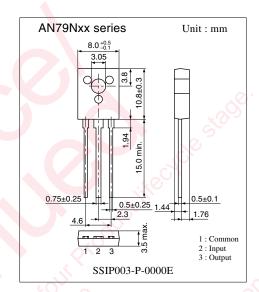
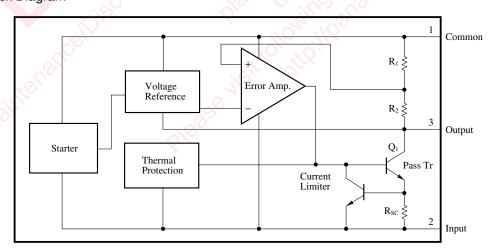
AN79Nxx Series


3-pin negative output voltage regulator (300 mA type)

Overview


The AN79Nxx series is a 3-pin, fixed negative output type monolithic voltage regulator. Stabilized fixed output voltage is obtained from unstable DC input voltage without using any external component IC. 12 types of output voltage are available: -4V, -5V, -6V, -7V, -8V, -9V, -10V, -12V, -15V, -18V, -20V and -24V. They can be used widely in power circuits with current capacity of up to 300mA.

■ Features

- No external components
- Output voltage: -4V, -5V, -6V, -7V, -8V, -9V, -10V, -12V, -15V, -18V, -20V, -24V
- Built-in overcurrent limit circuit
- Built-in thermal overload protection circuit
- Built-in ASO (area of safe operation) protection circuit

■ Block Diagram

■ Absolute Maximum Ratings at T_a = 25°C

Parameter	Symbol	Rating	Unit
Input voltage	V	-35 *1	V
Input voltage	V_{I}	-40 * ²	V
Power dissipation	P_{D}	8 *3	W
Operating ambient temperature	$T_{ m opr}$	-20 to +80	°C
Storage temperature	T_{stg}	-55 to +150	°C

^{*1} AN79N04, AN79N05, AN79N06, AN79N07, AN79N08, AN79N09, AN79N10, AN79N12, AN79N15, AN79N18

■ Electrical Characteristics at $T_a = 25$ °C

• AN79N04 (-4V type)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output voltage	Vo	$T_j = 25^{\circ}C$	-3.84	-4	-4.16	V
Output voltage tolerance	Vo	$V_{\rm I} = -6 \text{ to } -25 \text{V}, I_{\rm O} = 5 \text{ to } 200 \text{mA}$	-3.8		-4.2	V
Line regulation	REG _{IN}	$V_I = -6 \text{ to } -25 \text{V}, T_j = 25^{\circ}\text{C}$		9	40	mV
Line regulation	KEOIN	$V_I = -7 \text{ to } -17V, T_j = 25^{\circ}C$		4	20	mV
Load regulation	REG _I	$I_0 = 1 \text{ to } 300\text{mA}, T_j = 25^{\circ}\text{C}$		20	80	mV
	KEUL	$I_0 = 5 \text{ to } 200\text{mA}, T_j = 25^{\circ}\text{C}$		10	40	mV
Bias current	I_{Bias}	$T_j = 25^{\circ}C$		3	5	mA
Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$V_I = -7 \text{ to } -25V, T_j = 25^{\circ}C$	_		0.5	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 5 \text{ to } 200\text{mA}, T_j = 25^{\circ}\text{C}$			0.1	mA
Output noise voltage	V_{no}	f = 10Hz to 100kHz		100		μV
Ripple rejection ratio	RR	$V_I = -7 \text{ to } -17V, I_O = 50\text{mA},$ f = 120Hz	60	_		dB
Minimum input/output voltage difference	$V_{\text{DIF}(\text{min})}$	$I_0 = 200 \text{mA}, T_j = 25^{\circ}\text{C}$		1.1	_	V
Output short-circuit current	I _{O(Short)}	$V_I = -35V, T_j = 25^{\circ}C$		10	_	mA
Peak output current	I _{O(Peak)}	$T_j = 25^{\circ}C$		500	_	mA
Output voltage temperature coefficient	$\Delta V_{O}/T_{a}$	$I_O = 5mA$		- 0.4	_	mV/°C

Note 1) The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

^{*2} AN79N20, AN79N24

^{*3} Follow the derating curve. When T_j exceeds 150°C, the internal circuit cuts off the output.

