Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

DATA SHEET

mos integrated circuit ise-out/Discontinued $\mu PD17P068$

4-BIT SINGLE-CHIP MICROCONTROLLER WITH ON-CHIP HARDWARE FOR TV SYSTEMS

The μ PD17P068 is a one-time PROM version of the μ PD17068 that has on-chip mask ROM. The μ PD17P068, which can be programmed only once, is suited for testing during development of μ PD17068 systems and limited production runs.

Use this data sheet together with $\mu \text{PD17068}$ documents.

The μ PD17P068 does not provide a level of reliability intended for mass production of the customer's products. Use it only for functional evaluation when experimenting or doing product trial tests.

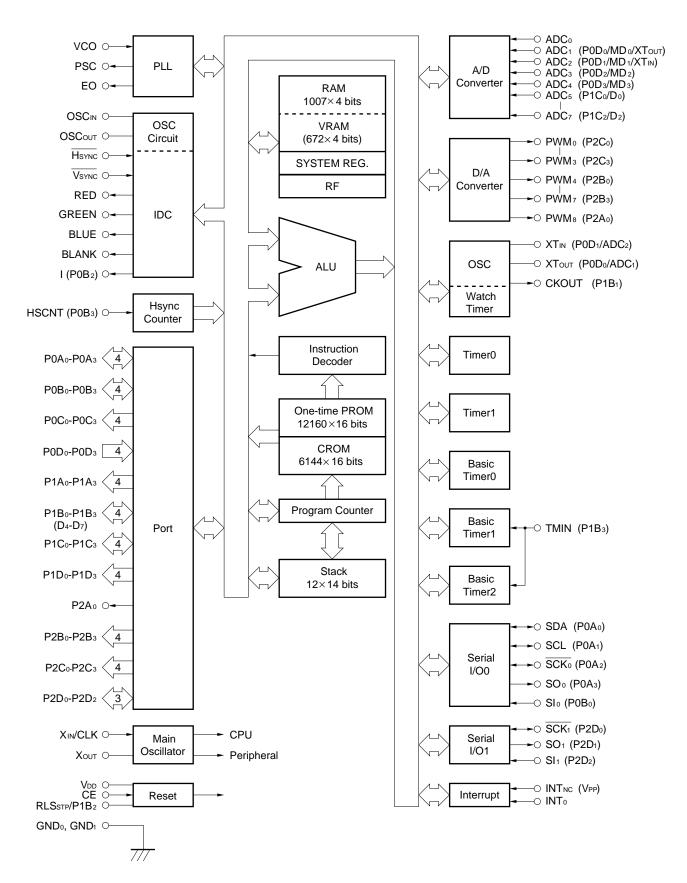
FEATURES

- Compatible with the μ PD17068
- One-time PROM : 12160×16 bits
- Operating voltage : $V_{DD} = 5 V \pm 10 \%$

ORDERING INFORMATION

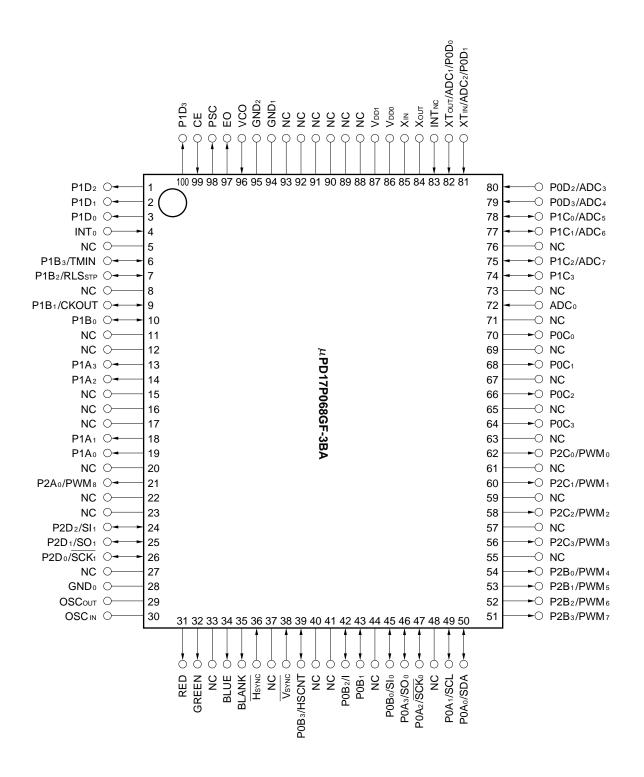
 Part Number
 Package

 μPD17P068GF-3BA
 100-pin plastic QFP (14 × 20mm)

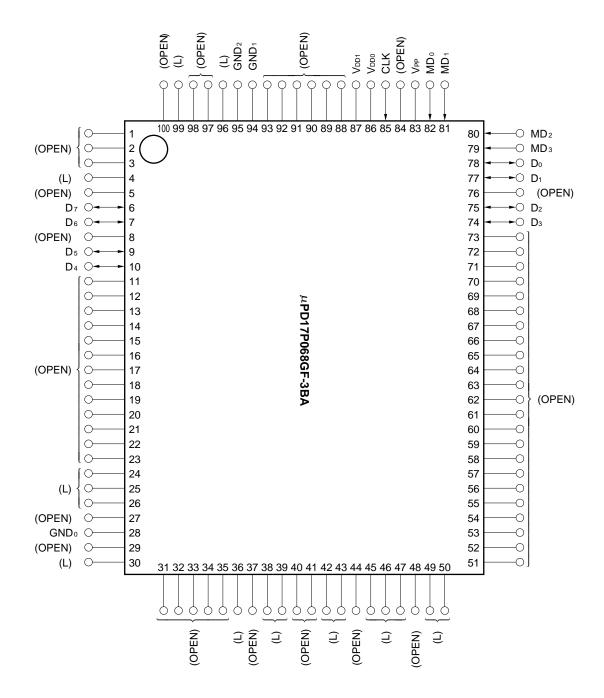

The information in this document is subject to change without notice.

