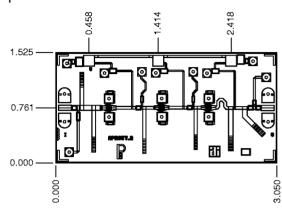
37–42 GHz GaAs MMIC Driver Amplifier

AA038P3-00


Features

- Single Bias Supply Operation (5 V)
- 17 dB Small Signal Gain
- 17 dBm Saturated Output Power at 38 GHz
- 0.25 µm Ti/Pd/Au Gates
- 100% On-Wafer RF and DC Testing
- 100% Visual Inspection to MIL-STD-883 MT 2010

Description

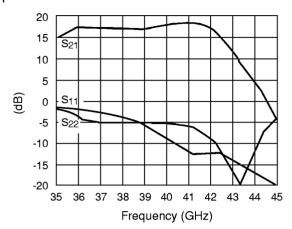
Alpha's three-stage reactively-matched Ka band GaAs MMIC amplifier has a $P_{1\ dB}$ in excess of 14 dBm with 16 dB associated gain over the band 37–42 GHz. The chip uses Alpha's proven 0.25 μm MESFET technology and is based upon MBE layers and electron beam lithography for the highest uniformity and repeatability. The FETs employ surface passivation to ensure a rugged reliable part with through-substrate via holes and gold-based backside metallization to facilitate epoxy die attach processes. All chips are screened for gain, output power, efficiency and S-parameters over the band 37–42 GHz prior to shipment for guaranteed performance. A broad range of applications exist in both the military and commercial areas where medium power and gain are required.

Chip Outline

Dimensions indicated in mm.

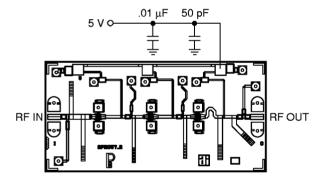
All DC (V) pads are 0.1 x 0.1 mm and RF In, Out pads are 0.07 mm wide.

Chip thickness = 0.1 mm.

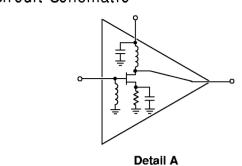

Absolute Maximum Ratings

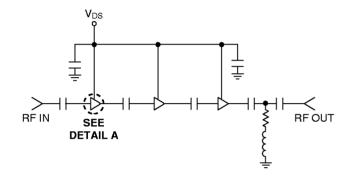
Characteristic	Value		
Operating Temperature (T _C)	-55°C to +90°C		
Storage Temperature (T _{ST})	-65°C to +150°C		
Bias Voltage (V _D)	7 V _{DC}		
Power In (P _{IN})	16 dBm		
Junction Temperature (T _J)	175°C		

Electrical Specifications at 25°C (V_{DS} = 5 V)


Parameter	Symbol	Min.	Тур.	Max.	Unit
Drain Current	I _{DS}		130	200	mA
Small Signal Gain	G	14	17		dB
Input Return Loss	RL _I		-6	-5	dB
Output Return Loss	RLO		-6	-5	dB
Output Power at 1 dB Gain Compression	P _{1 dB}	13	14		dBm
Saturated Output Power	P _{SAT}	14	17		dBm
Gain at Saturation	G _{SAT}	12	14		dB
Thermal Resistance	$\Theta_{\sf JC}$		160		°C/W

Typical Performance Data


Typical Small Signal Performance S-Parameters (V_{DS} = 5 V)


Bias Arrangement

For biasing on, adjust $V_{\rm DS}$ from zero to the desired value (5 V recommended). For biasing off, reverse the biasing on procedure.

Circuit Schematic