Note 2) Unless otherwise specified, $V_1 = -9V$, $I_0 = 100 \text{mA}$, $C_1 = 2\mu\text{F}$, $C_0 = 1\mu\text{F}$ and $T_j = 0$ to 125°C

• AN79N05 (-5V type)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output voltage	V_{O}	$T_j = 25^{\circ}C$	-4.8	-5	-5.2	V
Output voltage tolerance	V_{O}	$V_{\rm I} = -7 \text{ to } -25 \text{V}, I_{\rm O} = 5 \text{ to } 200 \text{mA}$	-4.75		-5.25	V
Line regulation	REG _{IN}	$V_I = -7 \text{ to } -25V, T_j = 25^{\circ}C$		10	50	mV
Line regulation	KEOIN	$V_I = -8 \text{ to } -18V, T_j = 25^{\circ}C$		5	30	mV
Load manufaction	REG_L	$I_0 = 1 \text{ to } 300\text{mA}, T_j = 25^{\circ}\text{C}$		20	100	mV
Load regulation	KEUL	$I_0 = 5 \text{ to } 200\text{mA}, T_j = 25^{\circ}\text{C}$		10	50	mV
Bias current	I_{Bias}	$T_j = 25^{\circ}C$		3	5	mA
Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$V_I = -8 \text{ to } -25 \text{V}, T_j = 25 ^{\circ}\text{C}$			0.5	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 5 \text{ to } 200\text{mA}, T_j = 25^{\circ}\text{C}$			0.1	mA
Output noise voltage	V_{no}	f = 10Hz to 100kHz		125		μV
Ripple rejection ratio	RR	$V_I = -8 \text{ to } -18V, I_O = 50\text{mA},$ f = 120Hz	60	_		dB
Minimum input/output voltage difference	$V_{\text{DIF}(\text{min})}$	$I_O = 200 \text{mA}, T_j = 25^{\circ}\text{C}$		1.1		V
Output short-circuit current	I _{O(Short)}	$V_I = -35V, T_j = 25^{\circ}C$		10		mA
Peak output current	I _{O(Peak)}	$T_j = 25^{\circ}C$		500	_	mA
Output voltage temperature coefficient	$\Delta V_O/T_a$	$I_O = 5mA$		- 0.4		mV/°C

Note 1) The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

• AN79N06 (-6V type)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output voltage	V_{O}	$T_j = 25^{\circ}C$	-5.75	-6	-6.25	V
Output voltage tolerance	$V_{\rm o}$	$V_{\rm I} = -8 \text{ to } -25 \text{V}, I_{\rm O} = 5 \text{ to } 200 \text{mA}$	-5.7		-6.3	V
Line regulation	REG_{IN}	$V_I = -8 \text{ to } -25 \text{V}, T_j = 25^{\circ} \text{C}$		11	60	mV
Line regulation	KEOIN	$V_I = -9 \text{ to } -19V, T_j = 25^{\circ}C$		6	40	mV
Load regulation	DEC	$I_0 = 1 \text{ to } 300\text{mA}, T_j = 25^{\circ}\text{C}$		20	120	mV
Load regulation	REG_L	$I_0 = 5 \text{ to } 200\text{mA}, T_j = 25^{\circ}\text{C}$	_	10	60	mV
Bias current	I_{Bias}	$T_j = 25^{\circ}C$		3	5	mA
Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$V_I = -9 \text{ to } -25 \text{V}, T_j = 25^{\circ}\text{C}$			0.5	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 5 \text{ to } 200\text{mA}, T_j = 25^{\circ}\text{C}$	_		0.1	mA
Output noise voltage	V_{no}	f = 10Hz to 100kHz		150		μV
Ripple rejection ratio	RR	$V_I = -9 \text{ to } -19V, I_O = 50\text{mA},$ f = 120Hz	60	_		dB
Minimum input/output voltage difference	$V_{\text{DIF}(\text{min})}$	$I_0 = 5 \text{mA}, T_j = 0 \text{ to } 125^{\circ}\text{C}$		1.1		V
Output short-circuit current	$I_{O(Short)}$	$V_I = -35V, T_j = 25^{\circ}C$		10		mA
Peak output current	I _{O(Peak)}	$T_j = 25^{\circ}C$		500	_	mA
Output voltage temperature coefficient	$\Delta V_O/T_a$	$I_O = 200 \text{mA}$		- 0.4	_	mV/°C