FUNCTIONAL OUTLINE

Part Number	μPD17068	μPD17P068				
	Mask ROM	One-time PROM				
Program memory (ROM)	• 12160 \times 16 bits Table reference area: 12160 \times 16 bits					
Character ROM (CROM)	• 6144 × 16 bits					
Data memory (RAM)	• 1007 \times 4 bits (including area serving als Data buffer: 4 \times 4 bits, general register:					
Video RAM (VRAM)	\bullet 672 \times 4 bits (also used as data memory	(RAM))				
System register	• 12 × 4 bits					
Register file	• 12 × 4 bits					
General port register	• 12 × 4 bits					
Instruction execution time	• 2 μ s (when using 8-MHz crystal resonate	or)				
Stack levels	• 12 levels (stack manipulation possible)					
General ports	• I/O ports : 19 • Input ports : 4 • Output ports : 21					
IDC (Image Display Controller)	 Display format Character types Character format Color Character size 	192 characters max. per screen (up to 350 characters with program) 16×16 -dot mode 15 lines \times 24 columns 14×16 -dot mode 17 lines \times 24 columns 255 types (user programmable) 16×16 dots and 14×16 dots selectable (2 dots can be placed between characters) 15 colors Vertical : 16 sizes (specifiable for each line) Horizontal : 24 sizes (specifiable for each character)				
Serial interface	 2 systems Serial interface 0 (compatible with 2-wire Serial interface 1 (3-wire system) 	e system, 3-wire system and I ² C Bus)				
D/A converter	• 8 bits × 9 channels (PWM output, 12.5 V max.)					
A/D converter	• 6 bits × 8 channels (successive approximation by software)					
Interrupt	 10 channels (maskable interrupt) External interrupt : 3 channels (INT₀, INT_{NC}, VSYNC, HSYNC) Internal interrupt : 7 channels (timer 0, 1, serial interface 0, 1, basic timer 2, VRAM pointer, timer 0 overflow) 					


Part Number Item	μPD17068	μPD17P068
Timer	Timer 0: 10 μ s to 204.75 ms (interTimer 1: 1 μ s to 256 ms (interruptBasic timer 0: 1, 5, 100 ms (carry)Basic timer 1: 125 μ s, 1 ms, 5 ms, 100Basic timer 2: 125 μ s, 1 ms, 5 ms, 100Watch timer: Date, Hour, Minute, Second	ms, external (carry) ms, external (interrupt)
Reset	 Power-on reset Reset with CE pin (CE pin: Low level → Power interruption detection 	High level)
Supply voltage	$V_{DD} = 5 V \pm 10 \%$	
Package	100-pin plastic QFP (14 $ imes$ 20 mm)	

BLOCK DIAGRAM



PIN CONFIGURATION (Top View)

(1) Normal operation mode

(2) PROM programming mode

CautionContents in parentheses indicate how to handle unused pins in PROM programming mode.L: Connect to GND via a resistor (470 Ω) separately.OPEN: Leave unconnected.

PIN IDENTIFICATIONS

P1B0-P1B3

: Port 1B

	: A/D converter input	P1C0-P1C3	: Port 1C
BLANK	: Blanking signal output	P1D0-P1D3	: Port 1D
BLUE	: Character signal output	P2A0	: Port 2A
CE	: Chip enable	P2B0-P2B3	: Port 2B
CKOUT	•	P2C0-P2C3	: Port 2C
CKOUT	: Watch timer adjustment	P2D0-P2D2	: Port 2D
	output		
CLK	: Address update clock input	PSC	: Pulse swallow control output
D0-D7	: Data input/output	PWM0-PWM8	: Pulse-width modulation output
EO	: Error out	RED	: Character signal output
GND ₀ -GND ₂	: Ground	RLSstp	: Clock stop release signal input
GREEN	: Character signal output	SCK0, SCK1	: Shift clock input/output
HSCNT	: Horizontal synchronizing	SCL	: Shift clock input/output
	signal counter input	SDA	: Serial data input/output
HSYNC	: Horizontal synchronizing	SIo, SI1	: Serial data input
	signal input	SO0, SO1	Serial data output
I	: Character signal output	TMIN	: Event input of basic timer 1 or 2
INTO, INTNC	: External interrupt request	VCO	: Local oscillation input
	signal input	Vddo, Vdd1	Positive power supply
MD0-MD3	: Operation mode select	Vpp	: Program voltage application
NC	: No connection	VSYNC	: Vertical synchronizing signal input
OSCIN, OSCOUT	: LC oscillation for IDC	Xin, Xout	: Main clock oscillation
P0A0-P0A3	: Port 0A	XTIN, XTOUT	: Watch timer oscillation
P0B0-P0B3	: Port 0B		
P0C0-P0C3	: Port 0C		
P0D0-P0D3	: Port 0D		
P1A0-P1A3	: Port 1A		

CONTENTS

1.	PIN	FUNCTIONS	. 9
	1.1	Normal Operation Mode	
	1.2	PROM Programming Mode	13
	1.3	Pin Equivalent Circuits	14
	1.4	Handling of Unused Pins	19
	1.5	Notes on Using the CE and INT _{NC} Pins (Only in Normal Operation Mode)	
2.	WRI	TE, READ, AND VERIFY OF ONE-TIME PROM (PROGRAM MEMORY)	22
	2.1	Operation Modes in Program Memory Write/Read/Verify	
	2.2	PROM Write Procedure	24
	2.3	PROM Read Procedure	25
3.	ELE	CTRICAL SPECIFICATIONS	26
4.	PAC	KAGE DRAWING	31
API	PEND	IX DEVELOPMENT TOOLS	32

1. PIN FUNCTIONS

1.1 Normal Operation Mode

(1) Port pins

Pin Name	Description	I/O	Output Type	When Reset	Shared by
P0A ₀	4-bit I/O port.				SDA
P0A1	These pins serve as a bit-selectable 4-bit input/output port. All these pins				SCL
P0A ₂	are set to input pins when power (V_{DD})	I/O		Input	SCK ₀
P0A ₃	is turned on, when clock is stopped, or when reset signal is input to the CE pin.		CMOS push-pull		SOo
P0B ₀	4-bit I/O port.				Slo
P0B1	These pins serve as a bit-selectable 4-bit input/output port. All these pins are set to		0.400 k #		_
P0B ₂	input pins when power (VDD) is turned	I/O	CMOS push-pull	Input	I
P0B ₃	on, when clock is stopped, or when reset signal is input to the CE pin.				HSCNT
P0C ₀	These pins serve as a 4-bit output port.				
 P0C₃	The output state of each pin is undefined after power (VDD) is turned on.	0	CMOS push-pull	Undefined output	_
P0D ₀					ADC1/XTOUT
P0D1	These pins serve as a 4-bit input port.	1	_	Input with pull- down resistor	ADC ₂ /XT _{IN}
P0D ₂					ADC ₃
P0D ₃					ADC ₄
P1A ₀		0	N-ch open-drain Middle voltage,		
I P1A₃	These pins serve as a 4-bit output port. O Middle voltage, high current	Undefined output	_		
P1B₀					_
P1B1	4-bit I/O port. These pins serve as a bit-selectable 4-bit	1/0	CMOS push-pull	Input	СКОИТ
P1B ₂	input/output port.	1/0		input	RLSstp
P1B ₃					TMIN
P1C₀ 	4-bit I/O port. These pins serve as 4-bit-	1/0		Input	ADC₅
P1C ₂	selectable 4-bit I/O port.	1/0	CMOS push-pull	Input	ADC7
P1C₃ P1D₀					-
P1D3	These pins serve as a 4-bit output port.	0	CMOS push-pull	Undefined output	_
P2A ₀	This pin serves as a 1-bit output port.	0	N-ch open-drain Middle voltage	Undefined output	PWM8
P2B ₀			N-ch open-drain		PWM4
I P2B₃	These pins serve as a 4-bit output port.	0	Middle voltage	Undefined output	PWM7
P2C ₀			N-ch open-drain		PWM ₀
 P2C₃	These pins serve as a 4-bit output port.	0	Middle voltage	Undefined output	PWM3
P2D ₀	These pins serve as a bit-selectable 3-bit input/output port. All these pins are set to				SCK1
P2D1	input pins when power (VDD) is turned on,	I/O	CMOS push-pull	Input	SO1
P2D ₂	- when clock is stopped, or when reset signal is input to the CE pin.				SI1

