode
1	TO11 output mode

PMC30	Specifies Control Mode of P30 Pin
0	I/O port mode
1	TO10 output mode

5.5.3 Operating status

Port 3 is an input/output port, with a dual function as various control pins.

(1) When set as an output port

The output latch is enabled, and data transfers between the output latch and accumulator are performed by means of transfer instructions. The output latch contents can be freely set by means of logical operation instructions. Once data has been written to the output latch, it is retained until data is next written to the output latch^{Note}.

Note Including the case where another bit of the same port is manipulated by a bit manipulation instruction.

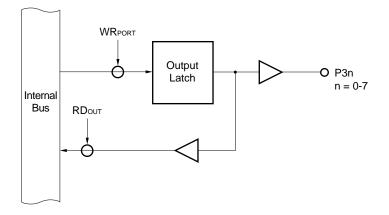
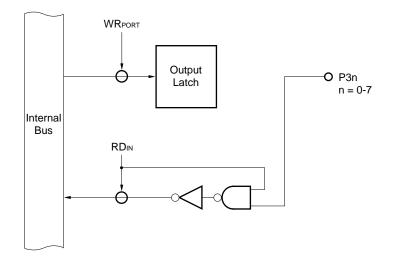
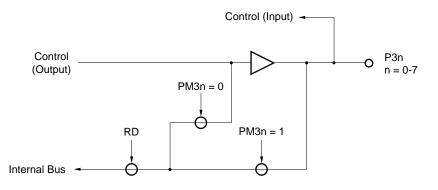



Figure 5-28. Port Specified as Output Port

(2) When set as an input port

The port pin level can be loaded into an accumulator by means of a transfer instruction. In this case, too, writes can be performed to the output latch, and data transferred from the accumulator by a transfer instruction, etc., is stored in all output latches irrespective of the port input/output specification. However, since the output buffer of a bit specified as an input port is high impedance, the data is not output to the port pin (when a bit specified as input is switched to an output port, the output latch contents are output to the port pin). Also, the contents of the output latch of a bit specified as an input port cannot be loaded into an accumulator.


Caution A bit manipulation instruction manipulates one bit as the result, but accesses the port in 8-bit units. Therefore, if a bit manipulation instruction is used on a port with a mixture of input and output pins or port mode and control mode, the contents of the output latch of pins specified as inputs and pins specified as control mode will be undefined (excluding bits manipulated with a SET1 or CLR1 instruction, etc.). Particular care is required when there are bits which are switched between input and output.

Caution is also required when manipulating the port with other 8-bit manipulation instructions.

(3) When specified as control signal input/output

By setting (1) bits of the port 3 mode control register (PMC3), port 3 can be used as control signal input or output bit-wise irrespective of the setting of the port 3 mode register (PM3). When a pin is used as a control signal, the control signal status can be seen by executing a port read instruction.

Figure 5-30. Control Specification

(a) When port is control signal output

When PM3n (n = 0 to 7) bits of the port 3 mode register (PM3) is set (1), the control signal pin level can be read by executing a port read instruction.

When PM3n bit is reset (0), the μ PD784046 internal control signal status can be read by executing a port read instruction.

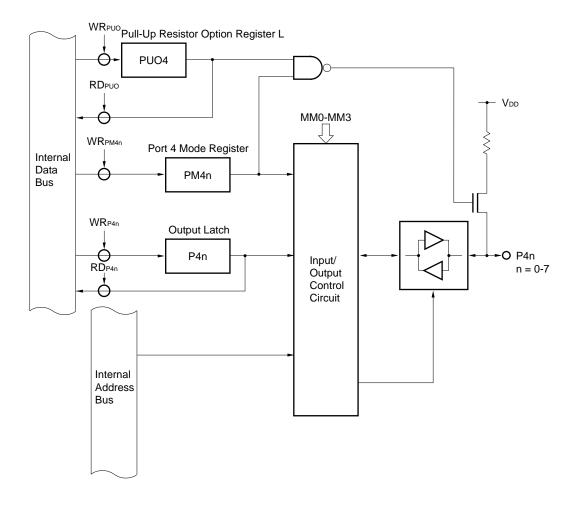
(b) When port is control signal input

Only the port 3 mode register (PM3) is set (1), control signal pin levels can be read by executing a port read instruction.

Caution Pins that function as input pins in the control mode may malfunction if the corresponding bits of the port 3 mode control register (PMC3) are rewritten while the pins are operating. Therefore, write PMC3 on initializing the system.

5.6 Port 4

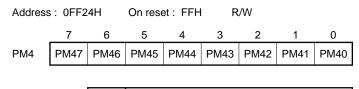
Port 4 is an 8-bit input/output port with an output latch. Input/output can be specified bit-wise by means of the port 4 mode register (PM4). Each pin incorporates a software programmable pull-up resistor.


In addition to its function as input/output port, port 4 also functions as the low-order multiplexed address/data bus (AD0 to AD7) when external memory or I/Os are extended.

When RESET is input, port 4 is set as an input port (output high-impedance state), and the output latch contents are undefined.

5.6.1 Hardware Configuration

The port 4 hardware configuration is shown in Figure 5-31.


Figure 5-31. Block Diagram of Port 4

5.6.2 Input/output mode/control mode setting

The port 4 input/output mode is set for each pin by means of the port 4 mode register (PM4) as shown in Figure 5-32. When port 4 is used as the address/data bus, it is set by means of the memory extension mode register (MM: Refer to **Figure 17-1**) as shown in Table 5-6.

Figure 5-32. Format of Port 4 Mode Register (PM4)

PM4n	Specifies I/O Mode of P4n Pin (n = 0 to 7)
0	Output mode (output buffer ON)
1	Input mode (output buffer OFF)

Table 5-6. Operation Mode of Port 4

	Bits of MM			Operation Mode	Remark		
MM3	MM2	MM1	MM0				
0	0	0	0	Port (P40-P47)	—		
0	0	1	1	Address/data bus (AD0-AD7)	Setting prohibited when		
0	1	0	0		external 16-bit bus specified		
0	1	0	1				
0	1	1	0				
0	1	1	1		_		
1	0	0	0				
1	0	0	1				

5.6.3 Operating status

Port 4 is an input/output port, with a dual function as the address/data bus (AD0 to AD7).

(1) When set as an output port

The output latch is enabled, and data transfers between the output latch and accumulator are performed by means of transfer instructions. The output latch contents can be freely set by means of logical operation instructions. Once data has been written to the output latch, it is retained until data is next written to the output latch^{Note}.

Note Including the case where another bit of the same port is manipulated by a bit manipulation instruction.

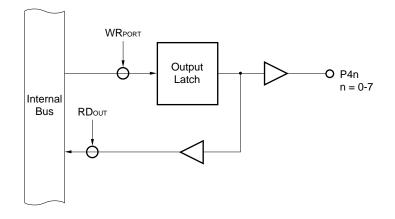
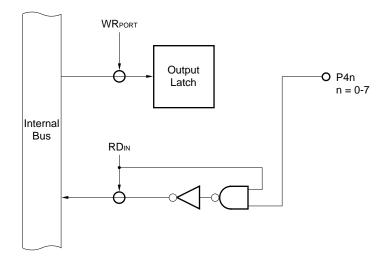



Figure 5-33. Port Specified as Output Port

(2) When set as an input port

The port pin level can be loaded into an accumulator by means of a transfer instruction. In this case, too, writes can be performed to the output latch, and data transferred from the accumulator by a transfer instruction, etc., is stored in all output latches irrespective of the port input/output specification. However, since the output buffer of a bit specified as an input port is high-impedance, the data is not output to the port pin (when a bit specified as input is switched to an output port, the output latch contents are output to the port pin). Also, when a bit specified as an input port, the output latch contents are output to an accumulator.

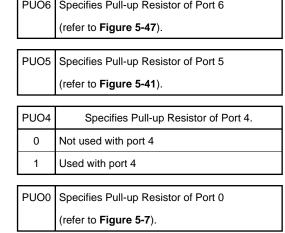
Caution A bit manipulation instruction manipulates one bit as the result, but accesses the port in 8-bit units. Therefore, if a bit manipulation instruction is used on a port with a mixture of input and output pins, the contents of the output latch of pins specified as inputs will be undefined (excluding bits manipulated with a SET1 or CLR1 instruction, etc.). Particular care is required when there are bits which are switched between input and output.

Caution is also required when manipulating the port with other 8-bit manipulation instructions.

(3) When used as address/data bus (AD0 to AD7)

Used automatically when an external access is performed. Input/output instructions should not be executed on port 4.

5.6.4 Internal pull-up resistors


Port 4 incorporates pull-up resistors. Use of these internal resistors when pull-up is necessary enables the number of parts and the mounting area to be reduced.

Whether or not an internal pull-up resistor is to be used can be specified for each pin by means of the PUO4 bit of the pull-up resistor option register L (PUOL) and the port 4 mode register (PM4).

When the PUO4 bit is 1, the internal pull-up resistor of only the pin set in the input mode by the memory expansion mode register (MM) and PM4 is valid.

Figure 5-35. Format of Pull-up Resistor Option Register L (PUOL)

Address	: 0FF4	EH	On res	et: 00H	F	R/W			
	7	6	5	4	3	2	1	0	
PUOL	JOL 0 PUO		PUO5 PUO4		0	0	0	PUO0	
		PUO6	Specifies Pull-up Resistor of Port 6						

Caution When using port 4 as the address/data bus, be sure to reset the PUO4 bit to "0" to not connect the internal pull-up resistor.

Remark When STOP mode is entered, setting 00H in PUOL is effective in reducing the current consumption.

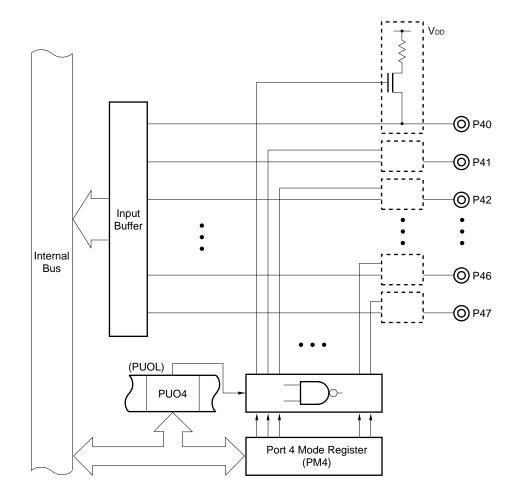


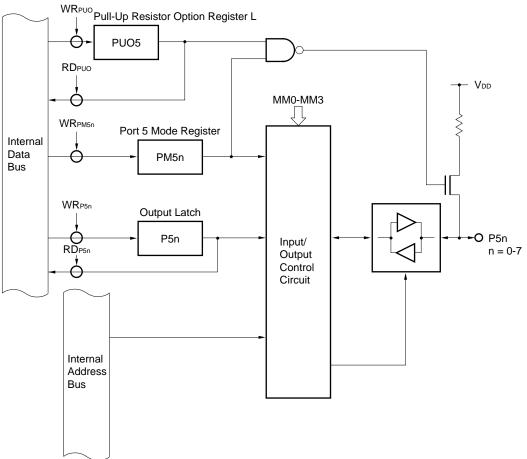
Figure 5-36. Pull-Up Resistor Specification (Port 4)

5.7 Port 5

Port 5 is an 8-bit input/output port with an output latch. Input/output can be specified bit-wise by means of the port 5 mode register (PM5). Each pin incorporates a software programmable pull-up resistor.

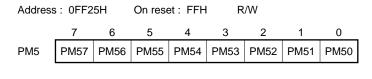
In addition to as an I/O port, port 5 also functions as follows when an external memory or I/O is connected:

- When external 8-bit bus is specified As the high-order address bus (AD8 through AD15)
- When external 16-bit bus is specified As the high-order multiplexed address/data bus (AD8 through AD15)


When RESET is input, this port is set in the input mode (output high-impedance status), and the contents of the output latch are undefined.

5.7.1 Hardware configuration

The port 5 hardware configuration is shown in Figure 5-37.


Figure 5-37. Block Diagram of Port 5

5.7.2 Input/output mode/control mode setting

The port 5 input/output mode is set for each pin by means of the port 5 mode register (PM5) as shown in Figure 5-38. When port 5 pins can be used as port or address pins in 2-bit units, the setting is performed by means of the memory extension mode register (MM: Refer to **Figure 17-1**) as shown in Table 5-7.

Figure 5-38. Format of Port 5 Mode Register (PM5)

PM5n	Specifies I/O Mode of P5n Pin (n = 0 to 7)						
0	Output mode (output buffer ON)						
1	Input mode (output buffer OFF)						

	Bits c	of MM		Operation mode								Remark
MM3	MM2	MM1	MM0	P50	P51	P52	P53	P54	P55	P56	P57	
0	0	0	0	Port	(P50-F	P57)						—
0	0	1	1									Setting prohibited when external
0	1	0	0	AD8	AD9	Port						16-bit bus specified. AD8-AD13
0	1	0	1	AD8	AD9	AD10	AD11	Port				used as address bus
0	1	1	0	AD8	AD9	AD10	AD11	AD12	AD13	Port		
0	1	1	1	AD8	AD9	AD10	AD11	AD12	AD13	AD14	AD15	_
1	0	0	0									
1	0	0	1									

5.7.3 Operating status

Port 5 is an input/output port, with a dual function as the address/data bus (AD8 to AD15).

(1) When set as an output port

The output latch is enabled, and data transfers between the output latch and accumulator are performed by means of transfer instructions. The output latch contents can be freely set by means of logical operation instructions. Once data has been written to the output latch, it is retained until data is next written to the output latch^{Note}.

Note Including the case where another bit of the same port is manipulated by a bit manipulation instruction.

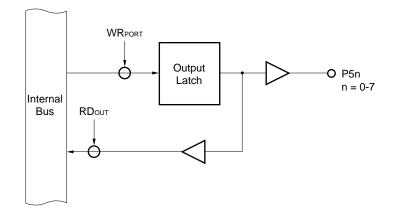
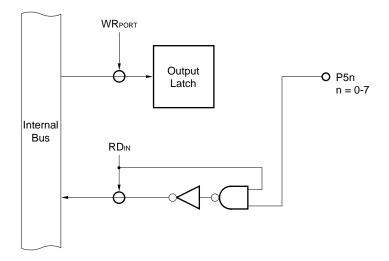



Figure 5-39. Port Specified as Output Port

(2) When set as an input port

The port pin level can be loaded into an accumulator by means of a transfer instruction. In this case, too, writes can be performed to the output latch, and data transferred from the accumulator by a transfer instruction, etc., is stored in all output latches irrespective of the port input/output specification. However, since the output buffer of a bit specified as an input port is high-impedance, the data is not output to the port pin (when a bit specified as input is switched to an output port, the output latch contents are output to the port pin). Also, the contents of the output latch of a bit specified as an input port cannot be loaded into an accumulator.

Caution A bit manipulation instruction manipulates one bit as the result, but accesses the port in 8-bit units. Therefore, if a bit manipulation instruction is used on a port with a mixture of input and output pins, the contents of the output latch of pins specified as inputs will be undefined (excluding bits manipulated with a SET1 or CLR1 instruction, etc.). Particular care is required when there are bits which are switched between input and output.

Caution is also required when manipulating the port with other 8-bit operation instructions.

(3) When used as address/data bus (AD8 to AD15)

Port 5 is automatically used when an external address/data bus is accessed. At this time, do not execute an I/O instruction to port 5.

5.7.4 Internal pull-up resistors

Port 5 incorporates pull-up resistors. Use of these internal resistors when pull-up is necessary enables the number of parts and the mounting area to be reduced.

Whether or not an internal pull-up resistor is to be used can be specified for each pin by means of the PUO5 bit of the pull-up resistor option register L (PUOL) and the port 5 mode register (PM5).

When PUO5 bit is 1, the internal pull-up resistor of only the pin set in the input port by the memory expansion mode register (MM) and PM5 is valid.

Figure 5-41. Format of Pull-Up Resistor Option Register L (PUOL)

Address: 0FF4EH			On rese	et: 00H	R	/W				
	7	6	5	4	3	2	1	0		
PUOL	0	PUO6	PUO5	PUO4	0	0	0	PUO0		
1										
	PUO6		Specifies Pull-up Resistor of Port 6							
			(refer to Figure 5-47).							
PUO5			Specifies Pull-up Resistor of Port 5.							
0			Not used with port 5							

Used with port 5

1

PUO4 Specifies Pull-up Resistor of Port 4

(refer to Figure 5-35).
PUO0 Specifies Pull-up Resistor of Port 0
(refer to Figure 5-7).

Caution When port 5 is used as the address/data bus, and "0" must be set in PUO5 bit so that internal pull-up resistor connection is not performed.

Remark When STOP mode is entered, setting 00H in PUOL is effective in reducing the current consumption.

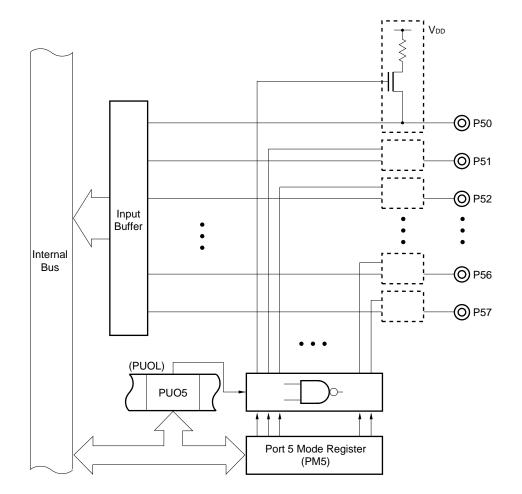
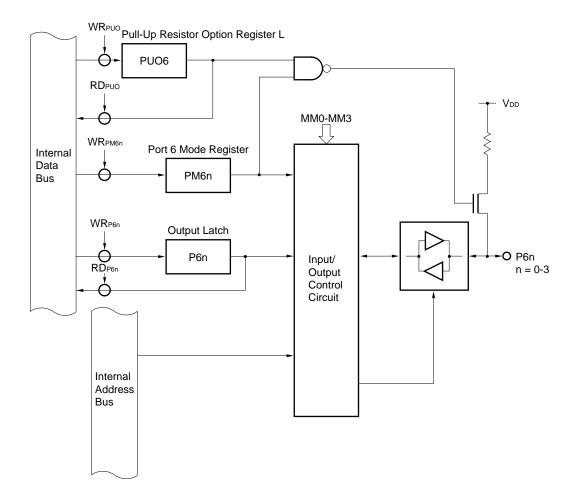


Figure 5-42. Pull-Up Resistor Specification (Port 5)

5.8 Port 6

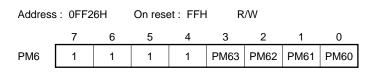
Port 6 is a 4-bit I/O port with an output latch. This port can be set in the input or output mode in 1-bit units by using port 6 mode register (PM6). Each pin is provided with a software programmable pull-up resistor.


In addition to as an I/O port, this port also functions as the high-order address bus (A16 through A19) if so specified when an external memory or I/O is connected.

When RESET is input, this port is set in the input mode (output high-impedance status), and the contents of the output latch are undefined.

5.8.1 Hardware configuration

The port 6 hardware configuration is shown in Figures 5-43.


Figure 5-43. Block Diagram of Port 6

5.8.2 Setting of I/O mode/control mode

The input/output mode of port 6 is set in 1-bit units by using the port 6 mode register (PM6) as shown in Figure 5-44. Port 6 can be used as port pins or address pins in 2-bit units. Whether it is used as port pins or address pins is specified by using the memory extension mode register (MM: refer to **Figure 17-1**), as shown in Table 5-8.

Figure 5-44. Format of Port 6 Mode Register (PM6)

PM6n	Specifies I/O Mode of P6n Pin (n = 0 to 3)
0	Output mode (output buffer ON)
1	Input mode (output buffer OFF)

Table 5-8. Operation Mode of Port 6

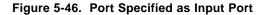
	Bits c	of MM		С	peratio	on moc	le	Remark
MM3	MM2	MM1	MM0	P60	P61	P62	P63	
0	0	0	0	Port	(P60-F	P63)		_
0	0	1	1					Setting prohibited when external
0	1	0	0					16-bit bus specified.
0	1	0	1					
0	1	1	0					
0	1	1	1					—
1	0	0	0	A16	A17	Port		
1	0	0	1	A16	A17	A18	A19	

5.8.3 Operating status

Port 6 is an input/output port, with a dual function as the address bus (A16 to A19).

(1) When set as an output port

The output latch is enabled, and data transfers between the output latch and accumulator are performed by means of transfer instructions. The output latch contents can be freely set by means of logical operation instructions. Once data has been written to the output latch, it is retained until data is next written to the output latch^{Note}.


Note Including the case where another bit of the same port is manipulated by a bit manipulation instruction.

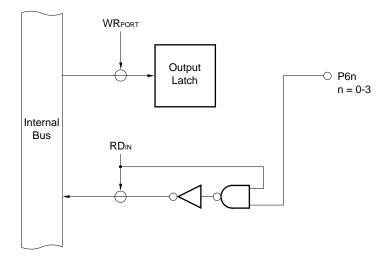


Figure 5-45. Port Specified as Output Port

(2) When set as an input port

The port pin level can be loaded into an accumulator by means of a transfer instruction. In this case, too, writes can be performed to the output latch, and data transferred from the accumulator by a transfer instruction, etc., is stored in all output latches irrespective of the port input/output specification. However, since the output buffer of a bit specified as an input port is high-impedance, the data is not output to the port pin (when a bit specified as input is switched to an output port, the output latch contents are output to the port pin). Also, the contents of the output latch of a bit specified as an input port cannot be loaded into an accumulator.

Caution A bit manipulation instruction manipulates one bit as the result, but accesses the port in 8-bit units. Therefore, if a bit manipulation instruction is used on a port with a mixture of input and output pins, or port mode and control mode, the contents of the output latch of pins specified as inputs or pins specified as in the control mode will be undefined (excluding bits manipulated with a SET1 or CLR1 instruction, etc.). Particular care is required when there are bits which are switched between input and output.

Caution is also required when manipulating the port with other 8-bit manipulation instructions.

(3) When used as address bus (A16 to A19)

Port 6 is automatically used as an external access bus. At this time, do not execute an I/O instruction to port 6.

5.8.4 Internal pull-up resistors

Port 6 incorporates pull-up resistors. Use of these internal resistors when pull-up is necessary enables the number of parts and the mounting area to be reduced.

Whether or not an internal pull-up resistor is to be used can be specified for each pin by means of the PUO6 bit of the pull-up resistor option register L (PUOL) and the port 6 mode register (PM6).

The internal pull-up resistor of only the pin set in the input mode by PM6 is valid when the PUO6 bit is 1.

Even when port 6 is specified as the address bus, specifying the use of the internal pull-up resistor is valid. To not connect the internal pull-up resistor, either set the output mode by using the port 6 mode register (PM6) (PM6n = 0: n = 0 to 3), or reset PUO6 to 0.

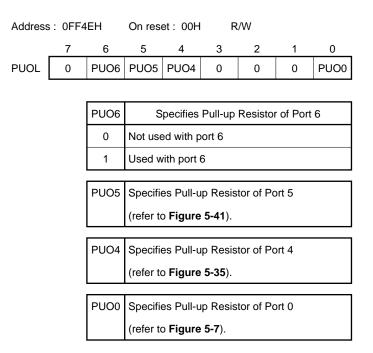


Figure 5-47. Format of Pull-Up Resistor Option Register L (PUOL)

Remark When STOP mode is entered, setting 00H in PUOL is effective in reducing the current consumption.

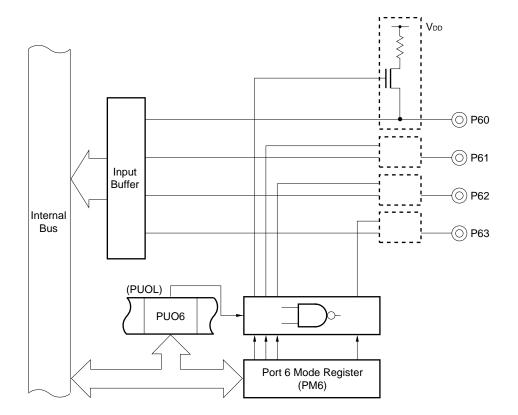
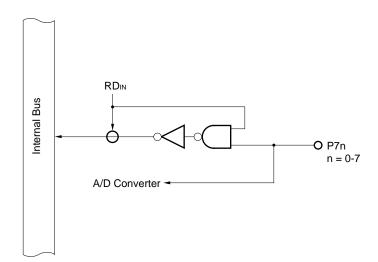


Figure 5-48. Pull-Up Resistor Specification (Port 6)


5.9 Port 7

Port 7 is an 8-bit input port. In addition to functioning as input port pins, its pins also function as an A/D converter analog input (low-order 8 channels) pins (ANI0 through ANI7), and can always input analog signals. This port is set in the analog input mode by using A/D converter mode register (ADM) (refer to **Figure 13-3**).

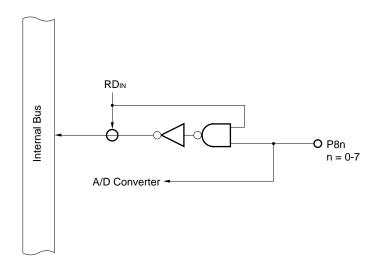
The level of each pin of this port can always be read or tested, regardless of the multiplexed function.

5.9.1 Hardware configuration

Figure 5-49 shows the hardware configuration of port 7.

5.9.2 Notes

- (1) Do not apply a voltage outside the range of AVss to AVREF to the P70 through P77 pins when they are used as ANI0 through ANI7. For details, refer to **13.6 Cautions** in **CHAPTER 13 A/D CONVERTER**.
- (2) If some pins of port 7 are used for analog input and the others are used for digital input, and if the digital input changes at analog input sampling timing, the A/D conversion accuracy is affected. When a high accuracy is necessary, do not use analog input and digital input simultaneously.


5.10 Port 8

Port 8 is an 8-bit input port. In addition to functioning as input port pins, its pins also function as an A/D converter analog input (high-order 8 channels) pins (ANI8 through ANI15), and can always input analog signals. This port is set in the analog input mode by using A/D converter mode register (ADM) (refer to **Figure 13-3**).

The level of each pin of this port can always be read or tested, regardless of the multiplexed function.

5.10.1 Hardware configuration

Figure 5-50 shows the hardware configuration of port 8.

5.10.2 Cautions

- (1) Do not apply a voltage outside the range of AVss to AVREF to the P80 through P87 pins when they are used as ANI8 through ANI15. For details, refer to **13.6 Cautions** in **CHAPTER 13 A/D CONVERTER**.
- (2) If some pins of port 8 are used for analog input and the others are used for digital input, and if the digital input changes at analog input sampling timing, the A/D conversion accuracy is affected. When a high accuracy is necessary, do not use analog input and digital input simultaneously.

5.11 Port 9

Port 9 is a 5-bit I/O port with an output latch. This port can be set in the input or output mode in 1-bit units by using port 9 mode register (PM9). Each pin is provided with a software programmable pull-up resistor.

In addition to the I/O port function, port 9 also functions as control signal pins (refer to **Table 5-9**). P90 through P93 functions as a read/write strobe signals and address strobe signal when an external memory or I/O is connected. P94 functions as a wait signal input pin if so specified by port 9 mode control register (PMC9).

When RESET is input, this port is set in the input mode (output high-impedance status), and the contents of the output latch are undefined.

Pin Name	Port Mode	Control Signal I/O Mode	Manipulation to Use Port 9 as Control Pins
P90	I/O Port	RD	Specifying external memory expansion mode by
P91		LWR	MM0 through MM3 bits of memory expansion
P92		HWR	mode register (MM)
P93		ASTB	
P94		WAIT	Setting of PMC94 bit of PMC9 to 1

Table 5-9. Operation Mode of Port 9

Remark For details, refer to CHAPTER 17 LOCAL BUS INTERFACE FUNCTION.

(a) Port mode

Each port pin not set in the control mode can be set in the input or output mode in 1-bit units by using the port 9 mode register (PM9).

(b) Control signal I/O mode

(i) RD (Read Strobe)

This pin outputs a strobe signal to read an external memory. The operation of this pin is specified by the memory expansion mode register (MM).

(ii) LWR, HWR (Low/High Write Strobe)

These pins output strobe signals to write an external memory. The operations of these pins are specified by the memory expansion mode register (MM).

(iii) ASTB (Address Strobe)

This is a timing signal output pin to latch the address information output from the AD0 through AD15 pins to access the external memory. The operation of this pin is specified by the memory expansion mode register (MM).

(iv) WAIT (Wait)

This pin inputs a wait signal. The operation of this pin is specified by the port 9 mode control register (PMC9).

5.11.1 Hardware configuration

Figure 5-51 and Figure 5-52 show the hardware configuration of port 9.

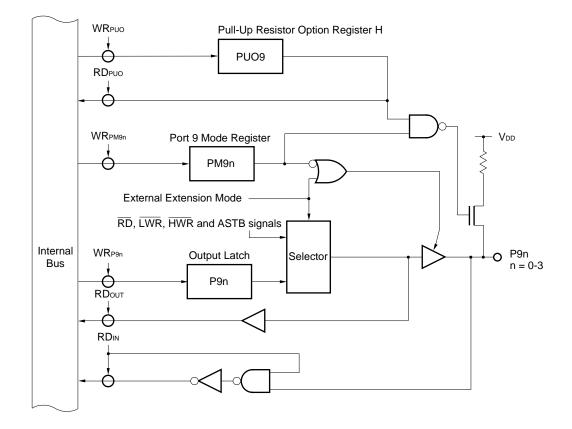


Figure 5-51. Block Diagram of P90 to P93 (Port 9)

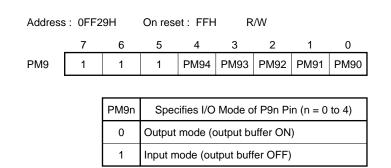



Figure 5-52. Block Diagram of P94 (Port 9)

5.11.2 Setting of I/O mode/control mode

The input/output mode of port 9 is set per pin by using the port 9 mode register (PM9) as shown in Figure 5-53. In addition to as an I/O port function, port 9 also has the following functions. P90 through P93 can be used as $\overline{\text{RD}}$, $\overline{\text{LWR}}$, $\overline{\text{HWR}}$, and ASTB pins, if so specified by the memory extension mode register (MM: refer to **Figure 17-1**), as shown in Table 5-10. P94 can be used as a $\overline{\text{WAIT}}$ pin if so specified by the port 9 mode control register (PMC9) as shown in Figure 5-54.

Figure 5-53. Format of Port 9 Mode Register (PM9)

Table 5-10. Operation Mode of P90 through P93

	Bits c	of MM		0	Operation mode			Operation mode Remark			Remark
MM3	MM2	MM1	MM0	P90	P91	P92	P93				
0	0	0	0	Port	(P90-F	? 93)		—			
0	0	1	1	RD	LWR	HWR	ASTB	Setting prohibited when external			
0	1	0	0					16-bit bus specified.			
0	1	0	1								
0	1	1	0								
0	1	1	1					_			
1	0	0	0								
1	0	0	1								

Address: 0FF49H			On res	et: 00H	R	/W		
	7	6	5	4	3	2	1	0
PMC9	0	0	0	PMC94	0	0	0	0

PMC94	Specifies Control Mode of P94 Pin			
0	I/O port mode			
1	WAIT input mode			

5.11.3 Operating status

Port 9 is an input/output port and is multiplexed with control pins.

(1) In output port mode

The output latch is valid, and data is transferred between the output latch and accumulator by a transfer instruction. The contents of the output latch can be freely set by a logical operation instruction. Data that has been written to the output latch is retained until new data is written to the output latch^{Note}.

Note Including when the other bits of the same port are manipulated by a bit manipulation instruction.

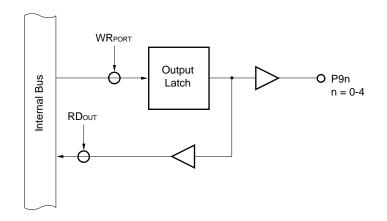
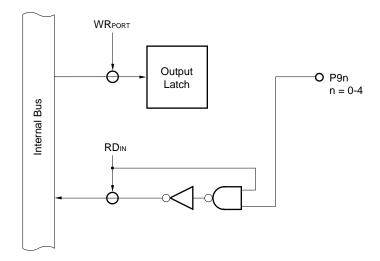



Figure 5-55. Port in Output Port Mode

(2) In input port mode

The level of a port pin can be loaded to the accumulator by using a transfer instruction. Even in this case, data can be written to the output latch. Data transferred from the accumulator by a transfer instruction is stored to all the latches regardless of whether the input or output mode is specified. However, because the output buffer of a bit (pin) set in the input mode is in the high-impedance state, its contents are not output to the port pin (the contents of the output latch are output to the port pin when the mode of the pin is changed from input to output). The contents of the output latch of the pin set in the input port cannot be loaded to the accumulator.

Figure 5-56. Port in Input Port Mode

Caution Although the result of a bit manipulation instruction is ultimately 1 bit manipulation, it accesses a port in 8-bit units. If such an instruction is executed to manipulate a port with some pins set in the input mode and the others in the control mode, the contents of the output latch are undefined (except when a pin is manipulated by the SET1 or CLR1 instruction). Especially, care must be exercised if the mode of some pins must be changed between input and output.

The same applies when manipulating the port by using the other 8-bit operation instructions.

(3) Pin in control mode

• P90 through P93

These pins are automatically used as the RD, LWR, HWR, and ASTB pins when the external memory or I/O is accessed.

At this time, do not execute an I/O instruction to P90 through P93.

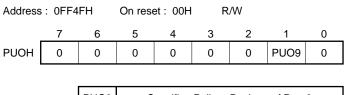
• P94

This pin can be used as the $\overline{\text{WAIT}}$ pin, regardless of the setting of the port 9 mode register (PM9), if the PMC94 bit of the port 9 mode control register (PMC9) is set (1). When using P94 as the $\overline{\text{WAIT}}$ pin, the status of the $\overline{\text{WAIT}}$ pin can be read by executing an instruction that reads the port only when the PM94 bit of PM9 is set (1).

Caution The pin that functions as an input pin in the control mode (P94) may malfunction if the PMC94 bit of the port 9 mode control register (PMC9) is rewritten while the pin is operating. Therefore, write PMC9 on initializing the system.

5.11.4 Internal pull-up resistor

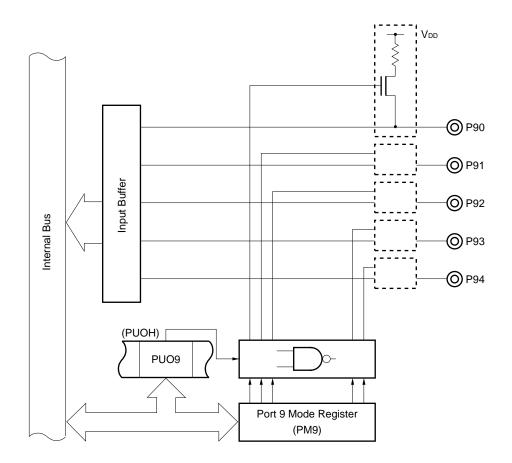
Port 9 is provided with pull-up resistors. When the port must be pulled up, the number of components and the mounting area can be reduced by using these internal pull-up resistor.


Whether the internal pull-up resistors are used or not is specified per pin by using the PUO9 bit of the pull-up resistor option register H (PUOH) and port 9 mode register (PM9).

When the PUO9 bit is 1, the internal pull-up resistor of only the pin specified as follows is valid.

- P90 through P93 : Set in input port mode by memory extension mode register (MM) and PM9
- P94 : Set in input mode by PM9

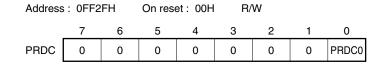
Even when P94 is specified as the WAIT pin, specifying its use as a pull-up resistor is valid. In order not to connect the internal pull-up resistor, either specify the output mode by using PM9 (PM94 = 0), or reset (0) in PUO9.



PUO9	Specifies Pull-up Resistor of Port 9			
0	Not used with port 9			
1	Used with port 9			

Caution When using P90 through P93 as the \overline{RD} , \overline{LWR} , \overline{HWR} , and ASTB pins, be sure to reset the PUO9 bit to "0" in order not to connect the internal pull-up resistor.

Remark Resetting PUOH to 00H is effective for decreasing the current consumption when the STOP mode is set.


5.12 Port Output Data Check Function

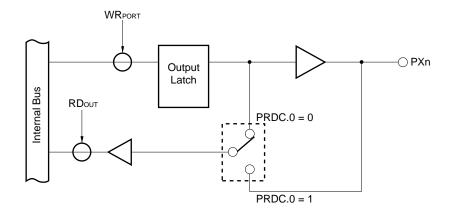
The μ PD784046 has a function to read the status of a port pin even in the output mode, to improve the reliability of the system (pin access mode). Therefore, the output data and the actual pin status can be checked as necessary. To read the pin status, set (1) bit 0 of the port read control register (PRDC), and then read the port.

When $\overline{\text{RESET}}$ is input, PRDC is reset to 00H.

Figure 5-59. Format of Port Read Control Register (PRDC)

Example To check the output data of ports 0 (P0), 4 (P4), and 5 (P5) by using the pin access mode.

PRDC0	Specifies Operation Mode			
0	Normal mode			
1	Pin access mode			


TEST:	DI		; Disables interrupts
	MOV	A, #5AH	; Test data = 5AH
	MOV	P0, A	; Sets 5AH to output latch
	MOV	P4, A	
	MOV	P5, A	
	SET1	PRDC.0	; Sets pin access mode (sets PRDC)
	CMP	A, P0	; Compares pin level and output latch contents
	BNE	\$ERR0	; Error if unmatch
	CMP	A, P4	
	BNE	\$ERR4	
	CMP	A, P5	
	BNE	\$ERR5	
	CLR1	PRDC.0	; Returns to normal mode (resets PRDC)
	EI		; Enables interrupts

- Cautions 1. If a bit manipulation instruction is executed to manipulate the port, it is not executed normally in the pin access mode (PRDC0 = 1). After checking the port, be sure to reset the mode to the normal mode (PRDC0 = 0).
 - If an interrupt occurs in the pin access mode (PRDC0 = 1), a bit manipulation instruction may be executed with this mode maintained, causing malfunctioning. Be sure to set the DI status before checking the port.
 - Do not use a macro service that manipulates the port.
 - 3. Occurrence of the non-maskable interrupt cannot be prevented. Take the following measures in the program, depending on the system:
 - Do not manipulate the port in the non-maskable interrupt routine.
 - Save the level of PRDC.0 at the beginning of the non-maskable interrupt routine, and restore it on returning execution from the interrupt routine.

If PRDC.0 is set (1), the switch enclosed by the dotted line in the figure below is connected to the pin, and the pin level is read. If a bit manipulation instruction is executed in this status, the pin level is read and the bit is manipulated, affecting the value of the output latch.

When PRDC.0 is reset (0), the normal operation is performed.

Dedicated instructions (CHKL, CHKLA) that are used to frequently check the port status are available. These instructions compare the pin status with the contents of the output latch (in port mode), or the pin status with the level of the internal control output signal (in control mode) through exclusive OR.

Example To check the pin status and the contents of the output latch using the CHKL or CHKLA instruction.

TEST:	SET1 CHKL BNE	P0.3 P0 \$ERR1	 ; Sets bit 3 of port 0 ; Checks port 0 ; Branches to error processing (ERR1) if contents of output latch do not match pin status
ERR1:	CHKLA	P0	; Checks defective bit
	BT	A.3, \$BIT03	; Bit 3?
	BT	A.2, \$BIT02	; Bit 2?
	BT	A.1, \$BIT01	; Bit 1?
	BR	\$BIT00	; Bit 0 is defective if all other bits are valid.

- Cautions 1. Use the CHKL or CHKLA instruction when the PRDC0 bit of the port read control register (PRDC) is "0" (normal mode).
 - 2. The result of comparison by the CHKL or CHKLA instruction always matches, regardless of whether the pin set in the input port mode is set in the port mode or control mode. Because the input level of the input-only pin is read when the CHKL or CHKLA instruction is executed, because this pin does not have an output latch. In other words, executing the CHKL or CHKLA instruction to the input-only pin is practically invalid, therefore, do not use the instruction to manipulate such a pin.
 - 3. To check the output level of a port with some of its bits set in the control output mode and others in the port output mode, using the CHKL or CHKLA instruction, execute the instruction after changing the input/output mode of the control output pin to the input mode (the output level of the control output pin changes asynchronously and therefore cannot be checked by the CHKL or CHKLA instruction).

5.13 Cautions

All the port pins go into a high-impedance state when the RESET signal is input (the internal pull-up resistor is also disconnected from the pin).

If it is necessary to prevent a pin from going into a high-impedance state during RESET input, use an external circuit.

- (2) Bits 1, 3, and 7 of the pull-up resistor option register L (PUOL) that specifies connection of the internal pull-up resistor, and bits 0 and 2 through 7 of the pull-up resistor option register H (PUOH) are fixed to "0". However, if "1" is written to these bits, 1 can be read with an in-circuit emulator.
- (3) The contents of the output latch are not initialized by RESET input. To use a port as an output port, be sure to initialize the output latch before turning ON the output buffer. Unless the output buffer is initialized before the output buffer is turned ON, unexpected data is output to the output port. In the same way, when using a port as control pins, be sure to initialize the internal peripheral hardware, and then set the port in the control mode.
- (4) Although the result of a bit manipulation instruction is ultimately 1 bit manipulation, it accesses a port in 8-bit units. If such an instruction is executed to manipulate a port with some pins set in the input/output mode and the others in the port mode and in the control mode, the contents of the output latch are undefined (except when a pin is manipulated by the SET1 or CLR1 instruction). Especially, care must be exercised if the mode of some pins must be changed between input and output.

The same applies when manipulating the port by using the other 8-bit operation instructions.

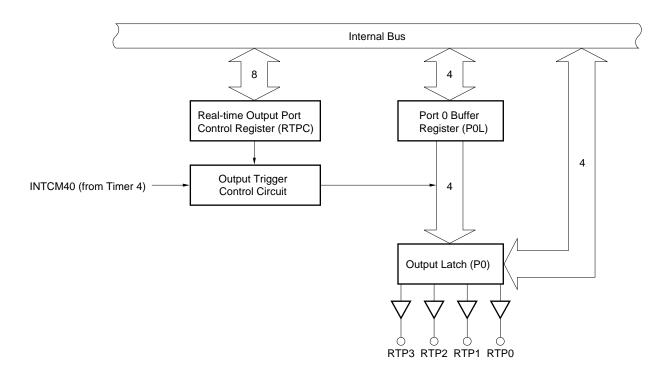
- (5) To use port 0 as a real-time output port, be sure to reset the PUO0 bit of the pull-up resistor option register L (PUOL) to "0", in order not to connect the internal pull-up resistor.
- (6) Even when using the P21 through P27 pins in the output port mode or timer output mode, INTPn (n = 0 to 6) interrupt occurs depending on the edge detection of the pin level. Mask the interrupt before using these pins.
- (7) Even when using the P26 and P27 pins as TI2 and TI3 pins, interrupts INTP5 and INTP6 occur. Mask the interrupts before using these pins.
- (8) The pins used as input pins in the control mode (P32, P34, P35, P37, and P94) may malfunction if the corresponding bit of the port n mode control register (PMCn: n = 3, 9) while these pins are operating. Therefore, write PMCn on initializing the system.
- (9) When using ports 4 and 5, and P90 through P93 as pins in the external memory extension mode, be sure to reset the corresponding bits of the pull-up resistor option registers (PUOL, PUOH) to "0", in order not to connect the internal pull-up resistor.
- (10) Do not apply a voltage outside the range of AVss to AVREF to P70 through P77 and P80 through P87 used as ANI0 through ANI15.
 For details, refer to 13.6 Cautions in CHAPTER 13 A/D CONVERTER.
- (11) If some pins of ports 7 and 8 are used for analog input and the others are used for digital input, and if the digital input changes at analog input sampling timing, the A/D conversion accuracy is affected. When a high accuracy is necessary, do not use analog input and digital input simultaneously.

- (12) A bit manipulation instruction executed to manipulate the port is not executed normally in the pin access mode (PRDC0 of port read control register (PRDC) = 1). After checking the port, be sure to reset the mode to the normal mode (PRDC0 = 0).
- (13) If an interrupt occurs in the pin access mode (PRDC0 of PRDC = 1), a bit manipulation instruction may be executed with this mode maintained, causing malfunctioning. Be sure to set the DI status before checking the port. Do not use a macro service that manipulates the port.
- (14) Occurrence of the non-maskable interrupt cannot be prevented in the pin access mode (PRDC0 of PRDC = 1). Take the following measures by using the program, depending on the system:
 - Do not manipulate the port in the non-maskable interrupt routine.
 - Save the level of PRDC.0 at the beginning of the non-maskable interrupt routine, and restore it on returning execution from the interrupt routine.
- (15) Use the CHKL or CHKLA instruction when the PRDC0 bit of PRDC is "0" (normal mode).
- (16) The result of comparison by the CHKL or CHKLA instruction always matches, regardless of whether the pin set in the input port mode is set in the port mode or control mode. Because the input level of the input-only pin is read when the CHKL or CHKLA instruction is executed, because this pin does not have an output latch. In other words, executing the CHKL or CHKLA instruction to the input-only pin is practically invalid, and therefore, do not use the instruction to manipulate such a pin.
- (17) To check the output level of a port with some of its bits set in the control output mode and others in the port output mode, by using the CHKL or CHKLA instruction, execute the instruction after changing the input/output mode of the control output pin to the input mode (the output level of the control output pin changes asynchronously and therefore cannot be checked by the CHKL or CHKLA instruction).

CHAPTER 6 REAL-TIME OUTPUT FUNCTION

6.1 Configuration and Function

The real-time output function is implemented by hardware, including primarily port 0 and the port 0 buffer registers (P0L), shown in Figure 6-1.


The real-time output function refers to the transfer to the output latch by hardware of data prepared in the POL beforehand, simultaneously with the generation of an interrupt from timer 4 or external interrupt, and its output off-chip. The pins that output the data off-chip are called real-time output ports.

4 bits \times 1 channel are handled as real-time output data.

By combining the real-time output function with the macro service function described later, the functions of a pattern generator with programmable timing are implemented without software intermediation.

This is ideally suited to stepping motor control, for example.

Figure 6-1 shows the block diagram of the real-time output port.

Figure 6-1. Block Diagram of Real-time Output Port

6.2 Real-Time Output Port Control Register (RTPC)

RTPC is an 8-bit register that specifies the function of port 0 (input/output port or real-time output port).

This register can be read or written by using an 8-bit manipulation instruction or a bit manipulation instruction. Figure 6-2 shows the format of this register.

When $\overline{\text{RESET}}$ is input, the value of this register is reset to 00H.

Figure 6-2. Format of Real-Time Output Port Control Register (RTPC)

Address : 0FF2EH On reset : 0			et: 00H	R	/W			
	7	6	5	4	3	2	1	0
RTPC	0	0	0	0	0	0	TRGP0	POML

TRGP0	Enables or Disables Data Transfer from Buffer
	Register to Output Latch by INTCM40
0	Enables
1	Disables
POML	Specifies Control Mode of P00 through P03 Pins
0	I/O port mode
1	Real-time output port mode
	0 1 POML 0

Caution When the P0ML bit is set (1), the output buffer of the corresponding port pin turns ON regardless of the contents of the port 0 mode register (PM0), and the contents of the output latch of port 0 are output. Before specifying port 0 as the real-time output port, therefore, initialize the contents of the output latch.

6.3 Operation

When port 0 is specified as the real-time output port (P0ML of the real-time output port control register (RTPC) = 1) and TRGP of RTPC is reset to 0, the contents of the buffer register (P0L) are loaded to the output latch in synchronization with occurrence of the match interrupt (INTCM40) of timer 4, and output to the RTP0 through RTP3 pins. The output data of the RTP0 through RTP3 pins can be changed to the value of the buffer register at time intervals specified by the value set in advance to the compare register of timer 4 (CM40).

By using this real-time output port function and the macro service function in combination, the output data of the RTP0 through RTP3 pins can be sequentially changed at any interval time.

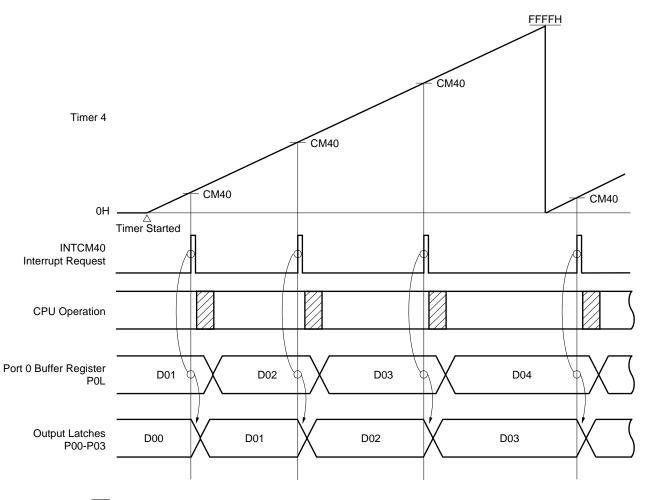


Figure 6-3. Operation Timing of Real-Time Output Port

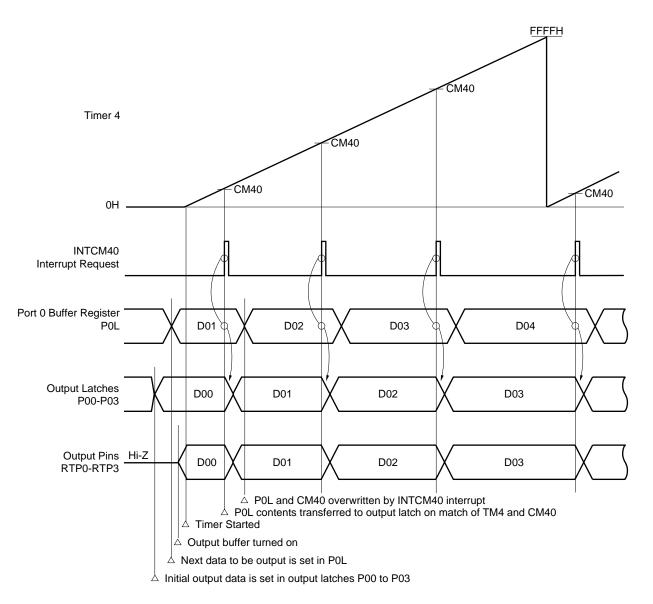
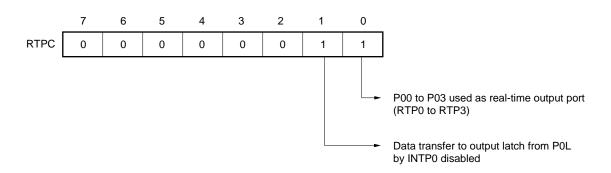
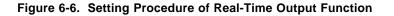
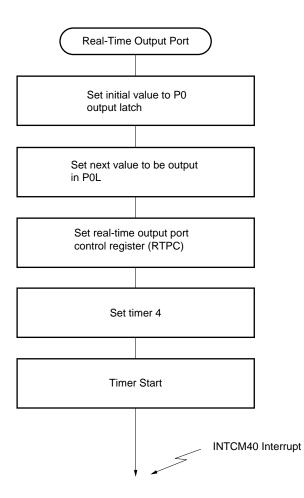
Port 0 buffer register and compare register overwrite by software processing or macro service (refer to **16.8 Macro Service Function**)

6.4 Example of Use

Each time the contents of timer 4 timer register 4 (TM4) and compare register (CM40) match, the contents of port 0 buffer register (P0L) are output to RTP0 through RTP3. At this time, the next data to be output and the timing at which the output is to be changed next are set in the service routine for the simultaneously generated interrupt (refer to **Figure 6-4**).

Refer to **CHAPTER 11 TIMER 4** for the method of using timer/counter 1.

The control register settings are shown in Figure 6-5, the setting procedure in Figure 6-6, and the processing in the interrupt processing routine in Figure 6-7.

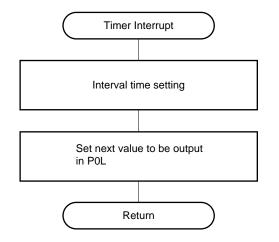

Figure 6-4. Operation Timing of Real-Time Output Port

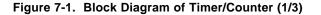
Figure 6-5. Settings for Real-Time Output Function Control Register

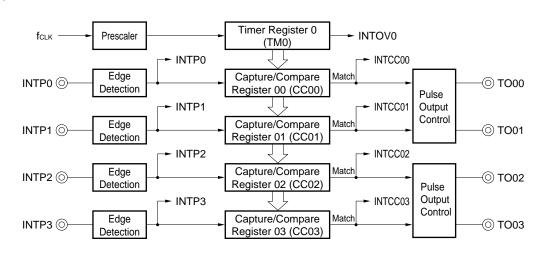
Figure 6-7. Interrupt Request Processing when Real-Time Output Function Is Used

6.5 Cautions

- When POML bit of real-time output port control register (RTPC) is set (1), the corresponding port output buffer is turned on and the port 0 output latch contents are output irrespective of the contents of the port 0 mode register (PM0). The output latch contents should therefore be initialized before making a real-time output port specification.
- (2) When the port is specified as a real-time output port, values cannot be directly written to the output latch by software. Therefore, the initial value of the output latch must be set by software before specifying use as a real-time output port.

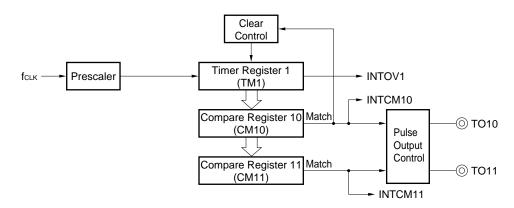
Also, if the need arises to forcibly set the output data to a fixed value while the port is being used as a real-time output port, you should change the port to a normal output port by manipulating the real-time output port control register (RTPC), then write the value to be output to the output latch.


CHAPTER 7 OUTLINE OF TIMER/COUNTER


The μ PD784026 incorporates two 16-bit timer/counter units and three 16-bit time units.

These timer/counter and timer units can be used as fifteen units of timers because the μ PD784046 supports fifteen interrupt requests.

ltem	Name	Timer 0	Timer 1	Timer/Counter 2	Timer/Counter 3	Timer 4
Operation	Interval timer	4 ch	2 ch	2 ch	2 ch	2 ch
mode	External event counter	_	_	0	0	_
Function	Timer output	4 ch	2 ch	2 ch	2 ch	—
	Toggle output	0	0	0	0	_
	Set/reset output	0	0	—	—	—
	PWM/PPG output	—	—	0	0	—
	Real-time output	—	—	_	—	0
	Overflow interrupt		0	_	—	0
	Number of interrupt requests	5	3	2	2	3

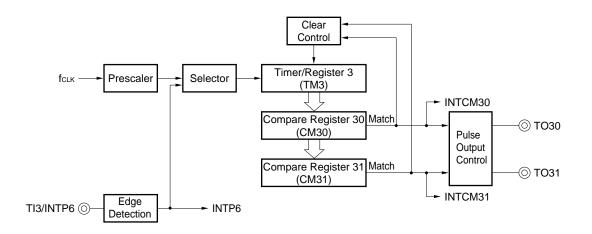

Table 7-1. Operations of Timer/Counters

Prescaler: fclk/4, fclk/8, fclk/16, fclk/32, fclk/64

Timer 1

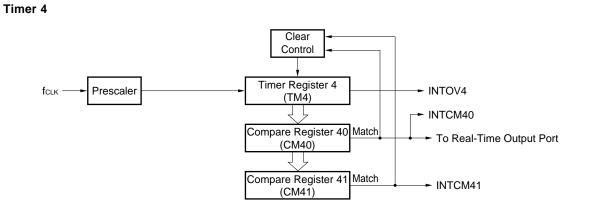
Prescaler: fclk/8, fclk/16, fclk/32, fclk/64, fclk/128

Timer 0


Figure 7-1. Block Diagram of Timer/Counter (2/3)

Clear Control Timer/Register 2 Selector **f**clk Prescaler (TM2) ΙL ► INTCM20 Compare Register 20 Match - TO20 (CM20) Pulse Output Control Compare Register 21 Match () TO21 (CM21) INTCM21 Edge TI2/INTP5 (INTP5 Detection

Prescaler: fclk/4, fclk/8, fclk/16, fclk/32, fclk/64


Timer/Counter 3

Timer/Counter 2

Prescaler: fclk/4, fclk/8, fclk/16, fclk/32, fclk/64

Figure 7-1. Block Diagram of Timer/Counter (3/3)

Prescaler: fclk/4, fclk/8, fclk/16, fclk/32, fclk/64

CHAPTER 8 TIMER 0

8.1 Function

Timer 0 is a 16-bit free running timer.

Because this timer has four capture/compare registers and a toggle and set/reset timer output functions, it can be used as an interval timer or to measure pulse width.

(1) Interval timer

When timer 0 is used as an interval timer, it generates an internal interrupt at interval set in advance.

Minimum Interval Time ^{Note}	Maximum Interval Time	Resolution
4/fclк (0.25 <i>μ</i> s)	$2^{16} \times 4/f_{CLK}$ (16.4 ms)	4/fclк (0.25 <i>μ</i> s)
8/fc∟к (0.5 <i>µ</i> s)	$2^{16} \times 8$ /fclk (32.8 ms)	8/fclк (0.5 <i>μ</i> s)
16/fcικ (1.0 μs)	2 ¹⁶ × 16/fс∟к (65.5 ms)	16/fc∟к (1.0 <i>μ</i> s)
32/fclκ (2.0 μs)	$2^{16} \times 32$ /fclk (131 ms)	32/fclк (2.0 <i>μ</i> s)
64/fcικ (4.0 μs)	$2^{16} imes 64$ /fclk (262 ms)	64/fclκ (4.0 μs)

Table 8-1. Interval Time of Timer 0

(): at fclк = 16 MHz

Note The minimum interval time is limited by the data transfer processing time. Consider the interrupt processing time or macro service processing time used (refer to Table 16-11 Interrupt Acceptance Processing Time and Table 16-12 Macro Service Processing Time).

(2) Pulse width measurement

Timer 0 can be used to detect the pulse width of a signal input to an external interrupt request input pin (INTP0 to INTP3).

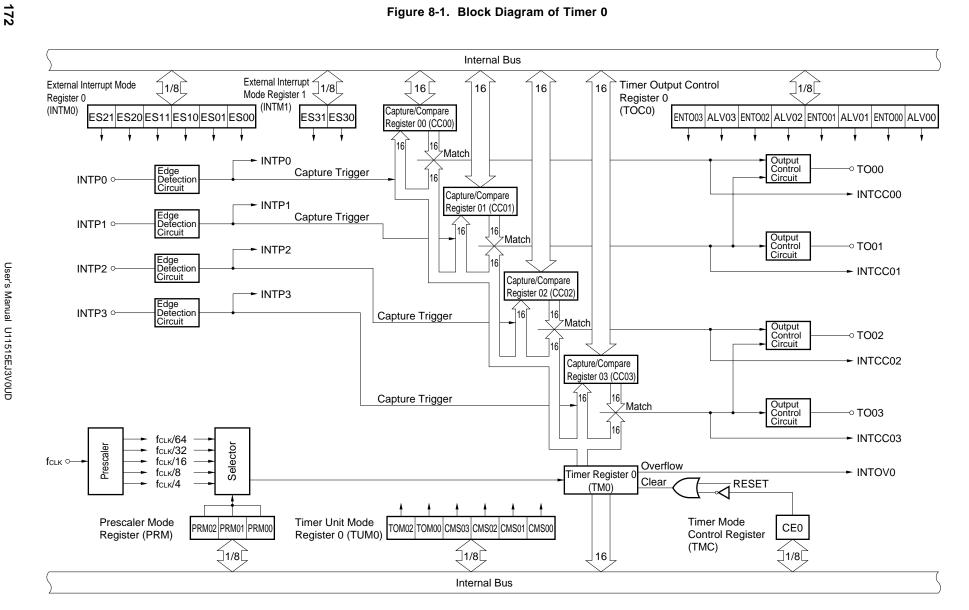
Measurable Pulse Width ^{Note 1}	Resolution		
4/fclk (0.25 μ s) ^{Note 2} $- 2^{16} \times 4$ /fclk (16.4 ms)	4/fclк (0.25 µs)		
8/fclk (0.5 μ s) ^{Note 2} $-2^{16} \times 8$ /fclk (32.8 ms)	8/fclк (0.5 µs)		
16/fclk (1.0 μ s) ^{Note 2} - 2 ¹⁶ × 16/fclk (65.5 ms)	16/fc∟к (1.0 µs)		
$32/f_{CLK} (2.0 \ \mu s)^{Note 2} - 2^{16} \times 32/f_{CLK} (131 \ ms)$	32/fclк (2.0 µs)		
64/fclk (4.0 μ s) ^{Note 2} $-2^{16} \times 64$ /fclk (262 ms)	64/fclк (4.0 µs)		

Table 8-2. Pulse Width Measurement Range of Timer 0

Notes 1. The minimum measurable pulse width changes depending on the sampling clock selected by the noise protection control register (NPC). The minimum measurable pulse width is either of the values in the above table and the table below, whichever greater.

Sampling Clock	Minimum Pulse Width
fclĸ	4/fclk (0.25 µs)
fськ/4	16/fclк (1.0 <i>μ</i> s)

 This value is limited by the data transfer processing time. Consider the interrupt processing time or macro service processing time used (refer to Table 16-11 Interrupt Acceptance Processing Time and Table 16-12 Macro Service Processing Time).


8.2 Configuration

Timer 0 consists of the following registers:

- Timer register (TM0) \times 1
- Capture/compare register (CC0n) \times 4 (n = 0 to 3)

Figure 8-1 shows the block diagram of timer 0.

^{():} at fclк = 16 MHz

CHAPTER 8

TIMER 0

(1) Timer register 0 (TM0)

TM0 is a timer register that counts up the count clock specified by the prescaler mode register (PRM). Counting of this timer register is enabled or disabled by the timer mode control register (TMC). The timer register can be only read by using a 16-bit manipulation instruction. When RESET is input, TM0 is cleared to 0000H and stops counting.

(2) Capture/compare registers (CC00 through CC03)

CC0n (n = 0 to 3) is a 16-bit register that can be used as a compare register to detect match between its value and the count value of TM0 or as a capture register to capture the count value of TM0. Whether CC0n is used as a compare register or capture register is specified by the timer unit mode register 0 (TUM0).

This register can be read or written by using a 16-bit manipulation instruction.

When RESET is input, the value of this register is undefined.

(a) As compare register

When used as a compare register, CC0n functions as a 16-bit register that holds the value determining the cycle of the interval timer operation.

When the contents of CC0n matches with the contents of TM0, an interrupt request (INTCC0n: n = 0 to 3) and a timer output control signal are generated.

When the CE0 bit of the timer mode control register (TMC) is 0 and timer 0 is stopped, the capture operation is not performed.

(b) As capture register

When used as a capture register, CC0n functions as a 16-bit register that captures the contents of TM0 in synchronization with the valid edge (capture trigger) input from an external interrupt input pin (INTPn: n = 0 to 3).

The contents of CC0n are retained until the next capture trigger is generated.

(3) Edge detection circuit

The edge detection circuit detects the valid edge of an external input.

It detects the valid edge of the INTP0 through INTP3 pin inputs, and generates an external interrupt request (INTP0 to INTP3) and capture trigger. The valid edge is specified by the external interrupt mode registers (INTM0 and INTM1) (for the details of INTM0 and INTM1, refer to **Figures 15-1** and **15-2**).

(4) Output control circuit

When the contents of CC0n (n = 0 to 3) and the contents of TM0 match, the timer output can be inverted. A square wave can be output from a timer output pin (TO00 to TO03) if so specified by the timer output control register 0 (TOC0). The TO00 and TO02 pins can also output a set and reset signals if so specified by the timer unit mode register 0 (TUM0).

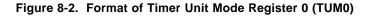
The timer output can be enabled or disabled by TOC0. When the timer output is disabled, a fixed level is output to the TO0n (n = 0 to 3) pin (the output level is fixed by TOC0).

(5) Prescaler

The prescaler generates a count clock by dividing the internal system clock. The clock generated by the prescaler is selected by the selector, and TM0 performs the count operation by using this clock as a count clock.

(6) Selector

The selector selects one of the five signals generated by dividing the internal system clock as the count clock of TM0.


8.3 Timer 0 Control Register

(1) Timer unit mode register 0 (TUM0)

TUM0 is a register that specifies the output mode of the timer output pins (TO00, TO02, and TO10) of timers 0 and 1, controls the clear operation of the timer register 1 (TM1), and specifies the operations of the capture/compare registers (CC00 through CC03) of timer 0.

This register can be read or written by using an 8-bit manipulation instruction or a bit manipulation instruction. Figure 8-2 shows the format of TUM0.

When RESET is input, the value of TUM0 is cleared to 00H.

Address: 0FF30H		On rese	et: 00H	R	/W				
	7	6	5	4	3	2	1	0	
TUM0	TOM10	CLR1	TOM02	TOM00	CMS03	CMS02	CMS01	CMS00	
		TOM10	Specifies Output Mode of TO10 Pin						
			(refer to	Figure	9-2).				
CLR1			Controls Clear Operation of TM1						
			(refer to Figure 9-2).						
TOM0n			Specifi	Specifies Output Mode of TO0n Pin (n = $0, 2$)					
		0	Toggle output						
		1	Set/reset output						
		CMS0n	Specifies Operation of CC0n ($n = 0$ to 3)					to 3)	
		0	Capture register						
		1	Compare register						

(2) Timer mode control register (TMC)

TMC is a register that controls the count operation of timer registers 0 and 1 (TM0 and TM1). This register can be read or written by using an 8-bit manipulation instruction or a bit manipulation instruction. Figure 8-3 shows the format of TMC.

When $\overline{\text{RESET}}$ is input, the value of this register is cleared to 00H.

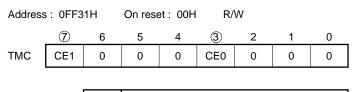
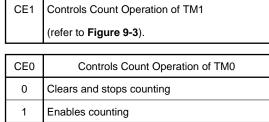



Figure 8-3. Format of Timer Mode Control Register (TMC)

(3) Timer output control register 0 (TOC0)

TOC0 is a register that specifies the operation and active level of the timer output pins (TO00 through TO03) of timer 0.

This register can be read or written by using an 8-bit manipulation instruction or a bit manipulation instruction. Figure 8-4 shows the format of TOC0.

When RESET is input, the value of this register is cleared to 00H.

Figure 8-4. Format of Timer Output Control Register 0 (TOC0)

Addres	s: 0FF3	2H	On rese	et: 00H	R	/W		
	\bigcirc	6	5	4	3	2	1	0
TOC0	ENTO03	ALV03	ENTO02	ALV02	ENTO01	ALV01	ENTO00	ALV00
		ENTO0n	Speci	fies Ope	ration of	f TOOn F	Pin (n =)	0 to 3)
		0	Outputs ALV0n					
		1	Enables pulse output					
	ALV0n Specifies Active Level of TO0n Pin (n = 0 to 3)						0 to 3)	
		0	Low level					
		1	High level					

(4) Prescaler mode register (PRM)

PRM is a register that specifies the count clock of timer registers 0 and 1 (TM0 and TM1). This register can be read or written by using an 8-bit manipulation instruction. Figure 8-5 shows the format of PRM. When RESET is input, the value of this register is cleared to 00H.

Figure 8-5. Format of Prescaler Mode Register (PRM)

Address	: 0FF3	8H	On reset: 00H		R/	R/W		
	7	6	5	4	3	2	1	0
PRM	0	PRM12	PRM11	PRM10	0	PRM02	PRM01	PRM00

PRM12	PRM11	PRM10	Specifies Count Clock of TM1			
			(refer to Figure 9-5).			
	(fclk = 16 MHz)					
PRM02	PRM01	PRM00	Specifies Count Clock of TM0.			
			Count Clock [Hz]	Resolution [μ s]		
0	0	0	fс∟к/4	0.25		
<u> </u>	•		<i>i</i> 10	o =		

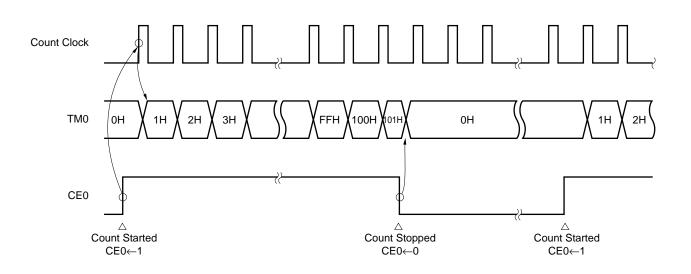
0	0	0	fс∟к/4	0.25
0	0	1	fс∟к/8	0.5
0	1	0	fc∟к/16	1.0
0	1	1	fс∟к/32	2.0
1	0	0	fс∟к/64	4.0
Other			Setting prohibited	

Remark fclk: internal system clock

8.4 Operation of Timer Register 0 (TM0)

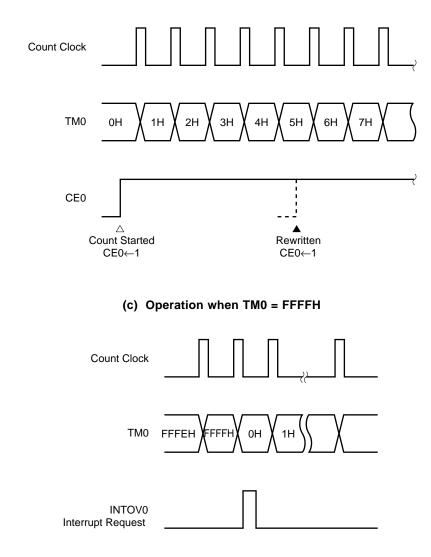
8.4.1 Basic operation

Timer 0 counts up by using the count clock specified by the prescaler mode register (PRM).


Counting is enabled or disabled by the CE0 bit of the timer mode control register (TMC). When the CE0 bit is set (1) by software, TM0 is set to 0001H at the first count clock, and starts counting up. When the CE0 bit is cleared (0) by software, TM0 is immediately cleared to 0000H, and stops the capture operation and generation of the match signal.

If the CE0 bit is set (1) while it has been already set (1), TM0 is not cleared but continues counting.

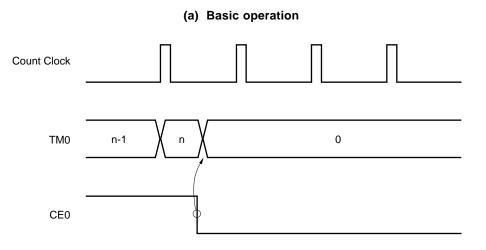
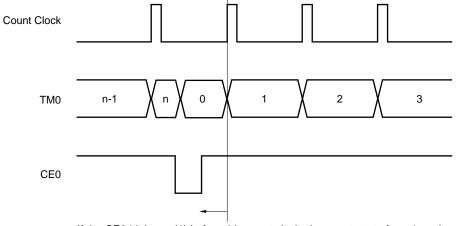
If a count clock is input when TM0 reaches FFFFH, TM0 is cleared to 0000H, and an overflow interrupt (INTOV0) occurs, but TM0 continues counting.

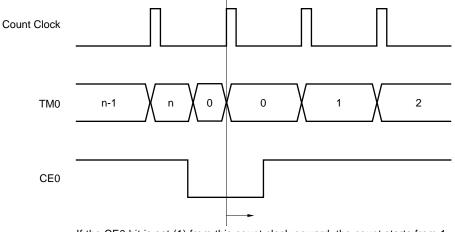

When RESET is input TM0 is cleared to 0000H and stops counting.

(a) Count started \rightarrow count stopped \rightarrow count started

8.4.2 Clear operation

Timer register 0 (TM0) is cleared by clearing (0) the CE0 bit of the timer mode control register (TMC). TM0 is cleared as soon as the CE0 bit has been cleared (0).


Figure 8-7. Clear Operation of Timer Register 0 (TM0)

(b) Restart before count clock input after clearance

If the CE0 bit is set (1) before this count clock, the count starts from 1 on the count clock.

If the CE0 bit is set (1) from this count clock onward, the count starts from 1 on the count clock after the CE0 bit is set (1). User's Manual U11515EJ3V0UD

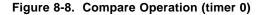
8.5 Operation of Capture/Compare Register

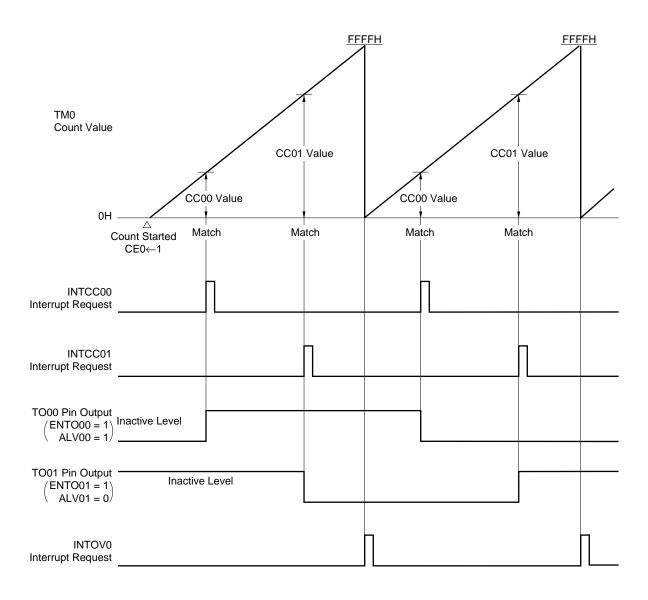
8.5.1 Compare operation

Timer 0 performs a compare operation by comparing the value set to a capture/compare register (CC00 to CC03) specified as a compare register with the count value of a timer register 0 (TM0).

If the count value of TM0 matches with the value set in advance to CC0n (n = 0 to 3) as a result of counting by TM0, the timer sends a match signal to the output control circuit, and at the same time, generates an interrupt request signal (INTCC0n: n = 0 to 3).

Compare Register	Interrupt Request Signal
CC00	INTCC00
CC01	INTCC01
CC02	INTCC02
CC03	INTCC03


 Table 8-3. Interrupt Request Signal from Compare Register (timer 0)


Remark CC00 through CC03 are capture/compare registers. Whether these registers are used as capture registers or compare registers is specified by the timer unit mode register 0 (TUM0).

Timer 0 has four timer output pins (TO00 through TO03). Table 8-4 shows the operation mode of each of these pins (for details, refer to **8.6 Basic Operation of Output Control Circuit**).

Timer Output Pin	Output Operation Mode		Specification of Operation Mode
ТО00	Toggle	Set/reset	TOM00 bit of TUM0
TO01	Toggle	—	_
TO02	Toggle	Set/reset	TOM02 bit of TUM0
ТО03	Toggle	_	_

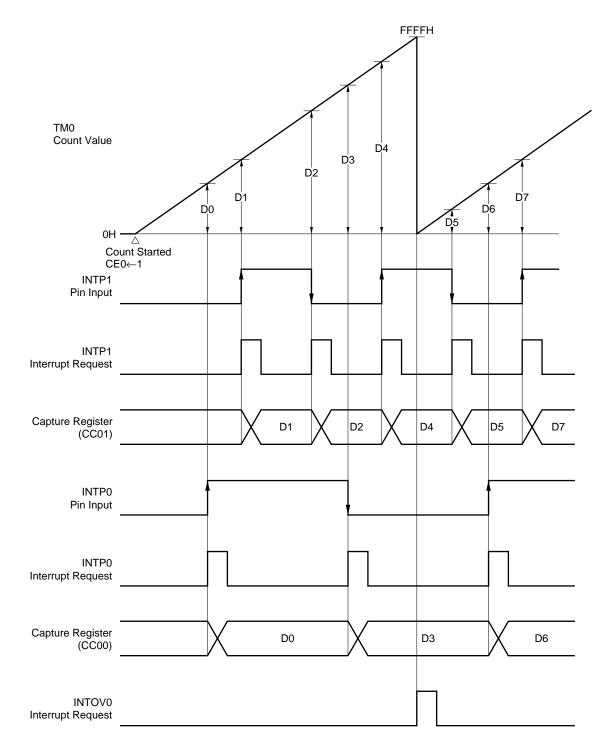
Table 8-4. Operation Mode of Timer Output Pin (timer 0)

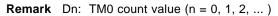
8.5.2 Capture operation

In synchronization with an external trigger, timer 0 also performs a capture operation that captures and retains the count value of timer register 0 (TM0) to a capture register.

As an external trigger, the valid edge detected from an external interrupt request input pin (INTP0 to INTP3) is used (capture trigger). In synchronization with this capture trigger, the count value of TM0 is captured to a capture/compare register (CC0n: n = 0 to 3) specified as a capture operation in synchronization with INTPn (n = 0 to 3).

The contents of CC00 through CC03 are retained until the following capture triggers each corresponding to CC00 to CC03 are generated.


Capture Register	Capture Trigger Signal
CC00	INTP0
CC01	INTP1
CC02	INTP2
CC03	INTP3


Table 8-5. Capture Trigger Signal to Capture Register (timer 0)

Remark CC00 through CC03 are capture/compare registers. Whether these registers are used as capture registers or compare registers is specified by the timer unit mode register 0 (TUM0).

The valid edge of the capture trigger is specified by external interrupt mode registers (INTM0 and INTM1) If the capture trigger is specified so that both the rising and falling edges are valid, the width of an externally input pulse can be measured. If the capture trigger is generated with either of the edges specified as valid, the cycle of an input pulse can be measured.

8.6 Basic Operation of Output Control Circuit

The output control circuit controls the levels of the timer output pins (TO00 through TO03) by using the match signals from the compare registers (CC00 through CC03). The operation of the output control circuit is determined by the timer output control register 0 (TOC0). Note that the TO01 and TO03 pin outputs can be used for toggle operation only. The TO00 and TO02 pin outputs can be used for toggle or set/reset operation, according to the specification by the timer unit mode register 0 (TUM0).

To output the signals TO00 through TO03 to pins, the corresponding pins must be set in the control mode by using the port 2 mode control register (PMC2).

Timer Output	Toggle Signal
ТО00	INTCC00
TO01	INTCC01
TO02	INTCC02
ТО03	INTCC03

Table 8-6. Toggle Signal of Timer Output Pin (timer 0)

Table 8-7. Set/Reset Signal of Timer Output Pin (timer 0)

Timer Output	Set Signal	Reset Signal
ТО00	INTCC00	INTCC01
TO02	INTCC02	INTCC03

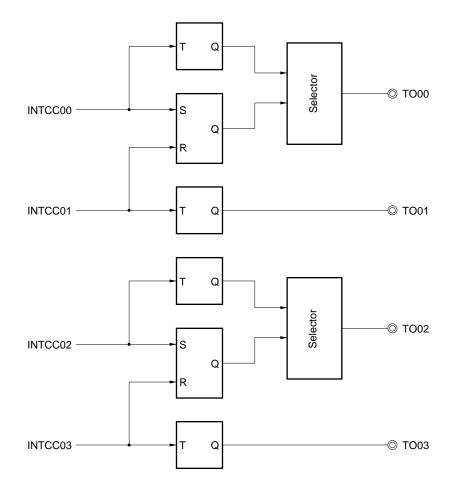


Figure 8-10. Block Diagram of Timer Output Operation of Timer 0

8.6.1 Basic operation

By setting (1) the ENTO0n (n = 0 to 3) bit of the timer output control register 0 (TOC0), a pulse can be output from the TO0n (n = 0 to 3) pin.

Clearing (0) ENTOOn bit sets the TOOn to a fixed level. The fixed level is determined by the ALVOn (n = 0 to 3) bit of the TOC0. The level is high when ALVOn bit is 0, and low when 1.

8.6.2 Toggle output

Toggle output is an operating mode in which the output level is inverted each time the compare register (CC0n: n = 0 to 3) value coincides with the timer register 0 (TM0) value. The output level of timer output (TO0n: n = 0 to 3) is inverted by a match between CC0n and TM0.

When timer 0 is stopped by clearing (0) the CE0 bit of the timer mode control register (TMC), the output level at the time it was stopped is retained as is.

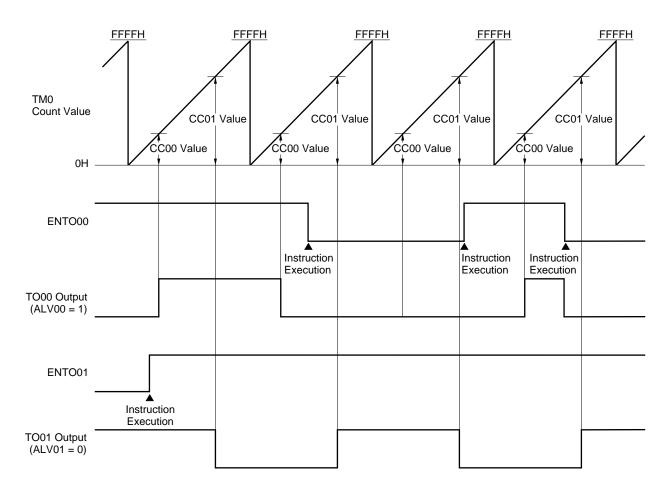


Figure 8-11. Operation of Toggle Output

Count Clock	Minimum Pulse Width ^{Note}	Maximum Pulse Width
fс⊥к/4	4/fclk (0.25 µs)	$2^{16} imes 4/f_{CLK}$ (16.4 ms)
fськ/8	8/fclk (0.5 µs)	$2^{16} imes 8$ /fclk (32.8 ms)
fськ/16	16/fclк (1.0 <i>μ</i> s)	2 ¹⁶ × 16/fс∟к (65.5 ms)
fськ/32	32/fclκ (2.0 μs)	$2^{16} \times 32$ /fclk (131 ms)
fськ/64	64/fclk (4.0 µs)	$2^{16} \times 64/f_{CLK}$ (262 ms)

Table 8-8.	Toggle Output of	of TO00 through TO03 (fclк = 16 MHz)

Note The minimum interval time is limited by the data transfer processing time. Consider the interrupt processing time or macro service processing time used (refer to Table 16-11 Interrupt Acceptance Processing Time and Table 16-12 Macro Service Processing Time).

8.6.3 Set/reset output

The set/reset output is an operation mode in which the timer output is set or reset each time the value of the compare register (CC0n: n = 0 to 3) matches with the value of timer register 0 (TM0).

If CC00 = CC01 and CC02 = CC03, interrupt requests are simultaneously generated, and timer outputs (TO00 and TO02) are used as $\overline{ALV00}$ and $\overline{ALV02}$.

When timer 0 is stopped by clearing (0) the CE0 bit of the timer mode control register (TMC), the output level at which the timer stops is retained as is.

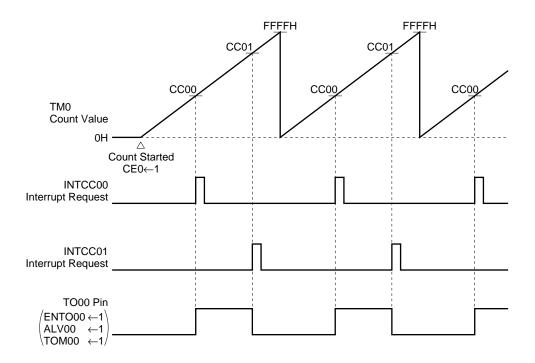
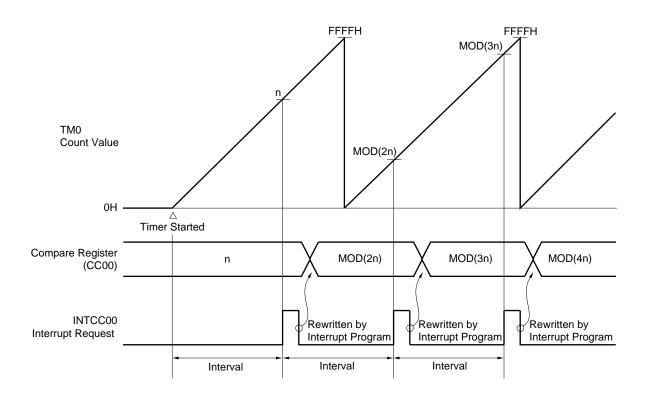


Figure 8-12. Operation of Set/Reset Output (timer 0)

8.7 Examples of Use

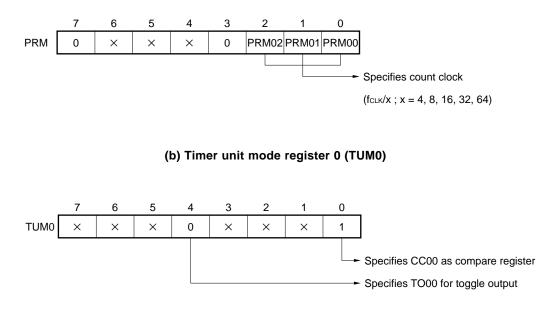
8.7.1 Operation as interval timer


When timer register 0 (TM0) is made free-running and a fixed value is added to the compare register (CC0n: n = 0 to 3) in the interrupt processing routine, TM0 operates as an interval timer with the added fixed value as the cycle (refer to **Figure 8-13**).

This interval timer can count within the range shown in Table 8-1 (internal system clock fcLk = 16 MHz).

Since TM0 has four capture compare registers, four interval timers with different cycles can be constructed.

Taking an example where compare register CC00 is used, the control register settings are shown in Figure 8-14, the setting procedure in Figure 8-15, and the processing in the interrupt processing routine in Figure 8-16.


Figure 8-13. Timing of Interval Timer Operation

Remark Interval time = $n \times x/f_{CLK}$ $y \le n \le FFFFH$

x = 4, 8, 16, 32, 64

y is limited by the data transfer processing time. Consider the processing time of the interrupt used or the macro service processing time (refer to Table 16-11 Interrupt Acceptance Processing Time and Table 16-12 Macro Service Processing Time).

