1 MEGABYTE through 10 MEGABYTE (AMD based)

FEATURES

- Low cost Medium/High Density Linear Flash Card
- Based on AMD Am29F040 Components (equivalent of AMD's AmC0XXCFLKA)
- Single supply operation, no additional programming voltage required
 - 5 V only for write, erase and read operations
- Fast Read Performance
 - 150ns Maximum Access Time
- PCMCIA/JEIDA 68-pin standard
 - x8/ x16 Data Interface
 - type I Form Factor
- Automated write and erase operations
 - 64Kbyte memory sectors for faster automated erase speed
 - Typically 1.5 s per single memory sector erase
 - Random address writes to previously erased bytes; 16µs per byte typical
- 100,000 Erase/Program Cycles

GENERAL DESCRIPTION

WEDC's FLC Series Flash memory cards offer medium/ high density linear Flash solid state storage solutions for code and data storage, high performance disk emulation and execute in place (XIP) applications in mobile PC and dedicated (embedded) equipment.

FLC series cards conform to PCMCIA international standard.

The card's control logic provides the system interface and controls the internal Flash memories. Card can be read/written in byte-wide or word-wide mode which allows for flexible integration into various systems. Combined with file management software, such as Flash Translation Layer (FTL), FLC Flash cards provide removable highperformance disk emulation.

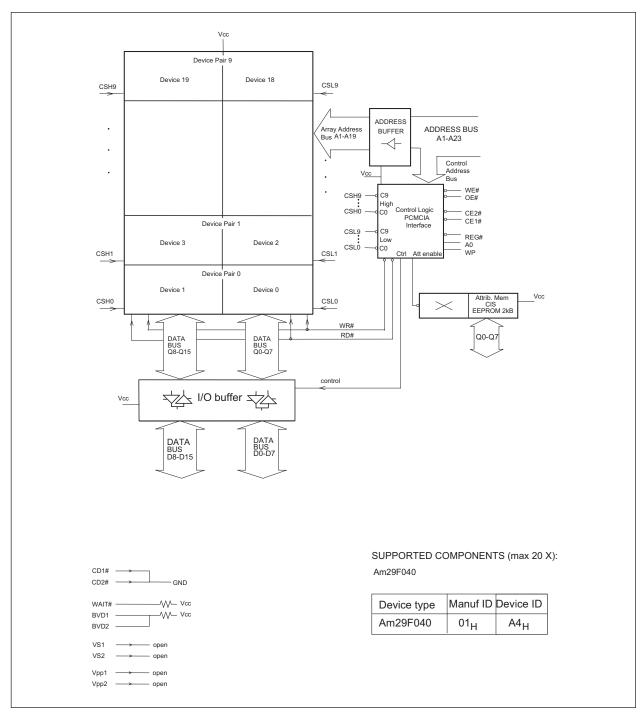
The FLC series cards contain separate 2kB EEPROM memory for Card Information Structure (CIS) which can be used for easy identification of card characteristics.

The WEDC FLC series is based on AMD Am29F040 Flash memories; the FLC04 is a direct equivalent of AMD's AmC0XXCFLKA, however it offers wider range of intermediate memory capacities.

Note:

Standard options include attribute memory. Cards without attribute memory are available. Cards are also available with or without a hardware write protect switch.

ARCHITECTURE OVERVIEW


FLC Series Cards are based on the Am29F040 (4Mb) components which work with single 5V applications. Manufacture/Device code is 01h/A4h.

FLC series is designed to support from 2 to 20 components, providing densities ranging from 1MB to 10MB in 1MB increments. In support of the PC Card 95 standard for word wide access devices are paired. Write, read and erase operations can be performed as either a word or byte wide operation . By multiplexing A0, CE1# and CE2#, 8-bit hosts can access all data on data lines DQ0 - DQ7. The FLC series cards conform to the PC Card Standard (PCMCIA) and JEIDA, providing electrical and physical compatibility. The PC Card form factor offers an industry standard pinout and mechanical outline, allowing density upgrades without system design changes.

