DATA SHEET

Class 1, NP0 50 V feedthrough Surface-mount ceramic multilayer capacitors

Product specification Supersedes data of 25th August 1999 2001 May 30 Rev.3

Surface-mount ceramic multilayer capacitors

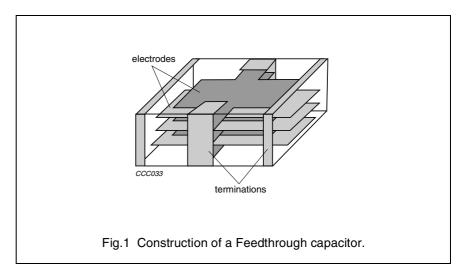
Class 1, NP0 50 V feedthrough

FEATURES

- · High capacitance per unit volume
- Supplied in tape on reel or in bulk
- · For high frequency applications
- NiSn terminations.

APPLICATIONS

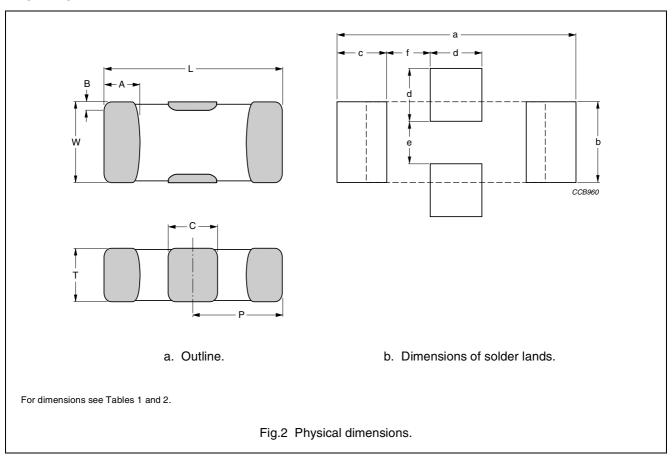
- · Consumer electronics
- Telecommunications
- Automotive
- · Data processing.


DESCRIPTION

The capacitor consists of a rectangular block of ceramic dielectric in which a number of interleaved precious metal electrodes are contained. This structure gives rise to a high capacitance per unit volume.

The inner electrodes are connected to the four terminations, silver dipped with a barrier layer of plated nickel and finally covered with a layer of plated tin (NiSn). A 3D diagram of the structure is shown in Fig.1.

QUICK REFERENCE DATA


DESCRIPTION	VALUE
Rated voltage U _R (DC)	50 V (IEC)
Capacitance range (E12 series)	47 pF to 1 nF
Tolerance on capacitance	±10%; ±5%
Test voltage (DC) for 1 minute	$2.5 \times U_R$
Sectional specifications	IEC 60384-10, second edition 1989-04; also based on CECC 32 100
Detailed specification	based on CECC 32 101-801
Climatic category (IEC 60068)	55/125/56

