

Intel StrataFlash® Wireless Memory System (LV18 SCSP)

1024-Mbit LVX Family with LPSDRAM

Datasheet

Product Features

■ Device Memory Architecture

- -Flash die density: 128-, 256-Mbit
- —LPSDRAM die density: 128-, 256-Mbit
- —Top or Bottom parameter flash configuration

Device Voltage

- —Core: $V_{CC} = 1.8 \text{ V (typ.)}$
- $-I/O: V_{CCQ} = 1.8 \text{ V (typ.)}$

Device Common Performance

- —Buffered EFP: 5μs / Byte (typ.) per die
- —Buffer Program: 7μs / Byte (typ.) per die
- -Concurrent Buffered EFP: 6.4-Mbps effective with 4 flash dies

■ Device Common Architecture Sheet4U.com Data Segment Flash Architecture

- —Asymmetrical blocking structure
- —16-KWord parameter blocks (Top or Bottom); 64-KWord main blocks
- —Zero-latency block locking
- —Absolute write protection with block lock down using F-VPP and F-WP#

Device Packaging

- —103 active balls: 9 x 12 ball matrix
- —Area: 9 x 11 mm to 11 x 11 mm
- —Height: 1.4 mm

SDRAM Architecture and Performance

- -Clock rate: 105 MHz
- —Four internal banks
- -Burst Length: 1, 2, 4, 8, or full page

■ Code Segment Flash Read Performance

- -85 ns initial access
- —25 ns Asynchronous Page read
- —14 ns Synchronous read (t_{CHOV})
- —54 MHz (max.) CLK

■ Data Segment Flash Performance

- —170 ns initial access
- —55 ns Asynchronous Page read

■ Code Segment Flash Architecture

- -Hardware Read-While-Write/Erase
- —Multiple 8-Mbit / 16-Mbit partition sizes
- -2-Kbit One-Time-Programmable **Protection Register**

- —Software Read-While-Write/Erase
- —Single partition size die

Flash Software

- —Intel[®] FDI, Intel[®] PSM, and Intel[®] VFM
- —Common Flash Interface
- —Basic/Extended Command Set

Quality and Reliability

- —Extended temperature: -25 °C to +85 °C
- -Minimum 100 K flash block erase cycle
- —0.13 μm ETOX™ VIII flash technology

Intel StrataFlash® Wireless Memory System (LV18 SCSP) with Low-Power SDRAM (LVX family) offers a variety of high performance code segment, large embedded data segment, and low-power SDRAM combinations in a common package on 0.13 μm ETOXTM VIII flash technology. The LVX family integrates up to two code segment flash dies, two data segment flash dies, and two low-power SDRAM dies or one SRAM die in a common x16D Performance ballout.

Notice: This document contains information on new products in production. The specifications are subject to change without notice. Verify with your local Intel sales office that you have the latest datasheet before finalizing a design.

> 300945-006 October 2004 WWW.DataSheet4U.com

DataSheet4U.com

t4U.com DataSho

DataSheet4U.com

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

The Intel StrataFlash® Wireless Memory System (LV18 SCSP) 1024-Mbit LVX Family with Low-Power SDRAM may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2004, Intel Corporation.

DataSheet4U.com

DataSheet 4U.com

1.0	Introduction	7
	1.1 Nomenclature1.2 Acronyms1.3 Conventions	8
2.0	Functional Overview	11
	2.1 Product Description	13 13
3.0	Package Information	
4.0	Ballout and Signal Descriptions	23
	4.1 Signal Ballout	23
5.0	Maximum Ratings and Operating Conditions	27
	5.1 Absolute Maximum Ratings	
6.0	Electrical Specifications	29
	6.1 DC Voltage and Current Characteristics	29
7.0	AC Characteristics	
	7.1 Device AC Test Conditions	31 31 32
3.0	Power and Reset Specifications	34
9.0	Operations Overview	34
	9.1 Rus Operations	3/

DataShe

DataSheet4U.com

et4U.com

Datasheet

www.DataSheet4U.com

10.0 Flash F	Read Operations	. 40
11.0 Flash F	Program Operations	.40
12.0 Flash E	Erase Operations	.40
13.0 Flash \$	Suspend and Resume Operations	.40
14.0 Flash E	Block Locking and Unlocking Operations	. 40
	Protection Register Operations	
16.0 Flash (Configuration Operations	.40
	Oual Operation Considerations	
18.0 LPSDR	AM Operations	.41
18.2 LF 18.3 Ex 18.4 LF 18 18 18 18 18 18 18 18 18 18	PSDRAM Power-up Sequence and Initialization PSDRAM Mode Register Extended Mode Register PSDRAM Commands and Operations B.4.1 LPSDRAM No Operation / Device Deselect 18.4.1.1 Device Deselect (NOP) 18.4.1.2 No Operation (NOP) B.4.2 LPSDRAM Active B.4.3 LPSDRAM Read B.4.4 LPSDRAM Write B.4.5 LPSDRAM Power-Downsta Sheet AU com B.4.6 LPSDRAM Deep Power-Down B.4.7 LPSDRAM Deep Power-Down B.4.7 LPSDRAM Precharge B.4.8 LPSDRAM Auto Precharge B.4.9 LPSDRAM Auto Precharge B.4.10 LPSDRAM Concurrent Auto Precharge B.4.11 LPSDRAM Burst Terminate B.4.12 LPSDRAM Auto Refresh B.4.13 LPSDRAM Self Refresh	.41 .42 .43 .43 .43 .43 .44 .45 .45 .46 .46 .54
Appendix A	Write State Machine	. 55
Appendix B	Common Flash Interface	. 55
Appendix C	Flash Flowcharts	. 55
Appendix D	Additional Information	. 56
Appendix E	Ordering Information	. 57

et4U.com

DataShe

Revision History

Date	Revision	Description
February, 2004	-001	Initial release.
February, 2004	-002	Corrected information in the Memory Map table, code and data segments, bottom parameter.
April, 2004	-003	Corrected errors in Table 1 and Table 26. The package dimension of part RD48F4444LVYBB0 RD48F4444LVYTB0 now reads 11x11x1.4 instead of 9x11x1.4.
June, 2004	-004	Updated Table 1 and Table 26. Added line item RD38F4460LVYGB0. Added G as an option to Figure 29 - Ordering Information. Added Figure 6, a top-top memory map diagram. Added top/top configuration feature to the title page "Product Features".
July, 2004	-005	Added the mechanical specification diagram, Figure 5 for the 11x11x1.4 mm option.
		Added line items 256L18/256V18/256SD, 256L18/256L18/ 256V18/256SD, and 256L18/256V18/256V18/256SD to the following tables:
October, 2004	-006	* Table 1 "Available Product Ordering Information for the LVX Family with LPSDRAM" on page 12
		* Table 26 "LVX Family with LPSDRAM: Available Product Ordering Information" on page 57

DataSheet4U.com

DataShe

et4U.com

DataSheet4U.com www.DataSheet4U.com

DataSheet4U.com

et4U.com DataShe

DataSheet4U.com

DataSheet4U.com

6

www.DataSheet4U.com

Introduction 1.0

This document provides preliminary information about the Intel StrataFlash® Wireless Memory System (LV18 SCSP) with Low-Power SDRAM (LVX family). This document describes the flash dies used in the code and large embedded data segments and the features, operations, and specifications within the subsystem. Also described in this document are the LPSDRAM characteristics and operations. The intent of this document is to provide information where these SCSP products differ from the Intel StrataFlash® Wireless Memory System (LV18) datasheet.

Refer to the latest revision of the Intel StrataFlash® Wireless Memory System Datasheet (order number 253854) for flash product details not included in this document.

1.1 **Nomenclature**

1.8 V Core Voltage Range of 1.7 V − 1.95 V

1.8 V I/O Voltage Range of 1.7 V – 1.95 V

Asserted Signal with logical voltage level V_{II} , or enabled

Deasserted Signal with logical voltage level V_{IH}, or disabled

High-Z Tri-stated or High Impedance

DrivertaSheet4U.com Low-Z

Non-Array Reads Flash reads which return flash Device Identifier, CFI Query, Protection

Register and Status Register information

Program An operation to Write data to the flash array

Bus cycle operation at the inputs of the flash die, in which a command Write

or data are sent to the flash array

Block Group of cells, bits, bytes or words within the flash memory array that

get erased with one erase instruction

Parameter block Any 16-Kword flash array block.

Main block Any 64-Kword flash array block.

Top parameter Previously referred to as a top-boot device, a device with flash

parameter partition located at the highest physical address of its

memory map for processor system boot up.

Bottom parameter Previously referred to as a bottom-boot device, a device with flash

parameter partition located at the lowest physical address of its memory

map for processor system boot up.

Bottom-Top parameter SCSP device configuration of two flash dies in the same segment

arranged with the parameter partitions located at the lowest and highest

physical address of its memory map.

DataSheet4U.com

www.DataSheet4U.com

7

DataSheet4U.com

Partition A group of flash blocks that shares common Status Register read state.

Parameter partition A flash partition containing parameter and main blocks.

Main partition A flash partition containing only main blocks.

Die Individual physical flash or RAM die used in a SCSP memory

subsystem device

Segment A section of the SCSP memory subsystem divided for different

operating characteristics. The SCSP memory subsystem has three segments: a code segment, a data segment, and an xRAM segment.

Code segment A segment that contains one or two flash memory dies optimized for

fast code or data reads. Each die features multi-partitions synchronous

read-while-write or burst read-while-erase capability.

Data segment A segment contains one or two flash memory dies optimized for large

embedded data. Each die feature single-partition asynchronous read,

write, and erase operations.

xRAM segment A segment contains one or two xRAM memory dies. The xRAM

combinations could include SRAM, PSRAM, or LPSDRAM.

Subsystem A stacked memory integration concept made up of multiple memory

dies arranged in code, data, and xRAM segments.

Device A specific stacked flash + xRAM memory density configuration

combination within the LVX product family.

1.2 Acronyms

APS Automatic Power Savings

Buffered EFP Buffered Enhanced Factory Programming

CFI Common Flash Interface

CR Configuration Register

CUI Command User Interface

DU Do Not Use

ETOX EPROM Tunnel Oxide

OTP One-Time Programmable

PLR Protection Lock Register

PR Protection Register

RCR Read Configuration Register

RFU Reserved for Future Use (all unused active signals in a package ballout)

www.DataSheet4U.com

Datasheet

DataSheet4U.com

8

RWE Read-While-Erase

RWW Read-While-Write

SCSP Stacked Chip Scale Package

SR Status Register

SRD Status Register Data

WSM Write State Machine

1.3 Conventions

0x Hexadecimal number prefix

0b Binary number prefix

A5 Denotes one element of a signal group membership, in this case address

bit 5.

ADV# A name without a prefix denotes a global signal of the device; for

example, Address Valid is global because there is no die specific

reference.

bit Binary unit, valid range [0, 1]

byte Eight bits, valid range [0x00 - 0xFF]

Clear Logical zero (0)

DQ[15:0] Denotes a group of similarly named signals, such as data bus.

F[3:1]-CE#, F[2:1]-OE# This is the method used to refer to more than one chip-enable or output

enable at the same time. When each die is refer to individually, the reference will be F1-CE# and F1-OE# (for die #1), F2-CE# and F2-OE#

(for die #2), and F3-CE# (for die #3), unless noted otherwise.

"F" denotes the flash specific signal and "CE#" is the root signal name of the flash die Chip-Enable. Other notation includes: "S" to denote SRAM, "P" to denote PSRAM, "D" to denote LPSDRAM, and "R" to

denote common RAM type signal names.

k (noun) 1000 (units)

Kb 1024 bits

KB 1024 bytes

Kbit 1024 bits

KByte 1024 bytes (8,192 bits)

Kword 1024 words (16,384 bits)

Mbit 1,048,576 bits

MByte 1,048,576 bytes (8,388,608 bits)

DataSheet4U.com www.DataSheet4U.com

Datasheet

9

MWord 1,048,576 words (16,777,216 bits)

M (noun) 1 million

 Mb
 1,048,576 bits

 MB
 1,048,576 bytes

Set Logical one (1)

SR[4] Denotes an individual flash Status Register bit, in this case bit 4 of

SR[7:0].

VCC Signal or voltage connection

 V_{CC} Signal or voltage level

Word Two bytes or sixteen bits, valid range [0x0000 - 0xFFFFF]

et4U.com

DataShe

DataSheet4U.com

DataSheet4U.com

www.DataSheet4U.com

10

Functional Overview 2.0

This section provides an overview of the features and capabilities of Intel StrataFlash® Wireless Memory System (LV18 SCSP) with Low-Power SDRAM LVX family; hereafter in this document, this device is called the LVX family with LPSDRAM device.

2.1 **Product Description**

The LVX family with LPSDRAM device incorporates flash dies used as code segment flash die and large embedded data segment flash die, along with LPSDRAM for a high performance, costeffective high density solution. This stacked device utilizes the latest Intel StrataFlash® Wireless Memory System on 0.13 μm ETOXTM VIII process technology.

The code segment flash is a high performance, multi-partition, synchronous burst-mode Read-While-Write (RWW) or Read-While-Erase (RWE), while the large embedded data segment is a cost efficient, single partition, asynchronous memory die.

The package for this device is available in a x16D Performance ballout, supporting flash-only or flash with LPSDRAM stacked memory combinations. The Intel® SCSP package in a x16D performance ballout with a 0.8 mm ball pitch, 9 x 12 active ball matrix supports a memory subsystem up to 105 MHz on a x16-bit bus width. See Figure 1, "LVX Family with LPSDRAM Device Block Diagram" on page 11.

Figure 1. LVX Family with LPSDRAM Device Block Diagram

LVX Family Flash (Code/Data) Segment F1-CE# F2-CE# F-WP1# Flach Die #1 Flash Die #2 128- or 256-Mbit) (128- or 256-Mbit) F-RST# F-CLK -ADV# F-VCC F-WP2# WAIT -F-VPP OF# Flash Die #3 Flash Die #4 F3-CE# F4-CE# (128- or 256-Mbit) (128- or 256-Mbit) WE# VCCQ vss DQ[15:0] < xRAM Segment A[MAX:MIN] -R1-CS# LPSDRAM Die #1 R2-CS# D-DM1 / R-UB# -(128/256-Mbit) D-BA[1:0] D-DM0 / R-LB# SRAM Die #1 D-CAS# (8-Mbit) D-RAS# S-CS1# -LPSDRAM Die #2 R-CLK S-CS2 -(128/256-Mbit) - D-CKE S-VCC -R-VCC

11

www.DataSheet4U.com

NOTE: You can request the stacked Flash + xRAM combinations based on memory die options shown in Figure 1. For current available Flash + xRAM combinations, refer to Table 1.

