5 Amp SOLID STATE RELAYS

DEVICES

MHS Series
 (Consult Table 3 for Part Number Designations)

LEVELS AVAILABLE
 COTS
 CLASS H
 CLASS K

FEATURES

> Operates from 3.3 V to 5 V logic levels
$>$ Internal Switch rated for $175^{\circ} \mathrm{C} \mathrm{T}$
$>250 \mathrm{~V}$ Operation (Note 1)
> Total dose capable > 300 Krads (Note 3)
$>$ Available normally open or normally closed
$\gg 1000 \mathrm{~V}$ of I/O isolation
$>$ Buffered input
> Inputs protected against over voltage (ESD rating of 1C)
$>$ SE results show no SEB through an LET of $85\left(\mathrm{MeV} /\left(\mathrm{mg} / \mathrm{cm}^{2}\right)\right)$ at a fluence of $2 \mathrm{e}^{6}$ ions / cm^{2}
> Preliminary

DESCRIPTION:

The MHS series are Solid State Relays, where the input and output circuitry are isolated from each other. The series consists of both singles and duals, and provides both the normally open (N.O.) function as well as the normally closed (N.C.) function. Packaging one of each (a N.O. and a N.C.) in a package creates the SPDT function.

Table 1 - ABSOLUTE MAXIMUM RATINGS ($T \mathrm{c}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Parameters / Test Conditions	Symbol	Value	Unit
Input Voltage	$\mathrm{V}_{\mathrm{in}}, \mathrm{V}_{\mathrm{L}}$	+15	Vdc
Output Current	Io	Figure 3	A
Output Voltage (Note 1)	V_{O}	250	Vdc
Weight		10	Grams
Temperature Range, Base of Package	T_{C}	-55 to +125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Lead Temperature	T_{L}	300	${ }^{\circ} \mathrm{C}$
Junction Temperature	T_{j}	125	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Parameters / Test Conditions	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	$\mathrm{R}_{\text {өJC }}$	1.25	${ }^{\circ} \mathrm{C} / \mathrm{W}$

5 Amp SOLID STATE RELAYS

Table 2 - ELECTRICAL CHARACTERISTICS, PER CHANNEL

$$
\left(T_{C}=+25^{\circ} \mathrm{C}, V_{L}=5 \text { Volts, Vin }=0\right. \text { V or 3.3V as appropriate, unless otherwise noted) }
$$

Parameters / Test Conditions	Symbol	Min.	Nom	Max.	Unit
Minimum Input Activation Voltage $\mathrm{Io}=5 \mathrm{~A}, \mathrm{~T}_{\mathrm{c}}=-55 \text { to }+125^{\circ} \mathrm{C}$	Vin(min)	3.0			V
Iio Leakage (Note 4) Vio $=1 \mathrm{kV}$ for 5 sec.	Iio			1	$\mu \mathrm{A}$
$\begin{aligned} & \text { Output Capacitance (Note 4) } \\ & \text { Vds }=100 \mathrm{~V} \end{aligned}$	Coss		65		pF
Output on Resistance $\mathrm{Id}=5 \mathrm{~A}$	Rds(on)		0.115	0.150	Ω
Output on Resistance $\mathrm{Id}=5 \mathrm{~A}, \mathrm{Tj}=125^{\circ} \mathrm{C}$	Rds(on)		0.345	0.400	Ω
Output Leakage $\operatorname{Vin}=0, V o=100 V$	Io_{1}		1	100	$\mu \mathrm{A}$
Output Leakage $\operatorname{Vin}=0, \mathrm{Vo}=80 \mathrm{~V}, \mathrm{Tj}=125^{\circ} \mathrm{C}$	IO_{2}		1	100	$\mu \mathrm{A}$
Input Buffer Supply Current $\mathrm{V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{Tc}=25^{\circ} \mathrm{C}, 125^{\circ} \mathrm{C}$	Ih		50	75	mA
Input Current to Activate $\begin{aligned} & \mathrm{V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~T}=-55 \text { to }+125^{\circ} \mathrm{C} \\ & (\mathrm{Vin}=5 \mathrm{~V}) \end{aligned}$	Iin		500	1000	$\mu \mathrm{A}$
Turn On Delay (Figure 7) $\mathrm{V}=28 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=30 \Omega \quad \mathrm{~T} \mathrm{C}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$	ton		60	125	$\mu \mathrm{S}$
Turn Off Delay (Figure 7) $\mathrm{VS}=28 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=30 \Omega \quad \mathrm{Tc}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$	toff		30	75	$\mu \mathrm{S}$
Rise Time (Figure 7) $\mathrm{V}_{\mathrm{s}}=28 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=30 \Omega(\text { Note } 4)$	tr		90	250	$\mu \mathrm{S}$
Fall Time (Figure 7) $\mathrm{V}_{\mathrm{s}}=28 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=30 \Omega(\text { Note } 4)$	tf		20	75	$\mu \mathrm{S}$