(2) Non-port pins

Pin Name	Description	I/O	Output Type	When Reset	Shared by
EO	This pin outputs signals from the charge pump of the PLL frequency synthesizer. If the frequency divided from the local oscillator (VCO) frequency is higher (lower) than the reference frequency, high (low) level is output from this pin, respectively. When the two frequencies match, this pin is placed in the high-impedance state.	0	CMOS 3-state	High-impedance	_
PSC	This pin outputs pulse swallow control signal. This signal switches division ratio for the dedicated prescaler μ PB595.	0	CMOS push-pull	Output	_
VCO	This pin is the input of the local oscillator. The output signal coming from the local oscillator (VCO) in the tuner and divided by the dedicated prescaler μ PB595 should be input to this pin, where the μ PB595 is a two-module prescaler capable of frequency division up to 1 GHz.	I	_	Internally pulled down	_
HSCNT	This pin is the input of the H sync signal counter.	I	_	Input	P0B₃
BLANK	This active-high pin outputs blanking signals to delete video signals.	0	CMOS push-pull	Low level output	_
RED	This active-high pin outputs character data that correspond the R signal (one of the RGB signals of IDC).	0	CMOS push-pull	Low level output	_
GREEN	This active-high pin outputs character data that correspond the G signal (one of the RGB signals of IDC).	0	CMOS push-pull	Low level output	_
BLUE	This active-high pin outputs character data that correspond the B signal (one of the RGB signals of IDC).	0	CMOS push-pull	Low level output	_
I	This pin outputs character data that correspond the I signal of IDC.	0	CMOS push-pull	Input	P0B ₂
HSYNC	The H sync signals for IDC should be input to this pin in an active-low manner.	I	_	Input	_
VSYNC	The V sync signals for IDC should be input to this pin in an active-low manner.	I	_	Input	_
OSCIN	These are the input and output pins of the				
OSCout	LC oscillation circuit for IDC. Adjust the oscillation frequency to 10 MHz.		—		
ADC ₀	These are the analog input pins of the				
ADC ₁	6-bit resolution A/D converter.		_	Input	P0D ₀ /XT _{OUT}
ADC ₂					P0D1/XTIN
ADC3					P0D ₂
ADC ₄	These are the analog input pins of the 6-bit resolution A/D converter.	I	—	Input	P0D3
ADC₅ I					P1C ₀
ADC7					P1C ₂

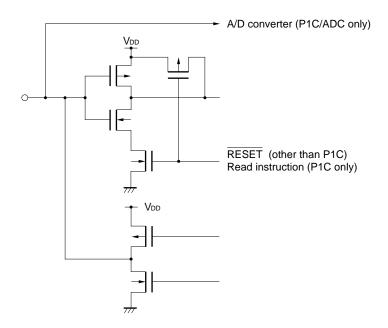
NEC

Phase-out/Discontinued

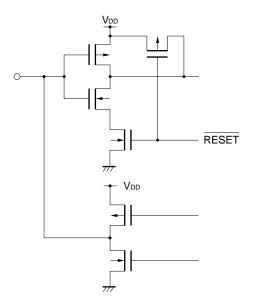
 μ PD17P068

Pin Name	Description	I/O	Output Type	When Reset	Shared by
PWM₀ I					P2C ₀
PWM₃					P2C₃
PWM ₄	These are the output pins of the	0	N-ch open-drain	Low-level output or high impe-	P2B₀
PWM7	8-bit resolution D/A converter.		Middle-voltage	dance	P2B3
PWM8					P2A0
TMIN	This pin is the input of basic timer 1 or 2.	1	_	Input	P1B ₃
XTIN	A 32.768-kHz crystal resonator for watch				P0D1/ADC2
XTout	timer operation should be connected to these pins.	-		_	P0D0/ADC1
СКОИТ	This pin outputs the signal to control the watch timer.	0	CMOS push-pull	Input	P1B1
SCK ₀	T here a 's is a desired of the left	1/0		land	P0A ₂
SCK1	These pins input and output shift clocks.	I/O	CMOS push-pull	Input	P2D ₀
Slo					P0B ₀
SI1	These pins input serial data.		_	Input	P2D ₂
SO ₀					P0A3
SO1	These pins output serial data.	0	CMOS push-pull	Input	P2D1
SCL	These pins input and output shift clocks.	I/O	N-ch open-drain	Input	P0A1
SDA	These pins input and output serial data.	I/O	N-ch open-drain	Input	P0A ₀
INT₀	This pin inputs interrupt request signal from external device. An interrupt request is issued at the rising or falling edge of the input signal applied to this pin.	I	_	Input	_
INT _{NC}	This pin inputs interrupt request signal with noise canceller. Using this pin to input signals with noise such as commands from a remote control unit simplifies programming processes. The interrupt request issuing timing is programmable to either rising or falling edge of the input signal to this pin.	I	_	Input	_

Pin Name	Description	I/O	Output Type	When Reset	Shared by
CE	 This pin selects a device to be activated, or resets this device. (1) Use as input of device selection signal When CE=high, PLL synthesizer and IDC operate. When CE=low, their operation are disabled (stops). (2) Use as reset input When CE changes from low to high, this device is reset in synchronization with the carry FF operation for the internal basic interval timer 0. 	I		Input	_
RLSSTP	This pin inputs the clock stop release signal.	I	_	Input	P1B2
XIN	An 8-MHz crystal resonator for main clock generation should be connected to				
Хоит	these pins.			_	
Vddo	These pins supply positive power voltage for this device. The power supply voltage of 5 V \pm 10 % should be applied to these pins when all functions operate. When IDC is disabled, the voltage range from 4.0 to 5.5 V is allowed. When clock is stopped, the applied voltage to these				
Vdd1	pins may be lowered down to 2.5 V. Because this device internally has the power-on reset circuit, the voltages applied to these pins are changed from 0 to 4.0 V, system reset sequence is started and the program is implemented from address 0H. To assure normal operations of the power-on reset circuit, the rise time from 0 to 4.0 V should be shorter than 500 ms.		_		_
GND0 GND2	These pins supply the ground level for this device.	_	_	-	_
NC	This pin should be left unconnected.	_	_	_	

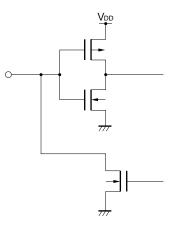

1.2 PROM Programming Mode

Pin Name	Description	I/O	Output Type
Do D7	8-bit data input/output pins used in program memory write, read, verify modes.	I/O	CMOS push-pull
MD0 MD3	Input pins that select an operation mode in program memory write, read, verify modes.	I	_
CLK	Clock input for address update in program memory write, read, verify modes.	I	_
Vpp	Programming voltage (+12.5 V) application pin in program memory write, read, verify modes.	_	_
Vddo	Positive power supply.		
Vdd1	 +5 V should be applied to these pins in program memory write, read, verify modes. 		_
GND0 GND2	Ground pin	_	_

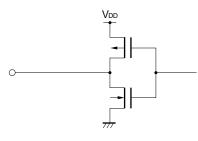

Remark The other pins are not used in the PROM programming mode. How to handle the other pins are described in the section "**PIN CONFIGURATION (2) PROM programming mode**".