The LVX family with LPSDRAM device consists of a 1.8 V flash core device (F-V_{CC}) with 1.8 V and 3.0 V I/O options. The device is available with at least one flash die per code segment and/or one flash die per data segment. However, it has a maximum of two flash dies per code or data segments. See Table 2, "LV Flash Code and Data Die (F-CE#) Stacked Configuration" on page 15 for possible combinations.

Designed for low-voltage systems, the LVX supports read operations with F-V_{CC} at 1.8 V, and erase and program operations with F-V_{PP} at 1.8 V. Buffered Enhanced Factory Programming (Buffered EFP) provides the fastest flash array programming performance, with elevated F-V_{PP} at 9.0 V to increase factory throughput. With F-V_{PP} at 1.8 V, F-V_{CC} and F-V_{CC} can be tied together for a simple, ultra-low-power design. In addition to voltage flexibility, a dedicated F-V_{PP} connection provides complete data protection when $F-V_{PP} \leq V_{PPL,K}$.

The Intel StrataFlash® Wireless Memory System provides data security through its individual zerolatency block lock capability. Each memory block can be unlocked, locked, or locked-down by hardware or software control.

Individualized F-CE# control allows the user to manage which flash die is asserted, furthering the flexibility of power management while controlling data integrity per segment with F-WP#. The F[2:1]-OE# in LVX products with a x16D Performance ballout ballout are common internally.

Table 1 lists the available LVX product family devices. If the product combinations you are seeking are not listed, the combination is not available at this time and you will need to contact your local Intel representative for details.

Available Product Ordering Information for the LVX Family with LPSDRAM Table 1.

Package I/O **RAM Density** Flash Density (Mbit) (Mbit) and RAM **Part Number Notes** Voltage and Family Size **Ballout** (V) Type **Ball Type** (mm) Name RD48F4444LVYBB0 256 L18 + 256 L18 + x16D SCSP 11x11x1.4 256 V18 + 256 V18 (103 Ball) Leaded RD48F4444LVYTB0 RD38F4460LVYBB0 SCSP 256 I 18 + x16D 128 SDRAM 9x11x1.4 RD38F4460LVYTB0 1 256 V18 (103 Ball) Leaded RD38F4460LVYGB0 1.8 RD58F0012LVYBB0 256 L18 + 256 L18 + x16D **SCSP** 9x11x1.4 2 128 SDRAM 256 V18 (103 Ball) Leaded RD58F0012LVYTB0 SCSP RD58F0016LVYBB0 256 L18 + x16D 128 SDRAM 9x11x1.4 256 V18 + 256 V18 (103 Ball) Leaded RD58F0016LVYTB0

NOTES:

- 1. For the "custom" line item RD38F4460LVYGB0, the "G" designate the F-CE# parameter configuration where F1-CE# = Top parameter and F2-CE# = Top parameter. See Table 2 for details.
- 2. 58Fxxxx nomenclature is used when the stacked device has greater than three flash + RAM dies.

www.DataSheet4U.com

Datasheet

12

2.2 Unique Product Features

The code segment of the LVX includes the following enhanced features unless specifically noted otherwise:

- 64 unique (Intel pre-programmed) identifier bits and 2,112 user-programmable OTP bits for each code segment flash die.
- Traditional write, erase, and burst-mode read capabilities of Intel[®] Wireless Flash Memory (W18).
- Simultaneous RWW/RWE operations, enabling a burst read operation in one partition with simultaneous program or erase operations in other partitions.
- Burst-read across partition boundaries, but not across segment dies within the subsystem.
- User application code responsible for ensuring that burst-mode reads do not cross into a
 partition that is in program or erase mode.

The embedded data segment includes the following features unless specifically noted otherwise:

- High density offerings of up to 512 Mbits are designated specifically for large embedded data.
- Single partition asynchronous page-mode read operation, allowing for a cost-effective ideal storage format.
- Read-while-write or read-while-erase operations can be accomplished with software through program suspend and erase suspend operations.

4U.com

DataSh

2.3 Product Configurations and Memory Partitioning

The first flash die, by default is the first code segment flash die, which is a fast, execute-in-place (XIP) solution that is ideally suited toward an instruction fetch application. This portion is the user selected parameter configuration option, where the density can be made up of 128-Mbit dies or 256-Mbit dies, each containing one parameter partition and several main partitions. The parameter partition contains four 16-Kword parameter blocks and seven 64-Kword main blocks; all main partitions consist of eight 64-Kword main blocks.

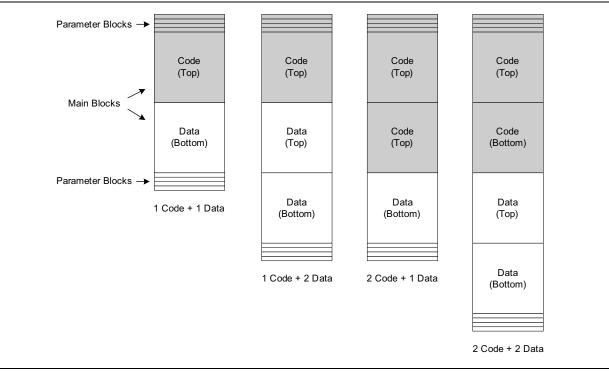
The large embedded data die segment is a single partition asynchronous page-mode read device that is available in variations of 128-Mbit dies or 256-Mbit dies. The single partition is made up of four 16-Kword parameter blocks and 64-Kword main blocks. The data segment flash die parameter configuration will always be the opposite of the code segment flash die parameter configuration. See Table 2, "LV Flash Code and Data Die (F-CE#) Stacked Configuration" on page 15 for examples of configuration options.

Users have the choice of selecting either a top or a bottom parameter configuration for the code die segment. Depending on the choice of configuration, the data die(s) in the LVX device will be parametrically opposed. For instance, if the user selects top parameter configuration for the code die, the data die in the package will be configured as bottom parameter configuration, and viceversa. This ensures the largest number of contiguous main block addresses for software efficiency.

The xRAM segment can consist of up to two low-power SDRAM (LPSDRAM) dies. The LPSDRAM can be either a 128-Mbit or a 256-Mbit die. For the code segment, partition configurations are as follows:

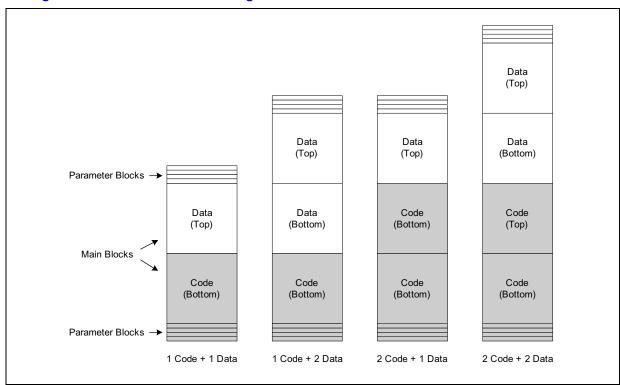
- 128-Mbit flash die partitions are 8 Mbits.
- 256-Mbit flash die partitions are 16 Mbits.
- Minimum code + data density combination is 384 Mbits.

DataSheet4U.com


www.DataSheet4U.com

Datasheet

13


Figure 2. Top Parameter Configurations

et4U.com

DataSheet4U.com

Figure 3. Bottom Parameter Configurations

DataSheet4U.com

14

www.DataSheet4U.com

DataShe

Datasheet

Data

Table 2. LV Flash Code and Data Die (F-CE#) Stacked Configuration

		Code S	egment	Data Se	gment	
Die	Stack Configuration	1st Flash Code Die (user selected)	2nd Flash Code Die	1st Flash Data Die	2nd Flash Data Die	
	Code + Data	F1-CE# (Top)	F2-CE# (Bottom)	_	_	
Тор	Code + Data + Data	F1-CE# (Top)	F2-CE# (Top)	F3-CE# (Bottom)	_	
Parameter	Code + Code + Data	F1-CE# (Top)	F2-CE# (Top)	F3-CE# (Bottom)	_	
	Code + Code + Data + Data	F1-CE# (Top)	F2-CE# (Bottom)	F3-CE# (Top)	F4-CE# (Bottom)	
	Code + Data	F1-CE# (Bottom)	F2-CE# (Top)	_	_	
Bottom	Code + Data + Data	F1-CE# (Bottom)	F2-CE# (Bottom)	F3-CE# (Top)	_	
Parameter	Code + Code + Data	F1-CE# (Bottom)	F2-CE# (Bottom)	F3-CE# (Top)	_	
	Code + Code + Data + Data	F1-CE# (Bottom)	F2-CE# (Top)	F3-CE# (Bottom)	F4-CE# (Top)	
	Code + Data	F1-CE# (Top)	F2-CE# (Top)	_	_	
Top-Top Parameter	Code + Data + Data	F1-CE# (Top)	F2-CE# (Top)	F3-CE# (Top)	_	
(custom)	Code + Code + Data	F1-CE# (Top)	F2-CE# (Top)	F3-CE# (Top)	_	
	Code + Code + Data + Data	F1-CE# (Top)	F2-CE# (Top)	F3-CE# (Top)	F4-CE# (Top)	

Table 2 shows an example of the memory map and partitioning information for combinations with up to four flash dies in the LVX SCSP family with Synchronous LPSDRAM.

- Top parameter configuration. For two flash dies, flash die #1 (with F1-CE# as its Chip Enable) is configured as top parameter. Flash die #2 (with F2-CE# as its Chip Enable) is configured as bottom parameter.
- Bottom parameter configuration. For two flash dies, flash die #1 (with F1-CE# as its Chip Enable) is configured as bottom parameter. Flash die #2 (with F2-CE# as its Chip Enable) is configured as top parameter.
- Top-Top parameter configuration is a custom option, where all flash dies within the stacked device has the same parameter configuration. In this case, all dies are Top configured.

2.4 Memory Map

The LVX family with LPSDRAM device is available in several density and parameter configurations. The memory map is based on the stacking of individual 128- and 256-Mbit flash die density options. The memory map shows individual flash die configurations and block/partition allocations. See the following tables for further information:

- Table 3, "Code-Data (Top Parameter) SCSP Memory Map and Partitioning" on page 16
- Table 4, "Code-Data (Bottom Parameter) SCSP Memory Map and Partitioning" on page 17
- Table 5, "Code-Data (Top Top Parameter) SCSP Memory Map and Partitioning" on page 18
- Table 6, "Code-Code-Data (Top Parameter) SCSP Memory Map and Partitioning" on page 19
- Table 7, "Code-Code-Data (Bottom Parameter) SCSP Memory Map and Partitioning" on page 20

DataSheet4U.com www.DataSheet4U.com

Table 3. Code-Data (Top Parameter) SCSP Memory Map and Partitioning

Flash	Die Stack	Partitioning	Block Size	Partition Size		128-Mbit Flash	Partition Size	256-Mbit Flash		
Die#	Config.	Faithoning	(KW)	(Mbit)	Blk#	Address Range	(Mbit)	Blk#	Address Range	
			16		130	7FC000-7FFFFF		258	FFC000-FFFFFF	
		Parameter	÷			:		:	i	
		Parameter	16		127	7F0000-7F3FFF		255	FF0000-FF3FFF	
	Code	(Partition 0)	64		126	7E0000-7EFFFF		254	FE0000-FEFFFF	
		(:			:		:	:	
1			64	8	120	780000-78FFFF	16	240	F00000-FFFFFF	
•	(Top Parameter)	Main Partitions	64		119	770000-77FFFF		239	EF0000-EFFFFF	
		(Partition 1 to 7)	:			:		:	:	
		(* ====================================	64		64	400000-4FFFFF		128	800000-80FFFF	
		Main Partitions (Partition 8 to	64		63	3F0000-3FFFFF		127	F70000-F7FFFF	
			÷			:		:	:	
		15)	64		0	000000-00FFFF		0	000000-00FFFF	
			64		130	7F0000-7FFFF	П	258	FF0000-FFFFF	
			04		130	7F0000-7FFFF	1		FF0000-FFFFF	
		Single Partition	64		67	:		:	:	
		4x16 Kword				400000-40FFFF		131	800000-80FFFF	
		Parameter	64		66	3F0000-3FFFFF		130	7F0000-7FFFF	
	Data	Blocks	:		:	:		:	100000 10555	
2	(Bottom	127x64 Kword	64	128	11	080000-08FFFF	256	19	100000-10FFFF	
	Parameter)	Main Blocks (128 Mb)	64		10	070000-07FFF		18	0F0000-0FFFFF	
		255x64 Kword	64	Dat	aShe	010000-01FFFF	4	:	040000 04555	
		Main Blocks					1	4	010000-01FFFF	
		(256 Mb)	16		3	00C000-00FFFF	4	3	00C000-00FFFF	
			:		:	:	1	:	:	
			16		0	000000-003FFF	11	0	000000-003FFF	

et4U.com

DataShe

DataSheet4U.com

16

www.DataSheet4U.com

Table 4. Code-Data (Bottom Parameter) SCSP Memory Map and Partitioning

1	1	ı					П		1	
Flash	Die Stack	Partitioning	Block	Partition Size		128-Mbit Flash	Partition Size	256-Mbit Flash		
Die#	Config.	· and and	Size (KW)	(Mbit)	Blk#	Address Range	(Mbit)	Blk#	Address Range	
		Single Destition	16		130	7FC000-7FFFF	İ	258	FFC000-FFFFFF	
			÷		:	:	1		i	
		Single Partition	16		127	7F0000-7F3FFF		255	FF0000-FF3FFF	
		4x16 Kword Parameter	64		126	7E0000-7EFFFF		254	FE0000-FEFFFF	
	Data	Blocks	:		:	:	1	:	:	
2	(Top Parameter)	127x64 Kword	64	8	120	780000-78FFFF	16	240	F00000-FFFFFF	
_		Main Blocks	64		119	770000-77FFFF		239	EF0000-EFFFFF	
		(128 Mb)	:		:	:			:	
		255x64 Kword Main Blocks (256 Mb)	64		64	400000-4FFFFF		128	800000-80FFFF	
			64		63	3F0000-3FFFFF		127	F70000-F7FFF	
		(:		:	:		:	:	
			64		0	000000-00FFFF		0	000000-00FFFF	
		Main Partitions (Partitions 8 to 15)	64		130	7F0000-7FFFFF		258	FF0000-FFFFFF	
			÷		:	:]	:	:	
			64		67	400000-40FFFF		131	800000-80FFFF	
		Main Partitions	64		66	3F0000-3FFFFF		130	7F0000-7FFFF	
	Code	(Partitions 1 to	:		:	:]	:	:	
1	(Bottom	7)	64	128	11	080000-08FFFF	256	19	100000-10FFFF	
	Parameter)		64		10	070000-07FFFF		18	0F0000-0FFFF	
	,	Danamatan	:	D 1 0		:			:	
		Parameter Partition	64	DataS		U. 010000-01FFFF]	4	010000-01FFFF	
		(Partition 0)	16		3	00C000-00FFFF]	3	00C000-00FFFF	
			:		:	:]]	:	i	
			16		0	000000-00FFFF		0	000000-00FFFF	