Note 1) The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

Note 2) Unless otherwise specified, $V_I = -10V$, $I_O = 100$ mA, $C_I = 2\mu$ F, $C_O = 1\mu$ F and $T_j = 0$ to 125° C

Note 2) Unless otherwise specified, $V_I = -11V$, $I_O = 100mA$, $C_I = 2\mu F$, $C_O = 1\mu F$ and $T_j = 0$ to $125^{\circ}C$

• AN79N07 (-7V type)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output voltage	Vo	$T_j = 25^{\circ}C$	-6.7	-7	-7.3	V
Output voltage tolerance	Vo	$V_{\rm I} = -9 \text{ to } -25 \text{V}, I_{\rm O} = 5 \text{ to } 200 \text{mA}$	-6.65		-7.35	V
Line regulation	REG _{IN}	$V_I = -9 \text{ to } -25V, T_j = 25^{\circ}C$		12	70	mV
Line regulation	KEOIN	$V_I = -10 \text{ to } -20 \text{V}, T_j = 25^{\circ} \text{C}$		7	35	mV
T 1 12	DEC	$I_0 = 1 \text{ to } 300\text{mA}, T_j = 25^{\circ}\text{C}$		20	140	mV
Load regulation	REG_L	$I_0 = 5 \text{ to } 200\text{mA}, T_j = 25^{\circ}\text{C}$		10	70	mV
Bias current	I_{Bias}	$T_j = 25$ °C		3	5	mA
Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$V_I = -10 \text{ to } -25 \text{V}, T_j = 25^{\circ}\text{C}$			0.5	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 5 \text{ to } 200\text{mA}, T_j = 25^{\circ}\text{C}$			0.1	mA
Output noise voltage	V _{no}	f = 10Hz to 100kHz		175		μV
Ripple rejection ratio	RR	$V_I = -10 \text{ to } -20\text{V}, I_O = 50\text{mA},$ f = 120Hz	59	_		dB
Minimum input/output voltage difference	$V_{\text{DIF}(\text{min})}$	$I_0 = 200 \text{mA}, T_j = 25^{\circ}\text{C}$		1.1		V
Output short-circuit current	I _{O(Short)}	$V_I = -35V, T_j = 25^{\circ}C$		10		mA
Peak output current	I _{O(Peak)}	$T_j = 25$ °C		500		mA
Output voltage temperature coefficient	$\Delta V_O/T_a$	$I_O = 5mA$		- 0.5		mV/°C

Note 1) The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

• AN79N08 (-8V type)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output voltage	Vo	$T_j = 25^{\circ}C$	-7.7	-8	-8.3	V
Output voltage tolerance	Vo	$V_{\rm I} = -10.5 \text{ to } -25 \text{V}, I_{\rm O} = 5 \text{ to } 200 \text{mA}$	-7.6		-8.4	V
Line regulation	REG _{IN}	$V_I = -10.5 \text{ to } -25 \text{V}, T_j = 25^{\circ}\text{C}$		13	80	mV
Line regulation	KEOIN	$V_I = -11 \text{ to } -21 \text{V}, T_j = 25^{\circ}\text{C}$		8	40	mV
T d 1 i	REG_L	$I_0 = 1 \text{ to } 300 \text{mA}, T_j = 25^{\circ}\text{C}$		25	160	mV
Load regulation	KEUL	$I_0 = 5 \text{ to } 200\text{mA}, T_j = 25^{\circ}\text{C}$		10	80	mV
Bias current	I_{Bias}	$T_j = 25$ °C		3	5	mA
Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$V_I = -10.5 \text{ to } -25 \text{V}, T_j = 25^{\circ}\text{C}$	_		0.5	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 5 \text{ to } 200\text{mA}, T_j = 25^{\circ}\text{C}$			0.1	mA
Output noise voltage	V_{no}	f = 10Hz to 100kHz		200		μV
Ripple rejection ratio	RR	$V_I = -11.5 \text{ to } -21.5 \text{V}, I_O = 50 \text{mA},$ f = 120Hz	59	_		dB
Minimum input/output voltage difference	$V_{\text{DIF}(\text{min})}$	$I_O = 200 \text{mA}, T_j = 25^{\circ}\text{C}$		1.1		V
Output short-circuit current	I _{O(Short)}	$V_I = -35V, T_j = 25^{\circ}C$		10		mA
Peak output current	I _{O(Peak)}	$T_j = 25^{\circ}C$	_	500	_	mA
Output voltage temperature coefficient	$\Delta V_{O}/T_{a}$	$I_O = 5mA$		- 0.6		mV/°C