- 1.3 Pin Equivalent Circuits
- (1) P0A (P0A3/SO0, P0A2/SCK0)
 P0B (P0B2/I, P0B1, P0B0/SI0)
 P1B (P1B2/RLSsTP, P1B1/CKOUT, P1B0)
 P1C (P1C3, P1C2/ADC7, P1C1/ADC6, P1C0/ADC5)

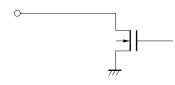
(Input/output)



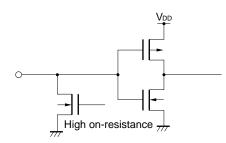
(2) P2D (P2D₂/Sl₁, P2D₁/SO₁, P2D₀/SCK₁) : (Input/output)

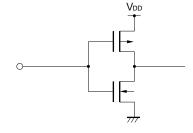

14

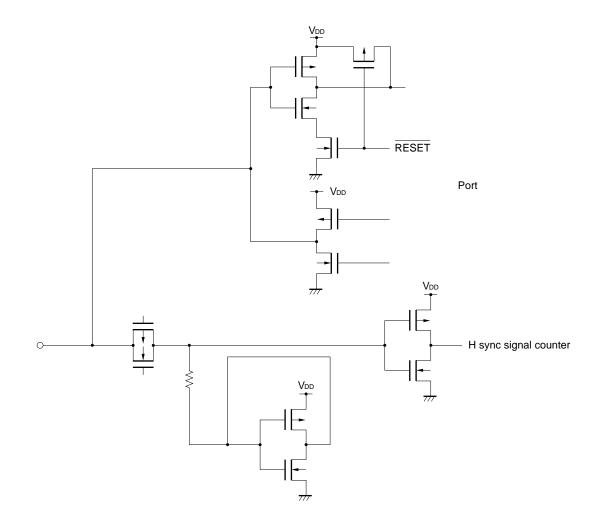
(3) P0A (P0A1/SCL, P0A0/SDA) : (Input/output)

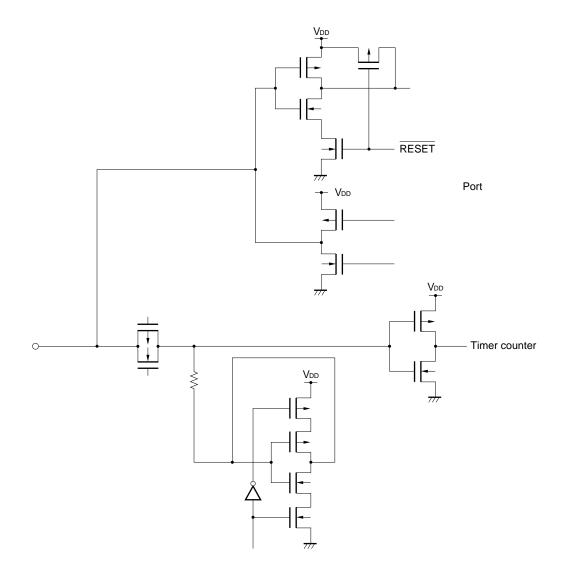


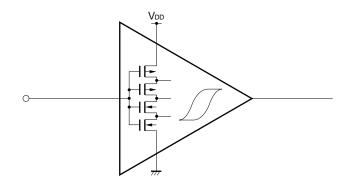
(4) POC (POC3, POC2, POC1, POC0)
 P1D (P1D3, P1D2, P1D1, P1D0)
 RED, GREEN, BLUE, BLANK
 PSC


(Output)

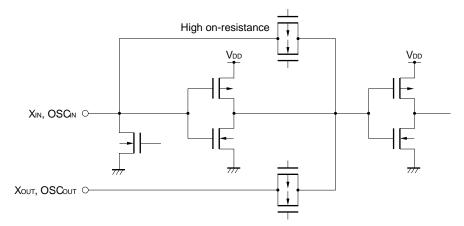

(5) P1A (P1A3, P1A2, P1A1, P1A0)
 P2A (P2A0/PWM8)
 P2B (P2B3/PWM7, P2B2/PWM6, P2B1/PWM5, P2B0/PWM4)
 P2C (P2C3/PWM3, P2C2/PWM2, P2C1/PWM1, P2C0/PWM0)
 (Output)


(6) P0D (P0D3/ADC4, P0D2/ADC3, P0D1/ADC2/XTIN, P0D0/ADC1/XTOUT): (Input)

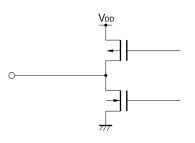

(7) ADC₀: (Input)


(8) P0B₃/HSCNT : (Input/output)

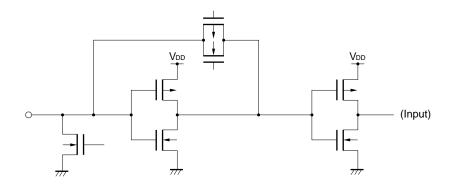
(9) P1B₃/TMIN : (Input/output)



(10) HSYNC, VSYNC, CE, INTO, INTNC: (Schmitt triggered input)



(11) XIN, OSCIN :


Xout, OSCout :

(12) EO : (Output)

(13) VCO : (Input)

1.4 Handling of Unused Pins

The following are recommended for handling unused pins.

Table 1-1. Handling of Unused Pins (1/2)

(a) Port pins

Pin Name	Input/Output Circuit Type	Recommended Handling when in Unused State
P0Ao/SDA	Input/output Note 1	Specify a general-purpose input port by software and connect each pin
P0A1/SCL		to VDD or GND through a resistor. Note 2
P0A ₂ /SCK ₀		
P0A3/SO0		
P0Bo/SIo		
P0B1		
P0B ₂ /I		
P0B3/HSCNT		
P0C ₀ -P0C ₃	CMOS push-pull output	Open
P0D ₀ /ADC ₁ /XT _{OUT}	Input	Individually connect to GND through a resistor. Note 2
P0D1/ADC2/XTIN		
P0D ₂ /ADC ₃ , P0D ₃ /ADC ₄		
P1A0-P1A3	N-ch open-drain output	Specify low-level output by software, then open.
P1B₀	Input/output Note 1	Specify a general-purpose input port by software and connect each pin
P1B1/CKOUT		to VDD or GND through a resistor. Note 2
P1B ₂ /RLS _{STP}		
P1B ₃ /TMIN		
P1C0/ADC5-P1C2/ADC7		
P1C ₃		
P1D ₀ -P1D ₃	CMOS push-pull output	Open
P2A ₀ /PWM ₈	N-ch open-drain output	Specify low-level output by software, then open.
P2B0/PWM4-P2B3/PWM7		
P2Co/PWMo-P2C3/PWM3		
P2D0/SCK1	Input/output Note 1	Specify a general-purpose input port by software and connect each pin
P2D1/SO1		to V _{DD} or GND through a resistor. Note 2
P2D2/SI1		

Notes 1. Input ports go to input mode when the power supply rises, when the clock stops, and on CE reset.