et4U.com

DataShe

17

DataSheet4U.com

DataSheet4U.com www.DataSheet4U.com

Table 5. Code-Data (Top - Top Parameter) SCSP Memory Map and Partitioning

Flash	Die Stack	Partitioning	Block Size	Partition Size		128-Mbit Flash	Partition Size	256-Mbit Flash		
Die#	Config.		(KW)	(Mbit)	Blk#	Address Range	(Mbit)	Blk#	Address Range	
			16		130	7FC000-7FFFFF	i i	258	FFC000-FFFFFF	
		Parameter	:			:				
		Parameter	16		127	7F0000-7F3FFF		255	FF0000-FF3FFF	
		(Partition 0)	64		126	7E0000-7EFFFF		254	FE0000-FEFFFF	
	Code	(:			:		:	:	
1			64	8	120	780000-78FFFF	16	240	F00000-FFFFFF	
•	(Top Parameter)	Main Partitions	64		119	770000-77FFFF		239	EF0000-EFFFFF	
		(Partition 1 to 7)				:			:	
		,	64		64	400000-4FFFFF]	128	800000-80FFFF	
		Main Partitions (Partition 8 to	64		63	3F0000-3FFFFF		127	F70000-F7FFF	
						:			::	
		15)	64		0	000000-00FFFF		0	000000-00FFFF	
			16		130	7FC000-7FFFFF	П	258	FFC000-FFFFFF	
						7				
		Single Partition	: 16		127	: 7F0000-7F3FFF	4	255	FF0000-FF3FFF	
		4x16 Kword	64		126	7E0000-7F5FFF	4	254	FE0000-FEFFF	
		Parameter				7 E0000-7 EFFFF	4			
	Data	Blocks	: 64		120	: 780000-78FFFF		240	F00000-FFFFFF	
2	(Тор	127x64 Kword Main Blocks	64	8	119	770000-73FFFF	16	239	EF0000-FFFFF	
	Parameter)	(128 Mb)	:				4	200		
		255x64 Kword	64	Dat	aShe 64	400000-4FFFF	1	128	: 800000-80FFFF	
		Main Blocks	64		63	3F0000-3FFFFF	1	127	F70000-F7FFFF	
		(256 Mb)	:		:	:	\mathbf{H}	:	:	
			64		0	: 000000-00FFFF	1	0	: 000000-00FFFF	
			٠.		_	550000 001111	11	Ü	330000 001111	

et4U.com

DataShe

DataSheet4U.com

18

www.DataSheet4U.com

Table 6. Code-Code-Data (Top Parameter) SCSP Memory Map and Partitioning

Flash	Die Stack	Partitioning	Block Size	Partition Size		128-Mbit Flash	Partition Size		256-Mbit Flash
Die#	Config.	rantioning	(KW)	(Mbit)	Blk#	Address Range	(Mbit)	Blk#	Address Range
			16		130	7FC000-7FFFFF		258	FFC000-FFFFFF
			:		:	:	1	:	:
		Parameter Partition	16		127	7F0000-7F3FFF		255	FF0000-FF3FFF
		(Partition 0)	64		126	7E0000-7EFFFF		254	FE0000-FEFFFF
	Cada		÷		÷	:	1	:	÷
1	Code		64	8	120	780000-78FFFF	16	240	F00000-FFFFFF
'	(Top Parameter)	Main Dautitions	64	0	119	770000-77FFFF		239	EF0000-EFFFFF
	l didiliotor,	Main Partitions (Partition 1 to 7)	:		:	:		:	:
		(raraaari raari)	64		64	400000-4FFFF]	128	800000-80FFFF
		Main Dautitions	64		63	3F0000-3FFFFF]	127	F70000-F7FFFF
		Main Partitions (Partition 8 to 15)	÷		÷	:		:	i i
		(1 attition 6 to 13)	64		0	000000-00FFFF		0	000000-00FFFF
					400		11		
	Code (Top Parameter)	Parameter Partition	16		130	7FC000-7FFFFF		258	FFC000-FFFFFF
			:		:	:		:	:
			16		127	7F0000-7F3FFF		255	FF0000-FF3FFF
		(Partition 0)	64		126	7E0000-7EFFFF		254	FE0000-FEFFFF
			:		:	:		:	:
2			64	8	120	780000-78FFFF	16	240	F00000-FFFFF
		Main Partitions (Partition 1 to 7)	64		119	770000-77FFFF		239	EF0000-EFFFFF
			:	DataS	neet/	IU.com		:	:
			64		64	400000-4FFFF		128	800000-80FFFF
		Main Partitions	64		63	3F0000-3FFFFF		127	F70000-F7FFF
		(Partition 8 to 15)	:		:	:		:	:
		<u> </u>	64		0	000000-00FFFF		0	000000-00FFFF
			64		130	7F0000-7FFFF	П	258	FF0000-FFFFFF
			:		:	:	-	:	:
			64		67	: 400000-40FFFF		131	: 800000-80FFFF
		Single Partition	64		66	3F0000-3FFFFF		130	7F0000-7FFFF
		4x16 Kword	:		:	:	-	:	:
	Data	Parameter Blocks	64		11	: 080000-08FFFF		19	: 100000-10FFFF
3	(Bottom	127x64 Kword Main	64	128	10	070000-03FFFF	256	18	0F0000-161111
	Parameter)	Blocks (128 Mb)	:		:	:	-	:	:
		255x64 Kword Main	64		4	: 010000-01FFFF		4	: 010000-01FFFF
		Blocks (256 Mb)	16		3	00C000-00FFFF		3	00C000-00FFFF
			:		:	:		:	:
			16		0	000000-003FFF	 	0	: 000000-003FFF
			. •	<u> </u>	,	2000000011	П	,	200000 000111

Note: Other stacked memory combinations and parameter configurations can be created based on the memory map and partitions highlighted from Table 3 to Table 7.

DataSheet4U.com www.DataSheet4U.com

Datasheet 19

DataSheet4U.com

DataSheet4U.com

et4U.com

DataShe

Table 7. Code-Code-Data (Bottom Parameter) SCSP Memory Map and Partitioning

Flash	Die Stack	Partitioning	Block Size	Partition Size		128-Mbit Flash	Partition Size		256-Mbit Flash
Die#	Config.	Partitioning	(KW)	(Mbit)	Blk#	Address Range	(Mbit)	Blk#	Address Range
			16		130	7FC000-7FFFFF		258	FFC000-FFFFFF
			:		:	:		:	:
			16		127	7F0000-7F3FFF		255	FF0000-FF3FFF
		Single Partition	64		126	7E0000-7EFFFF		254	FE0000-FEFFFF
	Data	4x16 Kword Parameter Blocks	:		:	:		:	:
3			64	8	120	780000-78FFFF	16	240	F00000-FFFFFF
J 3	(Top Parameter)	127x64 Kword Main Blocks (128 Mb)	64	0	119	770000-77FFFF	10	239	EF0000-EFFFFF
	· urumotor,	255x64 Kword Main	:		:	:		:	:
		Blocks (256 Mb)	64		64	400000-4FFFF		128	800000-80FFFF
			64		63	3F0000-3FFFFF		127	F70000-F7FFFF
			:		:	:		÷	:
			64		0	000000-00FFFF		0	000000-00FFFF
			64		130	7F0000-7FFFF	T	258	FF0000-FFFFF
		Main Partitions (Partition 8 to 15)							
			: 64		.: 67	: 400000-40FFFF		131	: 800000-80FFFF
			64		66	3F0000-3FFFF		130	7F0000-7FFFFF
		Main Partitions				350000-35555			7F0000-7FFFF
	Code	(Partition 1 to 7)	64		11	: 080000-08FFFF		: 19	: 100000-10FFFF
2	(Bottom		64		10	070000-07FFFF		18	0F0000-10FFFF
	Parameter)	Parameter Partition (Partition 0)							
			64	DataS	ne z etz	010000-01FFFF		: 4	: 010000-01FFFF
			16		3	00C000-00FFFF		3	00C000-00FFFF
		(i dittion o)						:	
			: 16		: 0	: 000000-003FFF		0	: 000000-003FFF
			10		U	000000-003111			000000-003111
		Main Dertitions	64		130	7F0000-7FFFF		258	FF0000-FFFFFF
		Main Partitions (Partition 8 to 15)	:		:	:		:	:
		(i didion o to ro)	64		67	400000-40FFFF		131	800000-80FFFF
		Main Dantitions	64		66	3F0000-3FFFFF		130	7F0000-7FFFFF
	0 - 4 -	Main Partitions (Partition 1 to 7)	:		:	:		:	:
1	Code	(. αιααστι το τ)	64		11	080000-08FFFF		19	100000-10FFFF
'	(Bottom Parameter)		64		10	070000-07FFFF		18	0F0000-0FFFFF
	raiameter)		÷		:			:	:
		Parameter Partition	64		4	010000-01FFFF		4	010000-01FFFF
		(Partition 0)	16		3	00C000-00FFFF		3	00C000-00FFFF
			÷		÷	:		÷	<u> </u>
			16		0	000000-003FFF		0	000000-003FFF

Note: Other stacked memory combinations and parameter configurations can be created based on the memory map and partitions highlighted from Table 3 to Table 7.

DataSheet4U.com

20

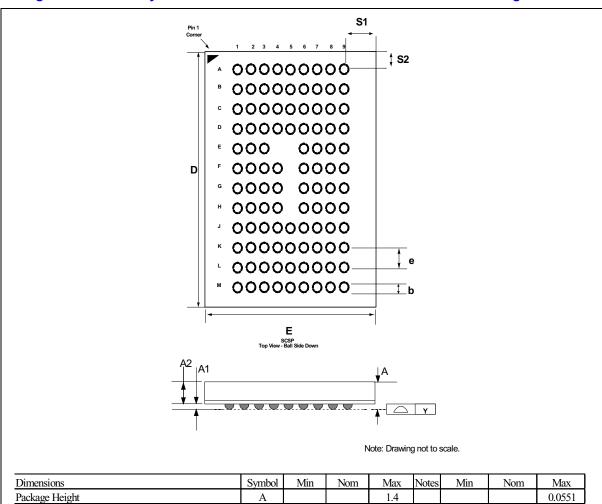
et4U.com

Datasheet

DataSheet4U.com

www.DataSheet4U.com

DataShe



Package Information

LVX family with LPSDRAM device is available in the following standard SCSP x 16D Performance ballout packages:

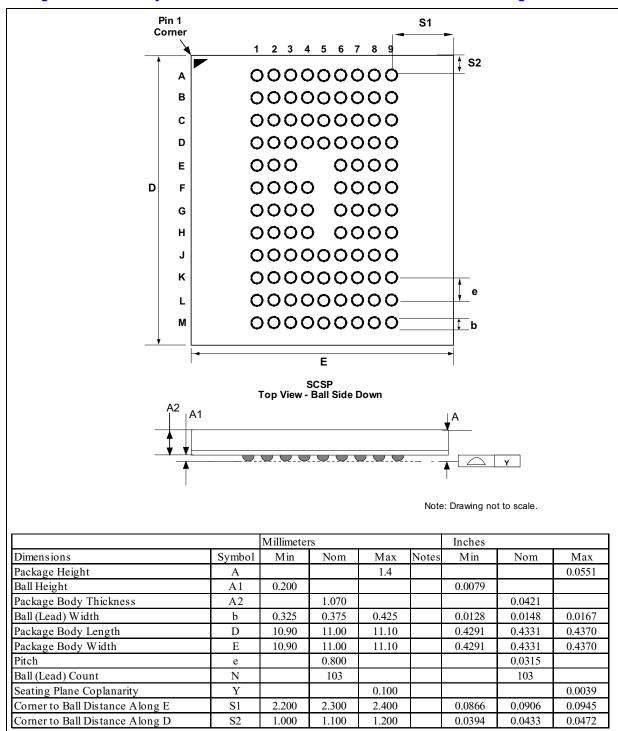
- Figure 4, "LVX Family with LPSDRAM Device SCSP x16D Performance Drawing 9x11x1.4 mm" on page 21
- Figure 5, "LVX Family with LPSDRAM Device SCSP x16D Performance Drawing 11x11x1.4 mm" on page 22

Figure 4. LVX Family with LPSDRAM Device SCSP x16D Performance Drawing 9x11x1.4 mm

Dimensions	Symbol	Min	Nom	Max	Notes	Min	Nom	Max
Package Height	A			1.4				0.0551
Ball Height	A1	0.200				0.0079		
Package Body Thickness	A2		1.070				0.0421	
Ball (Lead) Width	b	0.325	0.375	0.425		0.0128	0.0148	0.0167
Package Body Length	D	10.90	11.00	11.10		0.4291	0.4331	0.4370
Package Body Width	Е	8.90	9.00	9.10		0.3504	0.3543	0.3583
Pitch	e		0.800				0.0315	
Ball (Lead) Count	N		103				103	
Seating Plane Coplanarity	Y			0.100				0.0039
Corner to Ball Distance Along E	S1	1.200	1.300	1.400		0.0472	0.0512	0.0551
Corner to Ball Distance Along D	S2	1.000	1.100	1.200		0.0394	0.0433	0.0472

DataSheet4U.com www.DataSheet4U.com

Datasheet 21


DataSheet4U.com

et4U.com

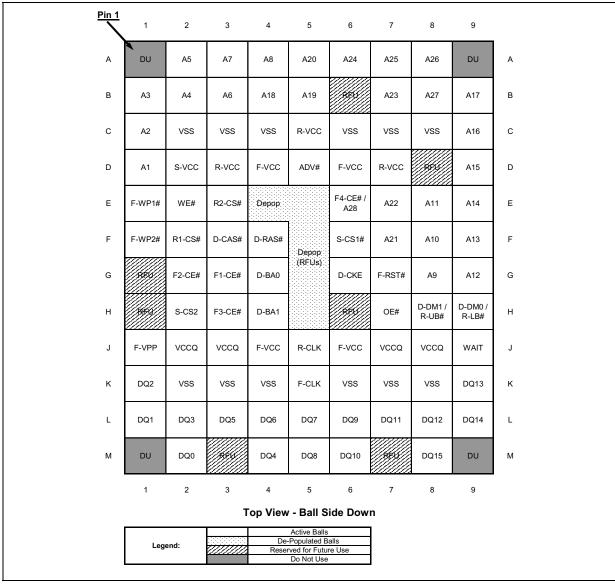
Dataone

Figure 5. LVX Family with LPSDRAM Device SCSP x16D Performance Drawing 11x11x1.4 mm

et4U.com

DataSheet4U.com

DataSheet4U.com



4.0 **Ballout and Signal Descriptions**

Signal Ballout 4.1

Intel StrataFlash® Wireless Memory System family is available in a x16D Performance ballout, shown in Figure 6, "x16D (103 Ball) Performance Signal Ballout for LVX Device Family" The single package ballout is ideal for space-constrained board applications where density upgrades without PCB redesign is preferred. The user must adapt for density upgrade flexibility in the PCB design.