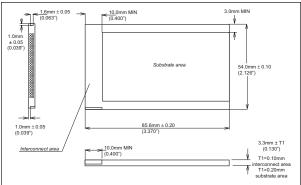
WEDC's standard cards are shipped with WEDC's Logo. Cards are also available with blank housings (no Logo). The blank housings are available in both a recessed (for label) and flat housing. Please contact WEDC sales representative for further information on Custom artwork.

PCMCIA Flash Memory Card WHITE ELECTRONIC DESIGNS FLC Series

BLOCK DIAGRAM

PCMCIA Flash Memory Card WHITE ELECTRONIC DESIGNS FLC Series

PINOUT


Pin	Signal name	I/O	Function	Active
1	GND		Ground	
2	DQ3	I/O	Data bit 3	
3	DQ4	I/O	Data bit 4	
4	DQ5	I/O	Data bit 5	
5	DQ6	I/O	Data bit 6	
6	DQ7	I/O	Data bit 7	
7	CE1#	I	Card enable 1	LOW
8	A10	I	Address bit 10	
9	OE#	I	Output enable	LOW
10	A11	I	Address bit 11	
11	A9	I	Address bit 9	
12	A8	I	Address bit 8	
13	A13	I	Address bit 13	
14	A14	I	Address bit 14	
15	WE#	I	Write Enable	LOW
16	RDY/BSY#	0	Ready/Busy	N.C.
17	Vcc		Supply Voltage	
18	Vpp1		Prog. Voltage	N.C.
19	A16	I	Address bit 16	
20	A15	I	Address bit 15	
21	A12	I	Address bit 12	
22	A7	I	Address bit 7	
23	A6	I	Address bit 6	
24	A5	I	Address bit 5	
25	A4	I	Address bit 4	
26	A3	I	Address bit 3	
27	A2	I	Address bit 2	
28	A1	I	Address bit 1	
29	A0	I	Address bit 0	
30	DQ0	I/O	Data bit 0	
31	DQ1	I/O	Data bit 1	
32	DQ2	I/O	Data bit 2	
33	WP	0	Write Potect	HIGH
34	GND		Ground	

Notes:

- 1. Wait#, BVD1 and BVD2 are driven high for compatibility
- 2. Shows density for which specified address bit is MSB. Higher order address bits are N.C. (i.e. 4MB A21 is MSB A22 A25 are NC).
- For the 3MB card the memory will wrap at the 4MB boundary, for 5MB, 6MB, and & 7MB cards the memory will wrap at the 8MB boundary, for 9MB and 10MB cards the memory will wrap at the 16MB boundary.

Pin	Signal name	I/O	Function	Active
35	GND		Ground	
36	CD1#	0	Card Detect 1	LOW
37	DQ11	I/O	Data bit 11	
38	DQ12	I/O	Data bit 12	
39	DQ13	I/O	Data bit 13	
40	DQ14	I/O	Data bit 14	
41	DQ15	I	Data bit 15	
42	CE2#	I	Card Enable 2	LOW
43	VS1	0	Voltage Sense 1	N.C.
44	RFU		Reserved	N.C.
45	RFU		Reserved	N.C.
46	A17	I	Address bit 17	
47	A18	I	Address bit 18	
48	A19	I	Address bit 19	1MB(2)
49	A20	I	Address bit 20	2MB(2)
50	A21	I	Address bit 21	4MB(2.3)
51	Vcc		Supply Voltage	
52	Vpp2		Prog. Voltage	NC
53	A22	I	Address bit 22	8MB(2,3)
54	A23	I	Address bit 23	16/10MB(2,3
55	A24	I	Address bit 24	N.C.
56	A25	I	Address bit 25	N.C.
57	VS2	0	Voltage Sense 2	N.C.
58	RST	I	Card Reset	N.C.
59	Wait#	0	Extended Bus cycle	LOW(1)
60	RFU		Reserved	N.C.
61	REG#	I	Attrib Mem Select	LOW(1)
62	BVD2	0	Bat. Volt. Detect 2	(1)
63	BVD1	0	Bat. Volt. Detect 1	(1)
64	DQ8	I/O	Data bit 8	
65	DQ9	I/O	Data bit 9	
66	DQ10	0	Data bit 10	
67	CD2#	0	Card Detect 2	LOW
68	GND		Ground	