Surface-mount ceramic multilayer capacitors

Class 1, NP0 50 V feedthrough

MECHANICAL DATA

Physical dimensions

Table 1 Capacitor dimensions in millimetres

CASE SIZE	L	W	Т	Α	В	С	Р
1206	3.2 ±0.20	1.6 ±0.20	0.80 ±0.10	0.50 ±0.20	0.30 ±0.15	0.90 ±0.20	1.60 ±0.15

Table 2 Dimensions of solder lands in millimetres

а	b	С	d	е	f
4.45 ±0.20	1.65 ±0.20	1.00 ±0.15	0.90 ±0.20	1.00 ±0.15	0.70 ±0.10

Surface-mount ceramic multilayer capacitors

Class 1, NP0 50 V feedthrough

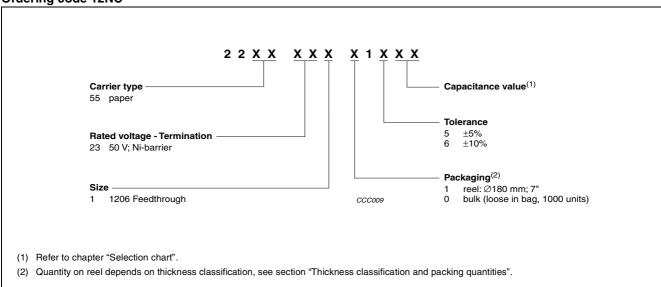
SELECTION CHART

С	LAST TWO DIGITS	50 V
(pF)	OF 12NC	1206
47	32	
100	36	
220	41	0.8 ±0.1
330	43	
470	45	
1 000	49	

Thickness classification and packing quantities

THICKNESS	8 mm TAPE WIDTH QUANTITY PER REEL
CLASSIFICATION (mm)	Ø180 mm; 7"
,	PAPER
0.8 ±0.1	4000

ORDERING INFORMATION


Components may be ordered by using either a simple 15-digit clear text code or Phycomp's unique 12NC.

Clear text code

EXAMPLE: 1206CG102J9B20F

SIZE CODE	TEMP. CHAR.	CAPACITANCE	TOL.	VOLTAGE	TERMINATION	PACKING	MARKING	SERIES
1206	CG = NP0	102 = 1000 pF; the third digit signifies the multiplying factor: $0 = \times 1$ $1 = \times 10$ $2 = \times 100$	$J = \pm 5\%$ $K = \pm 10\%$	9 = 50 V	B = NiSn	2 = 180 mm; 7" paper A = bulk	0 = no marking	F = feedthrough

Ordering code 12NC

Surface-mount ceramic multilayer capacitors

Class 1, NP0 50 V feedthrough

ELECTRICAL CHARACTERISTICS

Class 1 capacitors; NP0 dielectric; NiSn terminations

Unless otherwise stated all electrical values apply at an ambient temperature of 23 \pm 3 °C, an atmospheric pressure of 86 to 106 kPa, and a relative humidity of 63 to 67%.

DESCRIPTION	VALUE
Capacitance range (E12 series)	47 pF to 1 nF
Tolerance on capacitance	±10%; ±5%
Rated voltage U _R (DC)	50 V
Test voltage (DC) for 1 minute	$2.5 \times U_R$
Tan δ ; note 1	≤10 × 10 ⁻⁴
Insulation resistance after 1 minute at U _R (DC)	$R_{ins} > 10^5 M\Omega$
Rated DC resistance	1 Ω max.

Note

1. Measured at 1 V, 1 MHz for C ≤ 1000 pF and 1 V, 1 kHz for C > 1000 pF, using a four-gauge method.

Surface-mount ceramic multilayer capacitors

Class 1, NP0 50 V feedthrough

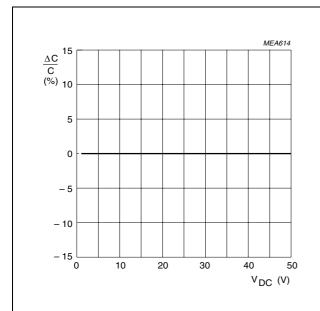
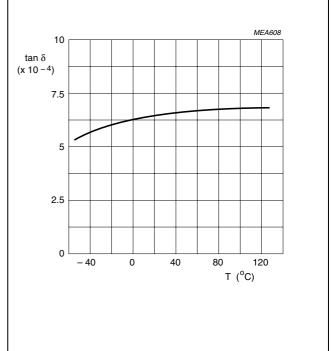
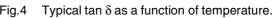




Fig.3 Typical capacitance change with respect to the capacitance at 1 V as a function of DC voltage.