Note 1) The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

Note 2) Unless otherwise specified, $V_1 = -14V$, $I_0 = 100$ mA, $C_1 = 2\mu$ F, $C_0 = 1\mu$ F and $T_j = 0$ to 125° C

Note 2) Unless otherwise specified, $V_I = -12V$, $I_O = 100$ mA, $C_I = 2\mu$ F, $C_O = 1\mu$ F and $T_i = 0$ to 125°C

• AN79N09 (-9V type)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output voltage	V_{O}	$T_j = 25^{\circ}C$	-8.65	-9	-9.35	V
Output voltage tolerance	V_{O}	$V_{\rm I} = -11.5 \text{ to } -26\text{V}, I_{\rm O} = 5 \text{ to } 200\text{mA}$	-8.55		-9.45	V
Line regulation	REG _{IN}	$V_I = -11.5 \text{ to } -26V, T_j = 25^{\circ}C$		14	80	mV
Line regulation	KEGIN	$V_I = -12 \text{ to } -22 \text{V}, T_j = 25^{\circ}\text{C}$		9	50	mV
I and manufaction	DEC	$I_0 = 1 \text{ to } 300 \text{mA}, T_j = 25^{\circ}\text{C}$		25	180	mV
Load regulation	REG_L	$I_0 = 5 \text{ to } 200 \text{mA}, T_j = 25^{\circ}\text{C}$		10	90	mV
Bias current	I_{Bias}	$T_j = 25$ °C		3	5	mA
Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$V_I = -11.5 \text{ to } -26V, T_j = 25^{\circ}C$			0.5	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 5 \text{ to } 200 \text{mA}, T_j = 25^{\circ}\text{C}$			0.1	mA
Output noise voltage	V_{no}	f = 10Hz to 100kHz		225		μV
Ripple rejection ratio	RR	$V_I = -12 \text{ to } -22 \text{V}, I_O = 50 \text{mA},$ f = 120Hz	58	_		dB
Minimum input/output voltage difference	$V_{\text{DIF}(\text{min})}$	$I_0 = 200 \text{mA}, T_j = 25^{\circ}\text{C}$		1.1		V
Output short-circuit current	I _{O(Short)}	$V_I = -35V, T_j = 25^{\circ}C$		10	_	mA
Peak output current	I _{O(Peak)}	$T_j = 25^{\circ}C$		500		mA
Output voltage temperature coefficient	$\Delta V_O/T_a$	$I_0 = 5mA$		- 0.6		mV/°C

Note 1) The specified condition $T_j = 25^{\circ}$ C means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