Figure 8-14. Set Contents of Control Register for Interval Timer Operation

(a) Prescaler mode register (PRM)

imes : don't care

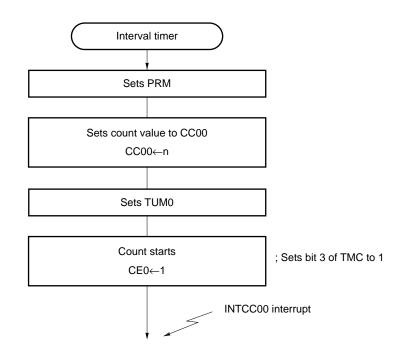
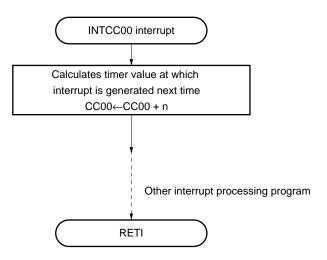
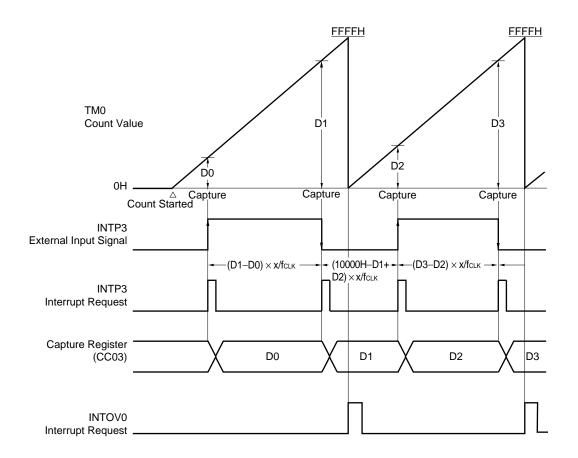



Figure 8-15. Setting Procedure of Interval Timer Operation

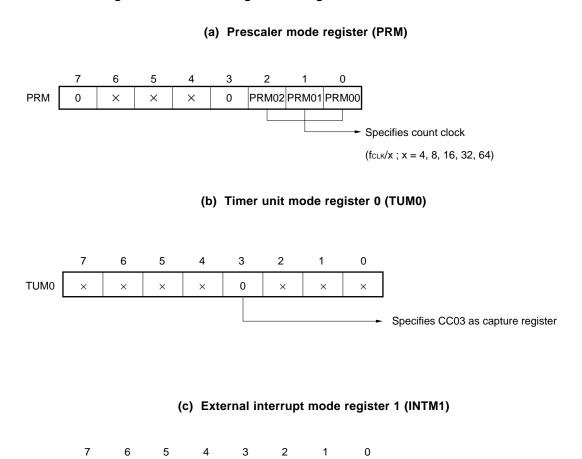
Figure 8-16. Interrupt Request Processing of Interval Timer Operation

8.7.2 Pulse width measurement operation


In pulse width measurement, the high-level or low-level width of external pulses input to the external interrupt request input pin (INTP0 through INTP3) is measured.

When the sampling clock is fcLk both the high-level and low-level widths of pulses input to the INTPn (n = 0 to 3) pin must be at least 4 system clocks (0.25 μ s: fcLk = 16 MHz); if shorter than this, the valid edge will not be detected and a capture operation will not be performed.

When a pulse width is measured, the pulse width in a range shown in Table 8-2 can be measured ($f_{CLK} = 16 \text{ MHz}$). How a pulse width is measured is explained below where the INTP3 pin is used as an external input pin.


As shown in Figure 8-17, the timer register 0 (TM0) value being counted is fetched into the capture register (CC03) in synchronization with a valid edge (specified as both rising and falling edges) in the INTP3 pin input, and held there. The pulse width is obtained from the product of the difference between the TM0 count value (Dn) fetched into and held in the CC03 on detection of the nth valid edge and the count value (D_{n-1}) fetched and held on detection of valid edge n-1, and the number of count clocks (x/fcLK; x = 4, 8, 16, 32, 64).

The control register settings are shown in Figure 8-18, the setting procedure in Figure 8-19, and the processing at interrupt processing routine in Figure 8-20.

Remark Dn: TM0 count value (n = 0, 1, 2, ...) x = 4, 8, 16, 32, 64

1

×

1

Specifies both rising & falling edges as INTP3 input valid edges

Figure 8-18. Control Register Settings for Pulse Width Measurement

User's Manual U11515EJ3V0UD

INTM1

×

 \times : Don't care

×

×

×

×

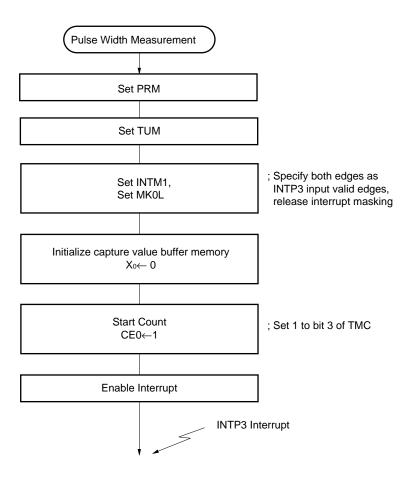
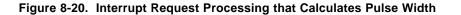
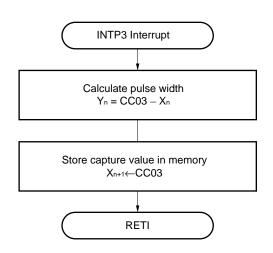




Figure 8-19. Pulse Width Measurement Setting Procedure

8.8 Cautions

The prescaler uses one time base in common with all the timers (timers 0 and 1, timers/counters 2 and 3, and timer
 If one of the timers sets the CE bit to "1", the time base starts counting. If another timer sets the CE bit to "1" while one timer is operating, the first count clock of the timer may be shortened because the time base has already started counting.

For example, when using timer/counter 0 as an interval timer, the first interval time is shortened by up to 1 count clock. The second and those that follow are at the specified interval.

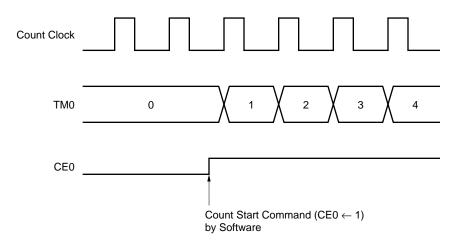


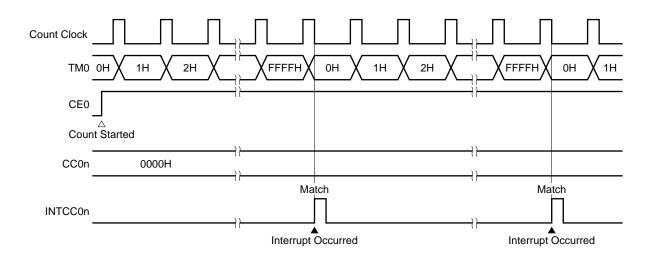
Figure 8-21. Operation When Counting Is Started

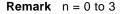
(2) While timer 0 is operating (while the CE0 bit of the timer mode control register (TMC) is set), malfunctioning may occur if the contents of the following registers are rewritten. This is because it is undefined which takes precedence in a contention the change in the hardware functions due to rewriting the register, or the change in the status because of the function before rewriting.

Therefore, be sure to stop the counter operation for the sake of safety before rewriting the contents of the following registers.

- Timer unit mode register 0 (TUM0)
- Timer output control register 0 (TOC0)
- Prescaler mode register (PRM)

(3) If the contents of the compare register (CC0n: n = 0 to 3) match with those of TM0 operation when an instruction that stops timer register 0 (TM0) operation is executed, the counting operation of TM0 stops, but an interrupt request is generated.


In order not to generate the interrupt when stopping the operation of TM0, mask the interrupt in advance by using the interrupt mask register before stopping TM0.


Example

Program that may generate interrupt request		Program the	at does not gener	ate interrupt request	
	:			÷	
CLR1	CE0	\leftarrow Interrupt request	OR	MK0L, #78H	\leftarrow Disables interrupt
OR	MK0L, #78H	from timer 0	CLR1	CE0	from timer 0
	÷	occurs between	CLR1	PIF0	\leftarrow Clears interrupt request
		these instructions	CLR1	PIF1	flag from timer 0
			CLR1	PIF2	
			CLR1	PIF3	
				:	

- (4) Match between timer register 0 (TM0) and compare register (CC0n: n = 0 to 3) is detected only when TM0 is incremented. Therefore, the interrupt request is not generated even if the same value as TM0 is written to CC0n, and the timer output (TO0n: n = 0 to 3) does not change.
- (5) When the compare register (CC00 to CC03) is set to 0000H, the compare operation is performed after counting by TM0. Therefore, the match interrupt (INTCC00 to INTCC03) does not occur immediately after counting has been started. If CC0n (n = 0 to 3) is set to 0000H, TM0 counts up to FFFFH, the timer overflows, and match interrupt INTCC0n (n = 0 to 3) occurs.

- (6) If the timer output is enabled when the active level is changed, the output level of pins may change momentarily. To prevent this, enable the timer output after the active level have been changed.
- (7) To change the active level specification(ALV0n bit (n = 0 to 3) of the timer output control register 0 (TOC0)), change the active level specification after the timer output of the corresponding timer output pins has been disabled.

CHAPTER 9 TIMER 1

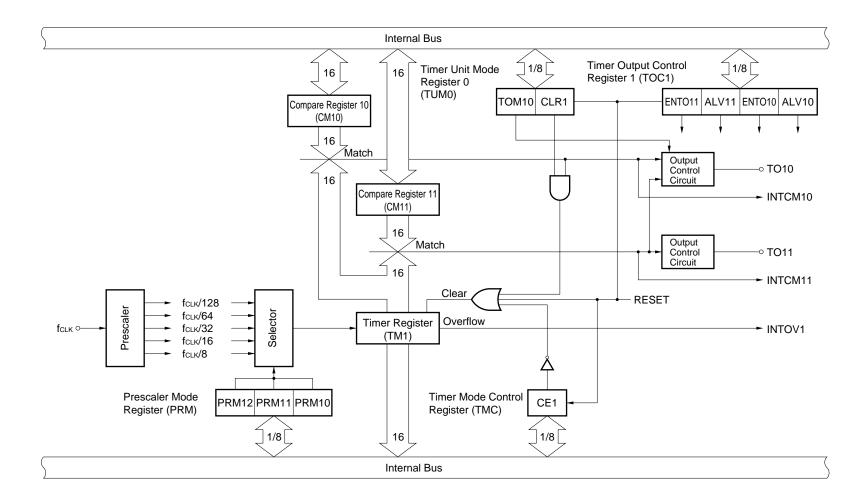
9.1 Function

Timer 1 is a 16-bit timer.

In addition to a function as an interval timer, this timer has a toggle and set/reset function as timer output. When used as an interval timer, timer 1 generates an internal interrupt at interval determined in advance.

Minimum Interval Time	Maximum Interval Time	Resolution
8/fclk (0.5 µs)	$2^{16} \times 8$ /fclk (32.8 ms)	8/fclk (0.5 µs)
16/fc∟к (1.0 <i>μ</i> s)	2 ¹⁶ × 16/fс∟к (65.5 ms)	16/fc∟к (1.0 <i>µ</i> s)
32/fclк (2.0 <i>μ</i> s)	$2^{16} imes 32$ /fclk (131 ms)	32/fclк (2.0 <i>μ</i> s)
64/fc∟к (4.0 <i>μ</i> s)	$2^{16} \times 64/f_{CLK}$ (262 ms)	64/fc∟к (4.0 <i>µ</i> s)
128/fclк (8.0 <i>μ</i> s)	$2^{16} \times 128$ /fclk (524 ms)	128/fclк (8.0 <i>μ</i> s)

Table 9-1. Interval Time of Timer 1


(): at fclk = 16 MHz

9.2 Configuration

Timer 1 consists of the following registers:

- Timer register $(TM1) \times 1$
- Compare register (CM1n) × 2 (n = 0, 1)

Figure 9-1 shows the block diagram of timer 1.

(1) Timer register 1 (TM1)

TM1 is a timer register that counts up the count clock specified by the prescaler mode register (PRM). Counting of this timer register is enabled or disabled by the timer mode control register (TMC). The timer register can be only read by using a 16-bit manipulation instruction. When RESET is input, TM1 is cleared to 0000H and stops counting.

(2) Compare registers (CM10, CM11)

CM1n (n = 0, 1) is a 16-bit register that holds the value determining the cycle of the interval timer operation. When the contents of CM1n matches with the contents of TM1, an interrupt request (INTCM1n: n = 0, 1) and a timer output control signal are generated. The count value of TM1 can be cleared when its value matches with the contents of CM10.

These compare registers can be read or written by using 16-bit manipulation instructions. When **RESET** is input, their contents are undefined.

(3) Output control circuit

When the contents of CM1n (n = 0, 1) and the contents of TM1 match, the timer output can be inverted. A square wave can be output from a timer output pin (TO10, TO11) if so specified by the timer output control register 1 (TOC1). The TO10 pin can also output a set and reset signals if so specified by the timer unit mode register 0 (TUM0). The timer output can be enabled or disabled by TOC1. When the timer output is disabled, a fixed level is output to the TO1n (n = 0, 1) pin (the output level is fixed by TOC1).

(4) Prescaler

The prescaler generates a count clock by dividing the internal system clock. The clock generated by the prescaler is selected by the selector, and TM1 performs the count operation by using this clock as a count clock.

(5) Selector

The selector selects one of the five signals generated by dividing the internal system clock as the count clock of TM1.

9.3 Timer 1 Control Register

(1) Timer unit mode register 0 (TUM0)

TUM0 is a register that specifies the output mode of the timer output pins (TO00, TO02, and TO10) of timers 0 and 1, controls the clear operation of the timer register 1 (TM1), and specifies the operations of the capture/compare registers (CC00 through CC03) of timer 0.

This register can be read or written by using an 8-bit manipulation instruction or a bit manipulation instruction. Figure 9-2 shows the format of TUM0.

When $\overline{\text{RESET}}$ is input, the value of TUM0 is cleared to 00H.

Addres	s: 0FF3	он	On rese	et: 00H	R	/W		
	7	6	5	4	3	2	1	0
TUM0	TOM10	CLR1	TOM02	TOM00	CMS03	CMS02	CMS01	CMS00
		TOM10	Specifies Output Mode of TO10 Pin				in	
		0	Toggle output					
		1	Set/reset output					
		CLR1	Controls	Clear Op	eration of	TM1 by i	match wit	h CM10
		0	Disable	ed (free i	running	mode)		
		1	Enable	d (interv	al timer	mode)		
		TOM0n	Specifi	es Outp	ut Mode	of TO0r	n Pin (n	= 0, 2)
			(refer to Figure 8-2).					
			r					
		CMS0n	Specifie	es Opera	ation of	CC0n (n	= 0 to 3	3)
			(refer to	Figure	8-2).			

Figure 9-2. Format of Timer Unit Mode Register 0 (TUM0)

(2) Timer mode control register (TMC)

TMC is a register that controls the count operation of timer registers 0 and 1 (TM0 and TM1). This register can be read or written by using an 8-bit manipulation instruction or a bit manipulation instruction. Figure 9-3 shows the format of TMC.

When $\overline{\text{RESET}}$ is input, the value of this register is cleared to 00H.

Figure 9-3. Format of Timer Mode Control Register (TMC)

(3) Timer output control register 1 (TOC1)

TOC1 is a register that specifies the operation and active level of the timer output pins (TO10, TO11) of timer 1. This register can be read or written by using an 8-bit manipulation instruction or a bit manipulation instruction. Figure 9-4 shows the format of TOC1.

When $\overline{\text{RESET}}$ is input, the value of this register is cleared to 00H.

Address	dress: 0FF33H			et: 00H	H R	/W		
	7	6	5	4	3	2	1	0
TOC1	0	0	0	0	ENTO11	ALV11	ENTO10	ALV10
		ENTO1n	Specifies Operation of TO1n Pin (n = 0, 1)					
		0	Outputs ALV1n					
		1	Enables pulse output					
		ALV1n	Specifies Active Level of TO1n Pin $(n = 0, 1)$					
		0	Low level					
		1	High level					

(4) Prescaler mode register (PRM)

PRM is a register that specifies the count clock of timer registers 0 and 1 (TM0, TM1). This register can be read or written by using an 8-bit manipulation instruction. Figure 9-5 shows the format of PRM. When RESET is input, the value of this register is cleared to 00H.

Address	: 0FF3	8H	On rese	et: 00H	R	/W		
	7	6	5	4	3	2	1	0
PRM	0	PRM12	PRM11	PRM10	0	PRM02	PRM01	PRM00
(fclk = 16 MHz)								16 MHz)
		PRM12 PRM11 PRM10 Specifies Count Clock of TM1						of TM1
					Count C	lock [Hz]	Resolut	ion [µs]
		0	0	0	fс∟к/8		0.5	
		0	0	1	fс∟к/16		1.0	
		0	1	0	fclк/32 2.0			
		0	1	1	fс∟к/64		4.0	
		1	0	0	fclк/128	3	8.0	
		Other Setti			Setting	prohibit	ed	
		PRM02	PRM01	PRM00	Specifie	es Coun	t Clock	of TM0

(refer to Figure 8-5).

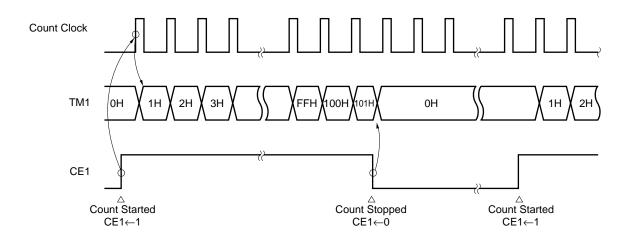
Figure 9-5. Format of Prescaler Mode Register (PRM)

Remark fclk: internal system clock

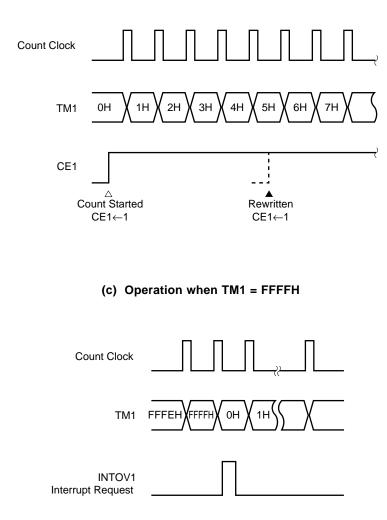
9.4 Operation of Timer Register 1 (TM1)

9.4.1 Basic operation

Timer 1 counts up by using the count clock specified by the prescaler mode register (PRM).

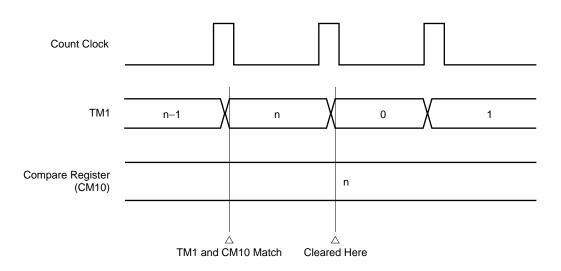

Counting is enabled or disabled by the CE1 bit of the timer mode control register (TMC). When the CE1 bit is set (1) by software, TM1 is set to 0001H at the first count clock, and starts counting up. When the CE1 bit is cleared (0) by software, TM1 is immediately cleared to 0000H, and stops the generation of the match signal.

If the CE1 bit is set (1) while it has been already set (1), TM1 is not cleared but continues counting.


If a count clock is input when TM1 reaches FFFH, TM1 is cleared to 0000H, and an overflow interrupt (INTOV1) occurs. When $\overline{\text{RESET}}$ is input, TM1 is cleared to 0000H and stops counting.

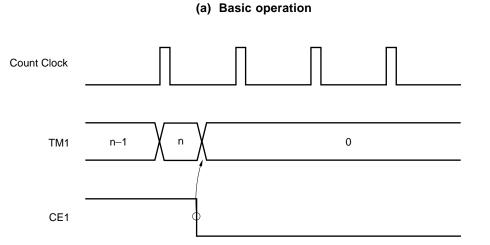
(a) Count started \rightarrow count stopped \rightarrow count started

(b) When "1" is written to the CE1 bit again after the count starts



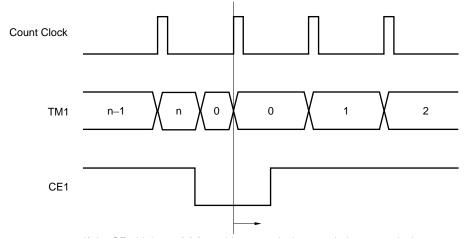
9.4.2 Clear Operation

(1) Clear operation after match with compare register


Timer register 1 (TM1) can be cleared automatically after a match with the compare register (CM10). When a clearance source arises, TM1 is cleared to 000H on the next count clock. Therefore, even if a clearance source arises, the value at the point at which the clearance source arose is retained until the next count clock arrives.

(2) Clear operation by CE1 bit of timer mode control register (TMC)

Timer register 1 (TM1) is also cleared when the CE1 bit of TMC is cleared (0) by software. The clear operation is performed immediately after the clearance (0) of the CE1 bit.


Figure 9-8. TM1 Clear Operation When CE1 Bit is Cleared (0)

If the CE1 bit is set (1) before this count clock, this count clock starts counting from 1.

(c) Restart after count clock is input after clearance

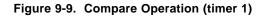
If the CE1 bit is set (1) from this count clock onward, the count clock starts counting from 1 after the CE1 bit is set (1).

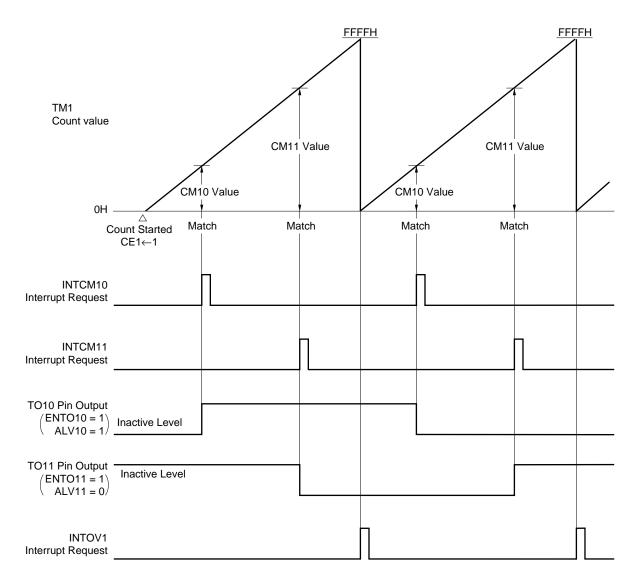
9.5 Operation of Compare Register

Timer 1 performs a compare operation by comparing the value set to a compare register (CM10, CM11) specified as a compare register with the count value of a timer register 1 (TM1).

If the count value of TM1 matches with the value set in advance to CM1n (n = 0, 1) as a result of counting by TM1, the timer sends a match signal to the output control circuit, and at the same time, generates an interrupt request signal (INTCM10, INTCM11).

After the value of TM1 has matched with the value of CM10, the count value of TM1 can be cleared, so that TM1 can be used as an interval timer that repeatedly counts the value set to CM10.


Table 9-2. Interrupt Request Signal from Compare Register (timer 1)


Compare Register	Interrupt Request Signal
CM10	INTCM10
CM11	INTCM11

Timer 1 has two timer output pins (TO10, TO11). Table 9-3 shows the operation mode of each of these pins (for details, refer to **9.6 Basic Operation of Output Control Circuit**).

Timer Output Pin	Output O	peration Mode	Specification of Operation Mode	
TO10	Toggle Set/reset		TUM10 bit of TUM0	
TO11	Toggle	-	-	

Table 9-3. Operation Mode of Timer Output Pin (timer 1)

Remark CLR1 = 0

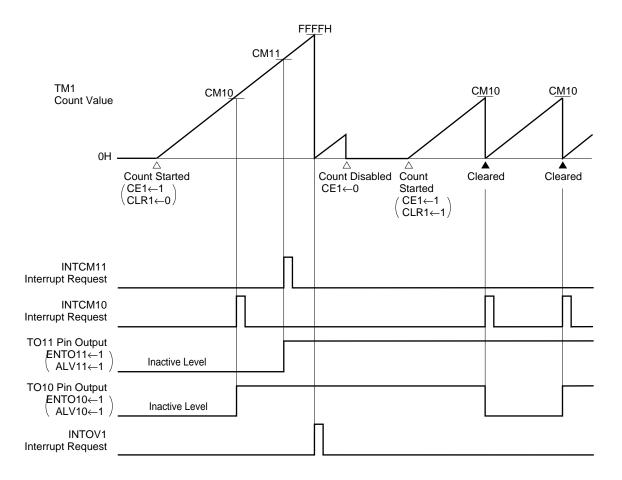
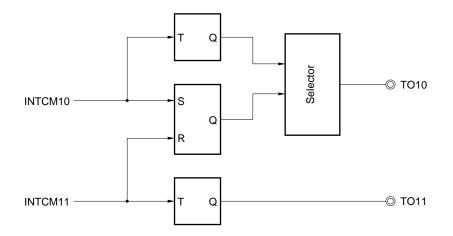


Figure 9-10. Clearing TM1 after Detection of Match

9.6 Basic Operation of Output Control Circuit

The output control circuit controls the levels of the timer output pins (TO10, TO11) by using the coincidence signals from the compare registers (CM10, CM11). The operation of the output control circuit is determined by the timer output control register 1 (TOC1). Note that the TO11 pin output can be used for toggle operation only. The TO10 pin output can be used for toggle or set/reset operation, according to the specification by the timer unit mode register 0 (TUM0).

To output the TO10 and TO11 signals to pins, the corresponding pins must be set in the control mode by using the port 3 mode control register (PMC3).

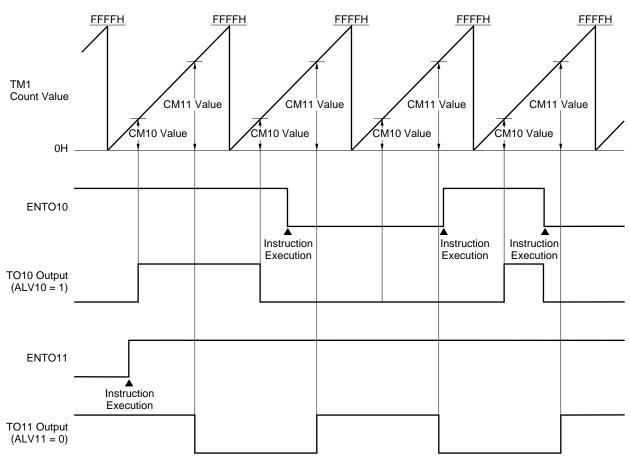

Table 9-4. Toggle Signal of Timer Output Pin (timer 1)

Timer Output	Toggle Signal	
TO10	INTCM10	
TO11	INTCM11	

Table 9-5.	Set/Reset Signal of	Timer Output Pin	(timer 1)
------------	---------------------	------------------	-----------

Timer Output	Set Signal	Reset Signal
TO10	INTCM10	INTCM11

9.6.1 Basic operation


By setting (1) the ENTO1n (n = 0, 1) bit of the timer output control register 1 (TOC1), a pulse can be output from the TO1n (n = 0, 1) pin.

By clearing (0) the ENTO1n bit, the level of TO1n is fixed. The level to which TO1n is fixed is determined by the ALV1n (n = 0, 1) bit of TOC1. When the ALV1n bit is 0, TO1n is fixed to the high level; when ALV1n bit is 1, it is fixed to the low level.

9.6.2 Toggle output

Toggle output is an operation mode in which the output level is inverted each time the value of the compare register (CM10, CM11) matches with the value of timer register 1 (TM1). The output level of the timer output TO10 is inverted when the value of CM10 matches with TM1, and the output level of TO11 is inverted when the value of CM11 matches with the value of TM1.

When timer 1 is stopped by clearing (0) the CE1 bit of the timer mode control register (TMC), the output level is retained as is.

Table 9-6.	Toggle Output	of TO10 and	TO11 (fc	ικ = 16 MHz)
------------	---------------	-------------	----------	--------------

Count Clock	Minimum Pulse Width	Maximum Pulse Width
fc∟к/8	8/fclk (0.5 µs)	$2^{16} \times 8/f_{\text{CLK}}$ (32.8 ms)
fc∟к/16	16/fc∟к (1.0 <i>μ</i> s)	$2^{16} imes 16$ /fclk (65.5 ms)
fclк/32	32/fc∟к (2.0 <i>μ</i> s)	$2^{16} \times 32$ /fclk (131 ms)
fc⊥к/64	64/fc∟к (4.0 <i>μ</i> s)	$2^{16} \times 64/f_{CLK}$ (262 ms)
fclк/128	128/fclк (8.0 µs)	$2^{16} \times 128$ /fclk (524 ms)

9.6.3 Set/reset output

The set/reset output is an operation mode in which the timer output is set or reset each time the value of the compare register (CM1n: n = 0, 1) matches with the value of timer register 1 (TM1).

If CM10 = CM11, interrupt requests are simultaneously generated, and timer output (TO10) is used as ALV10.

When timer 1 is stopped by clearing (0) the CE1 bit of the timer mode control register (TMC), the output level at which the timer stops is retained as is.

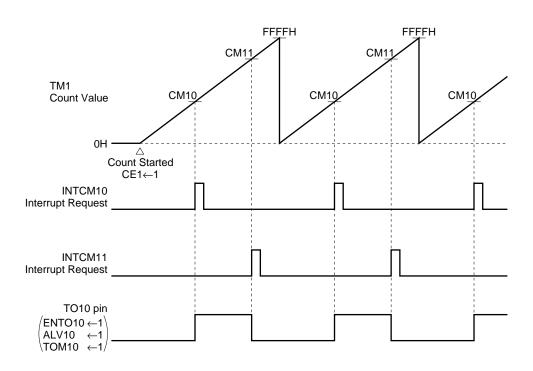
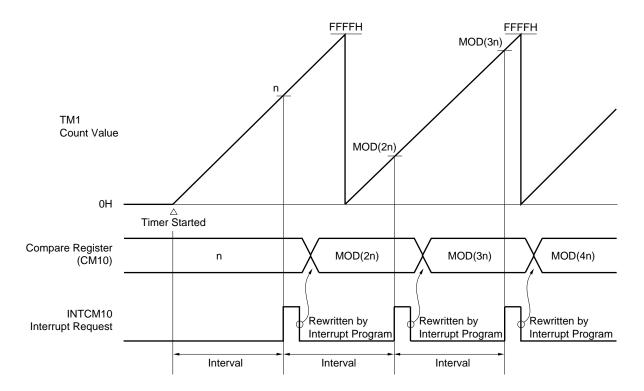


Figure 9-13. Operation of Set/Reset Output (timer 1)

9.7 Examples of Use

9.7.1 Operation as interval timer (1)

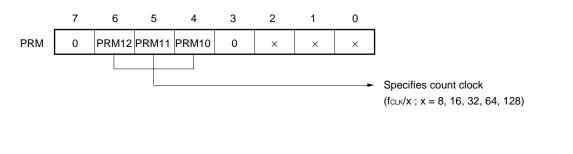

When timer register 1 (TM1) is made free-running and a fixed value is added to the compare register (CM1n: n = 0, 1) in the interrupt processing routine, TM1 operates as an interval timer with the added fixed value as the cycle (refer to **Figure 9-14**).

This interval timer can count in the range shown in Table 9-1 (internal system clock fcLK = 16 MHz).

Because TM1 has two compare registers, interval timers of two types of cycles can be created.

Figure 9-15 shows the set contents of the control registers, Figure 9-16 shows how to set the registers, and Figure 9-17 shows the processing in an interrupt routine, where compare register CM10 is used.

Figure 9-14. Timing of Interval Timer Operation (1)



Remark Interval time = $n \times x/fcLK$ $y \le n \le FFFFH$ x = 4, 8, 16, 32, 64

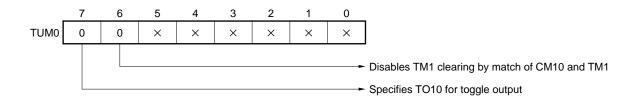

y is limited by the data transfer processing time. Consider the processing time of the interrupt used or the macro service processing time (refer to Table 16-11 Interrupt Acceptance Processing Time and Table 16-12 Macro Service Processing Time).

Figure 9-15. Control Register Settings for Interval Timer Operation (1)

(a) Prescaler mode register (PRM)

(b) Timer unit mode register 0 (TUM0)

 \times : don't care

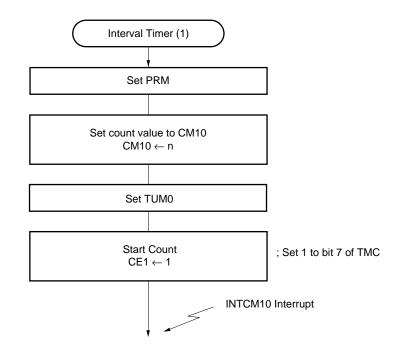
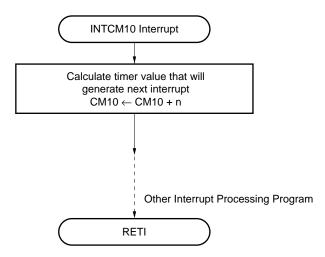



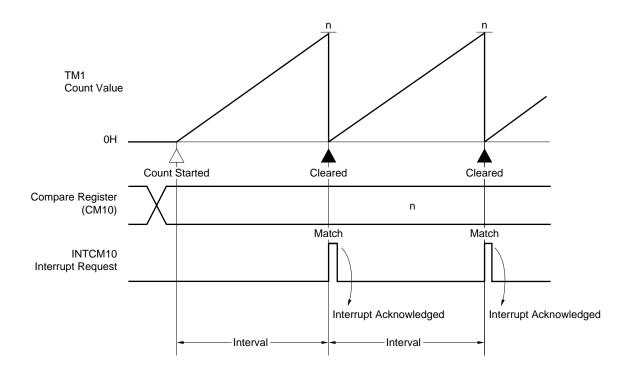
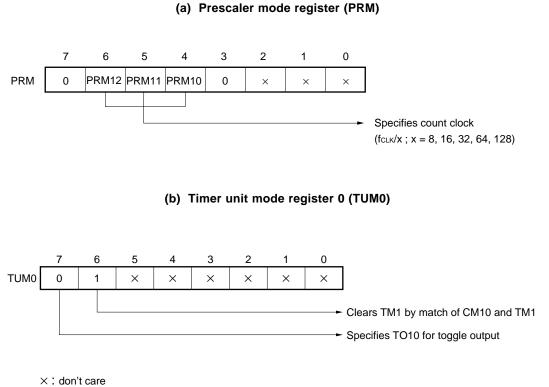
Figure 9-16. Setting Procedure of Interval Timer Operation (1)

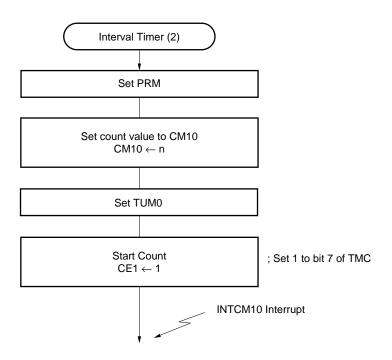
Figure 9-17. Interrupt Request Processing of Interval Timer Operation (1)

9.7.2 Operation as interval timer (2)

TM1 operates as an interval timer that generates interrupts repeatedly with the preset count time as the interval (refer to **Figure 9-18**).

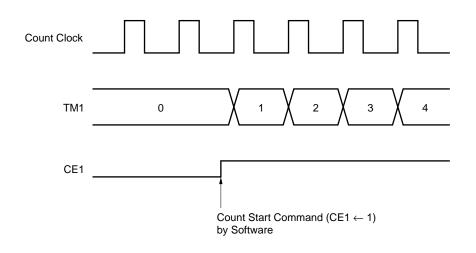
This interval timer can count in the range shown in Table 9-1 (internal system clock $f_{CLK} = 16 \text{ MHz}$) The control register settings are shown in Figure 9-19, and the setting procedure in Figure 9-20.


Figure 9-18. Timing of Interval Timer Operation (2)

Remark Interval = $(n+1) \times x/fclk$ $0 \le n \le FFFFH$ x = 8, 16, 32, 64, 128

Figure 9-19. Control Register Settings for Interval Timer Operation (2)



9.8 Cautions

The prescaler uses one time base in common with all the timers (timers 0 and 1, timers/counters 2 and 3, and timer
 If one of the timers sets the CE bit to "1", the time base starts counting. If another timer sets the CE bit to "1" while one timer operates, the first count clock of the timer may be shortened because the time base has already started counting.

For example, when using timer/counter 1 as an interval timer, the first interval time is shortened by up to 1 count clock. The second and those that follow are at the specified interval.

Figure 9-21. Operation When Counting Is Started

(2) While timer 1 is operating (while the CE1 bit of the timer mode control register (TMC) is set), malfunctioning may occur if the contents of the following registers are rewritten. This is because it is undefined which takes precedence in a contention, the change in the hardware functions due to rewriting the register, or the change in the status because of the function before rewriting.

Therefore, be sure to stop the counter operation for the sake of safety before rewriting the contents of the following registers.

- Timer unit mode register 0 (TUM0)
- Timer output control register 1 (TOC1)
- Prescaler mode register (PRM)

(3) If the contents of the compare register (CM1n: n = 0, 1) matches with those of TM1 when an instruction that stops timer register 1 (TM1) operation is executed, the counting operation of TM1 stops, but an interrupt request is generated.

In order not to generate the interrupt when stopping the operation of TM1, mask the interrupt in advance by using the interrupt mask register before stopping TM1.

Example

Program that may generate interrupt request	Program that does not generate interrupt request						
:	:						
CLR1 CE1	OR MK0H, #0CH \leftarrow Disables interrupt						
OR MK0H, #0CH ← Interrupt request	CLR1 CE1 from timer 1						
from timer 1 occurs	CLR1 CMIF10 \leftarrow Clears interrupt request						
between these	CLR1 CMIF11 flag from timer 1						
instructions	:						

- (4) A match between the timer register 1 (TM1) and compare register (CM1n: n = 0, 1) is detected only when TM1 is incremented. Therefore, the interrupt request is not generated even if the same value as TM1 is written to CM1n, and the timer output (TO1n: n = 0, 1) does not change.
- (5) When the compare register (CM10, CM11) is set to 0000H, the compare operation is performed after counting by TM1. Therefore, the interrupt due to a match (INTCM10, INTCM11) does not occur immediately after counting has been started. If CM1n (n = 0, 1) is set to 0000H, TM1 counts up to FFFFH, the timer overflows, and the interrupt due to a match INTCM1n (n = 0, 1) occurs.

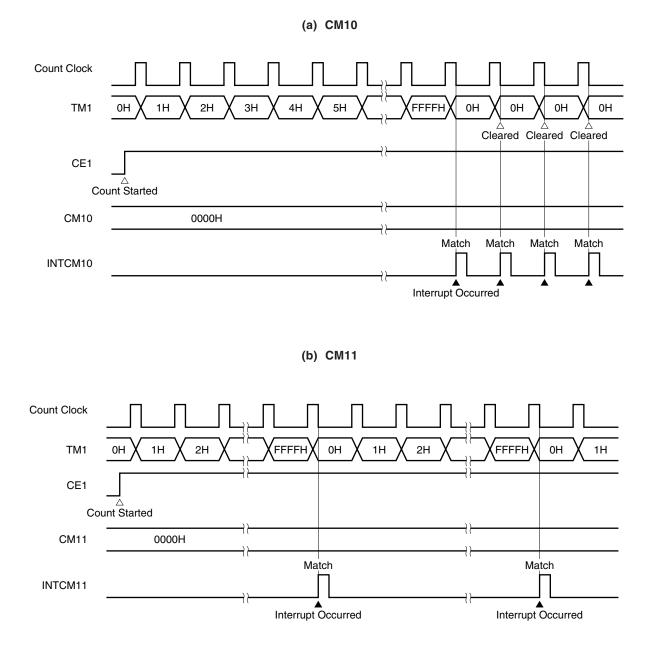


Figure 9-22. Operation When Compare Register (CM10, CM11) Is Set to 0000H

- (6) If the timer output is enabled when the active level is changed, the output level of pins may change momentarily. To prevent this, enable the timer output after the active level have been changed.
- (7) To change the active level specification (ALV1n bit (n = 0, 1) of the timer output control register 1 (TOC1)), change the active level specification after the timer output of the corresponding timer output pins has been disabled.

CHAPTER 10 TIMERS/COUNTERS 2 AND 3

The function and configuration of timers/counters 2 and 3 are identical. In this chapter, therefore, timer/counter 2 is described as a representative unless otherwise specified. To use timer/counter 3, take the pin names, register names, and bit names of the control registers of timer/counter 2 as indicated in Table 10-1.

Item	Timer/Counter 2	Timer/Counter 3
Pin name	P10/TO20 P11/TO21 P26/INTP5/TI2	P12/TO30 P13/TO31 P27/INTP6/TI3
Timer register	TM2	TM3
Compare register	CM20 CM21	CM30 CM31
Bit name in timer unit mode register 2 (TUM2)	TOM21, TOM20, CLR21, CLR20	TOM31, TOM30, CLR31, CLR30
Bit name in timer mode control register 2 (TMC2)	CE2, OVF2	CE3, OVF3
Bit name in timer output control register 2 (TOC2)	ENTO21, ALV21, ENTO20, ALV20	ENTO31, ALV31, ENTO30, ALV30
Bit name in prescaler mode register 2 (PRM2)	PRM20-PRM22	PRM30-PRM32
Bit name in external interrupt mode register 1 (INTM1)	ES51, ES50	ES61, ES60
Interrupt request name	INTP5 INTCM20 INTCM21	INTP6 INTCM30 INTCM31

Table 10-1. Differences in Name between Timer/Counter 2 and Timer/Counter 3

10.1 Function

Timer/counter 2 is a 16-bit timer/counter.

This timer/counter functions as an interval timer, to output programmable square wave, and as an external event counter.

(1) Interval timer

When timer/counter 2 is used as an interval timer, it generates an internal interrupt at interval set in advance.

Minimum Interval Time	Maximum Interval Time	Resolution
4/fclк (0.25 <i>μ</i> s)	$2^{16} imes 4$ /fclk (16.4 ms)	4/fclк (0.25 <i>μ</i> s)
8/fclk (0.5 µs)	$2^{16} imes 8$ /fclk (32.8 ms)	8/fclk (0.5 <i>μ</i> s)
16/fc∟к (1.0 <i>μ</i> s)	2 ¹⁶ × 16/fс∟к (65.5 ms)	16/fc∟к (1.0 <i>µ</i> s)
32/fc∟к (2.0 <i>μ</i> s)	2 ¹⁶ × 32/fс∟к (131 ms)	32/fcικ (2.0 μs)
64/fclk (4.0 <i>μ</i> s)	$2^{16} \times 64/f_{CLK}$ (262 ms)	64/fclk (4.0 µs)

Table 10-2. Interval Time of Timer/Counter 2

(): fclk = 16 MHz

(2) Programmable square wave output

Timer/counter 2 can output square wave to timer output pins (TO20, TO21) independently.

Table 10-3.	Programmable S	quare Wave Out	tput Range of	Timer/Counter 2

Minimum Pulse Width	Maximum Pulse Width
4/fclк (0.25 <i>μ</i> s)	$2^{16} imes 4$ /fclk (16.4 ms)
8/fclk (0.5 µs)	$2^{16} imes 8$ /fclk (32.8 ms)
16/fc∟к (1.0 <i>μ</i> s)	2 ¹⁶ × 16/fс∟к (65.5 ms)
32/fc∟к (2.0 μs)	$2^{16} \times 32$ /fclk (131 ms)
64/fclк (4.0 µs)	$2^{16} \times 64/f_{CLK}$ (262 ms)

(): fclк = 16 MHz

Caution The values in the above table are when the internal clock is used.

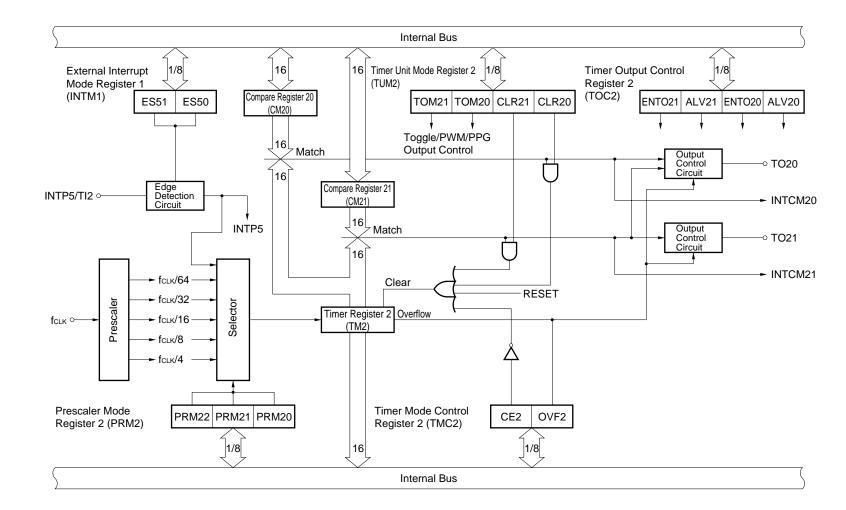
(3) External event counter

When timer/counter 2 is used as an external event counter, it counts the clock pulse (TI2 pin input pulse) input from an external interrupt request input pin (INTP5).

Sampling Clock	Maximum Frequency	Minimum Pulse Width (high and low levels)
fс∟к	fclк/8 (2.0 MHz)	4/fclк (0.25 <i>μ</i> s)
fс∟к/4	fclк/32 (0.5 MHz)	16/fc∟к (1.0 <i>µ</i> s)

Table 10-4. Clock That Can Be Input to Timer/Counter 2

- **Remarks 1.** The clock that can be input is the same regardless of the edge to be counted (single edge or both edges).
 - **2.** The sampling clock is specified by using the noise protection control register (NPC).


10.2 Configuration

Timer/counter 2 consists of the following registers:

- Timer register (TM2) × 1
- Compare register (CM2n) \times 2 (n = 0, 1)

Figure 10-1 shows the block diagram of timer/counter 2.

^{():} fclk = 16 MHz

(1) Timer register (TM2)

TM2 is a timer register that counts up the count clock specified by the low-order 3 bits of the prescaler mode register 2 (PRM2) (the count clock of TM3 is specified by bits 4 through 6 of PRM2).

Counting of this timer register is enabled or disabled by the timer mode control register 2 (TMC2).

The timer register can be only read by using a 16-bit manipulation instruction. When **RESET** is input, TM2 is cleared to 0000H and stops counting.

(2) Compare registers (CM20, CM21)

CM2n (n = 0 or 1) is a 16-bit register that holds the value determining the cycle of the interval timer operation. When the contents of CM2n matches with the contents of TM2, an interrupt request (INTCM2n: n = 0, 1) and a timer output control signal are generated. The count value of TM2 can be cleared when its value matches with the contents of CM2n.

These compare registers can be read or written by using 16-bit manipulation instructions. When RESET is input, their contents are undefined.

(3) Edge detection circuit

The edge detection circuit detects the valid edge of an external input.

It detects the valid edge of the INTP5/TI2 pin input, and generates an external interrupt request (INTP5). The valid edge to be detected is specified by external interrupt mode register 1 (INTM1) (for INTM1, refer to **Figure 15-2**).

(4) Output control circuit

When the contents of CM2n (n = 0, 1) and the contents of TM2 matches, the timer output can be inverted. A square wave can be output from a timer output pin (TO20, TO21) if so specified by the timer output control register 2 (TOC2). At this time, PWM/PPG output can also be specified by the timer unit mode register 2 (TUM2).

The timer output can be enabled or disabled by TOC2. When the timer output is disabled, a fixed level is output to the TO2n (n = 0, 1) pin (the output level is set by TOC2).

(5) Prescaler

The prescaler generates a count clock by dividing the internal system clock. The clock generated by the prescaler is selected by the selector, and TM2 performs the count operation by using this clock as a count clock.

(6) Selector

The selector selects one of the five signals generated by dividing the internal system clock and TI2 pin input as the count clock of TM2.

10.3 Timer/Counter 2 Control Register

(1) Timer unit mode register 2 (TUM2)

TUM2 is a register that specifies the output mode of the timer output pins (TO20, TO21, TO30, and TO31) of timers/ counters 2 and 3, and controls the clear operation of timer registers 2 and 3 (TM2, TM3).

This register can be read or written by using an 8-bit manipulation instruction and a bit manipulation instruction. Figure 10-2 shows the format of TUM2.

The value of this register is cleared to 00H when RESET is input.

Figure 10-2. Format of Timer Unit Mode Register 2 (TUM2)

Address	ess: 0FF34H		ddress : 0FF34H On reset : 00H		R/	R/W		
	7	6	5	4	3	2	1	0
TUM2	TOM31	ТОМ30	CLR31	CLR30	TOM21	TOM20	CLR21	CLR20

TOM31	31 TOM30 CLR31 CLR30 Sr		Specifies Time	pecifies Timer Output Mode				
				TO31 Pin	TO30 Pin	Clearing Condition		
0	0	0	0	Toggle	Toggle	Overflow		
0	0	0	1 output		output	Match with CM30		
0	0	1	0			Match with CM31		
0	1	0	0		PWM output	Overflow		
0	1	1	0		PPG output	Match with CM31		
1	0	0	0	PWM output	Toggle output	Overflow		
1	0	0	1	PPG output	υτίραι	Match with CM30		
1	1	0	0	PWM output PWM output		Overflow		
Other	1			Setting prohibited				
том21	том20			Specifies Timer	Output Mode	TM2		
TOM21	TOM20	CLR21	CLR20	Specifies Timer		TM2 Clearing		
TOM21	TOM20	CLR21	CLR20	Specifies Timer TO21 pin	Output Mode TO20 Pin			
TOM21 0	ТОМ20 0	CLR21 0	CLR20	TO21 pin Toggle	TO20 Pin Toggle	Clearing		
				TO21 pin	TO20 Pin	Clearing Condition		
0	0	0	0	TO21 pin Toggle	TO20 Pin Toggle	Clearing Condition Overflow Match with		
0	0	0	0	TO21 pin Toggle	TO20 Pin Toggle	Clearing Condition Overflow Match with CM20 Match with		
0 0 0	0 0 0 0	0 0 1	0 1 0	TO21 pin Toggle	TO20 Pin Toggle output	Clearing Condition Overflow Match with CM20 Match with CM21		
0 0 0 0	0 0 0 1	0 0 1 0	0 1 0 0	TO21 pin Toggle	TO20 Pin Toggle output PWM output PPG output Toggle	Clearing Condition Overflow Match with CM20 Match with CM21 Overflow Match with		
0 0 0 0 0	0 0 0 1 1	0 0 1 0 1	0 1 0 0 0	TO21 pin Toggle output	TO20 Pin Toggle output PWM output PPG output	Clearing Condition Overflow Match with CM21 Overflow Match with CM21		
0 0 0 0 0 0 1	0 0 0 1 1 0	0 0 1 0 1 0	0 1 0 0 0 0 0	TO21 pin Toggle output	TO20 Pin Toggle output PWM output PPG output Toggle output	Clearing Condition Overflow Match with CM20 Match with CM21 Overflow Match with CM21 Overflow Match with		

(2) Timer mode control register 2 (TMC2)

TMC2 is a register that controls the counting operation of timer registers 2 and 3 (TM2, TM3) and indicates whether an overflow occurs or not.

This register can be read or written by using an 8-bit manipulation instruction or a bit manipulation instruction. Figure 10-3 shows the format of TMC2.

The value of this register is cleared to 00H when RESET is input.

Figure 10-3. Format of Timer Mode Control Register 2 (TMC2)

Address	Address: 0FF35H			et: 00H	R	/W		
	7	6	5	4	3	2	1	0
TMC2	0	0	0	0	CE3	OVF3	CE2	OVF2

CEn	Controls Count Operation of TMn (n = 2, 3)
0	Clears and stops counting
1	Enables counting

OVFn	Overflow Flag of TMn (n = 2, 3)				
0	No overflow				
1	Overflow				

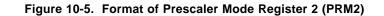
(3) Timer output control register 2 (TOC2)

TOC2 is a register that specifies the operation and active level of the timer output pins (TO20, TO21, TO30, and TO31) of timers/counters 2 and 3.

This register can be read or written by using an 8-bit manipulation instruction or a bit manipulation instruction. Figure 10-4 shows the format of TOC2.

The value of this register is cleared to 00H when RESET is input.

Figure 10-4. Format of Timer Output Control Register 2 (TOC2)


Address	ddress: 0FF36H			On reset: 00H			R/W		
	\overline{O}	6	5	4	3	2	1	0	
TOC2	ENTO31	ALV31	ENTO30	ALV30	ENTO21	ALV21	ENTO20	ALV20	

ENTO3n	Specifies Operation of TO3n Pin (n = 0, 1)			
0	Outputs ALV3n			
1	Enables pulse output			
ALV3n	Specifies Active Level	of TO3n Pin (n = 0, 1)		
	With Toggle Output Specified	With PWM/PPG Output Specified		
0	Low level	High level		
1	High level	Low level		
ENTO2n	Specifies Operation of TO2n Pin (n = 0, 1)			
0	Outputs ALV2n			
1	Enables pulse output			
ALV2n	Specifies Active Level of TO2n Pin (n = 0, 1)			
	With Toggle Output Specified	With PWM/PPG Output Specified		
0	Low level	High level		
1	High level	Low level		

(4) Prescaler mode register 2 (PRM2)

PRM2 is a register that specifies the count clock of timer registers 2 and 3 (TM2 and TM3). This register can be read or written by using an 8-bit manipulation instruction. Figure 10-5 shows the format of PRM2. The value of this register is cleared to 00H when $\overrightarrow{\text{RESET}}$ is input.

Address: 0FF39H		On rese	et:00H	R/	W			
-	7	6	5	4	3	2	1	0
PRM2	0	PRM32	PRM31	PRM30	0	PRM22	PRM21	PRM20
_							(fськ =	16 MHz)
		PRMn2	PRMn1	PRMn0	Specifies	Count Clo	ck of TMn	(n = 2, 3)
					Count C	lock [Hz]	Resolut	ion [µs]
		0	0	0	fськ/4		0.25	
		0	0	1	fськ/8		0.5	
		0	1	0	fclк/16		1.0	
		0	1	1	fclк/32		2.0	
		1	0	0	fс∟к/64		4.0	
		1	0	1	Externa	al clock	-	-
					input (1	īn)		
		Others			Setting	prohibit	ed	

Remark fclk: internal system clock

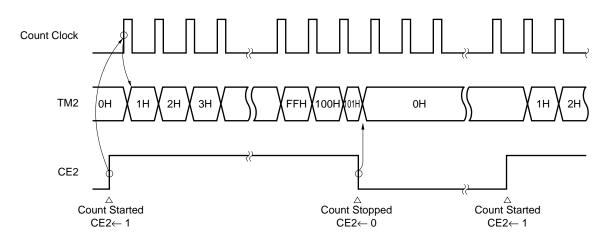
10.4 Operation of Timer Register 2 (TM2)

10.4.1 Basic operation

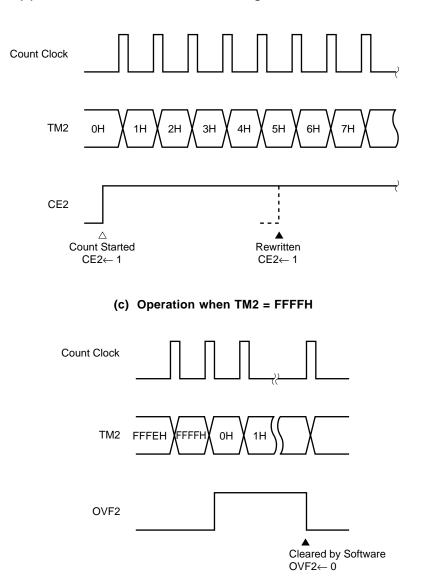
Timer/counter 2 counts up by using the count clock specified by the prescaler mode register 2 (PRM2).

Counting is enabled or disabled by the CE2 bit of the timer mode control register 2 (TMC2). When the CE2 bit is set (1) by software, TM2 is set to 0001H at the first count clock, and starts counting up. When the CE2 bit is cleared (0) by

software, TM2 is immediately cleared to 0000H, and generation of the match signal is stopped.

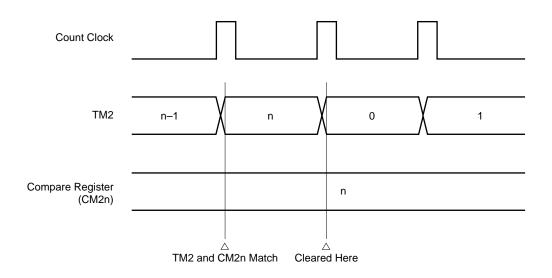

If the CE2 bit is set (1) while it has been already set (1), TM2 is not cleared but continues counting.

If a count clock is input when TM2 reaches FFFFH, TM2 is cleared to 0000H, and the OVF2 flag of TMC2 is set (1). The OVF2 flag is cleared only by software. TM2 continues counting.


When $\overline{\text{RESET}}$ is input, TM2 is cleared to 0000H and stops counting.

(a) Count started \rightarrow count stopped \rightarrow count started

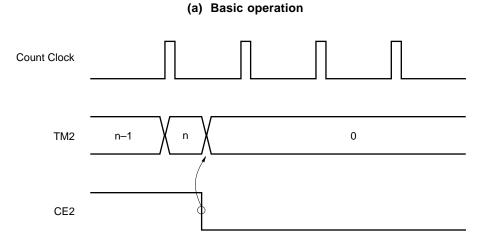
(b) When "1" is written to the CE2 bit again after the count starts



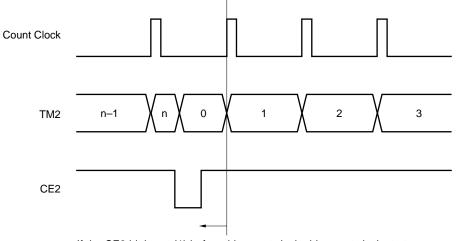
10.4.2 Clear operation

(1) Clear operation after match with compare register

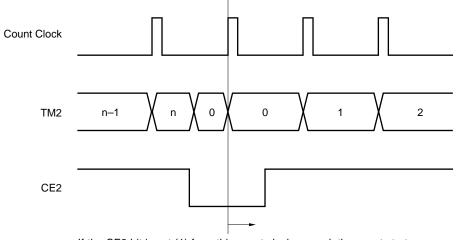
Timer register 2 (TM2) can be cleared automatically after a match with the compare register (CM2n: n = 0, 1). When a clearance source arises, TM2 is cleared to 0000H on the next count clock. Therefore, even if a clearance source arises, the value at the point at which the clearance source arose is retained until the next count clock arrives.



Remark n = 0 or 1


(2) Clear operation by CE2 bit of timer mode control register 2 (TMC2)

Timer register 2 (TM2) is also cleared when the CE2 bit of the TMC2 is cleared (0) by software. The clear operation is performed immediately after clearance (0) of the CE2 bit.



(b) Restart before count clock is input after clearance

If the CE2 bit is set (1) before this count clock, this count clock starts counting from 1.

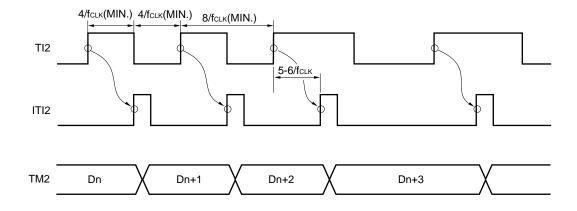
(c) Restart after count clock is input after clearance

If the CE2 bit is set (1) from this count clock onward, the count starts from 1 on the count clock after the CE2 bit is set (1).

10.5 External Event Counter Function

Timer/counter 2 can count clock pulses input from external interrupt request input pin (INTP5/TI2).

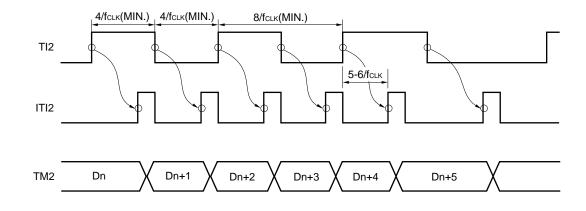
No special selection method is needed for the external event counter operating mode. When the timer register 2 (TM2) count clock is specified as external clock input by the setting of the high-order 4 bits of prescaler mode register 2 (PRM2), TM2 operates as an external event counter.


The maximum frequency of external clock pulses that can be counted by TM2 as the external event counter is 2.08 MHz (fcLK = 12.5 MHz) irrespective of whether only one edge or both edges are counted on INTP2/CI input.

The pulse width of INTP2/CI input must be at least 3 system clocks (0.24 μ s: fcLK = 12.5 MHz) for both the high level and low level. If the pulse width is shorter than this, the pulse may not be counted.

The timer/counter 2 external event count timing is shown in Figure 10-11.

Figure 10-9. Timing of Timer/Counter 2 External Event Count (1/2)


(1) Counting one edge (maximum frequency = $f_{CLK}/8^{Note}$)

Note When sampling clock is fclk.

Remark ITI2: TI2 input signal after passing through edge detection circuit

Figure 10-9. Timing of Timer/Counter 2 External Event Count (2/2)

(2) Counting both edges (maximum frequency = $f_{CLK}/8^{Note}$)

Note When sampling clock is fclk.

Remark ITI2: TI2 input signal after passing through edge detection circuit

The TM2 count operation is controlled by the CE2 bit of the timer control register 2 (TMC2) in the same way as with the basic operation.

When the CE2 bit is set (1) by software, the contents of TM2 are set to 0001H and the up-count operation is started on the initial count clock.

When the CE2 bit is cleared (0) by software during a TM2 count operation, the contents of TM2 are set to 0000H immediately and the stopped state is entered. The TM2 count operation is not affected if the CE2 bit is set (1) by software again when it is already set (1).

10.6 Operation of Compare Register

Timer/counter 2 performs a compare operation by comparing the value set to a compare register (CM20, CM21) with the count value of a timer register 2 (TM2).

If the count value of TM2 coincides with the value set in advance to CM2n (n = 0, 1) as a result of counting by TM2, the timer sends a coincidence signal to the output control circuit, and at the same time, generates an interrupt request signal (INTCM2n: n = 0, 1).

After the value of TM2 has coincided with the value of CM2n, the count value of TM2 can be cleared, so that TM2 can be used as an interval timer that repeatedly counts the value set to CM2n.

Table 10-5. Interrupt Request Signal from Compare Register (timer/counter 2)

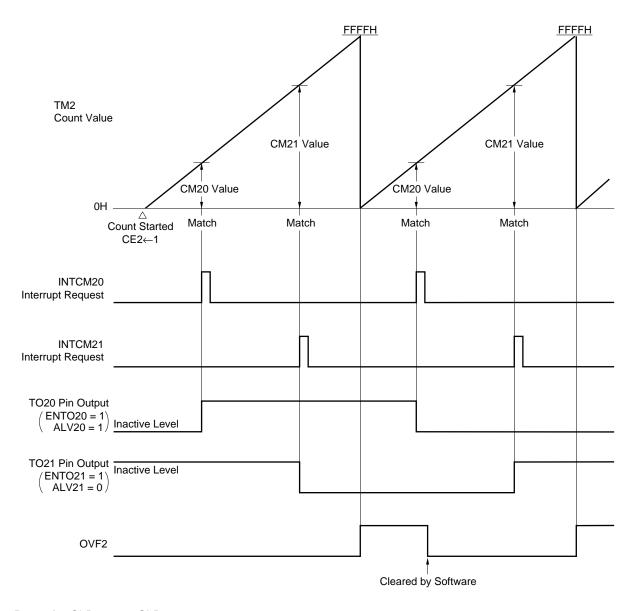
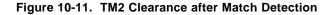
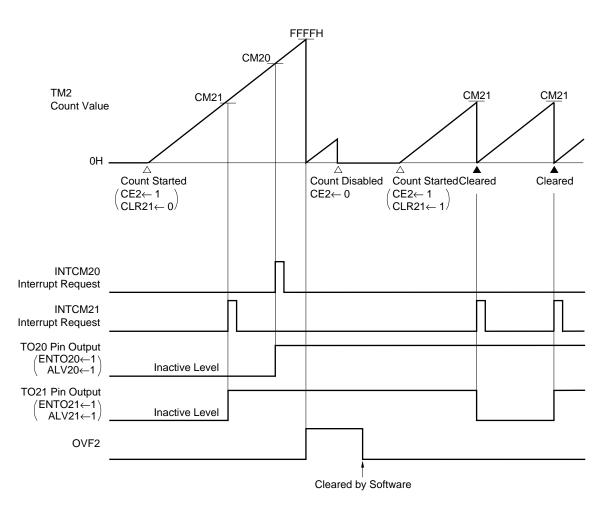

Compare Register	Interrupt Request Signal	
CM20	INTCM20	
CM21	INTCM21	

Table 10-6. Interrupt Request Signal from Compare Register (timer/counter 3)


Compare Register	Interrupt Request Signal	
CM30	INTCM30	
CM31	INTCM31	


Timer 2 has two timer output pins (TO20, TO21). These pins can be used for toggle/PWM/PPG output as specified by the timer unit mode register 2 (TUM2) (for details, refer to **10.7 Basic Operation of Output Control Circuit**).

Remark CLR20 = 0, CLR21 = 0

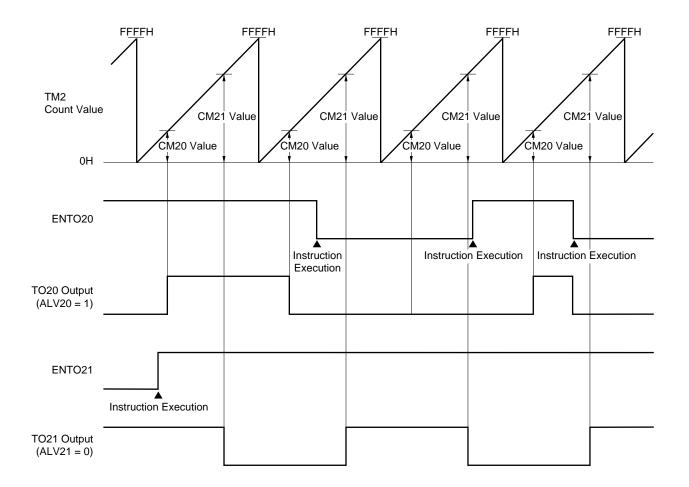
Remark CLR20 = 0

10.7 Basic Operation of Output Control Circuit

The output control circuit controls the timer output pins (TO20, TO21) level by means of match signals from the compare register (CM20, CM21). The operation of the output control circuit is determined by the timer output control register 2 (TOC2). As the operation of the TO20 and TO21 output pins, toggle output, PWM output, or PPG output can be selected by using the timer unit mode register 2 (TUM2).

To output the TO20 and TO21 signals to the pins, the corresponding pins must be set in the control mode by the port 1 mode control register (PMC1).

10.7.1 Basic operation


Setting (1) the ENTO2n (n = 0, 1) bit of the timer output control register 2 (TOC2) enables pulse output from TO2n (n = 0, 1) pin.

Clearing (0) ENTO2n bit sets the TO2n to a fixed level. The fixed level is determined by the ALV2n (n = 0, 1) bit of the TOC2. The level is high when ALV2n bit is 0, and low when 1.

10.7.2 Toggle output

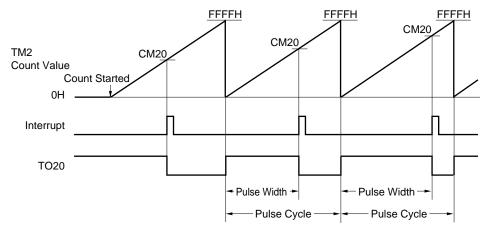
Toggle output is an operating mode in which the output level is inverted each time the compare register (CM20/CM21) value matches with the timer register 2 (TM2) value. The output level of timer output (TO20) is inverted by a match between CM20 and TM2, and the output level of timer output (TO21) is inverted by a match between CM21 and TM2.

When timer/counter 2 is stopped by clearing (0) the CE2 bit of the timer mode control register 2 (TMC2), the output level at the time it was stopped is retained.

Count Clock	Minimum Pulse Width	Maximum Pulse Width
fclк/4	4/fclк (0.25 <i>μ</i> s)	$2^{16} imes 4$ /fclk (16.4 ms)
fc∟к/8	8/fclk (0.5 <i>μ</i> s)	$2^{16} \times 8$ /fclk (32.8 ms)
fc∟к/16	16/fc∟к (1.0 µs)	2 ¹⁶ × 16/fс∟к (65.5 ms)
fclк/32	32/fcικ (2.0 μs)	$2^{16} imes 32$ /fclk (131 ms)
fс∟к/64	64/fcικ (4.0 μs)	$2^{16} \times 64/f_{CLK}$ (262 ms)

Table 10-7. Toggle Output of TO20 and TO21 (fcLK = 16 MHz)

10.7.3 PWM output

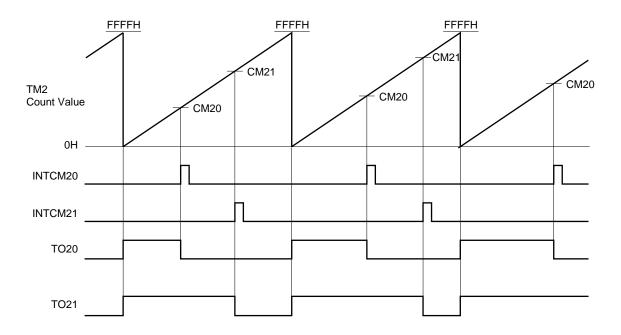

(1) Basic operation of PWM output

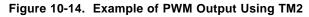
In this mode, a PWM signal whose cycle is equal to a period during which timer register 2 (TM2) completes its full count is output. The pulse width of timer output (TO20) is determined by the value of a compare register (CM20), and the pulse width of timer output (TO21) is determined by the value of compare register (CM21). To set the TO2n (n = 0, 1) pin in the PWM output mode, set (1) the TOM2n (n = 0, 1) bit of the timer unit mode register 2 (TUM2), and reset (0) the CLR20 and CLR21 bits (refer to Figure 10-2).

The pulse cycle and pulse width are as follows:

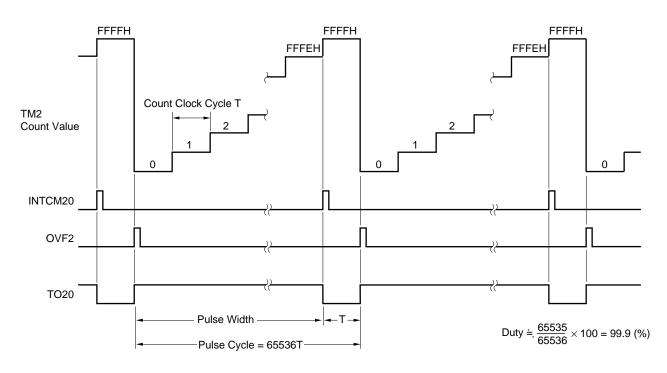
- PWM cycle = 65536 × x/fclk ; x = 4, 8, 16, 32, 64
- PWM pulse width = $CM2n^{Note} \times x/f_{CLK}$; n = 0, 1 ٠
- PWM pulse width CM2n Duty = PWM cycle 65536

Note CM2n cannot be set to 0.

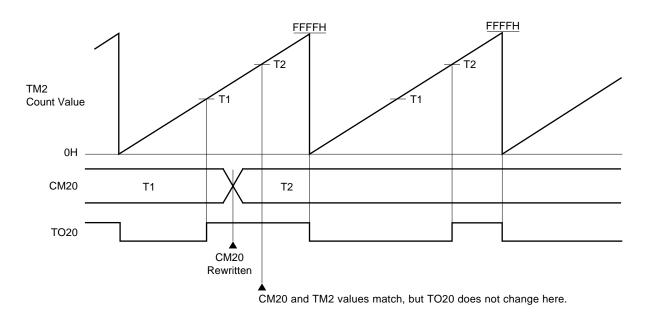



Remark ALV20 = 0

Count Clock	Minimum Pulse Width [μ s]	PWM Cycle [s]	PWM Frequency [Hz]
fс∟к/4	0.25	0.016	61.0
fськ/8	0.5	0.033	30.5
fськ/16	1.0	0.066	15.3
fськ/32	2.0	0.13	7.63
fclк/64	4.0	0.26	3.81


Figure 10-14 shows an example of 2-channel PWM output, and Figure 10-15 shows the case where FFFFH is set in the CM20.

Remark ALV20 = 0, ALV21 = 0



Remarks 1. ALV20 = 0

(2) Rewriting compare registers (CM20, CM21)

The output level of the timer output (TO2n: n = 0, 1) is not inverted even if the CM2n (n = 0, 1) value matches the timer register 2 (TM2) value more than once during one PWM output cycle. However, the interrupt due to a match occurs.

Remark ALV20 = 1

If a value smaller than that of the TM2 is set as the CM2n value, a 100 % duty PWM signal will be output. CR2n rewriting should be performed by the interrupt due to a match between TM2 and the CM2n on which the rewrite is performed.

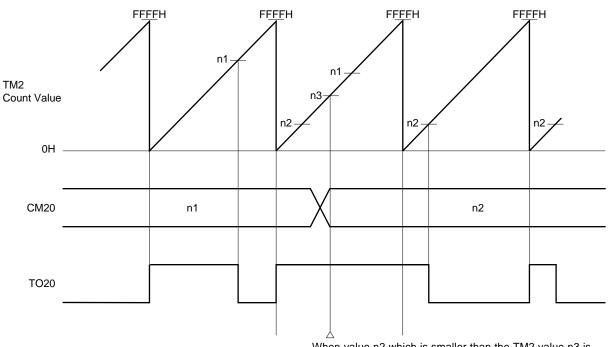


Figure 10-17. Example of 100 % Duty With PWM Output

When value n2 which is smaller than the TM2 value n3 is written to CM20 here, the duty of this period will be 100 %.

Remark ALV20 = 0

(3) Stopping PWM output

If timer/counter 2 is stopped by clearing (0) the CE2 bit of the timer mode control register 2 (TMC2) during PWM signal output, the output level at the time it was stopped is retained.

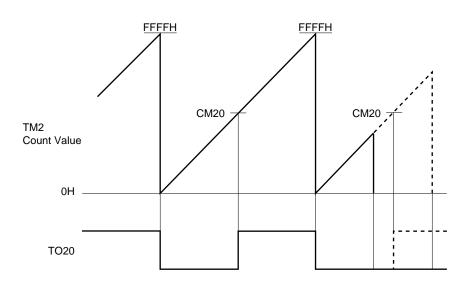


Figure 10-18. When Timer/Counter 2 is Stopped During PWM Signal Output

Remark ALV20 = 1

- Cautions 1. The output level of the TO2n (n = 0, 1) pin when timer output is disabled (ENTO2n = 0: n = 0, 1) is the inverse of the value set in ALV2n (n =0, 1) bits. Therefore, the inactive level is output when timer output is disabled when the PWM output function has been selected. If timer/counter 2 is stopped and then started again while the active level is being output, the active level is continuously output until the next overflow occurs. To return the level to inactive, once disable the timer output (ENTO2n = 0: n = 0, 1)
 - 2. If the timer output is enabled and the active level is changed at the same time, the output level of the pin may change momentarily. To prevent this, change the active level and then enable the timer output.
 - To change the active level specification(ALV2n bit (n = 0, 1) of the timer output control register 2 (TOC2)), change the active level specification after the timer output of the corresponding timer output pins has been disabled.

10.7.4 PPG output

(1) Basic operation of PPG output

This function is to output a square wave whose pulse width is determined by the value of one compare register with the cycle of the wave determined by another compare register. In other words, the PWM cycle of the PWM output is varied.

To use this function, the timer unit mode register 2 (TUM2) must be set as shown in Tables 10-9 and 10-10. Tables 10-9 and 10-10 shows combinations between compare registers and timer outputs, and how to set the PPG output function.

Pulse Cycle	Pulse Width	Timer Output	Setting
CM21	CM20	TO20	Set TOM20 of TUM2 to 1 and CLR21 and CLR20 to 10 (TM2 is cleared by match with CM21) (refer to Figure 10-2).
CM20	CM21	TO21	Set TOM21 of TUM2 to 1 and CLR21 and CLR20 to 01 (TM2 is cleared by match with CM20) (refer to Figure 10-2).

Table 10-9. Setting PPG Output (timer/counter 2)

Table 10-10. Setting PPG Output (timer/counter 3)

Pulse Cycle	Pulse Width	Timer Output	Setting
CM31	CM30	TO30	Set TOM30 of TUM2 to 1 and CLR31 and CLR30 to 10 (TM3 is cleared by match with CM31) (refer to Figure 10-2).
CM30	CM31	TO31	Set TOM31 of TUM2 to 1 and CLR31 and CLR30 to 01 (TM3 is cleared by match with CM30) (refer to Figure 10-2).

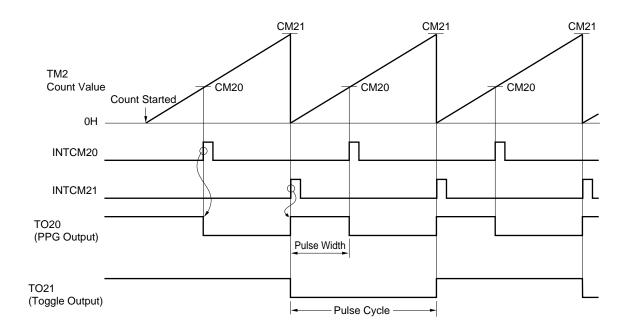
The pulse cycle and pulse width are as follows:

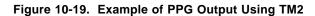
(a) When pulse cycle is set to CM21, and pulse width, to CM20

- PPG cycle = (CM21 + 1) × x/fcLK: x = 4, 8, 16, 32, 64
- PPG pulse width = $CM20 \times x/fclk$
 - where, 1 ≤ CM20 < CM21^{Note}
- Duty = $\frac{\text{PPG pulse width}}{\text{PPG cycle}} = \frac{\text{CM20}}{\text{CM21} + 1}$

Note CM20 = CM21 is prohibited.

(b) When pulse cycle is set to CM20, and pulse width, to CM21


- PPG cycle = (CM20 + 1) × x/fclk: x = 4, 8, 16, 32, 64
- PPG pulse width = CM21 \times x/fclk


where, $1 \le CM21 < CM20^{Note}$

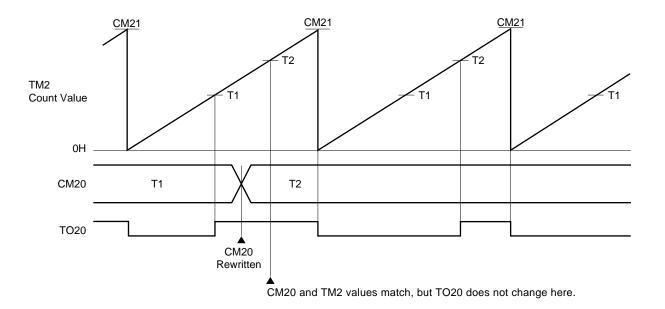
• Duty = $\frac{\text{PPG pulse width}}{\text{PPG cycle}} = \frac{\text{CM21}}{\text{CM20} + 1}$

Note CM20 = CM21 is prohibited.

Figure 10-19 shows an example of PPG output by using timer register 2 (TM2) (pulse cycle: CM21, pulse width: CM20).

Remark ALV20 = 0, ALV21 = 0

Table 10-11. PPG Output of TO20 and TO2	I (fclk = 16 MHz)
---	-------------------


Count Clock	Minimum Pulse Width	PPG Cycle	PPG Frequency
fськ/4	0.25 μs	0.75 μs – 16.4 ms	1333 kHz – 61.0 Hz
fськ/8	0.5 μs	1.5 μs – 32.8 ms	666 kHz – 30.5 Hz
fc⊥к/16	1.0 <i>μ</i> s	3.0 µs - 65.5 ms	333 kHz – 15.3 Hz
fськ/32	2.0 μs	6.0 µs – 131 ms	166 kHz – 7.63 Hz
fськ/64	4.0 μs	12.0 µs – 262 ms	83.3 kHz – 3.81 Hz

(2) Rewriting compare register (CM20 or CM21) to which pulse width is set

Even if the value of CM2n (n = 0, 1) (the compare register to which a pulse width has been set) matches with the value of timer register 2 (TM2) during a period of one cycle of PPG output, the output level of timer output (TO2n: n = 0, 1) does not change. However, the interrupt due to a match occurs.

An example where the pulse cycle is set by CM21 and pulse width is set by CM20 is shown below.

Remark ALV20 = 1

If a value equal to or less than the TM2 value is written to CM20 before the CM20 and TM2 match, the duty of that PPG cycle will be 100 %. CM20 rewriting should be performed by the interrupt due to a match between TM2 and CM20.

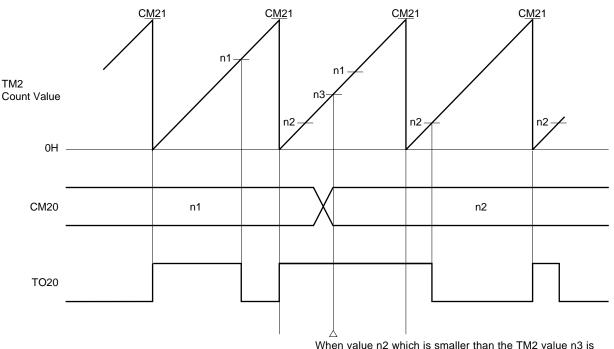


Figure 10-21. Example of 100 % Duty With PPG Output

When value n2 which is smaller than the TM2 value n3 is written to CM20 here, the duty of this period will be 100 %.

Remark ALV20 = 0

Caution If the PPG cycle is extremely short as compared with the time required to acknowledge an interrupt, the value of CM2n cannot be rewritten by interrupt processing that is performed on match between timer register 2 (TM2) and compare register (CM2n: n = 0, 1). Use another method (for example, to poll the interrupt request flags by software with all the interrupts masked).

(3) Rewriting compare register (CM20, CM21) to which pulse cycle is set

If the value of CM2n (n = 0, 1) (the compare register to which a pulse cycle has been set) is less than the value of timer register 2 (TM2) when the value of CM2n is changed to a value less than the current value, the PPG cycle is extended to the time during which TM2 completes its full count.

An example where the pulse cycle is set by CM21 and pulse width is set by CM20 is given below. At this time, the output level is inactive until TM2 overflows if the value of CM21 is rewritten after the value of compare register (CM20) has matched with that of TM2, and then the normal PPG output is performed. If CM21 is rewritten before CM20 and TM2 match, the active level will be output until CM20 and TM2 match. If CM20 and TM2 match before TM2 overflows and becomes 0, the inactive level is output at that point. When TM2 overflows and becomes 0, the active level will be restored.

CM21 rewriting should be performed by the interrupt due to a match between TM2 and CM21, etc.

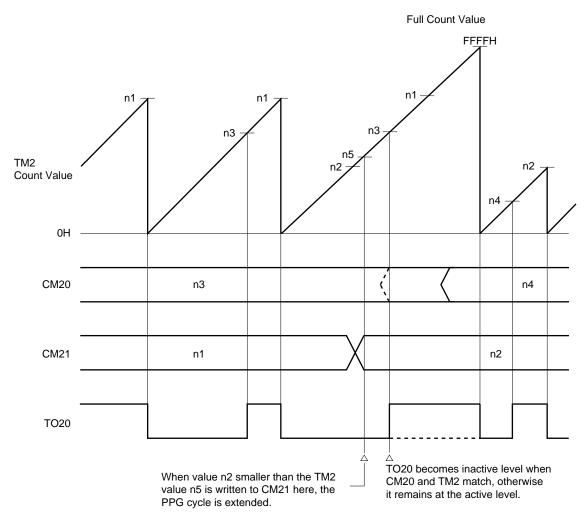


Figure 10-22. Example of Extended PPG Output Cycle

Remark ALV20 = 1

Caution If the PPG cycle is extremely short as compared with the time required to acknowledge an interrupt, the value of CM2n cannot be rewritten by interrupt processing that is performed on match between timer register 2 (TM2) and compare register (CM2n: n = 0, 1). Use another method (for example, to poll the interrupt request flags by software with all the interrupts masked).

(4) Stopping PPG output

If timer/counter 2 is stopped by clearing (0) the CE2 bit of the timer mode control register 2 (TMC2) during PPG signal output, the output level at the time timer/counter 2 was stopped is retained as is.

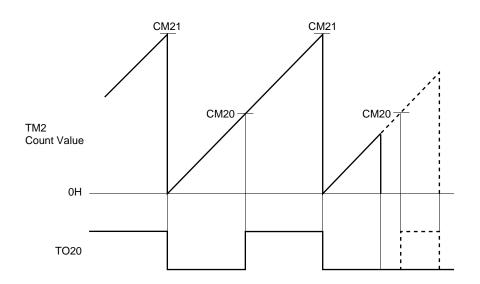


Figure 10-23. When Timer/Counter 2 is Stopped During PPG Signal Output

Remark ALV20 = 1

- Cautions 1. The output level of the TO2n (n = 0, 1) pin when timer output is disabled (ENTO2n = 0: n = 0, 1) is the inverse value of the value set in ALV2n (n = 0, 1) bits. Therefore, the inactive level is output when timer output is disabled when the PPG output function has been selected. If timer/counter 2 is stopped and then started again while the active level is being output, the active level is continuously output until the next match and clearing occurs. To return the level to inactive, once disable the timer output (ENTO2n = 0: n = 0, 1)
 - 2. If the timer output is enabled and the active level is changed at the same time, the output level of the pin may change momentarily. To prevent this, change the active level and then enable the timer output.
 - To change the active level specification(ALV2n bit (n = 0, 1) of the timer output control register 2 (TOC2)), change the active level specification after the timer output of the corresponding timer output pins has been disabled.

10.8 Examples of Use

10.8.1 Operation as interval timer (1)

When timer register 2 (TM2) is made free-running and a fixed value is added to the compare register (CM2n: n = 0, 1) in the interrupt processing routine, TM2 operates as an interval timer with the added fixed value as the cycle (refer to **Figure 10-24**).

Taking an example where the compare register CM20 is used, the control register settings are shown in Figure 10-25, the setting procedure in Figure 10-26, and the processing in the interrupt processing routine in Figure 10-27.

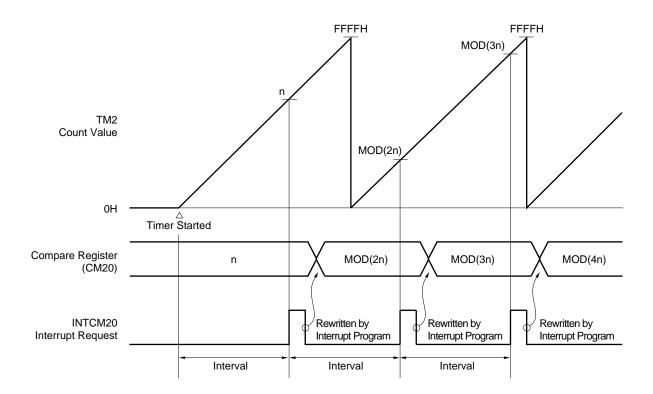



Figure 10-24. Timing of Interval Timer Operation (1)

 $\begin{array}{ll} \textbf{Remark} & Interval time = n \times x/fclk \\ & y \leq n \leq FFFFH \end{array}$

x = 4, 8, 16, 32, 64

y is limited by the data transfer processing time. Consider the processing time of the interrupt used or the macro service processing time (refer to Table 16-11 Interrupt Acceptance Processing Time and Table 16-12 Macro Service Processing Time).