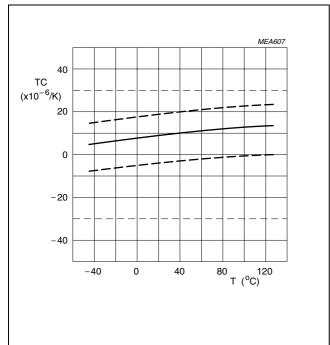
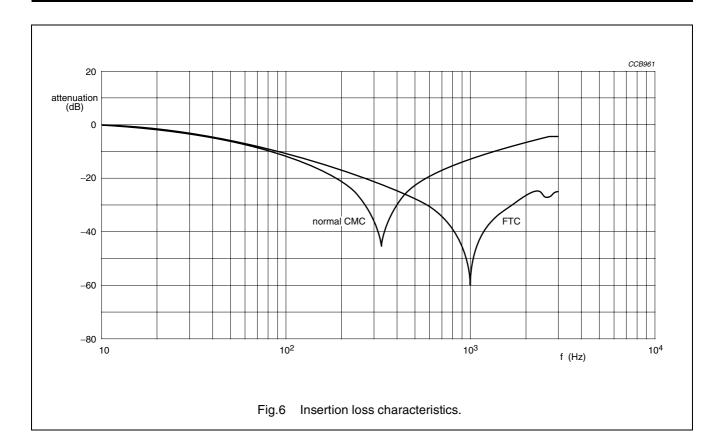



Fig.5 Typical capacitance change as a function of temperature.

Surface-mount ceramic multilayer capacitors

Class 1, NP0 50 V feedthrough

Surface-mount ceramic multilayer capacitors

Class 1, NP0 50 V feedthrough

HIGH FREQUENCY BEHAVIOUR OF MULTILAYER CHIP CAPACITORS

Multilayer chip capacitors (MLCCs) are suitable for use at high frequencies. At frequencies below the series resonance frequency, the MLCC can be represented by an equivalent circuit as shown in Fig.7.

In general, the quantities C, ESR and L are frequency dependent. For most applications, C and L can be regarded as frequency independent below 1 GHz.

The equivalent series self-inductance L is:

- Independent of the dielectric material.
- Dependent on the size of the capacitor, it increases with increasing length and decreases with increasing width or thickness of the product.
- The value of L is approximately:
 - 0.6 nH for case size 0603
 - 1 nH for case sizes 0805, 1206 and 1210
 - 1.5 nH for case sizes 1812 and 2220.

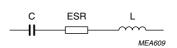
These figures are accurate to within 20%.

Because of the inductance L, associated with the MLCC, there will be a frequency at which the inductive reactance will be equal to the reactance of the capacitor.

This is known as the series resonance frequency (SRF) and is given by:

$$SRF = \frac{1}{2\pi\sqrt{LC}}$$

At the SRF, the MLCC will appear as a small resistor. The transmission loss through the MLCC at this series resonance frequency will be low.


Using the values of C, L = 1 nH and the ESR at a specific frequency (f), two often used quantities can be derived.

The impedance (Z) is given by:

$$Z = \frac{1 - (2\pi f)^2 LC}{2j\pi fC} + ESR$$

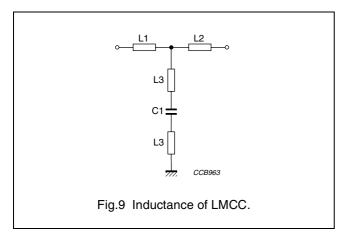
The quality factor (Q) is given by:

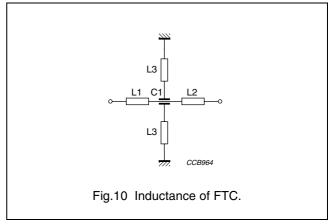
$$Q = \frac{\left|1 - (2\pi f)^2 LC\right|}{2\pi f E S R C}$$

C = capacitance.

ESR = equivalent series resistance which is determined by the energy dissipation mechanisms (in the dielectric material as well as in the electrodes).

L = equivalent series self-inductance.


Fig.7 Equivalent series representation of a MLCC.


Surface-mount ceramic multilayer capacitors

Class 1, NP0 50 V feedthrough

Figures 9 and 10 show the comparative inductance of a conventional MLCC and an FTC, when the capacitor is mounted on a substrate. The high frequency capability of the FTC is better than a conventional MLCC due to the inductance of an FTC being less than the MLCC.

The equivalent circuits show parasitic inductances L1, L2 and L3. The resonance frequency (f_r) can be determined as follows: $f_r = \frac{1}{2\pi\sqrt{L_q \times C1}}$ (L_g = inductance between signal through line and GEN).