MECHANICAL

WHITE ELECTRONIC DESIGNS FLC Series

CARD SIGNAL DESCRIPTION

Symbol	Туре	Name and Function
A0 - A25	INPUT	ADDRESS INPUTS: A0 through A25 enable direct addressing of up to 64MB of memory on the card. Signal A0 is not used in word access mode. The memory will wrap at the card density boundary (see PINOUT, note 3). The system should not try to access memory beyond the card density. A25 is the most significant bit. A24 – A25 are not connected.
DQ0 - DQ15	INPUT/OUTPUT	DATA INPUT/OUTPUT: DQ0 THROUGH DQ15 constitute the bi-directional databus. DQ0 – DQ7 constitute the lower (even) byte and DQ8 – DQ15 the upper (odd) byte. DQ15 is the MSB.
CE1#, CE2#	INPUT	CARD ENABLE 1 AND 2: CE1# enables even byte accesses, CE2# enables odd byte accesses. Multiplexing A0, CE1# and CE2# allows 8-bit hosts to access all data on DQ0 - DQ7.
OE#	INPUT	OUTPUT ENABLE: Active low signal gating read data from the memory card.
WE#	INPUT	WRITE ENABLE: Active low signal gating write data to the memory card.
RDY/BSY#	N.C.	READY/BUSY OUTPUT: Indicates status of internally timed erase or program algorithms. This signal is not connected.
CD1#, CD2#	OUTPUT	CARD DETECT 1 and 2: Provide card insertion detection. These signals are internally connected to ground on the card. The host shall monitor these signals to detect card insertion (pulled-up on host side).
WP	OUTPUT	WRITE PROTECT: Write protect reflects the status of the Write Protect switch on the memory card. WP set to high = write protected, providing internal hardware write lockout to the Flash array. If card does not include optional write protect switch, this signal will be pulled low internally indicating write protect = "off".
VPP1	N.C.	PROGRAM/ERASE POWER SUPPLY: Provides programming voltages 12.0V for lower byte (D0 – D7) memory components. This signal is not connected.
VPP2	N.C.	PROGRAM/ERASE POWER SUPPLY: Provides programming voltages 12.0V for upper byte (D8 – D15) memory components. This signal is not connected.
VCC		CARD POWER SUPPLY: (5.0V).
GND		CARD GROUND
REG#	INPUT	ATTRIBUTE MEMORY SELECT: Active low signal, enables access to Attribute Memory Plane, occupied by Card Information Structure and Card Registers.
RST	N.C.	RESET: Active high signal for placing cards in Power-on default state. This signal is not connected.
WAIT#	OUTPUT	WAIT: This signal is pulled high internally for compatibility. No wait states are generated.
BVD1, BVD2	OUTPUT	BATTERY VOLTAGE DETECT: These signals are pulled high to maintain SRAM card compatibility.
VS1, VS2	OUTPUT	VOLTAGE SENSE: Notifies the host socket of the card's V _{CC} requirements. VS1 and VS2 are open to indicate a 5V card.
RFU		RESERVED FOR FUTURE USE
N.C.		NO INTERNAL CONNECTION TO CARD: pin may be driven or left floating