2. Be careful of the fact that when an external pull-up (connection to V_{DD} through a resistor) or pull-down (connection GND through a resistor) is made, if the pull-up or pull-down is done through a resistor with a high value, because the pin comes near to being in high impedance, the consumed (through) current increases. This also depends on the application circuit, but a typical value for a pull-up or pull-down resistor is a few tens of k Ω .

Table 1-1. Handling of Unused Pins (2/2)

(b) Pins other than ports

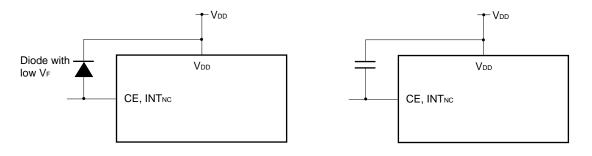
Pin Name	Input/Output Circuit Type	Recommended Handling when in Unused State
ADC ₀	Input	Connect to VDD or GND through a resistor. Note
BLANK	Output	Open
BLUE	Output	Open
CE	Input	Connect to VDD through a resistor. Note
EO	Output	Open
GREEN	Output	Open
HSYNC	Input	Connect to VDD or GND through a resistor. Note
INT ₀	Input	Connect to VDD or GND through a resistor. Note
INT _{NC}	Input	Connect to VDD or GND through a resistor. Note
OSCIN	Input	Connect to VDD through a resistor. Note
OSCOUT	Output	Open
PSC	Output	Open
RED	Output	Open
VCO	Input with pull-down resistor	Open
VSYNC	Input	Connect to VDD or GND through a resistor. Note

Note Be careful of the fact that when an external pull-up (connection to V_{DD} through a resistor) or pull-down (connection GND through a resistor) is made, if the pull-up or pull-down is done through a resistor with a high value, because the pin comes near to being in high impedance, the consumed (through) current increases. This also depends on the application circuit, but a typical value for a pull-up or pull-down resistor is a few tens of kΩ.

1.5 Notes on Using the CE and INT_{NC} Pins (Only in Normal Operation Mode)

In addition to the functions shown in 1.1 **Normal Operation Mode**, the CE pin also has the function of setting a test mode (for IC testing) in which the internal operations of the μ PD17P068 are tested.

Phase-out/Discontinued


Also, the INT_{NC} pin has the function of the V_{PP} pin for program memory write/verify.

When a voltage higher than V_{DD} is applied to either of these pins, the test or program memory write/verify mode is set. This means that, even during normal operation, the μ PD17P068 may be set in the test mode if noise exceeding V_{DD} is applied.

For example, if the wiring length of the CE or INT_{NC} pin is too long, noise superimposed on the wiring line of the pin may cause the above problem.

Therefore, keep the wiring length of these pins as short as possible to suppress the noise; otherwise, take noise preventive measures as shown below by using external components.

- Connect diode with low VF between VDD and CE/INTNC pin
- Connect capacitor between VDD and CE/INTNC pin

2. WRITE, READ, AND VERIFY OF ONE-TIME PROM (PROGRAM MEMORY)

The program memory contained in the μ PD17P068 is the 12160 × 16-bit one-time PROM that can electrically be written one time only. This PROM is accessed in 16 bits per word in normal operation mode, and in 8 bits per word in write, read, verify modes. The 16 bits of a word in normal mode are divided into higher 8 bits and lower 8 bits which are assigned to even and odd addresses, respectively.

Phase-out/Discontinued

When the PROM is written, read, or verified, set this device into the PROM mode. In this mode, these pins are used as shown in the table below. Notice that no address input pins are provided. Addresses are automatically updated by the clock signal supplied from the CLK pin.

Pin	Function	
Vpp	Programming voltage (+12.5 V) application	
CLK	Address update clock input	
MD0-MD3	Operation mode selection	
Do-D7	8-bit data input/output	
Vdd0, Vdd1	Power supply voltage (+5 V) application	

Table 2-1. Pins Used in Program Memory Write, Read, and Verify Modes

To write the internal PROM, use the NEC-specified PROM programming equipment (PROM programmer) and program adapter as listed below.

PROM programmer	AF-9703	(Ando Electric Corporation)
	AF-9704	(Ando Electric Corporation)
	AF-9705	(Ando Electric Corporation)
	AF-9706	(Ando Electric Corporation)
Program adapter	AF-9808L	(Ando Electric Corporation)

Remark For details on these PROM programmer and program adapter, consult with Ando Electric Corporation (03-3733-1151 Tokyo, Japan).

NEC

Phase-out/Discontinued

2.1 Operation Modes in Program Memory Write/Read/Verify

When +5 V is applied to the V_{DD} pin and +12.5 V is applied to the V_{PP} pin, this device enters the program memory write/read/verify modes. Operation mode is determined by the setting of MD₀ to MD₃ pins as indicated in the table below.

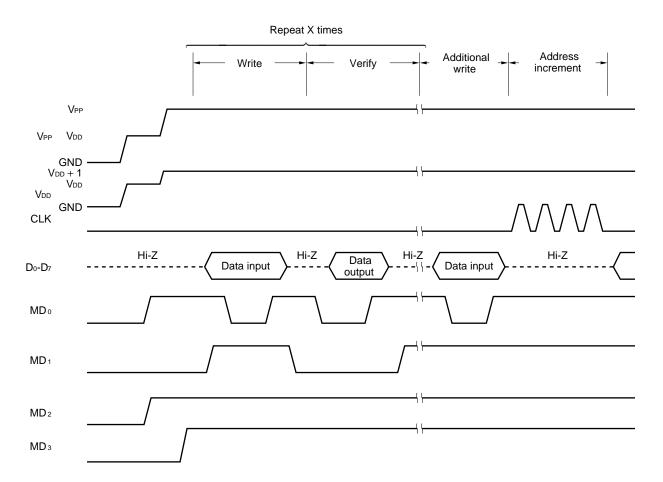
All input pins irrelevant to the program memory write/read/verify operation should be left unconnected or connected to GND via a pull-down resistor of 470 Ω (Refer to the section "PIN CONFIGURATION (2) PROM programming mode). "

