

DATA SHEET

MOS INTEGRATED CIRCUIT μ PD23C256112A

NAND INTERFACE 256M-BIT MASK-PROGRAMMABLE ROM

Description

The μ PD23C256112A is a 256 Mbit NAND interface programmable mask read-only memory that operates with a single power supply. The memory organization consists of (512 + 16 (Redundancy)) bytes x 32 pages x 2,048 blocks. The μ PD23C256112A is a serial type mask ROM in which addresses and commands are input and data output serially via the I/O pins.

The µPD23C256112A is packed in 48-pin PLASTIC TSOP(I).

Features

• Word organization

(33,554,432 + 1,048,576^{Note}) words by 8 bits

- Page size
 (512 + <u>16</u>^{Note}) by 8 bits
- Block size

(16,384 + <u>512^{Note}</u>) by 8 bits

Note Underlined parts are redundancy.

Caution Redundancy is not programmable parts and is fixed to all FFH.

Operation mode

READ mode (1), READ mode (2), READ mode (3), RESET, STATUS READ, ID READ

- Operating supply voltage : Vcc = 3.3 \pm 0.3 V
- Access Time

Memory cell array to starting address	: 7 <i>µ</i> s (MAX.)
Read cycle time	: 50 ns (MIN.)
/RE access time	: 35 ns (MAX.)

Operating supply current

During read : 30 mA (MAX.) (50 ns cycle operation)

During standby (CMOS) : 100 μ A (MAX.)

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

Document No. M15902EJ3V0DS00 (3rd edition) Date Published February 2006 NS CP (K) Printed in Japan

The mark <R> shows major revised points.

© NEC Electronics Corporation 2001

The revised points can be easily searched by copying an "<R>" in the PDF file and specifying it in the "Find what:" field.

NEC

Ordering Information

	Part Number	Package
	μPD23C256112AGY-xxx-MJH	48-pin PLASTIC TSOP(I) (12x18) (Normal bent)
	μ PD23C256112AGY-xxx-MKH	48-pin PLASTIC TSOP(I) (12x18) (Reverse bent)
<r></r>	μPD23C256112AGY-xxx-MJH-A	48-pin PLASTIC TSOP(I) (12x18) (Normal bent)
<r></r>	μPD23C256112AGY-xxx-MKH-A	48-pin PLASTIC TSOP(I) (12x18) (Reverse bent)

Remarks 1. xxx : ROM code suffix No.

<R>

2. Products with -A at the end of the part number are lead-free products.

<R>

Pin Configurations

/xxx indicates active low signal.

48-pin PLASTIC TSOP(I) (12x18) (Normal bent) [μtPD23C256112AGY-xxx-MJH] [μtPD23C256112AGY-xxx-MJH-A]

	Marking Side	_		
NC O	1 48	₃	—0	NC
NC O	2 47	, <u> </u>	—0	NC
NC \bigcirc	3 46	;⊢	0	NC
IC ()	4 45	;⊢	—0	NC
IC O	5 44	⊧┝╾	→ ○	I/07
GND O	6 43	3 ◄-	► ○	I/O6
R, /B ○◄──	7 42	2 ◄−	→ ○	I/O5
/RE ○►	8 41	⊧∣◄−	→ ○	I/04
/CE ○►	9 40	⊬⊢	—0	NC
NC O	10 39	,⊢	—0	NC
NC \bigcirc	11 38	;⊢	—0	NC
Vcc ()	12 37	′⊢	———————————————————————————————————————	Vcc
Vss O	13 36	;⊢	———————————————————————————————————————	Vss
NC \bigcirc	14 35	5 	—0	NC
NC \bigcirc	15 34	۱ <u> </u>	<u> </u>	NC
	16 33	;⊢	<u> </u>	NC
ALE ○►	17 32	2 ◄-	► ○	I/O3
/WE ○►	18 31	⊢ ◄	_► ○	I/O2
IC O	19 30) ◄-	_► O	I/O1
	20 29	, -	_► ○	I/O0
IC O	21 28	;⊢	0	NC
NC O	22 27	′⊢	0	NC
	23 26	;⊢	<u> </u>	NC
NC O	24 25	;⊢	—0	NC

I/O0 to I/O7	:	Address Inputs / Command Inputs / Data Outputs
CLE	:	Command Latch Enable Input
ALE	:	Address Latch Enable Input
/WE	:	Write Enable Input
/RE	:	Read Enable Input
/CE	:	Chip Enable Input
R, /B ^{Note1}	:	READY, /BUSY Output
Vcc	:	Supply voltage
Vss	:	Ground
NC Note2	:	No connection
IC Note3	:	Internal connection
GND	:	GND

- Notes 1. This pin is an open-drain output pin. Therefore, a pull-up resistor is required when using this pin.
 - 2. Some signals can be applied because this pin is not connected to the inside of the chip.
 - 3. Leave this pin unconnected or connected to Vss.