Functional Truth Table

READ function							Common Memory			Attribute Memory		
Function Mode	CE2#	CE1#	A ₀	OE#	WE#	REG#	D15-D8	D7-D0	REG#	D15-D8	D7-D0	
Standby Mode	Н	Н	Х	Х	Х	Х	High-Z	High-Z	Х	High-Z	High-Z	
Byte Access (8 bits)	Н	L	L	L	Н	Н	High-Z	Even-Byte	L	High-Z	Even-Byte	
	Н	L	Н	L	Н	Н	High-Z	Odd-Byte	L	High-Z	Not Valid	
Word Access (16 bits)	L	L	Х	L	Н	Н	Odd-Byte	Even-Byte	L	Not Valid	Even-Byte	
Odd-Byte Only Access	L	Н	Х	L	Н	Н	Odd-Byte	High-Z	L	Not Valid	High-Z	
WRITE function												
Standby Mode	Н	Н	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Byte Access (8 bits)	Н	L	L	Н	L	Н	Х	Even-Byte	L	Х	Even-Byte	
	Н	L	Н	Н	L	Н	Х	Odd-Byte	L	Х	Х	
Word Access (16 bits)	L	L	Х	Н	L	Н	Odd-Byte	Even-Byte	L	Х	Even-Byte	
Odd-Byte Only Access	L	Н	Х	Н	L	Н	Odd-Byte	Х	L	Х	Х	

ABSOLUTE MAXIMUM RATINGS (2)

Operating Temperature T _A (ambient)						
Commercial	0°C to +60°C					
Industrial	-40°C to +85°C					
Storage Temperature						
Commercial	-30°C to +80°C					
Industrial	-40°C to +85°C					
Voltage on any pin relative to Vss	-0.5V to Vcc+0.5V					
Vcc supply Voltage relative to Vss	-0.5V to +7.0V					

Note:

Stress greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation at these or any other conditions greater than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC CHARACTERISTICS (1)

Symbol	Parameter	Density	Notes	Typ ⁽²⁾	Мах	Units	Test Conditions	
ICCR	Vcc Read Current	All			45	mA	Vcc = Vcc max tcycle = 150ns, CMOS levels	
Iccw	Vcc Program Current	All			65	mA	Programming in Progress	
ICCE	Vcc Erase Current	All			65	mA	Erasure in Progress	
lccs	Vcc Standby Current	1MB		0.015	0.7	mA	Vcc = Vcc max	
(CMOS)		2MB		0.015	0.9		Control Signals = Vcc	
		4MB		0.015	1.3		CMOS levels	
		10MB		0.015	2.5			

CMOS Test Conditions: Vcc = 5V \pm 5%, ViL = Vss \pm 0.2V, ViH = Vcc \pm 0.2V

Notes:

1. All currents are RMS values unless otherwise specified. ICCR, ICCW and ICCE are based on Byte wide operations.

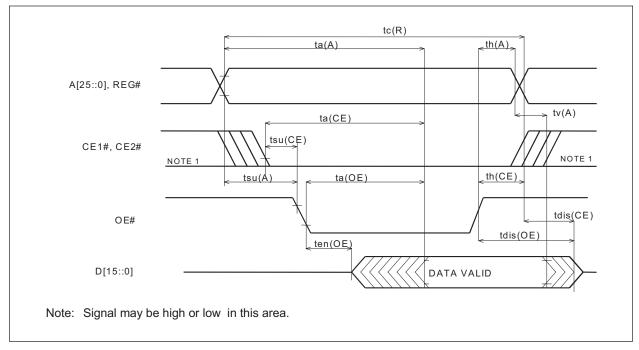
For 16 bit operation values are double.

2. Typical: Vcc = 5V, T = +25 $^{\circ}$ C.

Symbol	Parameter	Notes	Min	Max	Units	Test Conditions
lu	Input Leakage Current	1		±20	μA	Vcc = VccMAX VIN =Vcc or Vss
Ilo	Output Leakage Current	1		±20	μA	Vcc = VccMAX Vout =Vcc or Vss
VIL	Input Low Voltage	1	0	0.8	V	
Vih	Input High Voltage	1	0.7Vcc	Vcc+0.5	V	
Vol	Output Low Voltage	1		0.4	V	IoL = 3.2mA
Vон	Output High Voltage	1	Vcc-0.4	Vcc	V	Іон = -2.0mA
Vlko	Vcc Erase/Program Lock Voltage	1	3.2	4.2	V	

Notes:

1. Values are the same for byte and word wide modes for all card densities.

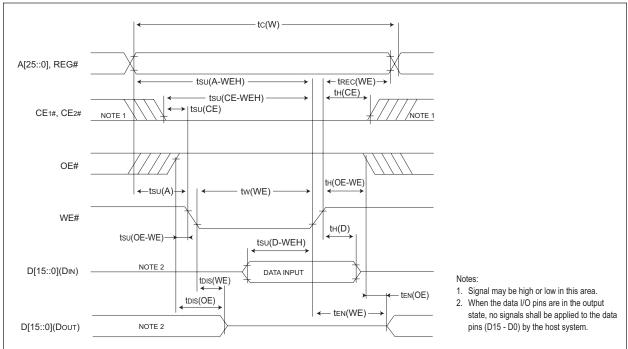

2. Exceptions: Leakage current on CE1#, CE2#, OE#, REG# and WE# will be <500 µA when V_{IN} = GND due to internal pull-up resistors.

	Barranta	15	150ns				
SYMBOL (PCMCIA)	Parameter	Min	Max	Unit			
tc(R)	Read Cycle Time	150		ns			
ta(A)	Address Access Time		150	ns			
ta(CE)	Card Enable Access Time		150	ns			
ta(OE)	Output Enable Access Time		75	ns			
tsu(A)	Address Setup Time		20	ns			
tsu(CE)	Card Enable Setup Time		0	ns			
tн(A)	Address Hold Time		20	ns			
tн(CE)	Card Enable Hold Time		20	ns			
tv(A)	Output Hold from Address Change		0	ns			
tois(CE)	Output Disable Time from CE#		75	ns			
tois(OE)	Output Disable Time from OE#		75	ns			
ten(CE)	Output Enable Time from CE#	5		ns			
ten(OE)	Output Enable Time from OE#	5		ns			

Note: AC timing diagrams and characteristics are guaranteed to meet or exceed PCMCIA 2.1 specifications.

READ TIMING DIAGRAM

6


PCMCIA Flash Memory Card FLC Series

WHITE ELECTRONIC DESIGNS

AC CHARACTERISTICS -	WRITE TIMING PARAMETERS
----------------------	-------------------------

	Demonster	15		
SYMBOL (PCMCIA)	Parameter	Min	Мах	Unit
tcW	Write Cycle Time	150		ns
tw(WE)	Write Pulse Width	80		ns
tsu(A)	Address Setup Time	20		ns
ts∪(A-WEH)	Address Setup Time for WE#	100		ns
tsu(CE-WEH)	Card Enable Setup Time for WE#	100		ns
tsu(D-WEH)	Data Setup Time for WE#	50		ns
th(D)	Data Hold Time	20		ns
trec(WE)	Write Recover Time	20		ns
tois(WE)	Output Disable Time from WE#		75	ns
tois(OE)	Output Disable Time from OE#		75	ns
ten(WE)	Output Enable Time from WE#	5		ns
ten(OE)	Output Enable Time from OE#	5		ns
tsu(OE-WE)	Output Enable Setup from WE#	10		ns
tн(OE-WE)	Output Enable Hold from WE#	10	10	
tsu(CE)	Card Enable Setup Time from OE#	0	0	
tн(CE)	Card Enable Hold Time	20		ns

Note: AC timing diagrams and characteristics are guaranteed to meet or exceed PCMCIA 2.1 specifications.

WRITE TIMING DIAGRAM

WHITE ELECTRONIC DESIGNS

DATA WRITE AND ERASE PERFORMANCE

 V_{CC} = 5V \pm 5%, T_{A} = 25°C

Parameter	Comments	Min	Typ ⁽¹⁾	Max	Units
Sector Erase Time	Excludes 00h programming prior to erasure 1.0				s
Chip Erase Time	Excludes 00h programming prior to erasure		8	120	s
Byte Programming	Time Excludes system-level overhead		7	7 1000 ⁽³⁾	
Chip Programming	Time Excludes system-level overhead		3.6	25 ^(3, 4)	S

Notes:

1. Typical: Nominal voltages, TA = 250C, 100,000 cycles.

2. Although Embedded Algorithms allow for a longer chip program and erase time, the actual time will be considerably less since bytes program or erase significantly faster than the worst case byte.