Figure 6. x16D (103 Ball) Performance Signal Ballout for LVX Device Family

et4U.com

www.DataSheet4U.com DataSheet4U.com

4.2 Signal Descriptions

Table 8 describes the active signals used on the LVX family with LPSDRAM device.

Table 8. Signal Descriptions (Sheet 1 of 3)

Symbol	Туре	Description	Notes
		ADDRESS: Global device signals. Share inputs for all memory die addresses during read and write operations. LPSDRAM Address inputs also provide the op-code during a Mode Register Set or Special Mode Register Set command.	
		• 256-Mbit die: AMAX = A24	
		• 128-Mbit die: AMAX = A23	
A[MAX:1]	Input	• 64-Mbit die: AMAX = A22	1,2
A[IVIAX. 1]	liiput	• 32-Mbit die: AMAX = A21	1,2
		8-Mbit die: AMAX = A19	
		A[13:1] are the row and A[9:1] are the column addresses for 256-Mbit LPSDRAM	
		A[12:1] are the row and A[9:1] are the column addresses for 128-Mbit LPSDRAM Add 1.5 and	
		 A11 defines the Auto Precharge. During a LPSDRAM Precharge command, A11 is sampled to determine if all banks are to be precharged (A11 = high). 	
DQ[15:0]	Input/ Output	DATA INPUT/OUTPUTS: Global device signals. Inputs data and commands during write cycles, outputs data during read cycles. Data signals float when the device or its output are deselected. Data are internally latched during writes on the device.	
		ADDRESS VALID: Low-true input. (For stacked combinations without Synchronous PSRAM, ADV# is a flash-specific input.)	
ADV#	Input	During synchronous flash read operations, addresses are latched on the rising edge of ADV#, or on the next valid CLK edge, whichever occurs first.	
		In asynchronous flash read operation, addresses are latched on the rising edge ADV#, or are continuously flow-through when ADV# is kept asserted.	
		FLASH CHIP ENABLE: Low-true input.	
		F[4:1]-CE# low selects the associated flash memory die. F[4:1]-CE# high deselects the associated flash die. When deasserted, the associated flash die is deselected, power is reduced to standby levels, data and WAIT outputs are placed in high-Z state.	
F[4:1]-CE#	Input	F1-CE# is dedicated as flash Code die #1.	3
		 F[4:2]-CE# controls any subsequent flash die based on the user ordered SCSP flash type combination. 	
		Any unused F-CE# should be pulled high to F-VCC through a 1K-ohm resistor for future design flexibility.	
		DEVICE CLOCK : Synchronizes the selected memory die to the system bus clock in synchronous operations.	
F-CLK,		Performance ballout:	
R-CLK	Input	 F-CLK is a flash signal. Synchronizes the flash die to the system flash bus frequency in synchronous operations. 	
		R-CLK is a LPSDRAM input signal. Synchronizes the LPSDRAM die to the system's memory bus clock. LPSDRAM is sampled on the positive edge of R-CLK.	
		OUTPUT ENABLE: Global device signal. Low-true input.	
OE#	Input	OE# low enables the output drivers of the selected die. OE# high places the output drivers of the selected die in high-Z.	
		FLASH RESET: Flash specific signal. Low-true input.	
F-RST#	Input	F-RST# low resets internal operations and inhibits write operations. F-RST# high enables normal operation. Exit from reset places the flash device in Asynchronous Read Array mode.	
		DEVICE WAIT: Selectable high-true or low-true output. (For stacked combinations without Synchronous PSRAM, WAIT is a flash specific input.)	
WAIT	Output	During synchronous-burst reads (array or non-array), WAIT-asserted indicates invalid read data. During Asynchronous Page reads and writes, WAIT is deasserted. Wait is High-Z whenever F-CE# or F-OE# / OE# is deasserted.	

et4U.com

DataShe

DataSheet4U.com www.DataSheet4U.com

DataSheet4U.com

Datasheet

24

Table 8. Signal Descriptions (Sheet 2 of 3)

Symbol	Туре	Description	Notes
WE#	Input	WRITE ENABLE: Global device signal. Low-true input. WE# low selects the associated memory die for write operation. WE# high deselect the associated memory die, data are placed in high-Z state. With LPSDRAM operation, WE# is latched on the positive clock edge in conjunction with the D-RAS# and D-CAS# signals. The WE# input is used to select the Bank Activate or Precharge command and Read or Write command.	
F-WP[2:1]#	Input	WRITE PROTECT: Low-true input. F-WP# controls the lock-down protection mechanism of the selected flash die. When low, F-WP# enables the lock-down mechanism where locked down blocks cannot be unlocked with software commands. When high, F-WP# disables the lock-down mechanism, allowing locked down blocks to be unlocked with software commands. F-WP1# controls the code segment flash die #1, while F-WP2# controls subsequent code or data segment flash dies.	
D-CKE	Input	 LPSDRAM Clock Enable: High-true input If D-CKE goes low synchronously with clock, the internal clock is suspended from the next clock cycle. The state of the outputs and the burst address is halted. When all banks are in the idle state, D-CKE is high, the LPDRAM enters into Power-Down and Self Refresh modes. D-CKE is synchronous except after the device enters Power-Down and Self Refresh modes, where D-CKE becomes asynchronous until exiting the same mode. The input buffers, including R-CLK, are disabled during Power-Down and Self Refresh modes, providing low standby power. 	
D-BA[1:0]	Input	LPSDRAM Bank Select: D-BA0 and D-BA1 defines to which bank the Bank Activate, Read, Write, or Bank Precharge command is being applied. The bank address D-BA0 and D-BA1 is used latched in Mode Register set.	
D-RAS#	Input	PSDRAM Row Address Strobe: Low-true input. The D-RAS# signal defines the operation commands, with the D-CAS# and WE# signals. The D-RAS# is latched at the rising edges of R-CLK. When D-RAS# and Dx-CS# / Rx-CS# are asserted and D-CAS# is deasserted, either the Bank Activate command or the Precharge command is selected by the WE# signal. WE# is deasserted, the Bank Activate command is selected and the bank designated by D-BA[1:0] is turned on to the active state.	
D-CAS#	Input	D-CAS# signal defines the operation commands in conjunction with the D-RAS# and WE# signals and is latched at the rising edges of R-CLK. D-RAS# is deasserted and Dx-CS# / Rx-CS# is asserted, the column access is started by asserting D-CAS#. Read or Write command then is selected by asserting WE# low or high.	
R[2:1]-CS#	Input	RAM Chip Select: Low-true input. x16D Performance ballout: R[2:1]-CS# R[2:1]-CS# low selects the associated LPSDRAM memory die. All commands are masked when R[2:1]-CS# high. R[2:1]-CS# provides for external bank selection on systems with multiple banks. It is considered part of the command code. R1-CS# controls LPSDRAM die #1. R2-CS# controls LPSDRAM die #2.	

et4U.com

DataShe

DataSheet4U.com www.DataSheet4U.com

Datasheet 25

DataSheet4U.com

Table 8. Signal Descriptions (Sheet 3 of 3)

Symbol	Туре	Description	Notes
		LPSDRAM Data Input/Output Mask: Data Input Mask.	
D-DM[1:0]	Input	D-DM[1:0] are byte selects. Input data is masked when D-DM[1:0] are sampled high during a write cycle. D-DM1 masks DQ[15-8], and D-DM0 masks DQ[7-0].	4
		The D-DM[1:0] latency for Read is 2 Clocks and for Write is 0 Clocks.	
		SRAM CHIP SELECTS: SRAM specific signal. Low-true input.	
S-CS1# S-CS2	Input	When both SRAM chip selects are asserted, SRAM internal control logic, input buffers, decoders, and sense amplifiers are active. When either or both SRAM chip selects are deasserted (S-CS1# = V_{IH} and/or S-CS2 = V_{IH}), the SRAM is deselected and its power is reduced to standby levels.	
		S-CS1# and S-CS2 are available on stacked combinations with SRAM die, and are RFU on stacked combinations without SRAM die.	
		SRAM UPPER/ LOWER BYTE ENABLES: Low - true inputs.	
R-UB#	Input	During SRAM read and write cycles, R-UB# low enables the SRAM high-order byte on DQ[15:8], and R-LB# low enables the SRAM low-order byte on DQ[7:0].	3,4
IN-LU#		R-UB# and R-LB# are available on stacked combinations with SRAM die, and are RFUs on stacked combinations without SRAM die.	
		FLASH ERASE/ PROGRAM Voltage Level: Flash specific signal.	
F-VPP	Power	Valid F-VPP voltage on this ball allows block erase or program functions. Flash memory array contents cannot be altered when F-V _{PP} ≤ V _{PPLK} . Block erase and program at invalid F-VPP voltage should not be attempted.	
		FLASH CORE Voltage Level: Flash specific signals. Flash core source voltage.	
F-VCC	Power	Flash operations are inhibited when F-V _{CC} \leq V _{LKO} . Operations at invalid F-VCC voltage should not be attempted.	
VCCQ	Power	OUTPUT Voltage Level: Global device signals. Device output-driver source voltage. This balls can be tied directly to the respective memory type x-VCC if operating within its x-VCC range.	
		RAM Power Supply: Supplies power to the RAM dies.	
D-VCC.		Performance ballout:	
R-VCC,	Power	D-VCC supplies power for LPSDRAM operation.	
11-100		x16D Performance ballout:	
		R-VCC supplies power for xRAM operation.	
		SRAM Power Supply: Supplies power to the SRAM die.	
S-VCC	Power	S-VCC is available on stacked combinations with SRAM die, and is RFU on stacked combinations without SRAM die.	
VSS	Power	Ground: Connect to system ground. Do not float any VSS connection.	
DU	_	Do Not Use: This ball must be left floating. This ball should not be connected to any power supplies, signals, or other balls.	
RFU	_	Reserved for Future Use: Reserved by Intel for future device functionality and enhancement.	

NOTE:

- All unused signals or RFUs should be held either to a static VIL or VIH for future design flexibility and migrations.
 A1 is the lowest order x16 address.
 F4-CE# is a shared signal with A28 for the 103-Active Ball High Performance DRAM package.
 D-DM[1:0] are shared signals with R-UB# and R-LB# respectively.

www.DataSheet4U.com

DataSheet4U.com

DataSheet4U.com

et4U.com

Datasheet 26

DataShe

Maximum Ratings and Operating Conditions 5.0

Absolute Maximum Ratings 5.1

Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only.

NOTICE: This document contains information available at the time of its release. The specifications are subject to change without notice. Verify with your local Intel sales office that you have the latest datasheet before finalizing a design.

Table 9. Absolute Maximum Ratings

Parameter	Min	Max	Unit	Notes
Temperature under Bias Expanded	-25	+85	°C	
Storage Temperature	– 55	+125	°C	
Voltage On Any Signal (except F-V $_{\rm CC}$, F-V $_{\rm PP}$, R-V $_{\rm CC}$ and V $_{\rm CCQ}$)	-0.2	+2.1	V	1
F-V _{CC} Voltage	-0.2	+2.50	V	1
V _{CCQ} , R-V _{CC} Voltage	-0.2	+2.45	V	1
F-V _{PP} Voltage	-0.2	+10.0	V	1,2,3
I _{SH} Output Short Circuit Current DataSheet4U.com	_	50	mA	4

- Voltage is referenced to V_{SS}.
 During power transitions, minimum DC voltage may undershoot to −2.0 V for periods < 20 ns; maximum DC voltage may overshoot to V_{CC} (operating max) + 2.0 V for periods < 20 ns.
- 3. During power transitions, minimum DC voltage may undershoot to -1.0 V for periods < 20 ns; maximum DC voltage may overshoot to V_{CCQ} (operating max) + 1.0 V for periods < 20 ns.
- 4. During power transitions, minimum DC voltage may undershoot to -2.0 V for periods < 20 ns; maximum DC voltage may overshoot to V_{PP2} (operating max) + 2.0 V for periods < 20 ns.
- 5. F-VPP can be V_{PP2} for 1000 cycles on main blocks, 2500 cycles on parameter blocks.
- 6. Output shorted for no more than one second. No more than one output shorted at a time.

www.DataSheet4U.com **Datasheet** 27

5.2 Operating Conditions

Warning: Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

Table 10. Extended Temperature Operation

Symbol	Parameter		Flash +	xRAM	Units				
Cymbol	rarameter		Min	Max	Onits				
T _C	Operating Temperature		-25	+85	°C				
F-V _{CC}	Flash Supply Voltage		1.7	2.0	V				
V _{CCQ} R-V _{CC}	Flash and LPSDRAM I/O Voltage LPSDRAM Supply Voltage	G							
V _{PPL}	F-V _{PP} Voltage Supply (Logic Level)		0.9	2	V				
V _{PPH}	Factory word programming F-V _{PP}		8.5	9.5	V				
	Main and Parameter Blocks	$F-V_{PP} = F-V_{CC}$	100,000	_					
Block Erase Cycles	Main Blocks	_	1000	Cycles					
_	Parameter Blocks	$F-V_{PP} = V_{PPH}$	_	2500					

NOTE: Operating voltage are for flash + flash only stacked device. Refer to document numbers 253852 and 253853 for flash + RAM stacked combinations.