Remark Refer to Package Drawings for the 1-pin index mark.

48-pin PLASTIC TSOP(I) (12x18) (Reverse bent) [μPD23C256112AGY-xxx-MKH] [μPD23C256112AGY-xxx-MKH-A]

	Marking Side	
NC O	48 1	NC
	47 2	NC
NC ()	46 3	NC
NC ()	45 4	——————————————————————————————————————
/07 🔾 🗕 ►	44 5	IC
/06 ⊖	43 6	
/05 🔾 🗕 ►	42 7	► R, /B
/04 🔾 🗕 ►	41 8	→ ○ /RE
	40 9	→ O /CE
	39 10	O NC
	38 11	O NC
	37 12	
Vss ()	36 13	
	35 14	
	34 15	
	33 16	
/03 ⊖>	32 17	
/02 ()	31 18	✓ /WE
/01 ⊖	30 19	
	29 20	
	28 21	
	27 22	
	26 23	
	25 24	

I/O0 to I/O7	:	Address Inputs / Command Inputs / Data Outputs
CLE	:	Command Latch Enable Input
ALE	:	Address Latch Enable Input
/WE	:	Write Enable Input
/RE	:	Read Enable Input
/CE	:	Chip Enable Input
R, /B ^{Note1}	:	READY, /BUSY Output
Vcc	:	Supply voltage
Vss	:	Ground
NC Note2	:	No connection
IC Note3	:	Internal connection
GND	:	GND

Notes 1. This pin is an open-drain output pin. Therefore, a pull-up resistor is required when using this pin.

- 2. Some signals can be applied because this pin is not connected to the inside of the chip.
- 3. Leave this pin unconnected or connected to Vss.

Remark Refer to **Package Drawings** for the 1-pin index mark.

<R>

Input / Output Pin Functions

Pin name	Input / Output	Function
I/O0 to I/O7 (Address Inputs / Command Inputs / Data Outputs)	Input, Output	I/O port for address input, command input, and data output. I/O pins.
CLE (Command latch Enable Input)	Input	Input pin for signal for controlling loading of commands to command register in device. By making this signal high level at the rising edge or falling edge of the /WE signal, the data of the I/O0 to I/O7 pins is loaded to the command register as commands.
ALE (Address latch Enable Input)	Input	Input pin for signal for controlling loading of address data to the address register in the device. By making this signal high level at the rising edge or falling edge of the /WE signal, the data of the I/O0 to I/O7 pins is loaded as address.
/WE (Write Enable Input)	Input	Input pin for signal for loading the data from the I/O0 to I/O7 pins inside the device.
/RE (Read Enable Input)	Input	Input pin for signal for serially outputting data. The output data of I/O0 to I/O7 is determined after treat from the falling edge of the /RE signal, and the internal address counter is incremented by +1 at the rising edge of the /RE signal.
/CE (Chip Enable Input)	Input	Input pin for device selection signal. During read, the standby mode is entered by making this signal high level.
R, /B (READY, /BUSY Output)	Output	Output pin for signal that notifies the internal operating status of the device to external. This is an open-drain output signal. During read, Busy is output during operation (R, /B = low level), and upon completion, Ready (R, /B = high level) is automatically output.

NEC

Block Diagram

- The start address (SA) during read operation is specified divided into three areas using three types of read commands.
 - In read mode (1), start address (SA) is set in area (A). In read mode (2), start address (SA) is set in area (B).
 - In read mode (3), start address (SA) is set in area (C).

One page consists of a total of 528 bytes broken down into 512 bytes (main memory) and 16 bytes (redundancy). One block consists of 32 pages.

Caution The data of area (C) is redundancy. Redundancy is not programmable parts and is fixed to all FFH.

Operation Modes

Command input, address input, and serial read are all performed from I/O pins, and the respective statuses are controlled by the CLE, ALE, /WE, /RE, and /CE signals.