3. Under worst case condition of 90°C, 4.5 V Vcc, 100,000 cycles.

4. The Embedded Algorithms allow for 2.5 ms byte program time. DQ5 = "1" only after a byte takes the theoretical maximum time to program. A minimal number of bytes may require significantly more programming pulses than the typical byte. The majority of the bytes will program within one or two pulses. This is demonstrated by the typical and maximum programming times.

WHITE ELECTRONIC DESIGNS ______ FLC Series

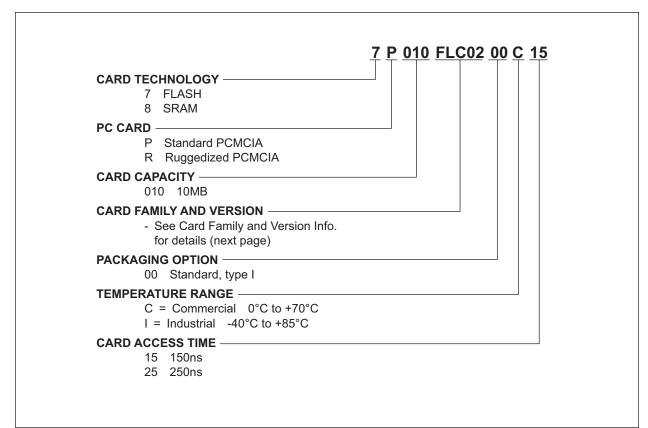
CIS INFORMATION FOR FLC SERIES CARDS

Address	Value	Description	Address	Value	Description	Address	Value	Description
00H	01H	CISTPL_DEVICE	40H	45H	E	94H	44H	D
02H	03H	TPL_LINK	42H	44H	D	96H	45H	E
04H	53H	FLASH = 150ns (device writable)	44H	49H	1	98H	53H	S
06H	0DH	Card Size:1MB	46H	37H	7	9AH	49H	1
	06H	2MB	48H	50H	Р	9CH	47H	G
	2DH	3MB	4AH	30H (1)	0	9EH	4EH	N
	0EH	4MB	4CH	30H (1)	0	A0H	53H	S
	4DH	5MB	4EH	31H (1)	1	A2H	20H	SPACE
	16H	6MB	50H	46H	F	A4H	49H	1
	6DH	7MB	52H	4CH	L	A6H	4EH	N
	1EH	8MB	54H	43H	С	A8H	43H	С
	8DH	9MB	56H	30H (2)	0	AAH	4FH	0
	26H	10MB	58H	32H (2)	2	ACH	52H	R
08H	FFH	END OF DEVICE	5AH	2DH	-	AEH	50H	Р
0AH	18H	CISTPL_JEDEC_C	5CH	2DH	-	B0H	4FH	0
0CH	02H	TPL_LINK	5EH	2DH	-	B2H	52H	R
0EH	01H	AMD - ID	62H	31H	1	B4H	41H	A
10H	A4H	Am29F040- ID	64H	35H	5	B6H	54H	Т
12H	17H	CISTPL_DEVICE_A	66H	20H	SPACE	B8H	45H	E
14H	03H	TPL_LINK	68H	00H	END TEXT	BAH	44H	D
16H	42H	EEPROM - 200ns	6AH	43H	С	BCH	20H	SPACE
18H	01H	Device Size = 2KBytes	6CH	4FH	0	BEH	00H	END TEXT
1AH	FFH	END OF TUPLE	6EH	50H	Р	COH	31H	1
1CH	1EH	CISTPL_DEVICEGEO	70H	59H	Y	C2H	39H	9
1EH	06H	TPL_LINK	72H	52H	R	C4H	39H	9
20H	02H	DGTPL_BUS	74H	49H	1	C6H	37H	7
22H	11H	DGTPL_EBS	76H	47H	G	C8H	00H	END TEXT
24H	01H	DGTPL_RBS	78H	48H	Н	CAH	00H	END OF LIST
26H	01H	DGTPL_WBS	7AH	54H	Т	CCH	FFH	CISTPL_END
28H	01H	DGTPL_PART	7CH	20H	SPACE			
2AH	01H	FLASH DEVICE	7EH	45H	E			
		NON-INTERLEAVED	80H	4CH	L			
2CH	20H	CISTPL_MANFID	82H	45H	E			
2EH	04H	TPL_LINK(04H)	84H	43H	С			
30H	F6H	EDI TPLMID_MANF: LSB	86H	54H	Т			
32H	01H	EDI TPLMID_MANF: MSB	88H	52H	R			
34H	00H	LSB: Number Not Assigned	8AH	4FH	0			
36H	00H	MSB: Number Not Assigned	8CH	4EH	N			
38H	15H	CISTPL_VERS1	8EH	49H	1			
3AH	47H	TPL_LINK	90H	43H	С			
3CH	04H	 TPLLV1_MAJOR	92H	20H	SPACE			
3EH	01H	TPLLV1_MINOR	L		·			