DataSheet4U.com

DataShe

DataSheet4U.com

28

et4U.com

www.DataSheet4U.com

Datasheet

Datas

Electrical Specifications 6.0

DC Voltage and Current Characteristics 6.1

Refer to the *Intel StrataFlash*[®] *Wireless Memory (L18) Datasheet* (order number 251902) for flash DC characteristics. Table 11, "LPSDRAM DC Characteristics" and Table 12, "LPSDRAM Self Refresh Current" on page 30 show DC voltage and current characteristics for LPSDRAM.

The DC current characteristics referenced in this document are for individual flash and RAM die in the SCSP device. The total device current is determined by sum of the active and inactive currents of each flash and RAM die in the SCSP device.

NOTICE: Individual DC Characteristics of all dies in a SCSP device need to be considered accordingly, depending on the SCSP device stacked combinations and operations.

Table 11. LPSDRAM DC Characteristics (Sheet 1 of 2)

Parameter	Description	Test Conditions ar	nd Density	Min	Тур	Max	Unit	Notes
D-V _{CC} / R-V _{CC}	Voltage Range			1.7	1.8	1.9	V	
I _{CC1}	Operating Current at	I = 0mA	128-Mbit	_		60		
(One Bank Active)	min cycle time Burst Length = 1	I _{IO} = 0mA t _{CK} = min DataSheet	256-Mbit 4U.com	_	_	75	mA	
	Precharge Standby	D-CKE = L,	128-Mbit	_		600		
I _{CC2P}	Current: Power-Down Mode (All banks idle)	Dx-CS#/Rx-CS# = H t _{CK} = min	256-Mbit	_		700	μА	
	Precharge Standby Current: Non-Power-	D-CKE = H,	128-Mbit	_	_	15		
I _{CC2N}	Down Mode (All banks idle)	Dx-CS# = H t _{CK} = min	256-Mbit	_	_	15	mA	
	Active Standby Current in Power-Down Mode	D-CKE = L,	128-Mbit	_	1	5	mA	
I _{CC3P}	(All banks active)	t _{CK} = min	$t_{CK} = min$ 256-Mbit			5	mA	
	Active Standby Current: Non-Power-Down Mode	D-CKE = H,	128-Mbit	_	_	20	^	3
I _{CC3N}	(All banks active)	t _{CK} =min	256-Mbit			25	mA	3
I _{CC4}	Operating Current	I _{IO} = 0mA	128-Mbit	_	_	70		
(4 Banks active)	Page Burst Mode	t _{CK} = min	256-Mbit			80	mA	
I _{CC5}	Auto Refresh Current	t _{RC} > t _{RCmin}	128-Mbit	_	1	130	mA	2
'CC5	Auto Remosir Guirent	RC RCmin	256-Mbit	_		150	11171	
l	Self Refresh Current	Address & Data toggling at min cycle	128-Mbit	_	_	500	μΑ	4
I _{CC6}	Con Noncon Current	time	256-Mbit	_	_	600	μΑ	_
L	Deep Power-Down	Address & Data toggling at min cycle	128-Mbit	_	_	10	μА	
I _{CC7}	Current	time	256-Mbit		1	10	μΑ	
V _{OH}	Output High Voltage	I _{OH} = -100 μA	_	V _{CCQ} – 0.2	_	_	V	

et4U.com

www.DataSheet4U.com DataSheet4U.com

DataSheet4U.com

Table 11. LPSDRAM DC Characteristics (Sheet 2 of 2)

V _{OL}	Output Low Voltage	I _{OL} = 100 μA, V _{CCQmin}	_	-0.1	_	0.2	V	
V _{IH}	Input High Voltage	1	_	V _{CCQ} - 0.3	ı	V _{CCQ} + 0.2	V	
V _{IL}	Input Low Voltage	_	_	-0.2	_	0.3	V	
I _{IL}	Input Leakage Current	-0.2 V < V _{IN} < V _{CCQ} +0.2 V	_	-1.5	_	+1.5	μА	1

NOTES:

et4U.com

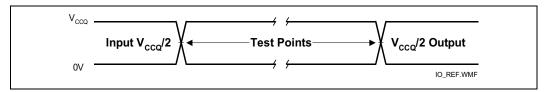
- 1. Input leakage currents include Hi-Z output leakage for bi-directional buffers with tri-state outputs.
 2. Input signals are toggled at max frequency to simulate SCSP condition, where another device may be active.
- 3. No accesses in progress.
- 4. See Table 12, "LPSDRAM Self Refresh Current" on page 30.

Table 12. LPSDRAM Self Refresh Current

		Test	Set		# of Banks		
Parameter	Description	Condition	Temperature	All Banks Refreshed	Banks 0 & 1 Refreshed	Bank 0 Refreshed	Unit
			85 °C max	500	400	300	
I _{CC6}	Self Refresh Current	D-CKE < 0.2V	70 °C max	440	350	280	^
(128-Mbit)	(All Banks Refreshed)	t _{CK} = Infinity	45 °C max	390	290	260	μА
		Data	Sheet4U.co	m 350	240	240	
			85 °C max	600	450	315	
I _{CC6}	Self Refresh Current	D-CKE < 0.2V	70 °C max	525	375	295	Δ
(256-Mbit)	(All Banks Refreshed)	t _{CK} = Infinity	45 °C max	450	300	270	μА
			15 °C max	375	250	250	

DataShe

www.DataSheet4U.com DataSheet4U.com **Datasheet** 30



7.0 AC Characteristics

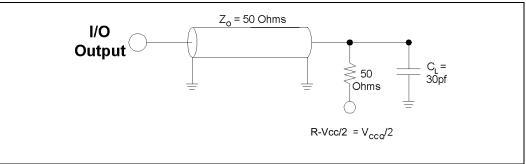

7.1 Device AC Test Conditions

Figure 7. AC Input/Output Reference Waveform

NOTE: AC test inputs are driven at V_{CCQ} for Logic "1" and 0.0 V for Logic "0." Input/output timing begins/ends at V_{CCQ}/2. Input rise and fall times (10% to 90%) < 5 ns. Worst case speed occurs at F-V_{CC} = F-V_{CC}

Figure 8. Transient Equivalent Testing Load Circuit^{1,2}

NOTES:

- 1. Test configuration component value for worst case speed conditions.
- 2. C_L includes jig capacitance.

7.2 Capacitance

NOTICE: Refer to the Intel StrataFlash® Wireless Memory System datasheet (order number 253854) for flash capacitance details.

Table 13. LPSDRAM Capacitance

Symbol	Parameter	MAX	Unit	Condition
C _{IN}	Input Capacitance	5	pF	V _{IN} = 0 V
C _{OUT}	Output Capacitance	7	pF	V _{OUT} = 0 V

NOTE: Sampled, not 100% tested. $T_C = +25$ °C, f = 1 MHz.

7.3 Flash AC Read Operations

Refer to the Intel StrataFlash® Wireless Memory System datasheet (order number 253854) for flash read and write AC Characteristics.

DataSheet4U.com www.DataSheet4U.com

Datasheet 31

DataSheet4U.com

et4U.com

7.4 **Flash AC Write Operations**

Refer to the Intel StrataFlash $^{\circledR}$ Wireless Memory System datasheet (order number 253854) for flash read and write AC Characteristics.

LPSDRAM AC Characteristics 7.5

Table 14, "LPSDRAM AC Characteristics—Read-Only Operations" on page 32 and Table 15, "LPSDRAM AC Characteristics—Write Operations" on page 33 list the AC characteristics for the LPSDRAM die.

Table 14. LPSDRAM AC Characteristics—Read-Only Operations (Sheet 1 of 2)

Symbol	Parameter		Min	Max	Unit
		CL = 3 (125 MHz)	9.5 (105)	_	
t _{RC}	Clock Cycle Time	CL = 2 (100 MHz)	15 (66)	_	ns
		CL = 1 (50 MHz)	_	_	
t _{CKH}	Clock High Level Pulse Width		3	_	ns
t _{CKL}	Clock Low Level Pulse Width		3	-	ns
t _T	Transition Time		0.5	1.0	ns
t _{CKEH}	D-CKE Hold Time		1	-	ns
t _{CKES}	D-CKE Setup Time DataSheet4	U.com	2	-	ns
t _{AH}	Address Hold Time		1	_	ns
t _{AS}	Address Setup Time		2	-	ns
t _{IH}	Data Input Hold Time		1	-	ns
t _{IS}	Data Input Setup Time		2	-	ns
t _{CMH}	Dx-CS#,D-RAS#,D-CAS#,WE#,D-DM Hold time		1	-	ns
t _{CMS}	Dx-CS#,D-RAS#,D-CAS#,WE#,D-DM Setup time		2	-	ns
		CL = 3	_	7	
t _{AC}	Clock to valid output delay (positive edge of clock)	CL = 2	_	9	ns
		CL = 1	_	_	
t _{OH}	Data Out Hold Time		2.5	-	ns
t _{LZ}	Clock to Output in Low-Z		1	_	ns
		CL = 3	_	7	
t _{HZ}	Clock to Output in High-Z	CL = 2	_	9	ns
		CL = 1	_	-	
t _{RAS}	Row Active time (Active to Precharge cmd)		60	100k	ns
t _{RC}	Row Cycle time (Active to Active cmd on same bank)		90	_	ns
t _{RCD}	Row to column delay (Active to Read/Write)		30	_	ns
t _{RP}	Row Precharge Time		30	_	ns
t _{REF}	Refresh Period (4096 rows)		_	64	ms

et4U.com

DataShe

www.DataSheet4U.com DataSheet4U.com 32

Table 14. LPSDRAM AC Characteristics—Read-Only Operations (Sheet 2 of 2)

Symbol	Parameter	Min	Max	Unit
t _{RFC}	Auto Refresh Period	110	_	ns
t _{SREX}	Self Refresh Exit time (Self refresh to Active)	120		ns

- 1. The minimum number of clock cycles is determined by dividing the minimum time required by clock cycle time.
- 2. LPSDRAM AC specs are guaranteed only when Normal Output Driver Strength is used. See Table 25.

Table 15. LPSDRAM AC Characteristics—Write Operations

Symbol	Parameter		Min	Max	Unit						
t _{WR}	Write Recovery Time	-									
t _{RRD}	Active bank a to Active Bank b command		20	_	ns						
t _{DAL}	Last data input to Active Delay	_	t _{WR} + t _{RP}								
t _{CDL}	Last data input to New Read/Write Command		_	1	t _{CK}						
t _{BDL}	Last data input to Burst Terminate Command		_	1	t _{CK}						
t _{CCD}	Read/Write command to Read/Write command		_	1	t _{CK}						
t _{DQW}	D-DM write mask latency	_	0	t _{CK}							
t _{DQZ}	D-DM data out mask latency		_	2	t _{CK}						
t _{MRD}	Load Mode Register Command to Active/Refresh Command		_	2	t _{CK}						
t	Write Recovery Time DataSheet4U.com	t _{WR} / t _{CK} < 1	_	1	.						
t _{WR}	White Recovery fillie	1 < t _{WR} / t _{CK} < 2	_	2	t _{CK}						
		CL = 3	_	3							
t _{PHZ}	Data out to High Z from Precharge command	CL = 2	_	2	t _{CK}						
		CL = 1	_	_							
t _{INI}	Initialization Delay	•	200	_	μs						

et4U.com

- The minimum number of clock cycles is determined by dividing the minimum time required by clock cycle time.
 LPSDRAM AC specs are guaranteed only when Normal Output Driver Strength is used. See Table 25.

DataShe

www.DataSheet4U.com DataSheet4U.com

Datasheet 33

DataSheet4U.com

Power and Reset Specifications 8.0

Refer to the latest revision of the Intel StrataFlash® Wireless Memory System (LV18/LV30 SCSP; 1024-Mbit LV Family Datasheet (order number 253854) for details not included in this document.

Operations Overview 9.0

Bus Operations 9.1

Bus operations for this L18 SCSP LVX family (x16) device involve the control of flash and LPSDRAM inputs. The bus operations and commands are shown in the following tables:

- Table 16, "Flash and LPSDRAM Bus Operations" on page 35
- Table 17, "LPSDRAM Functional Mode Description: Current State bank n, Command to Bank n" on page 38
- Table 18, "LPSDRAM Functional Mode: Current State bank n, Command to Bank m" on page 39

Fully synchronous operations are performed by the LPSDRAM to latch the commands at the positive edges of R-CLK. Refer to the Intel StrataFlash® Wireless Memory (L18) Datasheet (order number 251902) for complete descriptions of flash modes and commands, command bus-cycle definitions and flowcharts that illustrate operational routines.

Table 16, "Flash and LPSDRAM Bus Operations" summarizes the bus operations and voltage levels that must be applied to individual flash die in each mode.

Refer to the Intel StrataFlash® Wireless Memory System Datasheet (order number 253854) for complete descriptions of flash modes and commands, for command bus-cycle definitions, and flowcharts that illustrate operational routines.

Each flash die within the LVX system shares basic asynchronous read and write operations unless otherwise specified.