• AN79N10 (-10V type)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output voltage	V_{O}	$T_j = 25^{\circ}C$	-9.6	-10	-10.4	V
Output voltage tolerance	Vo	$V_{\rm I} = -12.5 \text{ to } -27 \text{V}, I_{\rm O} = 5 \text{ to } 200 \text{mA}$	-9.5		-10.5	V
Line regulation	REG _{IN}	$V_I = -12.5 \text{ to } -27 \text{V}, T_j = 25^{\circ}\text{C}$		15	80	mV
Line regulation	KEOIN	$V_I = -13 \text{ to } -23 \text{V}, T_j = 25^{\circ}\text{C}$		10	50	mV
Load regulation	REG	$I_0 = 1 \text{ to } 300 \text{mA}, T_j = 25^{\circ}\text{C}$		25	200	mV
	KEUL	$I_0 = 5 \text{ to } 200 \text{mA}, T_j = 25^{\circ}\text{C}$		10	100	mV
Bias current	I_{Bias}	$T_j = 25^{\circ}C$		3.0	5	mA
Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$V_I = -12.5 \text{ to } -27 \text{V}, T_j = 25^{\circ}\text{C}$			0.5	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 5 \text{ to } 200 \text{mA}, T_j = 25^{\circ}\text{C}$			0.1	mA
Output noise voltage	V_{no}	f = 10Hz to 100 kHz		250		μV
Ripple rejection ratio	RR	$V_I = -13 \text{ to } -23 \text{V}, I_O = 50 \text{mA},$ f = 120Hz	58	_		dB
Minimum input/output voltage difference	$V_{\text{DIF}(\text{min})}$	$I_0 = 200 \text{mA}, T_j = 25^{\circ}\text{C}$		1.1		V
Output short-circuit current	I _{O(Short)}	$V_I = -35V, T_j = 25^{\circ}C$		10		mA
Peak output current	I _{O(Peak)}	$T_j = 25^{\circ}C$		500		mA
Output voltage temperature coefficient	$\Delta V_O/T_a$	$I_0 = 5mA$	_	- 0.7	_	mV/°C

Note 1) The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

Note 2) Unless otherwise specified, $V_1 = -15V$, $I_0 = 100$ mA, $C_1 = 2\mu$ F, $C_0 = 1\mu$ F and $T_j = 0$ to 125° C

Note 2) Unless otherwise specified, $V_1 = -16V$, $I_0 = 100$ mA, $C_1 = 2\mu$ F, $C_0 = 1\mu$ F and $T_j = 0$ to 125° C

• AN79N12 (-12V type)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output voltage	V_{O}	$T_j = 25^{\circ}C$	-11.5	-12	-12.5	V
Output voltage tolerance	V_{O}	$V_{\rm I} = -14.5 \text{ to } -30 \text{V}, I_{\rm O} = 5 \text{ to } 200 \text{mA}$	-11.4		-12.6	V
Line regulation	REG _{IN}	$V_I = -14.5 \text{ to } -30V, T_j = 25^{\circ}C$		15	80	mV
Line regulation	KLOIN	$V_I = -15 \text{ to } -25 \text{V}, T_j = 25^{\circ}\text{C}$		10	50	mV
I and manufaction	REG	$I_0 = 1 \text{ to } 300 \text{mA}, T_j = 25^{\circ}\text{C}$		25	240	mV
Load regulation	KEUL	$I_0 = 5 \text{ to } 200 \text{mA}, T_j = 25^{\circ}\text{C}$		10	120	mV
Bias current	I_{Bias}	$T_j = 25^{\circ}C$		3	5	mA
Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$V_I = -14.5 \text{ to } -30\text{V}, T_j = 25^{\circ}\text{C}$			0.5	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 5 \text{ to } 200 \text{mA}, T_j = 25^{\circ}\text{C}$			0.1	mA
Output noise voltage	V_{no}	f = 10Hz to 100kHz		300		μV
Ripple rejection ratio	RR	$V_I = -15 \text{ to } -25 \text{V}, \ I_O = 50 \text{mA}, \\ f = 120 \text{Hz}$	57	_		dB
Minimum input/output voltage difference	$V_{\text{DIF}(\text{min})}$	$I_O = 200 \text{mA}, T_j = 25^{\circ}\text{C}$		1.1	_	V
Output short-circuit current	I _{O(Short)}	$V_I = -35V, T_j = 25^{\circ}C$		10	_	mA
Peak output current	I _{O(Peak)}	$T_j = 25^{\circ}C$		500	_	mA
Output voltage temperature coefficient	$\Delta V_O/T_a$	$I_O = 5mA$		- 0.8	_	mV/°C

Note 1) The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored. Note 2) Unless otherwise specified, $V_I = -19V$, $I_O = 100mA$, $C_I = 2\mu F$, $C_O = 1\mu F$ and $T_j = 0$ to $125^{\circ}C$