 \times : dont't care

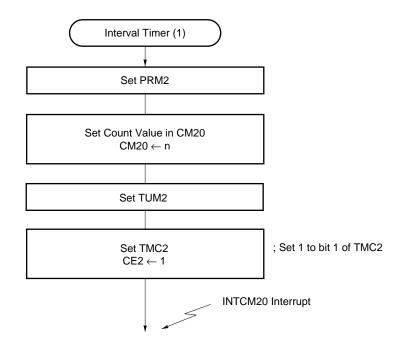
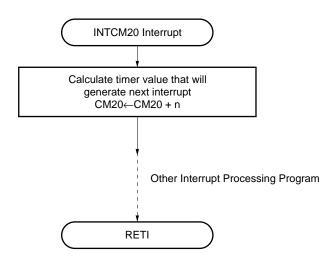
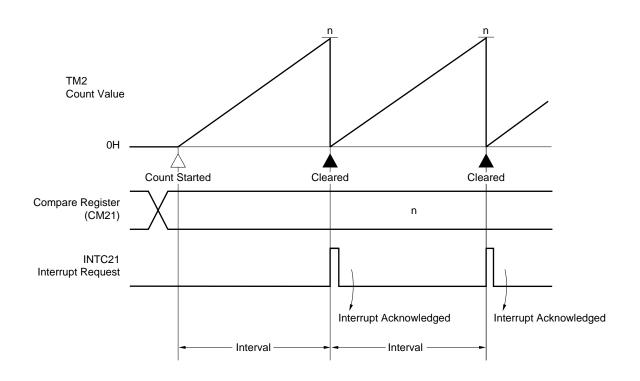
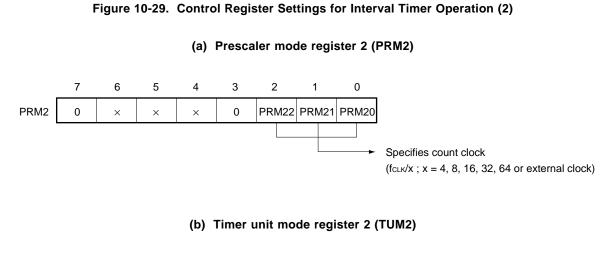
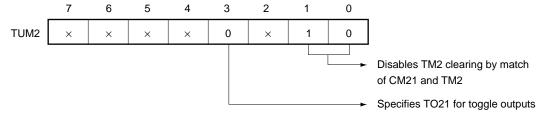



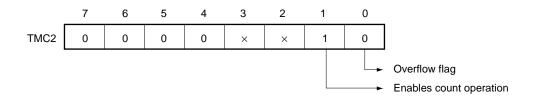
Figure 10-26. Setting Procedure of Interval Timer Operation (1)


Figure 10-27. Interrupt Request Processing of Interval Timer Operation (1)

10.8.2 Operation as Interval Timer (2)


TM2 operates as an interval timer that generates interrupts repeatedly with the preset count time as the interval (see **Figure 10-28**).

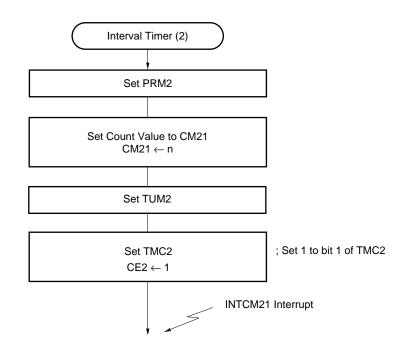

Taking an example where the compare register CM21 is used, the control register settings are shown in Figure 10-29, and the setting procedure in Figure 10-30.

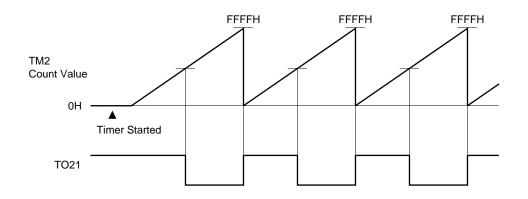


Remark Interval = $(n+1) \times x/f_{CLK}$ $0 \le n \le FFFFH$, x = 4, 8, 16, 32, 64

(c) Timer mode control register 2 (TMC2)

 \times : don't care

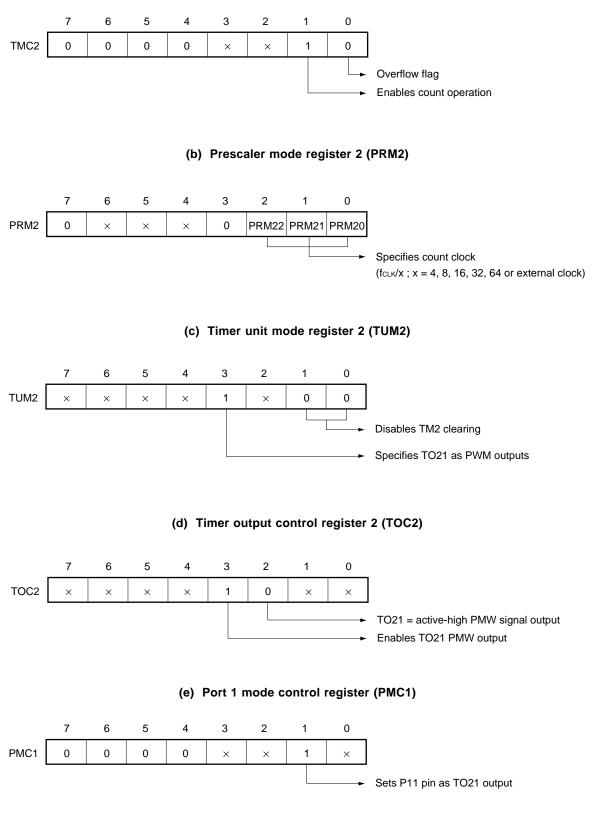



Figure 10-30. Setting Procedure of Interval Timer Operation (2)

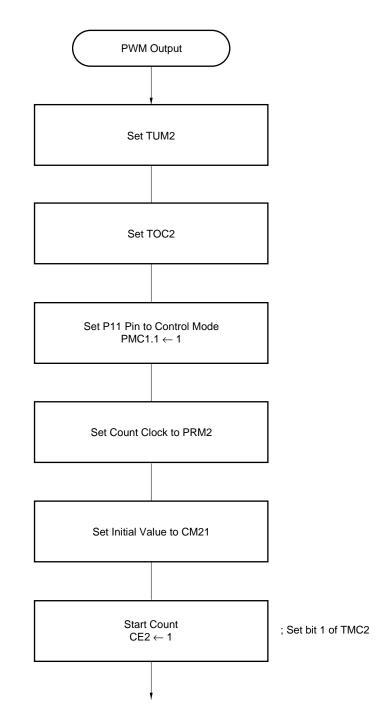
10.8.3 Operation as PWM output

In PWM output, pulses with the duty ratio determined by the value set in the compare register (CM2n: n = 0, 1) are output (refer to **Figure 10-31**).

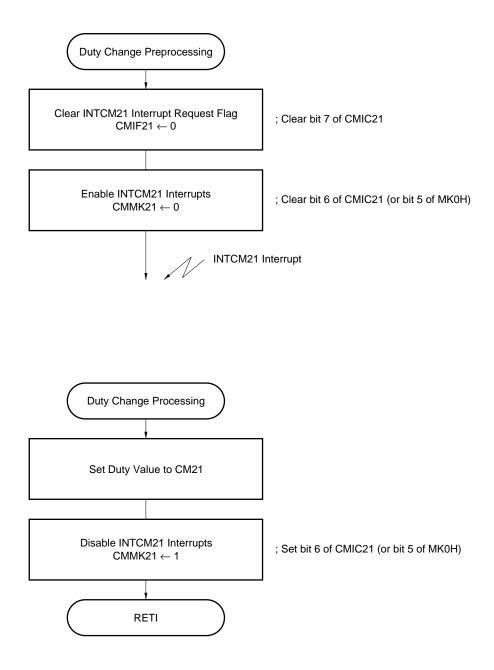
Taking an example where TO21 pin is used as a timer output pin, the control register settings are shown in Figure 10-32, the setting procedure in Figure 10-33, and the procedure for varying the duty in Figure 10-34.



Remark ALV21 = 0



(a) Timer mode control register 2 (TMC2)



 \times : don't care

10.8.4 Operation as PPG output

In PPG output, pulses with the cycle and duty ratio determined by the value set in the compare register (CM2n: n =

0, 1) are output (refer to Figure 10-35).

Taking an example where TO20 pin is used as a timer output pin, the control register settings are shown in Figure 10-36, the setting procedure in Figure 10-37, and the procedure for varying the duty in Figure 10-38.

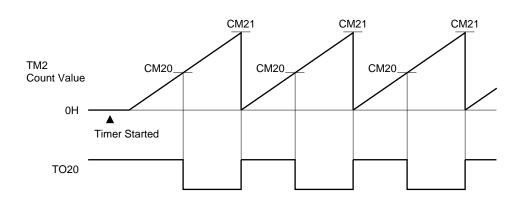
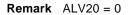
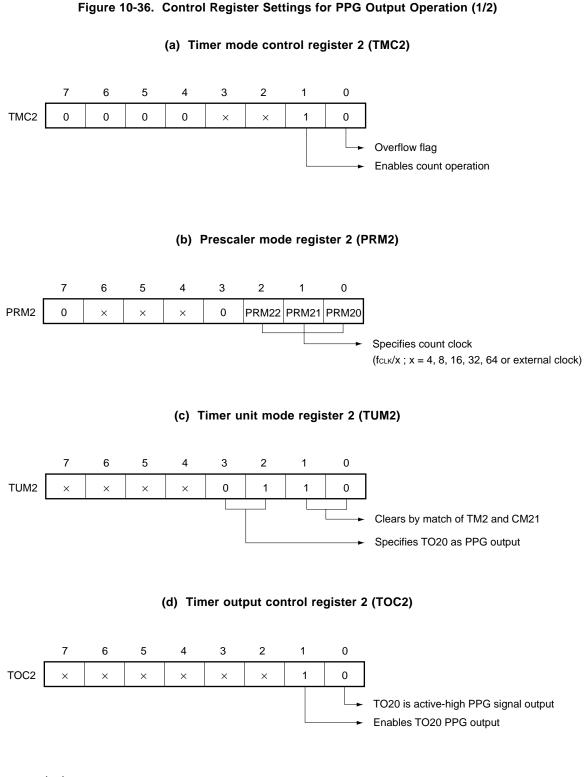
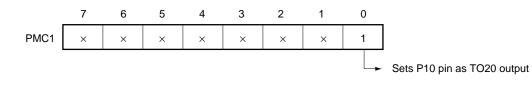
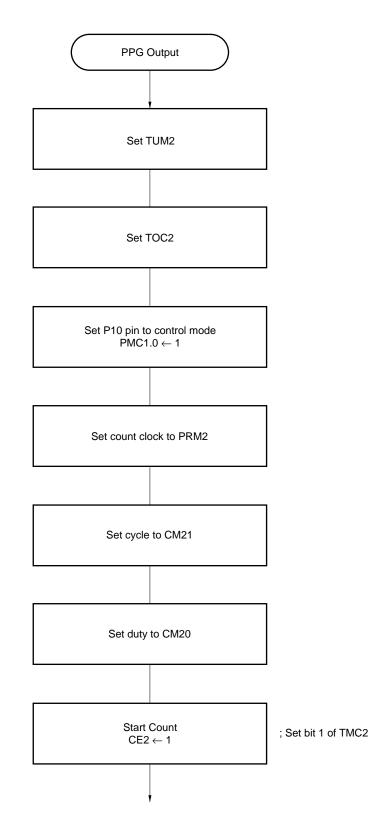
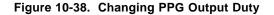




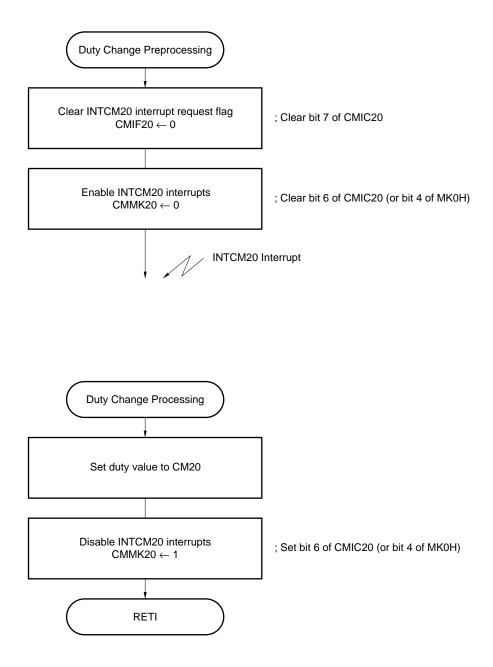
Figure 10-35. Example of Timer/Counter 2 PPG Signal Output



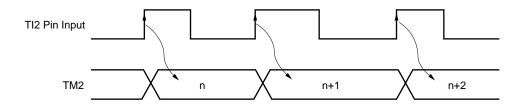
 \times : don't care


Figure 10-36. Control Register Settings for PPG Output Operation (2/2)


(e) Port 1 mode control register (PMC1)

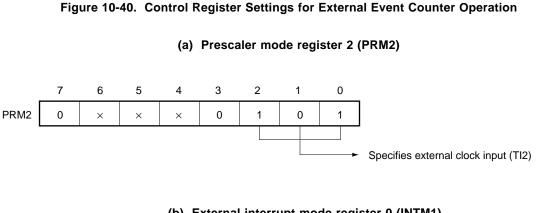


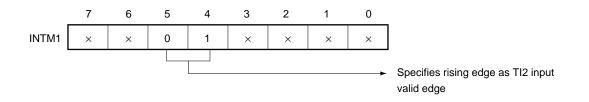
×: don't care


10.8.5 Operation as external event counter

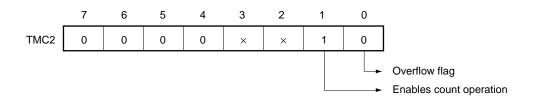
An external event counter counts clock pulses (TI2 pin input pulses) input from off-chip.

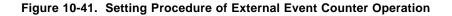
The operation of the external event counter is explained where the TI2 pin input valid edge is specified to be the rising edge.

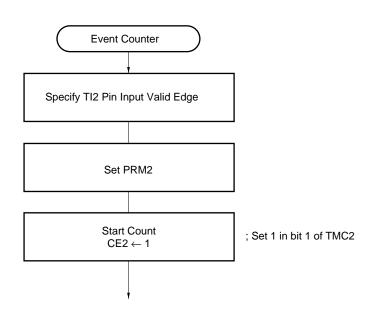

As shown in Figure 10-39, the value of timer register 2 (TM2) is incremented in synchronization with a TI2 pin input valid edge.



Remark The TM2 value is the same as the number of input clock pulses.


The control register settings when TM2 operates as an external event counter are shown in Figure 10-40, and the setting procedure in Figure 10-41.


(b) External interrupt mode register 0 (INTM1)



×: don't care

10.9 Cautions

The prescaler uses one time base commonly with all the timers (timers 0 and 1, timers/counters 2 and 3, and timer
 If one of the timers sets the CE bit to "1", the time base starts counting. If another timer sets the CE bit to "1" while one timer operates, the first count clock of the timer may be shortened because the time base has already started counting.

For example, when using timer/counter 2 as an interval timer, the first interval time is shortened by up to 1 count clock. The second and those that follow are at the specified interval.

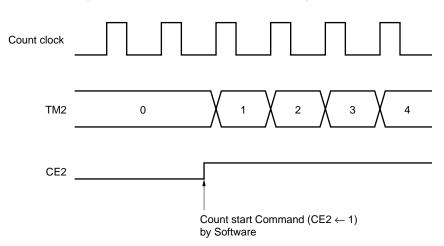


Figure 10-42. Operation When Counting Is Started

(2) While timer/counter 2 is operating (while the CE2 bit of the timer mode control register 2 (TMC2) is set), malfunctioning may occur if the contents of the following registers are rewritten. This is because it is undefined which takes precedence, the change in the hardware functions due to rewriting the register, or the change in the status because of the function before rewriting.

Therefore, be sure to stop the counter operation for the sake of safety before rewriting the contents of the following registers.

- Timer unit mode register 2 (TUM2)
- Timer output control register 2 (TOC2)
- Prescaler mode register 2 (PRM2)
- (3) If the contents of the compare register (CM2n: n = 0, 1) match with those of TM2 when an instruction that stops timer register 2 (TM2) operation is executed, the counting operation of TM2 stops, but an interrupt request is generated.

In order not to generate the interrupt when stopping the operation of TM2, mask the interrupt in advance by using the interrupt mask register before stopping TM2.

Example

Program that may generate interrupt request Program that does not generate interrupt request CLR1 CE2 OR MK0H, #30H ← Interrupt request counter 2 OR CLR1 CE2 from timer/counter 2 ← Clears interrupt request flag for timer/ CLR1 CMIF20 occurs between counter 2 CLR1 CMIF21 these instructions

- (4) Match between timer register 2 (TM2) and compare register (CM2n: n = 0, 1) is detected only when TM2 is incremented. Therefore, the interrupt request is not generated and timer output (TO2n: n = 0, 1) does not change even if the same value as TM2 is written to CM2n.
- (5) During PPG output, if the PPG cycle is extremely short as compared with the time required to acknowledge an interrupt, the value of the compare register (CM2n: n = 0, 1) cannot be rewritten by interrupt processing that is performed on match between timer register (TM2) and compare register (CM2n). Use another method (for example, to poll the interrupt request flags by software with all the interrupts masked).
- (6) The output level of the TO2n (n = 0, 1) when the timer output is disabled (ENTO2n = 0: n = 0, 1) is the reverse value of the value set to the ALV2n (n = 0, 1) bit. Therefore, an inactive level is output when the timer output is disabled with the PWM output function or PPG output function selected.
 If timer/counter 2 is stopped and then started again while the active level is output, the PWM output continuously output the active level until the next overflow occurs (in the case of the PPG output, until the next match and clearing). To return the level to inactive, once disable the timer output (ENTO2n = 0: n = 0, 1).
- (7) If the timer output is enabled and the active level is changed at the same time, the output level of the pin may change momentarily. To prevent this, change the active level and then enable the timer output.
- (8) To change the active level specification(ALV2n bit (n = 0, 1) of the timer output control register 2 (TOC2)), change the active level specification after the timer output of the corresponding timer output pins has been disabled.
- (9) If 0000H is set to a compare register (CM20, CM21), the comparison operation is performed after counting has been completed. Therefore, the interrupt due to a match (INTCM20, INTCM21) does not occur immediately after counting has been started. If CM2n (n = 0, 1) is set to 0000H, the timer counts up to FFFFH, overflows, and then the interrupt due to a match INTCM2n (n = 0, 1) occurs.

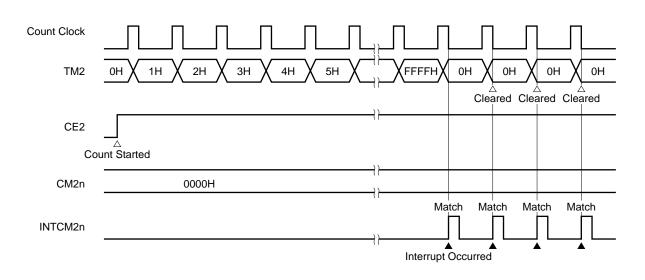


Figure 10-43. Operation When Compare Register (CM20, CM21) Is Set to 0000H

Remark Cautions (1) through (9) above also applies to timer/counter 3.

Remark n = 0, 1

11.1 Function

Timer 4 is a 16-bit timer.

In addition to its function as an interval timer, this timer can be used to generate the output trigger of the real-time output port.

When used as an interval timer, timer 4 generates an internal interrupt at a predetermined interval.

Minimum Interval Time	Maximum Interval Time	Resolution
4/fclк (0.25 µs)	2 ¹⁶ × 4/fськ (16.4 ms)	4/fclк (0.25 <i>μ</i> s)
8/fclк (0.5 <i>μ</i> s)	$2^{16} \times 8/f_{CLK}$ (32.8 ms)	8/fclk (0.5 µs)
16/fcικ (1.0 μs)	2 ¹⁶ × 16/fclк (65.5 ms)	16/fc∟к (1.0 <i>μ</i> s)
32/fclκ (2.0 μs)	2 ¹⁶ × 32/fclк (131 ms)	32/fclк (2.0 <i>μ</i> s)
64/fcικ (4.0 μs)	$2^{16} \times 64$ /fclk (262 ms)	64/fclk (4.0 µs)

Table 11-1. Interval Time of Timer 4

(): at fclк = 16 MHz

11.2 Configuration

Timer 4 consists of the following registers:

- Timer register (TM4) × 1
- Compare register (CM4n) \times 2 (n = 0, 1)

Figure 11-1 shows the block diagram of timer 4.

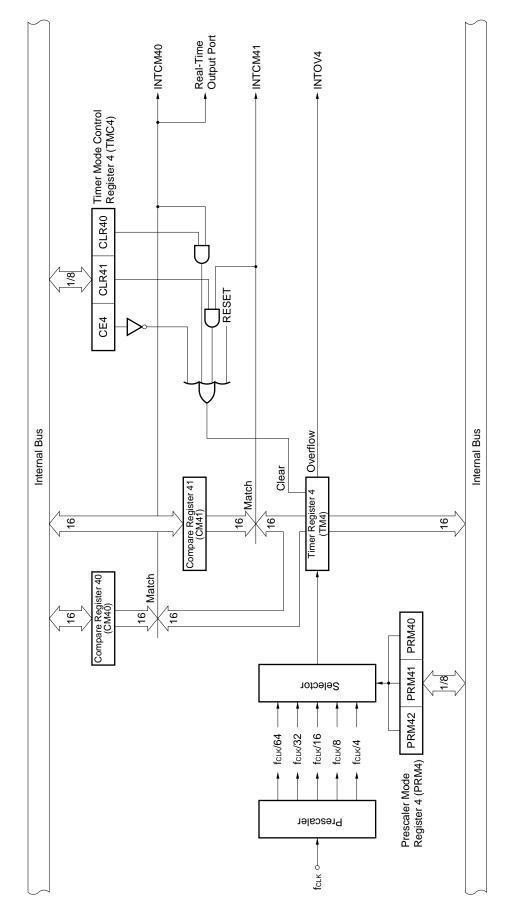


Figure 11-1. Block Diagram of Timer 4

(1) Timer register 4 (TM4)

TM4 is a timer register that counts up the count clock specified by the prescaler mode register 4 (PRM4). Counting of this timer register is enabled or disabled by the timer mode control register 4 (TMC4). The timer register can be only read by using a 16-bit manipulation instruction. When RESET is input, TM4 is cleared to 0000H and stops counting.

(2) Compare registers (CM40, CM41)

CM4n (n = 0, 1) is a 16-bit register that holds the contents determining the cycle of the interval timer operation. When the contents of CM4n matches with the contents of TM4, an interrupt request (INTCM4n: n = 0, 1) is generated. INTCM40 also serves as the trigger signal of the real-time output port. The count value of TM4 can be cleared when its value matches with the contents of CM4n.

These compare registers can be read or written by using 16-bit manipulation instructions. When **RESET** is input, their contents are undefined.

(3) Prescaler

The prescaler generates a count clock by dividing the internal system clock. The clock generated by the prescaler is selected by the selector, and TM4 performs the count operation by using this clock as a count clock.

(4) Selector

The selector selects one of the five signals generated by dividing the internal system clock as the count clock of TM4.

11.3 Timer 4 Control Register

(1) Timer mode control register 4 (TMC4)

TMC 4 is a register that controls the count and clear operations of timer register 4 (TM4).

This register can be read or written by using an 8-bit manipulation instruction or a bit manipulation instruction. Figure 11-2 shows the format of TMC4.

When $\overline{\text{RESET}}$ is input, the value of this register is cleared to 00H.

Figure 11-2. Format of Timer Mode Control Register 4 (TMC4)

Address	: 0FF37	Н	On rese	t: 00H	R	/W		
	7	6	5	4	3	2	1	0
TMC4	0	0	0	0	CE4	0	CLR41	CLR40

CE4	Controls Count Operation of TM4
0	Clears and stops counting
1	Enables counting operation

CLR41	Clear Operation of TM4 by Match with CM41
0	Disables (free running mode)
1	Enables (interval timer mode)
	Clear Operation of TM4 by Match with CM40

CLR40	Clear Operation of TM4 by Match with CM40
0	Disables (free running mode)
1	Enables (interval timer mode)

(2) Prescaler mode register 4 (PRM4)

PRM4 is a register that specifies the count clock of timer register 4 (TM4). This register can be read or written by using an 8-bit manipulation instruction. Figure 11-3 shows the format of PRM4. When RESET is input, the value of this register is cleared to 00H.

Address: 0FF3AH		On rese	et: 00H	R	/W			
	7	6	5	4	3	2	1	0
PRM4	0	0	0	0	0	PRM42	PRM41	PRM40
							(fclк = 1	6 MHz)
		PRM42	PRM41	PRM40	Specifie	es Coun	t Clock	of TM4.
					Count C	lock [Hz]	Resolut	ion [µs]
		0	0	0	fс∟к/4		0.25	
		0	0	1	fс∟к/8		0.5	
		0	1	0	fclк/16		1.0	
		0	1	1	fclк/32		2.0	
		1	0	0	fс∟к/64		4.0	
		Other			Setting	prohibit	ed	

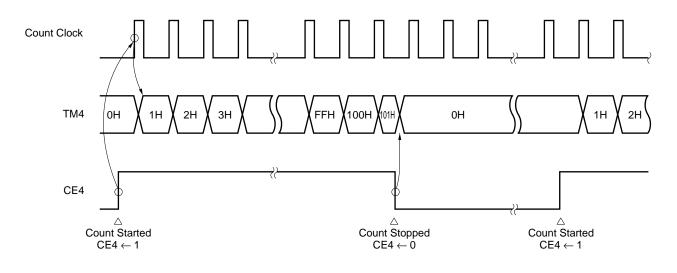
Figure 11-3. Format of Prescaler Mode Register 4 (PRM4)

Remark fclk: internal system clock

11.4 Operation of Timer Register 4 (TM4)

11.4.1 Basic operation

Timer 4 counts up by using the count clock specified by the prescaler mode register 4 (PRM4).


Counting is enabled or disabled by the CE4 bit of the timer mode control register 4 (TMC4). When the CE4 bit is set (1) by software, TM4 is set to 0001H at the first count clock, and starts counting up. When the CE4 bit is cleared (0) by software, TM4 is immediately cleared to 0000H, and stops generation of the match signal.

If the CE4 bit is set (1) while it has been already set (1), TM4 is not cleared but continues counting.

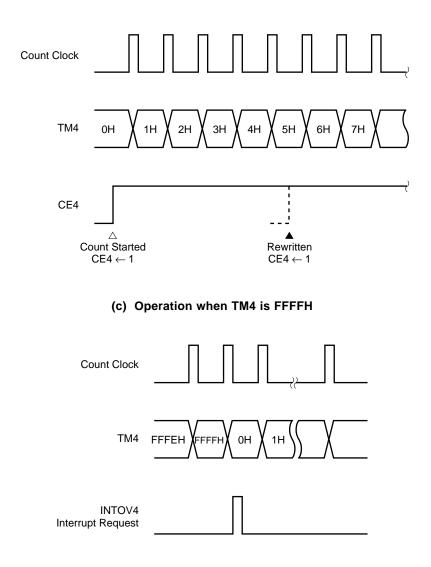
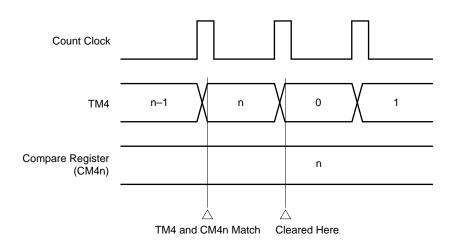

If a count clock is input when TM4 reaches FFFFH, TM4 is cleared to 0000H, and an overflow interrupt (INTOV4) occurs. When $\overrightarrow{\text{RESET}}$ is input, TM4 is cleared to 0000H and stops counting.

Figure 11-4. Basic Operation of Timer Register 4 (TM4)

(a) When counting starts, stops, and then starts again

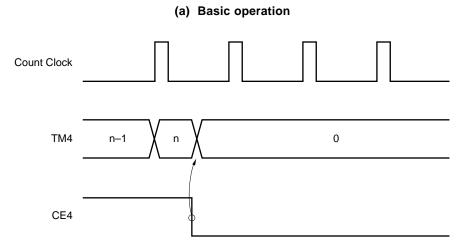

(b) If CE4 bit is set to "1" again after counting has been started



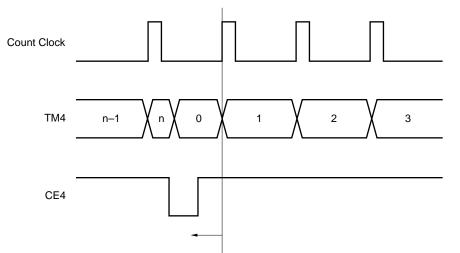
11.4.2 Clear operation

(1) Clear operation by match with compare register

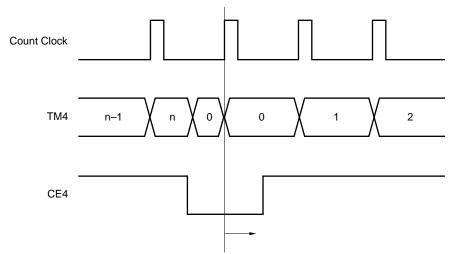
Timer register 4 (TM4) can be automatically cleared when its value matches with the value of a compare register (CM4n: n = 0, 1). When a clearance source arises, TM3 is cleared to 0000H on the next count clock. Therefore, even if a clearance source arises, the value at the point at which the clearance source arose is retained until the next count clock arrives.



Remark n = 0, 1


(2) Clear operation by CE4 bit of timer mode control register 4 (TMC4)

Timer register 4 (TM4) is also cleared when the CE4 bit of TMC4 is cleared (0) by software. The clear operation is performed following clearance (0) of the CE4 bit in the same way.



(b) Restart before count clock is input after clearance

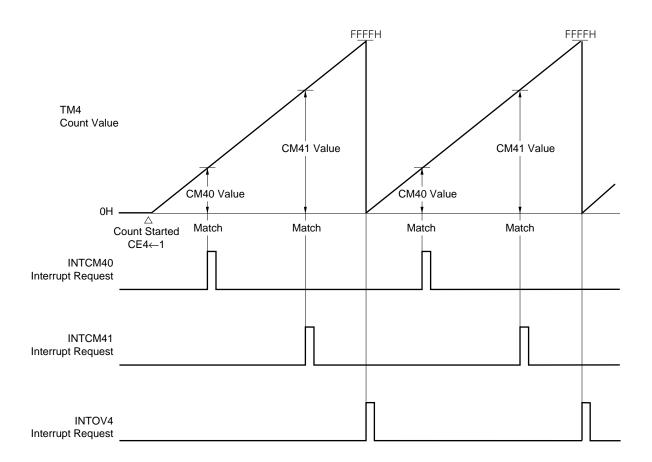
If the CE4 bit is set (1) before this count clock, the count starts from 1 on this count clock

(c) Restart when count clock is input after clearance

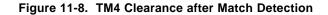
If the CE4 bit is set (1) from this count clock onward, the count starts from 1 on the count clock after the CE4 bit is set (1).

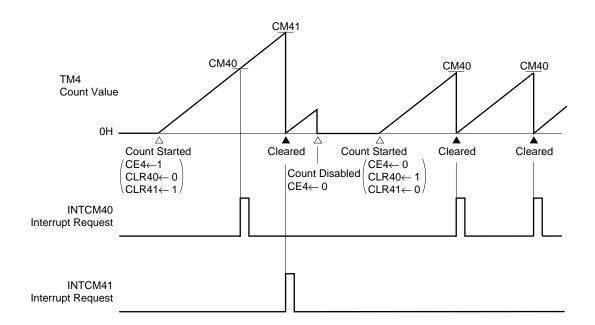
11.5 Operation of Compare Register

Timer 4 performs a compare operation by comparing the value set to a compare register (CM40, CM41) with the count value of a timer register 4 (TM4).

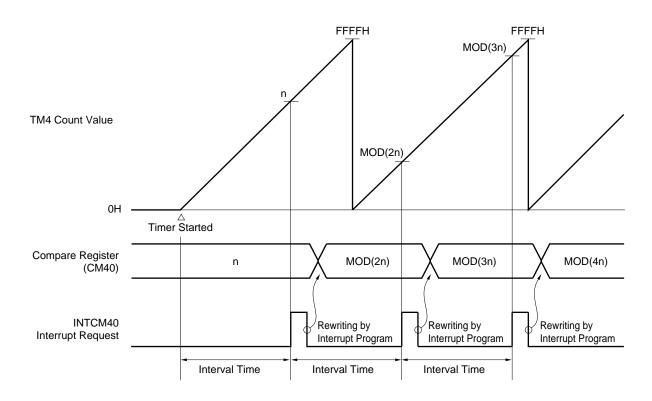

If the count value of TM4 matches with the value set in advance to CM4n (n = 0, 1) as a result of counting by TM4, an interrupt request (INTCM4n: n = 0, 1) is generated.

Moreover, the contents of TM4 can be cleared after it has matched with the value of CM4n, so that TM4 can operate as an interval timer that repeatedly counts the value set to CM4n.


Table 11-2. Interrupt Request Signal from Compare Register (timer 4)


Comp	are Register	Interrupt Request Signal		
CM40		INTCM40		
CM41		INTCM41		

Remark CLR40 = 0, CLR41 = 0

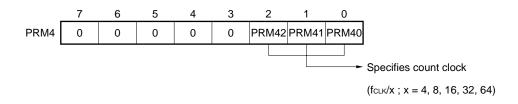

11.6 Example of Use

11.6.1 Operation as interval timer (1)

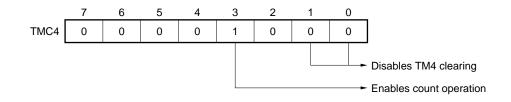
By setting the timer register 4 (TM4) in the free running mode and adding a specific value to a compare register (CM4n: n = 0, 1) in an interrupt processing routine, TM4 can be used as an interval timer whose cycle is determined by the specific value to be added (refer to **Figure 11-9**).

Figure 11-10 shows the set contents of the control registers, Figure 11-11 shows how to set the control registers, and Figure 11-12 shows the processing in the interrupt routine, where compare register CM40 is used.

Figure 11-9. Timing of Interval Timer Operation (1)


Remark Interval time = n × x/fclk

 $y \le n \le FFFFH$ x = 4, 8, 16, 32, 64


y is limited by the data transfer processing time. Consider the processing time of the interrupt used or the macro service processing time (refer to Table 16-11 Interrupt Acceptance Processing Time and Table 16-12 Macro Service Processing Time).

(b) Timer mode control register 4 (TMC4)

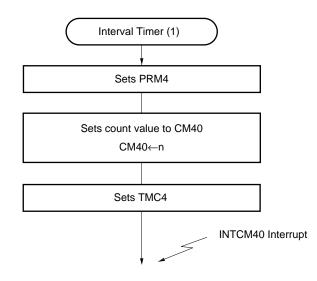
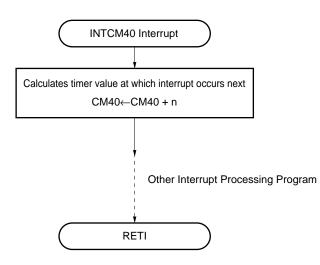
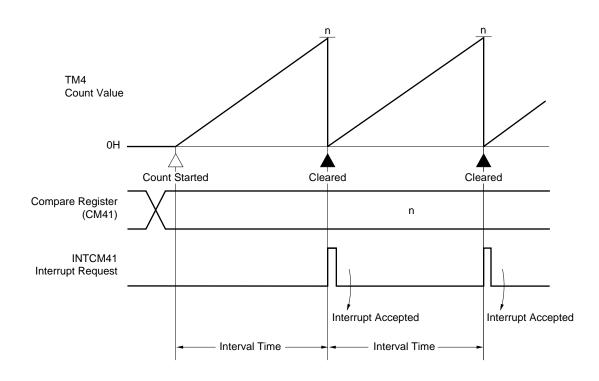



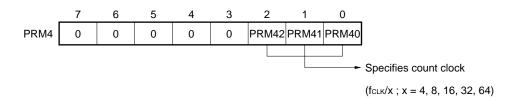
Figure 11-11. Setting Procedure of Interval Timer Operation (1)


Figure 11-12. Interrupt Request Processing of Interval Timer Operation (1)

11.6.2 Operation as interval timer (2)

TM4 can be used as an interval timer that repeatedly generates an interrupt at interval determined by the count value set in advance (refer to **Figure 11-13**).

Figure 11-4 shows the set contents of the control registers, and Figure 11-15 shows how to set the control registers, where compare register CM41 is used.



Remark Interval time = $(n+1) \times x/f_{CLK}$ $0 \le n \le FFFFH$ x = 4, 8, 16, 32, 64

Figure 11-14. Set Contents of Control Register for Interval Timer Operation (2)

(a) Prescaler mode register 4 (PRM4)

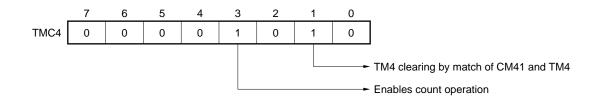
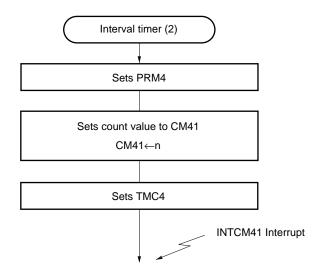
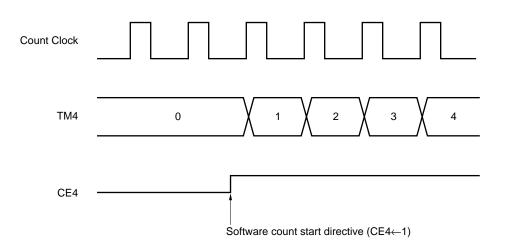



Figure 11-15. Setting Procedure of Interval Timer Operation (2)



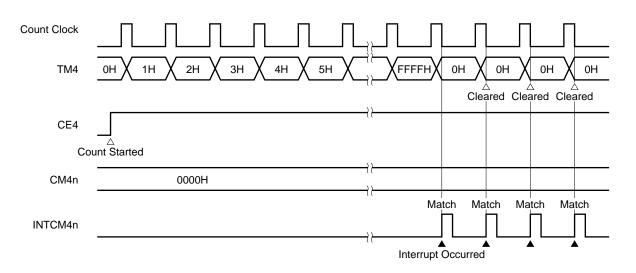
11.7 Cautions

The prescaler uses one time base commonly with all the timers (timers 0 and 1, timers/counters 2 and 3, and timer
 If one of the timers sets the CE bit to "1", the time base starts counting. If another timer sets the CE bit to "1" while one timer operates, the first count clock of the timer may be shortened because the time base has already started counting.

For example, if a timer/counter is used as an interval timer, the first interval will be shortened by up to one count clock. The second and subsequent intervals will be as specified.

Figure 11-16. Operation When Count Starts

(2) There is a possibility of misoperation if the next register contents are rewritten while the timer 4 is running (when the CE4 bit of the timer mode control register 4 (TMC4) is set). The misoperation occurs as there is no defined order of priority in the event of contention between the timings at which the hardware function changes due to a register rewrite and the status changes in the function prior to the rewrite.


When the contents of following registers are rewritten, counter operations must be stopped first to ensure stability.

- CLR40 and CLR41 bits of timer mode control register 4 (TMC4)
- Prescaler mode register 4 (PRM4)
- (3) If the compare register (CM4n: n = 0, 1) and TM4 contents match when an instruction that stops timer register 4 (TM4) operation is executed, the TM4 count operation stops, but an interrupt request is generated.
 If you do not want an interrupt to be generated when TM4 operation is stopped, interrupts should be masked by means of interrupt the mask register before stopping the TM4.

Example

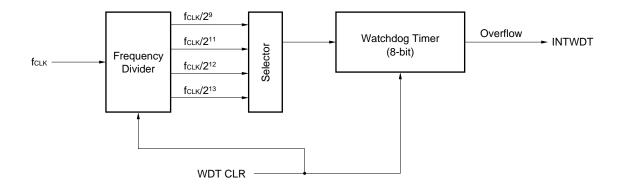
Program in which an interrupt request may be	Program in which an interrupt request is not generated		
generated	:		
: CLR1 CE4 OR MK1L, #03H ← Interrupt request gener- ated by timer 4 here	OR MK1L, #03H ← Disables interrupts from timer 4 CLR1 CE4 CLR1 CMIF40 ← Clears timer 4 interrupt request flag		
	CLR1 CMIF41		

- (4) Match between timer register 4 (TM4) and compare register (CM4n: n = 0, 1) is detected only when TM4 is incremented. Therefore, the interrupt request is not generated even if the same value as TM4 is written to CM4n.
- (5) If a compare register (CM40, CM41) is set to 0000H, the compare operation is performed after counting has been completed. Therefore, the interrupt due to a match (INTCM40, INTCM41) does not occur immediately after counting has been started. If CM4n (n = 0, 1) is set to 0000H, TM4 counts up to FFFFH, overflows, and then the interrupt due to a match INTCM4n (n = 0, 1) occurs.

Remark n = 0, 1

CHAPTER 12 WATCHDOG TIMER FUNCTION

The watchdog timer is a timer that detects inadvertent program loops.


Watchdog timer interrupts are used to detect system or program errors. For this purpose, instructions that clear the watchdog timer (start the count) within a given period are inserted at various places in a program.

If an instruction that clears the watchdog timer is not executed within the set time and the watchdog timer overflows, a watchdog timer interrupt (INTWDT) is generated and a program error is reported.

12.1 Configuration

The watchdog timer block diagram is shown in Figure 12-1.

12.2 Watchdog Timer Mode Register (WDM)

The WDM is an 8-bit register that controls the watchdog timer operation.

To prevent erroneous clearing of the watchdog timer by an inadvertent program loop, writing can only be performed by a dedicated instruction. This dedicated instruction, MOV WDM,#byte, has a special code configuration (4 bytes), and a write is not performed unless the 3rd and 4th bytes of the operation code are mutual complements.

If the 3rd and 4th bytes of the operation code are not complements, a write is not performed and an operand error interrupt is generated. In this case, the return address saved in the stack area is the address of the instruction that was the source of the error, and thus the address that was the source of the error can be identified from the return address saved in the stack area.

If recovery from an operand error is simply performed by means of an RETB instruction, an endless loop will result.

As an operand error interrupt is only generated in the event of an inadvertent program loop (with the NEC Electronics assembler, RA78K4, only the correct dedicated instruction is generated when MOV WDM, #byte is written), system initialization should be performed by the program.

Other write instructions (MOV WDM, A, AND WDM, #byte, SET1 WDM.7, etc.) are ignored and do not perform any operation. That is, a write is not performed to the WDM, and an interrupt such as an operand error interrupt is not generated.

After a system reset (RESET input), once the watchdog timer has been started (by setting (1) the RUN bit), the WDM contents cannot be changed. The watchdog timer can only be stopped by a reset, but can be cleared at any time with a dedicated instruction.

The WDM can be read at any time by a data transfer instruction.

RESET input clears the WDM to 00H.

The WDM format is shown in Figure 12-2.

Address: 0FFC2H		2H	On reset: 00H R/W		R/W				
	7	6	5	4	3	2	1	0	
WDM	RUN	0	0	PRC	0	WDI2	WDI1	0	
		RUN	Spe	cifies Op	peration	n of Wato	hdog Ti	mer	
		0	Stops v	vatchdo	g timer				
		1	Clears	watchdo	g timer	to start o	counting		
		PRC	Priority of Interrupt Request of Watchdog Timer						
		0	Interrupt request of watchdog timer						
			< interrupt request of NMI pin input						
		1	Interrup	ot reques	st of wa	tchdog ti	mer		
			> interrupt request of NMI pin input						
	WDI2			Cour	nt	Overflo	w Time	[ms]	
				Cloc	k fc	lk = 12.5 M	Hz fclk =	16.0 MHz	
		0	0	fськ/2 ⁹	1	0.5	8.2		
		0	1	fclк/2 ¹¹	4	1.9	32.8		

Figure 12-2. Format of Watchdog Timer Mode Register (WDM)

Remark fclk: internal system clock

Cautions 1. The watchdog timer mode register (WDM) can only be written to with a dedicated instruction (MOV WDM, #byte).

fclк/2¹²

fclк/2¹³

2. The same value should be written each time in writes to the WDM to set (1) the RUN bit. The contents written the first time cannot be changed even if a different value is written.

83.9

167.8

65.5

131.1

3. Once the RUN bit has been set (1), it cannot be reset (0) by software.

0

1

1

1

12.3 Operation

12.3.1 Count operation

The watchdog timer is cleared, and the count started, by setting (1) the RUN bit of the watchdog timer mode register (WDM). When overflow time specified by the WDI2 and WDI1 bits of WDM has elapsed after the RUN bit has been set (1), a non-maskable interrupt (INTWDT) is generated.

If the RUN bit is set (1) again before the overflow time elapses, the watchdog timer is cleared and the count operation is started again.

12.3.2 Interrupt priorities

The watchdog timer interrupt (INTWDT) is a non-maskable interrupt. Other non-maskable interrupts are interrupts from the NMI pin (NMI). The order of acknowledgment when an INTWDT interrupt and NMI interrupt are generated simultaneously can be specified by the setting of bit 4 of the watchdog timer mode register (WDM).

Even if INTWDT is generated while the NMI processing program is executed when NMI acknowledgement is specified to take precedence, INTWDT is not acknowledged until completion of execution of the NMI processing program.

12.4 Cautions

12.4.1 General cautions on use of watchdog timer

- (1) The watchdog timer is one means of detecting inadvertent program loops, but it cannot detect all inadvertent program loops. Therefore, in equipment that requires a high level of reliability, you should not rely on the on-chip watchdog timer alone, but should use external circuitry for early detection of inadvertent program loops, to enable processing to be performed that will restore the normal state or establish a stable state and then stop the operation.
- (2) The watchdog timer cannot detect inadvertent program loops in the following cases.
 - <1> If watchdog timer clearance is performed in the timer interrupt processing program
 - <2> If cases where an interrupt request or macro service is held pending (refer to 16.9) occur consecutively
 - <3> If the watchdog timer is cleared periodically when the program is looping inadvertently due to an error in the program logic (if each module of the program functions normally but the overall program does not)
 - <4> If the watchdog timer is periodically cleared by a group of instructions executed when an inadvertent program loop occurs
 - <5> If the STOP mode, HALT mode, or IDLE mode is entered as the result of an inadvertent program loop
 - <6> If an inadvertent program loop of watchdog timer also occurs in the event of CPU hang up due to external noise

In cases <1>, <2> and <3> the program can be amended to allow detection to be performed.

In case <4>, the watchdog timer can only be cleared by a 4-byte dedicated instruction. Similarly, in case <5>, the STOP mode, HALT mode, or IDLE mode cannot be set unless a 4-byte dedicated instruction is used. For state <2> to be entered as the result of an inadvertent program loop, 3 or more consecutive bytes of data must comprise a specific pattern (e.g. BT PSWL. bit, \$\$, etc.). Therefore, the establishment of state <2> as the result of <4>, <5> or an inadvertent program loop is likely to be extremely rare.

12.4.2 Cautions on μ PD784046 subseries watchdog timer

- (1) The watchdog timer mode register (WDM) can only be written to with a dedicated instruction (MOV WDM, #byte).
- (2) The same value should be written each time in writes to the watchdog timer mode register (WDM) to set (1) the RUN bit. The contents written the first time cannot be changed even if a different value is written.
- (3) Once the RUN bit has been set (1), it cannot be reset (0) by software.

CHAPTER 13 A/D CONVERTER

The μ PD784046 incorporates an analog/digital (A/D) converter with 16 multiplexed analog inputs (ANI0 to ANI15). The successive approximation conversion method is used, and the conversion result is held in the 10-bit A/D conversion result register (ADCR0-ADCR7). This allows fast, high-precision conversion to be performed (conversion time of 13 μ s when fcLk = 16 MHz and high-speed conversion is used).

There are two modes for starting A/D conversion, as follows:

- Hardware start : Conversion started by trigger input (INTP4).
- Software start : Conversion started in accordance with A/D converter mode register (ADM) bit setting.

After start-up, there are two operating modes, as follows:

- Scan mode : Multiple analog inputs are selected in order, and conversion data is obtained from all pins.
- Select mode : One pin is used as the analog input, and conversion values are obtained in succession.

Stoppage of all the above modes and conversion operations is specified by the ADM register.

In each mode, the conversion result is held in ADCRn (n = 0 to 7) each time A/D conversion has been completed. When A/D conversion has been completed, an A/D conversion end interrupt request (INTAD) is generated. This interrupt can start a macro service that automatically transfers data by hardware.

13.1 Configuration

Figure 13-1 shows the block diagram of the A/D converter.

The high-order 8 channels (ANI8 through ANI15) and low-order 8 channels (ANI0 through ANI7) of the A/D converter are selected by using the A/D converter mode register (ADM).

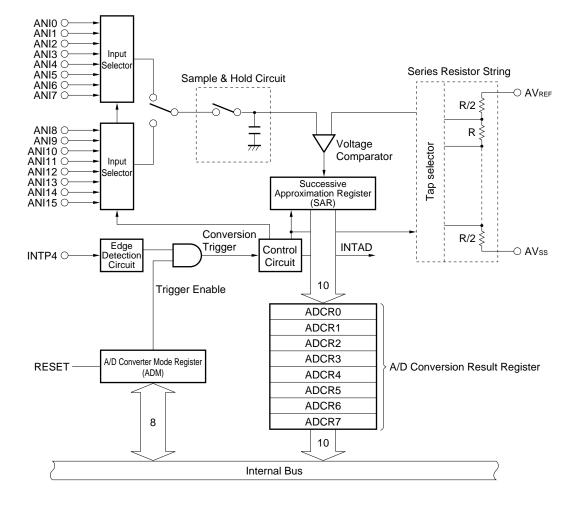
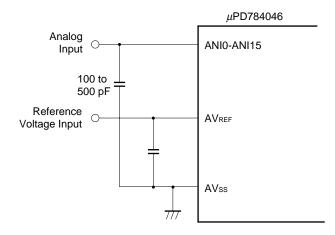



Figure 13-1. Block Diagram of A/D Converter

Cautions 1. A capacitor should be connected between the analog input pins (ANI0 to ANI15) and AVss and between the reference voltage input pin (AVREF) and AVss to prevent misoperation due to noise. Be sure to connect the capacitor as closely to ANI0 through ANI15 and AVREF as possible.

Figure 13-2. Example of Capacitor Connection on A/D Converter Pins

2. A voltage outside the range AVss to AVREF should not be applied to pins used as A/D converter input pins. Refer to 13.6 Cautions for details.

(1) Input circuit

The input circuit selects the analog input in accordance with the specification of the A/D converter mode register (ADM), and sends the analog input to the sample & hold circuit according to the operating mode,

(2) Sample & hold circuit

The sample & hold circuit samples the analog inputs arriving sequentially one by one and holds the analog input in the process of A/D conversion.

(3) Voltage comparator

The voltage comparator determines the voltage difference between the analog input and the series resistor string value tap.

(4) Series resistor string

The series resistor string is used to generate voltages that match the analog inputs.

The series resistor string is connected between the A/D converter reference voltage pin (AVREF) and the A/D converter GND pin (AVss). To provide 1024 equal voltage steps between the two pins, it is made up of 1023 equal resistors and two resistors with half that resistance value.

The series resistor string voltage tap is selected by a tap selector controlled by the successive approximation register (SAR).

(5) SAR: Successive Approximation Register

The SAR is an 10-bit register in which the data for which the series resistor string voltage tap value matches the analog input voltage value is set bit by bit starting from the most significant bit (MSB).

When data has been set up to the least significant bit (LSB) of the SAR (when A/D conversion is completed), the SAR contents (conversion result) are stored in the A/D conversion result register (ADCRn: n = 0.7).

(6) Edge detection circuit

The edge detection circuit detects a valid edge from the interrupt request input pin (INTP4) input, and generates an external interrupt request signal (INTP4) and A/D conversion operation external trigger.

The INTP4 pin input valid edge is specified by external interrupt mode register 1 (INTM1) (refer to **Figure 15-2**). External trigger enabling/disabling is set by means of the A/D converter mode register (ADM) (refer to **13.2 A/D Converter Mode Register (ADM)**).

13.2 A/D Converter Mode Register (ADM)

ADM is an 8-bit register that controls A/D converter operations.

The ADM register can be read or written to with an 8-bit manipulation instruction or bit manipulation instruction. Its format is shown in Figure 13-3.

Bits 0 through 2 (ANIS0 through ANIS2) select input analog signals to be converted. Bit 3 (PS) selects whether ANI0 through ANI7 (low-order 8 channels) or ANI8 through ANI15 (high-order 8 channels) are used as analog input pins. The low-order 8 channels and high-order 8 channels have identical functions.

Bit 5 (AM0) and bit 6 (AM1) control the operation mode of A/D conversion. If the AM0 and AM1 bits are cleared (0), all conversion operations under execution are stopped. At this time, ADCRn (n = 0 to 7) is not updated, nor is the INTAD interrupt request generated. Moreover, power supply to the voltage comparator is stopped to reduce the current consumption of the A/D converter.

Bit 7 (TRG) enables external synchronization of the A/D conversion operation. If the TRG bit is set (1) when the AMO or AM1 bits are set, the conversion operation is initialized each time the valid edge is input to the INTP4 pin as an external trigger. If the TRG bit is cleared (0), the conversion operation is performed regardless of the INTP4 pin input.

If data is written to ADM during conversion, the conversion operation is initialized and started from the beginning again. When RESET is input, the value of ADM is reset to 00H.

Caution When the STOP mode or IDLE mode is used, the consumption current should be reduced by clearing (0) the AM0 bit and AM1 bit before entering the STOP or IDLE mode. If the AM0 bit or AM1 bit remains set (1), the conversion operation will be stopped by entering the STOP or IDLE mode, but the power supply to the voltage comparator will not be stopped, and therefore the A/D converter consumption current will not be reduced.

Figure 13-3. Format of A/D Converter Mode Register (ADM)

Address: 0FF6EH		On res	set: 00H	R	2/W	e negn				
	7	6	5	4	3	2	1	0		
ADM	TRG	AM1	AMO	FR	PS		ANIS1			
/ DIII			ANIO		10	ANOZ	ANIOT	ANIOU		
		TRG		Contr	ols Exte	rnal Tric	ager			
		0	Disable	es exterr						
		1		s extern						
		AM1	AM0	Specifie	s A/D Co	onversion	Operatio	on Mode		
		0	0	Stops of	conversi	on				
		0	1	Scan m	node					
		1	0	Select	mode	1-b	ouffer mo	ode		
		1	1			4-b	ouffer mo	ode		
		FR		Selec	ts Conve	ersion T	ime			
		0	208 clo	ocks (fcLr	< > 12.5	MHz)				
		1	169 clo	ocks (fclr	< ≤ 12.5	MHz)				
			Selects Analog Input Pin							
		PS					Pin			
		0		nrough A		-				
		1	ANI8 th	nrough A	NI15 (p	ort 8)				
		ANIS2	ANIS1	ANIS0	Se	elects Ar	nalog Inp	out		
					In se	elect	In s	can		
					mod	le	mod	le		
		0	0	0	ANI0/A	NI8	ANI0/A	NI8		
		0	0	1	ANI1/A	NI9	ANI0/A	NI8,		
							ANI1/A	NI9		
		0	1	0	ANI2/A	NI10	ANI0/A	NI8-		
							ANI2/A	NI10		
		0	1	1	ANI3/A	NI11	ANI0/A	NI8-		
							ANI3/A	NI11		
		1	0	0	ANI4/A	NI12	ANI0/A	NI8-		
							ANI4/A	NI12		
		1	0	1 ANI5/ANI13 ANI0/ANI8-				NI8-		
							ANI5/A	NI13		
		1	1	0	ANI6/A	NI14	ANI0/A	NI8-		
							ANI6/A	NI14		
		1	1	1	ANI7/A	NI15	ANI0/A	NI8-		
		I			I		1			

Remark fclk: internal system clock

ANI7/ANI15

Internal system clock: fcLK (MHz)	16	14	12.5	10
FR bit	0	0	1	1
Conversion time (µs)	13	14.9	13.5	16.9

Table 13-1. Conversion Time Set by FR Bit

- Caution Once the A/D converter starts operating, conversion operations are performed repeatedly until the AM0 bit and AM1 bit of the A/D converter mode register (ADM) is cleared (0). Therefore, a superfluous interrupt may be generated if ADM setting is performed after interrupt-related registers, etc., when A/ D converter mode conversion, etc., is performed. The result of this superfluous interrupt is that the conversion result storage address appears to have been shifted when the scan mode is used. Also, when the select mode is used, the first conversion result appears to have been an abnormal value, such as the conversion result for the other channel. It is therefore recommended that A/D converter mode conversion be carried out using the following procedure.
 - <1> Write to the ADM
 - <2> Interrupt request flag (ADIF) clearance (0)
 - <3> Interrupt mask flag setting

Operations <1> to <3> should not be divided by an interrupt or macro service.

Alternatively, the following procedure is recommended.

- <1> Stop the A/D conversion operation by clearing (0) the AM0 bit and AM1 bit of the ADM.
- <2> Interrupt request flag (ADIF) clearance (0).
- <3> Interrupt mask flag setting
- <4> Write to the ADM

13.3 A/D Conversion Result Registers (ADCR0 through ADCR7)

The μ PD784046 has eight 10-bit A/D conversion result registers (ADCR0 through ADCR7) that store the results of A/D conversion.

Each ADCRn (n = 0 to 7) can be only read by using a 16-bit manipulation instruction or an 8-bit manipulation instruction. The conversion result can be read from ADCRn in the following two ways:

(1) Word access (by execution of 16-bit manipulation instruction)

ADCR1

ADCR2

ADCR3

ADCR4

ADCR5

ADCR6

ADCR7

Of the word data read, the low-order 10 bits are valid. The high-order 6 bits are always "0" when read. Figure 13-4 illustrates word access to ADCRn.

Symbol 10 15 12 R/W 14 13 11 9 8 7 6 5 4 3 2 0 1 ADCRn 0 0 0 0 0 0 AD9 AD8 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0 R (n = 0-7)Symbol Address On reset ADCR0 0FF70H Undefined

0FF72H

0FF74H

0FF76H

0FF78H

0FF7AH

0FF7CH

0FF7EH

Figure 13-4.	Word Access to	A/D Conversion	Result Register
--------------	----------------	----------------	------------------------

Remark AD0-AD9: A/D conversion result

(2) Byte access (by execution of 8-bit manipulation instruction)

Of the 10-bit data of the A/D conversion result, the high-order 8 bits are read. Figure 13-5 illustrates byte access to ADCRn

Symbol	7	6	5	4	3	2	1	0	R/W
ADCRnH	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	R
(n = 0-7)		-							-
	S	ymbol		Add	ress	(On res	et	
	ADCR0H		(0FF71H			Undefined		
	ADCR1H		(0FF73H					
	ADCR2H		(0FF75H					
	ADC	R3H	(DFF77	н				
	ADC	R4H	(OFF79	Н				
	ADCR5H		(0FF7BH					
	ADC	R6H	()FF7D	Н				
	ADC	R7H	()FF7F	Н				

Figure 13-5. Byte Access to A/D Conversion Result Register

Remark AD2 through AD9: A/D conversion result (high-order 8 bits of 10 bits)

13.4 Operation

13.4.1 Basic A/D converter operation

(1) A/D Conversion Operation procedure

A/D conversion is performed by means of the following procedure:

- (a) Analog pin selection and operating mode specification are set with the A/D converter mode register (ADM), and the A/D conversion is started.
- (b) When conversion starts, the MSB (bit 9) of the successive approximation register (SAR) is set (1) automatically.
- (c) When bit 9 of the SAR is set (1), the tap selector sets the series resistor string voltage tap to

1023 2048 AVREF (≒ 1/2 AVREF).

- (d) The voltage difference between the series resistor string voltage tap and the analog input is determined by the voltage comparator. If the analog input is greater than (1/2) AVREF, the MSB of the SAR remains set (1), and if it is less than (1/2) AVREF, the MSB is cleared (0).
- (e) Next, bit 8 of the SAR is set (1) automatically, and the next comparison is performed. Here, the series resistor string voltage tap is selected according to the value of bit 9 for which the result has already been set, as shown below.

• Bit 9 = 1
$$\frac{1535}{2048}$$
 AV_{REF} $= \frac{3}{4}$ AV_{REF}

• Bit 9 = 0
$$\frac{511}{2048}$$
 AVREF = $\frac{1}{4}$ AVREF

This voltage tap is compared with the analog input voltage, and bit 8 of the SAR is manipulated as follows according to the result:

- Analog input voltage ≥ voltage tap: Bit 8 = 1
- Analog input voltage < voltage tap: Bit 8 = 0
- (f) The same kind of comparison is continued up to the LSB (bit 0) of the SAR (binary search method).

(g) When comparison of the 10 bits is completed, a valid digital result is left in the SAR, and that value is transferred to the A/D conversion result register (ADCR0 through ADCR7) and latched.

An A/D conversion operation end interrupt request (INTAD) can be generated at the same time.

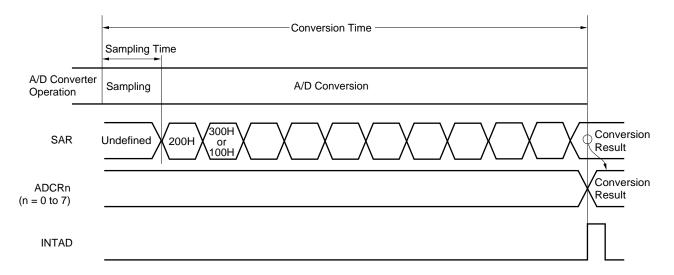


Figure 13-6. Basic Operation of A/D Converter

A/D conversion operations are performed successively until the AM0 bit and AM1 bit is cleared (0) by software. If a write operation is performed on the ADM during an A/D conversion operation, the conversion operation is initialized, and if the AM0 bit and AM1 bit is set (1), conversion will be started from the beginning. The contents of the ADCR n (n = 0 to 7) are undefined after $\overline{\text{RESET}}$ input.

(2) Input voltage and conversion result

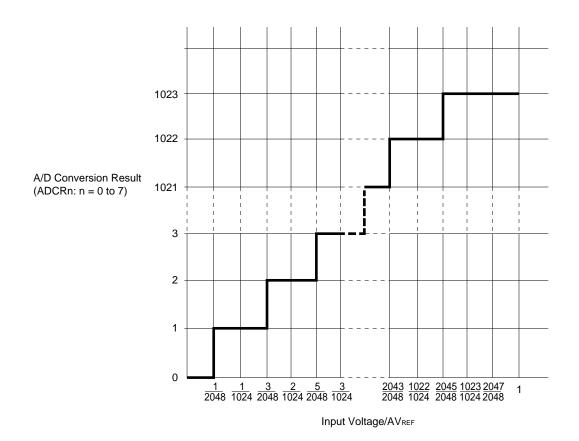
The relationship between the analog input voltage input to an analog input pin (ANI0 to ANI15) and the A/D conversion result (value stored in ADCRn) is shown by the following expression:

$$ADCRn = INT(\frac{V_{IN}}{AV_{REF}} \times 1024 + 0.5)$$

or

$$(ADCRn - 0.5) \times \frac{AV_{REF}}{1024} \le V_{IN} < (ADCRn + 0.5) \times \frac{AV_{REF}}{1024}$$

 Remark
 INT()
 : Function that returns the integer part of the value in ()


 VIN
 : Analog input voltage

 AVREF
 : AVREF pin voltage

 ADCRn
 : ADCR n (n = 0 to 7) value

Figure 13-7 shows the relationship between the analog input voltage and the A/D conversion result in graphic form.

Figure 13-7. Relationship Between Analog Input Voltage and A/D Conversion Result

(3) A/D conversion time

The A/D conversion time is determined by the system clock frequency (fcLk) and the FR bit of the A/D converter mode register (ADM).

The A/D conversion time includes the entire time required for one A/D conversion operation, and the sampling time is also included in the A/D conversion time.

These values are shown in Table 13-2.

System Clock (fclk) Range	FR Bit	Conversion Time
fclк > 12.5 MHz	0	208 clocks
fclк ≤ 12.5 MHz	1	169 clocks

Table 13-2. Time of A/D Conversion

(4) A/D converter operating modes

There are two A/D converter operating modes, scan mode and select mode. These modes are selected according to the setting of bit 5 (AM0) and bit 6 (AM1) of the A/D converter mode register (ADM). Operation in either mode continues until the ADM is rewritten.

13.4.2 Select mode

In the select mode, one analog input pin is selected by bits 0 through 2 (ANIS0 through ANIS2) of the A/D converter mode select register (ADM), and the specified analog input is converted. The result of the conversion is stored to the A/D conversion result register corresponding to the analog input.

In this mode, the following two modes can be selected depending on how the A/D conversion result is stored.

- 1-buffer mode
- 4-buffer mode

(1) 1-buffer mode

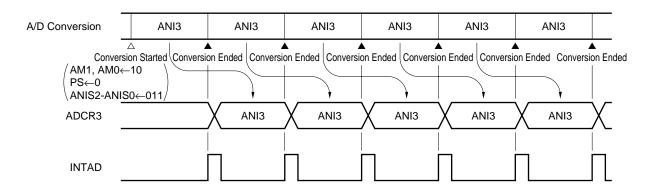
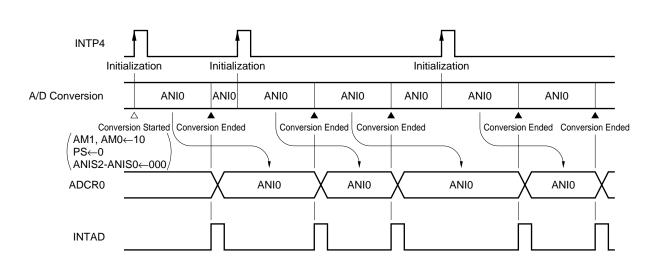

One analog input is converted once, and the result is stored to one A/D conversion result register. Therefore, the analog input and A/D conversion result register correspond on a one-to-one basis (refer to **Table 13-3**). Each time the conversion has been completed once, an A/D conversion end interrupt request (INTAD) occurs.

Table 13-3. Correspondence between Analog Input and A/D Conversion Result Register (select mode: 1-buffer mode)

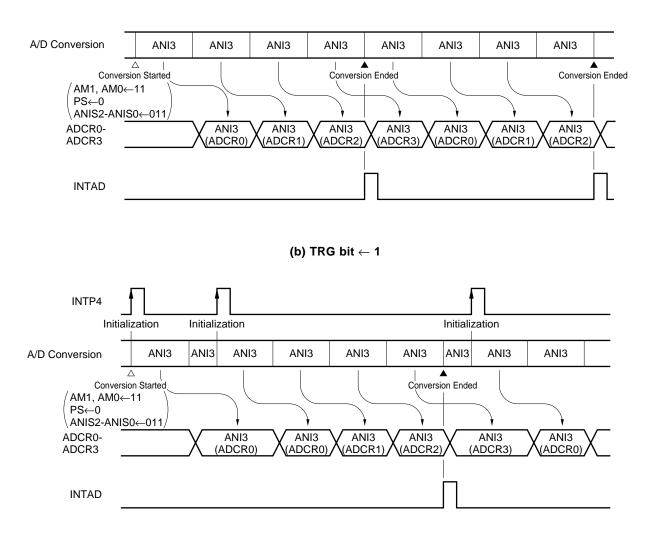

Analog Input	A/D Conversion Result Register
ANI0/ANI8	ACDR0
ANI1/ANI9	ADCR1
ANI2/ANI10	ACDR2
ANI3/ANI11	ADCR3
ANI4/ANI12	ACDR4
ANI5/ANI13	ADCR5
ANI6/ANI14	ACDR6
ANI7/ANI15	ADCR7

(a) TRG bit \leftarrow 0

Figure 13-8. Operation Timing in Select Mode (1-buffer mode) (2/2)

(b) TRG bit ← 1

(2) 4-buffer mode


One analog input is converted four times, and the result is stored to four A/D conversion result registers. When one of the analog inputs of ANI0 through ANI3 (ANI8 through ANI11) is selected, the conversion result is stored to A/ D conversion result registers ADCR0 through ADCR3. If one of the analog inputs of ANI4 through ANI7 (ANI12 through ANI15) is selected, the conversion result is stored to the A/D conversion result register ADCR4 through ADCR7 (refer to Table 13-4).

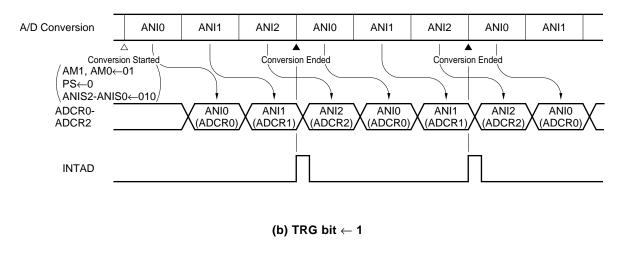
Each time A/D conversion has been completed four times, A/D conversion end interrupt request (INTAD) is generated.

Analog Input	A/D Conversion Result Register
ANI0/ANI8	ADCR0-ADCR3
ANI1/ANI9	
ANI2/ANI10	
ANI3/ANI11	
ANI4/ANI12	ADCR4-ADCR7
ANI5/ANI13	
ANI6/ANI14	
ANI7/ANI15	

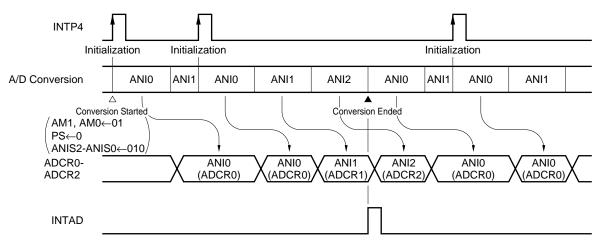
Table 13-4. Correspondence between Analog Input and A/D Conversion Result Register (select mode: 4-buffer mode)

Figure 13-9. Operation Timing in Select Mode (4-buffer mode)

(a) TRG bit \leftarrow 0


13.4.3 Scan mode

In this mode, analog input pins specified by the ANIS0 through ANIS2 bits of the A/D converter mode register (ADM) are sequentially selected, starting from ANI0 pin, and A/D conversion is executed. The result of the conversion is stored to the A/D conversion result register that corresponds to an analog input on a one-to-one basis (refer to **Table 13-5**). When all the analog inputs have been converted, the A/D conversion end interrupt request (INTAD) is generated.


Table 13-5. Correspondence between Analog Input and A/D Conversion Result Register (scan mode)

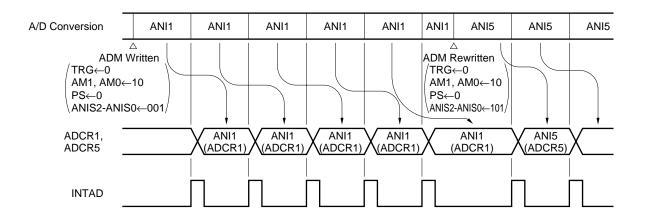
Analog Input	A/D Conversion Result Register
ANI0/ANI8	ADCR0
ANI1/ANI9	ADCR1
ANI2/ANI10	ADCR2
ANI3/ANI11	ADCR3
ANI4/ANI12	ADCR4
ANI5/ANI13	ADCR5
ANI6/ANI14	ADCR6
ANI7/ANI15	ADCR7

Figure 13-10. Operation Timing in Scan Mode

(a) TRG bit \leftarrow 0

13.4.4 A/D Conversion Operation Start by Software

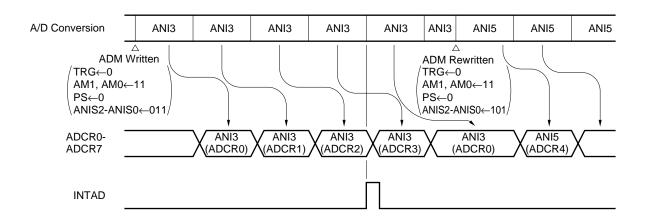
An A/D conversion operation start by software is performed by writing a value to the A/D converter mode register (ADM) that sets the TRG bit of the ADM register to 0 and the AM0 bit or AM1 bit to 1.


If a value is written to the ADM during an A/D conversion operation (AM0 bit or AM1 bit = 1) such that the TRG bit is set to 0 and the AM0 bit or AM1 bit to 1 again, the A/D conversion operation being performed at that time is suspended, and A/D conversion is started immediately in accordance with the written value.

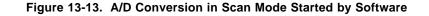
Once A/D conversion operation is started, as soon as one A/D conversion operation ends the next A/D conversion operation is started in accordance with the operating mode set by the ADM, and conversion operations continue repeatedly until an instruction that writes to the ADM is executed.

When A/D conversion operation is started by software (TRG bit = 0), INTP4 pin (P25 pin) input does not affect the A/ D conversion operation.

(1) A/D conversion in select mode (1-buffer mode)


A/D conversion of the analog input set by the A/D converter mode register (ADM) is started. When conversion has been completed, the same analog input is converted again. Each time A/D conversion has been completed, the A/D conversion end interrupt request (INTAD) is generated.

(2) A/D conversion in select mode (4- buffer mode)


The analog input set by the A/D converter mode register (ADM) is converted. One analog input is converted four times. When A/D conversion has been executed four times, the same analog input is converted four times again. Each time conversion has been executed four times, the A/D conversion end interrupt request (INTAD) is generated.

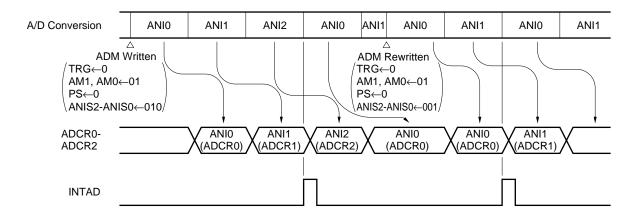


Figure 13-12. A/D Conversion in Select Mode (4-buffer mode) Started by Software

(3) A/D conversion in scan mode

When conversion is started, analog inputs selected by the ANIS0 through ANIS2 bits of the A/D converter mode register (ADM) are sequentially converted, starting from the ANI0 pin. When conversion of all the selected analog inputs has been completed, the same operation (conversion from the ANI0 pin to the specified analog input pin) is repeated again. When a series of A/D conversion from the ANI0 pin to the specified analog input has been completed, the A/D conversion from the ANI0 pin to the specified analog input pin) is repeated again. When a series of A/D conversion from the ANI0 pin to the specified analog input has been completed, the A/D conversion from the ANI0 pin to the specified analog input has been completed.

13.4.5 A/D Conversion Operation Start by Hardware

An A/D conversion operation start by hardware is made possible by setting both the TRG bit and the AM0 bit or AM1 bit of the A/D converter mode register (ADM) to 1. When the TRG bit and the AM0 bit or AM1 bit of the ADM are both set to 1, external signals are placed in the standby state, and an A/D conversion operation is started when a valid edge is input to the INTP4 pin (P25 pin).

If another valid edge is input to the INTP4 pin after the A/D conversion operation has been started by a valid edge input to the INTP4 pin, the A/D conversion operation being performed at that time is suspended, and A/D conversion is performed from the beginning in accordance with the contents set in the ADM.

If a value is written to the ADM during an A/D conversion operation (AM0 bit or AM1 = 1) such that the TRG bit and AM0 bit or AM1 bit are both set to 1 again, the A/D conversion operation being performed at that time is suspended (the standby state is also suspended), and a state is entered in which the A/D converter waits for input of a valid edge to the INTP4 pin in the A/D conversion operation mode in accordance with the written value, and a conversion operation is started when a valid edge is input.

Use of this function allows A/D conversion operations to be synchronized with external signals. Once A/D conversion operation is started, as soon as one A/D conversion operation ends the next A/D conversion operation is started in accordance with the operating mode set by the ADM (the A/D converter does not wait for INTP4 pin input), and conversion operations continue repeatedly until an instruction that writes to the ADM is executed, or a valid edge is input to the INTP4 pin.

(1) A/D conversion in select mode (1-buffer mode)

A/D conversion of the analog input set by the A/D converter mode register (ADM) is started. When conversion has been completed, the same analog input is converted again. Each time A/D conversion has been completed, the A/D conversion end interrupt request (INTAD) is generated.

If the valid edge is input to the INTP4 pin during A/D conversion, the A/D conversion under execution is stopped once, and then conversion is newly started.

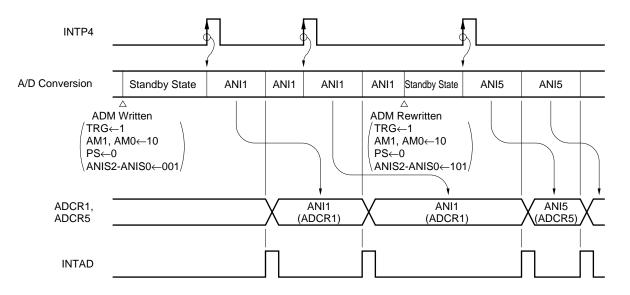


Figure 13-14. A/D Conversion in Select Mode (1-buffer mode) Started by Hardware

(2) A/D conversion in select mode (4-buffer mode)

The analog input set by the A/D converter mode register (ADM) is converted. One analog input is converted four times. When A/D conversion has been executed four times, the same analog input is converted four times again. Each time conversion has been executed four times, the A/D conversion end interrupt request (INTAD) is generated. If the valid edge is input to the INTP4 pin during A/D conversion, the A/D conversion under execution is stopped once, and then conversion is newly started.

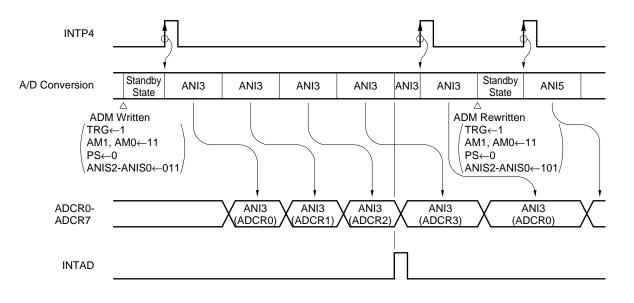
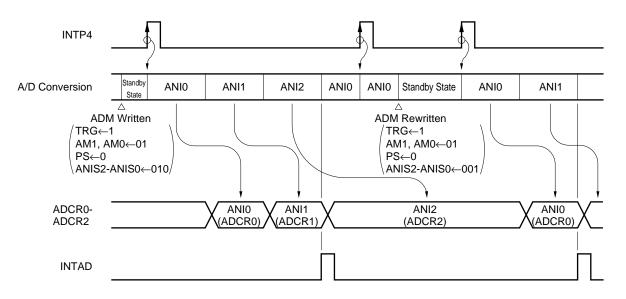



Figure 13-15. A/D Conversion in Select Mode (4-buffer mode) Started by Hardware

(3) A/D conversion in scan mode

When conversion is started, analog inputs selected by the ANIS0 through ANIS2 bits of the A/D converter mode register are sequentially converted, starting from the ANI0 pin. When conversion of all the selected analog inputs has been completed, the same operation (conversion from the ANI0 pin to the specified analog input pin) is repeated again. When a series of A/D conversion from the ANI0 pin to the specified analog input has been completed, the A/D conversion from the ANI0 pin to the specified analog input pin) is repeated again. When a series of A/D conversion from the ANI0 pin to the specified analog input has been completed, the A/D conversion end interrupt request (INTAD) is generated.

If the valid edge is input to the INTP4 pin during A/D conversion, the A/D conversion under execution is stopped once, and then conversion is newly started.

13.5 External Circuit of A/D Converter

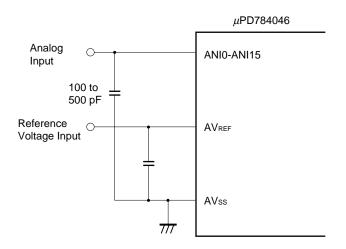
The A/D converter is provided with a sample & hold circuit to stabilize its conversion operation. This sample & hold circuit outputs sampling noise during sampling immediately after an A/D conversion channel has been changed.

To absorb this sampling noise, an external capacitor must be connected. If the impedance of the signal source is high, an error may occur in the conversion result due to the sampling noise. Especially when the scan mode is used, the impedance of the signal source must be kept low because the channel whose signal is to be converted changes one after another.

One way to absorb the sampling noise is to increase the capacitance of the capacitor. However, if the capacitance is increased too much, the sampling noise is accumulated. Therefore, the most effective way is to reduce the resistance component.

13.6 Cautions

(1) Range of voltages applied to analog input pins


The following must be noted concerning A/D converter analog input pins ANI0 to ANI15 (P70 to P77, P80 to P87).

 A voltage outside the range AVss to AVREF should not be applied to pins subject to A/D conversion during an A/ D conversion operation.

If this restriction is not observed, the μ PD784046 may be damaged.

(2) Connecting capacitor to analog input pins

A capacitor should be connected between the analog input pins (ANI0 to ANI15) and AVss and between the reference voltage input pin (AVREF) and AVss to prevent misoperation due to noise. Be sure to connect the capacitor as close to ANI0 through ANI15 and AVREF as possible.

Figure 13-17. Example of Capacitor Connection on A/D Converter Pins

- (3) When the STOP mode or IDLE mode is used, the consumption current should be reduced by clearing (0) the AMO bit and AM1 bit before entering the STOP or IDLE mode. If the AM0 bit and AM1 bit remains set (1), the conversion operation will be stopped by entering the STOP or IDLE mode, but the power supply to the voltage comparator will not be stopped, and therefore the A/D converter consumption current will not be reduced.
- (4) Once the A/D converter starts operating, conversion operations are performed repeatedly until the AM0 bit and AM1 bit of the A/D converter mode (ADM) is cleared (0). Therefore, a superfluous interrupt may be generated if ADM setting is performed after interrupt-related registers, etc., are set when A/D converter mode conversion, etc., is performed. The result of this superfluous interrupt is that the conversion result storage address appears to have been shifted when the scan mode is used. Also, when the select mode is used, the first conversion result appears to have been an abnormal value, such as the conversion result for the other channel. It is therefore recommended that A/D converter mode conversion be carried out using the following procedure.
 - <1> Write to the ADM
 - <2> Interrupt request flag (ADIF) clearance (0)
 - <3> Interrupt mask flag setting

Operations <1> to <3> should not be divided by an interrupt or macro service.

Alternatively, the following procedure is recommended.

- <1> Stop the A/D conversion operation by clearing (0) the AM0 bit and AM1 bit of the ADM.
- <2> Interrupt request flag (ADIF) clearance (0).
- <3> Interrupt mask flag setting
- <4> Write to the ADM

CHAPTER 14 ASYNCHRONOUS SERIAL INTERFACE/3-WIRE SERIAL I/O

The μ PD784046 incorporates two serial interface channels for which asynchronous serial interface (UART) mode or 3-wire serial I/O (IOE) mode can be selected.

The two UART/IOE channels have completely identical functions. In this chapter, therefore, unless stated otherwise, UART/IOE1 will be described as representative of both UART/IOEs. When used as UART2/IOE2, the UART/IOE1 register names, bit names and pin names should be read as their UART2/IOE2 equivalents as shown in Table 14-1.

Item	UART/IOE1	UART2/IOE2
Pin names	P32/RxD/SI1, P33/TxD/SO1, P34/ASCK/SCK1	P35/RxD2/SI2, P36/TxD2/SO2, P37/ASCK2/SCK2
Asynchronous serial interface mode register	ASIM	ASIM2
Asynchronous serial interface mode register bit names	TXE, RXE, PS1, PS0, CL, SL, ISRM, SCK	TXE2, RXE2, PS21, PS20, CL2, SL2, ISRM2, SCK2
Asynchronous serial interface status register	ASIS	ASIS2
Asynchronous serial interface status register bit names	PE, FE, OVE	PE2, FE2, OVE2
Clocked serial interface mode register	CSIM1	CSIM2
Clocked serial interface mode register bit names	CTXE1, CRXE1, DIR1, CSCK1	CTXE2, CRXE2, DIR2, CSCK2
Baud rate generator control register	BRGC	BRGC2
Baud rate generator control register bit names	TPS0-TPS3, MDL0-MDL3	TPS20-TPS23, MDL20-MDL23
Interrupt request names	INTSR/ITCSI1, INTSER, INTST	INTSR2/INTCSI2, INTSER2, INTST2
Interrupt control registers and bit names used in this chapter	SRIC, CSIIC1, SERIC, STIC, SRIF, CSIIF1, SERIF, STIF	SRIC2, CSIIC2, SERIC2, STIC2, SRIF2, CSIIF2, SERIF2, STIF2

Table 14-1. Differences Between UART/IOE1 and UART2/IOE2 Names

14.1 Switching between Asynchronous Serial Interface Mode and 3-wire Serial I/O Mode

The asynchronous serial interface mode and 3-wire serial I/O mode cannot be used simultaneously. Switching between these modes is performed in accordance with the settings of the asynchronous serial interface mode register (ASIM/ASIM2) and the clocked serial interface mode register (CSIM1/CSIM2) as shown in Figure 14-1.