		Pin St	ates	Operation Mode		
Vpp	Vdd	MDo	MD1	MD ₂	MD ₃	Operation Mode
		Н	L	Н	L	Program memory address 0 clear
+12.5 V	+5 V	L	н	н	н	Write
+12.5 V	+3 V	L	L	н	н	Read, Verify
		Н	х	н	н	Program inhibit

Table 2-2. Operation Modes in Program Memory Write/Read/Verify

Remark X: L or H

NEC

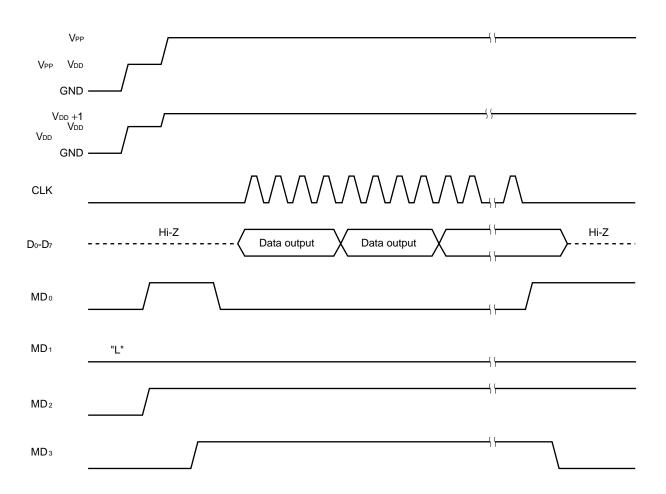

Phase-out/Discontinued

2.2 PROM Write Procedure

Data can be written to the PROM in high speeds by using the following procedures.

- Set the pins not used for programming as indicated in section "PIN CONFIGURATION (2) PROM programming mode." Set the CLK pin to low level.
- (2) Supply +5 V to the V_{DD} and V_{PP} pins.
- (3) Provide a 10- μ s wait state.
- (4) Program memory address 0 clear mode is entered.
- (5) Supply +6 V to the V_{DD} pin, and +12.5 V to the V_{PP} pin.
- (6) Program inhibit mode is entered.
- (7) Provide write data for 1 ms in write mode.
- (8) Program inhibit mode is entered.
- (9) Use the verify mode to test data. If the data has been written, proceed to (10). If not, repeat steps (7) to (9).
- (10) Provide write data (for additional writing) for 1 ms times the number of repeats performed between steps (7) to (9).
- (11) Program inhibit mode is entered.
- (12) Provide four pulses to the CLK pin to increment the address.
- (13) Repeat steps (7) to (12) until the last address is reached.
- (14) Program memory address 0 clear mode.
- (15) Supply +5 V to VDD and VPP pins.
- (16) Turn off the power for this device.

The procedures from (2) to (12) are illustrated in the chart below.



2.3 PROM Read Procedure

Data can be read from the PROM by using the following procedures.

- (1) Set the pins not used for programming as indicated in section "PIN CONFIGURATION (2) PROM programming mode." Set the CLK pin to low level.
- (2) Supply +5 V to the VDD and VPP pins.
- (3) Provide a 10- μ s wait state.
- (4) Program memory address 0 clear mode is entered.
- (5) Supply +6 V to the V_DD pin, and +12.5 V to the V_PP pin.
- (6) Program inhibit mode is entered.
- (7) Use the verify mode to output data. Provide clock pulses to the CLK pin to output the data of an address. The address is automatically incremented every four clock pulses. Repeat the four-pulse cycles until the last address is reached.
- (8) Program inhibit mode is entered.
- (9) Program memory address 0 clear mode.
- (10) Supply +5 V to the V_DD and V_PP pins.
- (11) Turn off the power for this device.

The procedures from (2) to (9) are illustrated in the chart below.

3. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25 °C)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	Vdd		-0.3 to +6.0	V
Input voltage	Vi		-0.3 to Vdd + 0.3	V
Output voltage	Vo	Except for P1A, P2B, P2C	-0.3 to VDD + 0.3	V
High-level output current	Іон	1 pin	-12	mA
		All pins	-20	mA
Low-level output current	IOL1	1 pin (except for P1A)	12	mA
		All pins (except for P1A)	20	mA
	IOL2	1 pin (P1A only)	17	mA
		All pins (P1A only)	60	mA
Output withstand voltage	VBDS	P1A, P2A, P2B, P2C	13	V
Storage temperature	Tstg		-55 to +125	°C

Caution Product quality may suffer if the absolute maximum ratings are exceeded for even a single parameter or even momentarily. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions which ensure that the absolute maximum ratings are not exceeded.

Recommended Operating Range (T_A = 25 °C)

Parameter	Symbol	Conditions		TYP.	MAX.	Unit
Supply voltage	V _{DD1}			5.0	5.5	V
	Vdd2	Only CPU operates	4.0	5.0	5.5	V
	V _{DD3}	Only watchdog timer operates (CPU stops)	2.3	5.0	5.5	V
Data retention voltage	Vddr	Clock stops	2.3		5.5	V
Output withstand voltage	VBDS	P1A, P2A, P2B, P2C			12.5	V
Supply voltage rise time	trise	$V_{DD} = 0 \rightarrow 4.5 \text{ V}$	3		500	ms
Input amplitude	Vin	VCO	0.7		5.5	V _{P-P}

DC Characteristics (Reference characteristics: T_A = -40 to +85 °C, V $_{DD}$ = 5 V \pm 10 %)