34

Table 16. Flash and LPSDRAM Bus Operations (Sheet 1 of 3)

Device	Mode	F-RST#	Fx-CE#	# 3 0	ADV#	F-VPP	WAIT	WE#	D-CKE _{n-1}	D-CKE _n	Dx-CS#	D-RAS#	D-CAS#	D-DM[1:0]	D-BA[1:0]	A11	Address	Data	Notes
	Sync Array Read	Н	L	L	L	Х	Active	Н											1,4,6, 16
de)	Async Read	Н	L	L	Х	Х	Deasserted	Н		LPS	DRA	М о	utpu	ts mus	t be	in Hig	h-Z	Flash D _{OUT}	1,4,5, 6,16
Flash Die (Code)	Write	Н	L	Н	L	V _{PP1/} V _{PP2}	High-Z	L										Flash D _{IN}	2,3,5, 6
lash D	Output Disable	Н	L	Н	Х	Х	High-Z	Н										Flash High-Z	6
ш	Standby	Н	Н	Х	Х	Х	High-Z	Х		Any LPSDRAM mode allowed							Flash High-Z	6	
	Reset	L	Х	Х	Х	Х	High-Z	Х										Flash High-Z	6
	Sync Array Read	Н	L	L	L	х	Deasserted	Н										Flash D _{OUT}	1,4,6, 16
ta)	Async Read	Н	L	L	Х	Х	Deasserted	Н		LPS	DRA	М о	utpu	ts mus	t be	in Hig	h-Z	Flash D _{OUT}	1,4,5, 6,16
Die (Data)	Write	Н	L	Н	L	V _{PP1/} V _{PP2}	Deasserted Data	L aSh	eet-	eet4U.com								Flash D _{IN}	2,3,5, 6
Flash D	Output Disable	Н	L	Н	Х	Х	High-Z	Н										Flash High-Z	6
-	Standby	Н	Н	Х	Х	Х	High-Z	Х	Any LPSDRAM mode allowed								Flash High-Z	6	
	Reset	L	Х	Х	Х	Х	High-Z	Х										Flash High-Z	6

et4U.com

DataShe

DataSheet4U.com www.DataSheet4U.com

35

Table 16. Flash and LPSDRAM Bus Operations (Sheet 2 of 3)

Device	Mode	F-RST#	FX-CE#	#BO	ADV#	F-VPP	WAIT	WE#	D-CKE _{n-1}	D-CKE _n	px-cs#	D-RAS#	D-CAS#	D-DM[1:0]	D-BA[1:0]	A11	Address	Data	Notes
	Active							Н	Н	Х	L	L	Н	Х	٧		Row Idress	RAM D _{OUT}	6,7
	Read With Auto Precharge							Н	Н	Х	L	Н	L	L/H	٧	L H	Col Addr	RAM D _{OUT}	6,7,8, 10
or #2)	Write With Auto Precharge		Flas	h ou	tputs	s must be	in High-Z	L	I	Х	L	Η	L	L/H	٧	L H	Х	RAM D _{IN}	6,9,10
	Burst Stop						L	Н	Н	L	Н	Н	Х	Х	Х	Х	RAM High-Z	6	
LPSDRAM Die (#1	Precharge One Bank							L	Н	Х	L	L	Н	Х	٧	L	Х	RAM	6
SDF	All Banks														Х	Н		High-Z	
5	Auto Refresh							Н	Н	Н	L	L	L	Х	Х	Х	Х	RAM High-Z	6,13
	Self Refresh Entry		Flash must be in High-Z					Н	Н	L	L	L	L	х	х	Х	х	RAM High-Z	6,13
	Self Refresh							Н	L	.H.	L	Н	Н	Х	х	Х	Х	RAM High-Z	6
	Exit			Any	flash	mode al	lowed Da	EIIXI S	Shee	:140). B O	ΠX	Х					i iigii-Z	

et4U.com

DataShe

DataSheet4U.com

www.DataSheet4U.com

Table 16. Flash and LPSDRAM Bus Operations (Sheet 3 of 3)

Device	Mode	F-RST#	FX-CE#	# 3 0	#NQA	F-VPP	WAIT	WE#	D-CKE _{n-1}	D-CKE _n	Dx-CS#	D-RAS#	D-CAS#	D-DM[1:0]	D-BA[1:0]	A11	Address	Data	Notes
	Load Mode Register							L	Н	Х	L	L	L	Х	Operand Code			RAM High-Z	6,11,1 2
	Input/ Output Enable		Flash outputs must be in High-Z						Н		X L X					RAM High-Z	6,10		
	Input Inhibit/ Output High-Z	Any flash mode allowed						Х	Н		×	(Н	н х			RAM High-Z	6,10
	Clock Suspend								Н	L.	Н	Х	Х	Х	Х	Х	Х	RAM	6.14
2	Entry					V			L	V	V					High-Z	,		
(#1 or #2)	Clock Suspend Exit	Flash outputs must be in High-Z					х	L	Н	х	Х	х	Х	х	X	Х	RAM High-Z	6	
Die	Power- Down	Any flash mode allowed		Any flash mode allowed	Х	Н	L	Н	Χ	Х	Х	Х	Х	Х	RAM	6,15			
LPSDRAM Die (#1	Entry		Flas	h ou	tputs	must be	in High-Z	Н	' '	_ L	L	Н	Н	^	^	^	^	High-Z	0,13
SDI	Power-		Any flash mode allowed		Х	L	Н	Ι	Χ	Х	Х	Х	Х	Х	RAM	6			
=	Down Exit							Н			L	Н	Н		^	^	^	High-Z	Ů
	Deep Power- Down Entry	Data Flash outputs must be in High-Z						a§h	eet-	ŀŲ.α	qm	Н	Н	X	x	Х	Х	RAM High-Z	6
	Deep Power- Down Exit							Х	L	Н	Х	х	Х	Х	х	Х	Х	RAM High-Z	6
	Device Deselect	Any flash mode allowed				lowed	Х	Н	Х	Н	Х	Х	Х	Х	Х	Х	RAM High-Z	6	
	No Operation		Flas	h ou	tputs	must be	in High-Z	Н	Н	Х	L	Н	Н	Х	Х	Х	Х	RAM High-Z	6

- 1. WAIT is only valid during synchronous flash reads. Refer to the discrete datasheet for detailed WAIT functionality.
- 2. OE# and WE# (Flash and SRAM) should never be asserted simultaneously.
- X can be V_{IL} or V_{IH} for inputs, V_{PP1}, V_{PP2} or V_{PPLK} for F-V_{PP}
 Flash CFI query and Status Register accesses use DQ[7:0] only, all other reads use DQ[15:0].
- 5. Refer to L18 datasheets for valid D_{IN} during flash writes.
- 6. All states and sequences not shown are illegal or reserved.
- 7. A[13:1] provide row address for 256-Mbit LPSDRAM. A[12:1] provide row address for 128-Mbit LPSDRAM. A[9:1] provide column address for 128-Mbit or 256-Mbit LPSDRAM.
- 8. Select bank and column address, and start Read. A11 High enables auto precharge.
- 9. Select bank and column address, and start Write. A11 High enables auto precharge.
- 10. Activate or deactivate the data during Writes with zero-clock delay and during Reads with two-clock delay. D-DM0 corresponds to DQ[7:0], D-DM1 corresponds to DQ[15:8].
- 11. A[11:1] define the operand code to the register
- 12. Extended Mode Register is programmed by setting D-BA1=H and D-BA0=L. For Mode register programming, set D-BA1=D-
- 13. All banks must be precharged before issuing an Auto-refresh command.
- 14. Clock suspend mode occurs when Column access or burst is in progress
- 15. Power-Down occurs when no accesses are in progress.
- 16. Data segment flash only operates in Asynchronous mode, F-CLK is ignored and WAIT is deasserted.

www.DataSheet4U.com DataSheet4U.com

> **Datasheet** 37

Table 17. LPSDRAM Functional Mode Description: Current State bank n, Command to Bank n

Current State	Dx-CS# D-RAS# D-CAS#		WE#	Command	Action	Notes	
Any	Н	Х	Х	Х	No Operation	Continue previous Operation	
Any	L	Н	Н	Н	No Operation	Continue previous Operation	
	L	L	Н	Н	Active	Select and activate row	
Idle	L	L	L	Н	Auto refresh	Auto refresh	
lule	L	L	L	L	Load Mode register	Mode register set	
	L	L	Н	L	Precharge	NOP	
	L	Н	L	Н	Read	Select Column & start read burst	
Row Active	L	Н	L	L	Write	Select Column & start write burst	
	L	L	Н	L	Precharge	Deactivate Row in bank (or banks)	3
	L	Н	L	Н	READ	Truncate READ & start new READ burst	5
Read (without	L	Н	L	L	WRITE	Truncate READ & start new WRITE burst	5
Auto precharge)	L	L	Н	L	PRECHARGE	Truncate READ, start PRECHARGE	
	L	Н	Н	L	Burst Terminate	Burst terminate	
	L	Н	L	Н	READ	Truncate WRITE & start new READ burst	5
Write (without	L	Н	L	L	WRITE	Truncate WRITE & start new WRITE burst	5
Auto precharge)	L	L	Н	L	PRECHARGEaSheet	Truncate WRITE, start PRECHARGE	
	L	Н	Н	L	Burst Terminate	Burst terminate	

et4U.com

DataShe

- The table applies when both D-CKE_{n-1} and D-CKE_n are high.
 All states and sequences not shown are illegal or reserved.
 This command may or may not be bank specific. If all banks are being precharged, they must be in a valid state for
- 4. A command other than No Operation (NOP), should not be issued to the same bank while a READ or WRITE Burst with auto precharge is enabled.

 5. The new Read or Write command could be auto precharge enabled or auto precharge disabled.

www.DataSheet4U.com

DataShe

Table 18. LPSDRAM Functional Mode: Current State bank n, Command to Bank m

Current State	Dx-CS#	D-RAS#	D-CAS#	WE#	Command	Action	Notes
Any	Н	Х	Х	Х	No Operation	Continue previous Operation	
Ally	L	Н	Н	Н	No Operation	Continue previous Operation	
Idle	Х	Х	Х	Х	Any	Any command allowed to bank m	
	L	L	Н	Н	Active	Activate Row	
Row Activating, Active, or	L	Н	L	Н	Read	Start READ burst	
Precharging	L	Н	L	L	WRITE	Start WRITE burst	
	L	L	Н	L	Precharge	Precharge	
	L	L	Н	Н	Active	Activate Row	
Read with Auto Precharge	L	Н	L	Н	Read	Start READ burst	
disabled	L	Н	L	L	WRITE	Start WRITE burst	
	L	L	Н	L	Precharge	Precharge	
	L	L	Н	Н	Active	Activate Row	
Write with Auto precharge	L	Н	L	Н	Read	Start READ burst	
disabled	L	Н	L	L	WRITE	Start WRITE burst	
	L	L	Н	L	Precharge	Precharge	
	L	L	Н	Н	Active DataSheet4L	Activate Row	
Read with Auto	L	Н	L	Н	Read	Start READ burst	
Precharge	L	Н	L	L	WRITE	Start WRITE burst	
	L	L	Н	L	Precharge	Precharge	
	L	L	Н	Н	Active	Activate Row	
Write with Auto	L	Н	L	Н	Read	Start READ burst	
precharge	L	Н	L	L	WRITE	Start WRITE burst	
	L	L	Н	L	Precharge	Precharge	

et4U.com

- NOTES:

 1. The table applies when both D-CKE_{n-1} and D-CKE_n are high.
 2. All states and sequences not shown are illegal or reserved.

www.DataSheet4U.com DataSheet4U.com

Datasheet 39

10.0 Flash Read Operations

Refer to the Intel StrataFlash® Wireless Memory System datasheet (order number 253854) for information regarding flash read modes and operations.

11.0 Flash Program Operations

Refer to the *Intel StrataFlash*® *Wireless Memory System* datasheet (order number 253854) for information regarding flash program operations.

12.0 Flash Erase Operations

Refer to the *Intel StrataFlash® Wireless Memory System* datasheet (order number 253854) for information regarding flash erase operations.

13.0 Flash Suspend and Resume Operations

Refer to the *Intel StrataFlash® Wireless Memory System* datasheet (order number 253854) for information regarding flash security modes and operations.

14.0 Flash Block Locking and Unlocking Operations

Refer to the *Intel StrataFlash® Wireless Memory System* datasheet (order number 253854) for information regarding flash Read Configuration Register (RCR) functions and programming.

15.0 Flash Protection Register Operations

Refer to the *Intel StrataFlash*® *Wireless Memory System* datasheet (order number 253854) for information regarding flash power considerations and consumption.

16.0 Flash Configuration Operations

Refer to the *Intel StrataFlash*® *Wireless Memory System* datasheet (order number 253854) for information regarding flash Read Configuration Register (RCR) functions and programming.

www.DataSheet4U.com

Datasheet

DataSheet4U.com

40

Flash Dual Operation Considerations 17.0

Refer to the Intel StrataFlash® Wireless Memory System datasheet (order number 253854) for information regarding flash Read Configuration Register (RCR) functions and programming.

18.0 LPSDRAM Operations

18.1 LPSDRAM Power-up Sequence and Initialization

The LPSDRAM must be powered up and initialized in a predefined manner. Once power is applied to D-VCC and VCCQ simultaneously, and the clock is stable, the LPSDRAM requires a t_{INI} delay prior to issuing any command other than the NOP command. The NOP command should be applied at least once during the t_{INI} delay. After the t_{INI} delay, a Precharge command should be applied to precharge all banks. This must be followed by two back to back Auto Refresh cycles. After the Auto Refresh cycles are complete, the Mode registers must be programmed. The Mode Register will power up in an unknown state. The Mode Register and the Extended Mode Register should be loaded prior to issuing any operational commands.

18.2 LPSDRAM Mode Register

DataSheet4U.com
The Mode Register is used to define specific modes of operation of the LPSDRAM. This definition includes the selection of a burst length, burst type, a CAS latency, and a write burst mode. The Mode Register settings are illustrated in the Table below. The Mode Register is programmed by the Load Mode Register command and will retain the information until it is reprogrammed, the device loses power, or the device goes in Deep Power-Down mode. The register should be loaded when all banks are idle, and subsequent operation should only be initiated after t_{MRD}.

Addresses A[12:11, 9:8] must be set to 0 for all Mode Register programming. D-BA[1:0] should be set to (0,0) to differentiate from Extended Mode Register Programming.

Table 19. LPSDRAM Setting for Burst Length

Burst I	A3	A2	A1	
A4 = 0	A4 = 1	AS	A2	A
1	1	0	0	0
2	2	0	0	1
4	4	0	1	0
8	8	0	1	1
Full Page	Reserved	1	1	1

NOTES:

- 1. States not mentioned are undefined.
- 2. The sequential burst will wrap on reaching the last column of the burst length.

www.DataSheet4U.com

Datasheet 41

Table 20. LPSDRAM Setting for Burst Type

A4	Burst Type
0	Sequential
1	Interleaved

Table 21. LPSDRAM Setting for CAS Latency

A7	A6 A5		CAS Latency
0	0	1	1
0	1	0	2
0	1	1	3

NOTE: States not mentioned are undefined.

Table 22. LPSDRAM Setting for Write Burst Mode

A10	Write Burst Mode
0	Programmed Burst
1	Single Word Burst

et4U.com

DataSh

18.3 Extended Mode Registeret4U.com

The Extended Mode Register (EMR) controls two power saving functions:

- Temperature-Compensated Self Refresh (TCSR)
- Partial Array Self Refresh (PASR)

Both these features can only be used when the device is under Self Refresh. In addition the Configurable Output Driver Strength can be programmed through the EMR. The EMR is programmed by the Load Mode Register command and will retain the information until it is reprogrammed, the device loses power, or the device goes into Deep Power-Down mode. The register should be loaded when all banks are idle, and subsequent operation should only be initiated after $t_{\rm MRD}$.

To program the EMR, bank addresses D-BA1 = 1, and D-BA0 = 0 should be used. Addresses A[12:6] should be set to '0'.