• AN79N15 (-15V type)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output voltage	V_{O}	$T_j = 25^{\circ}C$	-14.4	-15	-15.6	V
Output voltage tolerance	V_{O}	$V_{\rm I} = -17.5 \text{ to } -30 \text{V}, I_{\rm O} = 5 \text{ to } 200 \text{mA}$	-14.25		-15.75	V
Line regulation	REG _{IN}	$V_I = -17.5 \text{ to } -30\text{V}, T_j = 25^{\circ}\text{C}$		16	80	mV
Line regulation	KEGIN	$V_I = -18 \text{ to } -28 \text{V}, T_j = 25 ^{\circ}\text{C}$		11	50	mV
Load regulation	REG_L	$I_0 = 1 \text{ to } 300\text{mA}, T_j = 25^{\circ}\text{C}$		25	240	mV
Load regulation	KEUL	$I_0 = 5 \text{ to } 200\text{mA}, T_j = 25^{\circ}\text{C}$		10	120	mV
Bias current	I_{Bias}	$T_j = 25^{\circ}C$	_	3	5	mA
Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$V_I = -17.5 \text{ to } -30 \text{V}, T_j = 25^{\circ}\text{C}$			0.5	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 5 \text{ to } 200\text{mA}, T_j = 25^{\circ}\text{C}$			0.1	mA
Output noise voltage	V_{no}	f = 10Hz to 100kHz	_	375	_	μV
Ripple rejection ratio	RR	$V_I = -18 \text{ to } -28 \text{V}, I_O = 50 \text{mA}, f = 120 \text{Hz}$	56			dB
Minimum input/output voltage difference	$V_{\text{DIF}(\text{min})}$	$I_0 = 200 \text{mA}, T_j = 25^{\circ}\text{C}$		1.1		V
Output short-circuit current	I _{O(Short)}	$V_I = -35V, T_j = 25^{\circ}C$		10		mA
Peak output current	$I_{O(Peak)} \\$	$T_j = 25^{\circ}C$		500		mA
Output voltage temperature coefficient	$\Delta V_O/T_a$	$I_0 = 5mA$		- 0.9		mV/°C

Note 1) The specified condition $T_j = 25^{\circ}$ C means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

Note 2) Unless otherwise specified, $V_1 = -23V$, $I_0 = 100$ mA, $C_1 = 2\mu$ F, $C_0 = 1\mu$ F and $T_j = 0$ to 125° C

• AN79N18 (-18V type)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output voltage	V_{O}	$T_j = 25^{\circ}C$	-17.3	-18	-18.7	V
Output voltage tolerance	V_{O}	$V_{\rm I} = -21 \text{ to } -33 \text{V}, I_{\rm O} = 5 \text{ to } 200 \text{mA}$	-17.1		-18.9	V
Line regulation	REG_{IN}	$V_I = -21 \text{ to } -33 \text{V}, T_j = 25^{\circ}\text{C}$		18	80	mV
Line regulation	KEUIN	$V_I = -22 \text{ to } -32 \text{V}, T_j = 25^{\circ}\text{C}$		13	50	mV
Load regulation	REG _L	$I_0 = 1 \text{ to } 300\text{mA}, T_j = 25^{\circ}\text{C}$		30	300	mV
Load regulation	KEUL	$I_0 = 5 \text{ to } 200\text{mA}, T_j = 25^{\circ}\text{C}$		10	150	mV
Bias current	I_{Bias}	$T_j = 25$ °C		3	5	mA
Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$V_I = -21 \text{ to } -33 \text{V}, T_j = 25^{\circ}\text{C}$		-	0.5	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 5 \text{ to } 200\text{mA}, T_j = 25^{\circ}\text{C}$		_	0.1	mA
Output noise voltage	V _{no}	f = 10Hz to 100kHz		450		μV
Ripple rejection ratio	RR	$V_I = -22 \text{ to } -32 \text{V}, I_O = 50 \text{mA},$ f = 120Hz	55	_		dB
Minimum input/output voltage difference	$V_{\text{DIF}(\text{min})}$	$I_0 = 200 \text{mA}, T_j = 25^{\circ}\text{C}$		1.1	_	V
Output short-circuit current	I _{O(Short)}	$V_I = -35V, T_j = 25^{\circ}C$		10	_	mA
Peak output current	$I_{O(Peak)} \\$	$T_j = 25^{\circ}C$		500		mA
Output voltage temperature coefficient	$\Delta V_O/T_a$	$I_0 = 5mA$		-1		mV/°C