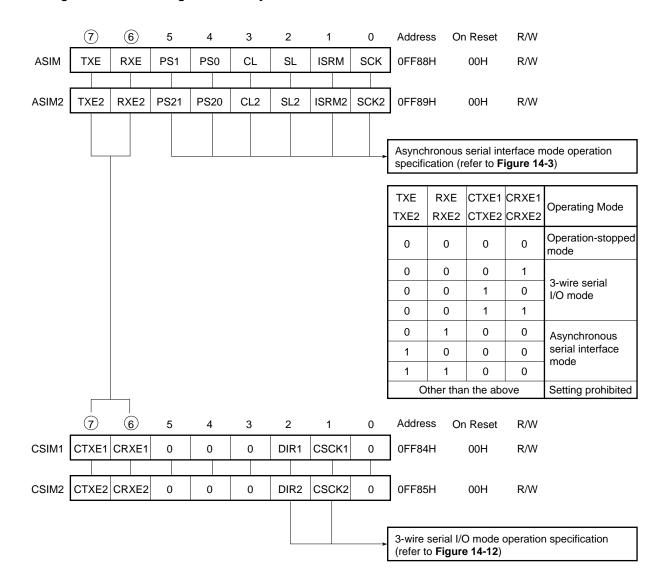
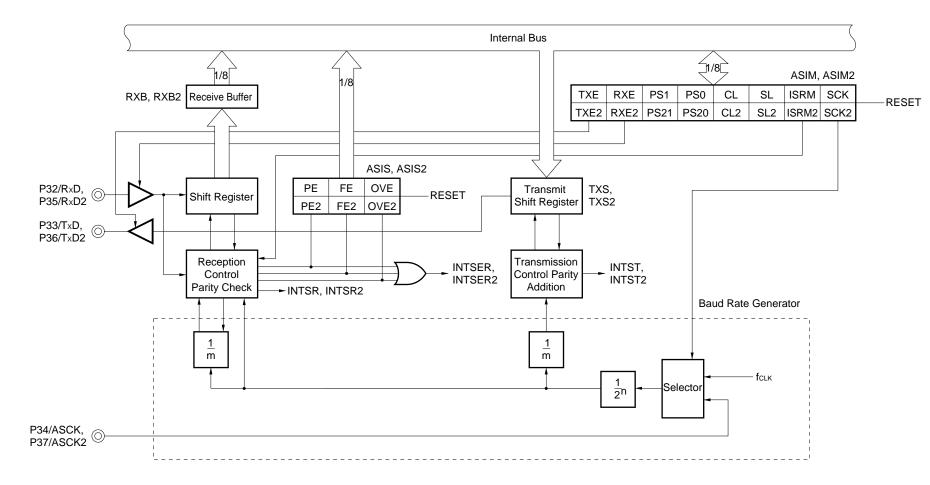


Figure 14-1. Switching Between Asynchronous Serial Interface Mode and 3-Wire Serial I/O Mode


14.2 Asynchronous Serial Interface Mode

A UART (Universal Asynchronous Receiver Transmitter) mode is incorporated as the asynchronous serial interface. With this method, one byte of data is transmitted following a start bit, and full-duplex operation is possible.

A baud rate generator is incorporated, enabling communication to be performed at any of a wide range of baud rates. Also, the baud rate can be defined by scaling the clock input to the ASCK pin.

14.2.1 Configuration in asynchronous serial interface mode

The block diagram of the asynchronous serial interface is described in Figure 14-2. Refer to **14.4 Baud Rate Generator** for details of the baud rate generator.

Figure 14-2. Block Diagram of Asynchronous Serial Interface

Remark m = 16 to 30, n = 0 to 11

(1) Receive buffer (RXB/RXB2)

This is the register that holds the receive data. Each time one byte of data is received, the receive data is transferred from the shift register.

If a 7-bit data length is specified, receive data is transferred to bits 0 to 6 of RXB/RXB2, and the MSB of RXB/RXB2 is always "0".

RXB/RXB2 can be read only by an 8-bit manipulation instruction. The contents of RXB/RXB2 are undefined after RESET input.

(2) Transmit shift register (TXS/TXS2)

This is the register in which the data to be transmitted is set. Data written to the TXS/TXS2 is transmitted as serial data.

If a 7-bit data length is specified, bits 0 to 6 of the data written in the TXS/TXS2 are treated as transmit data. A transmit operation starts when a write to the TXS/TXS2 is performed. The TXS/TXS2 cannot be written to during a transmit operation.

TXS/TXS2 can be written to only by an 8-bit manipulation instruction. The contents of TXS/TXS2 are undefined after RESET input.

(3) Shift register

This is the shift register that converts the serial data input to the RxD, and RxD2 pin to parallel data. When one byte of data is received, the receive data is transferred to the receive buffer.

The shift register cannot be manipulated directly by the CPU.

(4) Reception control parity check

Receive operations are controlled in accordance with the contents set in the asynchronous serial interface mode register (ASIM/ASIM2). In addition, parity error and other error checks are performed during receive operations, and if an error is detected, a value is set in the asynchronous serial interface status register (ASIS/ASIS2) according to the type of error.

(5) Transmission control parity addition

Transmission operation is controlled by appending a start bit, parity bit, and stop bit to the data written to the transmit shift registers (TXS and TXS2) in accordance with the contents set to the asynchronous serial interface mode registers (ASIM and ASIM2).

(6) Selector

Selects the baud rate clock source.

14.2.2 Asynchronous serial interface control registers

(1) Asynchronous serial interface mode register (ASIM), Asynchronous serial interface mode register 2 (ASIM2) The ASIM and ASIM2 are 8-bit registers that specify the UART mode operation. These registers can be read or written to by an 8-bit manipulation instruction or bit manipulation instruction. The format of ASIM and ASIM is shown in Figure 14-3. These registers are cleared to 00H by RESET input.

User's Manual U11515EJ3V0UD

Figure 14-3. Formats of Asynchronous Serial Interface Mode Register (ASIM) and Asynchronous Serial Interface Mode Register 2 (ASIM2)

Address	s: 0FF88	H, 0FF8	9H	On res	set: 00H	R	/W			
	\overline{O}	6	5	4	3	2	1	0		
ASIM	TXE	RXE	PS1	PS0	CL	SL	ISRM	SCK		
ASIM2	TXE2	RXE2	PS21	PS20	CL2	SL2	ISRM2	SCK2		
		TXE	RXE		Transmi	ssion/R	eception			
		TXE2	RXE2							
		0	0	Disable	s transr	nission/r	receptior	۱,		
				or sets	3-wire s	erial I/O	mode			
		0	1	1 Enables reception						
		1	0	0 Enables transmission						
		1	1	Enable	s transm	nission/r	eception			
		PS1	PS0	PS0 Specifies Parity Bit						
		PS21	PS20							
		0	0	No parity						
		0	1	Transmission: 0 parity appended						
				Reception: Parity error does not occur						
		1	0	Odd pa	rity					
		1	1	Even p	arity					
		CL	S	pecifies	Charact	er Leng	th of Dat	a		
		CL2								
		0	7 bits							
		1	8 bits							
		SL	Specif	ies Stop	Bit Len	gth (tran	smissio	n only)		
		SL2								
		0	1 bit							
		1	2 bits							
		ISRM	Enable	s or Dis	ables O	ccurrenc	e of Red	ception		
		ISRM2					tion Erro			
		0	Enable	s						
		1	Disables							
		SCK Specifies Input Clock To Baud Rate Generator								
		SCK SCK2								
		0	External clock input (ASCK, ASCK2)							
		1		l clock (f		,	,			
		Remai		: interr		em clo	ck			

Remark fclk: internal system clock

Note To disable the reception completion interrupt when a reception error occurs, make sure that wait time equivalent to two pulses of the clock that serves as the reference of the baud rate clock elapse after the reception error occurs until the receive buffers (RXB, RXB2) are read. If the wait time is not inserted, the reception completion interrupt occurs even when it is disabled.

The wait time equivalent to two pulses of the clock that serves as the reference of the baud rate clock can be calculated by the following expression:

Wait time = $\frac{2^{n+2}}{f_{CLK}}$

Remark fcLK: Internal system clock frequency

- n : Value of baud rate generator control registers (BRGC, BRGC2) to select tap of 12-bit prescaler (n = 0 to 11)
- Caution An asynchronous serial interface mode register (ASIM/ASIM2) rewrite should not be performed during a transmit operation. If an ASIM/ASIM2 register rewrite is performed during a transmit operation, subsequent transmit operations may not be possible (normal operation is restored by RESET input). Software can determine whether transmission is in progress by using a transmission completion interrupt (INTST/INTST2) or the interrupt request flag (STIF/STIF2) set by INTST/INTST2.
- (2) Asynchronous serial interface status register (ASIS), Asynchronous serial interface status register 2 (ASIS2)

The ASIS and ASIS2 contain flags that indicate the error contents when a receive error occurs. Flags are set (1) when a receive error occurs, and cleared (0) when data is read from the receive buffer (RXB/RXB2). If the next data is received before RXB/RXB2 is read, the overrun error flag (OVE/OVE2) is set (1), and the other error flags are cleared (0) (if there is an error in the next data, the corresponding error flag is set (1)).

These registers can be read only by an 8-bit manipulation instruction or bit manipulation instruction. The format of ASIS and ASIS2 is shown in Figure 14-4.

These registers are cleared to 00H by RESET input.

Figure 14-4. Formats of Asynchronous Serial Interface Status Register (ASIS) and Asynchronous Serial Interface Status Register 2 (ASIS2)

Address : 0FF8AH, 0FF8			BBH On reset : 00H R						
	7	6	5	4	3	2	1	0	
ASIS	0	0	0	0	0	PE	FE	OVE	
ASIS2	0	0	0	0	0	PE2	FE2	OVE2	
		PE			Parity E	rror Flag	I		
		PE2							
		0	Parity e	error doe	es not oc	cur			
		1	Parity e	error occ	urs				
		FE		F	raming I	Error Fla	g		
		FE2							
		0	Framin	g error c	loes not	occur			
		1	Framin	g error c	occurs				
		OVE	Overrun Error Flag						
		OVE2							
		0	Recept	ion over	run erro	r does n	ot occu	r	
		1	Recept	ion over	run erro	r occurs			

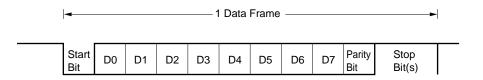
- Cautions 1. The receive buffer (RXB/RXB2) must be read even if there is a receive error. If RXB/RXB2 is not read, an overrun error will occur when the next data is received, and the receive error state will continue indefinitely.
 - 2. To disable the reception completion interrupt when a reception error occurs, make sure that wait time equivalent to two pulses of the clock that serves as the reference of the baud rate clock elapse after the reception error occurs until the receive buffers (RXB, RXB2) are read. If the wait time is not inserted, the reception completion interrupt occurs even when it is disabled.

The wait time equivalent to two pulses of the clock that serves as the reference of the baud rate clock can be calculated by the following expression:

Wait time =
$$\frac{2^{n+2}}{f_{CLK}}$$

Remark fcLK: Internal system clock frequency

n : Value of baud rate generator control registers (BRGC, BRGC2) to select tap of 12bit prescaler (n = 0 to 11)


14.2.3 Data format

Serial data transmission/reception is performed in full-duplex asynchronous mode.

The transmit/receive data format is shown in Figure 14-5. One data frame is made up of a start bit, character bits, parity bit, and stop bit(s).

Character bit length specification, parity selection and stop bit length specification for one data frame are performed by means of the asynchronous serial interface mode register (ASIM).

Figure 14-5. Data Format of Asynchronous Serial Interface Transmit/Receive

- Start bit 1 bit
- Character bits 7 bits/8 bits
- Parity bit Even parity/odd parity/0 parity/no parity
- Stop bit(s)..... 1 bit/2 bits

The serial transfer rate is selected in accordance with the asynchronous serial interface mode register and baud rate generator settings. If a serial data receive error occurs, the nature of the receive error can be determined by reading the asynchronous serial interface status register (ASIS) status.

14.2.4 Parity types and operations

The parity bit is used to detect a bit error in the communication data. Normally, the same kind of parity bit is used on the transmission side and the reception side. With even parity and odd parity, 1 bit (odd number) errors can be detected. With 0 parity and no parity, errors cannot be detected.

• Even parity

If the number of bits with a value of "1" in the transmit data is odd, the parity bit is set to "1", and if the number of "1" bits is even, the parity bit is set to "0". Control is thus performed to make the number of "1" bits in the transmit data plus the parity bit an even number. In reception, the number of "1" bits in the receive data plus the parity bit is counted, and if this number is odd, a parity error is generated.

Odd parity

Conversely to the case of even parity, control is performed to make the number of "1" bits in the transmit data plus the parity bit an odd number.

In reception, a parity error is generated if the number of "1" bits in the receive data plus the parity bit is even.

0 parity

In transmission, the parity bit is set to "0" irrespective of the receive data.

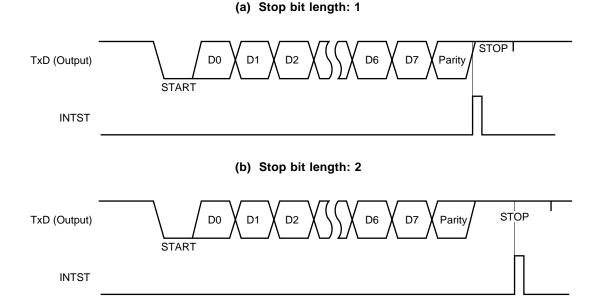
In reception, parity bit detection is not performed. Therefore, no parity error is generated irrespective of whether the parity bit is "0" or "1".

No parity

In transmission, a parity bit is not added.

In reception, reception is performed on the assumption that there is no parity bit. Since there is no parity bit, no parity error is generated.

14.2.5 Transmission


The μ PD784046's asynchronous serial interface is set to the transmission enabled state when the TXE bit of the asynchronous serial interface mode register (ASIM) is set (1). A transmit operation is started by writing transmit data to the transmit shift register (TXS) when transmission is enabled. The start bit, parity bit and stop bit(s) are added automatically.

When a transmit operation is started, the data in the TXS is shifted out, and a transmission completion interrupt (INTST) is generated when the TXS is empty.

If no more data is written to the TXS, the transmit operation is discontinued.

If the TXE bit is cleared (0) during a transmit operation, the transmit operation is discontinued immediately.

Figure 14-6. Interrupt Timing of Asynchronous Serial Interface Transmission Completion

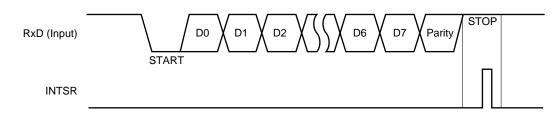
- Cautions 1. After RESET input the transmit shift register (TXS) is emptied but a transmission completion interrupt is not generated. A transmit operation can be started by writing transmit data to the TXS.
 - 2. An asynchronous serial interface mode register (ASIM) rewrite should not be performed during a transmit operation. If an ASIM rewrite is performed during a transmit operation, subsequent transmit operations may not be possible (normal operation is restored by RESET input). Software can determine whether transmission is in progress by using a transmission completion interrupt (INTST) or the interrupt request flag (STIF) set by INTST.

14.2.6 Reception

When the RXE bit of the asynchronous serial interface mode register (ASIM) is set (1), receive operations are enabled and sampling of the RxD input pin is performed.

RxD input pin sampling is performed using the serial clock (divide-by-m counter input clock) specified by ASIM and band rate generator control register (BRGC).

When the RxD pin input is driven low, the divide-by-m counter starts counting and a data sampling start timing signal is output on the m'th count. If the RxD pin input is low when sampled again by this start timing signal, the input is recognized as a start bit, the divide-by-m counter is initialized and the count is started, and data sampling is performed. When the character data, parity bit and stop bit are detected following the start bit, reception of one data frame ends.


When reception of one data frame ends, the receive data in the shift register is transferred to the receive buffer, RXB, and a reception completion interrupt (INTSR) is generated.

If an error occurs, the receive data in which the error occurred is still transferred to RXB. If bit 1 (ISRM) of the ASIM was cleared (0) when the error occurred, INTSR is generated.

If the ISRM was set (1), INTSR is not generated.

If the RXE bit is cleared (0) during a receive operation, the receive operation is stopped immediately. In this case the contents of RXB and ASIS are not changed, and no INTSR or INTSER interrupt is generated.

- Cautions 1. The receive buffer (RXB) must be read even if there is a receive error. If RXB is not read, an overrun error will occur when the next data is received, and the receive error state will continue indefinitely.
 - 2. To disable the reception completion interrupt when a reception error occurs, make sure that wait time equivalent to two pulses of the clock that serves as the reference of the baud rate clock elapse after the reception error occurs until the receive buffers (RXB, RXB2) are read. If the wait time is not inserted, the reception completion interrupt occurs even when it is disabled.

The wait time equivalent to two pulses of the clock that serves as the reference of the baud rate clock can be calculated by the following expression:

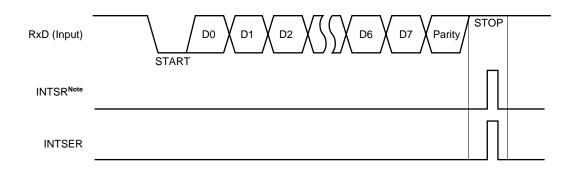
Wait time =
$$\frac{2^{n+2}}{f_{CLK}}$$

Remark fclk: Internal system clock frequency

n : Value of baud rate generator control registers (BRGC, BRGC2) to select tap of 12-bit prescaler (n = 0 to 11)

14.2.7 Receive errors

Three kinds of errors can occur in a receive operation: parity errors, framing errors and overrun errors. As the result of data reception, an error flag is raised in the asynchronous serial interface status register (ASIS) and a receive error interrupt (INTSER) is generated. Receive error causes are shown in Table 14-2.


It is possible to detect the occurrence of any of the above errors during reception by reading the contents of the ASIS (refer to **Figures 14-4** and **14-8**).

The contents of the ASIS register are cleared (0) by reading the receive buffer (RXB) or by reception of the next data (if there is an error in the next data, the corresponding error flag is set).

Table 14-2. Causes of Receive Error

Receive Error	Cause
Parity error	Transmit data parity specification and receive data parity do not match
Framing error	Stop bit not detected
Overrun error	Reception of next data completed before data is read from receive buffer

Figure 14-8. Timing of Receive Error

Note If a receive error occurs while the ISRM bit is set (1), INTSR is not generated.

Remark In the μPD784046, a break signal cannot be detected by hardware. As a break signal is a low-level signal of two characters or more, a break signal may be judged to have been input if software detects the occurrence of two consecutive framing errors in which the receive data was 00H. The chance occurrence of two consecutive framing errors can be distinguished from a break signal by having the RxD pin level read by software (confirmation is possible by setting "1" in bit 2 of the port 3 mode register (PM3) and reading port 3 (P3)) and confirming that it is "0".

- Cautions 1. The contents of the asynchronous serial interface status register (ASIS) are cleared (0) by reading the receive buffer (RXB) or by reception of the next data. If you want to find the details of an error, therefore, ASIS must be read before reading RXB.
 - 2. The RXB must be read even if there is a receive error. If RXB is not read, an overrun error will occur when the next data is received, and the receive error state will continue indefinitely.
 - 3. To disable the reception completion interrupt when a reception error occurs, make sure that wait time equivalent to two pulses of the clock that serves as the reference of the baud rate clock elapse after the reception error occurs until the receive buffers (RXB, RXB2) are read. If the wait time is not inserted, the reception completion interrupt occurs even when it is disabled. The wait time equivalent to two pulses of the clock that serves as the reference of the baud rate clock can be calculated by the following expression:

Wait time = $\frac{2^{n+2}}{f_{CLK}}$

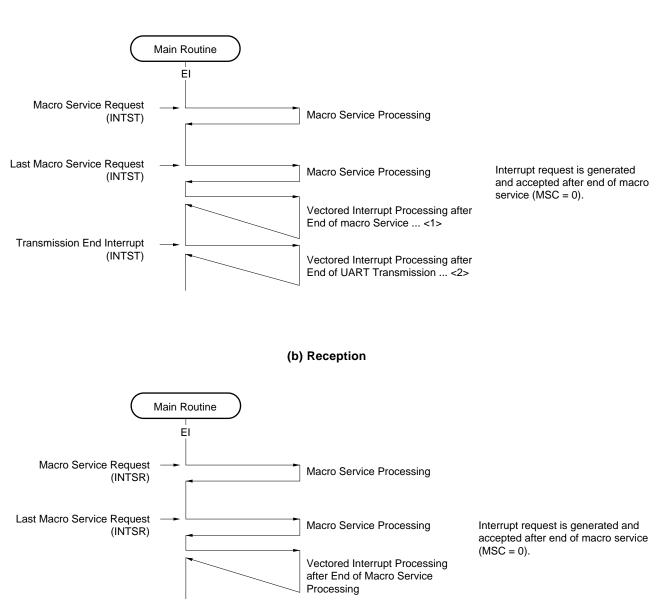
Remark fcLK: Internal system clock frequency

n : Value of baud rate generator control registers (BRGC, BRGC2) to select tap of 12-bit prescaler (n = 0 to 11)

14.2.8 Transmitting/receiving data with macro service

When data is transmitted using a macro service, a vectored interrupt occurs two times. On the other hand, the interrupt occurs only once when data is received using the macro service.

• Transmitting/receiving data by using macro service

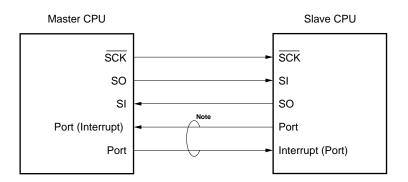

Transmission is started by writing data to the transmit shift register (TXS). If this is executed by using a macro service, data is written to TXS and transmitted the specified number of times. The transmission end interrupt (INTST) that occurs after completion of the transmission performs the macro service processing that writes the next data. When the last data has been written to TXS, the macro service is completed (MSC = 0), and a vectored interrupt request is generated (refer to <1> in Figure 14-9).

When data transmission is completed after that (when one frame has been transmitted), INTST is generated again, and the vectored interrupt request is generated again (<2> in Figure 14-9).

To start a macro service by INTST in this way, therefore, a vectored interrupt is generated two times by the same interrupt request (INTST in this case).

When reception is executed, however, a vectored interrupt request is not generated two times. Because macro service processing that transfers received data to memory is executed by the reception and interrupt (INTSR) that occurs after reception has been completed, a vectored interrupt request is generated only once after the macro service has been completed.

Figure 14-9. Transmission/Reception with Macro Service

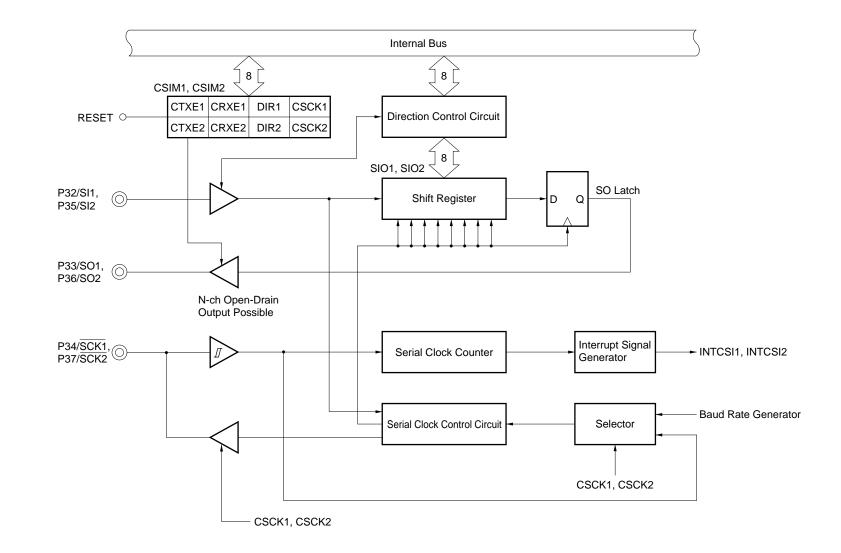


(a) Transmission

14.3 3-wire Serial I/O Mode

The 3-wire serial I/O mode is used to communicate with devices that incorporate a conventional clocked serial interface. Basically, communication is performed using three lines: the serial clock (SCK), serial data output (SO), and serial data input (SI). Handshaking lines are required when a number of devices are connected.

Figure 14-10. Example of 3-Wire Serial I/O System Configuration



3-wire serial I/O \leftrightarrow 3-wire serial I/O

Note Handshaking lines

14.3.1 Configuration in 3-Wire Serial I/O Mode

The block diagram in the 3-wire serial I/O mode is shown in Figure 14-11.

(1) Shift register (SIO1/SIO2)

The SIO1 and SIO2 converts 8-bit serial data to 8-bit parallel data, and vice versa. SIO1/SIO2 is used for both transmission and reception.

Actual transmit/receive operations are controlled by writing to/reading from SIO1/SIO2.

Reading/writing can be performed by 8-bit manipulation instruction.

The contents of SIO1/SIO2 are undefined after RESET input.

(2) SO latch

The SO latch holds the SO1/SO2 pin output level.

(3) Serial clock selector

Selects the serial clock to be used.

(4) Serial clock counter

Counts the serial clocks output or input in a transmit/receive operation, and checks that 8-bit data transmission/ reception has been performed.

(5) Interrupt signal generator

Generates an interrupt request when 8 serial clocks have been counted by the serial clock counter.

(6) Serial clock control circuit

Controls the supply of the serial clock to the shift register, and also controls the clock output to the $\overline{SCK1}/\overline{SCK2}$ pins when the internal clock is used.

(7) Direction control circuit

Switches between MSB-first and LSB-first modes.

14.3.2 Clocked serial interface mode registers (CSIM1, CSIM2)

The CSIM1 and CSIM2 are 8-bit registers that specify operations in the 3-wire serial I/O mode.

These registers can be read or written to by an 8-bit manipulation instruction or bit manipulation instruction. The CSIM1 and CSIM2 format is shown in Figure 14-12.

These registers are cleared to 00H by RESET input.

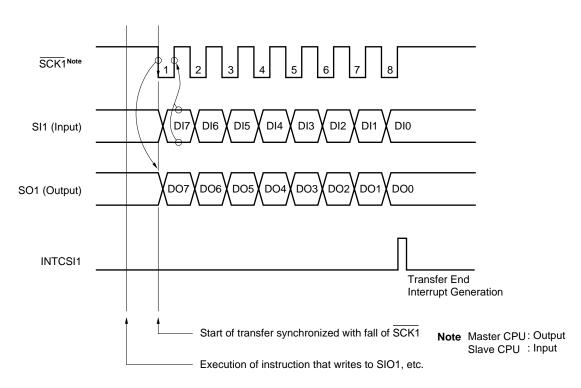
Figure 14-12. Formats of Clocked Serial Interface Mode Register 1 (CSIM1) and Clocked Serial Interface Mode Register 2 (CSIM2)

Address : 0FF84	35H	On reset: 00H			R/W		
\overline{O}	6	5	4	3	2	1	0
CSIM1 CTXE1	CRXE1	0	0	0	DIR1	CSCK1	0
CSIM2 CTXE2	CRXE2	0	0	0	DIR2	CSCK2	0
						(r	i = 1, 2)
	CTXEn	CRXEn	Т	ransmis	sion/Re	ception	
	0	0	Disable	es transn	nission/	receptio	١,
			or asyn	chronou	ıs serial	interfac	e mode
	0	1	Enable	s recept	ion		
	1	0	Enable	s transm	nission		
	1	1	Enable	s transm	nission/r	eceptior	
	DIRn	Specifie	es Opera	tion Mod	e (transfe	er bit seq	uence)
	0	MSB fir	st				
	1	LSB fire	st				
	CSCKn		Ser	ial Clock	Select	Bit	
			Source	e Clock		s	CKn
			(when CTXE				
		c					n = 1)
	0	Externa	al input c	clock to	SCKn pi	n Input	
	1	Baud ra	ate gene	rator ou	tput	СМО	S output

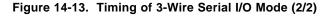
Caution Even if the DIRn (n = 1, 2) bit is changed after writing to the shift register (SIOn: n = 1, 2), data is output with the setting before change. Therefore, set the DIRn bit before writing to SIOn.

14.3.3 Basic operation timing

In the 3-wire serial I/O mode, data transmission/reception is performed in 8-bit units. Data is transmitted/received bit by bit in MSB-first or LSB-first order in synchronization with the serial clock.


MSB/LSB switching is specified by the DIR1 bit of the clock serial interface mode register (CSIM1).

Transmit data is output in synchronization with the fall of $\overline{SCK1}$, and receive data is sampled on the rise of $\overline{SCK1}$. An interrupt request (INTCSI1) is generated on the 8th rise of $\overline{SCK1}$.


When the internal clock is used as SCK1, SCK1 output is stopped on the 8th rise of SCK1 and SCK1 remains high until the next data transmit or receive operation is started.

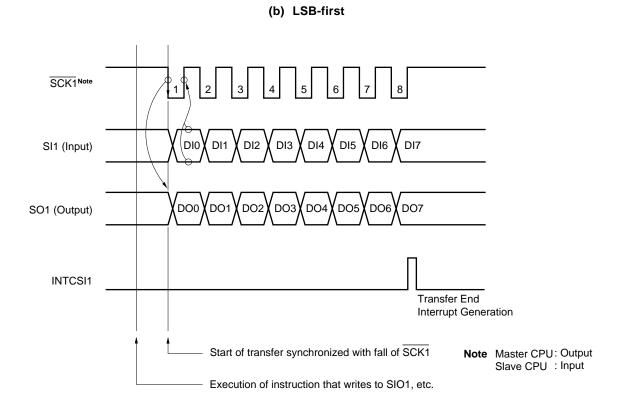
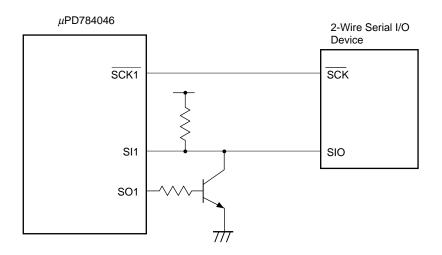

3-wire serial I/O mode timing is shown in Figure 14-13.

Figure 14-13. Timing of 3-Wire Serial I/O Mode (1/2)

(a) MSB-first



Remark If the μ PD784046 is connected to a 2-wire serial I/O device, a buffer should be connected to the SO1 pin as shown in Figure 14-14. In the example shown in Figure 14-14, the output level is inverted by the buffer, and therefore the inverse of the data to be output should be written to SIO1.

In addition, non-connection of the internal pull-up resistor should be specified for the P33/SO1 pin.

14.3.4 Operation when transmission only is enabled

A transmit operation is performed when the CTXE1 bit of clocked serial interface mode register (CSIM1) is set (1). The transmit operation starts when a write to the shift register (SIO1) is performed while the CTXE1 bit is set (1). When the CTXE1 bit is cleared (0), the SO1 pin is in the output high level.

(1) When the internal clock is selected as the serial clock

When transmission starts, the serial clock is output from the $\overline{SCK1}$ pin and data is output in sequence from SIO1 to the SO1 pin in synchronization with the fall of the serial clock, and SI1 pin signals are shifted into SIO1 in synchronization with the rise of the serial clock.

There is a delay of up to one $\overline{SCK1}$ clock cycle between the start of transmission and the first fall of $\overline{SCK1}$. If transmission is disabled during the transmit operation (by clearing (0) the CTXE1 bit), $\overline{SCK1}$ clock output is stopped and the transmit operation is discontinued on the next rise of $\overline{SCK1}$. In this case an interrupt request (INTCSI1) is not generated, and the SO1 pin becomes output high level.

(2) When an external clock is selected as the serial clock

When transmission starts, data is output in sequence from SIO1 to the SO1 pin in synchronization with the fall of the serial clock input to the $\overline{SCK1}$ pin after the start of transmission, and SI1 pin signals are shifted into SIO1 in synchronization with the rise of the $\overline{SCK1}$ pin input. If transmission has not started, shift operations are not performed and the SO1 pin output level does not change even if the serial clock is input to the $\overline{SCK1}$ pin.

If transmission is disabled during the transmit operation (by clearing (0) the CTXE1 bit), the transmit operation is discontinued and subsequent $\overline{SCK1}$ input is ignored. In this case an interrupt request (INTCSI1) is not generated, and the SO1 pin becomes output high level.

14.3.5 Operation when reception only is enabled

A receive operation is performed when the CRXE1 bit of the clocked serial interface mode register (CSIM1) is set (1). The receive operation starts when the CRXE1 changes from "0" to "1", or when a read from shift register (SIO1) is performed.

(1) When the internal clock is selected as the serial clock

When reception starts, the serial clock is output from the $\overline{SCK1}$ pin and the SI1 pin data is fetched in sequence into shift register (SIO1) in synchronization with the rise of the serial clock.

There is a delay of up to one $\overline{SCK1}$ clock cycle between the start of reception and the first fall of $\overline{SCK1}$.

If reception is disabled during the receive operation (by clearing (0) the CRXE1 bit), $\overline{SCK1}$ clock output is stopped and the receive operation is discontinued on the next rise of $\overline{SCK1}$. In this case an interrupt request (INTCSI1) is not generated, and the contents of the SIO1 are undefined.

(2) When an external clock is selected as the serial clock

When reception starts, the SI1 pin data is fetched into shift register (SIO1) in synchronization with the rise of the serial clock input to the $\overline{SCK1}$ pin after the start of reception. If reception has not started, shift operations are not performed even if the serial clock is input to the $\overline{SCK1}$ pin.

If reception is disabled during the receive operation (by clearing (0) the CRXE1 bit), the receive operation is discontinued and subsequent $\overline{SCK1}$ input is ignored. In this case an interrupt request (INTCSI1) is not generated.

14.3.6 Operation when transmission/reception is enabled

When the CTXE1 bit and CRXE1 bit of the clocked serial interface mode register (CSIM1) register are both set (1), a transmit operation and receive operation can be performed simultaneously (transmit/receive operation). The transmit/receive operation is started when the CRXE1 bit is changed from "0" to "1", or by performing a write to shift register (SIO1).

When a transmit/receive operation is started for the first time, the CRXE1 bit always changes from "0" to "1", and there is thus a possibility that the transmit/receive operation will start immediately, and undefined data will be output. The first transmit data should therefore be written to SIO1 beforehand when both transmission and reception are disabled (when the CTXE1 bit and CRXE1 bit are both cleared (0)), before enabling transmission/reception.

When transmission/reception is disabled (CTXE1 = CRXE1 = 0), the SO1 pin is in the output high level.

(1) When the internal clock is selected as the serial clock

When transmission/reception starts, the serial clock is output from the SCK1 pin, data is output in sequence from shift register (SIO1) to the (SO1) pin in synchronization with the fall of the serial clock, and SI1 pin data is shifted in order into SIO1 in synchronization with the rise of the serial clock.

There is a delay of up to one SCK1 clock cycle between the start of transmission and the first fall of SCK1.

If either transmission or reception is disabled during the transmit/receive operation, only the disabled operation is discontinued. If transmission only is disabled, the SO1 pin becomes output high level. If reception only is disabled, the contents of the SIO1 will be undefined.

If transmission and reception are disabled simultaneously, $\overline{SCK1}$ clock output is stopped and the transmit and receive operations are discontinued on the next rise of $\overline{SCK1}$. When transmission and reception are disabled simultaneously, the contents of SIO1 are undefined, an interrupt request (INTCSI1) is not generated, and the SO1 pin becomes output high level.

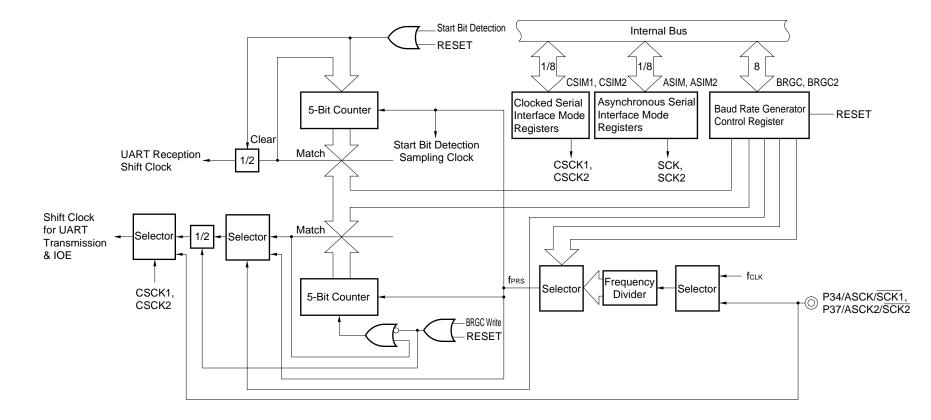
(2) When an external clock is selected as the serial clock

When transmission/reception starts, data is output in sequence from shift register (SIO1) to the SO1 pin in synchronization with the fall of the serial clock input to the $\overline{SCK1}$ pin after the start of transmission/reception, and SI1 pin data is shifted in order into SIO1 in synchronization with the rise of the serial clock. If transmission/reception has not started, the SIO1 shift operations are not performed and the SO1 pin output level does not change even if the serial clock is input to the $\overline{SCK1}$ pin.

If either transmission or reception is disabled during the transmit/receive operation, only the disabled operation is discontinued. If transmission only is disabled, the SO1 pin becomes output high level. If reception only is disabled, the contents of the SIO1 will be undefined.

If transmission and reception are disabled simultaneously, the transmit and receive operations are disconti-nued and subsequent SCK1 input is ignored. When transmission and reception are disabled simultaneously, the contents of SIO1 are undefined, an interrupt request (INTCSI1) is not generated, and the SO1 pin becomes output high level.

14.3.7 Corrective action in case of slippage of serial clock and shift operations


When an external clock is selected as the serial clock, there may be slippage between the number of serial clocks and shift operations due to noise, etc. In this case, since the serial clock counter is initialized by disabling both transmit operations and receive operations (by clearing (0) the CTXE1 bit and CRXE1 bit), synchronization of the shift operations and the serial clock can be restored by using the first serial clock input after reception or transmission is next enabled as the first clock.

14.4 Baud Rate Generator

The baud rate generator is the circuit that generates the UART/IOE serial clock. Two independent circuits are incorporated, one for each serial interface.

14.4.1 Baud rate generator configuration

The baud rate generator block diagram is shown in Figure 14-15.

Figure 14-15. Block Diagram of Baud Rate Generator

(1) 5-bit counter

Counter that counts the clock (fPRS) by which the output from the frequency divider is selected. Generates a signal with the frequency selected by the low-order 4 bits of the baud rate generator control registers (BRGC/BRGC2).

(2) Frequency divider

Scales the internal clock (fcLK) or, in asynchronous serial interface mode, a clock that is twice the external baud rate input (ASCK/ASCK2), and selects fPRs with the next-stage selector.

(3) Both-edge detection circuit

Detects both edges of the ASCK/ASCK2 pin input signal and generates a signal with a frequency twice that of the ASCK/ASCK2 input clock.

14.4.2 Baud Rate Generator Control Register

The BRGC and BRGC2 are 8-bit registers that set the baud rate clock in asynchronous serial interface mode or the shift clock in 3-wire serial I/O mode.

These registers can be read or written to with an 8-bit manipulation instruction. The BRGC and BRGC2 format is shown in Figure 14-16.

RESET input clears the BRGC register to 00H.

Caution When a baud rate generator control register (BRGC, BRGC2) write instruction is executed, the 5-bit counter and 1/2 frequency divider operations are reset. Consequently, if a write to the BRGC and BRGC2 is performed during communication, the generated baud rate clock may be disrupted, preventing normal communication from continuing. The BRGC and BRGC2 should therefore not be written to during communication.

Figure 14-16. Formats of Baud Rate Generator Control Register (BRGC) and Baud Rate Generator Control Register 2 (BRGC2)

	1H	On re	set: 00H		R	/W		
7	6	5	4	3	2	2	1	0
BRGC TPS3	TPS2	TPS1	TPS0	MDL3	MD	DL2	MDL1	MDL0
BRGC2 TPS23	TPS22	TPS21	TPS20	MDL23	MD	L22	MDL21	MDL20
	TPS3 TPS23	TPS2 TPS22	TPS1 TPS21	TPS0 TPS20	n		Selects Prescaler Output (fprs)	
	0	0	0	0	0		/2, fasck/	
	0	0	0	1	1	fc∟ĸ	/4, fasck/	/4
	0	0	1	0	2	fclk	/8, fasck/	/8
	0	0	1	1	3	fclk	/16, fasc	к/16
	0	1	0	0	4	f clk	/ 32 , fasc	к/32
	0	1	0	1	5	fclk	/64, fasc	к/64
	0	1	1	0	6	f clk	/ 128 , f as	ск/128
	0	1	1	1	7	f clk	/ 256 , fas	ск/256
	1	0	0	0	8	f clk	/ 512 , fas	ск/512
	1	0	0	1	9	fclk/	/1024, fas	зск/1024
	1	0	1	0	10	fclk/	2048, f as	scк/2048
	1	0	1	1	11	fclk/	/4096, fas	зск/4096
	Other		I		S	Settir	ng prohil	bited
	MDL3 MDL23	MDL2 MDL22	MDL1 MDL21	MDL0 MDL20	k	Inpu Rate	ut Clock o e Genera	of Baud ator ^{Note 2}
					k 0	Inpu Rate	e Genera	of Baud ator ^{Note 2}
	MDL23	MDL22	MDL21	MDL20		Rat	e Genera /16	of Baud ator ^{Note 2}
	MDL23 0	MDL22 0	MDL21 0	MDL20 0	0	Rate fprs	e Genera /16 /17	of Baud ator ^{Note 2}
	MDL23 0 0	MDL22 0 0	MDL21 0 0	MDL20 0 1	0 1	Rate fprss	e Genera /16 /17 /18	of Baud ator ^{Note 2}
	MDL23 0 0	MDL22 0 0	MDL21 0 0 1	MDL20 0 1 0	0 1 2	Rate fprss fprss fprss	e Genera /16 /17 /18 /19	of Baud ator ^{Note 2}
	MDL23 0 0 0	MDL22 0 0 0	MDL21 0 1 1	MDL20 0 1 0 1	0 1 2 3	Rati fprs fprs fprs fprs	e Genera /16 /17 /18 /19 /20	of Baud ator ^{Note 2}
	MDL23 0 0 0 0 0	MDL22 0 0 0 0 1	MDL21 0 1 1 0	MDL20 0 1 0 1 0	0 1 2 3 4	Rati fprs fprs fprs fprs fprs	e Genera /16 /17 /18 /19 /20 /21	of Baud ator ^{Note 2}
	MDL23 0 0 0 0 0 0	MDL22 0 0 0 0 1 1	MDL21 0 1 1 0 0	MDL20 0 1 0 1 0 1	0 1 2 3 4 5	Rate fprs fprs fprs fprs fprs fprs	e Genera /16 /17 /18 /19 /20 /21 /22	of Baud ator Note 2
	MDL23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MDL22 0 0 0 1 1 1	MDL21 0 1 1 0 0 0 1	MDL20 0 1 0 1 0 1 0	0 1 2 3 4 5 6	Rate fprs fprs fprs fprs fprs fprs fprs	e Genera /16 /17 /18 /20 /21 /22 /23	of Baud ator Note 2
	MDL23 0 0 0 0 0 0 0 0 0	MDL22 0 0 0 1 1 1 1 1	MDL21 0 1 1 0 0 0 1 1 1	MDL20 0 1 0 1 0 1 0 1 0	0 1 2 3 4 5 6 7 8	Rate fprs fprs fprs fprs fprs fprs fprs fprs	e Genera /16 /17 /18 /19 /20 /21 /22 /23 /24	of Baud ator ^{Note 2}
	MDL23 0 0 0 0 0 0 0 0 1	MDL22 0 0 1 1 1 1 1 0	MDL21 0 1 1 0 0 1 1 1 0	MDL20 0 1 0 1 0 1 0 1 0 0	0 1 2 3 4 5 6 7 8 9	Rati fprss fprss fprss fprss fprss fprss fprss	e Genera /16 /17 /18 /19 /20 /21 /22 /22 /23 /24 /25	of Baud ator Note 2
	MDL23 0 0 0 0 0 0 0 0 0 1 1	MDL22 0 0 0 1 1 1 1 1 0 0 0	MDL21 0 1 1 0 0 1 1 1 0 0 0	MDL20 0 1 0 1 0 1 0 1 0 1 0 1	0 1 2 3 4 5 6 7 7 8 9 9 10	Rati fprs fprs fprs fprs fprs fprs fprs fprs	e Genera /16 /17 /18 /19 /20 /21 /22 /23 /24 /25 /26	of Baud ator Note 2
	MDL23 0 0 0 0 0 0 0 0 1 1 1 1	MDL22 0 0 1 1 1 1 1 0 0 0 0	MDL21 0 1 1 0 0 1 1 0 0 0 1 1	MDL20 0 1 0 1 0 1 0 1 0 1 0 0	0 1 2 3 4 5 6 7 7 8 9 9 10 11	Rati fprs fprs fprs fprs fprs fprs fprs fprs	e Genera /16 /17 /18 /19 /20 /21 /22 /22 /23 /24 /25 /26 /27	of Baud ator Note 2
	MDL23 0 0 0 0 0 0 0 0 1 1 1 1 1	MDL22 0 0 0 1 1 1 1 1 0 0 0 0 0 0	MDL21 0 1 1 0 0 1 1 0 0 1 1 1 1 1	MDL20 0 1 0 1 0 1 0 1 0 1 0 1 0 1	0 1 2 3 4 5 6 7 8 9 10 11 12	Rati fprs fprs fprs fprs fprs fprs fprs fprs	e Genera /16 /17 /18 /19 /20 /21 /22 /22 /23 /24 /25 /26 /27 /28	of Baud ator Note 2
	MDL23 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1	MDL22 0 0 1 1 1 1 1 0 0 0 0 0 0 1	MDL21 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0	MDL20 0 1 0 1 0 1 0 1 0 1 0 1 0 0	0 1 2 3 4 5 6 7 8 9 9 10 11 12 13	Ratu fprss fprss fprss fprss fprss fprss fprss fprss fprss fprss fprss fprss	e Genera /16 /17 /18 /19 /20 /21 /22 /23 /24 /25 /25 /26 /27 /28 /29	of Baud ator Note 2

Notes 1. This cannot be selected when k = 15 is selected by MDL3 through MDL0 (MDL23 through MDL20).

- 2. Only fprs/16 can be selected when ASCK (ASCK2) input is used.
- 3. This can be used only in the 3-wire serial I/O mode.

Remark fASCK : ASCK (ASCK2) input clock

- fclk : internal system clock
- fprs : Selected clock of prescaler output

14.4.3 Baud Rate Generator Operation

The baud rate generator only operates when UART/IOE transmit/receive operations are enabled. The generated baud rate clock is a signal scaled from the internal clock (fcLK) or a signal scaled from the clock input from the external baud rate input (ASCK) pin.

Caution If a write to the baud rate generator control register (BRGC) is performed during communication, the generated baud rate clock may be disrupted, preventing normal communication from continuing. The BRGC should therefore not be written to during communication.

(1) Baud rate clock generation in UART mode

(a) Using internal clock (fclk)

This function is selected by setting (1) bit 0 (SCK) of the asynchronous serial interface mode register (ASIM). The internal clock (fcLK) is scaled by the frequency divider, this signal (fPRs) is scaled by the 5-bit counter, and the signal further divided by 2 is used as the baud rate. The baud rate is given by the following expression:

(Baud rate) =
$$\frac{f_{CLK}}{(k+16) \cdot 2^{n+2}}$$

fclk : Internal system clock frequency

- k : Value set in bit MDL3 to bit MDL0 of BRGC (k = 0 to 14)
- n : Value set in bit TPS3 to bit TPS0 of BRGC (n = 0 to 11)

(b) Using external baud rate input

This function is selected by clearing (0) bit 0 (SCK) of the asynchronous serial interface mode register (ASIM). When this function is used, bit MDL3 to bit MDL0 of the baud rate generator control register (BRGC) must all be cleared (0) (k=0).

Set P34 pin (when used with UART2, set P37 pin) in the control mode by using the port 3 mode control register (PMC3).

The ASCK pin input clock is scaled by the frequency divider, and the signal obtained by dividing this signal by 32 (fPRs) (division by 16 and division by 2) is used as the baud rate. The baud rate is given by the following expression:

(Baud rate) =
$$\frac{f_{ASCK}}{2^{n+6}}$$

fASCK: ASCK pin input clock frequency

n : Value set in bit TPS3 to bit TPS0 of BRGC (n = 0 to 11)

When this function is used, a number of baud rates can be generated by one external input clock.

(3) Serial clock generation in 3-wire serial I/O mode

Selected when the CSCK1 bit of the clocked serial interface mode register 1 (CSIM1) is set (1) and SCK1 is output.

(a) Normal mode

The internal clock (fcLK) is scaled by the frequency divider, this signal (fPRS) is scaled by the 5-bit counter, and the signal further divided by 2 is used as the serial clock. The serial clock is given by the following expression:

(Serial clock) =
$$\frac{f_{CLK}}{(k+16) \cdot 2^{n+2}}$$

fclk : Internal system clock frequency

- k : Value set in bit MDL3 to bit MDL0 of BRGC (k = 0 to 14)
- n : Value set in bit TPS3 to bit TPS0 of BRGC (n = 0 to 11)

(b) High-speed mode

When this function is used, bit MDL3 to bit MDL0 of the baud rate generator control register (BRGC) are all set (1) (k= 15).

The internal clock (f_{CLK}) is scaled by the frequency divider, and this signal (f_{PRS}) divided by 2 is used as the serial clock. The serial clock is given by the following expression:

(Serial clock) =
$$\frac{f_{CLK}}{2^{n+2}}$$

fclk : Internal system clock frequency

n : Value set in bit TPS3 to bit TPS0 of BRGC (n = 1 to 11)

14.4.4 Baud Rate Setting in Asynchronous Serial Interface Mode

There are two methods of setting the baud rate, as shown in Table 14-3.

This table shows the range of baud rates that can be generated, the baud rate calculation expression and selection method for each case.

Table 14-3. Methods of Baud Rate Setting

Baud Rate (Clock Source	Selection Method	Baud Rate Calculation Expression	Baud Rate Range	
Baud rate generator	Internal system clock	SCK in ASIM = 1	$\frac{f_{CLK}}{(k+16) \bullet 2^{n+2}}$	$\frac{f_{CLK}}{245760} - \frac{f_{CLK}}{64}$	
	ASCK input	SCK in ASIM = 0	<u>fascк</u> 2 ⁿ⁺⁶	$\frac{f_{ASCK}}{131072} - \frac{f_{ASCK} Note}{64}$	

fclk : Internal system clock frequency

k : Value set in bit MDL3 to bit MDL0 of BRGC (k = 0 to 14; refer to Figure 14-16)

n : Value set in bit TPS3 to bit TPS0 of BRGC (n = 0 to 11; refer to Figure 14-16)

fasck : ASCK input clock frequency $(0 - \frac{f_{CLK}}{2})$

Note Including fASCK input range: $(0 - \frac{f_{CLK}}{128})$

(1) Examples of settings when baud rate generator is used

Examples of baud rate generator control register (BRGC) settings when the baud rate generator is used are shown below.

When the baud rate generator is used, the SCK bit of the asynchronous serial interface mode register (ASIM) should be set (1).

Internal System Clock (fcLк)	16.0 MHz		12.5 MHz			10.0 MHz	8.0 MHz		
Baud Rate	BRGC	Baud Rate Error	BRGC	Baud Rate Error	BRGC	Baud Rate Error	BRGC	Baud Rate Error	
[bps]	Value	(%)	Value	(%)	Value	(%)	Value	(%)	
75	BAH	0.16	B4H	1.73	B0H	1.73	AAH	0.16	
110	B2H	1.36	ACH	0.92	A6H	0.88	A2H	1.36	
150	AAH	0.16	A4H	1.73	A0H	1.73	9AH	0.16	
300	9AH	0.16	94H	1.73	90H	1.73	8AH	0.16	
600	8AH	0.16	84H	1.73	80H	1.73	7AH	0.16	
1200	7AH	0.16	74H	1.73	70H	1.73	6AH	0.16	
2400	6AH	0.16	64H	1.73	60H	1.73	5AH	0.16	
4800	5AH	0.16	54H	1.73	50H	1.73	4AH	0.16	
9600	4AH	0.16	44H	1.73	40H	1.73	3AH	0.16	
19200	3AH	0.16	34H	1.73	30H	1.73	2AH	0.16	
31520	30H	0.00	29H	0.00	24H	0.00	20H	0.00	
38400	2AH	0.16	24H	1.73	20H	1.73	1AH	0.16	
76800	1AH	0.16	14H	1.73	10H	1.73	0AH	0.16	

Table 14-4. Examples of BRGC Settings When Baud Rate Generator Is Used

(2) Examples of settings when external baud rate input (ASCK) is used

Table 14-5 shows an example of setting when external baud rate input (ASCK) is used. When using the ASCK input, clear (0) the SCK bit of the asynchronous serial interface mode register (ASIM), and set P34 pin (when used with UART2, set P37 pin) in the control mode by using port 3 mode control register (PMC3).

f _{азск} (ASCK Input Frequency)	153.6 kHz	4.9152 MHz
Baud Rate [bps]	BRGC Value	BRGC Value
75	50H	A0H
150	40H	90H
300	30H	80H
600	20H	70H
1200	10H	60H
2400	00H	50H
4800	_	40H
9600	_	30H
19200	_	20H
38400	_	10H
76800		00H
76800		00H

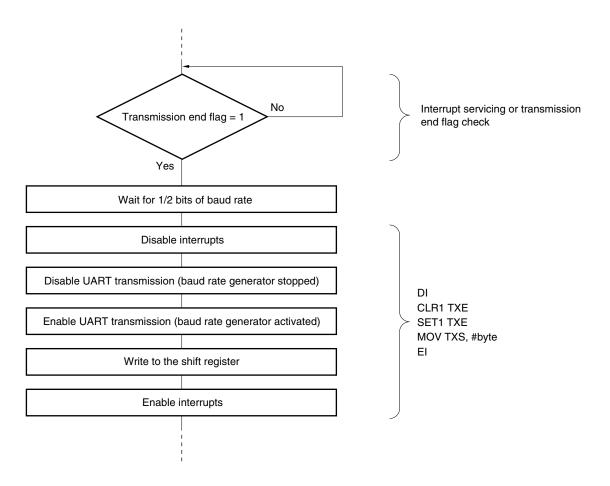
Table 14-5. Examples of Settings When External Baud Rate Input (ASCK) Is Used

14.5 Cautions

- (1) An asynchronous serial interface mode register (ASIM) rewrite should not be performed during a transmit operation. If an ASIM rewrite is performed during a transmit operation, subsequent transmit operations may not be possible (normal operation is restored by RESET input). Software can determine whether transmission is in progress by using a transmission completion interrupt (INTST) or the interrupt request flag (STIF) set by INTST.
- (2) After RESET input the transmit shift register (TXS) is emptied but a transmission completion interrupt is not generated. A transmit operation can be started by writing transmit data to the TXS.
- (3) The receive buffer (RXB) must be read even if there is a receive error. If RXB is not read, an overrun error will occur when the next data is received, and the receive error state will continue indefinitely.
- (4) To disable the reception completion interrupt when a reception error occurs, make sure that wait time equivalent to two pulses of the clock that serves as the reference of the baud rate clock elapse after the reception error occurs until the receive buffers (RXB, RXB2) are read. If the wait time is not inserted, the reception completion interrupt occurs even when it is disabled.

The wait time equivalent to two pulses of the clock that serves as the reference of the baud rate clock can be calculated by the following expression:

Wait time =
$$\frac{2^{n+2}}{f_{CLK}}$$


Remark fcLK: Internal system clock frequency

- N : Value of baud rate generator control registers (BRGC, BRGC2) to select tap of 12-bit prescaler (n = 0 to 11)
- (5) The contents of the asynchronous serial interface status register (ASIS) are cleared (0) by reading the receive buffer (RXB) or by reception of the next data. If you want to find the details of an error, therefore, ASIS must be read before reading RXB.
- (6) In the 3-wire serial I/O mode, even if the DIRn (n = 1, 2) bit of the clocked serial interface mode register (CSIMn: n = 1, 2) is changed after writing to the shift register (SIOn: n = 1, 2), data is output with the setting before change. Therefore, set the DIRn bit before writing to SIOn.
- (7) The baud rate generator control register (BRGC) should not be written to during communication. If a write instruction is executed, the 5-bit counter and 1/2 frequency divider operations will be reset, and the generated baud rate clock may be disrupted, preventing normal communication from continuing.

 (8) The start bit may not be output correctly if the timing at which the shift register shifts data conflicts with a write to the shift register in asynchronous serial interface mode.

When writing data to the shift register, restart the baud rate generator to prevent the timing at which the UART shift register shifts data matching the timing of a write to the shift register is performed. At this time, disable acknowledgement of interrupt requests, as shown in the preventive program below, so that the UART transmission enable and the write processing to the shift register can be performed successively. At the same time, disable the activation and operation of the macro service during UART transmission. In addition, set the data to be transmitted next to the shift register after the time of 1/2 the bits of the baud rate has elapsed after the transmission end flag was set.

[Flowchart of preventive program]

Note that the relationship between the division ratio of the internal system clock to the oscillation frequency and the baud rate must satisfy the following expressions <1> to <4> when the above preventive program is used.

• When high-speed fetch is selected (the IFCH bit of the memory expansion mode register (MM) is set to 1) and the internal clock is specified as the clock to generate the baud rate clock:

 $(k+15) \times 2^{n+3} > 17 \times a \dots <1>$

- When high-speed fetch is selected (the IFCH bit of the memory expansion mode register (MM) is set to 1) and the clock input from the ASCK pin is specified as the clock to generate the baud rate clock: 15 × 2ⁿ⁺²/f_{ASCK} > 17 × a/fxx <2>
- When normal fetch is selected (the IFCH bit of the memory expansion mode register (MM) is set to 0) and the internal clock is specified as the clock to generate the baud rate clock:

 $(k+15)\times 2^{n+3} > \{3\times (3+b+c)+13\}\times a \quad <3>$

When normal fetch is selected (the IFCH bit of the memory expansion mode register (MM) is set to 0) and the clock input from the ASCK pin is specified as the clock to generate the baud rate clock:
 15 × 2ⁿ⁺²/f_{ASCK} > {3 × (3+b+c)+13} × a/f_{XX} <4>

Remark fxx: Oscillation frequency or external clock input frequency

fASCK: Frequency of clock input from ASCK pin

- a: Division ratio of internal clock to oscillation frequency
- b: Access wait value to read/write when external memory is accessed
- c: Address wait value to address output when external memory is accessed
- k: Set value of the MDL3 to MDL0 bits (MDL23 to MDL20) of the BRGC (BRGC2) register
- n: Set value of the TPS3 to TPS0 bits (TPS23 to TPS20) of the BRGC (BRGC2) register

<Formats of Baud Rate Generator Control Register (BRGC) and Baud Rate Generator Control Register 2 (BRGC2)>

Address: 0FF90)H, 0FF9	91H	On re	set: 00⊢	ł	F	k/W	
7	6	5	4	3	2	2	1	0
BRGC TPS3	TPS2	TPS1	TPS0	MDL3	MC)L2	MDL1	MDL0
BRGC2 TPS23	TPS22	TPS21	TPS20	MDL23	MD	L22	MDL21	MDL20
	TPS3 TPS23	TPS2 TPS22	TPS1 TPS21	TPS0 TPS20	n		ects Pre tput (fprs	
	0	0	0	0	0		4, fasck/2	
	0	0	0	1	1	fxx/	8, fasck/4	1
	0	0	1	0	2	fxx/	16, fasck	/8
	0	0	1	1	3	fxx/	32, fasck	/16
	0	1	0	0	4	fxx/	64, fasck	/32
	0	1	0	1	5	fxx/	128, fasc	к/64
	0	1	1	0	6	fxx/	256, fasc	к/128
	0	1	1	1	7	fxx/	512, fasc	к/256
	1	0	0	0	8	fxx/	1024, fas	аск/512
	1	0	0	1	9	fxx/	2048, fas	ск/1024
	1	0	1	0	10	fxx/	4096, fas	ск/2048
	1	0	1	1	11	fxx/	8192, fas	ск/4096
	Othe	r			Se	ettin	g prohib	ited
	MDL3 MDL23	MDL2 MDL22	MDL1 MDL21	MDL0 MDL20	k		ut Clock o e Genera	
	0	0	0	0	0	fprs	/16	
	0	0	0	1	1	fprs	/17	
	0	0	1	0	2	fprs	/18	
	0	0	1	1	3	fprs	/19	
	0	1	0	0	4	fprs	/20	
	0	1	0	1	5	fprs	/21	
	0	1	1	0	6	fprs	/22	
	0	1	1	1	7	fprs	/23	
	1	0	0	0	8	fprs	/24	
	1	0	0	1	9	fprs	/25	
	1	0	1	0	10	fprs	/26	
	1	0	1	1	11	fprs/27		
	1	1	0	0	12	fprs/28		
	1	1	0	1	13	fprs	/29	
	1	1	1	0	14	fprs	/30	
	1	1	1	1	15	fprs		

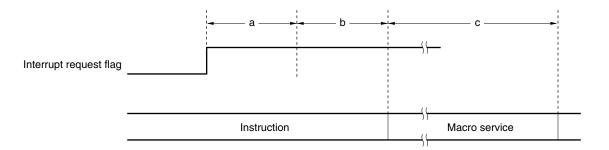
Notes 1. This cannot be selected when k = 15 is selected by MDL3 through MDL0 (MDL23 through MDL20).

- 2. Only fprs/16 can be selected when ASCK (ASCK2) input is used.
- 3. This can be used only in the 3-wire serial I/O mode.
- Remark fASCK : ASCK (ASCK2) input clock
 - fxx : Oscillation frequency or external clock input frequency
 - fPRs : Selected clock of prescaler output

[Usage example for expression <3>]

For example, assume that when normal fetch is selected and the internal clock is specified as the clock to generate the baud rate clock, no waits are set to the external memory (b = c = 0), and the highest baud rate is set (k = n = 0). Under these conditions, the result of expression <3> is as follows.

a < 5.45


This example shows that 1/2 or 1/4 of the oscillation frequency can be used for the internal system clock, but not for 1/8 or 1/16.

[Cautions on using preventive program]

This bug also occurs if the timing at which the UART shift register shifts data matches a write to the shift register when the UART transmission is performed using a macro service. This bug, however, can be prevented if the following three methods are implemented (these methods eliminate the timing that causes this bug.)

- Activate the macro service immediately after enabling UART transmission (SET1 TXE).
- Set a longer cycle for the baud rate than the time from a macro service request to its termination.
- Make sure that the macro service for UART transmission is not held pending by another macro service. (When UART transmission is performed using a macro service, disable the processing of other macro service requests with a higher priority.)

The execution time from a macro service request to its termination is the sum of a, b, and c in the figure below.

- a: Time for judging the interrupt priority after the interrupt request flag is set
 It takes 8 system clocks to judge the interrupt priority after the interrupt request flag is set.
- b: Time from when the interrupt request flag is set until the instruction being executed is terminated The macro service is executed when the instruction that was being executed when the interrupt request flag was set is terminated. If the instruction being executed is an instruction to hold the macro service pending temporarily, the macro service is acknowledged when the instruction after instruction is terminated.

[Instruction to hold the macro service pending temporarily]

- EI RETCSB !addr16 POP PSW
- DI
 RETI
 POPU post
- BRK RETB
- BRKCS
 LOCATION 0H
- RETCS LOCATION 0FH

MOV PSWL,#byteMOVG SP,#imm24

• MOV PSWL,A

- Write and bit manipulation instructions for the interrupt control registers, MK0, MK1L, IMC, ISPR, SNMINote 1
- Bit manipulation instruction of PSWNote 2

Notes 1. Except for the BT, BF instructions

- 2. Except for the following instructions
 - BT PSWL.bit,\$ADDR20 SET1 CY
 - BF PSWL.bit,\$ADDR20 NOT1 CY
 - BT PSWH.bit,\$ADDR20 CLR1 CY
 - BF PSWH.bit,\$ADDR20
- c: Time for macro service processing

The macro service processing time when data is transferred to the SFR is shown below.

M	Data Area		
	IRAM	Other	
Memory to SFR (1 byte)	Block transfer mode: : BLKTRS	24	Ι
	Block transfer mode (with memory pointer) : BLKTRS-P	30	32

Unit: Clock = 1/fclk

- **Remarks 1.** Add the number of waits (number of clocks) at data access to the above value when using the data area as external memory or internal ROM not specified for high-speed fetch (EMEM16, EMEM8).
 - 2. IRAM: Internal high-speed RAM
 - EMEM16: Memory that is external memory or internal ROM not specified for high-speed fetch, and is set to a 16-bit bus width.
 - EMEM8: Memory that is external memory or internal ROM not specified for high-speed fetch, and is set to an 8-bit bus width.

CHAPTER 15 EDGE DETECTION FUNCTION

P20 to P27 have an edge detection function that allows a rising edge/falling edge to be set programmably, and the detected edge is sent to internal hardware. The relation between pins P20 to P27 and the use of the detected edge is shown in Table 15-1.

Pin	Use	Detected Edge Specification Register
P20	NMI, standby circuit control	INTMO
P21	INTP0, CC00 capture signal of timer 0	
P22	INTP1, CC01 capture signal of timer 0	
P23	INTP2, CC02 capture signal of timer 0	
P24	INTP3, CC03 capture signal of timer 0	INTM1
P25	INTP4, conversion start signal of A/D converter	
P26	INTP5, TI2 (count clock signal of timer/counter 2)	
P27	INTP6, TI3 (count clock signal of timer/counter 3)	

Table 15-1. Pins P20 to P27 and Use of Detected Edge

The edge detection function operates at all times except in STOP mode and IDLE mode (although the edge detection function for pin P20 also operates in STOP mode and IDLE mode).

For pins P21 to P27, the noise elimination time when edge detection is performed can be selected by software.

15.1 Edge Detection Function Control Registers

15.1.1 External interrupt mode registers (INTM0, INTM1)

The INTMn (n = 0, 1) specify the valid edge to be detected on pins P20 to P27. The INTM0 specifies the valid edge for pins P20 to P23, and the INTM1 specifies the valid edge for pins P24 to P27.

The INTMn can be read or written to with an 8-bit manipulation instruction or bit manipulation instruction. The format of INTM0 and INTM1 are shown in Figures 15-1 and 15-2 respectively.

RESET input clears these registers to 00H.

Address: 0FF3CH			On reset: 00H		R/	W			
	7	6	5	4	3	2	1	0	
INTM0	ES21	ES20	ES11	ES10	ES01	ES00	0	ESNMI	
		ES21	ES20	Specifies Edge To Be Detected of P23					
				(INTP2, CC02 capture trigger) pin input					

0 0 Falling edge

0	1	Rising edge			
1	0	Setting prohibited			
1	1	Both falling and rising edges			
ES11	ES10	Specifies Edge To Be Detected of P22			
		(INTP1, CC01 capture trigger) Pin Input			
0	0	Falling edge			
0	1	Rising edge			
1	0	Setting prohibited			
1	1	Both falling and rising edges			

ES	S01	ES00	Specifies Edge To Be Detected of P21
			(INTP0, CC00 capture trigger) Pin Input
	0	0	Falling edge
	0	1	Rising edge
	1	0	Setting prohibited
	1	1	Both falling and rising edges
ES	ылі	Specifica Edge To Be Detected of D20 (NMI) Dis Input	

ESNMI	Specifies Edge To Be Detected of P20 (NMI) Pin Input	
0	Falling edge	
1	Rising edge	

Address : 0FF3	DH	On res	eset : 00H R/W						
7	6	5	4	3	2	1	0		
INTM1 ES61	ES60	ES51	ES50	ES41	ES40	ES31	ES30		
	ES61	ES60	Specif	ies Edge	To Be D	Detected	of P27		
			(INTP6	6, TI3) Pi	n Input				
	0	0	Falling	edge					
	0	1	Rising edge						
	1	0	Setting	prohibit	ed				
	1	1	Both ris	sing and	falling e	edges			
	ES51	ES50	Specif	ies Edge	To Be D	Detected	of P26		
			(INTPS	5, TI2) Pi	n Input				
	0	0	Falling	edge					
	0	1	1 Rising edge						
	1	0	Setting prohibited						
	1	1	Both ris	sing and	falling e	edges			
	ES41	ES40	Specific	s Edge To		tod of P2			
	2041	2040	-	-					
				version st	an ingger,) Pin Input			
	0	0	Falling	-					
	0	1	Rising	edge					
	1	0	Setting	prohibit	ed				
	1	1	Both ris	sing and	falling e	edges			
	ES31	ES30	Specif	ies Edge	To Be D	Detected	of P24		
			(INTP3, CC03 capture trigger) Pin I						
	0	0	0 Falling edge						
	0	1	1 Rising edge						
	1	0	Setting	prohibit	ed				
	1	1	Both ris	sing and	falling e	edges			
	L								

Figure 15-2. Format of External Interrupt Mode Register 1 (INTM1)

Caution If the valid edge is changed by writing to the external interrupt mode register (INTMn: n = 0, 1), the valid edge is not detected. If the edge is input while the valid edge is changed, whether the input edge is judged as the valid edge or not is undefined.

15.1.2 Interrupt valid edge flag registers (IEF1, IEF2)

IEF1 and IEF2 are flag registers that indicate which of the rising or falling edge is generated when an edge is detected by the INPT0 through INTP6 pin. By checking these flag registers, which of the rising or falling edge is generated can be determined if both the rising and falling edges are specified as the valid edge of an interrupt.

These registers can be read or written by using an 8-bit manipulation instruction or a bit manipulation instruction. Figures 15-3 and 15-4 show the formats of IEF1 and IEF2.

The values of these registers are undefined when RESET is input.

Figure 15-3. Format of Interrupt Valid Edge Flag Register 1 (IEF1)

Address : 0FF3EH		On reset : undefined			R/W			
	\overline{O}	6	5	4	3	2	1	0
IEF1	IEFH3	IEFL3	IEFH2	IEFL2	IEFH1	IEFL1	IEFH0	IEFL0

0 Rising edge is not generated 1 Rising edge is generated	IEFHn	Rising Edge Flag of INTPn Pin (n = 0 to 3)
1 Rising edge is generated	0	Rising edge is not generated
	1	Rising edge is generated

IEFLn	Falling Edge Flag of INTPn Pin (n = 0 to 3)
0	Falling edge is not generated
1	Falling edge is generated

Address : 0FF3FH			On reset : undefined			R/W			
	7	6	5	4	3	2	1	0	
IEF2	0	0	IEFH6	IEFL6	IEFH5	IEFL5	IEFH4	IEFL4	
		IEFHn	Rising Edge Flag of INTPn Pin (n = 4 to 6)						
		0	Rising edge is not generated						
		1	Rising edge is generated						
		IEFLn	Falling Edge Flag of INTPn Pin (n = 4 to 6)						
		0	Falling edge is not generated						
		1	Falling	Falling edge is generated					

Figure 15-4. Format of Interrupt Valid Edge Flag Register 2 (IEF2)

- Cautions 1. After checking the flag, clear the flag to "0" by software.
 - 2. The interrupt valid edge flag register (IEFn: n = 1, 2) indicates that an edge has been generated, and has nothing to do with specification of a valid edge. For example, if the valid edge of the INTPO pin is specified to be the rising edge, and if the falling edge is generated, the interrupt request signal is not generated, but the IEFL0 flag is set to "1".
 - 3. If the INTPn (n = 0 to 6) pin is "1" after the reset signal has been deasserted, the rising edge is recognized, and the IEFHn (n = 0 to 6) flag is set to "1". Even when the IEFHn flag is used as a digital port (P21 to P27), it may be set to 1. Be sure to clear (0) the IEFHn flag before checking the edge of an external interrupt.

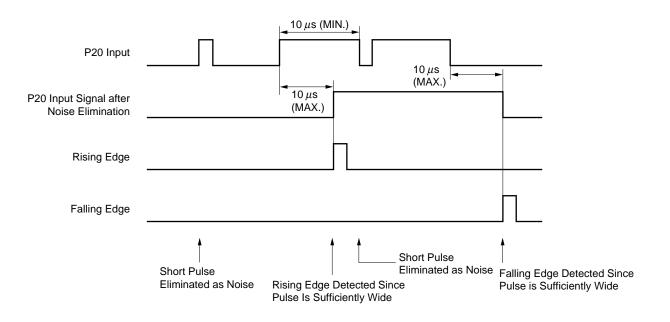
15.1.3 Noise protection control register (NPC)

NPC is a register that specifies a sampling clock used to reject the digital noise on the P21/INTP0 through P27/INTP6/ TI3 pins.

This register is read or written by using an 8-bit manipulation instruction or a bit manipulation instruction.

Figure 15-5 shows the format of NPC.

The value of this register is cleared to 00H when $\overline{\text{RESET}}$ is input.


Figure 15-5. Format of Noise Protection Control Register (NPC)

Address : 0FF3BH			On reset : undefined			R	R/W		
	7	6	5	4 3				1	0
NPC	0	NI6	NI5	NI4	NI4 NI3 NI2		2	NI1	NI0
						(fo	ськ = 1	6 MHz)	
		NIn	Specifies Sampling Clock to Reject N				Noise	e on IN	TPn Pin
			(n = 0 to 6)	Pulse Width		I	Minimum Pulse Width		
				Rejected as Noise		oise I	Recognized as Signal		as Signal
		0	fс∟к	3/fclк (0.19 µs)) 4	4/fclk (0.25 µs)		õμs)
		1	fс∟к/4	12/fclk	< (0.75 μ	s) ⁻	16/fci	к (1.0)μs)

Remark fclk: internal system clock

15.2 Edge Detection for Pin P20

On pin P20 noise elimination is performed by means of analog delay before edge detection. Therefore, an edge cannot be detected unless the pulse width is a given time (10 μ s) or longer.

Figure 15-6. Edge Detection for Pin P20

Caution Since analog delay noise elimination is performed on pin P20, an edge is detected up to 10 μ s after it is actually input. Also, unlike pins P21 to P27, the delay before an edge is detected is not a specific value, because of differences in the characteristics of various devices.

15.3 Pin Edge Detection for Pins P21 to P27

Edge detection for pins P21 to P27 is performed after digital noise elimination by means of clock sampling. The sampling clock is fixed to fclk.

In digital noise elimination, input is sampled using the fcLk clock, and if the input level is not the same at least four times in succession (if it is the same only three or fewer times in succession), it is eliminated as noise. Therefore, the level must be maintained for at least 4 fcLk clock cycles (0.25 μ s: fcLk = 16 MHz, fcLk = 1/2 fxx, fxx = 32 MHz) in order to be recognized as a valid edge.

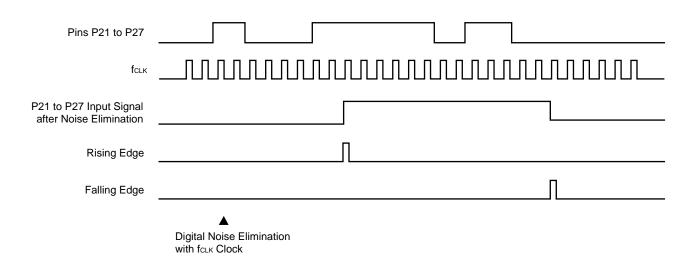


Figure 15-7. Edge Detection for Pins P21 to P27

- Cautions 1. Since digital noise elimination is performed with the fcLK clock, there is a delay of 4 fcLK clocks between input of an edge to the pin and the point at which the edge is actually detected.
 - 2. If the input pulse width is 4 fcLκ clocks, it is uncertain whether a valid edge will be detected. Therefore, to ensure reliable operation, the level should be held for at least 4 clocks.
 - If noise input to a pin is synchronized with the fcLK clock in the μPD784046, it may not be recognized as noise. If there is a possibility of such noise being input, noise should be eliminated by adding a filter to the input pins.

15.4 Cautions

- (1) Valid edge detection cannot be performed when the valid edge is changed by a write to the external interrupt mode register (INTMn: n = 0, 1). Also, if an edge is input during a change of the valid edge, that edge may or may not be judged to be a valid edge.
- (2) After checking the flag by using the interrupt valid edge flag register (IEFn: n = 1, 2), clear the flag to "0" by software.
- (3) The interrupt valid edge flag register (IEFn: n = 1, 2) indicates that an edge has been generated, and has nothing to do with specification of a valid edge. For example, if the valid edge of the INTP0 pin is specified to be the rising edge, and if the falling edge is generated, the interrupt request signal is not generated, but the IEFL0 flag is set to "1".
- (4) If the INTPn (n = 0 to 6) pin is "1" after the reset signal has been deasserted, the rising edge is recognized, and the IEFHn (n = 0 to 6) flag of the interrupt valid edge flag register (IEFn: n = 1, 2) is set to "1". Even when the IEFHn flag is used as a digital port (P21 to P27), it may be set (1). Be sure to clear (0) the IEFHn flag before checking the edge of an external interrupt.
- (5) Since analog delay noise elimination is performed on pin P20 an edge is detected up to 10 *m*s after it is actually input. Also, unlike pins P21 to P27, the delay before an edge is detected is not a specific value, because of differences in the characteristics of various devices.
- (6) Since digital noise elimination is performed on pins P21 to P27 with the fclk clock, there is a delay of 4 fclk clocks between input of an edge to the pin and the point at which the edge is actually detected.
- (7) If the input pulse width on pins P21 to P27 is 4 fcLk clocks, it is uncertain whether a valid edge will be detected or not. Therefore, to ensure reliable operation, the period of at least 4 clocks and the level must be fixed.
- (8) If noise input to pins P21 to P27 is synchronized with the fcLK clock in the μPD784046, it may not be recognized as noise. If there is a possibility of such noise being input, noise should be eliminated by adding a filter to the input pins.

CHAPTER 16 INTERRUPT FUNCTIONS

The μ PD784046 is provided with three interrupt request processing modes (refer to **Table 16-1**). These three service modes can be set as required in the program. However interrupt processing by macro service can only be selected for interrupt request sources provided with the macro service processing mode shown in Table 16-2. Context switching cannot be selected for non-maskable interrupts or operand error interrupts.

Multi-processing control using 4 priority levels can easily be performed for maskable vectored interrupts.

Interrupt Request Processing Mode	Processing Performed	PC & PSW Contents	Processing
Vectored interrupts	Software	Saving to & restoration from stack	Executed by branching to service program at address ^{Note} specified by vector table
Context switching		Saving to & restoration from fixed area in register bank	Executed by automatic switching to register bank specified by vector table and branching to service program at address ^{Note} specified by fixed area in register bank
Macro service	Hardware (firmware)	Retained (however, PSW is 0x00H in CPU monitor mode 0)	Execution of pre-set processing such as data transfers between memory and I/O

Table 16-1. Processing Modes of Interrupt Request

Note The start addresses of all interrupt service programs must be in the base area. If the body of a service program cannot be located in the base area, a branch instruction to the service program should be written in the base area.

16.1 Interrupt Request Sources

The μ PD784046 has the 29 interrupt request sources shown in Table 16-2, with a vector table allocated to each.

Type of Interrupt Request	Default Priority	Interrupt Request Generating Source	Generating Unit	Interrupt Control Register Name	Context Switching	Macro Service	Macro Service Control Word Address	Vector Table Address
Software	None	BRK instruction execution	_	_	Not possible	Not possible	_	3EH
		BRKCS instruction execution	_	_	Possible	Not possible	_	—
Operand error	None	Invalid operand in MOV STBC, #byte instruction or MOV WDM, #byte instruction, and LOCATION instruction	_		Not possible	Not possible		3CH
Non- maskable	None	NMI (pin input edge detection)	Edge detection	_	Not possible	Not possible	_	2H
		INTWDT (watchdog timer overflow)	Watchdog timer		Not possible	Not possible	_	4H

Table 16-2. Sources of Interrupt Request (1/2)

Type of Interrupt Request	Default Priority	Interrupt Request Generating Source	Generating Unit	Interrupt Control Register Name	Context Switching	Macro Service	Macro Service Control Word Address	Vector Table Address
Maskable	0 (highest)	INTOV0 (overflow of timer 0)	Timer 0	OVIC0	Possible	Possible	0FE06H	6H
	1	INTOV1 (overflow of timer 1)	Timer 1	OVIC1			0FE08H	8H
	2	INTOV4 (overflow of timer 4)	Timer 4	OVIC4			0FE0AH	0AH
	3	INTP0 (pin input edge detection)	Edge detection	PIC0			0FE0CH	осн
		INTCC00 (TM0-CC00 match signal generation)	Timer 0					
	4	INTP1 (pin input edge detection)	Edge detection	P1C1			0FE0EH	0EH
		INTCC01 (TM0-CC01 match signal generation)	Timer 0					
	5	INTP2 (pin input edge detection) Edge detection PIC2			0FE10H	10H		
		INTCC002 (TM0-CC02 match signal generation)	Timer 0					
	6	INTP3 (pin input edge detection)	Edge detection	PIC3			0FE12H	12H
		INTCC03 (TM0-CC03 match signal generation)	Timer 0					
	7	INTP4 (pin input edge detection)	Edge detection	PIC4				0FE14H
	8	INTP5 (pin input edge detection)	pin input edge detection) Edge detection PIC5			0FE16H	16H	
	9	INTP6 (pin input edge detection)	Edge detection	PIC6			0FE18H	18H
	10	INTCM10 (TM1-CM10 match signal generation)	h signal generation) Timer 1 CMIC10		0FE1AH	1AH		
	11	INTCM11 (TM1-CM11 match signal generation)	Timer 1	imer 1 CMIC11	0FE1CH	1CH		
	12	NTCM20 (TM2-CM20 match signal generation) Timer/counter 2 CMIC20	0FE1EH	1EH				
	13	INTCM21 (TM2-CM21 match signal generation)	Timer/counter 2	CMIC21			0FE20H	20H
	14	INTCM30 (TM3-CM30 match signal generation)	Timer/counter 3	CMIC30			0FE22H	22H
	15	INTCM31 (TM3-CM31 match signal generation)	Timer/counter 3	CMIC31			0FE24H	24H
	16	INTCM40 (TM4-CM40 match signal generation)	Timer 4	CMIC40			0FE26H	26H
	17	INTCM41 (TM4-CM41 match signal generation)	Timer 4	CMIC41			0FE28H	28H
	18	INTSER (UART0 reception error)	Asynchronous	SERIC			0FE2AH	2AH
	19	INTSR (UART0 reception end)	serial interface 0	SRIC			0FE2CH	2CH
		INTCSI1 (3-wire serial I/O1 transfer end)	3-wire serial I/O1	CSIIC1				
	20	INTST (UART0 transmission end)	Asynchronous	STIC			0FE2EH	2EH
			serial interface 0					
	21	INTSER2 (UART2 reception error)	Asynchronous	SERIC2			0FE30H	30H
	22	INTSR2 (UART2 reception end)	serial interface 2	SRIC2	1		0FE32H	32H
		INTCSI2 (3-wire serial I/O2 transfer end)	3-wire serial I/O2	CSIIC2				
	23	INTST2 (UART2 transmission end)	Asynchronous	STIC2			0FE34H	34H
			serial interface 2					
	24 (lowest)	INTAD (A/D conversion end)	A/D converter	ADIC	1		0FE36H	36H

Table 16-2. Sources of Interrupt Request (2/2)

Remarks 1. The default priority is a fixed number. This indicates the order of priority when interrupt requests specified as having the same priority are generated simultaneously,

2. The INTSR and INTCSI1 interrupts are generated by the same hardware (they cannot both be used simultaneously). Therefore, although the same hardware is used for the interrupts, two names are provided, for use in each of the two modes. The same applies to INTSR2 and INTCSI2.

16.1.1 Software interrupts

Interrupts by software consist of the BRK instruction which generates a vectored interrupt and the BRKCS instruction which performs context switching.

Software interrupts are acknowledged even in the interrupt disabled state, and are not subject to priority control.

16.1.2 Operand error interrupts

These interrupts are generated if there is an illegal operand in an MOV STBC, #byte instruction or MOV WDM, #byte instruction, and LOCATION instruction.

Operand error interrupts are acknowledged even in the interrupt disabled state, and are not subject to priority control.

16.1.3 Non-maskable interrupts

A non-maskable interrupt is generated by NMI pin input or the watchdog timer.

Non-maskable interrupts are acknowledged unconditionally^{Note}, even in the interrupt disabled state. They are not subject to interrupt priority control, and are of higher priority that any other interrupt.

Note Except during execution of the service program for the same non-maskable interrupt, and during execution of the service program for a higher-priority non-maskable interrupt

16.1.4 Maskable interrupts

A maskable interrupt is one subject to masking control according to the setting of an interrupt mask flag. In addition, acknowledgment enabling/disabling can be specified for all maskable interrupts by means of the IE flag in the program status word (PSW).

In addition to normal vectored interruption, maskable interrupts can be acknowledged by context switching and macro service.

The priority order for maskable interrupt requests when interrupt requests of the same priority are generated simultaneously is predetermined (default priority) as shown in Table 16-2. Also, multi-processing control can be performed with interrupt priorities divided into 4 levels. However, macro service requests are acknowledged without regard to priority control or the IE flag.

16.2 Interrupt Processing Modes

There are three μ PD784046 interrupt processing modes, as follows:

- Vectored interrupt processing
- Macro service
- Context switching

16.2.1 Vectored interrupt processing

When an interrupt is acknowledged, the program counter (PC) and program status word (PSW) are automatically saved to the stack, a branch is made to the address indicated by the data stored in the vector table, and the interrupt processing routine is executed.

16.2.2 Macro service

When an interrupt is acknowledged, CPU execution is temporarily suspended and a data transfer is performed by hardware. Since macro service is performed without the intermediation of the CPU, it is not necessary to save or restore CPU statuses such as the program counter (PC) and program status word (PSW) contents. This is therefore very effective in improving the CPU service time (refer to **16.8 Macro Service Function**).

16.2.3 Context switching

When an interrupt is acknowledged, the prescribed register bank is selected by hardware, a branch is made to a preset vector address in the register bank, and at the same time the current program counter (PC) and program status word (PSW) are saved in the register bank (refer to **16.4.2 BRKCS instruction software interrupt (software context switching) acknowledgment operation** and **16.7.2 Context switching**).

Remark "Context" refers to the CPU registers that can be accessed by a program while that program is being executed. These registers include general registers, the program counter (PC), program status word (PSW), and stack pointer (SP).

16.3 Interrupt Processing Control Registers

 μ PD784046 interrupt processing is controlled for each interrupt request by various control registers that perform interrupt processing specification. The interrupt control registers are listed in Table 16-3.

Table 16-3. Control Registers

Register Name	Symbol	Function
Interrupt control registers	OVIC0, OVIC1, OVIC4, PIC0, PIC1, PIC2, PIC3, PIC4, PIC5, PIC6, CMIC10, CMIC11, CMIC20, CMIC21, CMIC30, CMIC31, CMIC40, CMIC41, SERIC, SRIC, CSIIC1, STIC, SERIC2, SRIC2, CSIIC2, STIC2, ADIC	Registers to record generation of interrupt request, control masking, specify vectored interrupt processing or macro service processing, enable or disable context switching function, and specify priority.
Interrupt mask registers	MK0 (MK0L, MK0H) MK1 (MK1L, MK1H)	Control masking of maskable interrupt request. Associated with mask control flag in interrupt control register. Can be accessed in word or byte units.
In-service priority register	ISPR	Records priority of interrupt request currently accepted.
Interrupt mode control register	IMC	Controls nesting of maskable interrupt with priority specified to lowest level (level 3).
Watchdog timer mode register	WDM	Specifies priorities of interrupt by NMI pin input and overflow of watchdog timer.
Program status word	PSW	Enables or disables accepting maskable interrupt.

An interrupt control register is allocated to each interrupt source. The flags of each register perform control of the contents corresponding to the relevant bit position in the register. The interrupt control register flag names corresponding to each interrupt request signal are shown in Table 16-4.