Operation mode

Mode	CLE	ALE	/CE	/WE	/RE
Command input cycle	Н	L	L	Ŀſ	Н
Address input cycle	L	Н	L	Ŀſ	н
Serial read cycle	L	L	L	Н	Ţ

Operation mode during serial read

Mode	CLE	ALE	/CE	/WE	/RE	I/O0 to I/O7	
Data output	L	L	L	Н	L	Data output	
Output High-Z	L	L	L	Н	Н	High-Z	
Standby	L	L	Н	Н	×	High-Z	

 $\textbf{Remark} \quad \times : V {\sf IH} \text{ or } V {\sf IL}$

Operation Commands

• ·		•	•		•			•		
Command	HEX	I/07	I/O6	I/O5	I/O4	I/O3	I/O2	I/O1	I/O0	Command receivable during Busy
Read mode(1)	00H	L	L	L	L	L	L	L	L	
Read mode(2)	01H	L	L	L	L	L	L	L	Н	
Read mode(3) ^{Note1}	50H	L	н	L	н	L	L	L	L	
Reset Note2	FFH	н	н	н	н	н	н	н	н	0
Status read	70H	L	н	н	н	L	L	L	L	
ID read Note3	90H	н	L	L	н	L	L	L	L	

The following six operation settings are possible by inputting commands from I/O pins.

Notes 1. The data output in read mode (3) is all FFH.

2. The only command that can be executed when the device is Busy is the reset command. Do not set any of the other commands while the device is Busy.

3. For ID read, input "00H" during the first address cycle after setting a command.

I/O Pin Correspondence Table during Address Input Cycle (Address Setting)

			-			().		
Command	I/07	I/O6	I/O5	I/O4	I/O3	I/O2	I/O1	I/O0
1st address cycle	A7	A6	A5	A4	A3	A2	A1	A0
2nd address cycle	A16	A15	A14	A13	A12	A11	A10	A9
3rd address cycle	A24	A23	A22	A21	A20	A19	A18	A17

(1) When 00H or 01H command is set [Read mode (1), Read mode (2)]

(2) When 50H command is set [Read mode (3)]

Command	I/07	I/O6	I/O5	I/O4	I/O3	I/O2	I/O1	I/O0
1st address cycle	×	×	×	×	A3	A2	A1	A0
2nd address cycle	A16	A15	A14	A13	A12	A11	A10	A9
3rd address cycle	A24	A23	A22	A21	A20	A19	A18	A17

Remarks 1. A0 to A24 are internal addresses.

- 2. Internal address A8 is set internally with command 00H or 01H.
- When 50H command is set [read mode (3)], the I/O4, I/O5, I/O6, and I/O7 inputs of the 1st address cycle are V_{IH} or V_{IL}.

Usage Cautions

(1) Rated operation

Operation using timing other than shown in the timing charts is not guaranteed.

(2) Commands that can be input

The only commands that can be input are 00H, 01H, 50H, 70H, 90H, and FFH. Do not input any other commands. If other commands are input, the subsequent operation is not guaranteed.

(3) Command limitations during Busy period

Do not input commands other than the reset command (FFH) during the Busy period. If a command is input during the Busy period, the subsequent operation is not guaranteed.

(4) Cautions regarding /RE clock

- Following the last /RE clock, do not input the /RE clock until the R, /B pin changes from Busy to Ready.
- Do not input the /RE clock other than during data output.

(5) Cautions upon power application

Since the state of the device is undetermined upon power on, input high level to the /CE pin and execute the reset command following power on.

(6) Cautions during read mode

- Perform address input immediately following command input. If address input is done without performing command input first, the correct data cannot be output because the operation mode is undetermined.
- To execute the read mode after the read mode has been stopped with the reset command (FFH) and /CE, input again a command and address.

(7) Busy output following access of last address in page in read mode

After the access to the last address in a page, if the delay (trench) from /RE to /CE is 30 ns or less, the Ready status is maintained and Busy is not output by keeping /CE high level for a set period (tceh).

Electrical Specifications

Absolute Maximum Ratings

Parameter	Symbol	Condition	Rating	Unit
Supply voltage	Vcc		-0.5 to +4.6	V
Input voltage	Vı		-0.3 to Vcc+0.3	V
Input / Output voltage	Vi/o		–0.3 to Vcc+0.3 (\leq 4.6)	V
Operating ambient temperature	TA		0 to 70	°C
Storage temperature	T _{stg}		-65 to +150	°C

Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Capacitance (TA = 25°C)

Parameter	Symbol	Test condition	MIN.	TYP.	MAX.	Unit
Input capacitance	Cı	f = 1 MHz			10	pF
Output capacitance	Co				10	pF

DC Characteristics (T_A = 0 to 70°C, Vcc = 3.3 ± 0.3 V)