Table 23. LPSDRAM Setting for Partial Array Refresh

A3	A2 A1		Self-Refresh Coverage
0	0	0	Four Banks
0	0	1	Two Banks (Bank 0 & Bank 1)
0	1	0	One Bank (Bank 0)

DataSheet4U.com

42

www.DataSheet4U.com

Datasheet

Datas

Table 24. LPSDRAM Setting for Temperature-Compensated Self Refresh

A5	A4	Maximum Ambient Temperature
1	1	85 °C
0	0	70 °C
0	1	45 °C
1	0	15 °C

Table 25. Configurable Output Driver Strength

A7	A6	Strength	Output Load (pF)
0	0	Normal	30
0	1	Half	TBD
1	0	Reserved	NA
1	1	Reserved	NA

NOTE: LPSDRAM AC specs are guaranteed only when Normal Output Driver Strength is used.

18.4 LPSDRAM Commands and Operations

DataShe

18.4.1 LPSDRAM No Operation / Device Deselect

The LPSDRAM device includes a Device Deselect (NOP) command and a No Operation (NOP) command.

18.4.1.1 Device Deselect (NOP)

The Device Deselect (NOP) command deselects the LPSDRAM by preventing new commands from being executed. Operations already in progress are not affected.

18.4.1.2 No Operation (NOP)

The No Operation (NOP) command is used on a LPSDRAM device that is selected (D-CS# / R-DS# is low). Operations already in progress are not affected.

18.4.2 LPSDRAM Active

The Active command is used to activate a row in particular bank for a subsequent read or write access. The value of the bank D-BA[1:0] and the row address needs to be provided. The row remains active until a precharge command is issued to the bank. A Precharge command must be issued before opening a different row in the same bank.

More than one bank can be active at any time. A Read or Write command could be issued to that row, subject to the t_{RCD} specification. t_{RCD} (min) should be divided by the clock period and rounded up to the next whole number to determine the earliest clock edge after the Active command on which the read/write can be entered. A subsequent Active command to another row in

ataSheet4U.com www.DataSheet4U.com

the same bank can be issued only after the previous row has been closed. The minimum time interval between two successive Active commands on the same bank is defined by t_{RC}. The minimum time interval between two successive Active commands on the different banks is defined by t_{RRD}. This is illustrated in Figure 11, "Active Command and Read Access Command Issued to 2 Different Banks" on page 47.

18.4.3 LPSDRAM Read

The Read command is used to initiate a burst read to an active row. The value of D-BA[1:0] selects the bank and address inputs select the starting column location. The value of A11 determines whether or not auto precharge is used. Output data appears on the data bus, subject to the logic level on the D-DM[1:0] inputs two clocks earlier. D-DM[1:0] latency for the Read command is 2 clock cycles.

The burst length is set in the Mode Register. The starting column and bank address is provided along with the auto precharge option. During read bursts, the starting valid data-out corresponding to the starting column address will be available after CAS latency cycles after the Read command. Each subsequent data-out will be valid by the next positive edge of the clock. This is shown in Figure 12, "Example of CAS Latency 2" on page 47 with a CAS latency of 2.

Data from a read burst may be truncated by a subsequent Read command. The first data from the new burst follows either the last element of a completed burst or the last desired element of a longer burst that is being truncated. The new Read command can be issued as early as CL-1 cycles before the last desired element. This is shown in Figure 13, "Consecutive Read Bursts with CL = 2" on page 48.

Figure 14, "Random Read Access with CLe 72" on page 48 shows random access reads. These can be issued to the same or different banks.

A read burst can be terminated by a subsequent Write command, and data from a fixed length read burst can be followed by a Write command. The Write command can be initiated on the clock edge immediately following the last data element from the read burst, provided I/O contention can be avoided. D-DM[1:0] can be used to control I/O contention as shown in Figure 15, "Read to Write Command" on page 48. D-DM[1:0] latency is 2 clocks for output buffers masking, so the D-DM[1:0] signal must be set high at least 2 clocks prior to the Write command. D-DM[1:0] latency for Write is zero clocks, so D-DM[1:0] must be set low before Write command to ensure data written is not masked.

A read burst may be followed by or truncated with a Precharge command, which could be issued CL-1 cycles before the last desired element. This is shown in Figure 16, "Read Command Followed by Precharge" on page 49.

Following a Precharge command, another command to the same bank cannot be issued until t_{RP} is met. Similarly a Burst Terminate command can be used to stop a burst as shown in Figure 17, "Read Followed by Burst Terminate" on page 49.

18.4.4 **LPSDRAM Write**

The Write command initiates a burst write access to an active row. The value of D-BA[1:0] selects the bank. Address inputs select the starting column location. The value of A11 determines whether or not auto precharge is used. Input data appearing on the data bus, is written to the memory array subject to the D-DM[1:0] input logic level appearing coincident with the data. D-DM[1:0] latency for Write command is 0 clock cycles.

www.DataSheet4U.com

DataSheet4U.com

The burst length is set in the Mode Register. The starting column and bank address is provided along with the auto precharge option. The first valid data-in is registered coincident with the Write command. Subsequent data elements will be registered on each successive positive clock edge. Figure 18, "Random Write to 4 Word Bursts" on page 49 shows 2 consecutive 4 word write bursts.

A write burst may be followed by or truncated with a Precharge command to the same bank. The Precharge should be issued t_{WR} after the clock edge after the last desired input data is entered. In addition, when truncating a Write burst, the D-DM[1:0] signal must be used to mask input data for the clock edge coincident with the Precharge command. This is shown in the following:

- Figure 19, "Write to Precharge Command Where Write Recovery Takes 1 Clock Cycle" on page 50
- Figure 20, "Write to Precharge Command Where Write Recovery Takes 2 Clock Cycles" on page 50

where t_{WR} corresponds to either 1 or 2 clock cycles, respectively.

Following the Precharge command, a subsequent command cannot be issued to the same bank until t_{RP} is met. Write Burst can be truncated with a Burst Terminate command. While truncating, the input data being applied coincident to the Burst Terminate will be ignored.

Data for any Writes may be truncated by a subsequent Read command as shown in Figure 21, "Write Command Followed by Read Command" on page 50. Once the Read command is registered, the data inputs will be ignored.

18.4.5 LPSDRAM Power-Down

DataSheet4U.com

Power-down occurs if D-CKE is set low coincident with Device Deselect or NOP command and when no accesses are in progress.

- If power-down occurs when all banks are idle, it is Precharge Power-Down.
- If power-down occurs when one or more banks are active, it is referred to as Active power-down. The device cannot stay in this mode for longer than the refresh period (64ms) without losing data.

The power-down state is exited by setting D-CKE high while issuing a Device Deselect or NOP command. This is shown in Figure 22, "Precharge Power-Down Mode" on page 51.

18.4.6 LPSDRAM Deep Power-Down

The Deep Power-Down (DPD) mode enables very low standby currents. All internal voltage generators inside the LPSDRAM are stopped and all memory data are lost in this mode. To enter the DPD mode, all banks must be precharged, prior to the DPD command. To exit this mode, the D-CKE is taken high after the clock is stable.

18.4.7 LPSDRAM Clock Suspend

This mode occurs when a column access or burst is in progress, and D-CKE is set low. The internal clock gets suspended freezing the LPSDRAM logic. Any command or data present on the input pins at the time of suspended internal clock is ignored. The output data on the pins stays frozen. This mode is exited by setting D-CKE high, which results in the operation being resumed. Figure

taSheet4LLcom www.DataSheet4U.com

Datasheet 45

DataShact4II.com

D 4-01-

LVX Family

23, "Clock Suspend During Write Burst" on page 51 shows a clock suspend during a Write burst and Figure 24, "Clock Suspend During Read Burst (CL = 2)" on page 52 shows a clock suspend during a Read burst.

18.4.8 LPSDRAM Precharge

The Precharge is used to deactivate an active row in a particular bank or active row in all banks. The banks will be available for row access after a specified time (t_{RP}) after the Precharge command is issued. If one bank is to precharged, the particular bank address needs to be addressed. If all banks are to be precharged, A11 should be set high along with the Precharge command.

18.4.9 LPSDRAM Auto Precharge

Auto Precharge is accomplished when A11 is high, to enable auto precharge in conjunction with a specific read or write command. This precharges the row after the read or write burst is complete. Auto precharge ensures that a precharge is initiated at the earliest valid stage within a burst. Another command to the same bank must not be issued until the precharge time (t_{RP}) is completed. Auto precharge does not apply in full-page burst mode. Auto precharge is non-persistent.

18.4.10 LPSDRAM Concurrent Auto Precharge

If an access command with Auto Precharge enabled is being executed, it can be interrupted by another access command.

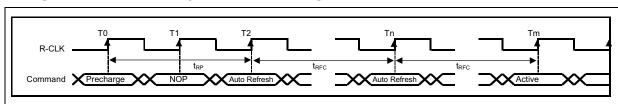

Figure 25, "Read with Auto Precharge to Bank n Interrupted by Read to Bank m" on page 52 shows a Read with Auto Precharge to Bank n, interrupted by a Read (with or without Auto precharge) to bank m. The Read to bank m will interrupt the Read to Bank n, CAS latency later. The precharge to bank n will begin when the Read to bank m is registered.

Figure 26, "Read with Auto Precharge to Bank n Interrupted by Write to Bank m" on page 53 shows a Read with Auto Precharge to Bank n, interrupted by a Write (with or without Auto precharge) to bank m. The precharge to bank n will begin when the Write to bank m is registered. D-DM[1:0] should be set high 2 clock before the Write command to prevent bus contention.

Figure 27, "Write with Auto Precharge to Bank n Interrupted by Read to Bank m" on page 53 shows a Write with Auto Precharge to Bank n, interrupted by a Read (with or without Auto precharge) to bank m. The new command initiates bank n Write recovery (t_{WR}) followed by precharge. The last valid data-in to bank n is 1 clock prior to the Read to bank m.

Figure 28, "Write with Auto Precharge to Bank n Interrupted by Write to Bank m" on page 53 shows a Write with Auto Precharge to Bank n, interrupted by a Write (with or without Auto precharge) to bank m. The new command initiates bank n Write recovery (t_{WR}) followed by precharge. The last valid data-in to bank n is 1 clock prior to the Write to bank m.

Figure 9. Auto Refresh Cycles with D-CKE High

DataSheet4U.com
46

www.DataSheet4U.com

Datasheet

stall com

Data Shoot 41 Loom

Figure 10. Self Refresh Entry and Exit Mode

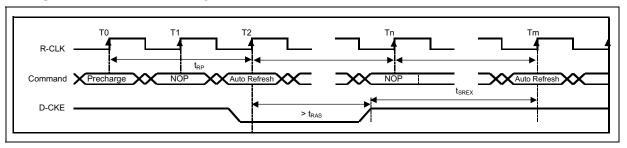
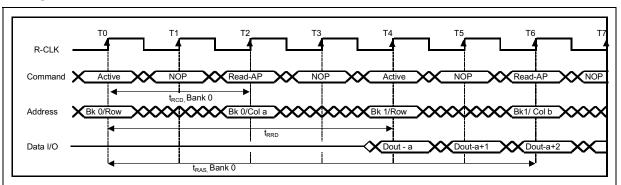
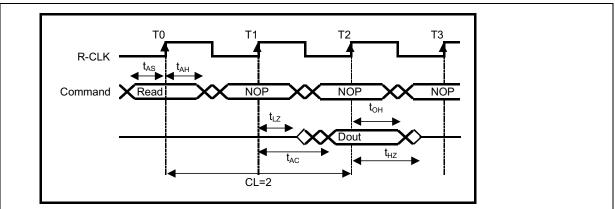
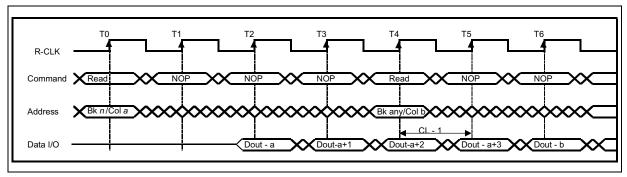




Figure 11. Active Command and Read Access Command Issued to 2 Different Banks

et4U.com

Figure 12. Example of CAS Latency 2 ataSheet4U.com


www.DataSheet4U.com DataSheet4U.com **Datasheet** 47

DataSheet4U.com DataSheet4U.com

DataShe

Figure 13. Consecutive Read Bursts with CL = 2

NOTE: A new command should be issued CL-1 clock cycles before the last desired data. The new command can be used to truncate the previous Read Burst.

Figure 14. Random Read Access with CL = 2

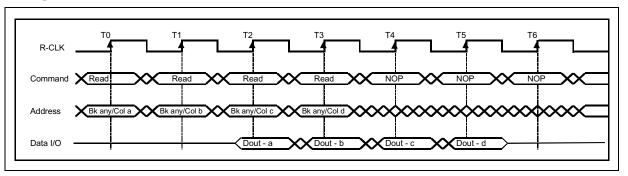
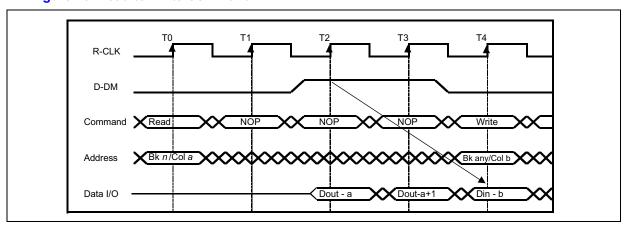



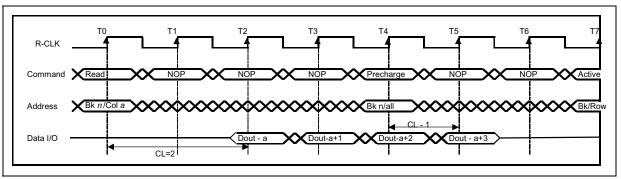
Figure 15. Read to Write Command

NOTE: Data masking used to prevent I/O contention.

DataShe

DataSheet4U.com

48


et4U.com

www.DataSheet4U.com

et4U.com

Figure 16. Read Command Followed by Precharge

NOTE: Command issued CL-1 clocks before last desired data-out element.