The inductance of the FTC (L_{gFTC} = L3//L3 = $\frac{L3}{2}$) is one quarter that of the MLCC (L_{gCMC} = L3 + L3 = L3 × 2).

Surface-mount ceramic multilayer capacitors

Class 1, NP0 50 V feedthrough

TESTS AND REQUIREMENTS

Table 3 Test procedures and requirements

IEC 60384-10/ CECC 32 100 CLAUSE	IEC 60068-2 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS
4.4		mounting	the capacitors may be mounted on printed-circuit boards or ceramic substrates by applying wave soldering, reflow soldering (including vapour phase soldering) or conductive adhesive	no visible damage
4.5		visual inspection and dimension check	any applicable method using ×10 magnification	in accordance with specification
4.6.1		capacitance	f = 1 MHz; measuring voltage 1 V _{rms} at 20 °C	within specified tolerance measured 1000 hours after date of manufacture
4.6.2		$tan \delta$	f = 1 MHz; measuring voltage 1 V _{rms} at 20 °C	in accordance with specification
4.6.3		insulation resistance	at U _R (DC) for 1 minute	in accordance with specification
4.6.4		voltage proof	2.5 × U _R for 1 minute	no breakdown or flashover
4.7.1		temperature coefficient	between minimum and maximum temperature	in accordance with specification
4.8		adhesion	a force of 5 N applied for 10 s to the line joining the terminations and in a plane parallel to the substrate	no visible damage
4.9		bond strength of plating on end face	mounted in accordance with CECC 32 100, paragraph 4.4	no visible damage
			conditions: bending 1 mm at a rate of 1 mm/s, radius jig 340 mm	ΔC/C: ≤10%
4.10	Tb	resistance to soldering heat; jig clamps to the second component along the longitudinal line	260 ±5 °C for 10 ±0.5 s in a static solder bath	the terminations shall be well tinned after recovery $\Delta C/C$: $\pm 0.5\%$ or 0.5 pF whichever is greater
		resistance to leaching; jig clamps to the second component along the longitudinal line	260 ±5 °C for 30 ±1 s in a static solder bath	using visual enlargement of ×10, dissolution of the terminations shall not exceed 10%

Surface-mount ceramic multilayer capacitors

Class 1, NP0 50 V feedthrough

IEC 60384-10/ CECC 32 100 CLAUSE	IEC 60068-2 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS
4.11	Та	solderability; jig clamps to the second component along the longitudinal line	zero hour test, and test after storage (20 to 24 months) in original packing in normal atmosphere; unmounted chips completely immersed for 2 ±0.5 s in a solder bath at 235 ±5 °C	the terminations shall be well tinned ≥95%
4.12	Na	rapid change of temperature	preconditioning, class 2 only; 5 cycles in the following sequence: 30 minutes at –55 °C, change within 30 minutes to +125 °C	no visible damage after 24 hours recovery: ΔC/C: ±1% or ±1 pF
4.14	Са	damp heat	preconditioning, class 2 only: 56 days at 40 °C; 90 to 95% RH; U _R applied; 30 minutes at –55 °C, change within 30 minutes to +125 °C	no visual damage after 1 to 2 hours recovery: $\Delta C/C\colon \pm 2\% \text{ or } \pm 1 \text{ pF,}$ whichever is greater $\tan\delta\colon \le 2\times \text{ specified value}$ $R_{\text{ins}}\colon \ge 2500 \text{ M}\Omega \text{ or } R_iC_R \ge 25 \text{ s,}$ whichever is less
4.15		endurance	preconditioning, class 2 only (thermal treatment): 1000 hours at 125 °C and $2 \times U_R$ applied	no visual damage after 1 to 2 hours recovery: $\Delta C/C\colon \pm 2\% \text{ or 1 pF,}$ whichever is greater $\tan\delta\colon \le 2\times \text{specified value}$ $R_{\text{ins}}\colon \ge 4000 \text{ M}\Omega \text{ or } R_iC_R \ge 40 \text{ s,}$ whichever is less