Parameter	Symbol	Test conditions	MIN.	TYP.	MAX.	Unit
High level input voltage	VIH		2.0		Vcc + 0.3	V
Low level input voltage	VIL		-0.3		+0.8	V
High level output voltage	Vон	Іон = -400 <i>µ</i> А	2.4			V
Low level output voltage	Vol	loL = 2.1 mA			0.4	V
Input leakage current	lu	VI = 0 V to Vcc			±10	μA
Output leakage current	Ιιο	Vo = 0 V to Vcc			±10	μA
Power supply current in read	Icco1	/CE = VIL, IOUT = 0 mA, toyole = 50 ns			30	mA
Power supply current in command input	Іссоз	tcycle = 50 ns			30	mA
Power supply current in address input	Icco5	tcycle = 50 ns			30	mA
Standby current (TTL)	Iccs1	/CE = V⊮			1	mA
Standby current (CMOS)	Iccs2	/CE = Vcc - 0.2 V			100	μA
(R, /B) pin output current	IOL(R, /B)	Vol = 0.4 V		8		mA

Parameter	Symbol	MIN	TYP.	MAX.	Unit
CLE setup time	tcls	0			ns
CLE hold time	tсьн	10			ns
/CE setup time	tcs	0			ns
/CE hold time	tсн	10			ns
Write pulse width	twp	25			ns
ALE setup time	tals	0			ns
ALE hold time	t alh	10			ns
Data setup time	tos	20			ns
Data hold time	tон	10			ns
Write cycle time	twc	50			ns
/WE high hold time	twн	15			ns
Ready to /RE falling edge	t rr	20			ns
Read pulse width	t RP	35			ns
Read cycle time	trc	50			ns
/RE access time (serial data access)	t rea			35	ns
/CE high hold time for last address in serial read cycle	tсен	100			ns
/RE access time (ID read)	t REAID			35	ns
/RE high to output High-Z	t RHZ	10		30	ns
/CE high to output High-Z	tснz			20	ns
/RE high hold time	t REH	15			ns
Output High-Z to /RE falling edge	tır	0			ns
/RE access time (status read)	t rsto			35	ns
/CE access time (status read)	tсsто			45	ns
/WE high to /CE low	twнc	30			ns
/WE high to /RE low	twhr	30			ns
ALE low to /RE low (ID read)	t _{AR1}	100			ns
/CE low to /RE low (ID read)	t CR	100			ns
Memory cell array to starting address	tR			7	μS
/WE high to Busy	twв			200	ns
ALE low to /RE low (read cycle)	tar2	50			ns
/RE last clock rising edge to Busy (in sequential read)	tяв			200	ns
/CE high to Ready (when interrupted by /CE in read mode)	tCRY ^{Note}			1	μS
Device reset time	trst			6	μS

AC Characteristics (TA = 0 to 70°C, Vcc = 3.3 \pm 0.3 V)

Note tCRY (time from /CE high to Ready) depends on the pull-up resister of the R, /B output pin.

AC Test Conditions

Output load

1 TTL + 100 pF

Read Cycle Timing Chart (1) (In case of read mode (1))

14

Remarks 1. Start address (SA) specification when read is performed with command 01H. N: 0 to 255
 2. Then time (tCRY) from /CE high to Ready is cancelled depends on the pull-up register of the R,/B output pin.

Data Sheet M15902EJ3V0DS

^{*и*}PD23C256112A

Read Cycle Timing Chart (3) (In case of read mode (3))

2. The start address of area C (redundancy data) is specified with A0 to A3 during the 1st address cycle. At this time, A4 to A7 are Don't Care.

The time (tCRY) from /CE high to Ready is cancelled depends on the pull-up register of the R, /B output pin.
 The data that is output is FFH.

16

uPD23C256112A

Read Cycle Timing Chart (4) (When /CE is made high level in the read mode)

Remark If /CE is made high level during the read cycle, the read operation until that time is cancelled. Therefore, to perform read again, execute a new command and new address input.

Data Sheet M15902EJ3V0DS

Sequential Read

In read modes (1), (2), and (3), when a command (00H, 01H, 50H) is input and an address specified, if it is in the block that includes the address that was specified first, the address is automatically incremented and the read operation is continuously performed until the last address in the same block, by inputting the /RE clock. At this time, a Busy period (t_R) occurs after the last address is accessed in a page.

Note To perform read again after reading the 527th byte of data of the last page of block, stop the read operation once, and then restart the read operation by inputting again the read command and an address.

Relationship Between Command and Start Address (SA) during Sequential Read

Note When the "50H" command is set, only the (C) area (redundancy data part) is continuously read.

- When the "00H" command is set, the start address (SA) is set to area (A).
- When the "01H" command is set, the start address (SA) is set to area (B).
- When the "50H" command is set, the start address (SA) is set to area (C).