Table 16-4. Interrupt Control Register Flags Corresponding to Interrupt Sources (1/2)

Default	Interrupt			Ir	nterrupt Control Re	gisters	
Priority	Request Signal		Interrupt Request Flag	Interrupt Mask Flag	Macro Service Enable Flag	Context Switching Enable Flag	Priority Speci fication Flag
0 (highest)	INTOV0	OVIC0	OVIF0	OVMK0	OVISM0	OVCSE0	OVPR00
							OVPR01
1	INTOV1	OVIC1	OVIF1	OVMK1	OVISM1	OVCSE1	OVPR10
							OVPR11
2	INTOV4	OVIC4	OVIF4	OVMK4	OVISM4	OVCSE4	OVPR40
							OVPR41
3	INTP0	PIC0	PIF0	PMK0	PISM0	PCSE0	PPR00
	INTCC00						PPR01
4	INTP1	PIC1	PIF1	PMK1	PISM1	PCSE1	PPR10
	INTCC01						PPR11
5	INTP2	PIC2	PIF2	PMK2	PISM2	PCSE2	PPR20
	INTCC02						PPR21
6	INTP3	PIC3	PIF3	PMK3	PISM3	PCSE3	PPR30
	INTCC03						PPR31
7	INTP4	PIC4	PIF4	PMK4	PISM4	PCSE4	PPR40
							PPR41
8	INTP5	PIC5	PIF5	PMK5	PISM5	PCSE5	PPR50
							PPR51
9	INTP6	PIC6	PIF6	PMK6	PISM6	PCSE6	PPR60
							PPR61
10	INTCM10	CMIC10	CMIF10	CMMK10	CMISM10	CMCSE10	CMPR100
							CMPR101
11	INTCM11	CMIC11	CMIF11	CMMK11	CMISM11	CMCSE11	CMPR110
							CMPR111
12	INTCM20	CMIC20	CMIF20	CMMK20	CMISM20	CMCSE20	CMPR200
							CMPR201
13	INTCM21	CMIC21	CMIF21	CMMK21	CMISM21	CMCSE21	CMPR210
							CMPR211
14	INTCM30	CMIC30	CMIF30	CMMK30	CMISM30	CMCSE30	CMPR300
							CMPR301
15	INTCM31	CMIC31	CMIF31	CMMK31	CMISM31	CMCSE31	CMPR310
							CMPR311
16	INTCM40	CMIC40	CMIF40	CMMK40	CMISM40	CMCSE40	CMPR400
							CMPR401
17	INTCM41	CMIC41	CMIF41	CMMK41	CMISM41	CMCSE41	CMPR410
		05510	0.5	0		00000	CMPR411
18	INTSER	SERIC	SERIF	SERMK	SERISM	SRCSE	SERPR0
10		0.010		0014		00005	SERPR1
19	INTSR	SRIC	SRIF	SRMK	SRISM	SRCSE	SRPR0
	INTO CH			000000		001005/	SRPR1
	INTCSI1	CSIIC1	CSIIF1	CSIMK1	CSIISM1	CSICSE1	CSIPR10
							CSIPR11

Default	Interrupt	Interrupt Control Registers							
Priority	Request Signal		Interrupt Request Flag	Interrupt Mask Flag	Macro Service Enable Flag	Context Switching Enable Flag	Priority Speci- fication Flag		
20	INTST	STIC	STIF	STMK	STISM	STCSE	STPR0		
							STPR1		
21	INTSER2	SERIC2	SERIF2	SERMK2	SERISM2	SERCSE2	SERPR20		
							SERPR21		
22	INTSR2	SRIC2	SRIF2	SRMK2	SRISM2	SRCSE2	SRPR20		
							SRPR21		
	INTCSI2	CSIIC2	CSIIF2	CSIMK2	CSIISM2	CSICSE2	CSIPR20		
							CSIPR21		
23	INTST2	STIC2	STIF2	STMK2	STISM2	STCSE2	STPR20		
							STPR21		
24 (lowest)	INTAD	ADIC	ADIF	ADMK	ADISM	ADCSE	ADPR0		
							ADPR1		

Table 16-4. Interrupt Control Register Flags Corresponding to Interrupt Sources (2/2)

16.3.1 Interrupt control registers

An interrupt control register is allocated to each interrupt source, and performs priority control, mask control, etc. for the corresponding interrupt request. The interrupt control register format is shown in Figure 16-1.

(1) Priority specification flags (x×PR1, x×PR0)

The priority specification flags specify the priority on an individual interrupt source basis for the 25 maskable interrupts.

Up to 4 priority levels can be specified, and a number of interrupt sources can be specified at the same level. Among maskable interrupt sources, level 0 is the highest priority.

If multiple interrupt requests are generated simultaneously among interrupt source of the same priority level, they are acknowledged in default priority order.

These flags can be manipulated bit-wise by software.

RESET input sets all bits to "1".

(2) Context switching enable flag (××CSE)

The context switching enable flag specifies that a maskable interrupt request is to be processed by context switching. In context switching, the register bank specified beforehand is selected by hardware, a branch is made to a vector address stored beforehand in the register bank, and at the same time the current contents of the program counter (PC) and program status word (PSW) are saved in the register bank.

Context switching is suitable for real-time processing, since execution of interrupt processing can be started faster than with normal vectored interrupt processing.

This flag can be manipulated bit-wise by software.

RESET input sets all bits to "0".

(3) Macro service enable flag (××ISM)

The macro service enable flag specifies whether an interrupt request corresponding to that flag is to be handled by vectored interruption or context switching, or by macro service.

When macro service processing is selected, at the end of the macro service the macro service enable flag is automatically cleared (0) by hardware (vectored interrupt processing/context switching processing).

This flag can be manipulated bit-wise by software.

RESET input sets all bits to "0".

(4) Interrupt mask flag (××MK)

An interrupt mask flag specifies enabling/disabling of vectored interrupt processing and macro service processing for the interrupt request corresponding to that flag.

The interrupt mask flag contents are not changed by the start of interrupt processing, etc., and are the same as the interrupt mask register contents (refer to **16.3.2 Interrupt mask registers (MK0, MK1)**).

Macro service processing requests are also subject to mask control, and macro service requests can also be masked with this flag.

This flag can be manipulated by software.

RESET input sets all bits to "1".

(5) Interrupt request flag (××IF)

An interrupt request flag is set (1) by generation of the interrupt request that corresponds to that flag. When the interrupt is acknowledged, the flag is automatically cleared (0) by hardware.

This flag can be manipulated by software.

RESET input sets all bits to "0".

Address : 0FFE0H-0FFE6H				On res	et : 43H		R/W		
	\overline{O}	6	5	4	3	2	1	0	
OVIC0	OVIF0	OVMK0	OVISM0	OVCSE0	0	0	OVPR01	OVPR00	
OVIC1	OVIF1	OVMK1	OVISM1	OVCSE1	0	0	OVPR11	OVPR10	
1									
OVIC4	OVIF4	OVMK4	OVISM4	OVCSE4	0	0	OVPR41	OVPR40	
PIC0	PIF0	PMK0	PISM0	PCSE0	0	0	PPR01	PPR00	
PIC1	PIF1	PMK1	PISM1	PCSE1	0	0	PPR11	PPR10	
PIC2	PIF2	PMK2	PISM2	PCSE2	0	0	PPR21	PPR20	
PIC3	PIF3	РМК3	PISM3	PCSE3	0	0	PPR31	PPR30	

Figure 16-1. Interrupt Control Registers (××ICn) (1/4)

(Generation of Interrupt Request			
No interi	rupt request (interrupt signal is not generated)			
Interrupt	request (interrupt signal is generated)			
Enab	les or Disables Interrupt Processing			
Enable	s interrupt processing			
Disable	es interrupt processing			
Sp	ecifies Interrupt Processing Format			
Vectored	Vectored interrupt processing/context switching processing			
Macro service processing				
Spe	cifies Context Switching Processing			
Proces	Processed by vectored interrupt			
Proces	sed by context switching			
××PRn0	Specifies Priority of Interrupt Request			
0	Priority 0 (highest priority)			
1	Priority 1			
0	0 Priority 2			
1	Priority 3			
	No interr Interrupt Enable Disable Disable Vectored Macro se Proces Proces ××PRn0 0 1 0			

Address : 0FFE7H-0FFEDH				On re	set : 43H	ł	R/W	
	\bigcirc	6	5	4	3	2	1	0
PIC4	PIF4	PMK4	PISM4	PCSE4	0	0	PPR41	PPR40
PIC5	PIF5	PMK5	PISM5	PCSE5	0	0	PPR51	PPR50
PIC6	PIF6	PMK6	PISM6	PCSE6	0	0	PPR61	PPR60
CMIC10	CMIF10	CMMK10	CMISM10	CMCSE10	0	0	CMPR101	CMPR100
CMIC11	CMIF11	CMMK11	CMISM11	CMCSE11	0	0	CMPR111	CMPR110
CMIC20	CMIF20	CMMK20	CMISM20	CMCSE20	0	0	CMPR201	CMPR200
CMIC21	CMIF21	CMMK21	CMISM21	CMCSE21	0	0	CMPR211	CMPR210

Figure 16-1. Interrupt Control Registers (××ICn) (2/4)

××IFn	0	Generation of Interrupt Request		
0	No interr	rupt request (interrupt signal is not generated)		
1	Interrupt	request (interrupt signal is generated)		
××MKn	Enat	bles or Disables Interrupt Processing		
0	Enable	s interrupt processing		
1	Disable	es interrupt processing		
∞ISMn	Spe	ecifies Interrupt Processing Format		
0	Vectored	interrupt processing/context switching processing		
1	Macro se	ervice processing		
××CSEn	Spec	cifies Context Switching Processing		
0	Proces	sed by vectored interrupt		
1	Proces	sed by context switching		
××PRn1	××PRn0	Specifies Priority of Interrupt Request		
0	0	Priority 0 (highest priority)		
0	1	Priority 1		
1	0	Priority 2		
1	1	Priority 3		

Address : 0FFEEH-0FFF3H				On reset : 43H			R/W	
	7	6	5	4	3	2	1	0
СМІСЗО СМ	/IF30	CMMK30	CMISM30	CMCSE30	0	0	CMPR301	CMPR300
	/IF31	CMMK31	CMISM31	CMCSE31	0	0	CMPR311	CMPR310
CMIC40 CM	ЛIF40	CMMK40	CMISM40	CMCSE40	0	0	CMPR401	CMPR400
CMIC41 CN	/IF41	CMMK41	CMISM41	CMCSE41	0	0	CMPR411	CMPR410
SERIC SI	ERIF	SERMK	SERISM	SERCSE	0	0	SERPR1	SERPR0
SRIC S	RIF	SRMK	SRISM	SRCSE	0	0	SRPR1	SRPR0
	SIIF1	CSIMK1	CSIISM1	CSICSE1	0	0	CSIPR11	CSIPR10

Figure 16-1. Interrupt Control Registers (××ICn) (3/4)

(Generation of Interrupt Request				
No interi	rupt request (interrupt signal is not generated)				
Interrupt	request (interrupt signal is generated)				
Enab	les or Disables Interrupt Processing				
Enable	s interrupt processing				
Disable	es interrupt processing				
Spe	Specifies Interrupt Processing Format				
Vectored	Vectored interrupt processing/context switching processing				
Macro se	ervice processing				
Spee	cifies Context Switching Processing				
Proces	sed by vectored interrupt				
Proces	Processed by context switching				
××PRn0	Specifies Priority of Interrupt Request				
0	Priority 0 (highest priority)				
1	Priority 1				
0	Priority 2				
1	Priority 3				
	No interr Interrupt Enable Disable Vectored Macro se Proces Proces ××PRn0 0 1 0				

Address : 0FFF4H-0FFF8H				On reset : 43H		I	R/W	
	\overline{O}	6	5	4	3	2	1	0
STIC	STIF	STMK	STISM	STCSE	0	0	STPR1	STPR0
SERIC2	SERIF2	SERMK2	SERISM2	SERCSE2	0	0	SERPR21	SERPR20
SRIC2	SRIF2	SRMK2	SRISM2	SRCSE2	0	0	SRPR21	SRPR20
CSIIC2	CSIIF2	CSIMK2	CSIISM2	CSICSE2	0	0	CSIPR21	CSIPR20
STIC2	STIF2	STMK2	STISM2	STCSE2	0	0	STPR21	STPR20
ADIC	ADIF	ADMK	ADISM	ADCSE	0	0	ADPR1	ADPR0

Figure 16-1. Interrupt Control Registers (××ICn) (4/4)

∞lFn	(Generation of Interrupt Request				
0	No interi	rupt request (interrupt signal is not generated)				
1	Interrupt	request (interrupt signal is generated)				
××MKn	Enab	oles or Disables Interrupt Processing				
0	Enable	s interrupt processing				
1	Disable	es interrupt processing				
××ISMn	Spe	Specifies Interrupt Processing Format				
0	Vectored	Vectored interrupt processing/context switching processing				
1	Macro se	Macro service processing				
	•					
××CSEn	Spe	cifies Context Switching Processing				
0	Proces	Processed by vectored interrupt				
1	Proces	Processed by context switching				
××PRn1	××PRn0	Specifies Priority of Interrupt Request				
0	0	Priority 0 (highest priority)				
0	1	Priority 1				
1	0	Priority 2				
1	1	Priority 3				

16.3.2 Interrupt mask registers (MK0, MK1)

The MK0 and MK1 are composed of interrupt mask flags. MK0 and MK1 are 16-bit registers which can be manipulated as a 16-bit unit. MK0 can be manipulated in 8 bit units using MK0L and MK0H, and similarly MK1 can be manipulated using MK1L and MK1H.

In addition, each bit of the MK0 and MK1L can be manipulated individually with a bit manipulation instruction. Each interrupt mask flag controls enabling/disabling of the corresponding interrupt request.

When an interrupt mask flag is set (1), acknowledgment of the corresponding interrupt request is disabled.

When an interrupt mask flag is cleared (0), the corresponding interrupt request can be acknowledged as a vectored interrupt or macro service request.

Each interrupt mask flag in the MK0 and MK1 is the same flag as the interrupt mask flag in the interrupt control register. The MK0 and MK1 are provided for en bloc control of interrupt masking.

After RESET input, the MK0 and MK1 are set to FFFFH, and all maskable interrupts are disabled.

Figure 16-2. Format of Interrupt Mask Registers (MK0, MK1)

<Byte access>

Address : 0FFACH-0FFAFH				On res	set : FFH	H F	R/W	
	1	6	5	4	3	2	1	0
MK0L	PMK4	PMK3	PMK2	PMK1	PMK0	OVMK4	OVMK1	OVMK0
MK0H	CMMK31	CMMK30	CMMK21	CMMK20	CMMK11	CMMK10	PMK6	PMK5
MK1L	STMK2	SRMK2	SERMK2	STMK	SRMK	SERMK	CMMK41	CMMK40
MK1H	1	1	1	1	1	1	1	ADMK

∞×MKn	Enables or Disables Interrupt Request
0	Enables interrupt processing
1	Disables interrupt processing

<Word access>

Address : 0FFACH, 0FFAEH				On re	set : FF	R/W		
	(15)	14	(13)	12	1	10	9	8
MK0	CMMK31	CMMK30	CMMK21	CMMK20	CMMK11	CMMK10	PMK6	PMK5
	\overline{O}	6	5	4	3	2	1	0
	PMK4	PMK3	PMK2	PMK1	PMK0	OVMK4	OVMK1	OVMK0
MK1	15	14	13	12	11	10	9	8
	1	1	1	1	1	1	1	ADMK
	\bigcirc	6	5	4	3	2	1	0
	STMK2	SRMK2	SERMK2	STMK	SRMK	SERMK	CMMK41	CMMK40

××MKn	Enables or Disables Interrupt Request
0	Enables interrupt processing
1	Disables interrupt processing

16.3.3 In-service priority register (ISPR)

The ISPR shows the priority level of the maskable interrupt currently being serviced and the non-maskable interrupt being processed. When a maskable interrupt request is acknowledged, the bit corresponding to the priority of that interrupt request is set (1), and remains set until the service program ends. When a non-maskable interrupt is acknowledged, the bit corresponding to the priority of that non-maskable interrupt is set (1), and remains set until the service program ends.

When an RETI instruction or RETCS instruction is executed, the bit, among those set (1) in the ISPR, that corresponds to the highest-priority interrupt request is automatically cleared (0) by hardware.

The contents of the ISPR are not changed by execution of an RETB or RETCSB instruction.

RESET input clears the ISPR register to 00H.

Address : 0FFA8H		On reset : 00H		R				
	7	6	5	4	3	2	1	0
ISPR	NMIS	WDTS	0	0	ISPR3	ISPR2	ISPR1	ISPR0
		NMIS	NMI Processing Status					
		0	NMI interrupt is not accepted.					
		1	NMI interrupt is accepted					
		WDTS	Watchdog Timer Interrupt Processing Status					
		0	Watchdog timer interrupt is not accepted.					
		1	Watchdog timer interrupt is accepted.					
		ISPRn	Priority level (n = 0 to 3)					
		0	Interrupt of priority level n is not accepted.					
		1	Interrupt of priority level n is accepted.					

Figure 16-3. Format of In-Service Priority Register (ISPR)

Caution The in-service priority register (ISPR) is a read-only register. The microcontroller may malfunction if this register is written.

16.3.4 Interrupt mode control register (IMC)

The IMC contains the PRSL flag. The PRSL flag specifies enabling/disabling of nesting of maskable interrupts for which the lowest priority level (level 3) is specified.

When the IMC is manipulated, the interrupt disabled state (DI state) should be set first to prevent misoperation.

The IMC can be read or written to with an 8-bit manipulation instruction or bit manipulation instruction.

RESET input sets the IMC register to 80H.

Figure 16-4. Format of Interrupt Mode Control Register (IMC)

Address : 0FFAAH			On rese	et : 80H	R			
	7	6	5	4	3	2	1	0
IMC	PRSL	0	0	0	0	0	0	0

1					
	PRSL	Controls Nesting of Maskable Interrupt			
		(lowest level)			
	0	Interrupts with level 3 (lowest level) can be			
		nested.			
	1	Nesting of interrupts with level 3 (lowest level)			
		is disabled.			

16.3.5 Watchdog timer mode register (WDM)

The PRC bit of the WDM specifies the priority of NMI pin input non-maskable interrupts and watchdog timer overflow non-maskable interrupts.

The WDM can be written to only by a dedicated instruction. This dedicated instruction, MOV WDM, #byte, has a special code configuration (4 bytes), and a write is not performed unless the 3rd and 4th bytes of the operation code are mutual complements.

If the 3rd and 4th bytes of the operation code are not complements, a write is not performed and an operand error interrupt is generated. In this case, the return address saved in the stack area is the address of the instruction that was the source of the error, and thus the address that was the source of the error can be identified from the return address saved in the stack area.

If recovery from an operand error is simply performed by means of an RETB instruction, an endless loop will result.

As an operand error interrupt is only generated in the event of an inadvertent program loop (with the NEC Electronics assembler, RA78K4, only the correct dedicated instruction is generated when MOV WDM, #byte is written), system initialization should be performed by the program.

Other write instructions (MOV WDM, A, AND WDM, #byte, SET1 WDM.7, etc.) are ignored and do not perform any operation. That is, a write is not performed to the WDM, and an interrupt such as an operand error interrupt is not generated.

The WDM can be read at any time by a data transfer instruction.

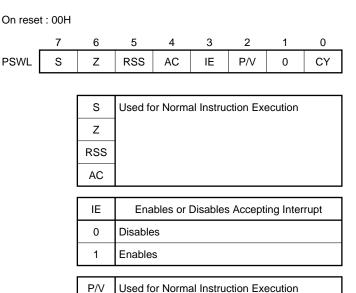
RESET input clears the WDM register to 00H.

Figure 16-5. Format of Watchdog Timer Mode Register (WDM)

Address : 0FFC2H			On reset : 00H		R/	R/W			
	7	6	5	4	3	2	1	0	
WDM	RUN	0	0	PRC	0	WDI2	WDI1	0	
		RUN Specifies Operation of Watchdog Timer					r		
			(refer to Figure 12-2).						
	PRC Priority of Watchdog Timer Interrupt Reques						equest		
		0	Watchdog timer interrupt request						
			< NMI pin input interrupt request						
		1	Watchdog timer interrupt request						
			> NMI pin input interrupt request						
		WDI2	WDI1 Specifies count clock of watchdog					bog	
				timer (mer (refer to Figure 12-2).				

Caution The watchdog timer mode register (WDM) can be written only by using a dedicated instruction (MOV WDM, #byte).

16.3.6 Program status word (PSW)


The PSW is a register that holds the current status regarding instruction execution results and interrupt requests. The IE flag that sets enabling/disabling of maskable interrupts is mapped in the low-order 8 bits of the PSW (PSWL).

PSWL can be read or written to with an 8-bit manipulation instruction, and can also be manipulated with a bit manipulation instruction or dedicated instruction (EI/DI).

When a vectored interrupt is acknowledged or a BRK instruction is executed, PSWL is saved to the stack and the IE flag is cleared (0). PSWL is also saved to the stack by the PUSH PSW instruction, and is restored from the stack by the RETI, RETB and POP PSW instructions.

When context switching or a BRKCS instruction is executed, PSWL is saved to a fixed area in the register bank, and the IE flag is cleared (0). PSWL is restored from the fixed area in the register bank by an RETCSI or RETCSB instruction. RESET input clears PSWL to 00H.

CY

16.4 Software Interrupt Acknowledgment Operations

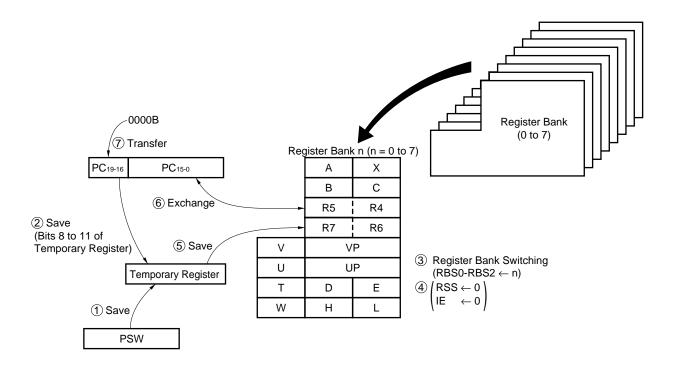
A software interrupt is acknowledged in response to execution of a BRK or BRKCS instruction. Software interrupts cannot be disabled.

16.4.1 BRK instruction software interrupt acknowledgment operation

When a BRK instruction is executed, the program status word (PSW), program counter (PC) are saved in that order to the stack, the IE flag is cleared (0), the vector table (003EH/003FH) contents are loaded into the low-order 16 bits of the PC, and 0000B into the high-order 4 bits, and a branch is performed (the start of the service program must be in the base area).

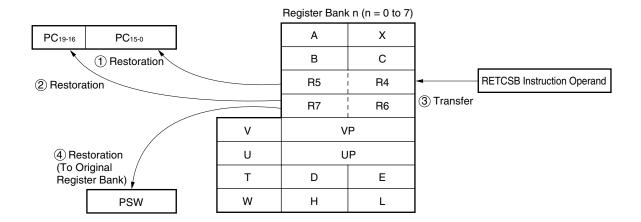
The RETB instruction must be used to return from a BRK instruction software interrupt.

Caution The RETI instruction must not be used to return from a BRK instruction software interrupt.


16.4.2 BRKCS instruction software interrupt (software context switching) acknowledgment operation

The context switching function can be initiated by executing a BRKCS instruction.

The register bank to be used after context switching is specified by the BRKCS instruction operand.


When a BRKCS instruction is executed, the program branches to the start address of the interrupt service program (which must be in the base area) stored beforehand in the specified register bank, and the contents of the program status word (PSW) and program counter (PC) are saved in the register bank.

The RETCSB instruction is used to return from a software interrupt due to a BRKCS instruction. The RETCSB instruction must specify the start address of the interrupt service program for the next time context switching is performed by a BRKCS instruction. This interrupt service program start address must be in the base area.

Caution The RETCS instruction must not be used to return from a BRKCS instruction software interrupt.

Figure 16-8. Return from BRKCS Instruction Software Interrupt (RETCSB Instruction Operation)

16.5 Operand Error Interrupt Acknowledgment Operation

An operand error interrupt is generated when the data obtained by inverting all the bits of the 3rd byte of the operand of an MOV STBC, #byte instruction or LOCATION instruction or an MOV WDM,#byte instruction does not match the 4th byte of the operand. Operand error interrupts cannot be disabled.

When an operand error interrupt is generated, the program status word (PSW) and the start address of the instruction that caused the error are saved to the stack, the IE flag is cleared (0), the vector table value is loaded into the program counter (PC), and a branch is performed (within the base area only).

As the address saved to the stack is the start address of the instruction in which the error occurred, simply writing an RETB instruction at the end of the operand error interrupt service program will result in generation of another operand error interrupt. You should therefore either process the address in the stack or initialize the program by referring to **16.12 Restoring Interrupt Function To Initial State**.

16.6 Non-Maskable Interrupt Acknowledgment Operation


Non-maskable interrupts are acknowledged even in the interrupt disabled state. Non-maskable interrupts can be acknowledged at all times except during execution of the service program for an identical non-maskable interrupt or a non-maskable interrupt of higher priority.

The relative priorities of non-maskable interrupts are set by the PRC bit of the watchdog timer mode register (WDM) (refer to **16.3.5 Watchdog timer mode register (WDM)**).

Except in the cases described in **16.9 When Interrupt Request and Macro Service Are Temporarily Held Pending**, a non-maskable interrupt request is acknowledged immediately. When a non-maskable interrupt request is acknowledged, the program status word (PSW) and program counter (PC) are saved in that order to the stack, the IE flag is cleared (0), the in-service priority register (ISPR) bit corresponding to the acknowledged non-maskable interrupt is set (1), the vector table contents are loaded into the PC, and a branch is performed. The ISPR bit that is set (1) is the NMIS bit in the case of a non-maskable interrupt due to edge input to the NMI pin, and the WDTS bit in the case of watchdog timer overflow.

When the non-maskable interrupt service program is executed, non-maskable interrupt requests of the same priority as the non-maskable interrupt currently being executed and non-maskable interrupts of lower priority than the non-maskable interrupt currently being executed are held pending. A pending non-maskable interrupt is acknowledge after completion of the non-maskable interrupt service program currently being executed (after execution of the RETI instruction). However, even if the same non-maskable interrupt request is generated more than once during execution of the non-maskable interrupt service program, only one non-maskable interrupt is acknowledged after completion of the non-maskable interrupt service program.

- Figure 16-9. Operations of Non-Maskable Interrupt Request Acknowledgment (1/2)
- (a) When a new NMI request is generated during NMI service program execution

(b) When a watchdog timer interrupt request is generated during NMI service program execution (when the watchdog timer interrupt priority is higher (when PRC in the WDM = 1))

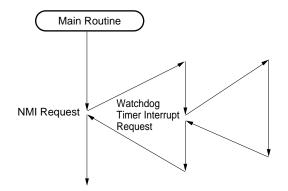
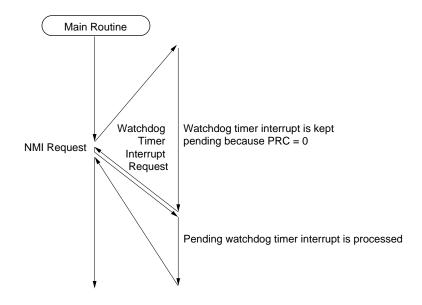
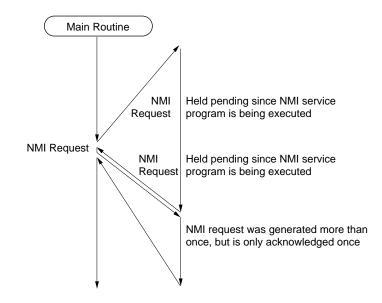




Figure 16-9. Operations of Non-Maskable Interrupt Request Acknowledgment (2/2)

(c) When a watchdog timer interrupt request is generated during NMI service program execution (when the NMI interrupt priority is higher (when PRC in the WDM = 0))

(d) When an NMI request is generated twice during NMI service program execution

- Cautions 1. Macro service requests are acknowledged and serviced even during execution of a non-maskable interrupt service program. If you do not want macro service processing to be performed during a non-maskable interrupt service program, you should manipulate the interrupt mask register in the non-maskable interrupt service program to prevent macro service generation.
 - 2. The RETI instruction must be used to return from a non-maskable interrupt. Subsequent interrupt acknowledgment will not be performed normally if a different instruction is used.
 - 3. Non-maskable interrupts are always acknowledged, except during non-maskable interrupt service program execution (except when a high non-maskable interrupt request is generated during execution of a low-priority non-maskable interrupt service program) and for a certain period after execution of the special instructions shown in 16.9. Therefore, a non-maskable interrupt will be acknowledged even when the stack pointer (SP) value is undefined, in particular after reset release, etc. In this case, depending on the value of the SP, it may happen that the program counter (PC) and program status word (PSW) are written to the address of a write-inhibited special function register (SFR) (refer to Table 3.6 in 3.9 Special Function Registers (SFRs)), and the CPU becomes deadlocked, or an unexpected signal is output from a pin, or the PC and PSW are written to an address in which RAM is not mounted, with the result that the return from the non-maskable interrupt processing program is not performed normally and a software upset occurs. Therefore, the program following RESET release must be as shown below.

CSEG AT 0 DW STRT CSEG BASE

STRT:


LOCATION 0FH; or LOCATION 0H MOVG SP, #imm24

16.7 Maskable Interrupt Acknowledgment Operation

A maskable interrupt can be acknowledged when the interrupt request flag is set (1) and the mask flag for that interrupt is cleared (0). When processing is performed by macro service, the interrupt is acknowledged and processed by macro service immediately. In the case of vectored interruption and context switching, an interrupt is acknowledged in the interrupt enabled state (when the IE flag is set (1)) if the priority of that interrupt is one for which acknowledgment is permitted.

If maskable interrupt requests are generated simultaneously, the interrupt for which the highest priority is specified by the priority specification flag is acknowledged. If the interrupts have the same priority specified, they are acknowledged in accordance with their default priorities.

A pending interrupt is acknowledged when a state in which it can be acknowledged is established. The interrupt acknowledgment algorithm is shown in Figure 16-10.

16.7.1 Vectored interrupt

When a vectored interrupt maskable interrupt request is acknowledged, the program status word (PSW) and program counter (PC) are saved in that order to the stack, the IE flag is cleared (0) (the interrupt disabled state is set), and the inservice priority register (ISPR) bit corresponding to the priority of the acknowledged interrupt is set (1). Also, data in the vector table predetermined for each interrupt request is loaded into the PC, and a branch is performed. The return from a vectored interrupt is performed by means of the RETI instruction.

Caution When a maskable interrupt is acknowledged by vectored interrupt, the RETI instruction must be used to return from the interrupt. Subsequent interrupt acknowledgment will not be performed normally if a different instruction is used.

16.7.2 Context switching

Initiation of the context switching function is enabled by setting (1) the context switching enable flag of the interrupt control register.

When an interrupt request for which the context switching function is enabled is acknowledged, the register bank specified by 3 bits of the lower address (even address) of the corresponding vector table address is selected.

The vector address stored beforehand in the selected register bank is transferred to the program counter (PC), and at the same time the contents of the PC and program status word (PSW) up to that time are saved in the register bank and a branch is made to the interrupt service program.

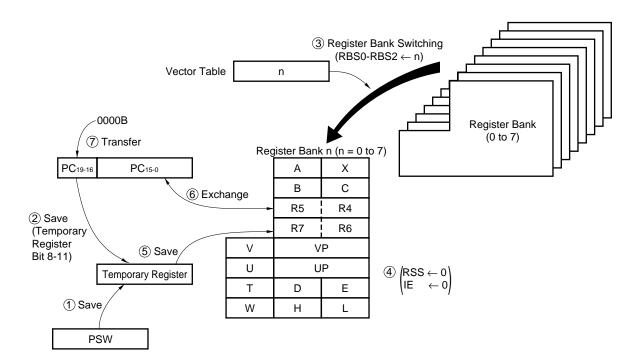
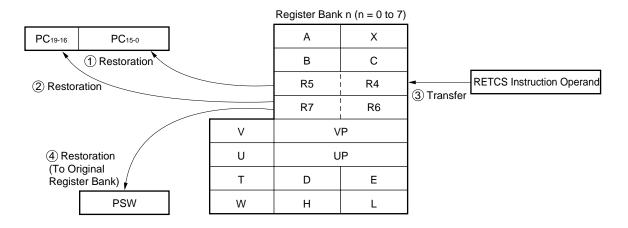



Figure 16-11. Context Switching Operation by Generation of an Interrupt Request

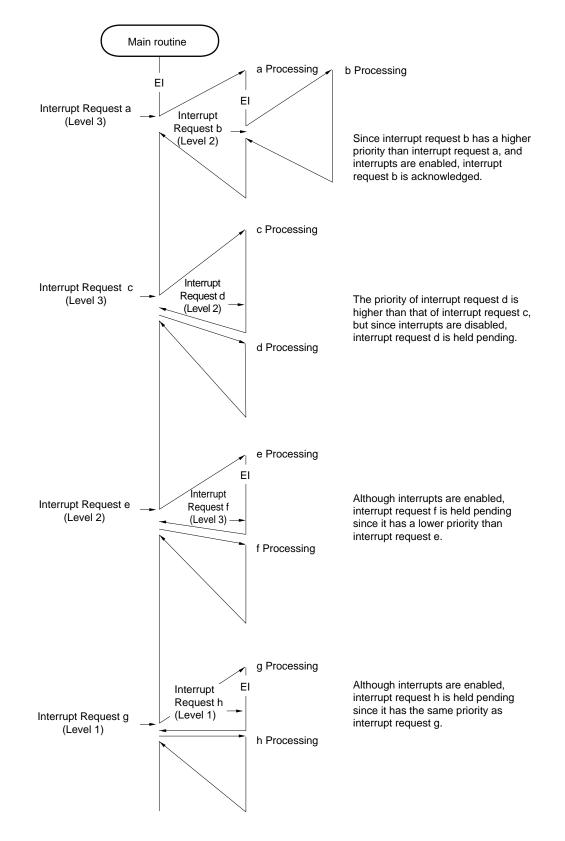
The RETCS instruction is used to return from an interrupt that uses the context switching function. The RETCS instruction must specify the start address of the interrupt service program to be executed when that interrupt is acknowledged next. This interrupt service program start address must be in the base area.

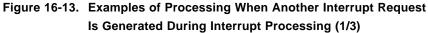
Caution The RETCS instruction must be used to return from an interrupt serviced by context switching. Subsequent interrupt acknowledgment will not be performed normally if a different instruction is used.

Figure 16-12. Return from Interrupt that Uses Context Switching by Means of RETCS Instruction

16.7.3 Maskable interrupt priority levels

The μ PD784046 performs multiple interrupt processing in which an interrupt is acknowledged during processing of another interrupt. Multiple interrupts can be controlled by priority levels.


There are two kinds of priority control, control by default priority and programmable priority control in accordance with the setting of the priority specification flag. In priority control by means of default priority, interrupt service is performed in accordance with the priority preassigned to each interrupt request (default priority) (refer to **Table 16-2**). In programmable priority control, interrupt requests are divided into four levels according to the setting of the priority specification flag. Interrupt requests for which multiple interruption is permitted are shown in Table 16-5.


Since the IE flag is cleared (0) automatically when an interrupt is acknowledged, when multiple interruption is used, the IE flag should be set (1) to enable interrupts by executing an EI instruction in the interrupt processing program, etc.

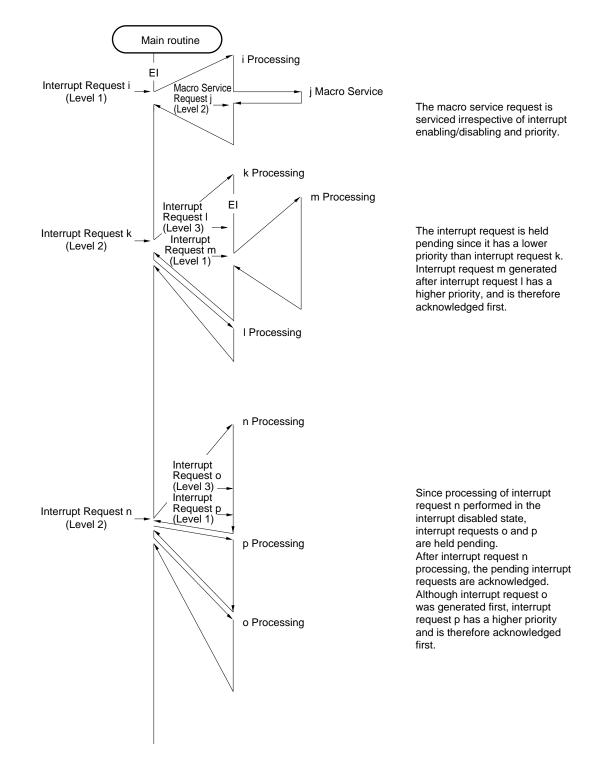

Priority of Interrupt Currently Being Acknowledged	ISPR Value	IE Flag in PSW	PRSL in IMC Register	Acknowledgeable Maskable Interrupts
No interrupt being	00000000	0	×	All macro service only
acknowledged		1	×	All maskable interrupts
3	00001000	0	×	All macro service only
		1	0	All maskable interrupts
		1	1	 All macro service Maskable interrupts specified as priority 0/1/2
2	0000×100	0	×	All macro service only
		1	×	 All macro service Maskable interrupts specified as priority 0/1
1	0000××10	0	×	All macro service only
		1	×	 All macro service Maskable interrupts specified as priority 0
0	0000×××1	×	×	All macro service only
Non-maskable interrupts	1000×××× 0100×××× 1100××××	×	×	All macro service only

Table 16-5. Multiple Interrupt Processing

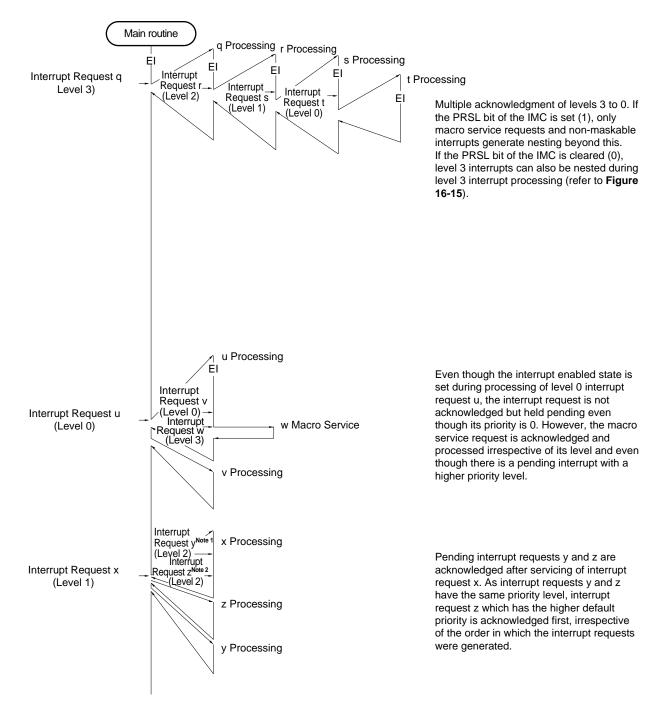

Remark ×: don't care

Figure 16-13. Examples of Processing When Another Interrupt Request Is Generated During Interrupt Processing (2/3)

Figure 16-13. Examples of Processing When Another Interrupt Request Is Generated During Interrupt Processing (3/3)

Notes 1. Low default priority

2. High default priority

- **Remarks 1.** "a" to "z" in the figure are arbitrary names used to differentiate between the interrupt requests and macro service requests.
 - 2. High/low default priorities in the figure indicate the relative priority levels of the two interrupt requests.

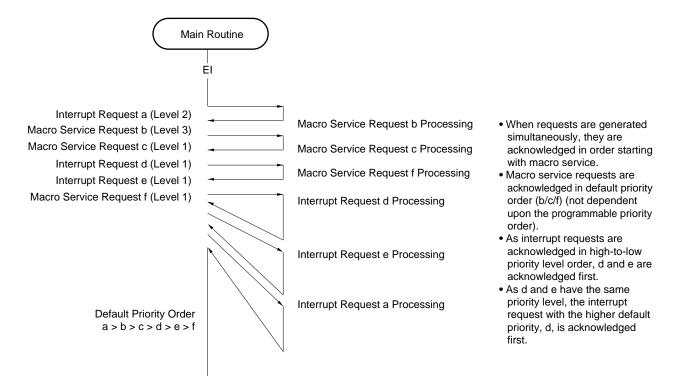
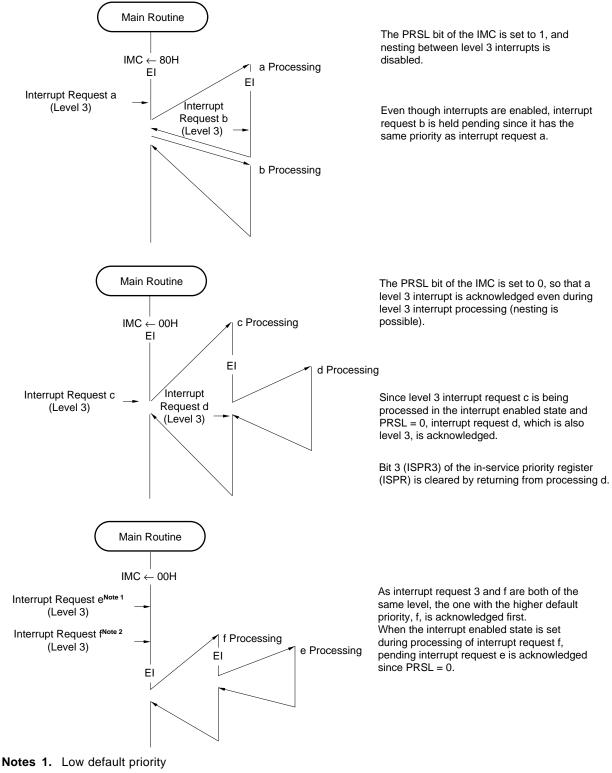
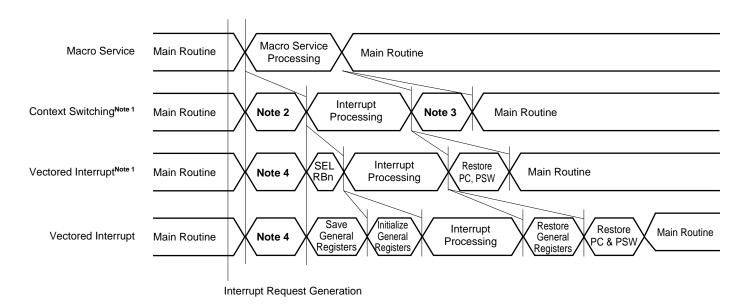



Figure 16-14. Examples of Processing of Simultaneously Generated Interrupts

Remark "a" to "f" in the figure are arbitrary names used to differentiate between the interrupt requests and macro service requests.

Figure 16-15. Differences in Level 3 Interrupt Acknowledgment According to Setting of Interrupt Mode Control Register (IMC)


- - 2. High default priority
- Remarks 1. "a" to "f" in the figure are arbitrary names used to differentiate between the interrupt requests and macro service requests.
 - 2. High/low default priorities in the figure indicate the relative priority levels of the two interrupt requests.

16.8 Macro Service Function

16.8.1 Outline of macro service function

Macro service is one method of processing interrupts. With a normal interrupt, the program counter (PC) and program status word (PSW) are saved, and the start address of the interrupt service program is loaded into the PC, but with macro service, different processing (mainly data transfers) is performed instead of this processing. This enables interrupt requests to be responded to quickly, and moreover, since transfer processing is faster than processing by a program, the processing time can also be reduced.

Also, since a vectored interrupt is generated after processing has been performed the specified number of times, another advantage is that vectored interrupt programs can be simplified.

Notes 1. When register bank switching is used, and an initial value has been set in the register beforehand

- 2. Register bank switching by context switching, saving of PC and PSW
- 3. Register bank, PC and PSW restoration by context switching
- 4. PC and PSW saved to the stack, vector address loaded into PC

16.8.2 Types of macro service

Macro service can be used with the 25 kinds of interrupt shown in Table 16-6 (22 of which can be used simultaneously). There are seven kinds of operation mode, which can be used to suit the application.

Default Priority	Interrupt Request Generation Source	Generating Unit	Macro Service Control Word Address
0 (highest)	INTOV0 (overflow of timer 0)	Timer 0	0FE06H
1	INTOV1 (overflow of timer 1)	Timer 1	0FE08H
2	INTOV4 (overflow of timer 4)	Timer 4	0FE0AH
3	INTP0 (pin input edge detection)	Edge detection	0FE0CH
	INTCC00 (TM0-CC00 match signal generation)	Timer 0	
4	INTP1 (pin input edge detection)	Edge detection	0FE0EH
	INTCC01 (TM0-CC01 match signal generation)	Timer 0	
5	INTP2 (pin input edge detection)	Edge detection	0FE10H
	INTCC002 (TM0-CC02 match signal generation)	Timer 0	
6	INTP3 (pin input edge detection)	Edge detection	0FE12H
	INTCC03 (TM0-CC03 match signal generation)	Timer 0	
7	INTP4 (pin input edge detection)	Edge detection	0FE14H
8	INTP5 (pin input edge detection)	Edge detection	0FE16H
9	INTP6 (pin input edge detection)	Edge detection	0FE18H
10	INTCM10 (TM1-CM10 match signal generation)	Timer 1	0FE1AH
11	INTCM11 (TM1-CM11 match signal generation)	Timer 1	0FE1CH
12	INTCM20 (TM2-CM20 match signal generation)	Timer/counter 2	0FE1EH
13	INTCM21 (TM2-CM21 match signal generation)	Timer/counter 2	0FE20H
14	INTCM30 (TM3-CM30 match signal generation)	Timer/counter 3	0FE22H
15	INTCM31 (TM3-CM31 match signal generation)	Timer/counter 3	0FE24H
16	INTCM40 (TM4-CM40 match signal generation)	Timer 4	0FE26H
17	INTCM41 (TM4-CM41 match signal generation)	Timer 4	0FE28H
18	INTSER (UART0 reception error)	Asynchronous serial interface 0	0FE2AH
19	INTSR (UART0 reception end)		0FE2CH
	INTCSI1 (3-wire serial I/O1 transfer end)	3-wire serial I/O1	
20	INTST (UART0 transmission end)	Asynchronous serial interface 0	0FE2EH
21	INTSER2 (UART2 reception error)	Asynchronous serial interface 2	0FE30H
22	INTSR2 (UART2 reception end)		0FE32H
	INTCSI2 (3-wire serial I/O2 transfer end)	3-wire serial I/O2	
23	INTST2 (UART2 transmission end)	Asynchronous serial interface 2	0FE34H
24 (lowest)	INTAD (A/D conversion end)	A/D converter	0FE36H

Table 16-6. Interrupts for Which Macro Service Can Be Used

Remarks 1. The default priority is a fixed number. This indicates the order of priority when macro service requests are generated simultaneously,

2. The INTSR and INTCSI1 interrupts are generated by the same hardware (they cannot both be used simultaneously). Therefore, although the same hardware is used for the interrupts, two names are provided, for use in each of the two modes. The same applies to INTSR2 and INTCSI2.

The macro service operation is performed in the following seven modes:

(1) Counter mode: EVTCNT

In this mode, each time an interrupt request has been generated, the macro service counter (MSC) is incremented (+1) or decremented (-1). When MSC reaches 00H, a vectored interrupt request is generated. This mode is used to divide the number of times an interrupt request is generated.

(2) Block transfer mode: BLKTRS

Each time an interrupt request has been generated, 1-byte or 1-word data is transferred between a special function register (SFR) pointed to by the SFR pointer (SFR.PTR) and buffer. When data has been transferred the specified number of times, a vectored interrupt request is generated.

The buffer with which data is to be transferred is limited to the addresses 0FD00H through 0FEFFH^{Note} of the main RAM.

This mode is easy to specify and is used for high-speed transfer of a small amount of data.

Note When the LOCATION 0H instruction is executed. FFD00H through FFEFFH when the LOCATION 0FH instruction is executed.

(3) Block transfer mode (with memory pointer): BLKTRS-P

Like the block transfer mode, 1-byte or 1-word data is transferred between an SFR specified by SFR.PTR and buffer each time an interrupt request has been generated, and a vectored interrupt request is generated when data has been transferred the specified number of times.

The buffer with which data is to be transferred is specified by the memory pointer (MEM.PTR) (data can be transferred with the entire 1M-byte memory).

This mode is a general-purpose type of the block transfer mode and is used to transfer a large quantity of data.

(4) Data differential mode: DTADIF

Each time an interrupt request has been generated, the difference between the current value of an SFR specified by SFR.PRT and the "value immediately before" stored in memory is written to the buffer, and the current value is used as the "value immediately before".

When data has been transferred the specified number of times, a vectored interrupt request is generated. The buffer with which data is to be transferred is limited to the main RAM of the addresses 0FD00H through

0FEFFH^{Note}.

This mode is used to measure the cycle of an input pulse, or width of a pulse by using a capture register.

Note When the LOCATION 0H instruction is executed. FFD00H through FFEFFH when the LOCATION 0FH instruction is executed.

(5) Data differential mode (with memory pointer): DTADIF-P

Like the data differential mode, each time an interrupt request has been generated, the difference between the current value of an SFR specified by SFR.PTR and the "value immediately before" stored in memory is written to the buffer, and the current value is used as the "value immediately before".

When data has been transferred the specified number of times, a vectored interrupt request is generated.

The buffer with which data is to be transferred is specified by the memory pointer (MEM.PTR) (the entire 1M-byte memory can be specified).

This mode is a general-purpose type of the data differential mode, and is used to transfer a large quantity of data.

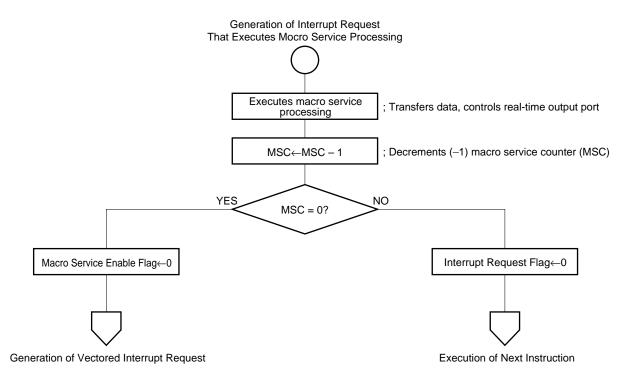
(6) CPU monitor mode 0: SELF0

Each time an interrupt request has been generated, the internal operation of the CPU is checked. If each block operates normally, a value resulting from subtracting 10 from the initial data is transferred to an SFR specified by SFR.PTR.

This mode is used for self-check of the CPU at initialization.

(7) CPU monitor mode 1: SELF1

Each time an interrupt request has been generated, the internal operation of the CPU is checked. If each block operates normally, a value resulting from subtracting 8 from the initial data is transferred to an SFR specified by SFR.PTR.


This mode is used for self-check of the CPU during normal operation.

16.8.3 Basic operation of macro service (except CPU monitor modes 0 and 1)

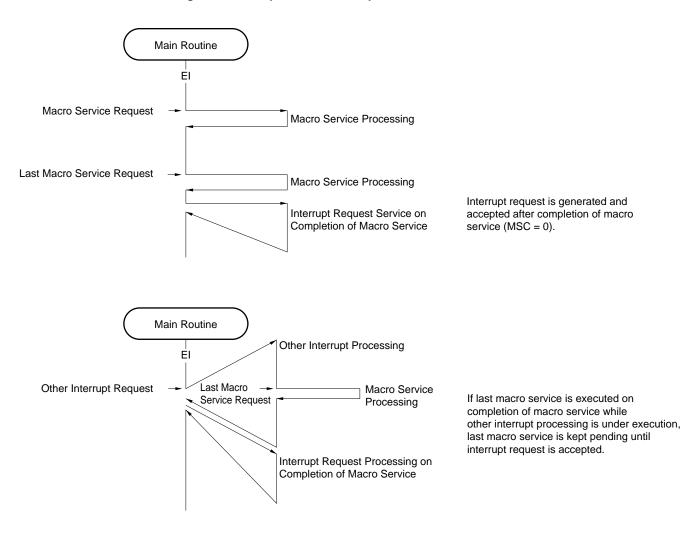
The macro service function is to transfer data between the special function register area and memory space by hardware, using an interrupt request.

When a macro service request is generated, the CPU temporarily stops program execution, and automatically transfers 1/2-byte data between a special function register (SFR) and memory. When data transfer has been completed, an interrupt request flag is reset (0), and the CPU starts program execution again. Data is transferred the number of times set to the macro service counter (MSC) and then a vectored interrupt request is generated.

Unlike other interrupt processing, processing using the macro service function is automatically performed without starting an interrupt processing program. Therefore, operations such as branching to an interrupt service routine, saving/restoring registers, and returning from the interrupt service routine are not performed. This means that the service time of the CPU can be improved and that the number of program steps can be decreased.

When macro service processing is executed, the status before execution of the macro service processing, such as the contents of the general-purpose registers and instruction queue of the CPU, are retained.

The interrupt request that specifies the macro service processing is not affected by the status of the IE flag in the program status word (PSWL). The macro service processing can be executed even in the interrupt disabled status or while an interrupt processing program is executed. It is disabled only when the corresponding bit in the interrupt mask registers (MK0, MK1) is set (1).


If two or more macro service requests are issued at the same time, the sequence in which the macro service requests are processed is determined by the default priority. Until all the macro service requests are processed, instructions are not executed.

The μ PD784046 supports macro service processing for all the internal interrupt requests. Basically, the macro service processing executes the following two operations:

- · Data transfer from memory to special function register (SFR)
- · Data transfer from special function register (SFR) to memory

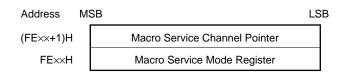
16.8.4 Operation on completion of macro servicing (except CPU monitor modes 0 and 1)

The macro service performs processing the number of times specified during other program is executed. When the processing has been performed the specified number of times (when the macro service counter (MSC) has reached 0), the macro service is completed.

Figure 16-18. Operation on Completion of Macro Service

Caution If data is transmitted with UART by using the macro service, a vectored interrupt request is generated two times (refer to 14.2.8 Transmitting/receiving data with macro service).

16.8.5 Macro service control register


(1) Macro service control word

The macro service control word consists of a macro service mode register that controls the macro service function, and a macro service channel pointer. It is located in the address space from 0FE06H through 0FE37H^{Note} in the main RAM area (refer to **Figure 16-20**).

Figure 6-19 shows the basic configuration of the macro service control word.

Note When the LOCATION 0H instruction is executed. FFE06H through FFE37H when the LOCATION 0FH instruction is executed.

Figure 16-19. Basic Configuration of Macro Service Control Word

The macro service mode register sets a macro service processing mode, and the macro service channel pointer specifies the address of the macro service channel.

To perform macro service processing, a value must be set in advance to the macro service mode register and channel pointer corresponding to the interrupt request that can specify macro service processing.

Figure 16-20. Format of Macro Service Control Word

Reserved Word	Address		Cause
ADCHP	0 F E 3 7 H	Channel Pointer	
ADMMD	0 F E 3 6 H	Mode Register	
STCHP2	0 F E 3 5 H	Channel Pointer	
STMMD2	0 F E 3 4 H	Mode Register	INTST2
SRCHP2/CSICHP2	0 F E 3 3 H	Channel Pointer	┫╎
SRMMD2/CSIMMD2	0 F E 3 2 H	Mode Register	INTSR2/INTCSI2
SERCHP2	0 F E 3 1 H	Channel Pointer	┫╎
SERMMD2	0 F E 3 0 H	Mode Register	INTSER2
STCHP	0 F E 2 F H	Channel Pointer	
STMMD	0 F E 2 E H	Mode Register	
SRCHP/CSICHP1	0 F E 2 D H	Channel Pointer	
SRMMD/CSIMMD1	0 F E 2 C H	Mode Register	INTSR/INTCSI1
SERCHP	0 F E 2 B H	Channel Pointer	
SERMMD	0 F E 2 A H	Mode Register	
CMCHP41	0 F E 2 9 H	Channel Pointer	
CMMMD41	0 F E 2 8 H	Mode Register	INTCM41
CMCHP40	0 F E 2 7 H	Channel Pointer	
CMMMD40	0 F E 2 6 H	Mode Register	INTCM40
CMCHP31	0 F E 2 5 H	Channel Pointer	
CMMMD31	0 F E 2 4 H	Mode Register	INTCM31
CMCHP30	0 F E 2 3 H	Channel Pointer	1
CMMMD30	0 F E 2 2 H	Mode Register	INTCM30
CMCHP21	0 F E 2 1 H	Channel Pointer	
CMMMD21	0 F E 2 0 H	Mode Register	INTCM21
CMCHP20	0 F E 1 F H	Channel Pointer	
CMMMD20	0 F E 1 E H	Mode Register	INTCM20
CMCHP11	0 F E 1 D H	Channel Pointer	
CMMMD11	0 F E 1 C H	Mode Register	INTCM11
CMCHP10	0 F E 1 B H	Channel Pointer	
CMMMD10	0 F E 1 A H	Mode Register	INTCM10
PCHP6	0 F E 1 9 H	Channel Pointer	
PMMD6	0 F E 1 8 H	Mode Register	INTP6
PCHP5	0 F E 1 7 H	Channel Pointer	INTP5
PMMD5	0 F E 1 6 H	Mode Register	
PCHP4	0 F E 1 5 H	Channel Pointer	INTP4
PMMD4	0 F E 1 4 H	Mode Register	
PCHP3	0 F E 1 3 H	Channel Pointer	INTP3
PMMD3	0 F E 1 2 H	Mode Register	
PCHP2	0 F E 1 1 H	Channel Pointer	INTP2
PMMD2	0 F E 1 0 H	Mode Register	
PCHP1	0 F E 0 F H	Channel Pointer	- INTP1
PMMD1	0 F E 0 E H	Mode Register	
PCHP0	0 F E 0 D H	Channel Pointer	INTP0
PMMD0	0 F E 0 C H	Mode Register	
OVCHP4	0 F E 0 B H	Channel Pointer	INTOV4
OVMMD4	0 F E 0 A H	Mode Register	
OVCHP1	0 F E 0 9 H	Channel Pointer	
OVMMD1	0 F E 0 8 H	Mode Register	_
OVCHP0	0 F E 0 7 H	Channel Pointer	
OVMMD0	0 F E 0 6 H	Mode Register	

(2) Macro service mode register

The macro service mode register is an 8-bit register that specifies the operation of the macro service. This register is mapped to the main RAM area as a part of the macro service control word (refer to **Figure 16-19**)

16.8.6 Macro service mode

The operation of the macro service is specified by using the macro service mode register. The macro service mode is specified by the low-order 6 bits of the macro service mode register, and is divided into groups 0 to 2.

- Group 0 ... Type with only control word and without channel
- Group 1 ... Type with both control word and channel
- Group 2 ... Macro service for monitoring CPU

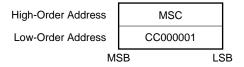
The high-order 2 bits of the macro service mode register of groups 0 and 1 function as a subcommand (refer to **Table 16-7**).

16.8.7 Operation of macro service

The operation of the macro service is performed in the following seven modes:

Group	Macro Service Mode Register	Function	
Group 0	CC000001	Counter mode	EVTCNT
Group 1	CC010011	Block transfer mode	BLKTRS
	CC010100	Block transfer mode (with memory pointer)	BLKTRS-P
	10011001	Data differential mode	DTADIF
	10011010	Data differential mode (with memory pointer)	DTADIF-P
Group 2	10101011	CPU monitor mode 0	SELF0
	10001011	CPU monitor mode 1	SELF1

Table 16-7. Classification of Macro Service Mode


The most significant bit (MSB) C of the macro service mode registers for BLKTRS and BLKTRS-P indicates the length of the data to be handled.

- When C = 0: byte data
- When C = 1: word data

BLKTRS and BLKTRS-P are expressed here in terms of byte buffers. When word data is specified, read byte buffer as word buffer.

(1) Counter mode: EVCNT

[Macro service control word]

[Operation]

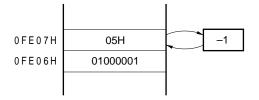
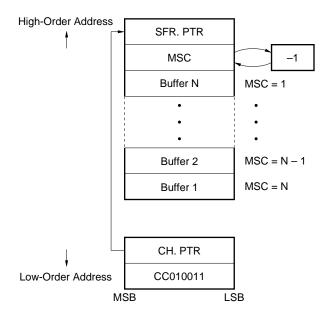

Increments (+1) or decrements (-1) the macro service counter (MSC) each time a macro service has been generated. When the value of MSC has reached 00H (overflow), a vectored interrupt request is generated.

Table 16-8. Specifying Operation of Counter Mode

сс	Operation
00	Increment
01	Decrement
10	Setting prohibited
11	

In this mode, the macro service function serves as a counter that divides the number of times the interrupt request is generated.

Example To divide the number of times the INTOV0 interrupt request has been generated by five by using the macro service



[Usage]

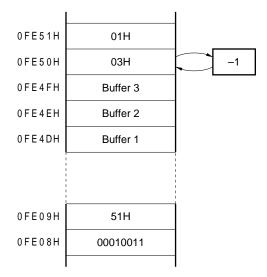
Event counter, measurement of number of times of capture

(2) Block transfer mode: BLKTRS

[Macro service control word]

[Operation]

Specifies an SFR pointer (SFR.PTR) by using a channel pointer (CH.PTR). Addresses a buffer by using CH.PTR and the macro service counter (MSC).


Data is transferred between the SFR specified by SFR.PTR and buffer, starting from buffer 1.

Each time transfer has been completed, MSC is decremented (-1). When MSC has reached 0, a vectored interrupt request is generated.

Table 16-9.	Specifying	Operation in	n Block	Transfer	Mode
-------------	------------	---------------------	---------	----------	------

СС	Operation	Transfer Data	Buffer Address
00	$Buffer \gets SFR$	Byte	(Contents of CH.PTR) – (Contents of MSC) – 1
01	$SFR \gets buffer$		
10	$Buffer \gets SFR$	Word	(Contents of CH.PTR) – (Contents of MSC \times 2) – 1
11	$SFR \gets buffer$		

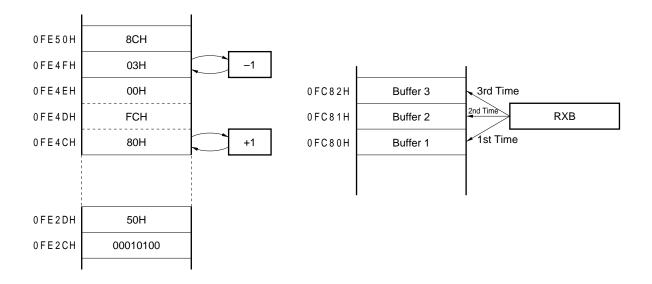
Example To transfer the contents of port 1 (P1) (0FF01H) to a buffer by using the INTOV1 interrupt request

[Usage]

Data transmission/reception with serial interface

(3) Block transfer mode (with memory pointer): BLKTRS-P

[Macro service control word]

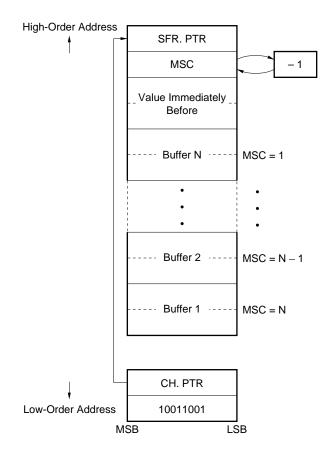

[Operation]

An SFR pointer (SFR.PTR) is specified by a channel pointer (CH.PTR). Data is transferred between an SFR specified by the SFR.PTR and the buffer addressed by the memory pointer (MEM.PTR), starting from buffer 1.

On completion of transferring byte data, the MEM.PTR is incremented (+1). On completion of transferring word data, the MEM.PTR is incremented (+2). Each time transfer has been completed, the macro service counter (MSC) is decremented (-1). When MSC = 0, a vectored interrupt request is generated.

СС	Operation	Transfer Data
00	$Buffer \gets SFR$	Byte
01	$SFR \gets buffer$	
10	$Buffer \gets SFR$	Word
11	$SFR \gets buffer$	

Example To transfer the contents of the serial receive buffer: UART0 (RXB) (0FF8CH) to a buffer by using the INTSR interrupt request



[Usage]

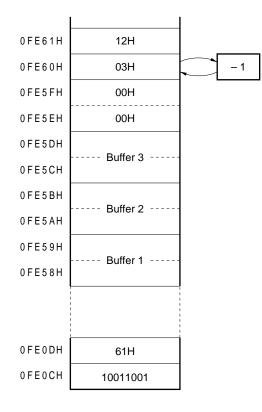
Data transmission/reception with serial interface

(4) Data differential mode: DTADIF

[Macro service control word]

[Operation]

An SFR pointer (SFR.PTR) is specified by a channel pointer (CH.PTR), and a buffer is addressed by the CH.PTR and macro service counter (MSC).


The difference between the current value of the SFR (including capture registers) specified by the SFR.PTR and the "value immediately before" is written to the buffer. This current value of the SFR is used as the "value immediately before". Writing data is started from buffer 1.

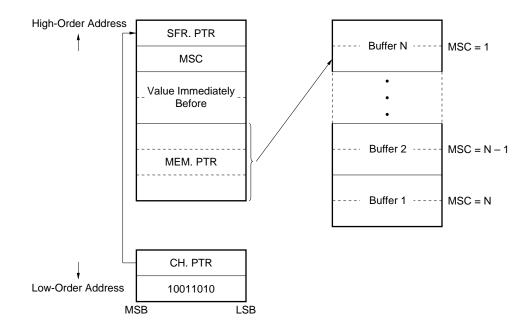
Each time data has been written, the MSC is decremented (-1). When MSC = 0, a vectored interrupt request is generated.

The buffer address is determined as follows:

(Buffer address) = (Contents of CH.PTR) – (Contents of MSC \times 2) – 3

Example To write the difference between the capture/compare register 00 (CC00) (0FF12H) and the "value immediately before) to the buffer by using the INTP0 input signal as a trigger. The cycle of the INTP0 input signal is measured by using the difference in the vectored interrupt processing routine.

[Usage]


To measure cycles and pulse widths by using a capture register

Cautions 1. Do not clear the macro service counter (MSC) to 00H.

- 2. Initialize the "value immediately before" (with dummy data) in advance.
- 3. Only a 16-bit SFR can be specified by the SFR pointer (SFR.PTR).

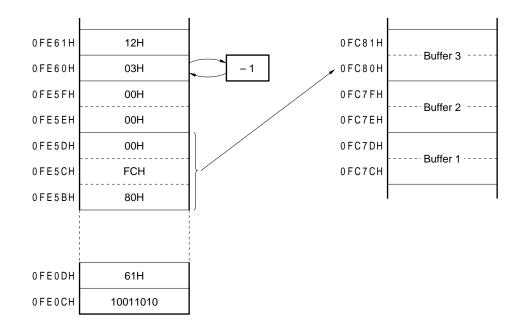
(5) Data differential mode (with memory pointer): DTADIF-P

[Macro service control word]

[Operation]

An SFR pointer (SFR.PTR) is specified by a channel pointer (CH.PTR), and a buffer is addressed by the memory pointer (MEM.PTR) and macro service counter (MSC).

The difference between the current value of the SFR (including capture registers) specified by the SFR.PTR and the "value immediately before" is written to the buffer. This current value of the SFR is used as the "value immediately before". Writing data is started from buffer 1.


Each time data has been written, the MSC is decremented (-1). When MSC = 0, a vectored interrupt request is generated.

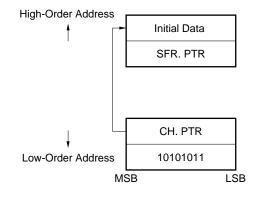
The MEM.PTR is not affected.

The buffer address is determined as follows:

(Buffer address) = (Contents of MEM.PTR) – (Contents of MSC \times 2) + 2

Example To write the difference between the capture/compare register 00 (CC00) (0FF12H) and the "value immediately before" to the buffer by using the INTP0 input signal as a trigger. The cycle of the INTP0 input signal is measured by using the difference in the vectored interrupt routine.

[Usage]


To measure cycles and pulse widths by using a capture register

Cautions 1. Do not clear the macro service counter (MSC) to 00H.

- 2. Initialize the "value immediately before" (with dummy data) in advance.
- 3. Only a 16-bit SFR can be specified by the SFR pointer (SFR.PTR).

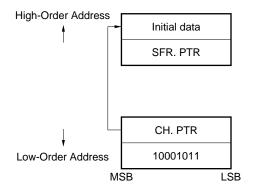
(6) CPU monitor mode 0: SELF0

[Macro service control word]

[Operation]

Checks the internal operation of the CPU. The items to be checked are as follows:

- Writing to program status word (PSW)
- Stack pointer (SP)
- Main RAM
- Main RAM addressing
- Compare operation


If the CPU is operating normally, the value resulting from subtracting 10 from the initial data is transferred to an SFR specified by the SFR pointer (SFR.PTR). If an abnormality of the CPU is detected, a value different from that transferred during normal operation is transferred.

After completion of this macro service, the contents of the main RAM and the value of SP are not destroyed, but the value of PSW is set to 0x00H.

Therefore, this macro service must be executed when initialization is performed. After that, use CPU monitor mode 1 to be explained next.

(7) CPU monitor mode 1: SELF1

[Macro service control word]

[Operation]

Checks the internal operation of the CPU. The items to be checked are as follows:

- Stack pointer (SP)
- Main RAM
- Main RAM addressing
- Compare operation

If the CPU is operating normally, the value resulting from subtracting 8 from the initial data is transferred to an SFR specified by the SFR pointer (SFR.PTR). If an abnormality of the CPU is detected, a value different from that transferred during normal operation is transferred.

After completion of this macro service, the contents of the main RAM and the value of SP are not destroyed.

16.9 When Interrupt Request and Macro Service Are Temporarily Held Pending

When the following instructions are executed, interrupt acknowledgment and macro service processing is deferred for 8 system clock cycles. However, software interrupts are not deferred.

ΕI DI BRK BRKCS RETCS **RETCSB** !addr16 RETI RETB LOCATION 0H or LOCATION 0FH POP PSW POPU post MOV PSWL, A MOV PSWL, #byte MOVG SP, #imm24 Write instruction and bit manipulation instruction to an interrupt control register Note, or the MK0, MK1L, IMC or ISPR register (Excluding BT and BF instructions) PSW bit manipulation instruction (Excluding the BT PSWL. bit, \$addr20, BF PSWL. bit, \$addr20, BT PSWH. bit, \$addr20, BF PSWH. bit, \$addr20, SET1 CY, NOT1 CY, and CLR1 CY instructions)

Note Interrupt control registers: OVIC0, OVIC1, OVIC4, PIC0-PIC6, CMIC10, CMIC11, CMIC20, CMIC21, CMIC30, CMIC31, CMIC40, CMIC41, SERIC, SRIC, CSIIC1, STIC, SERIC2, SRIC2, CSIIC2, STIC2, ADIC

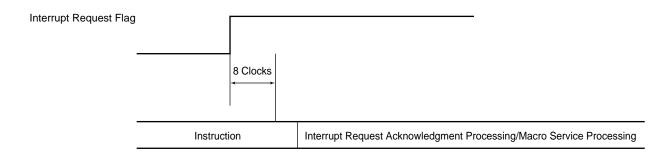
Cautions 1. When an interrupt related register is polled using a BF instruction, etc., the branch destination of that BR instruction, etc., should not be that instruction. If a program is written in which a branch is made to that instruction itself, all interrupts and macro service requests will be held pending until a condition whereby a branch is not made by that instruction arises.

Bad Example	
: LOOP : BF PIC0.7, \$LOOP	All interrupts and macro service requests are held pending until PIC0.7 is 1.
××× :	← Interrupts and macro service requests are not serviced until after execution of the instruction following the BF instruction.
Good Example (1)	
LOOP : NOP	
BF_PIC0.7, \$LOOP :	← Interrupts and macro service requests are serviced after execution of the NOP instruction, so that interrupts are never held pending for a long period.
Good Example (2)	
LOOP : BT PIC0.7, \$NEXT	Using a BTCLR instruction instead of a BT instruction has the advantage that the flag is cleared (0) automatically.
BR \$LOOP NEXT:	← Interrupts and macro service requests are serviced after execution of the BR instruction, so that interrupts are never held pending for a long period.

2. For a similar reason, if problems are caused by a long pending period for interrupts and macro service when instructions to which the above applies are used in succession, a time at which interrupts and macro service requests can be acknowledged should be provided by inserting an NOP instruction, etc., in the series of instructions.

16.10 Instructions Whose Execution Is Temporarily Suspended by an Interrupt or Macro Service

Execution of the following instructions is temporarily suspended by an acknowledgeable interrupt request or macro service request, and the interrupt or macro service request is acknowledged. The suspended instruction is resumed after completion of the interrupt service program or macro service processing.


Temporarily suspended instructions: MOVM, XCHM, MOVBK, XCHBK CMPME, CMPMNE, CMPMC, CMPMNC CMPBKE, CMPBKNE, CMPBKC, CMPBKNC SACW

16.11 Interrupt and Macro Service Operation Timing

Interrupt requests are generated by hardware. The generated interrupt request sets (1) an interrupt request flag. When the interrupt request flag is set (1), a time of 8 clocks (0.5 μ s: fcLk = 16 MHz) is taken to determine the priority, etc.

Following this, if acknowledgment of that interrupt or macro service is enabled, interrupt request acknowledgment processing is performed when the instruction being executed ends. If the instruction being executed is one which temporarily defers interrupts and macro service, the interrupt request is acknowledged after the following instruction (refer to **16.9 When Interrupt Request and Macro Service Are Temporarily Held Pending** for deferred instructions).

Figure 16-21. Interrupt Request Generation and Acknowledgment (Unit: Clocks)

16.11.1 Interrupt acceptance processing time

To accept an interrupt, the time shown in Table 16-11 is required. After this time has elapsed, the interrupt processing routine is executed.

Table 16-11. Interrupt Acceptance Processing Time

(unit: clock)

Interrupt Processing Mode		Vectored Interrupt						Context		
	Vector table		IROM, EMEM16			EMEM8				Switching
Branch Detection	Stack	IRAM	PRAM	EMEM16	EMEM8	IRAM	PRAM	EMEM16	EMEM8	
IROM, PRAM		26	30	30+2n	38+4n	30	34	34+2n	42+4n	22
EMEM16, EMEM8		27	31	31+2n	39+4n	31	35	35+2n	43+4n	23

Remarks 1. IROM : internal ROM (with high-speed fetch specified)

- IRAM : internal high-speed RAM
- PRAM : peripheral RAM (only when the LOCATION 0H instruction is executed in the case of branch destination)
- EMEM16: external memory and internal ROM not specified for high-speed fetch and set to 16-bit bus width
- EMEM8 : external memory and internal ROM not specified for high-speed fetch and set to 8-bit bus width
- 2. n indicates the number of wait states per byte necessary for writing to the stack.
- 3. If the vector table is EMEM16 or EMEM8 and if wait states are inserted when reading the vector table, the processing time is extended. Add 2m in the case of vector interrupt with EMEM8 or m in the case of context switching with EMEM16 to the values in the above table. m is the number of wait states per byte necessary for reading the vector table.
- **4.** If the branch destination is EMEM16 or EMEM8, and if wait states are inserted when reading the instruction at the branch destination, add the number of wait states to the value in the above table.
- 5. If the stack is in PRAM and the value of the stack pointer (SP) is odd, add 8 to the value in the above table. If the value of SP is odd with EMEM16, add 8+2n to the value in the above table.
- 6. The number of wait states is the total number of address wait and access wait states.

16.11.2 Processing time of macro service

The processing time of the macro service differs depending on the type of the macro service, as shown in Table 16-12.

	Type of Macro Servic	Processing Time			
		IRAM	Other Data Area		
Group 0	Counter mode: EVTCNT			18	_
Group 1	Block transfer mode: BLKTRS	24	—		
			Word	25	—
		$SFR \leftarrow buffer$	Byte	24	—
			Word	25	—
	Block transfer mode	$Buffer \gets SFR$	Byte	30	32
	(with memory pointer): BLKTRS-P		Word	31	33
		$SFR \gets buffer$	Byte	30	32
			Word	31	33
	Data differential mode: DTADIF	28	—		
	Data differential mode (with memory	33	35		
Group 2	roup 2 CPU monitor mode 0: SELF0				78
	CPU monitor mode 1: SELF1			_	60

Table 16-12. Macro Service Processing Time

(unit: clock)

Remarks 1. Add the number of clocks specified for each case in the following cases in the other data areas.

- If data size is word and data is located at an odd address in IROM or PRAM: 8 clocks
- If data size is byte in EMEM16 or EMEM8, or if data size is word in EMEM16 and data is located at an even address: n (n is the number of wait states per byte)
- If data size is word in EMEM8, or if data size is word in EMEM16 and data is located at an odd address: 4 + 2n (n is the number of wait states per byte)
- 2. Data is output to an SFR in the CPU monitor modes.
- 3. IRAM : internal high-speed RAM
 - IROM : internal ROM (with high-speed fetch specified)
 - PRAM : peripheral RAM
 - EMEM16: external memory and internal ROM not specified for high-speed fetch and set to 16bit bus width
 - EMEM8 : external memory and internal ROM not specified for high-speed fetch and set to 8bit bus width

16.12 Restoring Interrupt Function To Initial State

If an inadvertent program loop or system error is detected by means of an operand error interrupt, the watchdog timer, NMI pin input, etc., the entire system must be restored to its initial state. In the μ PD784046, interrupt acknowledgment related priority control is performed by hardware. This interrupt acknowledgment related hardware must also be restored to its initial state, otherwise subsequent interrupt acknow-ledgment control may not be performed normally.

A method of initializing interrupt acknowledgment related hardware in the program is shown below. The only way of performing initialization by hardware is by $\overline{\text{RESET}}$ input.

Example IRESL		MOVW MOV :	MK0, #0FFFFH MK1, #0FFFFH	;	Mask all maskable interrupts
		CMP BZ	ISPR, #0 \$NEXT		No interrupt service programs running?
		MOVG	SP, #RETVAL	;	Forcibly change SP location
		RETI		;	Forcibly terminate running interrupt service program, return address = IRESL
	RETVAL	:			
		DW DB	LOWW (IRESL) 0	;	Stack data to return to IRESL with RETI instruction
		DB	HIGHW (IRESL)	;	LOWW & HIGHW are assembler operators for calculating low-order 16 bits & high-order 16 bits respectively of symbol NEXT
	NEXT	:			

• It is necessary to ensure that a non-maskable interrupt request is not generated via the NMI pin during execution of this program.

• After this, on-chip peripheral hardware initialization and interrupt control register initialization are performed.

• When interrupt control register initialization is performed, the interrupt request flags must be cleared (0).

16.13 Cautions

- (1) The in-service priority register (ISPR) is read-only. Writing to this register may result in misoperation.
- (2) The watchdog timer mode register (WDM) can only be written to with a dedicated instruction (MOV WDM/#byte).
- (3) The RETI instruction must not be used to return from a software interrupt caused by a BRK instruction.
- (4) The RETCS instruction must not be used to return from a software interrupt caused by a BRKCS instruction.
- (5) Macro service requests are acknowledged and serviced even during execution of a non-maskable interrupt service program. If you do not want macro service processing to be performed during a non-maskable interrupt service program, you should manipulate the interrupt mask register in the non-maskable interrupt service program to prevent macro service generation.
- (6) The RETI instruction must be used to return from a non-maskable interrupt. Subsequent interrupt acknowledgment will not be performed normally if a different instruction is used.
- (7) Non-maskable interrupts are always acknowledged, except during non-maskable interrupt service program execution (except when a high non-maskable interrupt request is generated during execution of a low-priority non-maskable interrupt service program) and for a certain period after execution of the special instructions shown in 16.9. Therefore, a non-maskable interrupt will be acknowledged even when the stack pointer (SP) value is undefined, in particular after reset release, etc. In this case, depending on the value of the SP, it may happen that the program counter (PC) and program status word (PSW) are written to the address of a write-inhibited special function register (SFR) (refer to **Table 3-6** in **3.9 Special Function Registers (SFR)**), and the CPU becomes deadlocked, or the PC and PSW are written to an unexpected signal is output from a pin, or an address is which RAM is not mounted, with the result that the return from the non-maskable interrupt service program is not performed normally and a software upsets occurs.

Therefore, the program following RESET release must be as follows.

CSEG AT 0 DW STRT CSEG BASE

STRT:

LOCATION 0FH; or LOCATION 0H MOVG SP, #imm24

- (8) When a maskable interrupt is acknowledged by vectored interruption, the RETI instruction must be used to return from the interrupt. Subsequent interrupt related operations will not be performed normally if a different instruction is used.
- (9) The RETCS instruction must be used to return from a context switching interrupt. Subsequent interrupt related operations will not be performed normally if a different instruction is used.
- (10) If data is transmitted with UART by using the macro service, a vectored interrupt is generated two times (refer to 14.2.8 Transmitting/receiving data with macro service).

- (11) Do not clear the macro service counter (MSC) to 00H in the data differential mode and data differential mode (with memory pointer).
- (12) Initialize the "value immediately before" (with dummy data) in advance in the data differential mode and data differential mode (with memory pointer).
- (13) Only a 16-bit SFR can be specified by the SFR pointer (SFR.PTR) in the data differential mode and data differential mode (with memory pointer).
- (14) When an interrupt related register is polled using a BF instruction, etc., the branch destination of that BR instruction, etc., should not be that instruction. If a program is written in which a branch is made to that instruction itself, all interrupts and macro service requests will be held pending until a condition whereby a branch is not made by that instruction arises.

В	ad Example	
LOOP:	: BF PIC0.7, \$LOOP	All interrupts and macro service requests are held pending until PIC0.7 is 1.
	××× E	← Interrupts and macro service requests are not processed until after exe- cution of the instruction following the BF instruction.
LOOP:	Good Example (1) : NOP BF PIC0.7, \$LOOP :	← Interrupts and macro service requests are serviced after execution of the NOP instruction, so that interrupts are never held pending for a long period.
LOOP:	Good Example (2) : BT PIC0.7, \$NEXT BR \$LOOP	 Using a BTCLR instruction instead of a BT instruction has the advantage that the flag is cleared (0) automatically. ← Interrupts and macro service requests are serviced after execution of the BR instruction, so that interrupts are never held pending for a long period.
NEXT:	÷	

(15) For a similar reason to that given in (14), if problems are caused by a long pending period for interrupts and macro service when instructions to which the above applies are used in succession, a time at which interrupts and macro service requests can be acknowledged should be provided by inserting an NOP instruction, etc., in the series of instructions.

CHAPTER 17 LOCAL BUS INTERFACE FUNCTION

The local bus interface function is provided for the connection of external memory (ROM and RAM) and I/Os.

External memory (ROM and RAM) and I/Os are accessed using the RD, LWR, HWR and ASTB pin signals, with pins AD0 to AD15 used as the multiplexed address/data bus and pins A16 to A19 as the address bus.

The basic bus interface timing is shown in Figures 17-4 to 17-9.

In addition, a wait function that is used to interface with a low-speed memory, and a bus sizing function that can change the external data bus width between 8 bits and 16 bits are also provided.

17.1 Memory Extension Function

With the μ PD784046, external memory and I/O extension can be performed by setting the memory extension mode register (MM).

17.1.1 Memory extension mode register (MM)

The MM is an 8-bit register that performs external extension memory control, address wait number specification, and internal fetch cycle control.

The MM register can be read or written to with an 8-bit manipulation instruction or bit manipulation instruction. The MM format is shown in Figure 17-1.

RESET input sets the MM register to 20H.

Figure 17-1. Format of Memory Expansion Mode Register (MM)

Address	Address : 0FFC4H			et : 20H		R/W		
	7	6	5	4	3	2	1	0
MM	IFCH	0	AW	0	ММЗ	MM2	MM1	MM0

IFCH	Fetches Internal ROM
0	Fetches at same speed as external memory.
	All setting of wait control is valid.
1	High-speed fetch.
	Specification of wait control is invalid.
1	High-speed fetch.

AW	Specifies Address Wait
0	Disabled
1	Enabled

MM3	MM2	MM1	MM0	Mode	Port 4	Port 5		Port 6		P90-P93
					(P40 to P47)	(P50 to P57)		(P60 to P63)		
0	0	0	0	Single-chip mode	Port					
0	0	1	1	256-byte extension mode ^{Note 1}	AD0-AD7					P90 : RD P91 : LWR
0	1	0	0	1K-byte extension mode ^{Note 1}	-	AD8, AD9 ^{Note2}	Port			P92 : HWR P93 : ASTB
0	1	0	1	4K-byte extension mode ^{Note 1}		AD8- AD11 ^{Note:}	Port			
0	1	1	0	16K-byte extension mode ^{Note 1}		AD8- AD13 ^N	Port			
0	1	1	1	64K-byte extension mode		AD8-AI	D15			
1	0	0	0	256K-byte extension mode				A16, A17	Port	
1	0	0	1	1M-byte extension mode				A16-A	19	
Other Setting prohibited										

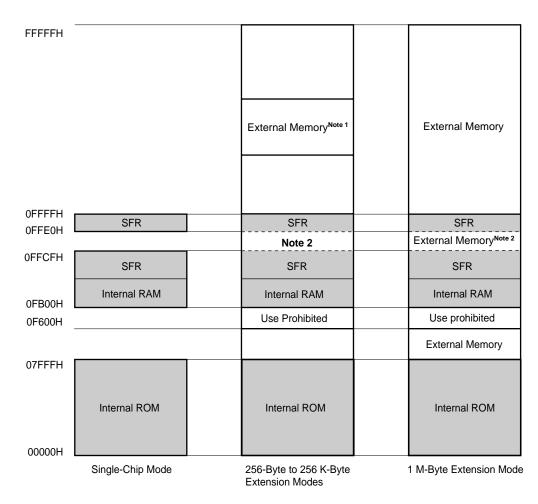
Notes 1. Setting prohibited when external 16-bit bus is specified.

2. Used as an address bus.

17.1.2 Memory map with external memory extension

The memory map when memory extension is used is shown in Figures 17-2 to 17-3. External devices at the same addresses as the internal ROM area, internal RAM area and SFR area (excluding the external SFR area (0FFD0H to 0FFDFH)) cannot be accessed. If an access is made to these addresses, the memory or SFR in the μ PD784046 has access priority and no ASTB signal, \overline{RD} signal, \overline{LWR} , or \overline{HWR} signal is output (these pins remain at the inactive level). The address bus output level remains at the level output prior to this, and the address/data bus output becomes high-impedance.

Except in 1M-byte extension mode, the address output externally is output with the upper part of the address specified by the program masked.