1)

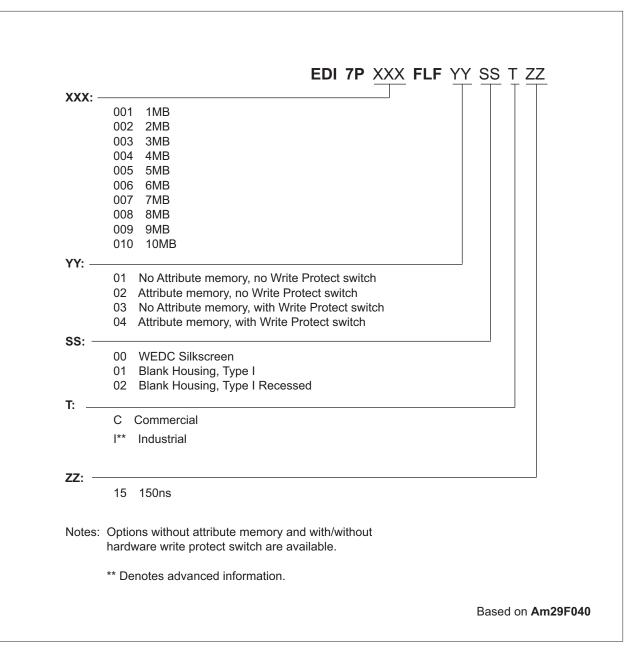
Address	Value	Desc.	Value	Desc	Value	Desc	Value	Desc.										
4AH	30H	0	30H	0	30H	0	30H	0	30H	0	30H	0	30H	0	30H	0	30H	0
4CH	30H	0	30H	0	30H	0	30H	0	30H	0	30H	0	30H	0	30H	0	31H	1
4EH	32H	2	33H	3	34H	4	35H	5	36H	6	37H	7	38H	8	39H	9	30H	0

2)


Value Description Address 56H 30H 0 58H 34H 4

PCMCIA Flash Memory Card WHITE ELECTRONIC DESIGNS ______ FLC Series

PRODUCT MARKING


0 N		010FLC0200C1	
Company Name			
Part Number —			
Lot Code/Trace Number ——			
Date Code			
transition period, some produc	narked with our pre-merger company n ts will also be marked with our new co ICIA products will be marked only with	mpany name/acronym (WED).	

PART NUMBERING

PCMCIA Flash Memory Card WHITE ELECTRONIC DESIGNS FLC Series

ORDERING INFORMATION

Document Title

1 MEGABYTE through 10 MEGABYTE (AMD based)

Revision History

Rev #	History	Release Date Status
Rev 0	Initial release	12-23-98
Rev 1	Change logo	5-27-99
Rev 2	Added page 10	5-31-00
Rev 3	Corrected timing errors on pages 6 and 7	8-1-00