Data Sheet M15902EJ3V0DS

(In case of read mode (1))

Remark Start address (SA) specification when read is performed with command 00H. N: 0 to 255

µPD23C256112A

Data Sheet M15902EJ3V0DS

Remark Start address (SA) specification when read is performed with command 01H. N: 0 to 255

20

Remark Start address (SA) specification when read is performed with command 50H. N: 0 to 15

Data Sheet M15902EJ3V0DS

uPD23C256112A

NEC

Status Read

Status information can be output from the I/O pins with the /RE clock following input of the 70H command. Status read is a function to recognize the status of the device from external.

	Status	Status output data ^{Note}
I/O0	Ready / Busy	0 / 1
I/O1	Not used	0
I/O2	Not used	0
I/O3	Not used	0
I/O4	Not used	0
I/O5	Not used	0
I/O6	Ready / Busy	1 / 0
I/07	Write protect	0

Note Use the status read command only during Ready.

ID Read

To recognize the ID code (maker code / device code) of this device in a system, execute the ID read command. The ID code can be read with the following timing.

	I/07	I/O6	I/O5	I/O4	I/O3	I/O2	I/O1	I/O0	HEX
Maker code	L	L	L	Н	L	L	L	L	10H
Device code	L	Н	L	н	н	L	L	L	58H

Cautions 1. If the /RE clock is input after the maker code and device code are output, the output data is not guaranteed. Therefore, do not input the /RE clock following device code output.

^{2.} Do not input an address other than 00H after setting the ID read command (90H). If an address other than 00H is input, the data following /RE clock input is not guaranteed.

Reset Cycle Timing Chart

Package Drawings

48-PIN PLASTIC TSOP(I) (12x18)

NOTES

- 1. Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.
- 2. "A" excludes mold flash. (Includes mold flash : 12.4 mm MAX.)

ITEM	MILLIMETERS
A	12 0+0 1
	0.45 MAX
<u>с</u>	0.5 (T.P.)
 D	0.22+0.05
E	0.1+0.05
 F	1.2 MAX.
G	1.0±0.05
I	16.4±0.1
J	0.8±0.2
К	0.145±0.05
L	0.5
М	0.10
Ν	0.10
Р	18.0±0.2
Q	3° ^{+5°} 3°
R	0.25
S	0.60±0.15
:	648GY-50-MJH1-1

48-PIN PLASTIC TSOP(I) (12x18)

NOTES

- 1. Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.
- 2. "A" excludes mold flash. (Includes mold flash : 12.4 mm MAX.)

ITEM	MILLIMETERS
А	12.0±0.1
В	0.45 MAX.
С	0.5 (T.P.)
D	0.22 ± 0.05
E	0.1±0.05
F	1.2 MAX.
G	1.0±0.05
I	16.4±0.1
J	0.8±0.2
K	0.145±0.05
L	0.5
М	0.10
N	0.10
Р	18.0±0.2
Q	3° ^{+5°} 3°
R	0.25
S	0.60±0.15
S	648GY-50-MKH1-1

Recommended Soldering Conditions

Please consult with our sales offices for soldering conditions of the μ PD23C256112A.

Types of Surface Mount Device

	μPD23C256112AGY-MJH : 48-pin PLASTIC TSOP(I) (12x18) (Normal bent)
	μPD23C256112AGY-MKH : 48-pin PLASTIC TSOP(I) (12x18) (Reverse bent)
<r></r>	μPD23C256112AGY-MJH-A: 48-pin PLASTIC TSOP(I) (12x18) (Normal bent)
<r></r>	μPD23C256112AGY-MKH-A : 48-pin PLASTIC TSOP(I) (12x18) (Reverse bent)

Data Sheet M15902EJ3V0DS

Revision History

Edition/	Page		Page		Type of	Location	Description
Date	This	Previous	revision		(Previous edition \rightarrow This edition)		
	edition	edition					
3rd edition/	p.2	p.1	Addition	Ordering Information	Lead-free products have been added		
Feb. 2006	pp.3,4	pp.2,3	Addition	Pin Configuration	Lead-free products have been added		
	p.27	p.26	Addition	Recommended Soldering	Lead-free products have been added		
				Conditions			

Data Sheet M15902EJ3V0DS

[MEMO]

NOTES FOR CMOS DEVICES —

1 VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (MAX) and V_{IH} (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (MAX) and V_{IH} (MIN).

(2) HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

④ STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

5 POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

6 INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

- The information in this document is current as of February, 2006. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

M8E 02.11-1