Example 1:

In 256-byte extension mode, when address 54321H is accessed by the program, the output address is 21H.

Example 2:

In 256-byte extension mode, when address 67821H is accessed by the program, the output address is 21H.

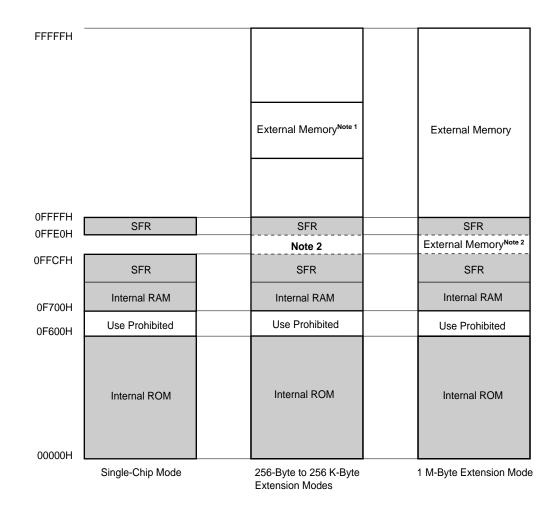
Figure 17-2. µPD784044 Memory Map (1/2)

(a) When LOCATION 0H instruction is executed

Notes 1. Any extension size area in unshaded part

2. External SFR area

Figure 17-2. *µ*PD784044 Memory Map (2/2)


FFFFFH	SFR	SFR	SFR
FFFE0H L	Unix	Note 2	External Memory ^{Note 2}
FFFCFH	SFR	SFR	SFR
FFB00H	Internal RAM	Internal RAM	Internal RAM
FF600H		Use Prohibited	Use Prohibited
		External Memory ^{Note 1}	External Memory
07FFFH 000000H	Internal ROM	Internal ROM	Internal ROM
	Single-Chip Mode	256-Byte to 256 K-Byte Extension Modes	1 M-Byte Extension Mode

(b) When LOCATION 0FH instruction is executed

- **Notes 1.** Any extension size area in unshaded part
 - 2. External SFR area

Figure 17-3. *µ*PD784046 Memory Map (1/2)

(a) When LOCATION 0H instruction is executed

Notes 1. Any extension size area in unshaded part

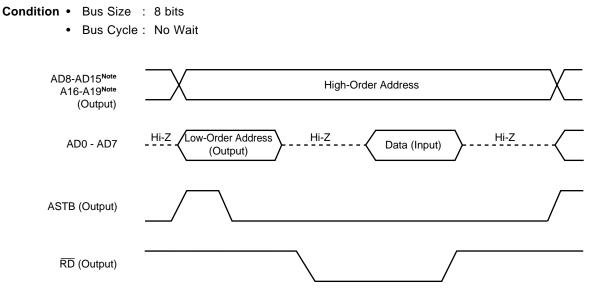
2. External SFR area

Figure 17-3. *µ*PD784046 Memory Map (2/2)

FFFFFH	SFR		SFR	SFR
FFFE0H	-		Note 2	External Memory ^{Note 2}
FFFCFH	SFR		SFR	SFR
FF700H	Internal RAM		Internal RAM	Internal RAM
FF600H			Use Prohibited	Use Prohibited
OFFELI		-	External Memory ^{Note 1}	External Memory
0FFFFH 00000H	Internal ROM		Internal ROM	Internal ROM
	Single-Chip Mode		256-Byte to 256 K-Byte Extension Modes	1 M-Byte Extension Mode

(b) When LOCATION 0FH instruction is executed

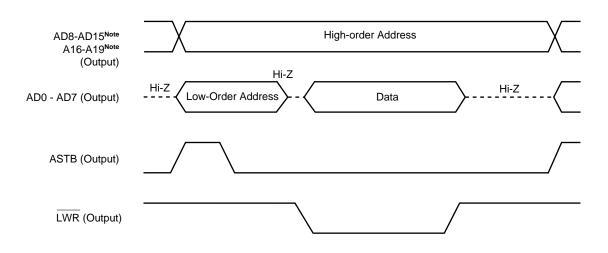
Notes 1. Any extension size area in unshaded part


2. External SFR area

17.1.3 Basic Operation of Local Bus Interface

The local bus interface accesses external memory using ASTB, \overline{RD} , \overline{LWR} , \overline{HWR} , an address/data bus (AD0 to AD15) and address bus (A8 to A19). When the local bus interface is used, port 4 and P90 to P93 automatically operate as AD0 to AD7, \overline{RD} , \overline{LWR} , \overline{HWR} , and ASTB. In ports 5 and 6, only the pins that correspond to the extension memory size operate as address bus pins.

An outline of the memory access timing is shown in Figures 17-4 to 17-9.


Figure 17-4. Read Timing (8 Bits)

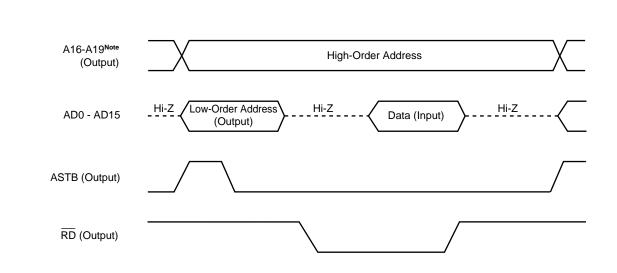

Note The number of address bus pins used depends on the extension mode size.

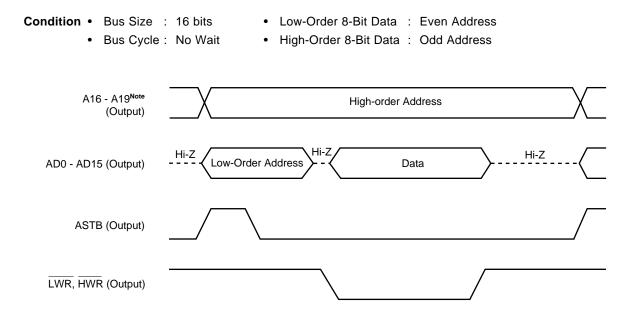
Figure 17-5. Write Timing (8 Bits)

Condition • Bus Size : 8 bits • Bus Cycle : No Wait

Note The number of address bus pins used depends on the extension mode size.

Figure 17-6. Read Timing (16 Bits, Even Address Access)

• Low-Order 8-Bit Data : Even Address


• High-Order 8-Bit Data : Odd Address

Note The number of address bus pins used depends on the extension mode size.

Condition • Bus Size : 16 bits

• Bus Cycle : No Wait

Note The number of address bus pins used depends on the extension mode size.

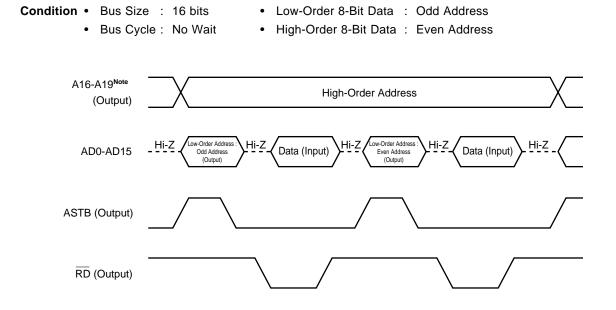
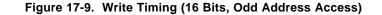
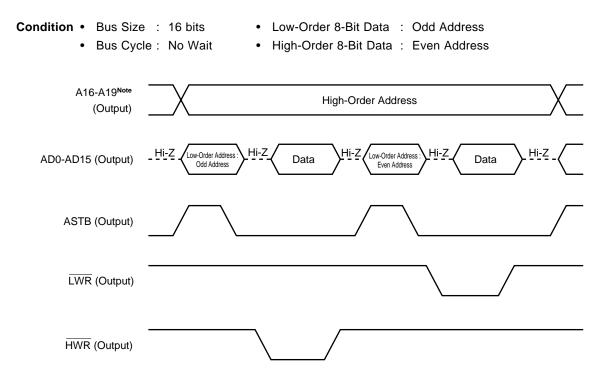




Figure 17-8. Read Timing (16 Bits, Odd Address Access)

Note The number of address bus pins used depends on the extension mode size.

Note The number of address bus pins used depends on the extension mode size.

17.2 Wait Function

When a low-speed memory or I/O is connected externally to the μ PD784046, waits can be inserted in the external memory access cycle.

There are two kinds of wait cycle, an address wait for securing the address decoding time, and an access wait for securing the access time.

17.2.1 Wait function control registers

(1) Memory extension mode register (MM)

The IFCH bit of the MM performs wait control setting for internal ROM accesses, and the AW bit performs address wait setting.

The MM can be read or written to with an 8-bit manipulation instruction. The MM format is shown in Figure 17-10. When $\overrightarrow{\text{RESET}}$ is input, the MM register is set to 20H, the same cycle as for external memory is used for internal ROM accesses, and the address wait function is validated.

Address	: 0FFC	4H	On reset : 20H R/W					
	7	6	5	4	3	2	1	0
MM	IFCH	0	AW	0	MM3	MM2	MM1	MM0

IFCH	Fetches Internal ROM
0	Fetches at same speed as external memory.
	All setting of wait control is valid.
1	High-speed fetch.
	Specification of wait control is invalid.

AW		Specifiess Address Wait						
0	Disable	Disabled						
1	Enable	Enabled						
	1							
MM3	MM2	MM1	MM0	Sets memory extension mode (refer to Figure 17-1).				

Figure 17-10. Format of Memory Extension Mode Register (MM)

(2) Programmable wait control registers (PWC1/PWC2)

The PWC1 and PWC2 specify the number of waits.

PWC1 is an 8-bit register that divides the space from 0 to FFFFH into four, and specifies wait control for each of these four spaces. PWC2 is a 16-bit register that divides the space from 10000H to FFFFH into four, and specifies wait control for each of these four spaces.

The PWC1 can be read or written to with an 8-bit manipulation instruction, and the PWC2 with a 16-bit manipulation instruction. The PWC1 and PWC2 formats are shown in Figures 17-11 and 17-12.

The high-order 8 bits of the PWC2 are fixed at AAH, and therefore ensure that the high-order 8 bits are set to AAH. When RESET is input, the PWC1 is set to AAH, and the PWC2 to AAAAH, and 2-wait insertion is performed on the entire space.

Figure 17-11. Format of Programmable Wait Control Register 1 (PWC1)

Address	s:0FFC	7H	On rese	et : AAH		R/W		
	7	6	5	4	3	2	1	0
PWC1	PW31	PW30	PW21	PW20	PW11	PW10	PW01	PW00
		Valid	PW31		Incort	ed Wait	Dete	A
				PV/30			Cycle,	
		Address			Cycle		Fetch	Cycle
		00C000H-	te	0		0		3
		00FFFFH	-	1	-	1		4
			1	0	_	2		5
			1	1	Time	of low		-
					level i	nput to		
					WAIT	pin		
		Valid	PW21	PW20	Insert	ed Wait	Data	Access
		Address		1 1120	Cycle		Cycle	
		008000H	-	0	Cycle	0	reich	3
		0080000H		1		1		4
		UUBFFFH						
			1	0	<u> </u>	2		5
			1	1		of low		-
						nput to		
					WAIT	pin		
		Valid	PW11	PW10	Insert	ed Wait	Data	Access
		Address	;		Cycle		Cycle Fetch	, Cycle
		004000H-	0	0		0		3
		007FFFH		1		1		4
			1	0		2		5
			1	1	Time	of low		
				'		input to		
					WAIT			
					WAII	ріп		
		Valid	PW01	PW00	Insert	ed Wait		Access
		Address			Cycle		Cycle Fetch	, Cycle
		000000H-	0	0	1	0		3
		003FFFH	0	1	1	1		4
			1	0	1	2		5
			1	1	Time	of low		_
						input to		
					WAIT			
						рш		

Note Except the portion overlapping the internal data area.

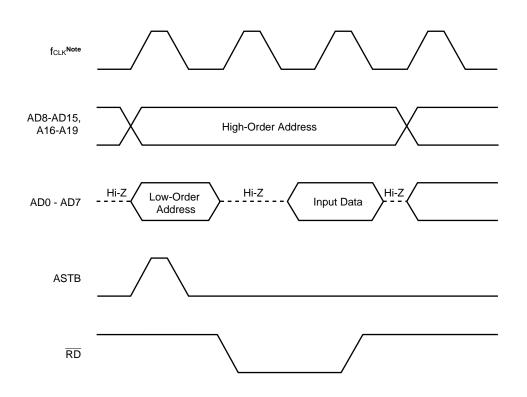
- Cautions 1. The above number of cycles is when no address cycle is appended. If an address cycle is appended, one cycle must be added.
 - 2. No wait cycle is inserted when fetching instructions from the internal ROM or peripheral RAM area at high-speed.
 - 3. Do not insert a wait cycle in the internal ROM area by using the WAIT pin.

Address	: 0FFC	8H	On rese	et : AAA	٩H	R/W		
	15	14	13	12	11	10	9	8
PWC2	1	0	1	0	1	0	1	0
	7	6	5	4	3	2	1	0
	PW71	PW70	PW61	PW60	PW51	PW50	PW41	PW40
		Valid	PW71	PW70		ed Wait	Cycle	Access
		Address			Cycle		Fetch	Cycle
		080000H-		0		0		3
		0FFFFFH	0	1		1		4
			1	0		2		5
			1	1	Time	of low		-
					level i	nput to		
					WAIT	pin		
		Valid	PW61	PW60	Insert	ed Wait		Access
		Address			Cycle		Cycle Fetch	, Cycle
		040000H-	0	0		0		3
		07FFFFH	0	1		1		4
			1	0		2		5
			1	1	Time	of low		-
					level i	nput to		
					WAIT	pin		
		Valid	PW51	PW50	Insert	ed Wait	Data Cycle	Access
		Address			Cycle			Cycle
		020000H-	0	0		0		3
		03FFFFH	0	1		1		4
			1	0		2		5
			1	1		of low		-
					level i	nput to		
					WAIT	pin		
		Valid	PW41	PW40	Insert	ed Wait		Access
		Address			Cycle		Cycle Fetch	, Cycle
		010000H-	0	0		0		3
		01FFFFH	0	1		1		4
			1	0		2		5
			1	1	Time	of low		-
					level i	nput to		
					WAIT	pin		

Figure 17-12. Format of Programmable Wait Control Register 2 (PWC2)

Note Except the portion overlapping the internal data area.

- Cautions 1. The above number of cycles is when no address cycle is appended. If an address cycle is appended, one cycle must be added.
 - 2. No wait cycle is inserted when fetching instructions from the peripheral RAM area.


17.2.2 Address waits

Address waits are used to secure the address decoding time. If the AW bit of the memory extension mode register (MM) is set (1), waits are inserted in every memory access^{Note}. When an address wait is inserted, the high-level period of the ASTB signal is extended by one system clock cycle (62.5 ns: fcLk = 16 MHz).

Note Except for the internal RAM, internal SFRs, and internal ROM during high-speed fetch.

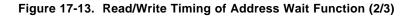
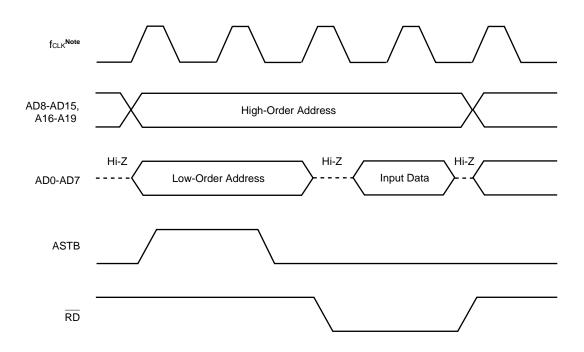

If it is specified that the internal ROM is accessed in the same cycle as the external ROM, an address wait state is inserted even when the internal ROM is accessed.

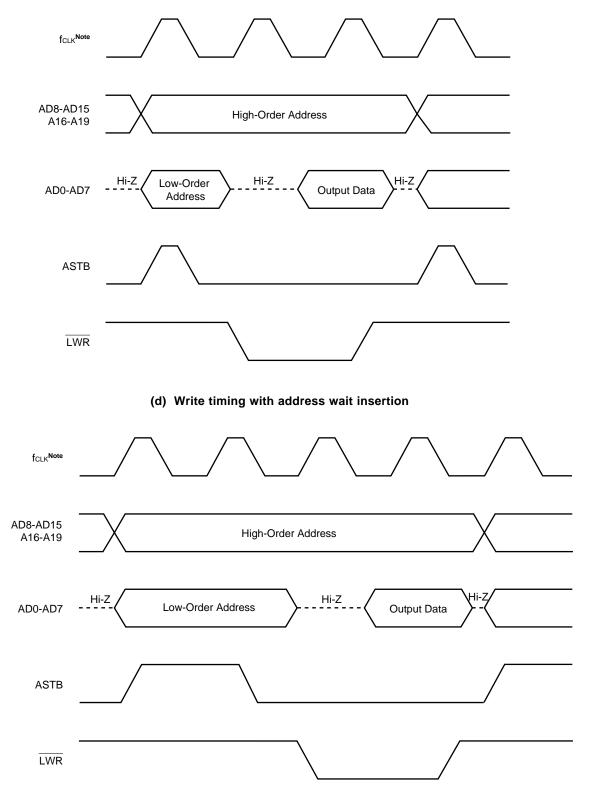
Figure 17-13. Read/Write Timing of Address Wait Function (1/3)



(a) Read timing with no address wait insertion

Note fclk: Internal system clock frequency. This signal is present inside the μ PD784046 only.




(b) Read timing with address wait insertion

Note folk: Internal system clock frequency. This signal is present inside the μ PD784046 only.

Figure 17-13. Read/Write Timing of Address Wait Function (3/3)

Note fcLK: Internal system clock frequency. This signal is present inside the μ PD784046 only.

17.2.3 Access waits

Access waits are inserted in the \overline{RD} , \overline{LWR} , or \overline{HWR} signal low-level period, and extend the low-level period by 1/fclk (62.5 ns: fclk = 16 MHz) per cycle.

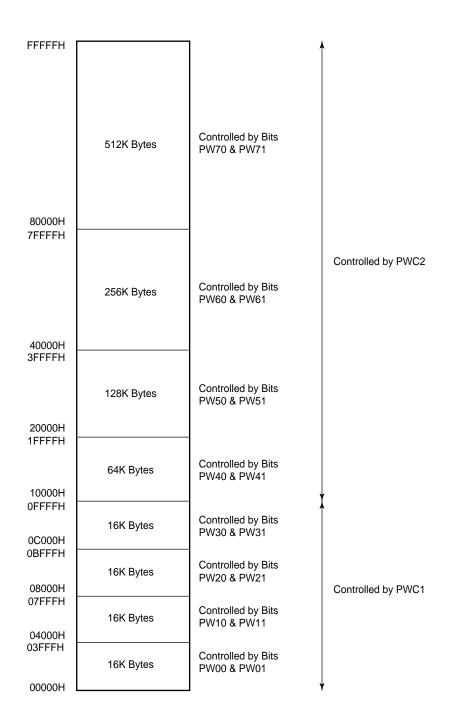
There are two wait insertion methods, using either the programmable wait function that automatically inserts the preset number of cycles, or the external wait function controlled by a wait signal from outside.

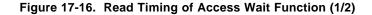
For wait cycle insertion control, the 1 M-byte memory space is divided into eight as shown in Figure 17-15, and control is specified for each space by means of the programmable wait control registers (PWC1/PWC2). Waits are not inserted in accesses to internal ROM or internal RAM using high-speed fetches. In accesses to internal SFRs, waits are inserted at the necessary times regardless of this specification.

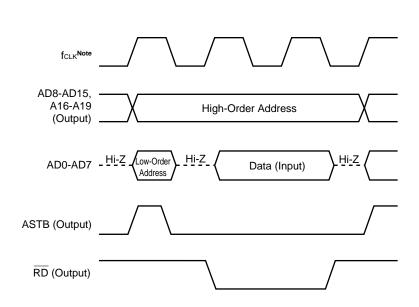
If access operations are specified as being performed in the same number of cycles as for external ROM, waits are inserted also in internal ROM accesses in accordance with the PWC1 settings.

The P94 pin functions as a WAIT input pin when the PMC94 bit of the port 9 mode control register (PMC9) is set (1). The P94 pin operates as a general-purpose I/O port pin when RESET is input (refer to **Figure 17-14**).

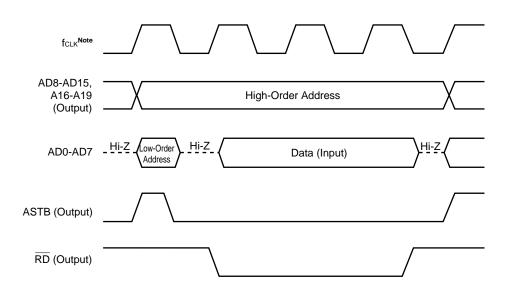
Figure 17-14. Format of Port 9 Mode Control Register (PMC9)

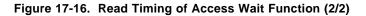

Bus timing in the case of access wait insertion is shown in Figures 17-16 to 17-18.

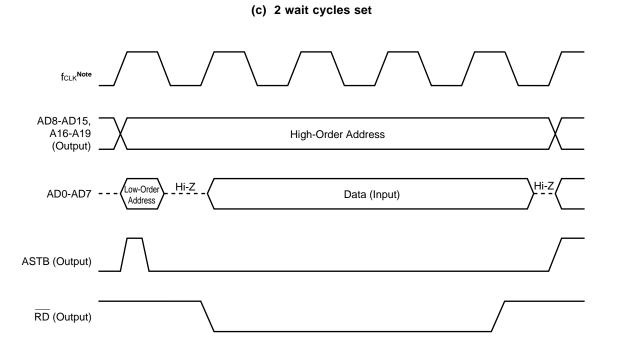

Caution Do not insert a wait cycle in the internal ROM area by using the WAIT pin.


Address	: 0FF49	ЭH	On reset : 00H R/W			R/W		
	7	6	5	4	3	2	1	0
PMC9	0	0	0	PMC94	0	0	0	0

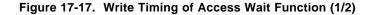
PMC94	Specifies Control Mode of Pin P94					
0	/O port mode					
1	WAIT input mode					

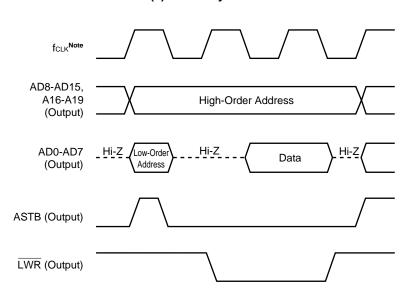




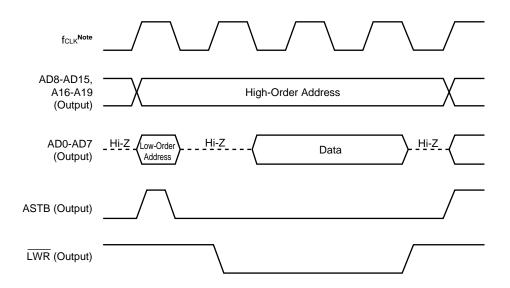

(a) 0 wait cycles set

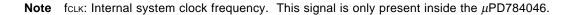
(b) 1 wait cycle set

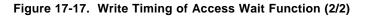


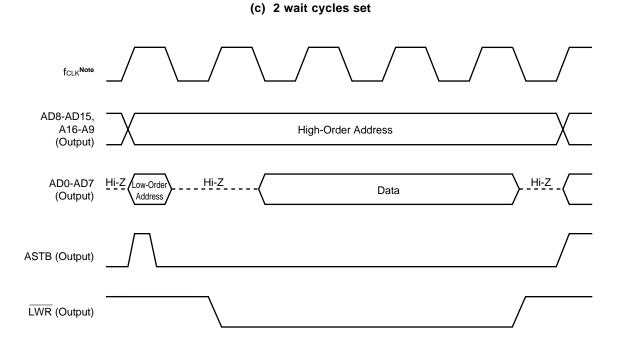

Note folk: Internal system clock frequency. This signal is only present inside the μ PD784046.

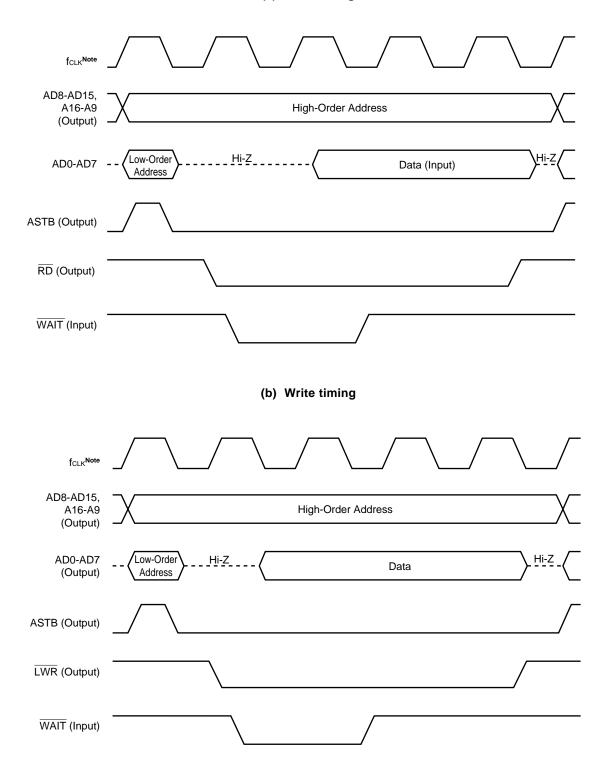



Note fcLK: Internal system clock frequency. This signal is only present inside the μ PD784046.









Note folk: Internal system clock frequency. This signal is only present inside the μ PD784046.

Remark The above figure is an example of the 8-bit bus.

(a) Read timing

Note fcLK: Internal system clock frequency. This signal is only present inside the μ PD784046.

17.3 Bus Sizing Function

The μ PD784046 has a bus sizing function that changes the external data bus width between 8 bits and 16 bits when an external device is connected. By using this function, the 1M-byte memory space can be divided by eight, and the external bus width can be specified in each memory space by using the bus width specification register (BW).

17.3.1 Bus width specification register (BW)

BW is a 16-bit register that specifies the bus width when an external device is connected.

This register cannot be accessed in 8-bit units. Be sure to access it by using a 16-bit data manipulation instruction. Figure 17-19 shows the format of BW

The value of BW differs depending on the setting of the BWD pin after $\overrightarrow{\text{RESET}}$ is input. When BWD = 0, the value of BW is 0000H; when BWD = 1, it is 00FFH.

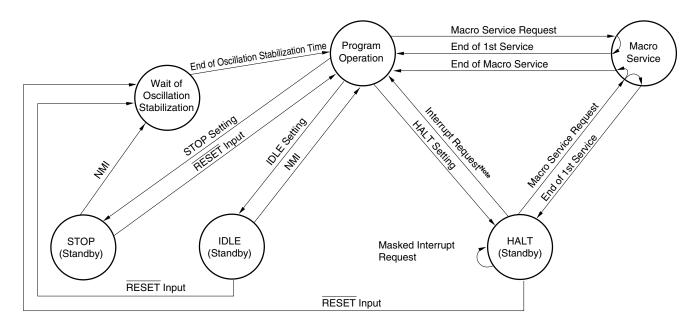
Addres	ddress : 0FFCAH On reset : Note R/W									
	15	14	13	12	11	10	9	8		
BW	0	0	0	0	0	0	0	0		
	7	6	5	4	3	2	1	0		
	BW7	BW6	BW5	BW4	BW3	BW2	BW1	BW0		
		Valid Address	BW7	Spec	cifies ext	ternal da	ata bus v	vidth		
		080000H-	0	8-bit b	ous					
		0FFFFFH	1	16-bit	bus					
		Valid Address	BW6	Spec	cifies ext	ternal da	ata bus v	vidth		
		040000H-	0	8-bit b	bus					
		07FFFFH	1	16-bit	bus					
		Valid Address	BW5	Spee	cifies ext	ternal da	ata bus v	vidth		
		020000H-	0	8-bit b	ous					
		03FFFFH 1 16-bit bus								
		Valid Address	BW4	Specifies external data bus width						
		010000H-	0	8-bit b	8-bit bus					
		01FFFFH	1	16-bit	bus					
		Valid Address	BW3	Spee	cifies ext	ternal da	ata bus v	vidth		
		00C000H-	0	8-bit b	ous					
		00FFFFH	1	16-bit	bus					
		Valid Address	BW2	Spee	cifies ext	ternal da	ata bus v	vidth		
		008000H-	0	8-bit b	ous					
		00BFFFH	1	16-bit	bus					
		Valid Address	BW1	Spec	cifies ext	ternal da	ata bus v	vidth		
	004000			8-bit b	ous					
	007FFFH			16-bit	bus					
		Valid Address	BW0	Spec	cifies ext	ternal da	ata bus v	vidth		
		000000H-	0	8-bit b	bus					
		003FFFH	1	16-bit	bus					

Figure 17-19. Format of Bus Width Specification Register (BW)

Note The value of this register on reset differs depending on the setting of the BWD pin, as follows: BWD = 0: 0000H BWD = 1: 00FFH

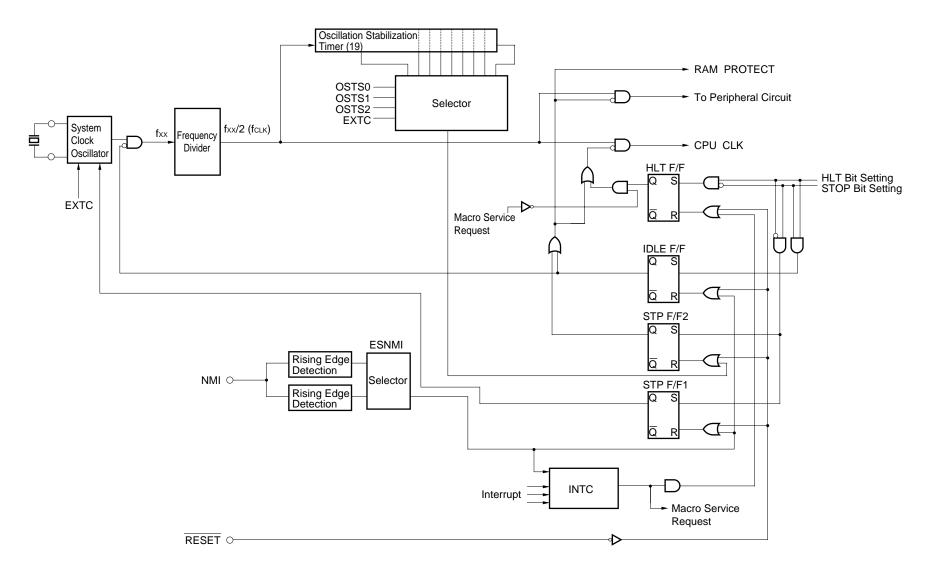
17.4 Cautions

- (1) No wait cycle is inserted when instructions are fetched from the internal ROM or peripheral RAM area at high speeds.
- (2) Do not insert a wait cycle in the internal ROM area by using the $\overline{\text{WAIT}}$ pin.


CHAPTER 18 STANDBY FUNCTION

18.1 Configuration and Function

The μ PD784046 has a standby function that enables the system power consumption to be reduced. The standby function includes three modes as follows:


- HALT mode …… In this mode the CPU operating clock is stopped. Intermittent operation in combination with the normal operating mode enables the total system power consumption to be reduced.
- IDLE mode …… In this mode the oscillator continues operating while the entire remainder of the system is stopped.
 Normal program operation can be restored at a low power consumption close to that of the STOP
 mode and in a time equal to that of the HALT mode.
- STOP mode ···· In this mode the oscillator is stopped and the entire system is stopped. Ultra-low power consumption can be achieved, consisting of leakage current only.

These modes are set by software. The diagram of the standby mode (STOP/IDLE/HALT mode) transition is shown in Figure 18-1, and the block diagram of the standby function in Figure 18-2.

Figure 18-1. Diagram of Standby Mode Transition

- Note Unmasked interrupt request only
- **Remark** Only external input is valid as NMI. The watchdog timer must not be used to release the standby mode (STOP, HALT, or IDLE mode).

CHAPTER 18 STANDBY FUNCTION

18.2 Control Registers

18.2.1 Standby control register (STBC)

The STBC is a register used to control the standby mode.

To prevent entry into the standby mode due to an inadvertent program loop, the STBC register can only be written to with a dedicated instruction. This dedicated instruction, MOV STBC, #byte, has a special code configuration (4 bytes), and a write is only performed if the 3rd and 4th bytes of the operation code are mutual complements.

If the 3rd and 4th bytes of the operation code are not mutual complements, a write is not performed and an operand error interrupt is generated. In this case, the return address saved in the stack area is the address of the instruction that was the source of the error, and thus the address that was the source of the error can be identified from the return address saved in the stack area.

If recovery from an operand error is simply performed by means of an RETB instruction, an endless loop will result.

As an operand error interrupt is only generated in the event of an inadvertent program loop (with the NEC Electronics assembler, RA78K4, only the correct dedicated instruction is generated when MOV STBC, #byte is written), system initialization should be performed by the program.

Other write instructions (MOV STBC, A, AND STBC, #byte, SET1 STBC.7, etc.) are ignored and do not perform any operation. That is, a write is not performed to the STBC, and an interrupt such as an operand error interrupt is not generated.

The STBC can be read at any time by a data transfer instruction.

RESET input sets the STBC register to 30H.

The format of the STBC is shown in Figure 18-3.

Address : 0FFC0H		On reset : 30H		F	R/W			
	7	6	5	4	3	2	1	0
STBC	0	0	1	1	0	0	STP	HLT

Figure 18-3. Standby Control Register (STBC) Format

STP	HLT	Controls CPU Operation Control
0	0	Normal operating mode
0	1	HALT mode
1	0	STOP mode
1	1	IDLE mode

Caution If the STOP mode is used when using external clock input, the EXTC bit of the oscillation stabilization time specification register (OSTS) must be set (1) before setting STOP mode. If the STOP mode is used with the EXTC bit cleared (0) when using external clock input, the μ PD784046 may suffer damage or reduced reliability.

When setting the EXTC bit of OSTS to 1, be sure to input a clock in phase reverse to that of the clock input to the X1 pin, to the X2 pin (refer to 4.3.1 Clock oscillator).

18.2.2 Oscillation stabilization time specification register (OSTS)

The OSTS specifies the oscillator operation and the oscillation stabilization time when STOP mode is released. Set the state of the clock oscillator operation to the EXTC bit of the OSTS. STOP mode can be set when external clock input is used only when the EXTC bit is set (1).

Bits OSTS0 to OSTS2 of the OSTS select the oscillation stabilization time when STOP mode is released. In general, an oscillation stabilization time of at least 40ms should be selected when a crystal resonator is used, and at least 4 ms when a ceramic oscillator is used.

The time taken for oscillation stabilization is affected by the crystal resonator or ceramic resonator used, and the capacitance of the connected capacitor. Therefore, if you want to set a short oscillation stabilization time, you should consult the crystal resonator or ceramic resonator manufacturer.

The OSTS can be read/written only with an 8-bit manipulation instruction.

RESET input clears the OSTS register to 00H.

The format of the OSTS is shown in Figure 18-4.

Figure 18-4. Format of Oscillation Stabilization Time Specification Register (OSTS)

Address : 0FFCFH		On reset : 00H			R/W			
	7	6	5	4	3	2	1	0
OSTS	EXTC	0	0	0	0	OSTS2	OSTS1	OSTS0

EXTC	Selects External Clock
0	X2 pin is open when crystal/ceramic oscillation
	is used or when external clock is used.
1	Input signal in reverse phase to that input to
	X1 pin to X2 pin when external clock is used.

				(fclk = 16 MHz)
EXTC	OSTS2	OSTS1	OSTS0	Selects Oscillation Stabilization Time
0	0	0	0	2 ¹⁹ /fclк (32.8 ms)
0	0	0	1	2 ¹⁸ /fclк (16.4 ms)
0	0	1	0	2 ¹⁷ /fclк (8.19 ms)
0	0	1	1	2 ¹⁶ /fclк (4.10 ms)
0	1	0	0	2 ¹⁵ /fclк (2.05 ms)
0	1	0	1	2 ¹⁴ /fclк (1.02 ms)
0	1	1	0	2 ¹³ /fclк (512 µs)
0	1	1	1	2 ¹² /fclк (256 µs)
1	×	×	×	2 ⁸ /fclк (16 µs)

Remark fclk : internal system clock

- \times : don't care
- Cautions 1. When crystal/ceramic oscillation is used, the EXTC bit of the oscillation stabilization time specification register (OSTS) must be cleared (0) before use. If the EXTC bit is set (1), oscillation will stop.
 - 2. If the STOP mode is used when using external clock input, the EXTC bit must be set (1) before setting STOP mode. If the STOP mode is used with the EXTC bit cleared (0) the μ PD784046 may suffer damage or reduced reliability.

When setting the EXTC bit of OSTS to 1, be sure to input a clock in phase reverse to that of the clock input to the X1 pin, to the X2 pin (refer to 4.3.1 Clock oscillator).

18.3 HALT Mode

18.3.1 HALT mode setting and operating states

The HALT mode is selected by setting (1) the HLT bit of the standby control (STBC) register or clearing (0) the STP bit. The only writes that can be performed on the STBC are 8-bit data writes by means of a dedicated instruction. HALT mode setting is therefore performed by means of the "MOV STBC, #byte" instruction.

Caution If a condition that releases the HALT mode comes into effect when the HALT mode is being set, the HALT mode is not entered, and the next instruction is executed, or a branch to a vectored interrupt service program is performed. Before this branch execution, the instructions after the HALT mode setting may be executed for 6 clocks. After restoring from the interrupt service, to execute an instruction after setting the HALT mode, insert 3 NOP instructions before the instruction. To be sure to set the HALT mode, take the necessary precautions such as clearing the interrupt request before setting the HALT mode.

Clock oscillator		Operating	
Internal system clock		Operating	
CPU		Operation stopped ^{Note 1}	
I/O lines		Retain state prior to HALT mode setting	
Peripheral functions		Continue operating	
Internal RAM		Retained	
Bus lines	AD0 to AD7	High-impedance	
AD8 to AD15 A16-A19		Retained ^{Note 2}	
RD, LWR, HWR output		High level	
ASTB output		Low level	

Table 18-1. Operating States in HALT Mode

Notes 1. Macro service processing is executed.

2. If the fetch address is an external memory address, and is 16-bits wide, AD8 through AD15 go into high-impedance after the macro service interrupt has been processed.

18.3.2 HALT mode release

HALT mode can be released by the following three sources.

- Non-maskable interrupt request
- Maskable interrupt request (vectored interrupt/context switching/macro service)
- RESET input

Release sources and an outline of operations after release are shown in Table 18-2.

Release Source	MK ^{Note 1}	IE ^{Note 2}	State on Release	Operation after Release
Non-maskable interrupt request (NMI pin input only. Excluding	×	×	 Non-maskable interrupt service program not being executed Low-priority non-maskable interrupt service program being executed 	Interrupt request acknowledgment
watchdog timer. ^{Note 5})			 Service program for same request being executed High-priority non-maskable interrupt service program being executed 	Execution of instruction after MOV STBC/ #byte instruction (interrupt request that released HALT mode is held pending ^{Note 3})
Maskable interrupt request (excluding macro service request)	0	1	 Interrupt service program not being executed Low-priority maskable interrupt service program being executed PRSL bit^{Note 4} cleared (0) during execution of priority level 3 interrupt service program 	Interrupt request acknowledgment
			 Same-priority maskable interrupt service program being executed (If PRSL bit^{Note 4} is cleared (0), excluding execution of priority level 3 interrupt service program) High-priority interrupt service program being executed 	Execution of instruction after MOV STBC/ #byte instruction (interrupt request that released HALT mode is held pending ^{Note 3})
	0	0	_	
	1	×	—	HALT mode maintained
Macro service request	0	×	_	Macro service processing execution End condition not established \rightarrow HALT mode again End condition established \rightarrow Same as release by maskable interrupt request
	1	×		HALT mode maintained
RESET input	×	×	_	Normal reset operation

Table 18-2.	HALT Mode	Release and	Operations aft	er Release
		noiouoo una	oporationio art	

Notes 1. Interrupt mask bit in individual interrupt request source

- 2. Interrupt enable flag in program status word (PSW)
- 3. Pending interrupt requests are acknowledged when acknowledgment becomes possible.
- **4.** Bit in interrupt mode control register (IMC)
- 5. The HALT mode cannot be released by the watchdog timer.

(1) Release by non-maskable interrupt

When a non-maskable interrupt is generated, the μ PD784046 is released from HALT mode irrespective of whether the interrupt acknowledgment enabled state (EI) or disabled state (DI) is in effect.

When the μ PD784046 is released from HALT mode, if the non-maskable interrupt that released HALT mode can be acknowledged, acknowledgment of that non-maskable interrupt is performed and a branch is made to the service program. If the interrupt cannot be acknowledged, the instruction following the instruction that set the HALT mode (the MOV STBC, #byte instruction) is executed, and the non-maskable interrupt that released the HALT mode is acknowledged when acknowledgment becomes possible. Refer to **16.6 Non-Maskable Interrupt Acknowledg-ment Operation** for details of non-maskable interrupt acknowledgment.

(2) Release by maskable interrupt request

HALT mode release by a maskable interrupt request can only be performed by an interrupt for which the interrupt mask flag is 0.

When HALT mode is released, if an interrupt can be acknowledged when the interrupt request enable flag (IE) is set (1), a branch is made to the interrupt service program. If the interrupt cannot be acknowledged and if the IE flag is cleared (0), execution is resumed from the instruction following the instruction that set the HALT mode. Refer to **16.7 Maskable Interrupt Acknowledgment Operation** for details of interrupt acknowledgment.

With macro service, HALT mode is released temporarily, service is performed once, then HALT mode is restored. When macro service has been performed the specified number of times, HALT mode is released. The operation after release in this case is the same as for release by a maskable interrupt described earlier.

(3) Release by RESET input

The program is executed after branching to the reset vector address, as in a normal reset operation. However, internal RAM contents retain their value directly before HALT mode was set.

18.4 STOP Mode

18.4.1 STOP mode setting and operating states

The STOP mode is selected by setting (1) the STP bit of the standby control register (STBC) register or clearing (0) the HLT bit.

The only writes that can be performed on the STBC register are 8-bit data writes by means of a dedicated instruction. STOP mode setting is therefore performed by means of the "MOV STBC, #byte" instruction,

Caution If a condition that releases the HALT mode comes into effect when the STOP mode is being set (refer to 18.3.2 HALT mode release), the STOP mode is not entered, and the next instruction is executed, or a branch to a vectored interrupt service program is performed. Before this branch execution, the instructions after the STOP mode setting may be executed for 6 clocks. After restoring from the interrupt service, to execute an instruction after setting the STOP mode, insert 3 NOP instructions before the instruction. To be sure to set the STOP mode, take the necessary precautions such as clearing the interrupt request before setting the STOP mode.

Clock oscillator		Oscillation stopped	
Internal system clock		Stopped	
CPU		Operation stopped	
I/O lines		Retain state prior to STOP mode setting	
Peripheral functions		All operation stopped ^{Note}	
Internal RAM		Retained	
Bus lines	AD0 to AD15	High-impedance	
A16 to A19		High-impedance	
RD, LWR, HWR outp	ut	High-impedance	
ASTB output		High-impedance	

Table 18-3. Operating States in STOP Mode

- **Note** A/D converter operation is stopped, but if the AM0 bit or AM1 bit of the A/D converter mode register (ADM) is set (1), the current consumption does not decrease.
- Cautions 1. If the STOP mode is set when the EXTC bit of the oscillation stabilization time specification (OSTS) register is cleared (0), the X1 pin is shorted internally to Vss (GND potential) to suppress clock generator leakage. Therefore, when the STOP mode is used in a system that uses an external clock, the EXTC bit of the OSTS must be set (1). If STOP mode setting is performed in a system to which an external clock is input when the EXTC bit of the OSTS is cleared (0), the µPD784046 may suffer damage or reduced reliability.

When setting the EXTC bit of OSTS to 1, be sure to input a clock in phase reverse to that of the clock input to the X1 pin, to the X2 pin (refer to 4.3.1 Clock oscillator).

2. Stop the A/D converter (by clearing (0) the AM0 and AM1 bits of the A/D converter mode register (ADM)) before setting the STOP mode.

18.4.2 STOP mode release

STOP mode is released by NMI input, INTP4 input, INTP5 input, and RESET input.

Release Source	State after Release	Operation after Release
NMI pin input	 Non-maskable interrupt service program not being executed Low-priority non-maskable interrupt service program being executed 	Interrupt request acknowledgment
	 NMI pin input service program being executed High-priority non-maskable interrupt service program being executed 	Execution of instruction after MOV STBC/ #byte instruction (interrupt request that released STOP mode is held pending ^{Note})
RESET input	_	Normal reset operation

Note Pending interrupt requests are acknowledged when acknowledgment becomes possible.

(1) STOP mode release by NMI input

The oscillator resumes oscillation when the valid edge specified by external interrupt mode register 0 (INTM0) is input to the NMI input. STOP mode is released after the oscillation stabilization time specified by the oscillation stabilization time specification register (OSTS) elapses.

When the μ PD784046 is released from STOP mode, if a non-maskable interrupt by NMI pin input can be acknowledged, a branch is made to the NMI interrupt service program. If the interrupt cannot be acknowledged (if the STOP mode is set in an NMI interrupt service program, etc.), execution is resumed from the instruction following the instruction that set the STOP mode, and a branch is made to the NMI interrupt service program when acknowledgment becomes possible (by execution of an RETI instruction, etc.).

Refer to 16.6 Non-Maskable Interrupt Acknowledgment Operation for details of NMI interrupt acknowledgment.

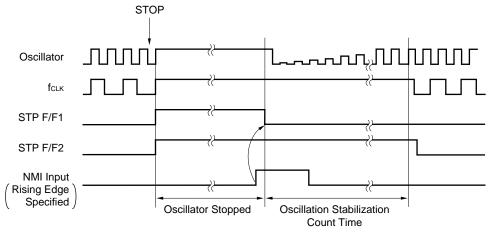


Figure 18-5. STOP Mode Release by NMI Input

(2) STOP mode release by $\overline{\text{RESET}}$ input

When RESET input falls from high to low and the reset state is established, the oscillator resumes oscillation. The oscillation stabilization time should be secured while RESET is active. Thereafter, normal operation is started when RESET rises.

Unlike an ordinary reset operation, data memory retains its contents prior to STOP mode setting.

18.5 IDLE Mode

18.5.1 IDLE mode setting and operating states

The IDLE mode is selected by setting (1) both the STP bit and the HLT bit of the standby control (STBC) register. The only writes that can be performed on the STBC are 8-bit data writes by means of a dedicated instruction. IDLE mode setting is therefore performed by means of the "MOV STBC, #byte" instruction.

Caution If a condition that releases the HALT mode comes into effect when the IDLE mode is being set (refer to 18.3.2 HALT mode release), the IDLE mode is not entered, and the next instruction is executed, or a branch to a vectored interrupt service program is performed. Before this branch execution, the instructions after the IDLE mode setting may be executed for 6 clocks. After restoring from the interrupt service, to execute an instruction after setting the IDLE mode, insert 3 NOP instructions before the instruction. To be sure to set the IDLE mode, take the necessary precautions such as clearing the interrupt request before setting the IDLE mode.

Clock oscillator		Oscillation continues	
Internal system clock		Stopped	
CPU		Operation stopped	
I/O lines		Retain state prior to IDLE mode setting	
Peripheral functions		All operation stopped ^{Note}	
Internal RAM		Retained	
Bus lines AD0 to AD15		High-impedance	
	A16 to A19	High-impedance	
RD, LWR, HWR output		High-impedance	
ASTB output		High-impedance	

Table 18-5. Operating States in IDLE Mode

- **Note** A/D converter operation is stopped, but if the AM0 bit or AM1 bit of the A/D converter mode register (ADM) is set, the current consumption does not decrease.
- Caution Stop the A/D converter (by clearing (0) the AM0 and AM1 bits of the A/D converter mode register (ADM)) before setting the IDLE mode.

18.5.2 IDLE Mode Release

IDLE mode is released by NMI input, or RESET input.

Release Source	State after Release	Operation after Release
NMI pin input	 Non-maskable interrupt service program not being executed Low-priority non-maskable interrupt service program being executed 	Interrupt request acknowledgment
	 NMI pin input service program being executed High-priority non-maskable interrupt service program being executed 	Execution of instruction after MOV STBC/ #byte instruction (interrupt request that released IDLE mode is held pending ^{Note})
RESET input	_	Normal reset operation

Table 18-6. IDLE Mode Release and Operations after Release

Note Pending interrupt requests are acknowledged when acknowledgment becomes possible.

(1) IDLE mode release by NMI input

IDLE mode is released when the valid edge specified by external interrupt mode register 0 (INTM0) is input to the NMI input.

When the μ PD784046 is released from IDLE mode, if a non-maskable interrupt by NMI pin input can be acknowledged, a branch is made to the NMI interrupt service program. If the interrupt cannot be acknowledged (if the IDLE mode is set in an NMI interrupt service program, etc.), execution is resumed from the instruction following the instruction that set the IDLE mode, and a branch is made to the NMI interrupt service program when acknowledgment becomes possible (by execution of an RETI instruction, etc.).

Refer to 16.6 Non-Maskable Interrupt Acknowledgment Operation for details of NMI interrupt acknowledgment.

(2) IDLE mode release by RESET input

Normal operation is started when RESET rises after RESET input falls from high to low. Unlike an ordinary reset operation, data memory retains its contents prior to IDLE mode setting.

Caution When the execution of the IDLE mode instruction contends with the interrupt of release source of the IDLE mode, the STOP mode is released after the STOP mode has been executed, instead of the normal operation where the IDLE mode is released after the IDLE mode has been executed, because of a malfunction of the μ PD784054. Therefore, when the IDLE mode is released, the wait operation for the oscillation stabilization time set by the oscillation stabilization time specification register (OSTS) may be executed even though the IDLE mode is set in software (Usually, the μ PD784054 does not wait the oscillation stabilization time when the IDLE mode is released.) If there are problems with waiting for the oscillation stabilization time when the IDLE mode is released, set the value of the oscillation stabilization time set by the OSTS as short as possible.

18.6 Check Items When STOP Mode/IDLE Mode Is Used

Check items required to reduce the current consumption when STOP mode/IDLE mode is used are shown below.

(1) Is the output level of each output pin appropriate?

The appropriate output level for each pin varies according to the next-stage circuit. You should select the output level that minimizes the current consumption.

- If high level is output when the input impedance of the next-stage circuit is low, a current will flow from the power supply to the port, resulting in an increased current consumption. This applies when the next-stage circuit is a CMOS IC, etc. When the power supply is off, the input impedance of a CMOS IC is low. In order to suppress the current consumption, or to prevent an adverse effect on the reliability of the CMOS IC, low level should be output. If a high level is output, latchup may result when power is turned on again.
- Depending on the next-stage circuit, inputting low level may increase the current consumption. In this case, high-level or high-impedance output should be used to reduce the current consumption.
- If the next-stage circuit is a CMOS IC, the current consumption of the CMOS IC may increase if the output is made high-impedance when power is supplied to it (the CMOS IC may also be overheated and damaged). In this case you should output an appropriate level, or pull the output high or low with a resistor.

The method of setting the output level depends on the port mode.

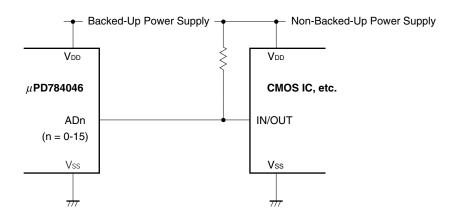
- When a port is in control mode, the output level is determined by the status of the on-chip hardware, and therefore the on-chip hardware status must be taken into consideration when setting the output level.
- In port mode, the output level can be set by writing to the port output latch and port mode register by software.

When a port is in control mode, its output level can be set easily by changing to port mode.

(2) Is the input pin level appropriate?

The voltage level input to each pin should be in the range between Vss potential and V_{DD} potential. If a voltage outside this range is applied, the current consumption will increase and the reliability of the μ PD784046 may be adversely affected.

Also ensure that an intermediate potential is not applied.


(3) Are pull-up resistors necessary?

An unnecessary pull-up resistor will increase the current consumption and cause a latchup of other devices. A mode should be specified in which pull-up resistors are used only for parts that require them.

If there is a mixture of parts that do and do not require pull-up resistors, for parts that do, you should connect a pullup resistor externally and specify a mode in which the on-chip pull-up resistor is not used.

(4) Is processing of the address bus, address/data bus, etc., appropriate?

In STOP mode and IDLE mode, the address bus, address/data bus, RD and LWR, HWR pins become highimpedance. Normally, these pins are pulled high with a pull-up resistor. If this pull-up resistor is connected to the backed-up power supply, then if the input impedance of circuitry connected to the non-backed-up power supply is low, a current will flow through the pull-up resistor, and the current consumption will increase. Therefore, the pullup resistor should be connected to the non-backed-up power supply side as shown in Figure 18-6. Also, in STOP mode and IDLE mode the ASTB pin also becomes high impedance. Countermeasures should be taken with reference to the points noted in (1).

★ (5) A/D converter

The current flowing to the AV_{DD}, AV_{REF1} pins can be reduced by clearing (0) the AM0 and AM1 bits of the A/D converter mode register (ADM).

Make sure that the AV_{DD} pin is not at the same potential as the V_{DD} pin. Unless power is supplied to the AV_{DD} pin in the STOP mode, not only does the current consumption increase, but the reliability is also affected.

18.7 Cautions

- (1) If a condition that releases the HALT mode comes into effect when the HALT/STOP/IDLE mode (hereafter referred to as standby mode) is being set (refer to 18.3.2 HALT mode release), the standby mode is not entered, and the next instruction is executed, or a branch to a vectored interrupt service program is performed. Before this branch execution, the instructions after the standby mode setting may be executed for 6 clocks. After restoring from the interrupt service, to execute an instruction after setting the standby mode, insert 3 NOP instructions before the instruction. To be sure to set the standby mode, take the necessary precautions such as clearing the interrupt request before setting the standby mode.
- (2) When crystal/ceramic oscillation is used, the EXTC bit must be cleared (0) before use. If the EXTC bit is set (1), oscillation will stop.
- (3) If the STOP mode is set when the EXTC bit of the oscillation stabilization time specification (OSTS) register is cleared (0), the X1 pin is shorted internally to Vss (GND potential) to suppress clock generator leakage. Therefore, when the STOP mode is used in a system that uses an external clock, the EXTC bit of the OSTS must be set (1). If STOP mode setting is performed in a system to which an external clock is input when the EXTC bit of the OSTS is cleared (0), the µPD784046 may suffer damage or reduced reliability. When setting the EXTC bit of OSTS to 1, be sure to input a clock in phase reverse to that of the clock input to the X1 pin, to the X2 pin (refer to **4.3.1 Clock oscillator**).
- (4) Stop the A/D converter (by clearing (0) the AM0 and AM1 bits of the A/D converter mode register (ADM)) before setting the STOP or IDLE mode.
- (5) When the execution of the IDLE mode instruction contends with the interrupt of release source of the IDLE mode, the STOP mode is released after the STOP mode has been executed, instead of the normal operation where the IDLE mode is released after the IDLE mode has been executed, because of a malfunction of the μPD784054. Therefore, when the IDLE mode is released, the wait operation for the oscillation stabilization time set by the oscillation stabilization time specification register (OSTS) may be executed even though the IDLE mode is released.) If there are problems with waiting for the oscillation stabilization time when the IDLE mode is released. If there are problems with waiting for the oscillation stabilization time when the IDLE mode is released, set the value of the oscillation stabilization time set by the OSTS as short as possible.

CHAPTER 19 RESET FUNCTION

19.1 Reset Function

When low level is input to the RESET input pin, a system reset is affected, the various hardware units are set to the states shown in Table 19-2, and all pins except the power supply pins and the X1 and X2 CLKOUT pins are placed in the high-impedance state. Table 19-1 shows the pin statuses on reset and after reset release.

When the RESET input changes from low to high level, the reset state is released, the contents of address 00000H of the reset vector table are set in bits 0 to 7 of the program counter (PC), the contents of address 00001H in bits 8 to 15, and 0000B in bits 16 to 19, a branch is made, and program execution is started at the branch destination address. A reset start can therefore be performed from any address in the base area.

The contents of the various registers should be initialized as required in the program in the base area.

To prevent misoperation due to noise, the RESET input pin incorporates an analog delay noise elimination circuit (refer to Figure 19-1).

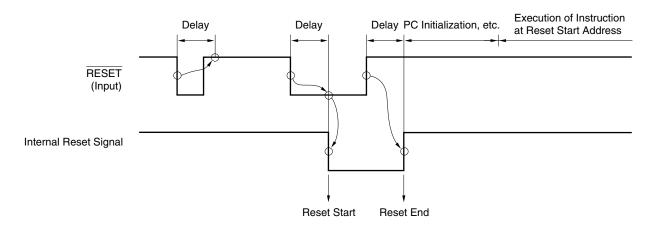
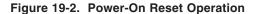
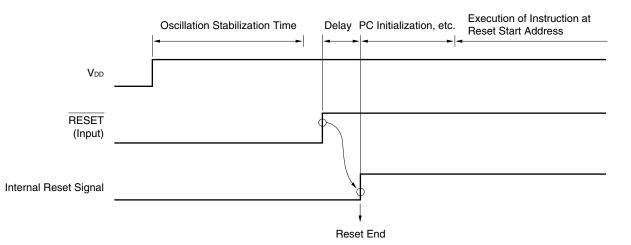
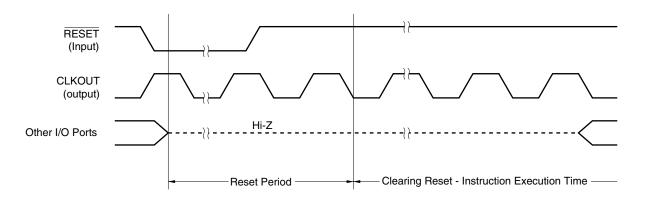




Figure 19-1. Acknowledgment of Reset Signal

In a reset operation upon powering on and STOP mode release by reset, the RESET signal must be kept active until the oscillation stabilization time has elapsed (approx. 40 ms, depending on the resonator used).



Pin Name	I/O	During Reset	Immediately after Clearing Reset
P00-P03	I/O	Hi-Z	Hi-Z (input port mode)
P10-P13			
P20	Input		Hi-Z (input port)
P21-P27	I/O		Hi-Z (input port mode)
P30-P37			
P40-P47			
P50-P57			
P60-P63			
P70-P77	Input		Hi-Z (input port)
P80-P87			
P90-P94	I/O		Hi-Z (input port mode)
CLKOUT	Output	Clock output	Clock output

Table 19-1. Pin Status during Reset Input and after Clearing Reset

Figure 19-3. Timing on Reset Input

	Hardware	State after Reset
Program counter (PC)		Contents of reset vector table
		(0000H, 0001H) are set
Stack pointer (SP)	Undefined ^{Note}
Program status w	ord (PSW)	02H
On-chip RAM	Data memory	Undefined ^{Note}
	General-purpose register	
Port	Port 0 to port 9	Undefined (high impedance)
	Mode registers (PM0 to PM6, PM9)	FFH
	Mode control registers (PMC1 to PMC3, PMC9)	00H
	Port read control register (PRDC)	
	Pull-up resistor option register (PUOL, PUOH)	-
Port 0 buffer regis	ter (P0L)	Undefined
Real-time output p	port control register (RTPC)	00H
Timer/counter	Timer registers (TM0 to TM4)	0000H
	Capture/compare registers (CC00 to CC03)	Undefined
	Compare registers (CM10, CM11, CM20, CM21, CM30, CM31, CM40, CM41)	-
	Timer unit mode registers (TUM0, TUM2)	00H
	Timer mode control registers (TMC, TMC2, TMC4)	
	Timer output control registers (TOC0 to TOC2)	
	Prescaler mode registers (PRM, PRM2, PRM4)	
	Noise protection control register (NPC)	
	Interrupt valid edge flag registers (IEF1, IEF2)	Undefined
Watchdog timer m	node register (WDM)	00H
A/D converter	A/D converter mode register (ADM)	
	A/D conversion result registers (ADCR0 to ADCR7, ADCR0H to ADCR7H)	Undefined
Serial interface	Asynchronous serial interface mode registers (ASIM, ASIM2)	00H
	Asynchronous serial interface status registers (ASIS, ASIS2)	
	Serial receive buffers (RXB, RXB2)	Undefined
	Serial transmit shift registers (TXS, TXS2)	
	Clocked serial interface mode registers (CSIM1, CSIM2)	00H
	Serial shift registers (SIO1, SIO2)	Undefined
	Baud rate generator control registers (BRGC, BRGC2)	00H
External interrupt	mode registers (INTM0, INTM1)	

Table 19-2. State of Hardware after Reset (1/2)

Note If the HALT, STOP, or IDLE mode is released by using the RESET input, the values immediately before each mode has been set are retained.

	Hardware			State after Reset
Interrupt	Interrupt control registers (OVIC0, OVIC1, OVIC4, PIC0 to PIC6, CMIC10, CMIC11, CMIC20, CMIC21, CMIC30, CMIC31, CMIC40, CMIC41, SERIC, SRIC, CSIIC1, STIC, SERIC2, SRIC2, CSIIC2, STIC2, ADIC)		43H	
	Interrupt mask registers	MK0, MK1		FFFFH
		MKOL, MKOH, MK	(1L, MK1H	FFH
	Interrupt mode control register (IMC)			80H
	In-service priority register (ISPR)			00H
Memory extension mode register (MM)		20H		
Programmable wait control register PWC1		PWC1	AAH	
			PWC2	ААААН
Bus width specification register (BW)		0000H (BWD = 0) 00FFH (BWD = 1)		
Standby control register (STBC)		30H		
Oscillation stabilization time specification register (OSTS)		00H		
Internal memory size switching register (IMS)		CDH (μPD784044) DEH (μPD784046, 78F4046)		

Table 19-2. State of Hardware after Reset (2/2)

19.2 Caution

Reset input when powering on must remain at the low level until oscillation stabilizes after the supply voltage has reached the prescribed voltage.

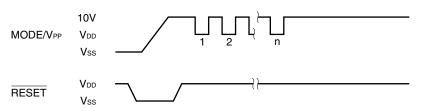
CHAPTER 20 PROGRAMMING µPD78F4046

The flash memory can be written with the μPD78F4046 mounted on the target system (on-board). Connect a dedicated * flash programmer (Flashpro II (part number: FL-PR2)/Flashpro III (part number: FL-PR3, PG-FP3)) to the host machine and target system to write the flash memory.

The flash memory can also be written using the adapter for writing flash memory connected to Flashpro II/Flashpro III.

Remark Flashpro II and Flashpro III are products of Naito Densei Machida Mfg. Co., Ltd.

20.1 Selecting Communication Mode


The flash memory is written by using a Flashpro II/Flashpro III and by means of serial communication. Select a communication mode from those listed in Table 20-1. To select a communication mode, the format shown in Figure 20-1 is used. Each communication mode is selected by the number of VPP pulses shown in Table 20-1.

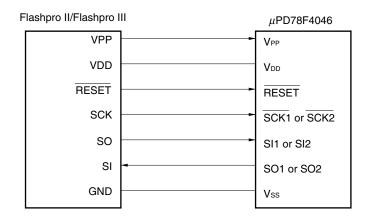
Communication Mode	Number of Channels	Pins Used	Number of VPP Pulses
3-wire serial I/O	2	P34/ASCK/SCK1 P33/TxD/SO1 P32/RxD/SI1	0
		P37/ASCK2/SCK2 P36/TxD2/SO2 P35/RxD2/SI2	1
UART	2	P33/TxD/SO1 P32/RxD/SI1	8
		P36/TxD2/SO2 P35/RxD2/SI2	9

Table 20-1. Communication Modes

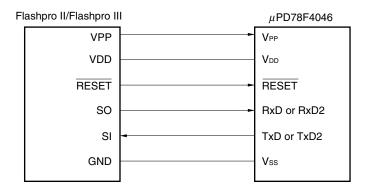
Caution Be sure to select the communication mode with the number of VPP pulses as shown in Table 20-1.

20.2 Function of Flash Memory Programming

By transmitting/receiving commands and data in the selected communication mode, operations such as writing to the flash memory are performed. Table 20-2 shows the major functions of flash memory programming.


Table 20-2.	Major Functions	of Flash M	lemory Programming.

Function	Description
Batch erase	Erases all contents of memory.
Block erase	Erases specified memory block with one block consisting of 16K bytes.
Batch blank check	Checks erased state of entire memory.
Block blank check	Checks erased state of specified block.
Data write	Writes to flash memory based on write start address and number of data written (number of bytes).
Batch verify	Compares all contents of memory with input data.
Block verify	Compares contents of specified memory block with input data.


20.3 Connecting Flashpro II/Flashpro III

How the Flashpro II/Flashpro III is connected to the μ PD78F4046 differs to the μ PD78F4046 depending on the communication mode (3-wire serial I/O or UART). Figures 20-2 and 20-3 show the connections in the respective modes.

Figure 20-2. Connecting Flashpro II/Flashpro III in 3-Wire Serial I/O Mode

Figure 20-3. Connecting Flashpro II/Flashpro III in UART Mode

* 20.4 Cautions

(1) Number of rewrites

Number of guaranteed rewrites: 10 Perform erasure and writing in area mode or chip mode. Block mode cannot be used to write only a specific block.

- (2) Operating ambient temperature
 Operating ambient temperature: T_A = -10 to +70°C
 However, the temperature during rewrite is T_{PRG} = +10 to +40°C.
- (3) Use of pre-writing

Pre-writing is required before erasure.

When Flashpro II (Ver. 2.50 or later) or Flashpro III (PG-FP3 Ver. 3.040 or later) is used, use of the pre-write function can automatically be set by loading the parameter file.

(4) Use of ECC function

Write ECC data to the ECC area in the on-chip flash memory.

Convert the HEX file into a HEX file with ECC using the ECC generator included in the assembler package (PC version Ver.1.20 or later). Then download this HEX file with ECC to Flashpro II or Flashpro III and execute writing.

[How to create ECC data]

<1> Prepare a HEX file created by the object converter in the assembler package.

- <2> Convert the HEX file into a HEX file with ECC (program data + ECC data) using the ECC generator (eccgen.exe) included in the assembler package.
- **Example** When converting the file "file.hex" into the HEX file with ECC "file_ec.hex" eccgen file.hex -ofile_ec.hex -a0ffffh, 1000h, 14000h, 14004h

(5) How to set and write using Flashpro II or Flashpro III Perform pre-writing and write to ECC using Flashpro II or Flashpro III.

[How to write]

- <1> Download the HEX file with ECC to Flashpro II or Flashpro III.
- <2> Set CHIP mode and execute writing using the E.P.V button.

Do not use the Program command; otherwise ECC may not be written.

When Flashpro II Ver. 2.50 or earlier is used, the pre-write and ECC functions must be validated using the following procedure before executing a write.

[How to set using Flashpro II Ver.2.50 or earlier]

<1> Connect the PC and the FL-PR2 and activate the control software (flashpro.exe)
Press the CRTL, SHIFT, GRPH (ALT), and P keys at the same time
Select "Pre-Write set"
Click the OK button.
Select "Setting"
Select "Setting"
Select "Option".
Select "Code area" in the menu window.
Select "ECC code area" in the menu window.
Select "ECC code area" in the menu window.
Click the OK button.
Click the TYPE button.
Click the OK button.

CHAPTER 21 INSTRUCTION OPERATIONS

21.1 Legend

(1) Explanation of operand identifiers (1/2)

Identifier	Explanation
_{r, r} 'Note 1 _{r1} Note 1	X(R0), A(R1), C(R2), B(R3), R4, R5, R6, R7, R8, R9, R10, R11, E(R12), D(R13), L(R14), H(R15) X(R0), A(R1), C(R2), B(R3), R4, R5, R6, R7
r2	R8, R9, R10, R11, E(R12), D(R13), L(R14), H(R15)
r3	V, U, T, W
rp, rp'Note 2	AX(RP0), BC(RP1), RP2, RP3, VP(RP4), UP(RP5), DE(RP6), HL(RP7)
rp1 ^{Note 2}	AX(RP0), BC(RP1), RP2, RP3
rp2	VP(RP4), UP(RP5), DE(RP6), HL(RP7)
rg, rg'	VVP(RG4), UUP(RG5), TDE(RG6), WHL(RG7)
sfr	Special function register symbol
sfrp	Special function register symbol (register for which 16-bit operation is possible)
post ^{Note} 2	AX(RP0), BC(RP1), RP2, RP3, VP(RP4), UP(RP5)/PSW, DE(RP6), HL(RP7) Multiple descriptions are permissible. However, UP is only used with PUSH/POP instructions, and PSW with PUSHU/POPU instructions.
mem	 [TDE], [WHL], [TDE+], [WHL+], [TDE-], [WHL-], [VVP], [UUP]: Register indirect addressing [TDE+byte], [WHL+byte], [SP+byte], [UUP+byte], [VVP+byte]: Based addressing imm24 [A], imm24 [B], imm24 [DE], imm24 [HL]: Indexed addressing [TDE+A], [TDE+B], [TDE+C], [WHL+A], [WHL+B], [WHL+C], [VVP+DE], [VVP+HL]: Based indexed addressing
mem1	All mem except [WHL+] and [WHL-]
mem2	[TDE], [WHL]
mem3	[AX], [BC], [RP2], [RP3], [VVP], [UUP], [TDE], [WHL]

Notes 1. Setting the RSS bit to 1 enables R4 to R7 to be used as X, A, C and B, but this function should only be used when using a 78K/III series program.

2. Setting the RSS bit to 1 enables RP2 and RP3 to be used as AX and BC, but this function should only be used when using a 78K/III series program.

(1) Explanation of operand identifiers (2/2)

Identifier	Explanation
Note	
saddr, saddr'	FD20H to FF1FH immediate data or label
saddr1	FE00H to FEFFH immediate data or label
saddr2	FD20H to FDFFH, FF00H to FF1FH immediate data or label
saddrp	FD20H to FF1EH immediate data or label (16-bit operation)
saddrp1	FE00H to FEFFH immediate data or label (16-bit operation)
saddrp2	FD20H to FDFFH, FF00H to FF1EH immediate data or label (16-bit operation)
saddrg	FD20H to FEFDH immediate data or label (24-bit operation)
saddrg1	FE00H to FEFDH immediate data or label (24-bit operation)
saddrg2	FD20H to FDFFH immediate data or label (24-bit operation)
addr24	0H to FFFFFH immediate data or label
addr20	0H to FFFFFH immediate data or label
addr16	0H to FFFFH immediate data or label
addr11	800H to FFFH immediate data or label
addr8	0FE00H to 0FEFFH* immediate data or label
addr5	40H to 7EH immediate data or label
imm24	24-bit immediate data or label
word	16-bit immediate data or label
byte	8-bit immediate data or label
bit	3-bit immediate data or label
n	3-bit immediate data
locaddr	0H or 0FH

Note The addresses shown here apply when 0H is specified by the LOCATION instruction.

When 0FH is specified by the LOCATION instruction, F0000H should be added to the address values shown.

(2) Operand column symbols

Symbol	Explanation
+	Auto-increment
-	Auto-decrement
#	Immediate data
!	16-bit absolute address
!!	24-bit/20-bit absolute address
\$	8-bit relative address
\$!	16-bit relative address
/	Bit inversion
[]	Indirect addressing
[%]	24-bit indirect addressing

(3) Flag column symbols

Symbol	Explanation
(Blank)	No change
0	Cleared to 0
1	Set to 1
×	Set or cleared depending on result
Р	P/V flag operates as parity flag
V	P/V flag operates as overflow flag
R	Previously saved value is restored

(4) Operation column symbols

Symbol	Explanation
jdisp8	Signed two's complement data (8 bits) indicating relative address distance between start address of next instruction and branch address
jdisp16	Signed two's complement data (16 bits) indicating relative address distance between start address of next instruction and branch address
РСнм	PC bits 16 to 19
PCLW	PC bits 0 to 15

(5) Number of bytes of instruction that includes mem in operands

mem Mode	Register Indirect Addressing		Based Addressing	Indexed Addressing	Based Indexed Addressing
Number of bytes	1	2 ^{Note}	3	5	2

Note One-byte instruction only when [TDE], [WHL], [TDE+], [TDE-], [WHL+] or [WHL–] is written as mem in an MOV instruction.

(6) Number of bytes of instruction that includes saddr, saddrp, r or rp in operands

For some instructions that include saddr, saddrp, r or rp in their operands, two "Bytes" entries are given, separated by a slash ("/"). The entry that applies is shown in the table below.

Identifier	Left-Hand "Bytes" Figure	Right-Hand "Bytes" Figure
saddr	saddr2	saddr1
saddrp	saddrp2	saddrp1
r	r1	r2
rp	rp1	rp2

(7) Code of instructions that include mem in operands and string instructions

Operands TDE, WHL, VVP and UUP (24-bit registers) can also be written as DE, HL, VP and UP respectively. However, they are still treated as TDE, WHL, VVP and UUP (24-bit registers) when written as DE, HL, VP and UP.

21.2 List of Operations

(1) 8-bit data transfer instruction: MOV

Mnemonic	Operands	Bytes	Operation		Flags							
	operando	Byttos		S	Z	AC	P/V	CY				
MOV	r, #byte	2/3	$r \leftarrow byte$									
	saddr, #byte	3/4	$(saddr) \leftarrow byte$									
	sfr, #byte	3	$sfr \leftarrow byte$									
	!addr16, #byte	5	$(saddr16) \leftarrow byte$									
	!!addr24, #byte	6	$(addr24) \leftarrow byte$									
	r, r'	2/3	$r \leftarrow r'$									
	A, r	1/2	$A \leftarrow r$									
	A, saddr2	2	$A \leftarrow (saddr2)$									
	r, saddr	3	$r \leftarrow (saddr)$									
	saddr2, A	2	$(saddr2) \leftarrow A$									
	saddr, r	3	$(saddr) \leftarrow r$									
	A, sfr	2	$A \leftarrow sfr$									
	r, sfr	3	$r \leftarrow sfr$									
	sfr, A	2	$sfr \leftarrow A$									
	sfr, r	3	$sfr \leftarrow r$									
	saddr, saddr'	4	$(saddr) \leftarrow (saddr')$									
	r, !addr16	4	$r \leftarrow (addr16)$									
	!addr16, r	4	$(addr16) \leftarrow r$									
	r, ‼addr24	5	$r \leftarrow (addr24)$									
	!!addr24, r	5	$(addr24) \leftarrow r$									
	A, [saddrp]	2/3	$A \leftarrow ((saddrp))$									
	A, [%saddrg]	3/4	$A \leftarrow ((saddrg))$									
	A, mem	1-5	$A \leftarrow (mem)$									
	[saddrp], A	2/3	$((saddrp)) \leftarrow A$									
	[%saddrg], A	3/4	$((saddrg)) \leftarrow A$									
	mem, A	1-5	$(mem) \leftarrow A$									
	PSWL, #byte	3	PSW∟ ← byte	×	×	×	×	×				
	PSWH, #byte	3	PSW _H ← byte									
	PSWL, A	2	PSWL ← A	×	×	×	×	×				
	PSWH, A	2	PSW _H ← A									
	A, PSWL	2	$A \leftarrow PSW_{L}$									
	A, PSWH	2	A ← PSWн									
	r3, #byte	3	r3 ← byte									
	A, r3	2	$A \leftarrow r3$									
	r3, A	2	$r3 \leftarrow A$									

(2) 16-bit data transfer instruction: MOVW

Mnemonic	Operands	Dutes	Operation	Flags
winemonic	Operands	Bytes	Operation	S Z AC P/V CY
MOVW	rp, #word	3	$rp \leftarrow word$	
	saddrp, #word	4/5	$(saddrp) \leftarrow word$	
	sfrp, #word	4	$sfrp \leftarrow word$	
	!addr16, #word	6	$(addr16) \leftarrow word$	
	!!addr24, #word	7	$(addr24) \leftarrow word$	
	rp, rp'	2	$rp \leftarrow rp'$	
-	AX, saddrp2	2	$AX \leftarrow (saddrp2)$	
	rp, saddrp	3	$rp \leftarrow (saddrp)$	
	saddrp2, AX	2	$(saddrp2) \leftarrow AX$	
	saddrp, rp	3	$(saddrp) \leftarrow rp$	
	AX, sfrp	2	$AX \leftarrow sfrp$	
	rp, sfrp	3	$rp \leftarrow sfrp$	
	sfrp, AX	2	$sfrp \leftarrow AX$	
	sfrp, rp	3	$sfrp \leftarrow rp$	
	saddrp, saddrp'	4	$(saddrp) \leftarrow (saddrp')$	
	rp, !addr16	4	$rp \leftarrow (addr16)$	
	!addr16, rp	4	$(addr16) \leftarrow rp$	
	rp, ‼addr24	5	$rp \leftarrow (addr24)$	
	!!addr24, rp	5	$(addr24) \leftarrow rp$	
	AX, [saddrp]	3/4	$AX \leftarrow ((saddrp))$	
	AX, [%saddrg]	3/4	$AX \leftarrow ((saddrg))$	
	AX, mem	2-5	$AX \leftarrow (mem)$	
	[saddrp], AX	3/4	$((saddrp)) \leftarrow AX$	
	[%saddrg], AX	3/4	$((saddrg)) \leftarrow AX$	
	mem, AX	2-5	(mem) ← AX	

(3) 24-bit data transfer instruction: MOVG

				Flags							
Mnemonic	Operands	Bytes	Operation	S	Ζ	AC	P/V	CY			
MOVG	rg, #imm24	5	$rg \leftarrow imm24$								
	rg, rg'	2	$rg \leftarrow rg'$								
	rg, ‼addr24	5	$rg \leftarrow (addr24)$								
	!!addr24, rg	5	$(addr24) \leftarrow rg$								
	rg, saddrg	3	$rg \leftarrow (saddrg)$								
	saddrg, rg	3	$(saddrg) \leftarrow rg$								
	WHL, [%saddrg]	3/4	$WHL \leftarrow ((saddrg))$								
	[%saddrg], WHL	3/4	$((saddrg)) \leftarrow WHL$								
	WHL, mem1	2-5	$WHL \leftarrow (mem1)$								
	mem1, WHL	2-5	(mem1) \leftarrow WHL								

(4) 8-bit data exchange instruction: XCH

Manager	Onerrowth	Dutas	Operation	Flags							
Mnemonic	Operands	Bytes	Operation	S	Ζ	AC	P/V	CY			
ХСН	r, r'	2/3	$r\leftrightarrowr'$								
	A, r	1/2	$A \leftrightarrow r$								
	A, saddr2	2	$A \leftrightarrow (saddr2)$								
	r, saddr	3	$r \leftrightarrow (saddr)$								
	r, sfr	3	$r \leftrightarrow sfr$								
	saddr, saddr'	4	$(saddr) \leftrightarrow (saddr')$								
	r, !addr16	4	$r \leftrightarrow (addr16)$								
	r, ‼addr24	5	$r \leftrightarrow (addr24)$								
	A, [saddrp]	2/3	$A \leftrightarrow ((saddrp))$								
	A, [%saddrg]	3/4	$A \leftrightarrow ((saddrg))$								
	A, mem	2-5	$A \leftrightarrow (mem)$								

(5) 16-bit data exchange instruction: XCHW

				Flags						
Mnemonic	Operands	Bytes	Operation		Ζ	AC	P/V	CY		
XCHW	rp, rp'	2	$rp \leftrightarrow rp'$							
	AX, saddrp2	2	$AX \leftrightarrow (saddrp2)$							
	rp, saddrp	3	$rp \leftrightarrow (saddrp)$							
	rp, sfrp	3	$rp \leftrightarrow sfrp$							
	AX, [saddrp]	3/4	$AX \leftrightarrow ((saddrp))$							
	AX, [%saddrg]	3/4	$AX \leftrightarrow ((saddrg))$							
	AX, !addr16	4	$AX \leftrightarrow (addr16)$							
	AX, !!addr24	5	$AX \leftrightarrow (addr24)$							
	saddrp, saddrp'	4	$(saddrp) \leftrightarrow (saddrp')$							
	AX, mem	2-5	$AX \leftrightarrow (mem)$							

(6) 8-bit operation instructions: ADD, ADDC, SUB, SUBC, CMP, AND, OR, XOR

M	Or and the	Dutas	Oracettas			Flage	5	
Mnemonic	Operands	Bytes	Operation	S	Ζ	AC	P/V	CY
ADD	A, #byte	2	A, CY \leftarrow A + byte	×	×	×	V	×
	r, #byte	3	r, $CY \leftarrow r + byte$	×	×	×	V	×
	saddr, #byte	3/4	(saddr), CY \leftarrow (saddr) + byte	×	×	×	V	×
	sfr, #byte	4	sfr, CY \leftarrow sfr + byte	×	×	×	V	×
	r, r'	2/3	$r, CY \leftarrow r + r'$	×	×	×	V	×
	A, saddr2	2	A, CY \leftarrow A + (saddr2)	×	×	×	V	×
	r, saddr	3	r, CY \leftarrow r + (saddr)	×	×	×	V	×
	saddr, r	3	(saddr), CY \leftarrow (saddr) + r	×	×	×	V	×
	r, sfr	3	$r, CY \leftarrow r + sfr$	×	×	×	V	×
	sfr, r	3	sfr, CY \leftarrow sfr + r	×	×	×	V	×
	saddr, saddr'	4	(saddr), CY \leftarrow (saddr) + (saddr')	×	×	×	V	×
	A, [saddrp]	3/4	A, $CY \leftarrow A + ((saddrp))$	×	×	×	V	×
	A, [%saddrg]	3/4	A, $CY \leftarrow A + ((saddrg))$	×	×	×	V	×
	[saddrp], A	3/4	((saddrp)), $CY \leftarrow$ ((saddrp)) + A	×	×	×	V	×
	[%saddrg], A	3/4	((saddrg)), $CY \leftarrow$ ((saddrg)) + A	×	×	×	V	×
	A, !addr16	4	A, $CY \leftarrow A + (addr16)$	×	×	×	V	×
	A, ‼addr24	5	A, $CY \leftarrow A + (addr24)$	×	×	×	V	×
	!addr16, A	4	(addr16), CY \leftarrow (addr16) + A	×	×	×	V	×
	!!addr24, A	5	(addr24), CY \leftarrow (addr24) + A	×	×	×	V	×
	A, mem	2-5	A, CY ← A + (mem)	×	×	×	V	×
	mem, A	2-5	(mem), $CY \leftarrow (mem) + A$	×	×	×	V	×

Manager	Orangeala	Dutas				Flage	3	
Mnemonic	Operands	Bytes	Operation	S	Ζ	AC	P/V	СҮ
ADDC	A, #byte	2	A, $CY \leftarrow A + byte + CY$	×	×	×	V	×
	r, #byte	3	r, $CY \leftarrow r + byte + CY$	×	×	×	V	×
	saddr, #byte	3/4	(saddr), $CY \leftarrow (saddr) + byte + CY$	×	×	×	V	×
	sfr, #byte	4	sfr, $CY \leftarrow sfr + byte + CY$	×	×	×	V	×
	r, r'	2/3	$r, \ CY \leftarrow r + r' + CY$	×	×	×	V	×
	A, saddr2	2	A, $CY \leftarrow A + (saddr2) + CY$	×	×	×	V	×
	r, saddr	3	r, $CY \leftarrow r + (saddr) + CY$	×	×	×	V	×
	saddr, r	3	(saddr), $CY \leftarrow (saddr) + r + CY$	×	×	×	V	×
	r, sfr	3	$r, \ CY \gets r + sfr + CY$	×	×	×	V	×
	sfr, r	3	sfr, $CY \leftarrow sfr + r + CY$	×	×	×	V	×
	saddr, saddr'	4	(saddr), $CY \leftarrow$ (saddr) + (saddr') + CY	×	×	×	V	×
	A, [saddrp]	3/4	A, $CY \leftarrow A + ((saddrp)) + CY$	×	×	×	V	×
	A, [%saddrg]	3/4	A, $CY \leftarrow A + ((saddrg)) + CY$	×	×	×	V	×
	[saddrp], A	3/4	$((saddrp)), CY \leftarrow ((saddrp)) + A + CY$	×	×	×	V	×
	[%saddrg], A	3/4	((saddrg)), $CY \leftarrow$ ((saddrg)) + A + CY	×	×	×	V	×
	A, !addr16	4	A, $CY \leftarrow A + (addr16) + CY$	×	×	×	V	×
	A, ‼addr24	5	A, $CY \leftarrow A + (addr24) + CY$	×	×	×	V	×
	!addr16, A	4	(addr16), $CY \leftarrow (addr16) + A + CY$	×	х	×	V	×
	!!addr24, A	5	(addr24), $CY \leftarrow (addr24) + A + CY$	×	х	×	V	×
	A, mem	2-5	A, CY \leftarrow A + (mem) + CY	×	х	×	V	×
	mem, A	2-5	(mem), $CY \leftarrow (mem) + A + CY$	×	х	×	V	×

						Flage	6	
Mnemonic	Operands	Bytes	Operation	S	Z	AC	P/V	CY
SUB	A, #byte	2	A, CY \leftarrow A – byte	×	×	×	V	×
	r, #byte	3	r, $CY \leftarrow r - byte$	×	×	×	V	×
	saddr, #byte	3/4	(saddr), $CY \leftarrow (saddr) - byte$	×	×	×	V	×
	sfr, #byte	4	sfr, CY \leftarrow sfr – byte	×	×	×	V	×
	r, r'	2/3	$r, CY \leftarrow r - r'$	×	×	×	V	×
	A, saddr2	2	A, $CY \leftarrow A - (saddr2)$	×	×	×	V	×
	r, saddr	3	$r, \ CY \gets r - (saddr)$	×	×	×	V	×
	saddr, r	3	(saddr), $CY \leftarrow (saddr) - r$	×	×	×	V	×
	r, sfr	3	$r, CY \leftarrow r - sfr$	×	×	×	V	×
	sfr, r	3	sfr, $CY \leftarrow sfr - r$	×	×	×	V	×
	saddr, saddr'	4	(saddr), CY \leftarrow (saddr) – (saddr')	×	×	×	V	×
	A, [saddrp]	3/4	A, $CY \leftarrow A - ((saddrp))$	×	×	×	V	×
	A, [%saddrg]	3/4	A, $CY \leftarrow A - ((saddrg))$	×	×	×	V	×
	[saddrp], A	3/4	((saddrp)), $CY \leftarrow ((saddrp)) - A$	×	×	×	V	×
	[%saddrg], A	3/4	((saddrg)), $CY \leftarrow ((saddrg)) - A$	×	×	×	V	×
	A, !addr16	4	A, CY \leftarrow A – (addr16)	×	×	×	V	×
	A, ‼addr24	5	A, CY \leftarrow A – (addr24)	×	×	×	V	×
	!addr16, A	4	(addr16), CY \leftarrow (addr16) – A	×	×	×	V	×
	!!addr24, A	5	(addr24), CY \leftarrow (addr24) – A	×	х	×	V	×
	A, mem	2-5	A, CY \leftarrow A – (mem)	×	х	×	V	×
	mem, A	2-5	(mem), CY \leftarrow (mem) – A	×	×	×	V	×