5 Amp SOLID STATE RELAYS

Table 3 - MODEL NUMBER FUNCTIONALITY CHART

MODEL NUMBER	ELECTRICALRATINGS		RELAY CONFIGURATION			PACKAGE TYPE	
	Voltage	Amps	SPDT	$\begin{aligned} & \text { Dual } \\ & \text { SPST } \\ & \text { N.O. } \end{aligned}$	$\begin{gathered} \text { Dual } \\ \text { SPST } \\ \text { N.C. } \end{gathered}$	$\begin{aligned} & \hline 8 \text { PIN SIP } \\ & \text { with } \\ & \text { Backtab } \end{aligned}$	8 PIN SIP Tabless
MHS2505SR \$ \&	250	5	\checkmark			\checkmark	
MHS2505SS \$ \&	250	5	\checkmark				\checkmark
MHS2505DR \$ \&	250	5		\checkmark		\checkmark	
MHS2505DS \$ \&	250	5		\checkmark			\checkmark
MHS2505CR \$ \&	250	5				\checkmark	
MHS2505CS \$ \&	250	5			\checkmark		\checkmark
$\begin{aligned} & \text { Replace "\$" with letter to de } \\ & \text { C }=\text { COTS } \\ & \text { H }=\text { CLASS H } \\ & \mathrm{K}=\text { CLASS K } \\ & \text { Replace } " \& " \text { with lead bend } \\ &=\text { No lead bend } \\ &-1=\text { SMT lead bend } \\ &-2=\text { lead bend up } \\ &-3=\text { lead bend down } \\ & \hline \end{aligned}$	ote requi ption	screen	evel				

5 Amp SOLID STATE RELAYS

Table 4 - RELIABILITY SCREENING OPTIONS

| | C | H | K | MIL-STD-883
 METHOD |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | COTS | EQUIVALENT
 MIL-PRF-38534 (Note 3) | | |
| Element Evaluation | N/A | Class H | Class K | |
| Non-Destruct Wirebond Pull | N/A | Sample | 100% | 2023 |
| Pre-Cap Visual | N/A | 100% | 100% | 2017 |
| Temperature Cycle | N/A | 100% | 100% | 1010 |
| Constant Acceleration | N/A | 100% | 100% | 2001 |
| PIND | N/A | | 100% | 2020 |
| Pre-Burn In Electrical | N/A | 100% | 100% | |
| Burn In | N/A | 100% | 100% | 1015 |
| Final Electrical Tests | $100 \% ~(25 C)$ | 100% | 100% | |
| Hermeticity (Fine and Gross Leak) | 100% | 100% | 100% | 1014 |
| X-Ray | N/A | N/A | Yes | 2012 |
| External Visual | Sample | 100% | 100% | 2009 |
| Certified | N/A | Yes | Yes | |

NOTE:

(1) Internal switch is rated for > 1000 Volts breakdown. Consult factory for use at Voltages greater than 250 Volts.
(2) Current handling capability depends upon allowable Tcase and allowable T_{j}. See Figure 1.
(3) Microsemi does not at this time have a MIL-PRF-38534 qualified radiation hardness assurance program.
(4) Not tested.
(5) Because of the relatively slow switching times involved in power SSRs, it is important to stay within the allowances of the device performance curves.

TECHNICAL DATA SHEET

6 Lake Street, Lawrence, MA 01841
1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803
Website: http: //www.microsemi.com

5 Amp SOLID STATE RELAYS

Figure 1: Maximum Switch Current as a Function of Case Temperature (per Channel) (Note 2)

Figure 3: Maximum Switch Current as a Function of Junction Temperature (per channel)

TECHNICAL DATA SHEET

6 Lake Street, Lawrence, MA 01841
1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803
Website: http: //www.microsemi.com

5 Amp SOLID STATE RELAYS

Figure 4: Transient Thermal Impedance (Note 5)

TECHNICAL DATA SHEET

6 Lake Street, Lawrence, MA 01841
1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803
Website: http: //www.microsemi.com

5 Amp SOLID STATE RELAYS

Figure 5: On Resistance as a Function of Junction Temperature

TECHNICAL DATA SHEET

6 Lake Street, Lawrence, MA 01841
1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803
Website: http: //www.microsemi.com

5 Amp SOLID STATE RELAYS

Figure 7: Switching Wave Forms with Circuit per Figure 6, Pin 2

5 Amp SOLID STATE RELAYS

PACKAGE OUTLINES, INCLUDING LEAD BEND OPTIONS AND PINOUT CONFIGURATIONS

Case Outline and Dimensions - 8 PIN Package, Lead Bend Up

NOTES

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5SM1994.

2 CONTROLLING DIMENSION: INCH.
3. DIMENSIONS ARE SHOWN IN INCHES.
4. TOLERANCES ARE $+/-.005$ UOS.

Case Outline and Dimensions - 8 PIN Package, Lead Bend Down

NOTES

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5SM1994.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSIONS ARE SHOWN IN INCHES
4. TOLERANCES ARE $+/-.005$ UOS.

6 Lake Street, Lawrence, MA 01841
1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803
Website: http: //www.microsemi.com

5 Amp SOLID STATE RELAYS

Case Outline and Dimensions - 8 PIN Surface Mount Package

NOTES

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5SM1994.

CONTROLLING DIMENSION: INCH.
DIMENSIONS ARE SHOWN IN INCHES
4. TOLERANCES ARE $+/-.005$ UOS.

Case Outline and Dimensions - 8 PIN Package, No Lead Bend