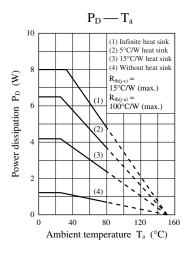
Note 1) The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

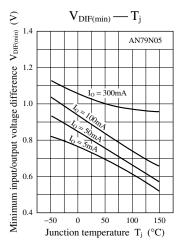
• AN79N20 (-20V type)

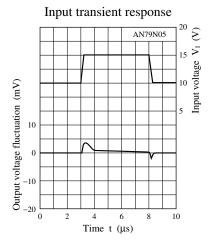
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output voltage	V_{O}	$T_j = 25^{\circ}C$	-19.2	-20	-20.8	V
Output voltage tolerance	V_{O}	$V_{\rm I} = -23$ to -35 V, $I_{\rm O} = 5$ to 200 mA	-19		-21	V
Line regulation	REG_{IN}	$V_I = -23 \text{ to } -35 \text{V}, T_j = 25^{\circ}\text{C}$		19	80	mV
Line regulation	KLOIN	$V_I = -24 \text{ to } -34 \text{V}, T_j = 25^{\circ}\text{C}$		14	70	mV
Load regulation	REG _I	$I_0 = 1 \text{ to } 300 \text{mA}, T_j = 25^{\circ}\text{C}$		30	300	mV
Load regulation	KEO_L	$I_0 = 5 \text{ to } 200\text{mA}, T_j = 25^{\circ}\text{C}$		10	150	mV
Bias current	I_{Bias}	$T_j = 25^{\circ}C$		3	5	mA
Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$V_I = -23 \text{ to } -35 \text{V}, T_j = 25 ^{\circ}\text{C}$			0.5	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 5 \text{ to } 200\text{mA}, T_j = 25^{\circ}\text{C}$			0.1	mA
Output noise voltage	V_{no}	f = 10Hz to 100kHz		500		μV
Ripple rejection ratio	RR	$V_I = -24 \text{ to } -34 \text{V}, I_O = 50 \text{mA},$ f = 120Hz	54	_		dB
Minimum input/output voltage difference	$V_{\text{DIF}(\text{min})}$	$I_0 = 200 \text{mA}, T_j = 25^{\circ}\text{C}$		1.1		V
Output short-circuit current	$I_{O(Short)}$	$V_I = -35V, T_j = 25^{\circ}C$		10		mA
Peak output current	I _{O(Peak)}	$T_j = 25^{\circ}C$		500		mA
Output voltage temperature coefficient	$\Delta V_O/T_a$	$I_O = 5mA$		-1		mV/°C

Note 1) The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

Note 2) Unless otherwise specified, $V_I = -29V$, $I_O = 100mA$, $C_I = 2\mu F$, $C_O = 1\mu F$ and $T_j = 0$ to $125^{\circ}C$

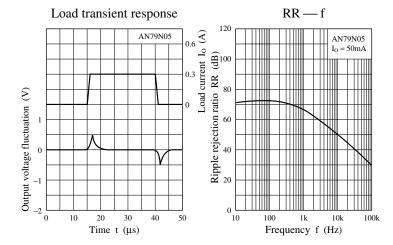

Note 2) Unless otherwise specified, $V_I = -27V$, $I_O = 100$ mA, $C_I = 2\mu$ F, $C_O = 1\mu$ F and $T_i = 0$ to 125° C

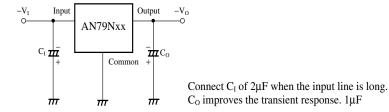

• AN79N24 (-24V type)


Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output voltage	V_{O}	$T_j = 25^{\circ}C$	-23	-24	-25	V
Output voltage tolerance	V_{O}	$V_{\rm I} = -27 \text{ to } -38 \text{V}, I_{\rm O} = 5 \text{ to } 200 \text{mA}$	-22.8		-25.2	V
Line regulation	REG _{IN}	$V_I = -27 \text{ to } -38 \text{V}, T_j = 25^{\circ}\text{C}$		20	80	mV
		$V_I = -27 \text{ to } -37 \text{V}, T_j = 25^{\circ}\text{C}$	_	15	70	mV
Load regulation	REG _L	$I_0 = 1 \text{ to } 300\text{mA}, T_j = 25^{\circ}\text{C}$		30	300	mV
		$I_0 = 5 \text{ to } 200\text{mA}, T_j = 25^{\circ}\text{C}$		10	150	mV
Bias current	I_{Bias}	$T_j = 25^{\circ}C$		3	5	mA
Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$V_I = -27 \text{ to } -38 \text{V}, T_j = 25^{\circ}\text{C}$			0.5	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 5 \text{ to } 200\text{mA}, T_j = 25^{\circ}\text{C}$			0.1	mA
Output noise voltage	V_{no}	f = 10Hz to 100kHz		600	_	μV
Ripple rejection ratio	RR	$V_I = -28 \text{ to } -38 \text{V}, I_O = 50 \text{mA},$ f = 120Hz	54			dB
Minimum input/output voltage difference	$V_{\text{DIF}(\text{min})}$	$I_0 = 200 \text{mA}, T_j = 25^{\circ}\text{C}$		1.1		V
Output short-circuit current	I _{O(Short)}	$V_I = -35V, T_j = 25^{\circ}C$		10	_	mA
Peak output current	$I_{O(Peak)}$	$T_j = 25^{\circ}C$		500		mA
Output voltage temperature coefficient	$\Delta V_{O}/T_{a}$	$I_0 = 5mA$		-1		mV/°C

Note 1) The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

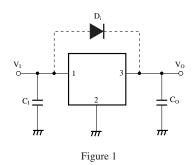
■ Main Characteristics





Note 2) Unless otherwise specified, $V_1 = -33V$, $I_0 = 100$ mA, $C_1 = 2\mu$ F, $C_0 = 1\mu$ F and $T_j = 0$ to 125° C

■ Main Characteristics (continued)



■ Basic Regulator Circuit

■ Usage Notes

1. Cautions for a basic circuit

- C_1 : When a wiring from a smoothing circuit to a three-pin regulator is long, it is likely to oscillate at output. A capacitor of $0.1\mu F$ to $0.47\mu F$ should be connected near an input pin.
- C_{O} : Deadly needed to prevent from oscillation (0.33 μ F to 1.0 μ F). It is recommended to use a capacitor of a small internal impedance (ex. tantalum capacitor) when using it under a low temperature.
 - When any sudden change of load current is likely to occur, connect an electrolytic capacitor of $10\mu F$ to $100\mu F$ to improve a transitional response of output voltage.
- D_i: Normally unnecessary. But add it in the case that there is a residual voltage at the output capacitor Co even after switching off the supply power because a current is likely to flow into an output pin of the IC and damage the IC.

9

■ Usage Notes (continued)

2. Other caution items

1) Short-circuit between the input pin and GND pin

If the input pin is short-circuitted to GND or is cut off when a large capacitance capacitor has been connected to the IC's load, a voltage of a capacitor connected to an output pin is applied between input/output of the IC and this likely results in damage of the IC. It is necessary, therefore, to connect a diode, as shown in figure 2, to counter the reverse bias between input/output pins.

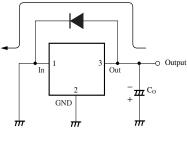
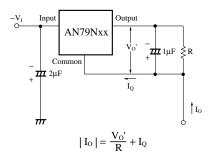



Figure 2

2) Floating of GND pin

If a GND pin is made floating in an operating mode, an unstabilized input voltage is outputted. In this case, a thermal protection circuit inside the IC does not normally operate. In this state, if the load is short-circuited or overloaded, it is likely to damage the IC.

■ Application Circuit Example

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products, and no license is granted under any intellectual property right or other right owned by our company or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
 Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support
 systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - Any applications other than the standard applications intended.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
 - Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of Matsushita Electric Industrial Co., Ltd.