Phase-out/Discontinued

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply current	IDD1	Operation of all functions		11	23	mA
		$V_{DD} = 5 V$, $T_A = 25 °C$, $f_{VCO} = 20 MHz$				
		V _{IN} = 0.7 V _{P-P} , IDC operation				
		OSC _{IN} = 10 MHz, X _{IN} pin square wave input				
		$(f_{IN} = 8 \text{ MHz}, V_{IN} = V_{DD})$				
	DD2	CPU and PLL operation		7	12	mA
		$V_{DD} = 5 V, T_A = 25 °C, f_{VCO} = 20 MHz$				
		VIN = 0.7 VP-P, XIN pin square wave input				
		$(f_{IN} = 8 \text{ MHz}, V_{IN} = V_{DD})$				
	IDD3	Only CPU operates		6.5	9	mA
		VDD = 5 V, TA = 25 °C, XIN pin square wave input				
		$(f_{IN} = 8 \text{ MHz}, V_{IN} = V_{DD})$				
	IDD4	HALT instruction		2.5	4.5	mA
		VDD = 5 V, TA = 25 °C, XIN pin square wave input				
		$(f_{IN} = 8 \text{ MHz}, V_{IN} = V_{DD})$				
Data retention current	DDR1	Main clock stop, watch timer operation		5	10	μA
		Vdd = 2.5 V, Ta = 25 °C				
		Main clock stop, watch timer operation		15	25	μA
		$V_{DD} = 5 \text{ V}, \text{ T}_{A} = 25 ^{\circ}\text{C}$				
	DDR2	Main clock stop, watch timer operation		2	15	μA
		$V_{DD} = 5 \text{ V}, \text{ T}_{A} = 25 ^{\circ}\text{C}$				
High-level input voltage	VIH1	P0A, P0B, P1B, P1C, P2D	0.7Vdd			V
	VIH2	CE, INTO, INTNC, VSYNC, HSYNC	0.8Vdd			V
	Vінз	P0D	0.7Vdd			V
Low-level input voltage	VIL1	P0A, P0B, P0D, P1B, P1C, P2D			0.2 Vdd	V
	VIL2	CE, INTO, INTNC, VSYNC, HSYNC			0.2 Vdd	V
High-level output current	Іон1	P0A2, P0A3, P0B, P0C, P1B, P1C, P1D, P2D,	-1	-5		mA
		BLANK, RED, GREEN, BLUE, PSC				
		$V_{OH} = V_{DD} - 1 V$				
	Іон2	EO VOH = VDD - 1 V	-1	-2.5		mA
Low-level output current	IOL1	P0A2, P0A3, P0B, P0C, P1B, P1C, P1D, P2D,	1	10		mA
		PSC Vol = 1 V				
	IOL11	BLANK, RED, GREEN, BLUE Vol = 1 V	1	8.5		mA
	IOL2	EO Vol = 1 V	1	6		mA
	Iol3	P0A ₀ , P0A ₁ VoL = 1 V	1	4.0		mA
	IOL4	PWM (P2A, P2B, P2C) Vol = 1 V	1	1.5		mA
	Iol5	P1A Vol = 1 V	15	30		mA
High-level input current	Ін	VCO VIH = VDD	0.1	0.65	1.3	mA
High-level output leakage	Ігон	P1A, P2A, P2B, P2C Vo = 12.5 V			0.5	μΑ
Output off leakage current	١L	EO Vo = VDD or 0 V		±10 ⁻³	±1	μΑ
Internal pull-down resistor	R _{PD1}	P0D (KEY) VIH = VDD	19	41	85	kΩ
	Rpd2	P0D (KEY) VIH = VDD = 5 V	23	41	72	kΩ
	R PD3	P0D (KEY) VIH = VDD = 5 V, TA = 25 °C	29	41	47	kΩ

AC Characteristics (Reference characteristics: $T_A = -40$ to +85 °C, V _{DD} = 5 V ± 10 %)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Input frequency 1	fvco	VCO square wave input VIN = 0.7	VP-P	0.7		20	MHz
Input frequency 2	fтмr	TMIN (P1B ₃) Duty	50 %	45		65	Hz
Input frequency 3	fнs	HSCNT (P0B ₃)		10		20	kHz

A/D Converter Characteristics (Reference characteristics: $T_A = -10$ to +50 °C, V _{DD} = 5 V ± 10 %)

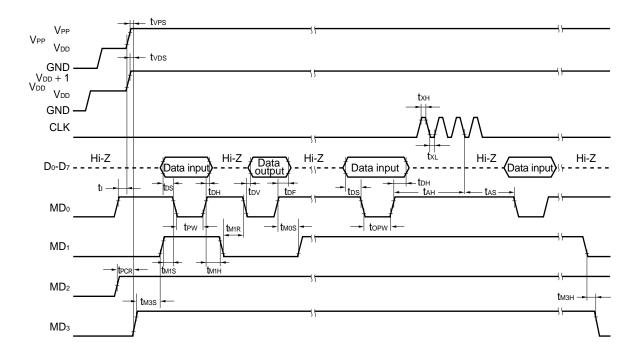
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
A/D conversion absolute accuracy		ADC ₀ -ADC ₇		±1	±1.5	LSB
A/D conversion resolution		ADC ₀ -ADC ₇			6	bit
A/D input impedance		ADC ₀ -ADC ₇	1			MΩ

DC Programming Characteristics (TA = 25 °C, V $_{DD}$ = 6.0 \pm 0.25 V, VPP = 12.5 \pm 0.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
High-level input voltage	VIH1	Except for CLK	0.7 Vdd		Vdd	V
	VIH2	CLK	Vdd - 0.5		Vdd	V
Low-level input voltage	VIL1	Except for CLK	0		0.3 Vdd	V
	VIL2	CLK	0		0.4	V
Input leakage current	lu	VIN = VIL OF VIH			±10	μΑ
High-level output voltage	Vон	Іон = −1 mA	Vdd - 1.0			V
Low-level output voltage	Vol	Iol = 1 mA			1.0	V
Vod supply current	loo				30	mA
VPP supply current	Ірр	MD0 = VIL, MD1 = VIH			30	mA

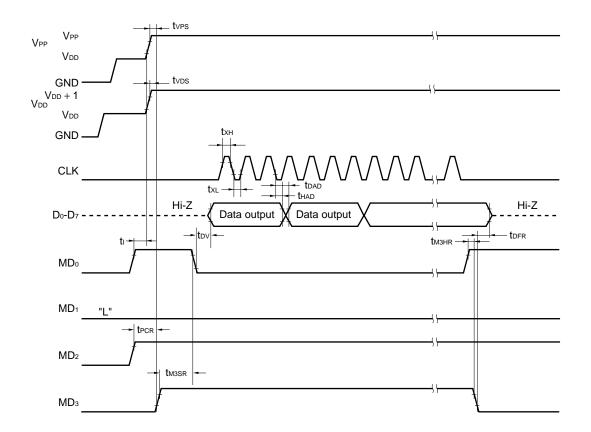
Cautions 1. VPP must not exceed +13.5 V including overshoot.

2. VDD should be applied before VPP and cut after VPP.

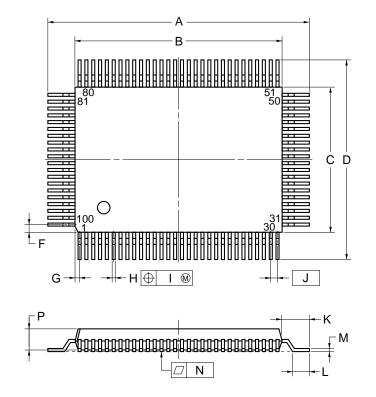

Phase-out/Discontinued

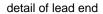
AC Programming Characteristics (T_A = 25 °C, V $_{DD}$ = 6.0 \pm 2.5 V, V_{PP} = 12.5 \pm 0.5 V)