						Flage	6	
Mnemonic	Operands	Bytes	Operation	S	Ζ	AC	P/V	CY
SUBC	A, #byte	2	A, $CY \leftarrow A - byte - CY$	×	×	×	V	×
	r, #byte	3	r, $CY \leftarrow r - byte - CY$	×	×	×	V	×
	saddr, #byte	3/4	(saddr), $CY \leftarrow (saddr) - byte - CY$	×	×	×	V	×
	sfr, #byte	4	sfr, $CY \leftarrow sfr - byte - CY$	×	×	×	V	×
	r, r'	2/3	$r, CY \leftarrow r - r' - CY$	×	×	×	V	×
	A, saddr2	2	A, $CY \leftarrow A - (saddr2) - CY$	×	×	×	V	×
	r, saddr	3	r, $CY \leftarrow r - (saddr) - CY$	×	×	×	V	×
	saddr, r	3	(saddr), $CY \leftarrow (saddr) - r - CY$	×	×	×	V	×
	r, sfr	3	$r, CY \leftarrow r - sfr - CY$	×	×	×	V	×
	sfr, r	3	sfr, $CY \leftarrow sfr - r - CY$	×	х	×	V	×
	saddr, saddr'	4	(saddr), $CY \leftarrow (saddr) - (saddr') - CY$	×	×	×	V	×
	A, [saddrp]	3/4	A, $CY \leftarrow A - ((saddrp)) - CY$	×	х	×	V	×
	A, [%saddrg]	3/4	A, $CY \leftarrow A - ((saddrg)) - CY$	×	×	×	V	×
	[saddrp], A	3/4	$((saddrp)), CY \leftarrow ((saddrp)) - A - CY$	×	×	×	V	×
	[%saddrg], A	3/4	$((saddrg)), CY \leftarrow ((saddrg)) - A - CY$	×	×	×	V	×
	A, !addr16	4	A, $CY \leftarrow A - (addr16) - CY$	×	×	×	V	×
	A, ‼addr24	5	A, $CY \leftarrow A - (addr24) - CY$	×	×	×	V	×
	!addr16, A	4	(addr16), $CY \leftarrow (addr16) - A - CY$	×	×	×	V	×
	!!addr24, A	5	(addr24), $CY \leftarrow (addr24) - A - CY$	×	×	×	V	×
	A, mem	2-5	$A,CY\leftarrowA-(mem)-CY$	×	×	×	V	×
	mem, A	2-5	(mem), $CY \leftarrow (mem) - A - CY$	×	×	×	V	×

		.				Flage	6	
Mnemonic	Operands	Bytes	Operation	S	Ζ	AC	P/V	CY
СМР	A, #byte	2	A – byte	×	×	×	V	×
	r, #byte	3	r – byte	×	×	×	V	×
	saddr, #byte	3/4	(saddr) – byte	×	×	×	V	×
	sfr, #byte	4	sfr – byte	×	×	×	V	×
	r, r'	2/3	r – r'	×	×	×	V	×
	A, saddr2	2	A – (saddr2)	×	×	×	V	×
	r, saddr	3	r – (saddr)	×	×	×	V	×
	saddr, r	3	(saddr) – r	×	×	×	V	×
	r, sfr	3	r – sfr	×	×	×	V	×
	sfr, r	3	sfr – r	×	×	×	V	×
	saddr, saddr'	4	(saddr) – (saddr')	×	×	×	V	×
	A, [saddrp]	3/4	A – ((saddrp))	×	×	×	V	×
	A, [%saddrg]	3/4	A – ((saddrg))	×	×	×	V	×
	[saddrp], A	3/4	((saddrp)) – A	×	×	×	V	×
	[%saddrg], A	3/4	((saddrg)) – A	×	×	×	V	×
	A, !addr16	4	A – (addr16)	×	×	×	V	×
	A, ‼addr24	5	A – (addr24)	×	×	×	V	×
	!addr16, A	4	(addr16) – A	×	×	×	V	×
	‼addr24, A	5	(addr24) – A	×	×	×	V	×
	A, mem	2-5	A – (mem)	×	×	×	V	×
	mem, A	2-5	(mem) – A	×	×	×	V	×

Magazzia	Onerende	Dutes	On earther			Flags
Mnemonic	Operands	Bytes	Operation	S	Ζ	AC P/V CY
AND	A, #byte	2	$A \leftarrow A \land byte$	×	×	Р
	r, #byte	3	$r \leftarrow r \land byte$	×	×	Р
	saddr, #byte	3/4	$(saddr) \leftarrow (saddr) \land byte$	×	×	Р
	sfr, #byte	4	$sfr \leftarrow sfr \land byte$	×	×	Р
	r, r'	2/3	$r \leftarrow r \land r'$	×	×	Р
	A, saddr2	2	$A \leftarrow A \land (saddr2)$	×	×	Р
	r, saddr	3	$r \leftarrow r \land (saddr)$	×	×	Р
	saddr, r	3	$(saddr) \leftarrow (saddr) \land r$	×	×	Р
	r, sfr	3	$r \leftarrow r \land sfr$	×	×	Р
	sfr, r	3	$sfr \leftarrow sfr \land r$	×	×	Р
	saddr, saddr'	4	$(saddr) \leftarrow (saddr) \land (saddr')$	×	×	Р
	A, [saddrp]	3/4	$A \leftarrow A \land ((saddrp))$	×	×	Р
	A, [%saddrg]	3/4	$A \leftarrow A \land ((saddrg))$	×	×	Р
	[saddrp], A	3/4	$((saddrp)) \leftarrow ((saddrp)) \land A$	×	×	Р
	[%saddrg], A	3/4	$((saddrg)) \leftarrow ((saddrg)) \land A$	×	×	Р
	A, !addr16	4	$A \leftarrow A \land (addr16)$	×	х	Р
	A, ‼addr24	5	$A \leftarrow A \land (addr24)$	×	×	Р
	!addr16, A	4	$(addr16) \leftarrow (addr16) \land A$	×	×	Р
	!!addr24, A	5	$(addr24) \leftarrow (addr24) \land A$	×	×	Р
	A, mem	2-5	$A \leftarrow A \land (mem)$	×	×	Р
	mem, A	2-5	$(mem) \gets (mem) \land A$	×	×	Р

						Flags
Mnemonic	Operands	Bytes	Operation	S	Ζ	AC P/V CY
OR	A, #byte	2	$A \leftarrow A \lor$ byte	×	×	Р
	r, #byte	3	$r \leftarrow r \lor byte$	×	×	Р
	saddr, #byte	3/4	$(saddr) \leftarrow (saddr) \lor byte$	×	×	Р
	sfr, #byte	4	$sfr \leftarrow sfr \lor byte$	×	×	Р
	r, r'	2/3	$r \leftarrow r \lor r'$	×	×	Р
	A, saddr2	2	$A \leftarrow A \lor$ (saddr2)	×	×	Р
	r, saddr	3	$r \leftarrow r \lor (saddr)$	×	×	Р
	saddr, r	3	$(saddr) \leftarrow (saddr) \lor r$	×	×	Р
	r, sfr	3	$r \leftarrow r \lor sfr$	×	×	Р
	sfr, r	3	$sfr \leftarrow sfr \lor r$	×	×	Р
	saddr, saddr'	4	$(saddr) \leftarrow (saddr) \lor (saddr')$	×	×	Р
	A, [saddrp]	3/4	$A \leftarrow A \lor ((saddrp))$	×	×	Р
	A, [%saddrg]	3/4	$A \leftarrow A \lor ((saddrg))$	×	×	Р
	[saddrp], A	3/4	$((saddrp)) \leftarrow ((saddrp)) \lor A$	×	×	Р
	[%saddrg], A	3/4	$((saddrg)) \leftarrow ((saddrg)) \lor A$	×	×	Р
	A, !addr16	4	$A \leftarrow A \lor (addr16)$	×	×	Р
	A, ‼addr24	5	$A \leftarrow A \lor (addr24)$	×	×	Р
	!addr16, A	4	$(addr16) \leftarrow (addr16) \lor A$	×	×	Р
	!!addr24, A	5	$(addr24) \leftarrow (addr24) \lor A$	×	Х	Р
	A, mem	2-5	$A \leftarrow A \lor (mem)$	×	Х	Р
	mem, A	2-5	$(mem) \gets (mem) \lor A$	×	×	Р

Manageria	Oracia	Dutas	Quanting			Flags
Mnemonic	Operands	Bytes	Operation	S	Z	AC P/V CY
XOR	A, #byte	2	$A \leftarrow A \forall byte$	×	×	Р
	r, #byte	3	$r \leftarrow r \forall byte$	×	×	Р
	saddr, #byte	3/4	$(saddr) \leftarrow (saddr) \forall byte$	×	×	Р
	sfr, #byte	4	$\mathrm{sfr} \leftarrow \mathrm{sfr} \mathrm{byte}$	×	×	Р
	r, r'	2/3	$r \leftarrow r \forall r'$	×	×	Р
	A, saddr2	2	$A \leftarrow A \forall$ (saddr2)	×	×	Р
	r, saddr	3	$r \leftarrow r \forall (saddr)$	×	×	Р
	saddr, r	3	$(saddr) \leftarrow (saddr) \forall r$	×	×	Р
	r, sfr	3	$r \leftarrow r \forall sfr$	×	×	Р
	sfr, r	3	$\mathrm{sfr} \leftarrow \mathrm{sfr} \forall r$	×	×	Р
	saddr, saddr'	4	$(saddr) \leftarrow (saddr) orall r$ (saddr')	×	×	Р
	A, [saddrp]	3/4	$A \leftarrow A \forall ((saddrp))$	×	×	Р
	A, [%saddrg]	3/4	$A \leftarrow A ((saddrg))$	×	×	Р
	[saddrp], A	3/4	$((saddrp)) \leftarrow ((saddrp)) \forall A$	×	×	Р
	[%saddrg], A	3/4	$((saddrg)) \leftarrow ((saddrg)) \forall A$	×	×	Р
	A, !addr16	4	$A \leftarrow A \forall$ (addr16)	×	×	Р
	A, ‼addr24	5	$A \leftarrow A \forall$ (addr24)	×	×	Р
	!addr16, A	4	$(addr16) \leftarrow (addr16) \forall A$	×	×	Р
	!!addr24, A	5	$(addr24) \leftarrow (addr24) \forall A$	×	×	Р
	A, mem	2-5	$A \leftarrow A \forall$ (mem)	×	х	Р
	mem, A	2-5	$(mem) \leftarrow (mem) A$	×	×	Р

(7) 16-bit operation instructions: ADDW, SUBW, CMPW

Mnemonic	Operands	Bytes	Operation	Flags						
Whetheric	Operando	Bytes		S	Z	AC	P/V	CY		
ADDW	AX, #word	3	AX, $CY \leftarrow AX + word$	×	×	×	V	×		
	rp, #word	4	$rp, CY \leftarrow rp + word$	×	×	×	V	×		
	rp, rp'	2	$rp, CY \leftarrow rp + rp'$	×	×	×	V	×		
	AX, saddrp2	2	AX, CY \leftarrow AX + (saddrp2)	×	×	×	V	×		
	rp, saddrp	3	rp, CY \leftarrow rp + (saddrp)	×	×	×	V	×		
	saddrp, rp	3	(saddrp), CY \leftarrow (saddrp) + rp	×	×	×	V	×		
	rp, sfrp	3	rp, CY \leftarrow rp + sfrp	×	×	×	V	×		
	sfrp, rp	3	sfrp, CY \leftarrow sfrp + rp	×	×	×	V	×		
	saddrp, #word	4/5	(saddrp), $CY \leftarrow (saddrp) + word$	×	×	×	V	×		
	sfrp, #word	5	sfrp, CY \leftarrow sfrp + word	×	×	×	V	×		
	saddrp, saddrp'	4	(saddrp), $CY \leftarrow (saddrp) + (saddrp')$	×	×	×	V	×		
SUBW	AX, #word	3	AX, $CY \leftarrow AX - word$	×	×	×	V	×		
	rp, #word	4	rp, CY \leftarrow rp – word	×	×	×	V	×		
	rp, rp'	2	$rp, CY \leftarrow rp - rp'$	×	×	×	V	×		
	AX, saddrp2	2	AX, CY \leftarrow AX – (saddrp2)	×	×	×	V	×		
	rp, saddrp	3	rp, CY \leftarrow rp – (saddrp)	×	×	×	V	×		
	saddrp, rp	3	(saddrp), $CY \leftarrow (saddrp) - rp$	×	×	×	V	×		
	rp, sfrp	3	rp, CY \leftarrow rp – sfrp	×	×	×	V	×		
	sfrp, rp	3	sfrp, CY \leftarrow sfrp – rp	×	×	×	V	×		
	saddrp, #word	4/5	(saddrp), $CY \leftarrow (saddrp) - word$	×	×	×	V	×		
	sfrp, #word	5	sfrp, CY \leftarrow sfrp – word	×	×	×	V	×		
	saddrp, saddrp'	4	(saddrp), CY \leftarrow (saddrp) – (saddrp')	×	×	×	V	×		
CMPW	AX, #word	3	AX – word	×	×	×	V	×		
	rp, #word	4	rp – word	×	×	×	V	×		
	rp, rp'	2	rp – rp'	×	×	×	V	×		
	AX, saddrp2	2	AX – (saddrp2)	×	×	×	V	×		
	rp, saddrp	3	rp – (saddrp)	×	×	×	V	×		
	saddrp, rp	3	(saddrp) – rp	×	×	×	V	×		
	rp, sfrp	3	rp – sfrp	×	×	×	V	×		
	sfrp, rp	3	sfrp – rp	×	×	×	V	×		
	saddrp, #word	4/5	(saddrp) – word	×	×	×	V	×		
	sfrp, #word	5	sfrp – word	×	×	×	V	×		
	saddrp, saddrp'	4	(saddrp) – (saddrp')	×	×	×	V			

(8) 24-bit operation instructions: ADDG, SUBG

	On arrenda	5.	Operation	Flags						
Mnemonic	Operands	Bytes		S	Ζ	AC	P/V	CY		
ADDG	rg, rg'	2	$rg, \ CY \gets rg + rg'$	×	×	×	V	×		
	rg, # imm24	5	rg, CY \leftarrow rg + # imm24	×	×	×	V	×		
	WHL, saddrg	3	WHL, CY \leftarrow WHL + (saddrg)	×	×	×	V	×		
SUBG	rg, rg'	2	$rg, \ CY \leftarrow rg - rg'$	×	×	×	V	×		
	rg, # imm24	5	rg, CY \leftarrow rg – imm24	×	×	×	V	×		
	WHL, saddrg	3	WHL, $CY \leftarrow WHL - (saddrg)$	×	×	×	V	×		

(9) Multiplication instructions: MULU, MULUW, MULW, DIVUW, DIVUX

Manager	Original	Dutas	Quantiza	Flags
Mnemonic	Operands	Bytes	Operation	S Z AC P/V CY
MULU	r	2/3	$AX \leftarrow A \times r$	
MULUW	rp	2	AX (upper half), rp (lower half) \leftarrow AX \times rp	
MULW	rp	2	AX (upper half), rp (lower half) \leftarrow AX \times rp	
DIVUW	r	2/3	AX (quotient), r (remainder) \leftarrow AX \div rNote 1	
DIVUX	rp	2	AXDE (quotient), rp (remainder) $\leftarrow AXDE \div rp^{\textbf{Note 2}}$	

Notes 1. When r = 0, $r \leftarrow X$, $AX \leftarrow FFFFH$

2. When rp = 0, pr \leftarrow DE, AXDE \leftarrow FFFFFFFH

(10) Special operation instructions: MACW, MACSW, SACW

		5.4				Flage	6	
Mnemonic	Operands	Bytes	Operation	S	Ζ	AC	P/V	CY
MACW	byte	3	$\begin{array}{l} AXDE \leftarrow (B) \times (C) + AXDE, \ B \leftarrow B + 2, \\ C \leftarrow C + 2, \ byte \leftarrow byte - 1 \\ End \ if(byte = 0 \ or \ P/V = 1) \end{array}$	×	×	×	V	×
MACSW	byte	3	$\begin{array}{l} AXDE \leftarrow (B) \times (C) + AXDE, \ B \leftarrow B + 2, \\ C \leftarrow C + 2, \ byte \leftarrow byte - 1 \\ if \ byte = 0 \ then \ End \\ if \ P/V = 1 \ then \\ if \ overflow \ AXDE \leftarrow 7FFFFFFH, \ End \\ if \ underflow \ AXDE \leftarrow 80000000H, \ End \end{array}$	×	×	×	V	×
SACW	[TDE +], [WHL +]	4	$\begin{array}{l} AX \leftarrow (TDE) - (WHL) + AX,\\ TDE \leftarrow TDE + 2, \ WHL \leftarrow WHL + 2\\ C \leftarrow C - 1 \ End \ if(C = 0 \ or \ CY = 1) \end{array}$	×	×	×	V	×

(11) Increment/decrement instructions: INC, DEC, INCW, DECW, INCG, DECG

				Flags							
Mnemonic	Operands	Bytes	Operation	S	Ζ	AC	P/V	CY			
INC	r	1/2	r ← r + 1	×	×	×	V				
	saddr	2/3	$(saddr) \leftarrow (saddr) + 1$	×	×	×	V				
DEC	r	1/2	r ← r −1	×	×	×	V				
	saddr	2/3	$(saddr) \leftarrow (saddr) - 1$	×	х	×	V				
INCW	rp	2/1	$rp \leftarrow rp + 1$								
	saddrp	3/4	$(saddrp) \leftarrow (saddrp) + 1$								
DECW	rp	2/1	$rp \leftarrow rp - 1$								
	saddrp	3/4	$(saddrp) \leftarrow (saddrp) - 1$								
INCG	rg	2	$rg \leftarrow rg + 1$								
DECG	rg	2	$rg \leftarrow rg - 1$								

(12) Adjustment instructions: ADJBA, ADJBS, CVTBW

			Flags							
Mnemonic	Operands	Bytes	Operation	S	Ζ	AC	P/V	CY		
ADJBA		2	Decimal Adjust Accumulator after Addition	×	×	×	Ρ	×		
ADJBS		2	Decimal Adjust Accumulator after Subtract	×	×	×	Ρ	×		
CVTBW		1	$X \leftarrow A, A \leftarrow 00H \text{ if } A_7 = 0$							
			$X \leftarrow A, A \leftarrow FFH \text{ if } A_7 = 1$							

Manager	Orangeda	D. fac	Quantiza			Flage	3	
Mnemonic	Operands	Bytes	Operation	S	Ζ	AC	P/V	CY
ROR	r, n	2/3	(CY, r7 \leftarrow r0, rm – 1 \leftarrow rm) \times n times n = 0 – 7				Ρ	×
ROL	r, n	2/3	(CY, r0 \leftarrow r7, rm + 1 \leftarrow rm) \times n times n = 0 - 7				Ρ	×
RORC	r, n	2/3	$(CY \leftarrow r_0, r_7 \leftarrow CY, r_{m-1} \leftarrow r_m) \times n \text{ times } n = 0 - 7$				Ρ	×
ROLC	r, n	2/3	$(CY \leftarrow r_7, r_0 \leftarrow CY, r_m + 1 \leftarrow r_m) \times n \text{ times } n = 0 - 7$				Ρ	×
SHR	r, n	2/3	$(CY \leftarrow r_0, r_7 \leftarrow 0, r_{m-1} \leftarrow r_m) \times n \text{ times } n = 0 - 7$	×	×	0	Ρ	×
SHL	r, n	2/3	$(CY \leftarrow r_7, r_0 \leftarrow 0, r_{m+1} \leftarrow r_m) \times n \text{ times } n = 0 - 7$	×	×	0	Ρ	×
SHRW	rp, n	2	$(CY \leftarrow rp0, rp15 \leftarrow 0, rpm-1 \leftarrow rpm) \times n \text{ times}$ n = 0 - 7	×	×	0	Ρ	×
SHLW	rp, n	2	(CY \leftarrow rp15, rp0 \leftarrow 0, rpm + 1 \leftarrow rpm) \times n times n = 0 - 7	×	×	0	Ρ	×
ROR4	mem3	2	$A_{3-0} \leftarrow (mem3)_{3-0}, (mem3)_{7-4} \leftarrow A_{3-0}, (mem3)_{3-0} \leftarrow (mem3)_{7-4}$					
ROL4	mem3	2	$A_{3-0} \leftarrow (mem3)_{7-4}, (mem3)_{3-0} \leftarrow A_{3-0}, (mem3)_{7-4} \leftarrow (mem3)_{3-0}$					

(13) Shift/rotate instructions: ROR, ROL, RORC, ROLC, SHR, SHL, SHRW, SHLW, ROR4, ROL4

(14) Bit manipulation instructions: MOV1, AND1, OR1, XOR1, NOT1, SET1, CLR1

				Flags
Mnemonic	Operands	Bytes	Operation	S Z AC P/V CY
MOV1	CY, saddr. bit	3/4	$CY \leftarrow (saddr. bit)$	×
	CY, sfr. bit	3	$CY \leftarrow sfr. bit$	×
	CY, X. bit	2	$CY \leftarrow X.$ bit	×
	CY, A. bit	2	$CY \leftarrow A.$ bit	×
	CY, PSWL. bit	2	$CY \leftarrow PSWL$. bit	×
	CY, PSWH. bit	2	$CY \leftarrow PSWH.$ bit	×
	CY, !addr16. bit	5	CY ← !addr16.bit	×
	CY, ‼addr24. bit	2	$CY \leftarrow !!addr24. bit$	×
	CY, mem2. bit	2	$CY \leftarrow mem2. bit$	×
	saddr. bit, CY	3/4	$(saddr. bit) \leftarrow CY$	
	sfr. bit, CY	3	sfr. bit \leftarrow CY	
	X. bit, CY	2	$X.bit \leftarrow CY$	
	A. bit, CY	2	A. bit \leftarrow CY	
	PSWL. bit, CY	2	$PSWL. bit \leftarrow CY$	× × × × ×
	PSWH. bit, CY	2	$PSWH. bit \gets CY$	
	!addr16. bit, CY !!addr24.bit, CY	5	!addr16.bit ← CY	
		6	!!addr24.bit ← CY	
	mem2. bit, CY	2	mem2. bit ← CY	

Mnemonic	Operands	Bytes	Operation	Flags					
		Dytes	Operation	S Z AC P/V CY					
AND1	CY, saddr. bit	3/4	$CY \gets CY \land (saddr.\ bit)$	×					
	CY, /saddr. bit	3/4	$CY \leftarrow CY \land (\overline{saddr. bit})$	×					
	CY, sfr. bit	3	$CY \leftarrow CY \land sfr. bit$	×					
	CY, /sfr. bit	3	$CY \leftarrow CY \land \overline{sfr. bit}$	×					
	CY, X. bit	2	$CY \leftarrow CY \land X.$ bit	×					
	CY, /X. bit	2	$CY \leftarrow CY \land \overline{X. \text{ bit}}$	×					
	CY, A. bit	2	$CY \leftarrow CY \land A.$ bit	×					
	CY, /A. bit	2	$CY \leftarrow CY \land \overline{A. \text{ bit}}$	×					
	CY, PSWL. bit	2	$CY \leftarrow CY \land PSW_L$. bit	×					
	CY, /PSWL. bit	2	$CY \leftarrow CY \land \overline{PSW_{L}}$ bit	×					
	CY, PSWH. bit	2	$CY \leftarrow CY \land PSW_{H}$. bit	×					
	CY, /PSWH. bit	2	$CY \leftarrow CY \land \overline{PSW_{H.} \text{ bit}}$	×					
	CY, !addr16. bit	5	$CY \leftarrow CY \land !addr16. bit$	×					
	CY, /!addr16. bit	5	$CY \leftarrow CY \land \overline{!addr16. bit}$	×					
	CY, !!addr24. bit	2	$CY \leftarrow CY \land !!addr24. bit$	×					
	CY, /!!addr24. bit	6	$CY \leftarrow CY \land $!!addr24. bit	×					
	CY, mem2. bit	2	$CY \leftarrow CY \land mem2. bit$	×					
	CY, /mem2. bit	2	$CY \leftarrow CY \land \overline{mem2. bit}$	×					
OR1	CY, saddr. bit	3/4	$CY \leftarrow CY \lor$ (saddr. bit)	×					
	CY, /saddr. bit	3/4	$CY \leftarrow CY \lor (\overline{saddr. bit})$	×					
	CY, sfr. bit	3	$CY \leftarrow CY \lor sfr. bit$	×					
	CY, /sfr. bit	3	$CY \leftarrow CY \lor \overline{sfr. bit}$	×					
	CY, X. bit	2	$CY \leftarrow CY \lor X$. bit	×					
	CY, /X. bit	2	$CY \leftarrow CY \lor \overline{X. \text{ bit}}$	×					
	CY, A. bit	2	$CY \leftarrow CY \lor A.$ bit	×					
	CY, /A. bit	2	$CY \leftarrow CY \lor \overline{A. \text{ bit}}$	×					
	CY, PSWL. bit	2	$CY \leftarrow CY \lor PSW_{L}$ bit	×					
	CY, /PSWL. bit	2	$CY \leftarrow CY \lor \overline{PSW_{L}}$ bit	×					
	CY, PSWH. bit	2	$CY \leftarrow CY \lor PSW_{H}$. bit	×					
	CY, /PSWH. bit	2	$CY \leftarrow CY \lor \overline{PSW}$ H. bit	×					
	CY, !addr16. bit	5	$CY \leftarrow CY \lor !addr16. bit$	×					
	CY, /!addr16. bit	5	$CY \leftarrow CY \lor \overline{addr16. bit}$	×					
	CY, !!addr24. bit	2	$CY \leftarrow CY \lor !!addr24. bit$	×					
	CY, /!!addr24. bit	6	$CY \leftarrow CY \lor $!!addr24. bit	×					
	CY, mem2. bit	2	$CY \leftarrow CY \lor mem2. bit$	×					
	CY, /mem2. bit	2	$CY \leftarrow CY \lor \overline{mem2. bit}$	×					

Mnemonic	Operands	Bytes	Operation	Flags
		-		S Z AC P/V C
XOR1	CY, saddr. bit	3/4	$CY \leftarrow CY \forall$ (saddr. bit)	:
	CY, sfr. bit	3	$CY \leftarrow CY \forall sfr. bit$;
	CY, X. bit	2	$CY \leftarrow CY \forall X. bit$;
	CY, A. bit	2	$CY \leftarrow CY \forall A. bit$;
	CY, PSWL. bit	2	$CY \leftarrow CY \forall PSWL. bit$;
	CY, PSWH. bit	2	$CY \leftarrow CY \forall PSWH.$ bit	:
	CY, !addr16. bit	5	$CY \leftarrow CY \forall !addr16. bit$:
	CY, !!addr24. bit	2	$CY \leftarrow CY \forall !!addr24. bit$	
	CY, mem2. bit	2	$CY \leftarrow CY \forall$ mem2. bit	:
NOT1	saddr. bit	3/4	$(saddr. bit) \leftarrow (\overline{saddr. bit})$	
	sfr. bit	3	sfr. bit $\leftarrow \overline{\text{sfr. bit}}$	
	X. bit	2	X. bit $\leftarrow \overline{X. \text{ bit}}$	
	A. bit	2	A. bit $\leftarrow \overline{A. \text{ bit}}$	
	PSWL. bit	2	$PSWL. bit \leftarrow \overline{PSWL. bit}$	× × × × ×
	PSWH. bit	2	PSWH. bit $\leftarrow \overline{PSW_{H}}$ bit	
	!addr16. bit	5	!addr16. bit ← <mark>!addr16. bit</mark>	
	!!addr24. bit	2	!!addr24. bit ← $\overline{!!addr24. bit}$	
	mem2. bit	2	mem2. bit \leftarrow mem2. bit	
	CY	1	$CY \leftarrow \overline{CY}$:
SET1	saddr. bit	2/3	(saddr. bit) \leftarrow 1	
	sfr. bit	3	sfr. bit ← 1	
	X. bit	2	X. bit ← 1	
	A. bit	2	A. bit ← 1	
	PSWL. bit	2	PSWL. bit \leftarrow 1	× × × × ×
	PSWH. bit	2	PSWH. bit ← 1	
	!addr16. bit	5	!addr16. bit ← 1	
	!!addr24. bit	2	‼addr24. bit ← 1	
	mem2. bit	2	mem2. bit \leftarrow 1	
	CY	1	CY ← 1	
CLR1	saddr. bit	2/3	(saddr. bit) $\leftarrow 0$	
	sfr. bit	3	sfr. bit $\leftarrow 0$	
	X. bit	2	X. bit $\leftarrow 0$	
	A. bit	2	A. bit $\leftarrow 0$	
	PSWL. bit	2	PSWL. bit $\leftarrow 0$	× × × × × ×
	PSWH. bit	2	PSWH. bit $\leftarrow 0$	
	!addr16. bit	5	!addr16. bit $\leftarrow 0$	
	!!addr24. bit	2	!!addr24. bit $\leftarrow 0$	
	mem2. bit	2	mem2. bit $\leftarrow 0$	
	CY	1	$CY \leftarrow 0$	

Mnemonic	Operands	Bytes	Operation	Flags					
				S	Z	AC	P/V	CY	
PUSH	PSW	1	$(SP - 2) \leftarrow PSW, SP \leftarrow SP - 2$						
	sfrp	3	$(SP - 2) \leftarrow sfrp, SP \leftarrow SP - 2$						
	sfr	3	$(SP - 1) \leftarrow sfr, SP \leftarrow SP - 1$						
	post	2	$\{(SP-2) \leftarrow post, \ SP \leftarrow SP-2\} \times m \ times^{Note}$						
	rg	2	$(SP - 3) \leftarrow rg, SP \leftarrow SP - 3$						
PUSHU	post	2	$\{(UUP-2) \gets post, \ UUP \gets UUP-2\} \times m \ times^{\textbf{Note}}$						
POP	PSW	1	$PSW \leftarrow (SP), \ SP \leftarrow SP + 2$	R	R	R	R	R	
	sfrp	3	sfrp \leftarrow (SP), SP \leftarrow SP + 2						
	sfr	3	sfr \leftarrow (SP), SP \leftarrow SP + 1						
	post	2	{post \leftarrow (SP), SP \leftarrow SP + 2} \times m times ^{Note}						
	rg	2	$rg \leftarrow (SP), SP \leftarrow SP + 3$						
POPU	post	2	$\{\texttt{post} \leftarrow (\texttt{UUP}), \ \texttt{UUP} \leftarrow \texttt{UUP} + 2\} \times \texttt{m times}^{\textbf{Note}}$						
MOVG	SP, # imm24	5	$SP \leftarrow imm24$						
	SP, WHL	2	$SP \gets WHL$						
	WHL, SP	2	$WHL \leftarrow SP$						
ADDWG	SP, #word	4	$SP \leftarrow SP + word$						
SUBWG	SP, #word	4	$SP \leftarrow SP - word$						
INCG	SP	2	$SP \leftarrow SP + 1$						
DECG	SP	2	$SP \leftarrow SP - 1$						

(15) Stack manipulation instructions: PUSH, PUSHU, POP, POPU, MOVG, ADDWG, SUBWG, INCG, DECG

Note m = number of registers specified by "post"

(16) Call/return instructions: CALL, CALLF, CALLT, BRK, BRKCS, RET, RETI, RETB, RETCS, RETCSB

Mnemonic	Operands	Bytes	Operation		Flags					
					Ζ	AC	P/V	CY		
CALL	!addr16	3	$(SP - 3) \leftarrow (PC + 3), SP \leftarrow SP - 3,$ $PC_{HW} \leftarrow 0, PC_{LW} \leftarrow addr16$							
	!!addr20	4	$(SP - 3) \leftarrow (PC + 4), SP \leftarrow SP - 3,$ PC \leftarrow addr20							
	rp	2	$(SP - 3) \leftarrow (PC + 2), SP \leftarrow SP - 3,$ $PC_{HW} \leftarrow 0, PC_{LW} \leftarrow rp$							
	rg	2	$(SP - 3) \leftarrow (PC + 2), SP \leftarrow SP - 3,$ PC \leftarrow rg							
	[rp]	2	$(SP - 3) \leftarrow (PC + 2), SP \leftarrow SP - 3,$ $PC_{HW} \leftarrow 0, PC_{LW} \leftarrow (rp)$							
	[rg]	2	$(SP - 3) \leftarrow (PC + 2), SP \leftarrow SP - 3,$ $PC \leftarrow (rg)$							
	\$!addr20	3	$(SP - 3) \leftarrow (PC + 3), SP \leftarrow SP - 3,$ $PC \leftarrow PC + 3 + jdisp16$							
CALLF	!addr11	2	$(SP - 3) \leftarrow (PC + 2), SP \leftarrow SP - 3,$ $PC_{19-12} \leftarrow 0, PC11 \leftarrow 1, PC_{10-0} \leftarrow addr11$							
CALLT	[addr5]	1	$(SP - 3) \leftarrow (PC + 1), SP \leftarrow SP - 3,$ $PC_{HW} \leftarrow 0, PC_{LW} \leftarrow (addr5)$							
BRK		1	$\begin{array}{l} (SP-2) \leftarrow PSW, \ (SP-1)_{0-3} \leftarrow (PC+1)_{HW}, \\ (SP-4) \leftarrow (PC+1)_{LW}, \\ SP \leftarrow SP-4 \\ PC_{HW} \leftarrow 0, \ PC_{LW} \leftarrow (003EH) \end{array}$							
BRKCS	RBn	2	$\begin{array}{c} PC_{LW} \leftarrow RP2, \ RP3 \leftarrow PSW, \ RBS2 - 0 \leftarrow n, \\ RSS \leftarrow 0, \ IE \leftarrow 0, \ RP3_{8-11} \leftarrow PC_{HW}, \ PC_{HW} \leftarrow 0 \end{array}$							
RET		1	$PC \leftarrow (SP), SP \leftarrow SP + 3$							
RET1		1	$\begin{array}{l} PC_{LW} \leftarrow (SP), \ PC_{HW} \leftarrow (SP+3)_{^{0-3}}, \\ PSW \leftarrow (SP+2), \ SP \leftarrow SP+4 \\ Clears to 0 flag with highest priority of flags \\ of ISPR that are set (1) \end{array}$	R	R	R	R	R		
RETB		1	$\begin{array}{l} PC_{LW} \leftarrow (SP), \ PC_{HW} \leftarrow (SP+3)_{^{0}-3}, \\ PSW \leftarrow (SP+2), \ SP \leftarrow \ SP+4 \end{array}$	R	R	R	R	R		
RETCS	!addr16	3	$\begin{array}{l} PSW \leftarrow RP3, \ PC_{LW} \leftarrow RP2, \ RP2 \leftarrow addr16, \\ PC_{HW} \leftarrow RP3_{8-11} \\ Clears to \ 0 \ flag \ with \ highest \ priority \ of \ flags \\ of \ ISPR \ that \ are \ set \ (1) \end{array}$	R	R	R	R	R		
RETCSB	!addr16	4	$\begin{array}{l} PSW \leftarrow RP3, \ PC_{LW} \leftarrow RP2, \ RP2 \leftarrow addr16, \\ PC_{HW} \leftarrow RP3_{B-11} \end{array}$	R	R	R	R	R		

(17) Unconditional branch instruction: BR

			Operation		Flags					
Mnemonic	Operands	Bytes			Ζ	AC	P/V	CY		
BR	!addr16	3	$PC_{HW} \leftarrow 0, PC_{LW} \leftarrow addr16$							
	!!addr20	4	$PC \leftarrow addr20$							
	rp	2	$PC_{HW} \leftarrow 0, \ PC_{LW} \leftarrow rp$							
	rg	2	$PC \gets rg$							
	[rp]	2	$PC_{HW} \leftarrow 0, \ PC_{LW} \leftarrow (rp)$							
	[rg]	2	$PC \gets (rg)$							
	\$addr20	2	$PC \gets PC + 2 + jdisp8$							
	\$!addr20	3	$PC \leftarrow PC + 3 + jdisp16$							

(18) Conditional branch instructions: BNZ, BNE, BZ, BE, BNC, BNL, BC, BL, BNV, BPO, BV, BPE, BP, BN, BLT, BGE, BLE, BGT, BNH, BH, BF, BT, BTCLR, BFSET, DBNZ

						Flags	;	
Mnemonic	Operands	Bytes	Operation	S	Z	AC	P/V	CY
BNZ	\$addr20	2	$PC \leftarrow PC + 2 + jdisp8 \text{ if } Z = 0$					
BNE								
BZ	\$addr20	2	$PC \leftarrow PC + 2 + jdisp8 \text{ if } Z = 1$					
BE								
BNC	\$addr20	2	$PC \leftarrow PC + 2 + jdisp8 \text{ if } CY = 0$					
BNL								
BC	\$addr20 2 PC ← PC + 2 + jdisp8 if CY = 1		$PC \leftarrow PC + 2 + jdisp8$ if $CY = 1$					
BL								
BNV	$V \qquad \ \ \ \ \ \ \ \ \ \ \ \ \$		$PC \leftarrow PC + 2 + jdisp8 \text{ if } P/V = 0$					
BPO	0							
BV	\$addr20	2	$PC \leftarrow PC + 2 + jdisp8 \text{ if } P/V = 1$					
BPE								
BP	\$addr20	2	$PC \leftarrow PC + 2 + jdisp8 \text{ if } S = 0$					
BN	\$addr20	2	$PC \leftarrow PC + 2 + jdisp8 \text{ if } S = 1$					
BLT	\$addr20	3	PC ← PC + 3 + jdisp8 if P/V \forall S = 1					
BGE	\$addr20	3	$PC \leftarrow PC + 3 + jdisp8 \text{ if } P/V \forall S = 0$					
BLE	\$addr20	3	$PC \leftarrow PC + 3 + jdisp8 \text{ if } (P/V \forall S) \lor Z = 1$					
BGT	\$addr20	3	$PC \leftarrow PC + 3 + jdisp8 \text{ if } (P/V \forall S) \lor Z = 0$					
BNH	\$addr20	3	$PC \leftarrow PC + 3 + jdisp8 \text{ if } Z \lor CY = 1$					
ВН	\$addr20	3	$PC \leftarrow PC + 3 + jdisp8 \text{ if } Z \lor CY = 0$					
BF	saddr. bit, \$addr20	4/5	$PC \leftarrow PC + 4^{Note} + jdisp8$ if (saddr. bit) = 0					
	sfr. bit, \$addr20	4	$PC \leftarrow PC + 4 + jdisp8$ if sfr. bit = 0					
	X. bit, \$addr20	3	$PC \leftarrow PC + 3 + jdisp8$ if X. bit = 0					-
	A. bit, \$addr20	3	$PC \leftarrow PC + 3 + jdisp8$ if A. bit = 0					
	PSWL. bit, \$addr20	3	$PC \leftarrow PC + 3 + jdisp8 \text{ if } PSW_L. \text{ bit} = 0$					-
	PSWH. bit, \$addr20	3	$PC \leftarrow PC + 3 + jdisp8 \text{ if } PSW_{H}. \text{ bit} = 0$					
	!addr16. bit, \$addr20	6	$PC \leftarrow PC + 3 + jdisp8$ if !addr16. bit = 0					
	!!addr24. bit, \$addr20	3	$PC \leftarrow PC + 3 + jdisp8$ if !!addr24. bit = 0					
	mem2. bit, \$addr20	3	$PC \leftarrow PC + 3 + jdisp8$ if mem2. bit = 0					-

Note When the number of bytes is 4. When 5, the operation is: $PC \leftarrow PC + 5 + jdisp8$.

Manageria	Original	Dutas				Flags	6	
Mnemonic	Operands	Bytes	Operation	S	Ζ	AC	P/V	CY
вт	saddr. bit, \$addr20	3/4	$PC \leftarrow PC + 3^{Note 1} + jdisp8$ if (saddr. bit) = 1					
	sfr. bit, \$addr20	4	$PC \leftarrow PC + 4 + jdisp8$ if sfr. bit = 1					
	X. bit, \$addr20	3	$PC \leftarrow PC + 3 + jdisp8$ if X. bit = 1					
	A. bit, \$addr20	3	$PC \leftarrow PC + 3 + jdisp8$ if A. bit = 1					
	PSWL. bit, \$addr20	3	$PC \leftarrow PC + 3 + jdisp8$ if PSW_L . bit = 1					
	PSWH. bit, \$addr20	3	$PC \leftarrow PC + 3 + jdisp8$ if $PSW_{H.}$ bit = 1					
	!addr16. bit, \$addr20	6	$PC \leftarrow PC + 3 + jdisp8$ if !addr16. bit = 1					
	!!addr24. bit, \$addr20	3	$PC \leftarrow PC + 3 + jdisp8$ if !!addr24. bit = 1					
	mem2. bit, \$addr20	3	$PC \leftarrow PC + 3 + jdisp8$ if mem2. bit = 1					
BTCLR	saddr. bit, \$addr20	4/5	{PC \leftarrow PC + 4 ^{Note 2} + jdisp8, (saddr. bit) \leftarrow 0} if (saddr. bit) = 1					
	sfr. bit, \$addr20	4	${PC \leftarrow PC + 4 + jdisp8, sfr. bit \leftarrow 0}$ if sfr. bit = 1					
	X. bit, \$addr20	3	$\{PC \leftarrow PC + 3 + jdisp8, \ X. \ bit \leftarrow 0\} \ \text{ if } X. \ bit = 1$					
	A. bit, \$addr20	3	$\{PC \leftarrow PC + 3 + jdisp8, \ A. \ bit \leftarrow 0\} \ \text{ if } A. \ bit = 1$					
	PSWL. bit, \$addr20	3	{PC \leftarrow PC + 3 + jdisp8, PSW _L . bit \leftarrow 0} if PSW _L . bit = 1	×	×	×	×	×
	PSWH. bit, \$addr20	3	{PC \leftarrow PC + 3 + jdisp8, PSW _H . bit \leftarrow 0} if PSW _H . bit = 1					
	!addr16. bit, \$addr20	6	{PC \leftarrow PC + 3 + jdisp8, !addr16. bit \leftarrow 0} if !addr16. bit = 1					
	!!addr24. bit, \$addr20	3	{PC \leftarrow PC + 3 + jdisp8, !!addr24. bit \leftarrow 0} if !!addr24. bit = 1					
	mem2. bit, \$addr20	3	{PC \leftarrow PC + 3 + jdisp8, mem2. bit \leftarrow 0} if mem2. bit = 1					

Notes 1. When the number of bytes is 3. When 4, the operation is: $PC \leftarrow PC + 4 + jdisp8$.

2. When the number of bytes is 4. When 5, the operation is: $PC \leftarrow PC + 5 + jdisp8$.

		5.				Flage	6	
Mnemonic	Operands	Bytes	Operation	S	Z	AC	P/V	CY
BFSET	saddr. bit, \$addr20	4/5	$ \{ PC \leftarrow PC + 4^{\text{Note 2}} + jdisp8, \text{ (saddr. bit)} \leftarrow 1 \} $ if (saddr. bit) = 0					
	sfr. bit, \$addr20	4	${PC \leftarrow PC + 4 + jdisp8, sfr. bit \leftarrow 1}$ if sfr. bit = 0					
	X. bit, \$addr20	3	{PC \leftarrow PC + 3 + jdisp8, X. bit \leftarrow 1} if X. bit = 0					
	A. bit, \$addr20	3	{PC \leftarrow PC + 3 + jdisp8, A. bit \leftarrow 1} if A. bit = 0					
	PSWL. bit, \$addr20	3	{PC \leftarrow PC + 3 + jdisp8, PSW _L . bit \leftarrow 1} if PSW _L . bit = 0	×	×	×	×	×
	PSWH. bit, \$addr20	3	{PC \leftarrow PC + 3 + jdisp8, PSW _H . bit \leftarrow 1} if PSW _H . bit = 0					
	!addr16. bit, \$addr20	6	{PC \leftarrow PC + 3 + jdisp8, !addr16. bit \leftarrow 1} if !addr16. bit = 0					
	!!addr24. bit, \$addr20	3	{PC \leftarrow PC + 3 + jdisp8, !!addr24. bit \leftarrow 1} if !!addr24. bit = 0					
	mem2. bit, \$addr20	3	{PC \leftarrow PC + 3 + jdisp8, mem2. bit \leftarrow 1} if mem2. bit = 0					
DBNZ	B, \$addr20	2	$B \leftarrow B - 1$, $PC \leftarrow PC + 2 + jdisp8$ if $B \neq 0$					
	C, \$addr20	2	$C \leftarrow C - 1$, $PC \leftarrow PC + 2 + jdisp8$ if $C \neq 0$					
	\$addr, \$addr20	3/4	$(saddr) \leftarrow (saddr) - 1,$ PC \leftarrow PC + 3 ^{Note 1} = jdisp8 if (saddr) $\neq 0$					

Notes 1. When the number of bytes is 3. When 4, the operation is: $PC \leftarrow PC + 4 + jdisp8$. **2.** When the number of bytes is 4. When 5, the operation is: $PC \leftarrow PC + 5 + jdisp8$.

(19) CPU control instructions: MOV, LOCATION, SEL, SWRS, NOP, EI, DI

				Flags				
Mnemonic	Operands	Bytes	Operation	S	Ζ	AC	P/V	/ CY
MOV	STBC, #byte	4	$STBC \leftarrow byte$					
	WDM, #byte	4	$WDM \leftarrow byte$					
LOCATION	locaddr	4	SFR, internal data area location address upper word specification					
SEL	RBn	2	$RSS \gets 0, \ RBS2 - 0 \gets n$					
	RBn, ALT	2	$RSS \leftarrow 1, RBS2 - 0 \leftarrow n$					
SWRS		2	$RSS \leftarrow \overline{RSS}$					
NOP		1	No Operaton					
EI		1	$IE \leftarrow 1$ (Enable interrupt)					
DI		1	$IE \leftarrow 0$ (Disable interrupt)					

(20) Special instructions: CHKL, CHKLA

Manager	Original	Dutas	Operation			Flags
Mnemonic	Operands	Bytes			Ζ	AC P/V CY
CHKL	sfr	3	(Pin level) ∀ (output latch)	×	×	Р
CHKLA	sfr	3	$A \leftarrow (pin level) \forall (output latch)$	×	×	Р

(21) String instructions: MOVTBLW, MOVM, XCHM, MOVBK, XCHBK, CMPME, CMPMNE, CMPMC, CMPBKE, CMPBKE, CMPBKNE, CMPBKNC

Maamania	Onerende	Dutoo	Operation	Flags					
Mnemonic	Operands	Bytes	Operation	S	Ζ	AC	P/V	CY	
MOVTBLW	!addr8, byte	4	$(addr8 + 2) \leftarrow (addr8), byte \leftarrow byte - 1, addr8 \leftarrow addr8 - 2 End if byte = 0$						
MOVW	[TDE +], A	2	$(TDE) \gets A, \ TDE \gets TDE + 1, \ C \gets C - 1 \ End \ if \ C = 0$						
	[TDE –], A	2	$(TDE) \gets A, \ TDE \gets TDE - 1, \ C \gets C - 1 \ End \ if \ C = 0$						
XCHM	[TDE +], A	2	$(TDE) \leftrightarrow A, \ TDE \leftarrow TDE + 1, \ C \leftarrow C - 1 \ End \ if \ C = 0$						
	[TDE –], A	2	$(TDE) \leftrightarrow A, \ TDE \leftarrow TDE - 1, \ C \leftarrow C - 1 \ End \ if \ C = 0$						
MOVBK	[TDE +], [WHL +]	2	$ \begin{array}{l} (TDE) \leftarrow (WHL), \ TDE \leftarrow TDE + 1, \\ WHL \leftarrow WHL + 1, \ C \leftarrow C - 1 \ End \ if \ C = 0 \end{array} $						
	[TDE –], [WHL –]	2	$ \begin{array}{l} (TDE) \leftarrow (WHL), \ TDE \leftarrow TDE - 1, \\ WHL \leftarrow WHL - 1, \ C \leftarrow C - 1 \ End \ if \ C = 0 \end{array} $						
ХСНВК	[TDE +], [WHL +]	2	$ \begin{array}{l} (TDE) \leftrightarrow (WHL), \ TDE \leftarrow TDE + 1, \\ WHL \leftarrow WHL + 1, \ C \leftarrow C - 1 \ End \ if \ C = 0 \end{array} $						
	[TDE –], [WHL –]	2	$ \begin{array}{l} (TDE) \leftrightarrow (WHL), \ TDE \leftarrow TDE - 1, \\ WHL \leftarrow WHL - 1, \ C \leftarrow C - 1 \ End \ if \ C = 0 \end{array} $						
CMPME	[TDE +], A	2	$(TDE)-A, \ TDE \leftarrow TDE+1, \ C \leftarrow C-1 \ End \ if \ C=0 \ or \ Z=0$	×	×	×	V	×	
	[TDE –], A	2	$(TDE)-A, \ TDE \leftarrow TDE-1, \ C \leftarrow C-1 \ End \ if \ C=0 \ or \ Z=0$	×	×	×	V	×	
CMPMNE	[TDE +], A	2	$(TDE)-A, \ TDE \leftarrow TDE+1, \ C \leftarrow C-1 \ End \ if \ C=0 \ or \ Z=1$	×	×	×	V	×	
	[TDE –], A	2	$(TDE)-A, \ TDE \leftarrow TDE-1, \ C \leftarrow C-1 \ End \ if \ C=0 \ or \ Z=1$	×	×	×	V	×	
CMPMC	[TDE +], A	2	$(TDE) - A, TDE \leftarrow TDE + 1, C \leftarrow C - 1 End if C = 0 or CY = 0$	×	×	×	V	×	
	[TDE –], A	2	$(TDE) - A, TDE \leftarrow TDE - 1, C \leftarrow C - 1 End if C = 0 or CY = 0$	×	×	×	V	×	
CMPMNC	[TDE +], A	2	$(TDE)-A, \ TDE \leftarrow TDE+1, \ C \leftarrow C-1 \ End \ if \ C=0 \ or \ CY=1$	×	×	×	V	×	
	[TDE –], A	2	$(TDE)-A, \ TDE \leftarrow TDE-1, \ C \leftarrow C-1 \ End \ if \ C=0 \ or \ CY=1$	×	×	×	V	×	
CMPBKE	[TDE +], [WHL +]	2	$ \begin{array}{l} (TDE) \leftarrow (WHL), \ \ TDE \leftarrow TDE + 1, \\ WHL \leftarrow WHL + 1, \ C \leftarrow C - 1 \ End \ if \ C = 0 \ or \ Z = 0 \end{array} $	×	×	×	V	×	
	[TDE –], [WHL –]	2	$ \begin{array}{l} (TDE) \leftarrow (WHL), \ TDE \leftarrow TDE-1, \\ WHL \leftarrow WHL-1, \ C \leftarrow C-1 \ End \ if \ C=0 \ or \ Z=0 \end{array} $	×	×	×	V	×	

Manager	Orangela	Dutas	Quantiza			Flags	3	
Mnemonic	Operands	Bytes	Operation	S	Ζ	AC	P/V	СҮ
CMPBKNE	[TDE +], [WHL +]	2	(TDE) – (WHL), TDE \leftarrow TDE + 1, WHL \leftarrow WHL + 1, C \leftarrow C – 1 End if C = 0 or Z = 1	×	×	×	V	х
	[TDE –], [WHL –]	2	(TDE) – (WHL), TDE \leftarrow TDE – 1, WHL \leftarrow WHL – 1, C \leftarrow C – 1 End if C = 0 or Z = 1	×	×	×	V	х
СМРВКС	[TDE +], [WHL +]	2	(TDE) – (WHL), TDE \leftarrow TDE + 1, WHL \leftarrow WHL + 1, C \leftarrow C – 1 End if C = 0 or CY = 0	×	×	×	V	×
	[TDE –], [WHL –]	2	(TDE) – (WHL), TDE \leftarrow TDE – 1, WHL \leftarrow WHL – 1, C \leftarrow C – 1 End if C = 0 or CY = 0	×	×	х	V	×
CMPBKNC	[TDE +], [WHL +]	2	(TDE) – (WHL), TDE \leftarrow TDE + 1, WHL \leftarrow WHL + 1, C \leftarrow C – 1 End if C = 0 or CY = 1	×	×	×	V	×
	[TDE –], [WHL –]	2	(TDE) – (WHL), TDE \leftarrow TDE – 1, WHL \leftarrow WHL – 1, C \leftarrow C – 1 End if C = 0 or CY = 1	×	×	×	V	×

[MEMO]

21.3 Instructions Listed by Type of Addressing

(1) 8-bit instructions (combinations expressed by writing A for r are shown in parentheses)

MOV, XCH, ADD, ADDC, SUB, SUBC, AND OR XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, SHR, SHL, ROR4, ROL4, DBNZ, PUSH, POP, MOVM, XCHM, CMPME, CMPMNE, CMPMNC, CMPMC, MOVBK, XCHBK, CMPBKE, CMPBKNE, CMPBKNC, CMPBKC, CHKL, CHKLA

2nd Operand 1st Operand	# byte	A	r r'	saddr saddr'	sfr
A	(MOV) ADD Note 1	(MOV) (XCH) (ADD) ^{Note 1}	MOV XCH (ADD) ^{Note 1}	(MOV) Note 6 (XCH) Note 6 (ADD) Notes 1, 6	MOV (XCH) (ADD) Note 1
r	MOV ADD Note 1	(MOV) (XCH) (ADD) Note 1	MOV XCH ADD Note 1	MOV XCH ADD ^{Note 1}	MOV XCH ADD ^{Note 1}
saddr	MOV ADD Note 1	(MOV) Note 6 (ADD) Note 1	MOV ADD Note 1	MOV XCH ADD ^{Note 1}	
sfr	MOV ADD Note 1	MOV (ADD) ^{Note 1}	MOV ADD Note 1		
!addr16 !!addr24	MOV	MOV ADD Note 1	MOV		
mem [saddrp] [%saddrg]		MOV ADD Note 1			
mem3					
r3 PSWL PSWH	MOV	MOV			
B, C					
STBC, WDM	MOV				
[TDE +] [TDE –]		(MOV) (ADD) Note 1 MOVM Note 4			

Table 21-1. List of Instructions by 8-Bit Addressing (1/2)

(See the following page for the explanation of **Note**.)

2nd Operand 1st Operand	!addr16 !!addr24	mem [saddrp] [%saddrg]	r3 PSWL PSWH	[WHL +] [WHL –]	n	None Note 2
A	(MOV) (XCH) ADD Note 1	MOV XCH ADD ^{Note} 1	MOV	(MOV) (XCH) (ADD) Note 1		
r	MOV XCH				ROR Note 3	MULU DIVUW INC DEC
saddr						INC DEC DBNZ
sfr						PUSH POP CHKL CHKLA
!addr16 !!addr24						
mem [saddrp] [%saddrg]						
mem3						ROR4 ROL4
r3 PSWL PSWH						
B, C						DBNZ
STBC, WDM						
[TDE +] [TDE –]				MOVBKNote 5		

Table 21-1. List of Instructions by 8-Bit Addressing (2/2)

Notes 1. ADDC, SUB, SUBC, AND, OR, XOR and CMP are the same as ADD.

- 2. There is no 2nd operand, or the 2nd operand is not an operand address.
- 3. ROL, RORC, ROLC, SHR and SHL are the same as ROR.
- 4. XCHM, CMPME, CMPMNE, CMPMNC and CMPMC are the same as MOVM.
- 5. XCHBK, CMPBKE, CMPBKNE, CMPBKNC and CMPBKC are the same as MOVBK.
- 6. If saddr is saddr2 in this combination, there is a short code length instruction.

(2) 16-bit instructions (combinations expressed by writing AX for rp are shown in parentheses) MOVM, XCHW, ADDW, SUBW, CMPW, MULUW, MULW, DIVUX, INCW, DECW, SHRW, SHLW, PUSH, POP, ADDWG, SUBWG, PUSHU, POPU, MOVTBLW, MACW, MACSW, SACW

2nd Operand 1st Operand	# word	AX	rp rp'	saddrp saddrp'	sfrp
AX	(MOVW) ADDW ^{Note 1}	(MOVW) (XCHW) (ADD) ^{Note 1}	(MOVW) (XCHW) (ADDW) ^{Note 1}	(MOVW) Note 3 (XCHW) Note 3 (ADDW) Notes 1,3	MOVW (XCHW) (ADDW) Note 1
rp	MOVW ADDW Note 1	(MOVW) (XCHW) (ADDW) ^{Note 1}	MOVW XCHW ADDW Note 1	MOVW XCHW ADDW ^{Note 1}	MOVW XCHW ADDW Note 1
saddrp	MOVW ADDW Note 1	(MOVW) Note 3 (ADDW) Note 1	MOVW ADDW Note 1	MOVW XCHW ADDW Note 1	
sfrp	MOVW ADDW Note 1	MOVW (ADDW) Note 1	MOVW ADDW Note 1		
!addr16 !!addr24	MOVW	(MOVW)	MOVW		
mem [saddrp] [%saddrg]		MOVW			
PSW					
SP	ADDWG SUBWG				
post					
[TDE +]		(MOVW)			
byte					

Table 21-2. List of Instructions by 16-Bit Addressing (1/2)

(See the following page for the explanation of **Note**.)

2nd Operand 1st Operand	‼addr16 ‼addr24	mem [saddrp] [%saddrg]	[WHL +]	byte	n	None Note 2
AX	(MOVW) XCHW	MOVW XCHW	(MOVW) (XCHW)			
rp	MOVW				SHRW SHLW	MULW Note 4 INCW DECW
saddrp						INCW DECW
sfrp						PUSH POP
!addr16 !!addr24				MOVTBLW		
mem [saddrp] [%saddrg]						
PSW						PUSH POP
SP						
post						PUSH POP PUSHU POPU
[TDE +]			SACW			
byte						MACW MACSW

Table 21-2.	List of Instructions	by 16-Bit	Addressing (2/2)
-------------	----------------------	-----------	------------------

Notes 1. SUBW and CMPW are the same as ADDW.

- 2. There is no 2nd operand, or the 2nd operand is not an operand address.
- **3.** If saddrp is saddrp2 in this combination, there is a short code length instruction.
- 4. MULUW and DIVUX are the same as MULW.

(3) 24-bit instructions (combinations expressed by writing WHL for rg are shown in parentheses) MOVG, ADDG, SUBG, INCG, DECG, PUSH, POP

2nd Operand 1st Operand	# imm24	WHL	rg rg'	saddrg	‼addr24	mem1	[%saddrg]	SP	None*
WHL	(MOVG) (ADDG) (SUBG)	(MOVG) (ADDG) (SUBG)	(MOVG) (ADDG) (SUBG)	(MOVG) ADDG SUBG	(MOVG)	MOVG	MOVG	MOVG	
rg	MOVG ADDG SUBG	(MOVG) (ADDG) (SUBG)	MOVG ADDG SUBG	MOVG	MOVG				INCG DECG PUSH POP
saddrg		(MOVG)	MOVG						
!!addr24		(MOVG)	MOVG						
mem1		MOVG							
[%saddrg)		MOVG							
SP	MOVG	MOVG							INCG DECG

Table 21-3. List of Instructions by 24-Bit Addressing

* There is no 2nd operand, or the 2nd operand is not an operand address.

(4) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR, BFSET

Table 21-4. List of Instructions by Bit Manipulation Instruction Addressing

2nd Operand 1st Operand	СҮ	saddr. bit sfr. bit A.bit X. bit PSWL. bit PSWH. bit mem2. bit !addr16. bit !!addr24. bit	/saddr.bit /sfr. bit /A. bit /X. bit /PSWL. bit /PSWH. bit /mem2. bit /!addr16. bit /!laddr24. bit	None*
CY		MOV1 AND1 XOR1	AND1 OR1 OR1	NOT SET1 CLR1
saddr. bit sfr. bit A. bit X. bit PSWL. bit PSWH. bit mem2. bit !addr16. bit !!addr24. bit	MOV1			NOT1 SET1 CLR1 BF BT BTCLR BFSET

* There is no 2nd operand, or the 2nd operand is not an operand address.

(5) Call/return instructions / branch instructions

CALL, CALLF, CALLT, BRK, RET, RETI, RETB, RETCS, RETCSB, BRKCS, BR, BNZ, BNE, BZ, BE, BNC, BNL, BC, BL, BNV, BPO, BV, BPE, BP, BN, BLT, BGE, BLE, BGT, BNH, BH, BF, BT, BTCLR, BFSET, DBNZ

Table 21-5. List of Instructions by Call/Return Instruction / Branch Instruction Addressing

Instruction Address Operand	\$addr20	\$!addr20	!addr16	!!addr20	rp	rg	[rp]	[rg]	!addr11	[addr5]	RBn	None
Basic instructions	BC* BR	CALL BR	CALL BR RETCS RETCSB	CALL BR	CALL BR	CALL BR	CALL BR	CALL BR	CALLF	CALLT	BRKCS	BRK RET RETI RETB
Compound instructions	BF BT BTCLR BFSET DBNZ											

* BNZ, BNE, BZ, BE, BNC, BNL, BL, BNV, BPO, BV, BPE, BP, BN, BLT, BGE, BLE, BGT, BNH, and BH are the same as BC.

(6) Other instructions

ADJBA, ADJBS, CVTBW, LOCATION, SEL, NOT, EI, DI, SWRS

CHAPTER 22 ELECTRICAL SPECIFICATIONS (µPD784044, 784046)

Refer to CHAPTER 27 TIMING CHARTS for the timing charts.

Absolute Maximum Ratings ($T_A = 25^{\circ}C$)

*

Parameter	Symbol		Conditions	Ratings	Unit
Supply voltage	Vdd			-0.5 to +7.0	V
	AVDD			-0.5 to V _{DD} + 0.5	V
	AVss			-0.5 to +0.5	V
Input voltage	Vi	Note 1		-0.5 to V _{DD} + 0.5 \leq 7.0	V
Output voltage	Vo			-0.5 to V _{DD} + 0.5	V
Output current, low	lol	All outp	ut pins	15	mA
		Total of	all output pins	150	mA
Output current, high	Іон	All outp	ut pins	-10	mA
		Total of	all output pins	-100	mA
Analog input voltage	VIAN	Note 2	AVdd > Vdd	-0.5 to V _{DD} + 0.5	V
			$V_{\text{DD}} \geq AV_{\text{DD}}$	-0.5 to AV _{DD} + 0.5	
A/D converter reference	AVREF		AVDD > VDD	-0.5 to V _{DD} + 0.5	V
input voltage			$V_{\text{DD}} \geq AV_{\text{DD}}$	-0.5 to AV _{DD} + 0.5	
Operating ambient temperature	TA			-10 to +70	°C
Storage temperature	Tstg			-65 to +150	°C

Notes 1. Pins other than the pins in Note 2.

- 2. Pins P70/ANI0 to P77/ANI7, P80/ANI8 to P87/ANI15
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that the absolute maximum ratings are not exceeded.

Recommended Operating Conditions

Oscillation Frequency	TA	VDD
8 MHz \leq fxx \leq 32 MHz	-10 to +70°C	4.5 to 5.5 V

Capacitance (TA = $25^{\circ}C$, Vss = Vdd = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	С	f = 1 MHz			10	рF
Output capacitance	Co	Unmeasured pins returned to 0 V.			10	pF
I/O capacitance	Сю				10	pF

Resonator	Recommended Circuit	Item	MIN.	MAX.	Unit
Ceramic resonator or crystal resonator	$V_{SS} X1 X2$ $C1 = C2 =$ 777	Oscillation frequency (fxx)	8	32	MHz
External clock		X1 input frequency (fx)	8	32	MHz
	X1 X2 Open ^{Note}	X1 input rise, fall time	0	5	ns
	HCMOS inverter	X1 input high-, low-level width	20	105	ns

Oscillator Characteristics (T_A = -10 to $+70^{\circ}$ C, V_{DD} = 4.5 to 5.5 V, V_{SS} = 0 V)

- **Note** When the EXTC bit of the oscillation stabilization time specification register (OSTS) = 0. Input the reverse phase clock of the pin X1 to the pin X2 when the EXTC bit = 1.
- Caution When using the system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to prevent an adverse effect from wiring capacitance.
 - Keep the wiring length as short as possible.
 - Do not cross the wiring with any other signal lines. Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss. Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
- **Remark** For the resonator selection and oscillator constant, customers are required to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
Input voltage, low	VIL			0		0.8	V
Input voltage, high	VIH1	Note 1		2.2		Vdd	V
	VIH2	Note 2		0.8Vdd		Vdd	
Output voltage, low	Vol	IoL = 2.0 mA				0.45	V
Output voltage, high	Vон	Іон = -400 <i>µ</i>	A	Vdd - 1.0			V
Input leakage current	Iц	Note 3	$0~V \leq V_{\text{I}} \leq V_{\text{DD}}$			±10	μΑ
Analog pin input leakage current	ILIAN	Note 4	$0 \ V \leq V_{\text{I}} \leq AV_{\text{DD}}$			±1	μΑ
Output leakage current	Ilo	$0 V \le V_0 \le V_1$	DD			±10	μΑ
VDD supply current	IDD1	Operating mo	ode (fxx = 32 MHz)		50	80	mA
	IDD2	HALT mode ((fxx = 32 MHz)		30	60	mA
	Ірдз	IDLE mode (1	fxx = 32 MHz)		10	20	mA
Data retention voltage	Vdddr	STOP mode		2.5			V
Data retention current	IDDDR	STOP mode	$V_{DDDR} = 2.5 V$		2	15	μΑ
			$V_{DDDR} = 5 V \pm 10\%$		15	50	μΑ
Pull-up resistor	R∟			15	40	80	kΩ

DC Characteristics (T_A = -10 to $+70^{\circ}$ C, V_{DD} = 4.5 to 5.5 V, V_{SS} = 0 V)

Notes 1. Pins other than pins in the Note 2

2. P20/NMI, P21/INTP0/T000, P22/INTP1/T001, P23/INTP2/T002, P24/INTP3/T003, P25/INTP4, P26/ INTP5/TI2, P27/INTP6/TI3, P34/ASCK/SCK1, P37/ASCK2/SCK2, X1, X2, RESET

- 3. Input and I/O pins (except X1 and X2, and P70/ANI0 to P77/ANI7, P80/ANI8 to P87/ANI15 used as analog inputs)
- 4. Pins P70/ANI0 to P77/ANI7, P80/ANI8 to P87/ANI15 (pins used as analog input, only during the nonsampling operation)

AC Characteristics (T_A = -10 to $+70^{\circ}$ C, V_{DD} = 4.5 to 5.5 V, V_{SS} = 0 V)

(1) Read/write operation

Parameter	Symbol	Expression	MIN.	MAX.	Unit
System clock cycle time	tсүк		62.5	250	ns
Address setup time (to ASTB \downarrow)	t sast	(0.5 + a) T – 20	11.2		ns
Address hold time (from ASTB \downarrow)	t HSTA	0.5T – 20	11.2		ns
ASTB high-level width	twsтн	(0.5 + a) T – 17	14.2		ns
$\overline{RD}\downarrow$ delay time from address	t DAR	(1 + a) T – 15	47.5		ns
Address float time from $\overline{RD}\downarrow$	t fra			0	ns
Data input time from address	tDAID	(2.5 + a + n) T - 56		100.2	ns
Data input time from $\overline{RD}\downarrow$	torid	(1.5 + n) T – 48		45.7	ns
$\overline{RD}\downarrow$ delay time from ASTB \downarrow	t dstr	0.5T – 16	15.3		ns
Data hold time (to RD↑)	thrid		0		ns
Address active time from \overline{RD}^{\uparrow}	t dra	0.5T – 14	17.2		ns
RD low-level width	twrl	(1.5 + n) T – 30	63.7		ns
$\overline{\text{LWR}}, \overline{\text{HWR}} \downarrow$ delay time from address	tdaw	(1 + a) T – 15	47.5		ns
Data output time from $\overline{\text{LWR}}$, $\overline{\text{HWR}}\downarrow$	towod			15	ns
$\overline{\text{LWR}}, \overline{\text{HWR}}\downarrow$ delay time from ASTB \downarrow	t DSTW	0.5T – 16	15.3		ns
Data setup time (to LWR, HWR↑)	tsodw	(1.5 + n) T – 25	68.7		ns
Data hold time (from LWR, HWR↑)	thwod	0.5T – 14	17.2		ns
ASTB↑ delay time from LWR, HWR↑	towst	1.5T – 15	78.8		ns
LWR, HWR low-level width	twwL	(1.5 + n) T – 36	57.7		ns
$\overline{\text{WAIT}}\downarrow$ input time from address	t dawt	(2 + a) T – 50		75	ns
$\overline{WAIT}\downarrow$ input time from ASTB \downarrow	t DSTWT	1.5T – 40		53.7	ns
WAIT hold time from ASTB↓	tнsтwт	(1.5 + n) T + 5	98.8		ns
\overline{WAIT} delay time from ASTB \downarrow	tostwth	(2.5 + n) T – 40		116.2 ^{Note}	ns
$\overline{\text{WAIT}}\downarrow$ input time from $\overline{\text{RD}}\downarrow$	t DRWT	T – 40		22.5	ns
WAIT hold time from $\overline{RD}\downarrow$	tнкwт	(1 + n) T + 5	67.5		ns
\overline{WAIT} delay time from \overline{RD}	t drwth	(1 + n) T – 40		85 ^{Note}	ns
$\overline{\text{WAIT}}\downarrow$ input time from $\overline{\text{LWR}}$, $\overline{\text{HWR}}\downarrow$	t dwwt	T – 40		22.5	ns
$\overline{\text{WAIT}}$ hold time from $\overline{\text{LWR}}$, $\overline{\text{HWR}}\downarrow$	tнwwт	(1 + n) T + 5	67.5		ns
$\overline{\text{WAIT}}\uparrow$ delay time from $\overline{\text{LWR}}$, $\overline{\text{HWR}}\downarrow$	towwth	(1 + n) T – 40		85 ^{Note}	ns

Note Specification when an external wait is inserted

Remarks 1. T = tcyk = 1/fclk (fclk is internal system clock frequency)

- **2.** a = 1 when an address wait is inserted, otherwise, 0.
- **3.** n indicates the number of the wait cycles by specifying the external wait pins (WAIT) or programmable wait control registers 1, 2 (PWC1, PWC2). ($n \ge 0$. $n \ge 1$ for tDSTWTH, tDRWTH, tDWWTH).
- **4.** Calculate values in the expression column with the system clock cycle time to be used because these values depend on the system clock cycle time ($tc\gamma\kappa = T$). The values in the above expression column are calculated based on T = 62.5 ns.

(2) Serial Operation (T_A = -10 to $+70^{\circ}$ C, V_{DD} = 4.5 to 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Condit	Conditions			Unit
Serial clock cycle time	tсүзк	SCK1, SCK2 output	BRG	TSFT		ns
		SCK1, SCK2 input	External clock	500		ns
Serial clock low-level width	twsĸL	SCK1, SCK2 output	BRG	0.5Tsft-40		ns
		SCK1, SCK2 input	External clock	210		ns
Serial clock high-level width	twsкн	SCK1, SCK2 output	BRG	0.5Tsft-40		ns
		SCK1, SCK2 input	External clock	210		ns
SI1, SI2 setup time (to SCK1, SCK2↑)	tsssк			80		ns
SI1, SI2 hold time (from $\overline{SCK1}$, $\overline{SCK2}$)	tнssк			80		ns
SO1, SO2 output delay time from $\overline{SCK1}$, $\overline{SCK2}\downarrow$	tdsbsk	R = 1 kΩ, C = 100 p	F	0	150	ns

Remarks 1. TSFT is a value set in software. The minimum value is $t_{CYK} \times 8$. **2.** $t_{CYK} = 1/f_{CLK}$ (fcLK is internal system clock frequency)

(3) Other Operations (T_A = -10 to $+70^{\circ}$ C, V_{DD} = 4.5 to 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
NMI high-, low-level width	twnih, twnil		10		μs
INTP0 to INTP6 high-, low-level width	twirн, twir∟		4		tcysmp
TI2, TI3 high-, low-level width	twтiн, twтi∟		4		tcysmp
RESET high-, low-level width	twrsh, twrsl		10		μs

Remarks 1. tcysmp is a sampling clock set in the noise protection control register (NPC) in software.

When NIn = 0, $t_{CYSMP} = t_{CYK}$

When NIn = 1, tcysmp = tcyk \times 4

- **2.** tcyk = 1/fclk (fclk is internal system clock frequency)
- **3.** NIn: Bit n of NPC (n = 0 to 6)

A/D Converter Characteristics (T_A = -10 to +70 $^\circ$ C, V_DD = 4.5 to 5.5 V, Vss = AVss = 0 V, V_DD - 0.5 V \leq AV_DD \leq V_DD)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution				10			bit
Total error ^{Note 1}		4.5 V ≤	$AV_{\text{REF}} \leq AV_{\text{DD}}$			±0.5	%FSR ^{Note :}
		3.4 V ≤	AV _{REF} < 4.5 V			±0.7	%FSR ^{Note 2}
Quantization error						±1/2	LSB
Conversion time	tCONV	80 ns ≤	tсүк ≤ 250 ns	169			tсүк
		62.5 ns	s ≤ tсүк < 80 ns	208			tсүк
Sampling time	t SAMP	80 ns ≤	tсүк ≤ 250 ns	20			tсүк
		62.5 ns	s ≤ tсүк < 80 ns	24			tсүк
Zero-scale errorNote 1		4.5 V ≤	$AV_{\text{REF}} \leq AV_{\text{DD}}$		±1.5	±3.5	LSB
		3.4 V ≤	$AV_{REF} < 4.5 V$		±1.5	±4.5	LSB
Full-scale errorNote 1		4.5 V ≤	$AV_{\text{REF}} \leq AV_{\text{DD}}$		±1.5	±3.5	LSB
		3.4 V ≤	$AV_{REF} < 4.5 V$		±1.5	±4.5	LSB
Integral linearity error ^{Note 1}		4.5 V ≤	$AV_{REF} \leq AV_{DD}$		±1.5	±2.5	LSB
		3.4 V ≤	AV _{REF} < 4.5 V		±1.5	±4.5	LSB
Analog input voltage	VIAN			-0.3		AVREF+0.3	V
A/D converter reference input voltage	AVREF			3.4		AVDD	V
AVREF current	AIREF				1.0	3.0	mA
AVDD supply current	Aldd				2.0	6.0	mA
A/D converter data retention	Aldddr	STOP	AVDDDR = 2.5 V		2	10	μA
current		mode	$AV_{DDDR} = 5 V \pm 10\%$		10	50	μA

Notes 1. The quantization error is excluded.

2. Indicated as a ratio (%FSR) to the full-scale value.

Remark tcyk = 1/fclk (fclk is internal system clock frequency).

Refer to CHAPTER 27 TIMING CHARTS for the timing charts.

Absolute Maximum Ratings (T_A = 25°C)

 \star

Parameter	Symbol		Conditions	Ratings	Unit
Supply voltage	Vdd			-0.5 to +7.0	V
	AVDD			-0.5 to V _{DD} + 0.5	V
	AVss			-0.5 to +0.5	V
Input voltage	VI	Note 1		-0.5 to V _{DD} + 0.5 \leq 7.0	V
Output voltage	Vo			-0.5 to V _{DD} + 0.5	V
Output current, low	lol	All outp	ut pins	15	mA
		Total of	all output pins	150	mA
Output current, high	Іон	All outp	ut pins	-10	mA
		Total of	all output pins	-100	mA
Analog input voltage	VIAN	Note 2	AVdd > Vdd	-0.5 to V _{DD} + 0.5	V
			$V_{\text{DD}} \geq AV_{\text{DD}}$	-0.5 to AV _{DD} + 0.5	-
A/D converter reference	AVREF		AVdd > Vdd	-0.5 to V _{DD} + 0.5	V
input voltage			$V_{\text{DD}} \geq A V_{\text{DD}}$	-0.5 to AV _{DD} + 0.5	-
Operating temperature	TA			-40 to +85	°C
Storage temperature	Tstg			-65 to +150	°C

Notes 1. Pins other than the pins in Note 2.

- 2. Pins P70/ANI0 to P77/ANI7, P80/ANI8 to P87/ANI15
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that the absolute maximum ratings are not exceeded.

Recommended Operating Conditions

Oscillation Frequency	Та	VDD
8 MHz \leq fxx \leq 25 MHz	−40 to +85°C	4.5 to 5.5 V

Capacitance (T_A = 25° C, V_{SS} = V_{DD} = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	С	f = 1 MHz			10	pF
Output capacitance	Co	Unmeasured pins returned to 0 V.			10	рF
I/O capacitance	Сю				10	рF

Resonator	Recommended Circuit	Item	MIN.	MAX.	Unit
Ceramic resonator or crystal resonator	$V_{SS} X1 X2$ $C1 - C2 - C2$ 777	Oscillation frequency (fxx)	8	25	MHz
External clock		X1 input frequency (fx)	8	25	MHz
	X1 X2 Open ^{Note}	X1 input rise, fall time	0	5	ns
	HCMOS inverter	X1 input high-, low-level width	20	105	ns

Oscillator Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 4.5 to 5.5 V, V_{SS} = 0 V)

- **Note** When the EXTC bit of the oscillation stabilization time specification register (OSTS) = 0. Input the reverse phase clock of the pin X1 to the pin X2 when the EXTC bit = 1.
- Caution When using the system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to prevent an adverse effect from wiring capacitance.
 - Keep the wiring length as short as possible.
 - Do not cross the wiring with any other signal lines. Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss. Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
- **Remark** For the resonator selection and oscillator constant, customers are required to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
Input voltage, low	VIL			0		0.8	V
Input voltage, high	VIH1	Note 1		2.2		Vdd	V
	VIH2	Note 2		0.8Vdd		Vdd	
Output voltage, low	Vol	IoL = 2.0 mA				0.45	V
Output voltage, high	Vон	Іон = -400 <i>µ</i> /	٩	Vdd - 1.0			V
Input leakage current	lu	Note 3	Note 3 $0 V \le V_I \le V_{DD}$			±10	μA
Analog pin input leakage current	ILIAN	Note 4	$0 \ V \leq V_{I} \leq AV_{\text{DD}}$			±1	μA
Output leakage current	Ilo	$0 V \le V_0 \le V$	DD			±10	μA
VDD supply current	IDD1	Operating mo	ode (fxx = 25 MHz)		40	70	mA
	IDD2	HALT mode	(fxx = 25 MHz)		25	50	mA
	Ірдз	IDLE mode (fxx = 25 MHz)		10	20	mA
Data retention voltage	Vdddr	STOP mode		2.5			V
Data retention current	Idddr	STOP mode VDDDR = 2.5 V			2	15	μA
			$V_{DDDR} = 5 V \pm 10 \%$		15	50	μA
Pull-up resistor	R∟		•	15	40	80	kΩ

DC Characteristics (TA = -40 to +85°C, VDD = 4.5 to 5.5 V, Vss = 0 V)

Notes 1. Pins other than pins in Note 2.

- 2. P20/NMI, P21/INTP0/T000, P22/INTP1/T001, P23/INTP2/T002, P24/INTP3/T003, P25/INTP4, P26/ INTP5/TI2, P27/INTP6/TI3, P34/ASCK/SCK1, P37/ASCK2/SCK2, X1, X2, RESET
- 3. Input and I/O pins (except X1 and X2, and P70/ANI0 to P77/ANI7, P80/ANI8 to P87/ANI15 used as analog inputs)
- 4. Pins P70/ANI0 to P77/ANI7, P80/ANI8 to P87/ANI15 (pins used as analog input, only during the nonsampling operation)

AC Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 4.5 to 5.5 V, V_{SS} = 0 V)

(1) Read/write operation

Parameter	Symbol	Expression	MIN.	MAX.	Unit
System clock cycle time	tсүк		80	250	ns
Address setup time (to ASTB \downarrow)	t sast	(0.5 + a) T – 20	20		ns
Address hold time (from ASTB \downarrow)	t HSTA	0.5T – 20	20		ns
ASTB high-level width	twsтн	(0.5 + a) T – 17	23		ns
$\overline{RD} \downarrow$ delay time from address	tdar	(1 + a) T – 15	65		ns
Address float time from $\overline{ extsf{RD}} \downarrow$	t fra			0	ns
Data input time from address	tdaid	(2.5 + a + n) T - 56		144	ns
Data input time from $\overline{RD} \downarrow$	torid	(1.5 + n) T – 48		72	ns
$\overline{RD} \downarrow$ delay time from ASTB \downarrow	t dstr	0.5T – 16	24		ns
Data hold time (to RD↑)	thrid		0		ns
Address active time from RD↑	t dra	0.5T – 14	26		ns
RD low-level width	twrl	(1.5 + n) T - 30	90		ns
$\overline{\text{LWR}}$, $\overline{\text{HWR}}\downarrow$ delay time from address	tdaw	(1 + a) T – 15	65		ns
Data output time from $\overline{\text{LWR}}$, $\overline{\text{HWR}}\downarrow$	towod			15	ns
$\overline{\text{LWR}}$, $\overline{\text{HWR}}\downarrow$ delay time from ASTB \downarrow	t DSTW	0.5T – 16	24		ns
Data setup time (to LWR, HWR↑)	tsodw	(1.5 + n) T – 25	95		ns
Data hold time (from LWR, HWR [↑])	tнwod	0.5T – 14	26		ns
ASTB↑ delay time from LWR, HWR↑	towst	1.5T – 15	105		ns
LWR, HWR low-level width	tww∟	(1.5 + n) T – 36	84		ns
$\overline{\text{WAIT}}\downarrow$ input time from address	t dawt	(2 + a) T – 50		110	ns
$\overline{\text{WAIT}}\downarrow$ input time from ASTB \downarrow	t DSTWT	1.5T – 40		80	ns
WAIT hold time from ASTB↓	tнsтwт	(1.5 + n) T + 5	125		ns
\overline{WAIT} delay time from ASTB \downarrow	tdstwth	(1.5 + n) T – 40		160 ^{Note}	ns
$\overline{\text{WAIT}}\downarrow$ input time from $\overline{\text{RD}}\downarrow$	t DRWT	T – 40		40	ns
$\overline{\text{WAIT}}$ hold time from $\overline{\text{RD}}\downarrow$	tнвwт	(1 + n) T + 5	85		ns
\overline{WAIT} delay time from \overline{RD}	tdrwth	(1 + n) T - 40		120 ^{Note}	ns
$\overline{\text{WAIT}}\downarrow$ input time from $\overline{\text{LWR}}$, $\overline{\text{HWR}}\downarrow$	towwт	T – 40		40	ns
WAIT hold time from $\overline{\text{LWR}}$, $\overline{\text{HWR}}\downarrow$	tнwwт	(1 + n) T + 5	85		ns
$\overline{\text{WAIT}}$ delay time from $\overline{\text{LWR}}$, $\overline{\text{HWR}}$	towwth	(1 + n) T - 40		120 ^{Note}	ns

Note Specification when an external wait is inserted

Remarks 1. T = $t_{CYK} = 1/f_{CLK}$ (fcLK is internal system clock frequency)

- **2.** a = 1 when an address wait is inserted, otherwise, 0.
- 3. n indicates the number of the wait cycles by specifying the external wait pins (WAIT) or programmable wait control registers 1, 2 (PWC1, PWC2). ($n \ge 0$. $n \ge 1$ for tDSTWTH, tDRWTH, tDWWTH).
- 4. Calculate values in the expression column with the system clock cycle time to be used because these values depend on the system clock cycle time ($tcY\kappa = T$). The values in the above expression column are calculated based on T = 80 ns.

(2) Serial Operation (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 4.5 to 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Condit	ions	MIN.	MAX.	Unit
Serial clock cycle time	tсүзк	SCK1, SCK2 output	BRG	TSFT		ns
		SCK1, SCK2 input	External clock	640		ns
Serial clock low-level width	twskl	SCK1, SCK2 output	BRG	0.5Tsft-40		ns
		SCK1, SCK2 input	External clock	280		ns
Serial clock high-level width	twsкн	SCK1, SCK2 output	BRG	0.5Tsft-40		ns
		SCK1, SCK2 input	External clock	280		ns
SI1, SI2 setup time (to SCK1, SCK2↑)	tsssк			80		ns
SI1, SI2 hold time (from SCK1, SCK2↑)	tнssк			80		ns
SO1, SO2 output delay time from $\overline{SCK1}$, $\overline{SCK2}\downarrow$	tdsbsk	R = 1 kΩ, C = 100 p	F	0	150	ns

Remarks 1. TSFT is a value set in software. The minimum value is $t_{CYK} \times 8$. **2.** $t_{CYK} = 1/f_{CLK}$ (fcLK is internal system clock frequency)

(3) Other Operations (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 4.5 to 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
NMI high, low-level width	twnih, twnil		10		μs
INTP0-INTP6 high, low-level width	twi⊤⊢, twi⊤∟		4		tcysmp
TI2, TI3 high, low-level width	tw⊤iн, tw⊤i∟		4		tcysmp
RESET high, low-level width	twrsh, twrsl		10		μs

Remarks 1. tcysmp is a sampling clock set in the noise protection control register (NPC) in software.

When NIn = 0, $t_{CYSMP} = t_{CYK}$

When NIn = 1, tcysmp = tcyk \times 4

- 2. tcyk = 1/fclk (fclk is internal system clock frequency)
- **3.** NIn: Bit n of NPC (n = 0-6)

A/D Converter Characteristics (TA = -40 to +85°C, VDD = 4.5 to 5.5 V, Vss = AVss = 0 V, ٧

VDD – 0.5 V \leq AVDD \leq V	Vdd)
----------------------------------	------

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution				10			bit
Total error ^{Note 1}		4.5 V ≤	$AV_{\text{REF}} \leq AV_{\text{DD}}$			±0.5	%FSR ^{Note 2}
		3.4 V ≤	AV _{REF} < 4.5 V			±0.7	%FSR ^{Note 2}
Quantization error						±1/2	LSB
Conversion time	tconv	80 ns ≤	tсүк ≤ 250 ns	169			tсүк
Sampling time	t SAMP	80 ns ≤	tсүк ≤ 250 ns	20			tсүк
Zero-scale error ^{Note 1}		4.5 V ≤	$AV_{\text{REF}} \leq AV_{\text{DD}}$		±1.5	±3.5	LSB
		3.4 V ≤	$AV_{REF} < 4.5 V$		±1.5	±4.5	LSB
Full-scale error ^{Note 1}		4.5 V ≤	$AV_{\text{REF}} \leq AV_{\text{DD}}$		±1.5	±3.5	LSB
		3.4 V ≤	$AV_{REF} < 4.5 V$		±1.5	±4.5	LSB
Integral linearity error ^{Note 1}		4.5 V ≤	$AV_{\text{REF}} \leq AV_{\text{DD}}$		±1.5	±2.5	LSB
		3.4 V ≤	$AV_{REF} < 4.5 V$		±1.5	±4.5	LSB
Analog input voltage	VIAN			-0.3		AVREF+0.3	V
A/D converter reference input voltage	AVREF			3.4		AVDD	V
AVREF current	AIREF				1.0	3.0	mA
AVDD supply current	Aldd				2.0	6.0	mA
A/D converter data retention	Aldddr	STOP	$AV_{DDDR} = 2.5 V$		2	10	μΑ
current		mode	$AV_{DDDR} = 5 V \pm 10\%$		10	50	μΑ

Notes 1. The quantization error is excluded.