Figure 17. Read Followed by Burst Terminate

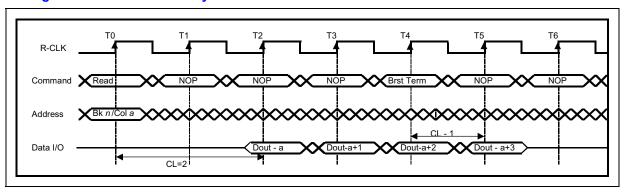
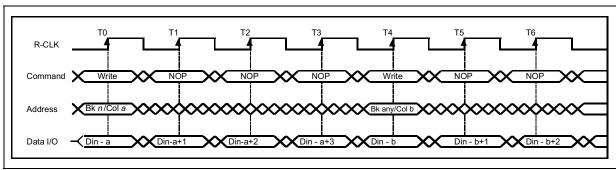



Figure 18. Random Write to 4 Word Bursts

NOTE: The commands can be to any active bank.

DataShe

DataSheet4U.com

Datasheet

49

Figure 19. Write to Precharge Command Where Write Recovery Takes 1 Clock Cycle

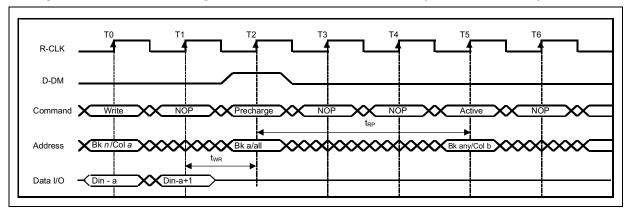


Figure 20. Write to Precharge Command Where Write Recovery Takes 2 Clock Cycles

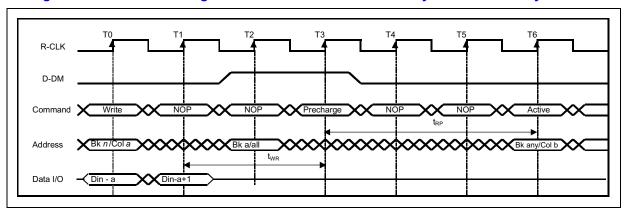
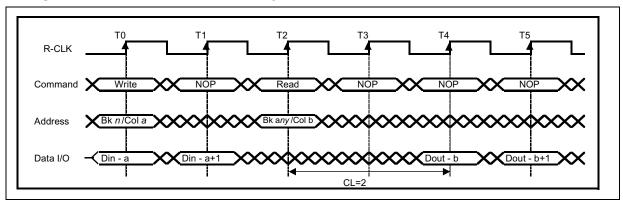
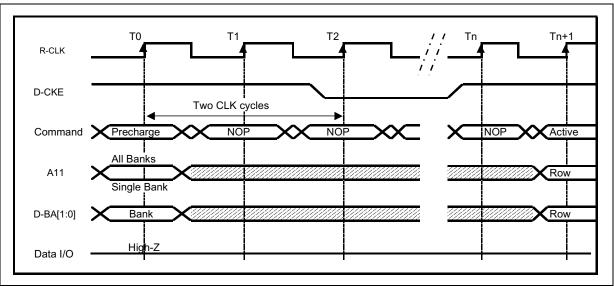



Figure 21. Write Command Followed by Read Command

NOTE: The Read and Write commands can be done to any bank (CL = 2).

DataShe


DataSheet4U.com

50

et4U.com

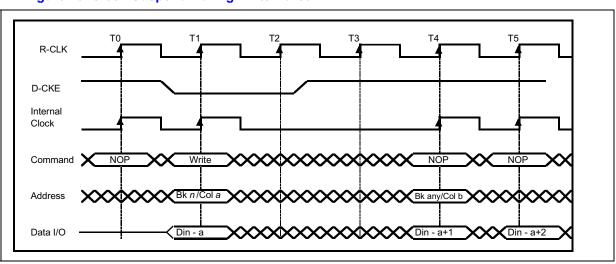


Figure 22. Precharge Power-Down Mode

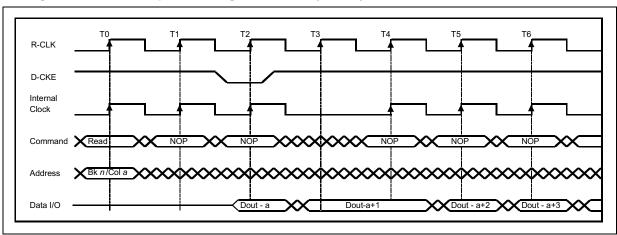
NOTE: All banks are idle with D-CKE low.

Figure 23. Clock Suspend During Write Burst

NOTE: Input data is ignored when internal clock is suspended.

DataShe

DataSheet4U.com


et4U.com

www.DataSheet4U.com **Datasheet**

51

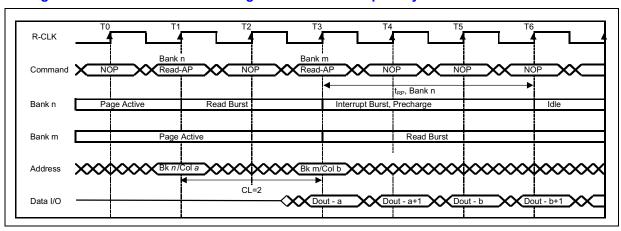


Figure 24. Clock Suspend During Read Burst (CL = 2)

NOTE: Output data gets frozen while internal clock is suspended.

Figure 25. Read with Auto Precharge to Bank n Interrupted by Read to Bank m

et4U.com

DataShe

DataSheet4U.com

52

www.DataSheet4U.com

Figure 26. Read with Auto Precharge to Bank n Interrupted by Write to Bank m

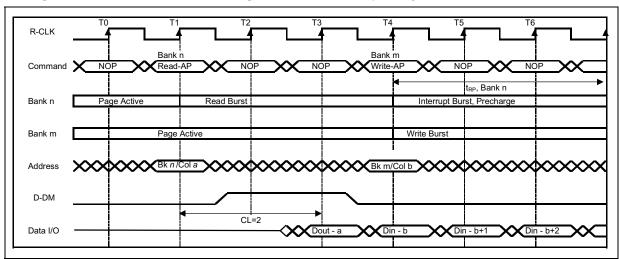


Figure 27. Write with Auto Precharge to Bank n Interrupted by Read to Bank m

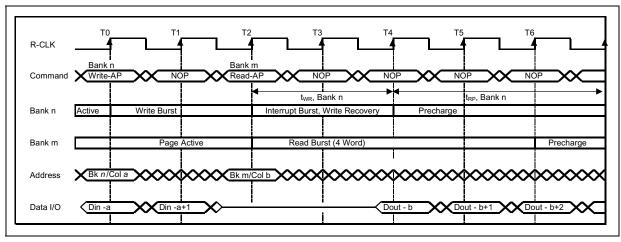
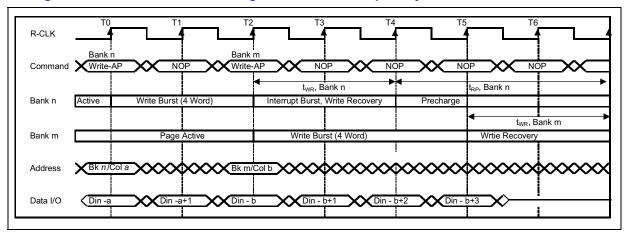



Figure 28. Write with Auto Precharge to Bank n Interrupted by Write to Bank m

DataSheet4U.com

et4U.com

www.DataSheet4U.com

Datasheet 53

18.4.11 LPSDRAM Burst Terminate

This command is used to truncate bursts. The most recent command prior to the burst terminate command will be truncated.

18.4.12 LPSDRAM Auto Refresh

This command is used during normal operation of the LPSDRAM. This command is non-persistent. All banks must be idle before issuing Auto Refresh command. This command can be issued after a minimum of t_{RP} after the precharge command. The address bits are "Do Not Care" during the Auto Refresh command. As an example, the 128-Mbit LPSDRAM requires 4096 auto refresh cycles (4096 rows/bank) every 64 ms (t_{REF}). Providing a distributed Auto Refresh command every 15.625 μ s will meet the refresh requirement and ensure that each row is refreshed. Alternatively, 4096 auto refresh command cycles can be issued in a burst at a minimum cycle rate (t_{RFC}), once every 64 ms. Figure 9, "Auto Refresh Cycles with D-CKE High" on page 46 shows auto refresh cycles.

18.4.13 LPSDRAM Self Refresh

This state retains data in the LPSDRAM, even as the rest of the system is powered down. The Self Refresh command is initiated like the auto refresh command, except the D-CKE is disabled (low). All banks must be idle before this command is issued. Once the Self Refresh command is registered, all inputs become "Do Not Care" except D-CKE, which must remain low. The procedure for exiting Self Refresh mode requires a series of commands. The first clock must be stable before D-CKE going high. NOP commands should be issued (minimum of 2 clocks) to meet the refresh exit time (t_{SREX}) limitation. Figure 10, "Self Refresh Entry and Exit Mode" on page 47 shows Self Refresh Entry and Exit mode eet 40.com

et4U.com

DataSh

Sheet4LLcom www.DataSheet4U.com

Datasheet

54

Appendix A Write State Machine

Refer to the *Intel StrataFlash® Wireless Memory System* datasheet (order number 253854) for the Write State Machine (WSM) details.

Appendix B Common Flash Interface

Refer to the $Intel\ StrataFlash^{\circledR}\ Wireless\ Memory\ System$ datasheet (order number 253854) for the Common Flash Interface (CFI) details.

Appendix C Flash Flowcharts

Refer to the *Intel StrataFlash*[®] *Wireless Memory System* datasheet (order number 253854) for the flash flowchart details.

et4U.com DataSh

DataSheet4U.com

DataSheet4U.com www.DataSheet4U.com

DataSheet4U.com

55

Appendix D Additional Information

Document Number	Datasheets							
253854	Intel StrataFlash® Wireless Memory System (LV18/LV30 SCSP) Datasheet							
	Application Notes							
253856	Concurrent Program and Erase Using the Intel StrataFlash® Wireless Memory System (L18/L30 SCSP)							
292221	AP-663 Using the Intel StrataFlash® memory write buffer®							
292286	AP-738 Reduce Manufacturing Costs with Intel [®] Flash Memory Enhanced Factory Programming							
251237	AP-759 Intel [®] Flash Memory Programming Algorithm Optimizations							
297769	AP-678 Improving Programming Throughput of Automated Flash Memories							
292186	AP-630 Designing for On-Board Programming Using IEEE1149.1 (JTAG) Access Port							
292185	AP-629 Simplifying Manufacturing by Using Automatic Test Equipment for On-Board Programming							
	Software Manuals							
297833	Intel [®] Flash Data Integrator (FDI) User's Guide							
298136	Intel® Persistent Storage Manager (PSM)							
298132	Intel® Virtual Small Block File Manager (VFM)							
	SCSP User Guide							
298161	Intel® Flash Memory Chip Scale Package User's Guide							

et4U.com

- 1. Call the Intel Literature Center at (800) 548-4725 to request Intel documentation. International customers
- must contact their local Intel or distribution sales office.

 2. For the most current information on Intel[®] Flash memory products, software and tools, visit http:// developer.intel.com/design/flash.

DataShe

www.DataSheet4U.com DataSheet4U.com 56 **Datasheet**

Appendix E Ordering Information

The following figures and tables provide ordering information for the LVX family with LPSDRAM device flash + RAM combinations:

- Table 26, "LVX Family with LPSDRAM: Available Product Ordering Information"
- Figure 29, "LVX Family with LPSDRAM: Ordering Information Decoder" on page 58
- Table 27, "38F and 48F Product Densities" on page 58

Table 26. LVX Family with LPSDRAM: Available Product Ordering Information

I/O	Flash Density (Mbit)	RAM Density		Package			
Voltage (V)	and Family	(Mbit) and RAM Type	Size (mm)	Ballout Name	Ball Type	Part Number	Notes
	256 L18 + 256 L18 + 256 V18 + 256 V18	_	11x11x1.4	x16D (103Ball)	SCSP Leaded	RD48F4444LVYBB0 RD48F4444LVYTB0	
	200 1 10 1 200 1 10			(100 Ball)		RD38F4460LVYBB0	
1.8	256 L18 + 256 V18	128 SDRAM	9x11x1.4	x16D (103Ball)	SCSP Leaded	RD38F4460LVYTB0 RD38F4460LVYGB0	1
	256 L18 + 256 L18 + 256 V18	128 SDRAM	9x11x1.4	x16D (103Ball)	SCSP Leaded	RD58F0012LVYBB0 RD58F0012LVYTB0	2
	256 L18 + 256 V18 + 256 V18	128 SDRAM	9x11x1.4	x16D (103Ball)	SCSP Leaded	RD58F0016LVYBB0 RD58F0016LVYTB0	2

et4U.com

NOTES:

- 1. For RD38F4460LVYGB0, the "G" designates a F-CE# parameter configuration where F1-CE# = Top parameter and F2-CE# = Top parameter.
- 2. The 58Fxxxx nomenclature indicates that more than three flash + RAM dies are used in the stacked device.

DataSh

DataSheet4U.com www.DataSheet4U.com

Datasheet 57

Figure 29. LVX Family with LPSDRAM: Ordering Information Decoder

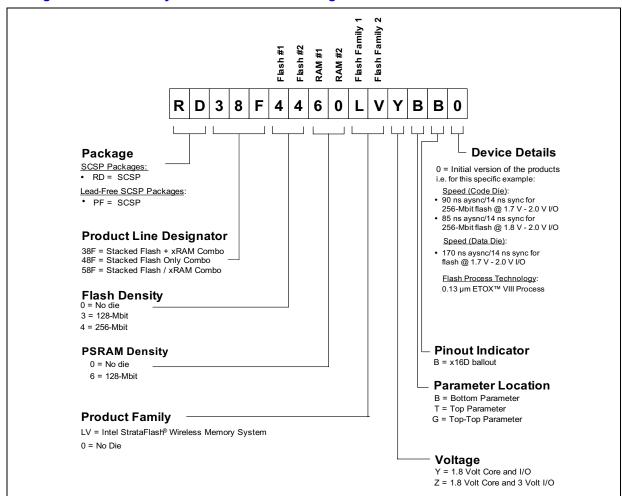


Table 27. 38F and 48F Product Densities

Code	Flash Die Density	RAM Die Density
0	No Die	No Die
1	32-Mbit	4-Mbit
2	64-Mbit	8-Mbit
3	128-Mbit	16-Mbit
4	256-Mbit	32-Mbit
5	512-Mbit	64-Mbit
6	1-Gbit	128-Mbit
7	2-Gbit	256-Mbit
8	4-Gbit	512-Mbit
9	8-Gbit	1-Gbit
Α	16-Gbit	2-Gbit

DataSheet4U.com

58

et4U.com

www.DataSheet4U.com

Datasheet