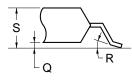
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Address setup time ^{Note} (vs. MD₀↓)	tas		2			μs
MD₁ setup time (vs. MD₀↓)	t _{M1S}		2			μs
Data setup time (vs. MD₀↓)	tos		2			μs
Address hold time ^{Note} (vs. MD₀↑)	tан		2			μs
Data hold time (vs. MD₀↑)	tон		2			μs
$MD_0 \hat{\uparrow} o$ data output float delay time	t DF		0		130	ns
V _{PP} setup time (vs. MD₃↑)	tvps		2			μs
V _{DD} setup time (vs. MD₃↑)	tvbs		2			μs
Initial program pulse width	tpw		0.95	1.0	1.05	ms
Additional program pulse width	topw		0.95		21.0	ms
MD₀ setup time (vs. MD₁↑)	t _{MOS}		2			μs
$MD_0 {\downarrow} { ightarrow}$ data output delay time	tov	$MD_0 = MD_1 = V_{IL}$			1	μs
MD₁ hold time (vs. MD₀↑)	t м1н	tм1н + tм1к ≥ 50 <i>µ</i> s	2			μs
MD₁ recovery time (vs. MD₀↓)	t _{M1R}		2			μs
Program counter reset time	t PCR		10			μs
CLK input high-/low-level width	txн, tx∟		0.125			μs
CLK input frequency	fx				4.19	MHz
Initial mode setting time	tı		2			μs
MD₃ setup time (vs. MD₁↑)	tмзs		2			μs
MD₃ hold time (vs. MD₁↓)	tмзн		2			μs
MD₃ setup time (vs. MD₀↓)	tмзsr	When program memory is read	2			μs
Address $^{ m Note} ightarrow$ data output delay time	t DAD				2	μs
Address $^{Note} ightarrow$ data output hold time	t HAD]	0		130	ns
MD₃ hold time (vs. MD₀↑)	tмзнк]	2			μs
$MD_3 \downarrow \rightarrow$ data output float delay time	t DFR				2	μs


Note The internal address increment (+1) is performed on the fall of the 3rd clock, where 4 clocks comprise one cycle. The internal clock is not connected to a pin.

Program Memory Write Timing


Phase-out/Discontinued


Program Memory Read Timing



4. PACKAGE DRAWING

100 PIN PLASTIC QFP (14×20)

NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
А	23.2±0.2	$0.913^{+0.009}_{-0.008}$
В	20.0±0.2	$0.787^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	17.2±0.2	0.677±0.008
F	0.8	0.031
G	0.6	0.024
Н	0.30±0.10	$0.012^{+0.004}_{-0.005}$
I	0.15	0.006
J	0.65 (T.P.)	0.026 (T.P.)
К	1.6±0.2	0.063±0.008
L	0.8±0.2	$0.031^{+0.009}_{-0.008}$
М	$0.15^{+0.10}_{-0.05}$	$0.006^{+0.004}_{-0.003}$
N	0.10	0.004
Р	2.7	0.106
Q	0.125±0.075	0.005±0.003
R	5°±5°	5°±5°
S	3.0 MAX.	0.119 MAX.
		S100GF-65-3BA-3

Phase-out/Discontinued

APPENDIX DEVELOPMENT TOOLS

The following tools are available to provide μ PD17P068's program development environment.

Hardware

Product	Description
In-circuit emulator (IE-17K IE-17K-ET Note 1 EMU-17K Note 2	The IE-17K, IE-17K-ET, and EMU-17K are in-circuit emulators common to the 17K series. The IE-17K and IE-17K-ET should be connected with the host computer (PC-9800 series or IBM PC/AT [™]) through an RS-232-C cable. The EMU-17K should be installed to an extension slot in the host computer (PC-9800 series). Each of the three products function as a dedicated emulator for each device by connecting it with an individual system evaluation board (SE board). Using <i>SIMPLEHOST</i> [®] which features an excellent user-machine interface, makes user's debugging environment more powerful. If the EMU- 17K is used, user can monitor the contents of the data memory in real time.
SE board (SE-17008)	This SE board is for the μ PD17068, 17P068, and 17008. This board can perform evaluations of user's system. To debug user's programs, use it together with an in-circuit emulator.
Emulation probe (EP-17068GF)	This probe is used when emulating the μ PD17P068GF.
Conversion socket (EV-9200GF-100 Note 3)	This socket converts pin arrangement for the 100-pin plastic QFP (14 \times 20 mm) to connect the emulation probe EP-17068GF to the target system.
PROM programmer (AF-9703 Note 4 AF-9704 Note 4 AF-9705 Note 4 AF-9706 Note 4	These products write programs to the internal PROM of the μ PD17P068. To perform programming, the program adapter AF-9808L is required to connect to the PROM programmer.
Program adapter (AF-9808L Note 4)	This adapter is used together with the PROM programmer to program the PROM in the μ PD17P068.

Notes 1. Inexpensive type: Power supply is required to connect externally.

- 2. Manufactured by IC Corporation. For details, call 03-3447-3793 Tokyo, Japan.
- **3.** If the EP-17068GF is purchased, one EV-9200GF-100 is attached as a companion product. EV-9200GF-100s can separately be purchased in 5-piece units.
- 4. Manufactured by Ando Electric Corporation. For details, call 03-3733-1151 Tokyo, Japan.

Software

Product	Description	Host Computer	OS		Media	Ordering Code
17K series	This assembler can be used for all 17K series devices.	PC-9800 Series	MS-D	MS-DOS™ ·		μS5A10AS17K μS5A13AS17K
assembler (AS17K)	To develop program of the μPD17P068, the device file (AS17068) are also required.	IBM PC/AT DOS™	PC		5 inch 2HC 3.5 inch 2HC	μS7B10AS17K μS7B13AS17K
	This product is the device		MO		5 inch 2HD	μS5A10AS17068
Device file	file for the μ PD17P068. This device file is used	PC-9800 series	MS-DOS		3.5 inch 2HD	μS5A13AS17068
(AS17068)	together with the assembler AS17K.	IBM PC/AT	PC DOS		5 inch 2HC	μS7B10AS17068
	Aorra.				3.5 inch 2HC	μS7B13AS17068
	This software is used to develop programs using an in-circuit emulator and the host computer. This product runs under	PC-9800 Series	MS-DOS		5 inch 2HD	μS5A10ΙΕ17Κ
Support software				Windows	3.5 inch 2HD	μS5A13IE17K
(SIMPLEHOST)	Windows [™] system and pro- vides users with an excellent	IBM PC/AT	PC DOS	vvindows	5 inch 2HC	μS7B10IE17K
	user-machine interface.				3.5 inch 2HC	μS7B13IE17K

Remark These products run with the versions of the operation systems shown below.

OS	Version
MS-DOS	Ver.3.30 to Ver.5.00A Note
PC DOS	Ver.3.1 to Ver.5.0 Note
Windows	Ver.3.0 to Ver.3.1

Note With these products, the task swap function is disabled though the Ver.5.00/5.00A of MS-DOS and Ver.5.0 of the PC DOS support the task swap function.

[MEMO]

-NOTES FOR CMOS DEVICES-

① PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function. Purchase of NEC I^2C components conveys a license under the Philips I^2C Patent Rights to use these components in an I^2C system, provided that the system conforms to the I^2C Standard Specification as defined by Philips.

SIMPLEHOST is a registered trademark of NEC Corp. MS-DOS and Windows are trademarks of Microsoft Corp. PC/AT and PC DOS are trademarks of IBM Corp.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance.

Anti-radioactive design is not implemented in this product.

M4 94.11