2. Indicated as a ratio (%FSR) to the full-scale value.

Remark tork = 1/folk (folk is internal system clock frequency).

Refer to CHAPTER 27 TIMING CHARTS for the timing charts.

Absolute Maximum Ratings ($T_A = 25^{\circ}C$)

 \star

Parameter	Symbol		Conditions	Ratings	Unit
Supply voltage	Vdd			-0.5 to +7.0	V
	AVDD			-0.5 to V _{DD} + 0.5	V
	AVss			-0.5 to +0.5	V
Input voltage	Vi	Note 1		-0.5 to V _{DD} + 0.5 \leq 7.0	V
Output voltage	Vo			-0.5 to V _{DD} + 0.5	V
Output current, low	lol	All outp	ut pins	15	mA
		Total of	all output pins	150	mA
Output current, high	Іон	All outp	ut pins	-10	mA
		Total of	all output pins	-100	mA
Analog input voltage	VIAN	Note 2	AVDD > VDD	-0.5 to V _{DD} + 0.5	V
			$V_{DD} \ge AV_{DD}$	-0.5 to AV _{DD} + 0.5	-
A/D converter reference	AVREF		AVdd > Vdd	-0.5 to V _{DD} + 0.5	V
input voltage			$V_{DD} \ge AV_{DD}$	-0.5 to AV _{DD} + 0.5	-
Operating temperature	TA			-40 to +110	°C
Storage temperature	Tstg			-65 to +150	°C

Notes 1. Pins other than the pins in Note 2.

- 2. Pins P70/ANI0 to P77/ANI7, P80/ANI8 to P87/ANI15
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that the absolute maximum ratings are not exceeded.

Recommended Operating Conditions

Oscillation Frequency	TA	VDD
$8 \text{ MHz} \le \text{fxx} \le 20 \text{ MHz}$	-40 to +110°C	4.5 to 5.5 V

Capacitance (TA = $25^{\circ}C$, Vss = VDD = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Сі	f = 1 MHz			10	pF
Output capacitance	Co	Unmeasured pins returned to 0 V.			10	рF
I/O capacitance	Сю	-			10	рF

Resonator	Recommended Circuit	Item	MIN.	MAX.	Unit
Ceramic resonator or crystal resonator	$V_{SS} X1 X2$ $C1 = C2$ 777	Oscillation frequency (fxx)	8	20	MHz
External clock		X1 input frequency (fx)	8	20	MHz
	X1 X2 Open ^{Note}	X1 input rise, fall time	0	5	ns
	HCMOS inverter	X1 input high-, low-level width	20	105	ns

Oscillator Characteristics (T_A = -40 to $+110^{\circ}$ C, V_{DD} = 4.5 to 5.5 V, V_{SS} = 0 V)

- **Note** When the EXTC bit of the oscillation stabilization time specification register (OSTS) = 0. Input the reverse phase clock of the pin X1 to the pin X2 when the EXTC bit = 1.
- Caution When using the system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to prevent an adverse effect from wiring capacitance.
 - Keep the wiring length as short as possible.
 - Do not cross the wiring with any other signal lines. Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss. Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
- **Remark** For the resonator selection and oscillator constant, customers are required to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
Input voltage, low	VIL					0.8	V
Input voltage, high	VIH1	Note 1		2.2		Vdd	V
	VIH2	Note 2		0.8Vdd		Vdd	
Output voltage, low	Vol	IoL = 2.0 mA				0.45	V
Output voltage, high	Vон	Іон = -400 <i>µ</i> /	4	Vdd - 1.0			V
Input leakage current	Lu	Note 3	$0~V \leq V_{\text{I}} \leq V_{\text{DD}}$			±10	μΑ
Analog pin input leakage current	ILIAN	Note 4	$0 \ V \leq V_{I} \leq AV_{\text{DD}}$			±2	μΑ
Output leakage current	Ilo	$0 V \le V_0 \le V$	DD			±10	μΑ
VDD supply current	IDD1	Operating mo	ode (fxx = 20 MHz)		30	60	mA
	IDD2	HALT mode	(fxx = 20 MHz)		15	30	mA
	Ірдз	IDLE mode (fxx = 20 MHz)		10	20	mA
Data retention voltage	Vdddr	STOP mode		2.5			V
Data retention current	Idddr	STOP mode	$V_{DDDR} = 2.5 V$		2	100	μΑ
			VDDDR = 5 V ±10 %		15	1000	μA
Pull-up resistor	R∟			15	40	80	kΩ

DC Characteristics (T_A = -40 to $+110^{\circ}$ C, V_{DD} = 4.5 to 5.5 V, V_{SS} = 0 V)

Notes 1. Pins other than pins in Note 2.

- 2. P20/NMI, P21/INTP0/T000, P22/INTP1/T001, P23/INTP2/T002, P24/INTP3/T003, P25/INTP4, P26/ INTP5/TI2, P27/INTP6/TI3, P34/ASCK/SCK1, P37/ASCK2/SCK2, X1, X2, RESET
- 3. Input and I/O pins (except X1 and X2, and P70/ANI0 to P77/ANI7, P80/ANI8 to P87/ANI15 used as analog inputs)
- 4. Pins P70/ANI0 to P77/ANI7, P80/ANI8 to P87/ANI15 (pins used as analog input, only during the nonsampling operation)

AC Characteristics (T_A = -40 to $+110^{\circ}$ C, V_{DD} = 4.5 to 5.5 V, V_{SS} = 0 V)

(1) Read/write operation

Parameter	Symbol	Expression	MIN.	MAX.	Unit
System clock cycle time	tсүк		100	250	ns
Address setup time (to ASTB↓)	t sast	(0.5 + a) T – 20	30		ns
Address hold time (from ASTB \downarrow)	t HSTA	0.5T – 20	30		ns
ASTB high-level width	twsтн	(0.5 + a) T – 17	33		ns
$\overline{RD}\downarrow$ delay time from address	t dar	(1 + a) T – 15	85		ns
Address float time from $\overline{\text{RD}}\downarrow$	t fra			0	ns
Data input time from address	tdaid	(2.5 + a + n) T - 56		194	ns
Data input time from $\overline{\text{RD}}\downarrow$	torid	(1.5 + n) T – 53		97	ns
$\overline{RD}\downarrow$ delay time from ASTB \downarrow	t dstr	0.5T – 16	34		ns
Data hold time (to RD↑)	thrid		0		ns
Address active time from \overline{RD}^{\uparrow}	t dra	0.5T – 14	36		ns
RD low-level width	twRL	(1.5 + n) T – 30	120		ns
$\overline{\text{LWR}}, \overline{\text{HWR}} \downarrow$ delay time from address	tdaw	(1 + a) T – 15	85		ns
Data output time from $\overline{\text{LWR}}$, $\overline{\text{HWR}}\downarrow$	towod			15	ns
$\overline{\text{LWR}}, \overline{\text{HWR}}\downarrow$ delay time from ASTB \downarrow	tostw	0.5T – 16	34		ns
Data setup time (to LWR, HWR↑)	tsodw	(1.5 + n) T – 25	125		ns
Data hold time (from LWR, HWR [↑])	tнwod	0.5T – 14	36		ns
ASTB↑ delay time from LWR, HWR↑	towst	1.5T – 15	135		ns
LWR, HWR low-level width	tww∟	(1.5 + n) T – 36	114		ns
$\overline{\text{WAIT}}\downarrow$ input time from address	t dawt	(2 + a) T – 50		150	ns
$\overline{WAIT}\downarrow$ input time from ASTB \downarrow	tdstwt	1.5T – 40		110	ns
WAIT hold time from ASTB↓	tнsтwт	(1.5 + n) T + 5	155		ns
\overline{WAIT} delay time from ASTB \downarrow	tostwth	(1.5 + n) T – 40		210 ^{Note}	ns
$\overline{\text{WAIT}}\downarrow$ input time from $\overline{\text{RD}}\downarrow$	tdrwt	T – 40		60	ns
$\overline{\text{WAIT}}$ hold time $\overline{\text{RD}}\downarrow$	tнвwт	(1 + n) T + 5	105		ns
\overline{WAIT} delay time from $\overline{RD}\downarrow$	tdrwth	(1 + n) T – 40		160 ^{Note}	ns
$\overline{WAIT}\downarrow$ input time from \overline{LWR} , $\overline{HWR}\downarrow$	towwт	T – 40		60	ns
$\overline{\text{WAIT}}$ hold time from $\overline{\text{LWR}}$, $\overline{\text{HWR}}\downarrow$	tнwwт	(1 + n) T + 5	105		ns
\overline{WAIT} delay time from \overline{LWR} , \overline{HWR}	towwth	(1 + n) T – 40		160 ^{Note}	ns

Note Specification when an external wait is inserted

Remarks 1. T = tcyk = 1/fclk (fclk is internal system clock frequency)

- **2.** a = 1 when an address wait is inserted, otherwise, 0.
- n indicates the number of the wait cycles by specifying the external wait pins (WAIT) or programmable wait control registers 1, 2 (PWC1, PWC2). (n ≥ 0. n ≥ 1 for tDSTWTH, tDRWTH, tDWWTH).
- 4. Calculate values in the expression column with the system clock cycle time to be used because these values depend on the system clock cycle time ($tcY\kappa = T$). The values in the above expression column are calculated based on T = 100 ns.

(2) Serial Operation (T_A = -40 to +110°C, V_{DD} = 4.5 to 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Condi	tions	MIN.	MAX.	Unit
Serial clock cycle time	tсүзк	SCK1, SCK2 output	BRG	TSFT		ns
		SCK1, SCK2 input	External clock	800		ns
Serial clock low-level width	twsĸ∟	SCK1, SCK2 output	BRG	0.5Tsft-40		ns
		SCK1, SCK2 input	External clock	360		ns
Serial clock high-level width	twsкн	SCK1, SCK2 output	BRG	0.5Tsft-40		ns
		SCK1, SCK2 input	External clock	360		ns
SI1, SI2 setup time (to SCK1, SCK2↑)	tsssк			80		ns
SI1, SI2 hold time (from SCK1, SCK2↑)	tнssк			80		ns
SO1, SO2 output delay time from SCK1, $\overline{SCK2}$	tdsbsk	R = 1 kΩ, C = 100 p	F	0	150	ns

Remarks 1. TSFT is a value set in software. The minimum value is $t_{CYK} \times 8$.

2. tcyk = 1/fclk (fclk is internal system clock frequency)

(3) Other Operations (T_A = -40 to +110°C, V_{DD} = 4.5 to 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
NMI high, low-level width	twnih, twnil		10		μs
INTP0-INTP6 high, low-level width	twi⊤н, twi⊤∟		4		tcysmp
TI2, TI3 high, low-level width	twтiн, twтi∟		4		tcysmp
RESET high, low-level width	twrsh, twrsl		10		μs

Remarks 1. tcysmp is a sampling clock set in the noise protection control register (NPC) in software.

When NIn = 0, $t_{CYSMP} = t_{CYK}$

When NIn = 1, tcysmp = tcyk \times 4

- 2. tcyk = 1/fclk (fclk is internal system clock frequency)
- **3.** NIn: Bit n of NPC (n = 0-6)

A/D Converter Characteristics (T_A = -40 to +110°C, V_DD = 4.5 to 5.5 V, V_Ss = AV_Ss = 0 V, V_DD - 0.5 V \leq AV_DD \leq V_DD)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution				10			bit
Total error ^{Note 1}		4.5 V ≤	$AV_{\text{REF}} \leq AV_{\text{DD}}$			±0.5	%FSR ^{Note 2}
		3.4 V ≤	AV _{REF} < 4.5 V			±0.7	%FSR ^{Note 2}
Quantization error						±1/2	LSB
Conversion time	tconv			169			tсүк
Sampling time	t SAMP			20			tсүк
Zero-scale errorNote 1		4.5 V ≤	$AV_{\text{REF}} \leq AV_{\text{DD}}$		±1.5	±3.5	LSB
		3.4 V ≤	AV _{REF} < 4.5 V		±1.5	±4.5	LSB
Full-scale error ^{Note 1}		4.5 V ≤	$AV_{\text{REF}} \leq AV_{\text{DD}}$		±1.5	±3.5	LSB
		3.4 V ≤	AV _{REF} < 4.5 V		±1.5	±4.5	LSB
Integral linearity error ^{Note 1}		4.5 V ≤	$AV_{\text{REF}} \leq AV_{\text{DD}}$		±1.5	±2.5	LSB
		3.4 V ≤	AV _{REF} < 4.5 V		±1.5	±4.5	LSB
Analog input voltage	VIAN			-0.3		AVREF+0.3	V
A/D converter reference input voltage	AVREF			3.4		AVDD	V
AVREF current	AIREF				3.0	4.0	mA
AVDD supply current	Aldd				2.0	6.0	mA
A/D converter data retention	Aldddr	STOP	$AV_{DDDR} = 2.5 V$		2	100	μA
current		mode	$AV_{DDDR} = 5 V \pm 10\%$		10	1000	μΑ

Notes 1. The quantization error is excluded.

2. Indicated as a ratio (%FSR) to the full-scale value.

Remark tork = 1/folk (folk is internal system clock frequency).

Refer to CHAPTER 27 TIMING CHARTS for the timing charts.

Absolute Maximum Ratings ($T_A = 25^{\circ}C$)

*

Parameter	Symbol		Conditions	Ratings	Unit
Supply voltage	Vdd			-0.5 to +7.0	V
	AVDD			-0.5 to V _{DD} + 0.5	V
	AVss			-0.5 to +0.5	V
Input voltage	Vi	Note 1		-0.5 to V _{DD} + 0.5 \leq 7.0	V
Output voltage	Vo			-0.5 to V _{DD} + 0.5	V
Output current, low	lol	All outp	ut pins	15	mA
		Total of	all output pins	150	mA
Output current, low	Іон	All outp	ut pins	-10	mA
		Total of	all output pins	-100	mA
Analog input voltage	VIAN	Note 2	AVdd > Vdd	-0.5 to V _{DD} + 0.5	V
			$V_{DD} \ge AV_{DD}$	-0.5 to AV _{DD} + 0.5	
A/D converter reference	AVREF		AVDD > VDD	-0.5 to V _{DD} + 0.5	V
input voltage			$V_{DD} \ge AV_{DD}$	-0.5 to AV _{DD} + 0.5	
Operating temperature	TA			-40 to +125	°C
Storage temperature	Tstg			-65 to +150	°C

Notes 1. Pins other than the pins in Note 2.

- 2. Pins P70/ANI0 to P77/ANI7, P80/ANI8 to P87/ANI15
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that the absolute maximum ratings are not exceeded.

Recommended Operating Conditions

Oscillation Frequency	ТА	Vdd
$8 \text{ MHz} \le \text{fxx} \le 20 \text{ MHz}$	-40 to +125°C	4.5 to 5.5 V

Capacitance (TA = $25^{\circ}C$, Vss = VDD = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Cı	f = 1 MHz			10	pF
Output capacitance	Co	Unmeasured pins returned to 0 V.			10	pF
I/O capacitance	Сю	-			10	pF

Resonator	Recommended Circuit	Item	MIN.	MAX.	Unit
Ceramic resonator or crystal resonator	$V_{SS} X1 X2$ $C1 - C2 - C2$ 777	Oscillation frequency (fxx)	8	20	MHz
External clock		X1 input frequency (fx)	8	20	MHz
	X1 X2 Open ^{Note}	X1 input rise, fall time	0	5	ns
	HCMOS inverter	X1 input high-, low-level width	20	105	ns

Oscillator Characteristics (T_A = -40 to $+125^{\circ}$ C, V_{DD} = 4.5 to 5.5 V, V_{SS} = 0 V)

- **Note** When the EXTC bit of the oscillation stabilization time specification register (OSTS) = 0. Input the reverse phase clock of the pin X1 to the pin X2 when the EXTC bit = 1.
- Caution When using the system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to prevent an adverse effect from wiring capacitance.
 - Keep the wiring length as short as possible.
 - Do not cross the wiring with any other signal lines. Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss. Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
- **Remark** For the resonator selection and oscillator constant, customers are required to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, low	VIL			0		0.8	V
Input voltage, high	VIH1	Note 1		2.2		Vdd	V
	VIH2	Note 2		0.8Vdd		Vdd	
Output voltage, low	Vol	IoL = 2.0 mA				0.45	V
Output voltage, high	Vон	Іон = -400 µА		Vdd - 1.0			V
Input leakage current	lu	Note 3	$0 V \leq V_{I} \leq V_{DD}$			±10	μA
Analog pin input leakage current	ILIAN	Note 4	$0 V \le V_I \le AV_{DD}$			±2	μA
Output leakage current	Ilo	$0 V \leq V_{O} \leq V_{DD}$				±10	μA
VDD supply current	IDD1	Operating mode (fxx = 20 MHz) HALT mode (fxx = 20 MHz) IDLE mode (fxx = 20 MHz)			30	60	mA
	IDD2				15	30	mA
	Іррз				10	20	mA
Data retention voltage	Vdddr	STOP mode		2.5			V
Data retention current	Idddr	STOP mode	$V_{DDDR} = 2.5 V$		2	100	μA
			Vdddr = 5 V ±10 %		15	1000	μA
Pull-up resistor	R∟			15	40	80	kΩ

DC Characteristics (T_A = -40 to $+125^{\circ}$ C, V_{DD} = 4.5 to 5.5 V, V_{SS} = 0 V)

Notes 1. Pins other than pins in Note 2.

- 2. P20/NMI, P21/INTP0/T000, P22/INTP1/T001, P23/INTP2/T002, P24/INTP3/T003, P25/INTP4, P26/ INTP5/TI2, P27/INTP6/TI3, P34/ASCK/SCK1, P37/ASCK2/SCK2, X1, X2, RESET
- 3. Input and I/O pins (except X1 and X2, and P70/ANI0 to P77/ANI7, P80/ANI8 to P87/ANI15 used as analog inputs)
- 4. Pins P70/ANI0 to P77/ANI7, P80/ANI8 to P87/ANI15 (pins used as analog input, only during the nonsampling operation)

AC Characteristics (T_A = -40 to $+125^{\circ}$ C, V_{DD} = 4.5 to 5.5 V, V_{SS} = 0 V)

(1) Read/write operation

Parameter	Symbol	Expression	MIN.	MAX.	Unit
System clock cycle time	tсүк		100	250	ns
Address setup time (to ASTB \downarrow)	t sast	(0.5 + a) T – 20	30		ns
Address hold time (from ASTB \downarrow)	tнsta	0.5T – 20	30		ns
ASTB high-level width	twsтн	(0.5 + a) T – 17	33		ns
$\overline{RD} \downarrow$ delay time from address	t dar	(1 + a) T – 15	85		ns
Address float time from $\overline{RD} \downarrow$	t fra			0	ns
Data input time from address	tdaid	(2.5 + a + n) T - 56		194	ns
Data input time from $\overline{\text{RD}}\downarrow$	torid	(1.5 + n) T – 53		97	ns
$\overline{RD}\downarrow$ delay time from ASTB \downarrow	t DSTR	0.5T – 16	34		ns
Data hold time (to RD↑)	thrid		0		ns
Address active time from \overline{RD}	t dra	0.5T – 14	36		ns
RD low-level width	twrL	(1.5 + n) T – 30	120		ns
$\overline{\text{LWR}}$, $\overline{\text{HWR}}\downarrow$ delay time from address	tdaw	(1 + a) T – 15	85		ns
Data output time from $\overline{LWR}, \overline{HWR} \downarrow$	towod			15	ns
$\overline{\text{LWR}}$, $\overline{\text{HWR}}\downarrow$ delay time from ASTB \downarrow	t DSTW	0.5T – 16	34		ns
Data setup time (to LWR, HWR↑)	tsodw	(1.5 + n) T – 25	125		ns
Data hold time (from LWR, HWR)	tнwod	0.5T – 14	36		ns
ASTB↑ delay time from UR, HR ↑	towst	1.5T – 15	135		ns
LWR, HWR low-level width	tww∟	(1.5 + n) T – 36	114		ns
$\overline{\text{WAIT}}\downarrow$ input time from address	t dawt	(2 + a) T – 50		150	ns
$\overline{WAIT}\downarrow$ input time from ASTB \downarrow	t DSTWT	1.5T – 40		110	ns
WAIT hold time from ASTB↓	tнsтwт	(1.5 + n) T + 5	155		ns
WAIT↑ delay time from ASTB↓	tdstwth	(1.5 + n) T – 40		210 ^{Note}	ns
$\overline{\text{WAIT}}\downarrow$ input time from $\overline{\text{RD}}\downarrow$	t DRWT	T – 40		60	ns
$\overline{\text{WAIT}}$ hold time from $\overline{\text{RD}}\downarrow$	tнвwт	(1 + n) T + 5	105		ns
\overline{WAIT} delay time from \overline{RD}	tdrwth	(1 + n) T – 40		160 ^{Note}	ns
$\overline{\text{WAIT}}\downarrow$ input time $\overline{\text{LWR}}$, $\overline{\text{HWR}}\downarrow$	towwт	T – 40		60	ns
$\overline{\text{WAIT}}$ hold time $\overline{\text{LWR}}$, $\overline{\text{HWR}}\downarrow$	tнwwт	(1 + n) T + 5	105		ns
$\overline{\text{WAIT}}$ delay time from $\overline{\text{LWR}}$, $\overline{\text{HWR}}$	towwth	(1 + n) T – 40		160 ^{Note}	ns

Note Specification when an external wait is inserted

Remarks 1. T = tcyk = 1/fclk (fclk is internal system clock frequency)

- **2.** a = 1 when an address wait is inserted, otherwise, 0.
- n indicates the number of the wait cycles by specifying the external wait pins (WAIT) or programmable wait control registers 1, 2 (PWC1, PWC2). (n ≥ 0. n ≥ 1 for tDSTWTH, tDRWTH, tDWWTH).
- 4. Calculate values in the expression column with the system clock cycle time to be used because these values depend on the system clock cycle time ($tcY\kappa = T$). The values in the above expression column are calculated based on T = 100 ns.

(2) Serial Operation ($T_A = -40$ to $+125^{\circ}C$, $V_{DD} = 4.5$ to 5.5 V, $V_{SS} = 0$ V)

Parameter	Symbol	Condit	MIN.	MAX.	Unit	
Serial clock cycle time	tсүзк	SCK1, SCK2 output	BRG	TSFT		ns
		SCK1, SCK2 input	External clock	800		ns
Serial clock low-level width	twskl	SCK1, SCK2 output	BRG	0.5Tsft-40		ns
		SCK1, SCK2 input	External clock	360		ns
Serial clock high-level width	twsкн	SCK1, SCK2 output	BRG	0.5Tsft-40		ns
		SCK1, SCK2 input	External clock	360		ns
SI1, SI2 setup time (to SCK1, SCK2↑)	tsssк			80		ns
SI1, SI2 hold time (from SCK1, SCK2↑)	tнssк			80		ns
SO1, SO2 output delay time from SCK1, $\overline{SCK2}\downarrow$	tdsbsk	R = 1 kΩ, C = 100 p	F	0	150	ns

Remarks 1. TSFT is a value set in software. The minimum value is $t_{CYK} \times 8$.

2. tcyk = 1/fclk (fclk is internal system clock frequency)

(3) Other Operations (T_A = -40 to +125°C, V_{DD} = 4.5 to 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
NMI high, low-level width	twnih, twnil		10		μs
INTP0-INTP6 high, low-level width	twi⊤⊢, twi⊤∟		4		tcysmp
TI2, TI3 high, low-level width	twтiн, twтi∟		4		tcysmp
RESET high, low-level width	twrsh, twrsl		10		μs

Remarks 1. tcysmp is a sampling clock set in the noise protection control register (NPC) in software.

When NIn = 0, $t_{CYSMP} = t_{CYK}$

When NIn = 1, tcysmp = tcyk \times 4

- 2. tcyk = 1/fclk (fclk is internal system clock frequency)
- **3.** NIn: Bit n of NPC (n = 0-6)

A/D Converter Characteristics (TA = -40 to +125°C, VDD = 4.5 to 5.5 V, Vss = AVss = 0 V, VDD - 0.5 V \leq AVDD \leq VDD)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution				10			bit
Total error ^{Note 1}		4.5 V ≤	$AV_{\text{REF}} \leq AV_{\text{DD}}$			±0.5	%FSR ^{Note 2}
		3.4 V ≤	AV _{REF} < 4.5 V			±0.7	%FSR ^{Note 2}
Quantization error						±1/2	LSB
Conversion time	tconv			169			tсүк
Sampling time	t SAMP			20			tсүк
Zero-scale error ^{Note 1}		4.5 V ≤	$AV_{\text{REF}} \leq AV_{\text{DD}}$		±1.5	±3.5	LSB
		3.4 V ≤	$AV_{REF} < 4.5 V$		±1.5	±4.5	LSB
Full-scale error ^{Note 1}		4.5 V ≤	$AV_{\text{REF}} \leq AV_{\text{DD}}$		±1.5	±3.5	LSB
		3.4 V ≤	$AV_{REF} < 4.5 V$		±1.5	±4.5	LSB
Integral linearity error ^{Note 1}		4.5 V ≤	$AV_{\text{REF}} \leq AV_{\text{DD}}$		±1.5	±2.5	LSB
		3.4 V ≤	$AV_{REF} < 4.5 V$		±1.5	±4.5	LSB
Analog input voltage	VIAN			-0.3		AVREF+0.3	V
A/D converter reference input voltage	AVREF			3.4		AVDD	V
AVREF current	AIREF				3.0	4.0	mA
AVDD supply current	Aldd				2.0	6.0	mA
A/D converter data retention	Alddr	STOP	AVDDDR = 2.5 V		2	100	μA
current		mode	$AV_{DDDR} = 5 V \pm 10\%$		10	1000	μA

Notes 1. The quantization error is excluded.

2. Indicated as a ratio (%FSR) to the full-scale value.

Remark tork = 1/folk (folk is internal system clock frequency).

CHAPTER 26 ELECTRICAL SPECIFICATIONS (µPD78F4046)

Refer to CHAPTER 27 TIMING CHARTS for the timing charts.

Absolute Maximum Ratings ($T_A = 25^{\circ}C$)

*

Parameter	Symbol		Conditions	Ratings	Unit
Supply voltage	Vdd			-0.5 to +7.0	V
	AVDD			-0.5 to VDD + 0.5	V
	AVss			-0.5 to +0.5	V
Input voltage	VII	Note 1		-0.5 to V _{DD} + 0.5 \leq 7.0	V
	V ₁₂	MODE/VP	pin in the programming mode	-0.5 to +11.0	V
Output voltage	Vo			-0.5 to VDD + 0.5	V
Output current, low	Iol	All outp	ut pins	15	mA
		Total of	all output pins	150	mA
Output current, high	Іон	All outp	ut pins	-10	mA
		Total of	all output pins	-100	mA
Analog input voltage	VIAN	Note 2	AVdd > Vdd	-0.5 to VDD + 0.5	V
			$V_{\text{DD}} \ge AV_{\text{DD}}$	-0.5 to AVDD + 0.5	
A/D converter reference	AVREF		AVDD > VDD	-0.5 to VDD + 0.5	V
input voltage			$V_{\text{DD}} \ge AV_{\text{DD}}$	-0.5 to AVDD + 0.5	
Operating ambient temperature	Та			-10 to +70	°C
Storage temperature	Tstg			-40 to +125	°C

Notes 1. Pins other than the pins specified in Note 2.

- 2. Pins P70/ANI0 to P77/ANI7, P80/ANI8 to P87/ANI15
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that the absolute maximum ratings are not exceeded.

Recommended Operating Conditions

Oscillation Frequency	ТА	Vdd
8 MHz \leq fxx \leq 32 MHz	-10 to +70°C	4.5 to 5.5 V

Capacitance (T_A = 25° C, V_{SS} = V_{DD} = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	С	f = 1 MHz			10	рF
Output capacitance	Co	Unmeasured pins returned to 0 V.			10	pF
I/O capacitance	Сю	-			10	pF

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
VDD supply voltage	Vdd		4.5		5.5	V
VPP supply voltage	Vpp	VPP high-voltage detection	9.7	10.0	10.3	V
Number of rewrites ^{Note}			10			Times

Flash Memory Specifications ($T_A = +10$ to $+40^{\circ}C$ (rewriting), $T_A = -10$ to $+70^{\circ}C$ (other than rewriting))

Note If the number of flash memory rewrites exceeds 10, operation is not guaranteed.

Oscillator Characteristics (T_A = -10 to $+70^{\circ}$ C, V_{DD} = 4.5 to 5.5 V, V_{ss} = 0 V)

Resonator	Recommended Circuit	Parameter	MIN.	MAX.	Unit
Ceramic resonator or crystal resonator	$V_{SS} X1 X2$ $C1 = C2$ 777	Oscillation frequency (fxx)	8	32	MHz
External clock	X1 X2	X1 input frequency (fx)	8	32	MHz
	Open ^{Note}	X1 input rise/fall time	0	5	ns
		X1 input high-/low-level width	20	105	ns

Note When the EXTC bit of the oscillation stabilization time specification register (OSTS) = 0. Input the reverse phase clock of pin X1 to pin X2 when the EXTC bit = 1.

Caution When using the system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines. Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss. Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

Remark For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
Input voltage, low	VIL			0		0.8	V
Input voltage, high	VIH1	Note 1		2.2		Vdd	V
	VIH2	Note 2		0.8Vdd		Vdd	
Output voltage, low	Vol	lo∟ = 2.0 mA				0.45	V
Output voltage, high	Vон	Іон = -400 <i>µ</i> /	4	Vdd - 1.0			V
Input leakage current	lu	Note 3	$0 V \leq V_{I} \leq V_{DD}$			±10	μΑ
Analog pin input leakage current	ILIAN	Note 4	$0 V \leq V_{I} \leq AV_{DD}$			±1	μΑ
Output leakage current	Ιιο	$0 V \le V_0 \le V_0$	DD			±10	μΑ
VDD supply current	IDD1	Operating mo	ode (fxx = 32 MHz)		50	80	mA
	IDD2	HALT mode	(fxx = 32 MHz)		30	60	mA
	Ірдз	IDLE mode (fxx = 32 MHz)		10	20	mA
Data retention voltage	Vdddr	STOP mode		2.5			V
Data retention current	Idddr	STOP mode	VDDDR = 2.5 V		2	15	μA
			Vdddr = 5 V ±10%		15	50	μA
Pull-up resistor	R∟		·	15	40	80	kΩ

DC Characteristics (T_A = -10 to $+70^{\circ}$ C, V_{DD} = 4.5 to 5.5 V, V_{SS} = 0 V)

Notes 1. Pins other than the pins specified in Note 2

2. P20/NMI, P21/INTP0/T000, P22/INTP1/T001, P23/INTP2/T002, P24/INTP3/T003, P25/INTP4, P26/ INTP5/TI2, P27/INTP6/TI3, P34/ASCK/SCK1, P37/ASCK2/SCK2, X1, X2, RESET

- 3. Input and I/O pins (except X1 and X2, and P70/ANI0 to P77/ANI7, P80/ANI8 to P87/ANI15 used as analog inputs)
- **4.** Pins P70/ANI0 to P77/ANI7, P80/ANI8 to P87/ANI15 (pins used as analog inputs, and only during a non-sampling operation)

AC Characteristics (T_A = -10 to $+70^{\circ}$ C, V_{DD} = 4.5 to 5.5 V, V_{SS} = 0 V)

(1) Read/write operation

Parameter	Symbol	Expression	MIN.	MAX.	Unit
System clock cycle time	tсүк		62.5	250	ns
Address setup time (to ASTB \downarrow)	t sast	(0.5 + a) T – 20	11.2		ns
Address hold time (from ASTB \downarrow)	t hsta	0.5T – 20	11.2		ns
ASTB high-level width	twsтн	(0.5 + a) T – 17	14.2		ns
$\overline{RD} \downarrow$ delay time from address	t dar	(1 + a) T – 15	47.5		ns
Address float time from $\overline{\text{RD}} \downarrow$	t fra			0	ns
Data input time from address	tdaid	(2.5 + a + n) T - 56		100.2	ns
Data input time from $\overline{\mathrm{RD}} \downarrow$	torid	(1.5 + n) T – 48		45.7	ns
Delay time from ASTB \downarrow to $\overline{RD}\downarrow$	t dstr	0.5T – 16	15.3		ns
Data hold time (from \overline{RD})	thrid		0		ns
Address active time from $\overline{\mathrm{RD}} \uparrow$	tdra –	0.5T – 14	17.2		ns
RD low-level width	twrl	(1.5 + n) T – 30	63.7		ns
Delay time from address to $\overline{\text{LWR}}, \overline{\text{HWR}} \downarrow$	tdaw	(1 + a) T – 15	47.5		ns
Data output time from $\overline{\text{LWR}}$, $\overline{\text{HWR}} \downarrow$	towod			15	ns
Delay time from ASTB \downarrow to $\overline{\text{LWR}}$, $\overline{\text{HWR}}\downarrow$	tostw	0.5T – 16	15.3		ns
Data setup time (to LWR, HWR))	tsodw	(1.5 + n) T – 25	68.7		ns
Data hold time (from LWR, HWR↑)	tнwod	0.5T – 14	17.2		ns
Delay time from <u>LWR</u> , <u>HWR</u> ↑ to ASTB↑	towsт	1.5T – 15	78.8		ns
LWR, HWR low-level width	tww∟	(1.5 + n) T – 36	57.7		ns
$\overline{\text{WAIT}}\downarrow$ input time from address	tdawt	(2 + a) T - 50		75	ns
$\overline{WAIT} \downarrow$ input time from $ASTB \downarrow$	tostwt	1.5T – 40		53.7	ns
$\overline{\text{WAIT}}$ hold time from ASTB \downarrow	tнsтwт	(1.5 + n) T + 5	98.8		ns
Delay time from ASTB \downarrow to $\overline{\text{WAIT}}$	tosтwтн	(2.5 + n) T – 40		116.2 ^{Note}	ns
$\overline{\text{WAIT}}\downarrow$ input time from $\overline{\text{RD}}\downarrow$	tdrwt	T – 40		22.5	ns
$\overline{\text{WAIT}}$ hold time from $\overline{\text{RD}} \downarrow$	tнвwт	(1 + n) T + 5	67.5		ns
Delay time from $\overline{RD} \downarrow$ to $\overline{WAIT} \uparrow$	tdrwth	(1 + n) T – 40		85 ^{Note}	ns
$\overline{\text{WAIT}}\downarrow$ input time from $\overline{\text{LWR}}$, $\overline{\text{HWR}}\downarrow$	towwт	T – 40		22.5	ns
$\overline{\text{WAIT}}$ hold time from $\overline{\text{LWR}}$, $\overline{\text{HWR}}\downarrow$	tнwwт	(1 + n) T + 5	67.5		ns
Delay time from $\overline{LWR}, \overline{HWR} \downarrow$ to $\overline{WAIT} \uparrow$	towwтн	(1 + n) T – 40		85 ^{Note}	ns

Note Specification when an external wait is inserted

Remarks 1. $T = t_{CYK} = 1/f_{CLK}$ (fcLK is internal system clock frequency)

- 2. a = 1 when an address wait is inserted, otherwise 0.
- n indicates the number of the wait cycles as specified by the external wait pin (WAIT) or programmable wait control registers 1, 2 (PWC1, PWC2). (n ≥ 0. n ≥ 1 for tbstwth, tbwwth, tbwwth).
- 4. Calculate values in the expression column with the system clock cycle time to be used because these values depend on the system clock cycle time ($tcr\kappa = T$). The values in the above expression column are calculated based on T = 62.5 ns.

(2) Serial Operation ($T_A = -10$ to $+70^{\circ}C$, $V_{DD} = 4.5$ to 5.5 V, $V_{SS} = 0$ V)

Parameter	Symbol	Condit	tions	MIN.	MAX.	Unit
Serial clock cycle time	tсүзк	SCK1, SCK2 output	BRG	TSFT		ns
		SCK1, SCK2 input	External clock	500		ns
Serial clock low-level width	twskl	SCK1, SCK2 output	BRG	0.5Tsft-40		ns
		SCK1, SCK2 input	External clock	210		ns
Serial clock high-level width	twsкн	SCK1, SCK2 output	BRG	0.5Tsft-40		ns
		SCK1, SCK2 input	External clock	210		ns
SI1, SI2 setup time (to SCK1, SCK2↑)	tsssк			80		ns
SI1, SI2 hold time (from SCK1, SCK2↑)	tнssк			80		ns
Delay time from $\overline{SCK1}$, $\overline{SCK2}$ to SO1, SO2 output	tdsbsk	R = 1 kΩ, C = 100 p	F	0	150	ns

Remarks 1. TSFT is a value set by software. The minimum value is $t_{CYK}\times 8.$

2. tcyk = 1/fclk (fclk is internal system clock frequency)

(3) Other Operations (T_A = -10 to $+70^{\circ}$ C, V_{DD} = 4.5 to 5.5 V, V_{SS} = 0 V)

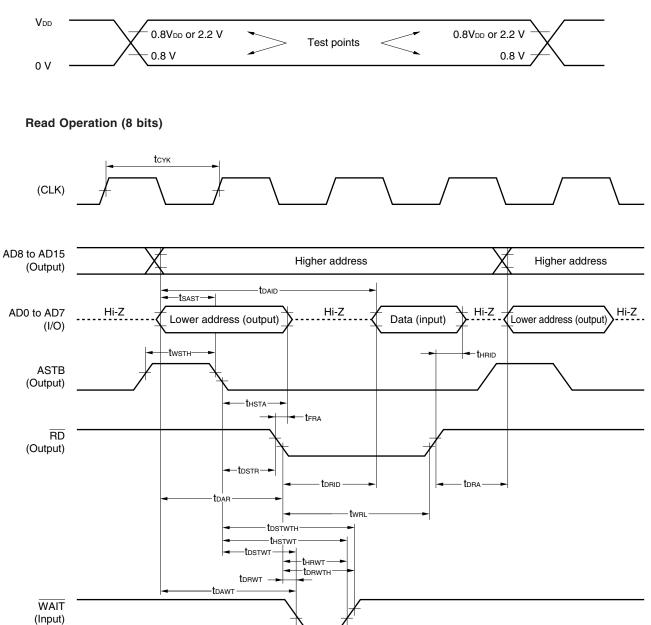
Parameter	Symbol	Conditions	MIN.	MAX.	Unit
NMI high-/low-level width	twnih, twnil		10		μs
INTP0 to INTP6 high-/low-level width	twi⊤⊢, twi⊤∟		4		tcysmp
TI2, TI3 high-/low-level width	tw⊤iн, tw⊤i∟		4		tcysmp
RESET high-/low-level width	twrsh, twrsl		10		μs

Remarks 1. tcysmp is a sampling clock set by software in the noise protection control register (NPC).

When NIn = 0, $t_{CYSMP} = t_{CYK}$

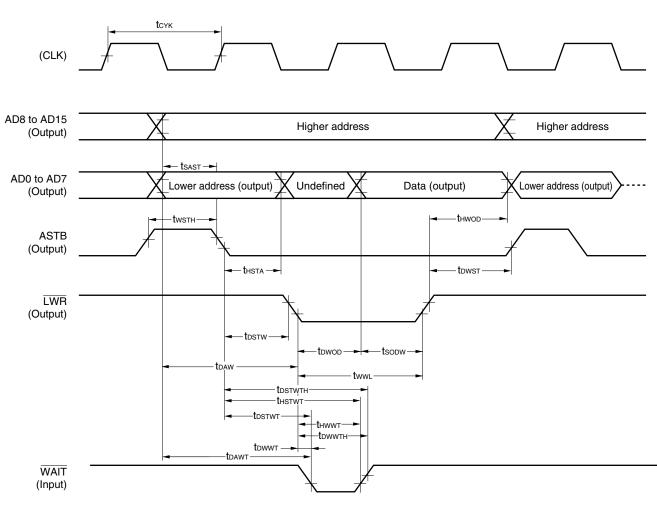
When NIn = 1, tcysmp = tcyk \times 4

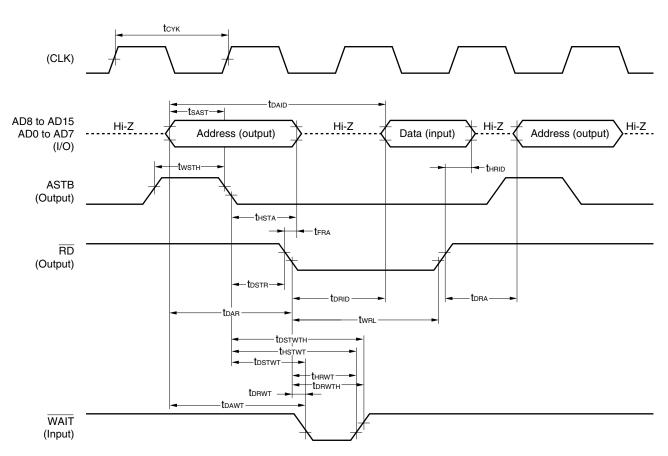
- 2. tcyk = 1/fclk (fclk is internal system clock frequency)
- **3.** NIn: Bit n of NPC (n = 0 to 6)

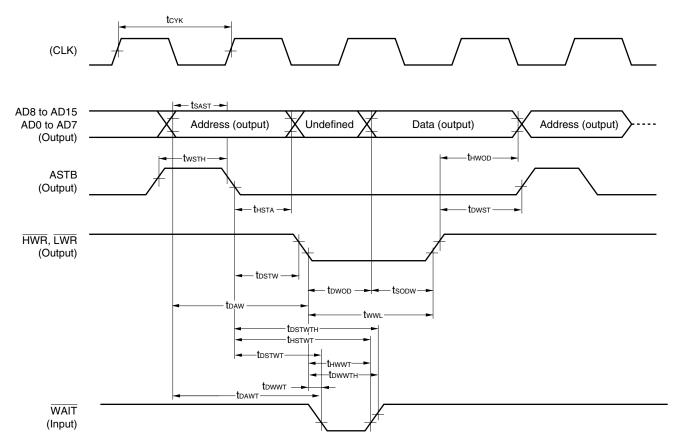

A/D Converter Characteristics (T_A = -10 to +70°C, V_DD = 4.5 to 5.5 V, V_SS = AV_SS = 0 V, V_DD - 0.5 V \leq AV_DD \leq V_DD)

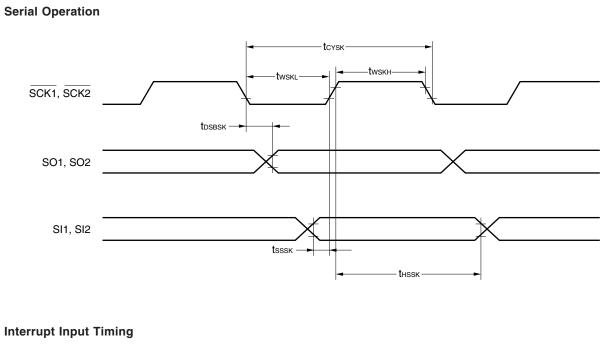
Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution				10			bit
Overall error ^{Note 1}		4.5 V ≤	$AV_{\text{REF}} \leq AV_{\text{DD}}$			±0.5	%FSR ^{Note 2}
		3.4 V ≤	AV _{REF} < 4.5 V			±0.7	%FSR ^{Note 2}
Quantization error						±1/2	LSB
Conversion time	tconv	80 ns ≤	tсук ≤ 250 ns	169			tсүк
		62.5 ns	≤ tсүк < 80 ns	208			tсүк
Sampling time	t SAMP	80 ns ≤	tсүк ≤ 250 ns	20			tсүк
		62.5 ns	≤ tсүк < 80 ns	24			tсүк
Zero-scale errorNote 1		4.5 V ≤	$AV_{\text{REF}} \leq AV_{\text{DD}}$		±1.5	±3.5	LSB
		3.4 V ≤	$AV_{REF} < 4.5 V$		±1.5	±4.5	LSB
Full-scale errorNote 1		4.5 V ≤	$AV_{\text{REF}} \leq AV_{\text{DD}}$		±1.5	±3.5	LSB
		3.4 V ≤	$AV_{REF} < 4.5 V$		±1.5	±4.5	LSB
Integral linearity errorNote 1		4.5 V ≤	$AV_{\text{REF}} \leq AV_{\text{DD}}$		±1.5	±2.5	LSB
		3.4 V ≤	$AV_{REF} < 4.5 V$		±1.5	±4.5	LSB
Analog input voltage	VIAN			-0.3		AVREF + 0.3	V
A/D converter reference input voltage	AVREF			3.4		AVDD	V
AVREF current	AIREF				1.0	3.0	mA
AVDD supply current	Aldd				2.0	6.0	mA
A/D converter data retention	Aldddr	STOP	$AV_{DDDR} = 2.5 V$		2	10	μΑ
current		mode	$AV_{DDDR} = 5 V \pm 10\%$		10	50	μA

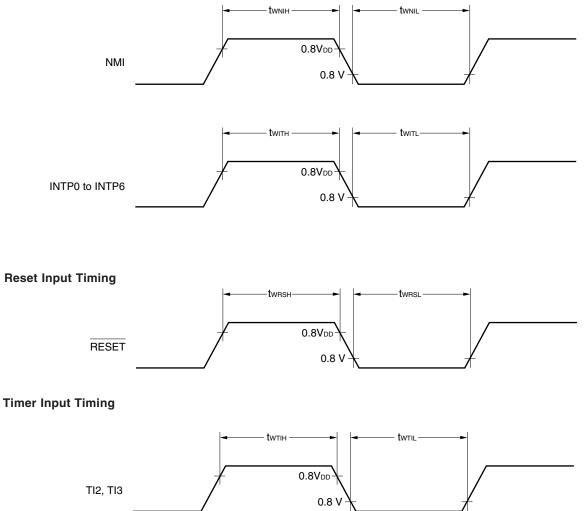
Notes 1. Excludes quantization error.


2. Indicated as a ratio (%FSR) to the full-scale value.

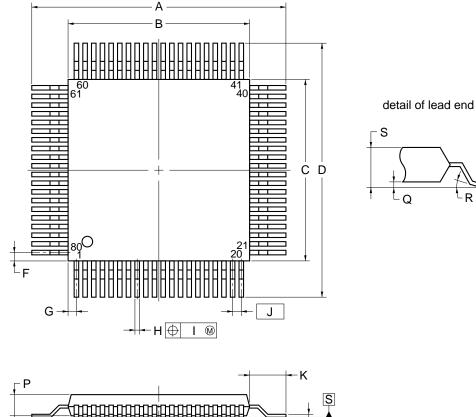

Remark tork = 1/folk (folk is the internal system clock frequency)


*





Read Operation (16 bits)



Write Operation (16 bits)

80-PIN PLASTIC QFP (14x14)

S

L→

Μ

R

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

Ν

ITEM	MILLIMETERS
Α	17.2±0.4
В	14.0±0.2
С	14.0±0.2
D	17.2±0.4
F	0.825
G	0.825
Н	0.30±0.10
I	0.13
J	0.65 (T.P.)
K	1.6±0.2
L	0.8±0.2
М	$0.15\substack{+0.10 \\ -0.05}$
N	0.10
Р	2.7±0.1
Q	0.1±0.1
R	5°±5°
S	3.0 MAX.
	S80GC-65-3B9-6

CHAPTER 29 RECOMMENDED SOLDERING CONDITIONS

The μ PD784046 Subseries should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact an NEC Electronics sales representative.

For technical information, see the following website.

Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)

Remark The recommended soldering conditions of the μ PD784046GC(A)-xxx-3B9 are undetermined. For details, contact an NEC Electronics sales representative.

Table 29-1. Surface Mounting Type Soldering Conditions (1/2)

```
    (1) μPD784044GC-xxx-3B9: 80-pin plastic QFP (14 x 14)
μPD784044GC(A)-xxx-3B9: 80-pin plastic QFP (14 x 14)
μPD784044GC(A1)-xxx-3B9: 80-pin plastic QFP (14 x 14)
μPD784044GC(A2)-xxx-3B9: 80-pin plastic QFP (14 x 14)
μPD784046GC(A1)-xxx-3B9: 80-pin plastic QFP (14 x 14)
μPD784046GC(A2)-xxx-3B9: 80-pin plastic QFP (14 x 14)
```

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 sec. Max. (at 210°C or higher),	IR35-00-3
	Count: three times or less	
VPS	Package peak temperature: 215°C, Time: 40 sec. Max. (at 200°C or higher),	VP15-00-3
	Count: three times or less	
Wave soldering	Solder bath temperature: 260°C Max., Time 10 sec. Max., Count: once,	WS60-00-1
	Preheating temperature: 120°C Max. (package surface temperature)	
Partial heating	Pin temperature: 300°C Max., Time: 3 sec. Max. (per pin row)	_

Caution Do not use different soldering methods together (except for partial heating).

(2) μ PD784046GC- \times ××-3B9: 80-pin plastic QFP (14 x 14)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 sec. Max. (at 210°C or higher),	IR35-00-2
	Count: twice or less	
VPS	Package peak temperature: 215°C, Time: 40 sec. Max.	VP15-00-2
	(at 200°C or higher), Count: twice or less	
Wave soldering	Solder bath temperature: 260°C Max., Time 10 sec. Max., Count: once,	WS60-00-1
	Preheating temperature: 120°C Max. (package surface temperature)	
Partial heating	Pin temperature: 300°C Max., Time: 3 sec. Max. (per pin row)	-

Caution Do not use different soldering methods together (except for partial heating).

*

Table 29-1. Surface Mounting Type Soldering Conditions (2/2)

(3) µPD78F4046GC-3B9: 80-pin plastic QFP (14 x 14)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Twice or less, Exposure limit: 7 days ^{Note} (after 7 days, prebake at 125°C for 20 hours)	IR35-207-2
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Twice or less, Exposure limit: 7 days ^{Note} (after 7 days, prebake at 125°C for 20 hours)	VP15-207-2
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Once, Preheating temperature: 120°C max. (package surface temperature), Exposure limit: 7 days ^{Note} (after 7 days, prebake at 125°C for 20 hours)	WS60-207-1
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	-

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

CHAPTER 30 CAUTIONS ON USING DEVELOPMENT TOOLS

When developing a program by using in-circuit emulator IE-784000-R, note the following point.

(1) Setting of standby control register (STBC)

<u>Include an instruction that sets the standby control register (STBC) to 00H</u> following the LOCATION instruction and initialization of the stack pointer (SP) in the program after reset is cleared.

Program example:

*

RSTVCT	CSEG	AT 0
	DW	RSTSTRT
	to	
INITSEG	CSEG	BASE
RSTSTRT:	LOCATIC	ON 0H; or LOCATION 0FH
	MOVG	SP, #STKBGN
	MOV	STBC, #0H

Reason: The internal system clock of the μ PD784046 is fixed to fxx/2. However, the internal system clock of the in-circuit emulator is set to fxx/16 after reset has been cleared. Therefore, the setting of the STBC must be changed as described above.

Even if the instruction that sets the STBC to 00H is executed, the operation is not affected because the STBC of the real chip is fixed to 30H. For the same reason, the value of the STBC of the real chip is always 30H when it is read. The value of the STBC on the in-circuit emulator, however, is changed to 00H when the above setting is made. Therefore, note that the value of the STBC of the in-circuit emulator and that of the real chip differ when they are read.

(2) Output of CLKOUT pin

The CLKOUT pin of the real chip always outputs the oscillation frequency (fxx). However, in the case of the in-circuit emulator IE-784000-R, the internal system clock (fxx/2 or fxx/16^{Note}) is output. Note that fxx is not output from the in-circuit emulator.

Note The CLKOUT pin output of the in-circuit emulator is set to fxx/16 after the reset has been released, and set to fxx/2 when 00H is set to the standby control register (STBC).

APPENDIX A DEVELOPMENT TOOLS

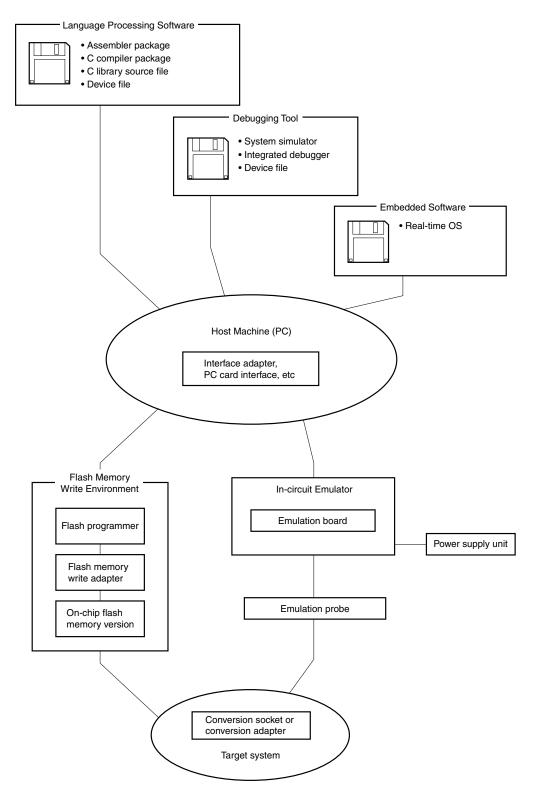
The following development tools are available for the development of systems that employ the μ PD784046 Subseries.

Figure A-1 shows the development tool configuration.

*

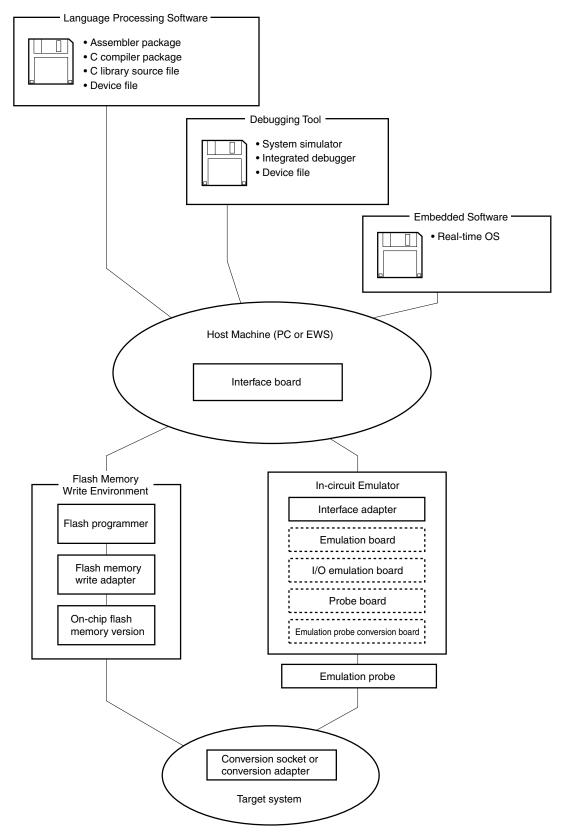
• Support for PC98-NX series

Unless otherwise specified, products supported by IBM PC/ATTM compatibles can be used for PC98-NX series computers. When using PC98-NX series computers, refer to the description for IBM PC/AT compatibles.


Windows

Unless otherwise specified, "Windows" means the following OSs.

- Windows 3.1
- Windows 95
- Windows 98
- Windows 2000
- Windows NTTM Ver. 4.0


Figure A-1. Development Tool Configuration (1/2)


(1) When using the in-circuit emulator IE-78K4-NS

Figure A-1. Development Tool Configuration (2/2)

(2) When using the in-circuit emulator IE-784000-R

A.1 Language Processing Software

Development tools (software) common to the 78K/IV Series are combined in this package.
Part number: µSxxxxSP78K4
 This assembler converts programs written in mnemonics into an object codes executable with a microcomputer. Further, this assembler is provided with functions capable of automatically creating symbol tables and branch instruction optimization. This assembler should be used in combination with an optical device file (DF784046). <precaution environment="" in="" pc="" ra78k4="" using="" when=""></precaution> This assembler package is a DOS-based application. It can also be used in Windows however, by using the Project Manager (included in assembler package) on Windows.
Part number: µS××××RA78K4
This compiler converts programs written in C language into object codes executable with a microcomputer. This compiler should be used in combination with an optical assembler package and device file. <precaution cc78k4="" environment="" in="" pc="" using="" when=""> This C compiler package is a DOS-based application. It can also be used in Win- dows, however, by using the Project Manager (included in assembler package) on Windows.</precaution>
Part number: µS××××CC78K4
This file contains information peculiar to the device. This device file should be used in combination with an optional tool (RA78K4, CC78K4, SM78K4, ID78K4-NS, and ID78K4). Corresponding OS and host machine differ depending on the tool to be used with.
Part number: µS××××DF784046
 This is a source file of functions configuring the object library included in the C compiler package (CC78K4). This file is required to match the object library included in C compiler package to the customer's specifications. The operating environment does not depend on the OS because this is a source file.

Note The DF784046 can be used commonly for all the RA78K4, CC78K4, SM78K4, ID78K4-NS, and ID78K4.

Remark The XXXX part number differs depending on the host machine and operating system used.

μS<u>××××</u>SP78K4

 xxxx	Host Machine	OS	Supply Medium
AB17	PC-9800 series,	Japanese Windows	CD-ROM
BB17	IBM PC/AT compatibles	English Windows	

μ S××××RA78K4

 $\mu S \times \times \times CC78K4$

 ××××	Host Machine	OS	Supply Medium
AB13	PC-9800 series,	Japanese Windows	3.5-inch 2HD FD
BB13	IBM PC/AT compatibles	English Windows	
AB17		Japanese Windows	CD-ROM
BB17		English Windows	
3P17	HP9000 series 700 TM	HP-UX TM (Rel. 10.10)	
3K17	SPARC station TM	SunOS TM (Rel. 4.1.4),	
		Solaris TM (Rel. 2.5.1)	

μ S××××DF784046 μ S××××CC78K4-L

_	××××	Host Machine	OS	Supply Medium
	AB13	PC-9800 series,	Japanese Windows	3.5-inch 2HD FD
	BB13	IBM PC/AT compatibles	English Windows	
	3P16	HP9000 series 700	HP-UX (Rel. 10.10)	DAT
	3K13	SPARCstation	SunOS (Rel. 4.1.4),	3.5-inch 2HD FD
	3K15		Solaris (Rel. 2.5.1)	1/4-inch CGMT

A.2 Flash Memory Writing Tools

+

Flashpro II (part number: FL-PR2) Flashpro III (part number: FL-PR3, PG-FP3)	Flash programmer dedicated to microcontrollers with on-chip flash memory.
Flash programmer	
FA-80GC	Flash memory writing adapter used connected to the Flashpro II/Flashpro III.
Flash memory writing adapter	• FA-80GC : 80-pin plastic QFP (GC-3B9 type)

Remark Flashpro II, Flashpro III, and FA-80GC are products of Naito Densei Machida Mfg. Co., Ltd. Phone: +81-45-475-4191 Naito Densei Machida Mfg. Co., Ltd.

A.3 Debugging Tools

A.3.1 Hardware (1/2)

(1) When using the in-circuit emulator IE-78K4-NS

	IE-78K4-NS In-circuit emulator		The in-circuit emulator serves to debug hardware and software when developing application systems using a 78K/IV Series product. It corresponds to integrated debugger (ID78K4-NS). This emulator should be used in combination with power supply unit, emulation probe, and interface adapter which is required to connect this emulator to the host machine.
	IE-70000-MC-PS-B Power supply unit		This adapter is used for supplying power from a receptacle of 100 V to 200 V AC.
	IE-70000-98-IF-C Interface adapter		This adapter is required when using the PC-9800 Series computer (except notebook type) as the IE-78K4-NS host machine (C bus supported).
	IE-70000-CD-IF PC card interface		This is PC card and interface cable required when using the PC-9800 Series notebook-type computer as the IE-78K4-NS host machine.
	IE-70000-PC-IF-C Interface adapter		This adapter is required when using the IBM PC/AT compatible computers as the IE-78K4-NS host machine (ISA bus supported).
*	IE-70000-PCI-IF-A Interface adapter		Interface adapter required when using a PC that incorporates PCI bus as the host machine for the IE-78K4-NS
	IE-784046-NS-EM1 Emulation board		This board emulates the operations of the peripheral hardware peculiar to a device. It should be used in combination with an in-circuit emulator.
*	NP-80GC-TQ NP-H80GC-TQ Emulation probe		This probe is used to connect the in-circuit emulator to the target system and is designed for 80-pin plastic QFP (GC-3B9 type).
	Conve	080SBP ersion socket r to Figure	This conversion socket connects the NP-80GC-TQ or NP-H80GC-TQ to the target system board designed to mount a 80-pin plastic QFP (GC-3B9 type).

Remarks 1. NP-80GC-TQ and NP-H80GC-TQ are products made by Naito Densei Machida Mfg.Co., Ltd. For further information, contact Naito Densei Machida Mfg. Co., Ltd. (TEL: +81-45-475-4191)

- TGC-080SBP is a product made by Tokyo Eletech Corporation. For further information, contact Daimaru Kogyo, Ltd. Tokyo Electronics Department (TEL: +81-3-3820-7112) Osaka Electronics Department (TEL: +81-6-6244-6672)
- **3.** The TGC-080SBP is sold individually.

A.3.1 Hardware (2/2)

*

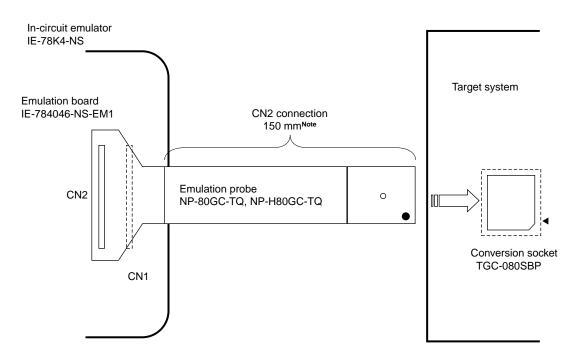
(2) When using the in-circuit emulator IE-784000-R

IE-784000-R In-circuit emulator	The IE-784000-R is an in-circuit emulator common to the 78K/IV Series, and is used in combination with IE-784000-R-EM and IE-784046-R-EM1, which are sold separately. This in-circuit emulator debugs the connected host machine. An integrated debugger (ID78K4) and device file (sold separately) are required to enable debugging in C language and structured assembly language at the source program level. More efficient debugging and program verification is possible with functions such as C0 coverage. Connect to a host machine via Ethernet TM or a dedicated bus. An interface adapter (sold separately) is required for connection.
IE-70000-98-IF-C Interface adapter	Interface adapter required when a PC-9800 series (except notebook type PC) is used as the host machine for the IE-784000-R (C bus supported).
IE-70000-PC-IF-C Interface adapter	Interface adapter required when using an IBM PC/AT compatible as the host machine (ISA bus supported).
IE-78000-R-SV3 Interface adapter	Interface adapter and cable required when an EWS is used as the host machine for the IE-784000-R. Connect to a board inside the IE-784000-R. Note that 10Base-5 is supported as the Ethernet. A commercial conversion adapter is required for other systems.
IE-784000-R-EM	Emulation board common to 78K/IV Series
IE-784046-R-EM1 Emulation board	Board to emulate peripheral hardware specific to device
IE-78K4-R-EX2 Emulation probe conversion board	Conversion board for 80-pin packages required when using the IE-784046-R-EM1 on IE-784000-R
EP-78230GC-R Emulation probe	Probe to connect the in-circuit emulator and the target system. For 80-pin plastic QFP (GC-3B9 type).
EV-9200GC-80 Conversion socket (Refer to Figures A-4 and A-5)	Conversion socket to connect the EP-78230GC-R and a target system board on which an 80-pin plastic QFP (GC-3B9 type) can be mounted

Remark EV-9200GC-80 is sold in five units.

A.3.2 Software

SM78K4 System simulator	This system simulator is used to perform debugging at C source level or assembler level while simulating the operation of the target system on a host machine. This simulator runs on Windows. Use of the SM78K4 allows the execution of application logical testing and performance testing on an independent basis from hardware development without having to use an in-circuit emulator, thereby providing higher development efficiency and software quality. The SM78K4 should be used in combination with the optional device file (DF784046).
	Part number: µS××××SM78K4
ID78K4-NS Integrated debugger (supporting in-circuit emulator IE-78K4-NS)	This debugger is a control program to debug 78K/IV Series microcontrollers. It adopts a graphical user interface, which is equivalent visually and operationally to Windows. It also has an enhanced debugging function for C language programs, and thus trace results can be displayed on screen in C-language level by using the windows integration function which links a trace result with its source program,
ID78K4 Integrated debugger (supporting in-circuit emulator IE-784000-R)	disassembled display, and memory display. In addition, by incorporating function modules such as task debugger and system performance analyzer, the efficiency of debugging programs, which run on real-time OSs can be improved. It should be used in combination with the optional device file (DF784046).
	Part number: µSxxxxID78K4-NS, µSxxxxID78K4


μ S××××SM78K4 μ S××××ID78K4-NS μ S××××ID78K4

 xxxx	Host Machine	OS	Supply Medium
AB13	IBM PC/AT compatible	Japanese Windows	3.5-inch 2HC FD
BB13		English Windows	
AB17		Japanese Windows	CD-ROM
BB17		English Windows	

 \star

* A.4 Cautions on Designing Target System

The connection condition diagrams for the emulation probe and conversion socket are shown below. Design the system considering the shape of components, etc. to be mounted on the target system in accordance with this configuration.

Note 350 mm in case of the NP-H80GC-TQ.

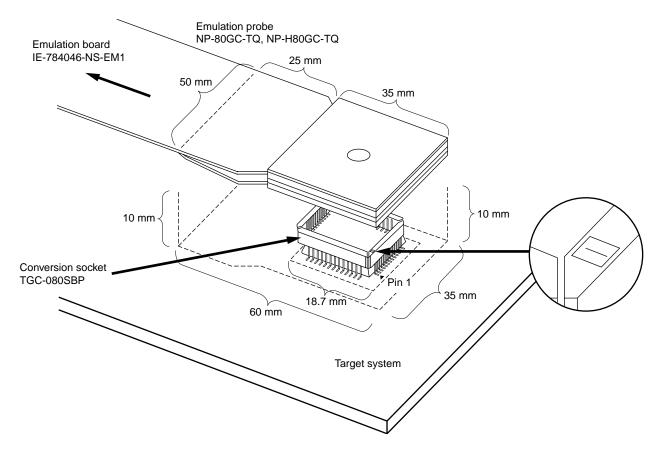


Figure A-3. Target System Connection Conditions

Remark NP-80GC-TQ and NP-H80GC-TQ are products made by Naito Densei Machida Mfg. Co., Ltd.

A.5 Deminsions of Conversion Socket (EV-9200GC-80) and Recommended Board Mounting Pattern

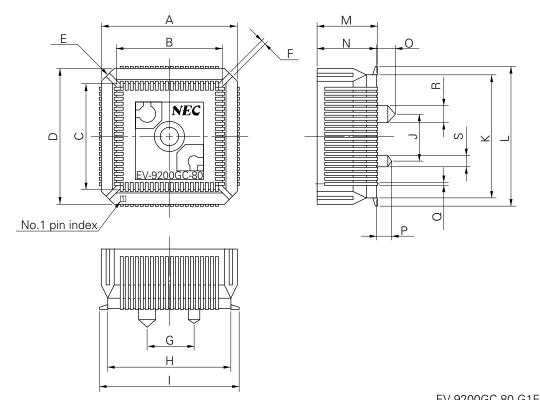
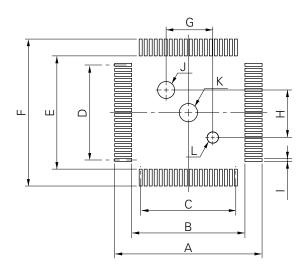



Figure A-4. Dimensions of EV-9200GC-80 (reference)

		EV-9200GC-80-G1E
ITEM	MILLIMETERS	INCHES
А	18.0 0.709	
В	14.4	0.567
С	14.4	0.567
D	18.0	0.709
E	4-C 2.0	4-C 0.079
F	0.8	0.031
G	6.0	0.236
Н	16.0	0.63
I	18.7	0.736
J	6.0	0.236
К	К 16.0 0.63	
L	18.7	0.736
Μ	8.2	0.323
Ν	8.0	0.315
0	2.5	0.098
Р	2.0	0.079
Q	0.35	0.014
R	ø2.3	ø0.091
S	¢1.5	ø0.059

Figure A-5. Recommended Board Mounting Pattern of EV-9200GC-80 (reference)

EV-9200GC-80-P1E

ITEM	MILLIMETERS	INCHES	
A	19.7	0.776	
В	15.0	0.591	
С	0.65±0.02 × 19=12.35±0.05	$0.026^{+0.001}_{-0.002} \times 0.748 {=} 0.486^{+0.003}_{-0.002}$	
D	0.65±0.02 × 19=12.35±0.05	$0.026^{+0.001}_{-0.002} \times 0.748 {=} 0.486^{+0.003}_{-0.002}$	
E	15.0	0.591	
F	19.7	0.776	
G	6.0±0.05	0.236 ^{+0.003} -0.002	
н	6.0±0.05	0.236 ^{+0.003} -0.002	
I	0.35±0.02	$0.014^{+0.001}_{-0.001}$	
J	¢2.36±0.03	Ø0.093 ^{+0.001} -0.002	
К	ø2.3	ø0.091	
L	¢1.57±0.03	Ø0.062 ^{+0.001} -0.002	

Caution Dimensions of mount pad for EV-9200 and that for target device (QFP) may be different in some parts. For the recommended mount pad dimensions for QFP, refer to "Semiconductor Device Mount Manual" website (http://www.necel.com/pkg/en/mount/index.html).

APPENDIX B EMBEDDED SOFTWARE

For efficient development and maintenance of the μ PD784046 Subseries, the following embedded products are available.

RX78K4 Real-time OS	 RX78K4 is a real-time OS conforming to the μITRON specifications. Tool (configurator) for generating nucleus of RX78K4 and plural information tables is supplied. Used in combination with an optional assembler package (RA78K4) and device file (DF784046). <precaution environment="" in="" pc="" rx78k4="" using="" when=""></precaution> The real-time OS is a DOS-based application. It should be used in the DOS Prompt
	The real-time OS is a DOS-based application. It should be used in the DOS Prompt when using in Windows.
	Part number: µSxxxxRX78K4

Caution When purchasing the RX78K4, fill in the purchase application form in advance and sign the User Agreement.

Remark xxxx and $\Delta\Delta\Delta$ in the part number differ depending on the host machine and OS used.

$\mu S \times \times \times RX78K4 - \Delta \Delta \Delta \Delta$

ΔΔΔΔ	Product Outline	Maximum Number for Use in Mass Production
001	Evaluation object	Do not use for mass-produced product.
100K	Mass-production object	0.1 million units
001M		1 million units
010M		10 million units
S01	Source program	Source program for mass-produced object
100K 001M 010M	Mass-production object	0.1 million units 1 million units 10 million units

-	XXXX	Host Machine	OS	Supply Medium
	AA13	PC-9800 Series	Windows (Japanese version) ^{Note}	3.5-inch 2HD FD
	AB13	IBM PC/AT compatibles	Windows (Japanese version) ^{Note}	3.5-inch 2HC FD
	BB13		Windows (English version) ^{Note}	
	3P16	HP9000 Series 700	HP-UX (Rel. 9.05)	DAT (DDS)
	3K13	SPARCstation	SunOS (Rel. 4.1.4),	3.5-inch 2HC FD
	3K15		Solaris (Rel. 2.5.1)	1/4-inch CGMT

Note Can also be operated in DOS environment.

*

APPENDIX C REGISTER INDEX

[A]			
ADCR0	:	A/D Conversion Result Register 0	301
ADCR0H	:	A/D Conversion Result Register 0H	302
ADCR1	:	A/D Conversion Result Register 1	301
ADCR1H	:	A/D Conversion Result Register 1H	302
ADCR2	:	A/D Conversion Result Register 2	301
ADCR2H	:	A/D Conversion Result Register 2H	302
ADCR3	:	A/D Conversion Result Register 3	301
ADCR3H	:	A/D Conversion Result Register 3H	302
ADCR4	:	A/D Conversion Result Register 4	301
ADCR4H	:	A/D Conversion Result Register 4H	302
ADCR5	:	A/D Conversion Result Register 5	301
ADCR5H	:	A/D Conversion Result Register 5H	302
ADCR6	:	A/D Conversion Result Register 6	301
ADCR6H	:	A/D Conversion Result Register 6H	302
ADCR7	:	A/D Conversion Result Register 7	301
ADCR7H	:	A/D Conversion Result Register 7H	302
ADIC	:	Interrupt Control Register	380
ADM	:	A/D Converter Mode Register	299
ASIM	:	Asynchronous Serial Interface Mode Register	324
ASIM2	:	Asynchronous Serial Interface Mode Register 2	324
ASIS	:	Asynchronous Serial Interface Status Register	326
ASIS2	:	Asynchronous Serial Interface Status Register 2	326
[B]			
BRGC	:	Baud Rate Generator Control Register	347
BRGC2	:	Baud Rate Generator Control Register 2	347
BW	:	Bus Width Specification Register	457
[C]			
CC00		Capture/Compare Register 00	173
CC01		Capture/Compare Register 01	173
CC02	:	Capture/Compare Register 02	173
CC03	:	Capture/Compare Register 03	173
CM10	:	Compare Register 10	199
CM11	:	Compare Register 11	199
CM20	:	Compare Register 20	225
CM21	:	Compare Register 21	225
CM30	:	Compare Register 30	219
CM31	:	Compare Register 31	219
CM40	:	Compare Register 40	273
CM41	:	Compare Register 41	273
CMIC10	:	Interrupt Control Register	378
CMIC11		Interrupt Control Register	378
CMIC20	:	Interrupt Control Register	378

CMIC21	: Interrupt Control Register	378
CMIC30	: Interrupt Control Register	379
CMIC31	: Interrupt Control Register	379
CMIC40	: Interrupt Control Register	379
CMIC41	: Interrupt Control Register	379
CSIIC1	: Interrupt Control Register	379
CSIIC2	: Interrupt Control Register	380
CSIM1	: Clocked Serial Interface Mode Register 1	338
CSIM2	: Clocked Serial Interface Mode Register 2	338
COMIZ		000
[I]		
IEF1	: Interrupt Valid Edge Flag Register 1	362
IEF2	: Interrupt Valid Edge Flag Register 2	363
IMC	: Interrupt Mode Control Register	384
IMS	: Internal Memory Size Select Register	67
INTM0	: External Interrupt Mode Register 0	360
INTM1	: External Interrupt Mode Register 1	361
ISPR	: In-Service Priority Register	383
[M]		
MK0	: Interrupt Mask Register 0	382
MK0H	: Interrupt Mask Register 0H	382
MK0L	: Interrupt Mask Register 0L	382
MK1	: Interrupt Mask Register 1	382
MK1H	: Interrupt Mask Register 1H	382
MK1L	: Interrupt Mask Register 1L	382
MM	: Memory Extension Mode Register	432, 440
[N]		
NPC	: Noise Protection Control Register	364
[O]		
OSTS	: Oscillation Stabilization Time Specification Register	92, 463
OVIC0	: Interrupt Control Register	377
OVIC1	: Interrupt Control Register	377
OVIC4	: Interrupt Control Register	377
01101		0//
[P]		
P0	: Port 0	100
POL	: Port 0 Buffer Register	160
		160
P1	•	100
DO	: Port 1	106
P2	: Port 1 : Port 2	112
P3	: Port 1 : Port 2 : Port 3	112 119
P3 P4	 Port 1 Port 2 Port 3 Port 4 	112 119 127
P3	 Port 1 Port 2 Port 3 Port 4 Port 5 	112 119
P3 P4	 Port 1 Port 2 Port 3 Port 4 Port 5 Port 6 	112 119 127
P3 P4 P5	 Port 1 Port 2 Port 3 Port 4 Port 5 	112 119 127 133

P9	:	Port 9	147
PIC0	:	Interrupt Control Register	377
PIC1	:	Interrupt Control Register	377
PIC2	:	Interrupt Control Register	377
PIC3	:	Interrupt Control Register	377
PIC4	:	Interrupt Control Register	378
PIC5	:	Interrupt Control Register	378
PIC6	:	Interrupt Control Register	378
PM0	:	Port 0 Mode Register	101
PM1		Port 1 Mode Register	108
PM2	:	Port 2 Mode Register	115
PM3		Port 3 Mode Register	122
PM4		Port 4 Mode Register	128
PM5		Port 5 Mode Register	134
PM6		Port 6 Mode Register	140
PM9		Port 9 Mode Register	150
PMC1		Port 1 Mode Control Register	108
PMC2		Port 2 Mode Control Register	115
PMC3		Port 3 Mode Control Register	123
PMC9		Port 9 Mode Control Register	-
PRDC		Port Read Control Register	150, 445
PRM		Prescaler Mode Register	
PRM2		-	229
PRM4	:	Prescaler Mode Register 2	
PUOH		Prescaler Mode Register 4	275
		Pull-Up Resistor Option Register H	153
PUOL		Pull-Up Resistor Option Register L	
PWC1		Programmable Wait Control Register 1	442
PWC2	:	Programmable Wait Control Register 2	444
[R]		Paul Time Output Part Control Desister	101 101
RTPC		Real-Time Output Port Control Register	
RXB		Serial Receive Buffer: UART0	322
RXB2	:	Serial Receive Buffer: UART2	322
[0]			
[S] SERIC		Interrunt Control Decistor	070
SERIC SERIC2		Interrupt Control Register	379
		Interrupt Control Register	380
SIO1		Serial Shift Register: IOE1	337
SIO2		Serial Shift Register: IOE2	337
SRIC	:	Interrupt Control Register	379
SRIC2	:	Interrupt Control Register	380
STBC		Standby Control Register	
STIC		Interrupt Control Register	380
STIC2	:	Interrupt Control Register	380
[7]			
[T]			
		Timer Pegieter 0	170
ТМ0 ТМ1		Timer Register 0 Timer Register 1	173 199

TM2	:	Timer Register 2		225
ТМЗ	:	Timer Register 3		221
TM4	:	Timer Register 4		273
TMC	:	Timer Mode Control Register 1	75,	201
TMC2	:	Timer Mode Control Register 2		227
TMC4	:	Timer Mode Control Register 4		274
TOC0	:	Timer Output Control Register 0		175
TOC1	:	Timer Output Control Register 1		201
TOC2	:	Timer Output Control Register 2		228
TUM0	:	Timer Unit Mode Register 0 1	74,	200
TUM2	:	Timer Unit Mode Register 2		226
TXS	:	Serial Transmit Shift Register: UART0		322
TXS2	:	Serial Transmit Shift Register: UART2		322
[W]				
WDM	:	Watchdog Timer Mode Register	91.	385
		5 5	,	

APPENDIX D REVISION HISTORY

The revision history is described below. The "Applied to" column indicates the chapters in each edition.

Edition	Major Revisions from Previous Edition	Applied to
2nd edition	Change of μ PD784044 from "under development" to "development completed".	Throughout
	Addition of the following products to the relevant products: μPD784044(A), 784044(A1), 784044(A2), 784046(A), 784046(A1), 784046(A2)	
-	Change of 78K/IV SERIES PRODUCT DEVELOPMENT DIAGRAM.	CHAPTER 1 GENERAL
-	Change of the minimum value of the supply voltage (V_DD) from 4.0 V to 4.5 V.	
-	Addition of 1.3 Quality Grades.	
-	Addition of 1.9 Differences between µ PD784046 and µ PD784046(A) .	
	Addition of 1.10 Differences between µPD784046(A), 784046(A1), and 784046(A2).	
-	Addition of the functional description of the CLKOUT pin.	CHAPTER 2 PIN FUNCTION
-	Addition of description in (2) Capture/compare registers (CC00 through CC03).	CHAPTER 8 TIMER 0
-	Addition of caution when the timer output is enabled while the active level is changed.	
-	Addition of caution when the active level of the timer output is changed.	
-	Addition of caution when the timer output is enabled while the active level is changed.	CHAPTER 9 TIMER 1
-	Addition of caution when the active level of the timer output is changed.	
	Addition of caution when the active level of the timer output is changed.	CHAPTER 10 TIMERS/ COUNTERS 2 AND 3
	Change of the description of <5> in (2) of 12.4.1 General cautions on use of watchdog timer from "If the STOP mode or IDLE mode is entered as the result of an inadvertent program loop" to "If the STOP mode, HALT mode, or IDLE mode is entered as the result of an inadvertent program loop".	CHAPTER 12 WATCHDOG TIMER FUNCTION
	Addition of Note and calculating method of the wait time if the reception completion interrupt is disabled when a reception error occurs.	CHAPTER 14 ASYNCHRO- NOUS SERIAL INTERFACE 3-WIRE SERIAL I/O
-	Change of instructions in 16.9 When Interrupt Request and Macro Service Are Temporarily Held Pending.	CHAPTER 16 INTERRUPT FUNCTIONS
	Change of description from "The watchdog timer must not be used to release the standby mode (STOP or IDLE mode)" to "The watchdog timer must not be used to release the standby mode (STOP, <u>HALT</u> , or IDLE mode)".	CHAPTER 18 STANDBY FUNCTION
	Addition of Note of the operating status of bus lines (AD8 to AD15, A16 to A19) in HALT mode.	
	Deletion of watchdog timer of "Non-maskable interrupt request (NMI pin input/ watchdog timer)".	
	Addition of Caution concerning the malfunction that causes a wait for the oscillation stabilization time when the IDLE mode is released.	
	Addition of (2) Output of CLKOUT pin.	CHAPTER 22 CAUTIONS ON USING DEVELOPMENT TOOLS
	General revision for supporting IE-78K4-NS.	APPENDIX A DEVELOPMEN TOOLS
	Change of target host machines.	APPENDIX B EMBEDDED
-	Change of versions of OSs to be supported.	SOFTWARE

(2/3)

		(2/3)
Edition	Major Revisions from Previous Edition	Applied to
2nd edition	Change of μ PD784044 from "under development" to "development completed".	Throughout
	Addition of the following products to the relevant products: μPD784044(A), 784044(A1), 784044(A2), 784046(A), 784046(A1), 784046(A2)	
	Change of 78K/IV SERIES PRODUCT DEVELOPMENT DIAGRAM.	CHAPTER 1 GENERAL
	Change of the minimum value of the supply voltage (V_{DD}) from 4.0 V to 4.5 V.	
	Addition of 1.3 Quality Grades.	
	Addition of 1.9 Differences between µPD784046 and µPD784046(A).	
	Addition of 1.10 Differences between μPD784046(A), 784046(A1), and 784046(A2).	
	Addition of the functional description of the CLKOUT pin.	CHAPTER 2 PIN FUNCTIONS
	Addition of description in (2) Capture/compare registers (CC00 through CC03).	CHAPTER 8 TIMER 0
	Addition of caution when the timer output is enabled while the active level is changed.	
	Addition of caution when the active level of the timer output is changed.	
	Addition of caution when the timer output is enabled while the active level is changed.	CHAPTER 9 TIMER 1
	Addition of caution when the active level of the timer output is changed.	
	Addition of caution when the active level of the timer output is changed.	CHAPTER 10 TIMERS/ COUNTERS 2 AND 3
	Change of the description of <5> in (2) of 12.4.1 General cautions on use of watchdog timer from "If the STOP mode or IDLE mode is entered as the result of an inadvertent program loop" to "If the STOP mode, HALT mode, or IDLE mode is entered as the result of an inadvertent program loop".	CHAPTER 12 WATCHDOG TIMER FUNCTION
	Addition of Note and calculating method of the wait time if the reception completion interrupt is disabled when a reception error occurs.	CHAPTER 14 ASYNCHRO- NOUS SERIAL INTERFACE/ 3-WIRE SERIAL I/O
	Change of instructions in 16.9 When Interrupt Request and Macro Service Are Temporarily Held Pending.	CHAPTER 16 INTERRUPT FUNCTIONS
3rd edition	Completion of development of the following products μPD784046, 78F4046, 784046(A), 784046(A1), 784046(A2)	Throughout
	Update of 78K/IV Product Lineup	CHAPTER 1 GENERAL
	Addition of description on BWD pin in Table 2-6 I/O Circuit Type of Each Pin and Recommended Processing of Unused Pins	CHAPTER 2 PIN FUNCTIONS
	Addition of cautions on start bit during UART transmission to 14.5 Cautions	CHAPTER 14 ASYNCHRO- NOUS SERIAL INTERFACE 3-WIRE SERIAL I/O
	 Modification of Figure 18-1 Diagram of Standby Mode Transition Modification of description in 18.6 (5) A/D converter 	CHAPTER 18 STANDBY FUNCTION
	 Addition of description on Flashpro III Addition of 20.4 Cautions 	CHAPTER 20 PROGRAMMING μPD78F4046
	Addition of chapter	CHAPTER 22 ELECTRICAL SPECIFICATIONS (µPD784044, 784046)
	Addition of chapter	CHAPTER 23 ELECTRICAL SPECIFICATIONS (µPD784044(A), 784046(A))

(3/3)

Edition	Major Revisions from Previous Edition	Applied to
3rd edition	Addition of chapter	CHAPTER 24 ELECTRICAL SPECIFICATIONS (μPD784044(A1), 784046(A1))
	Addition of chapter	CHAPTER 25 ELECTRICAL SPECIFICATIONS (μPD784044(A2), 784046(A2))
	Addition of chapter	CHAPTER 26 ELECTRICAL SPECIFICATIONS (μPD78F4046)
	Addition of chapter	CHAPTER 27 TIMING CHARTS
	Addition of chapter	Addition of CHAPTER 28 PACKAGE DRAWING
	Addition of chapter	Addition of CHAPTER 29 RECOMMENDED SOLDERING CONDITIONS
	 Addition of description on host machines and OSs Addition of SP78K4 to A.1 Language Processing Software, modification of description in Remark Addition of description on Flashpro III in Remark in A.2 Flash Memory Writing Tools Addition and modification of description in A.3.1 Hardware Modification of description in Remark in A.3.2 Software Addition of A.4 Cautions on Designing Target System 	APPENDIX A DEVELOPMENT TOOLS
	Modification of description	APPENDIX B EMBEDDED SOFTWARE