

Issue Date: November 05, 2009

ML610Q347/ML610347

Preliminary

8-bit Microcontroller with Voice Output Function

GENERAL DESCRIPTION

Equipped with an OKI SEMICONDUCTOR original 8-bit CPU nX-U8/100, the ML610Q347/ML610347 is a high-performance 8-bit CMOS microcontroller that integrates a wide variety of peripherals such as an 12-bit A/D converter, timer, synchronous serial port, UART, and voice output function. The nX-U8/100 CPU is capable of executing instructions efficiently on a one-instruction-per-clock-pulse basis through parallel processing by the 3-stage pipelined architecture. The microcontroller is also equipped with a flash memory that has achieved low voltage and low power consumption (at read) equivalent to mask ROMs, so it is best suited to battery-driven applications such as cellular phones. In addition, it has an on-chip debugging function, which allows software debugging/rewriting with the LSI mounted on the board.

FEATURES

• CPU

- 8-bit RISC CPU (CPU name: nX-U8/100)
- Instruction repertoire: 16-bit length instructions
- Instruction set: Transfer, arithmetic operations, comparison, logical operations, multiply/divide operations, bit manipulation, bit logical operations, jump, conditional jump, call return stack manipulation, and arithmetic shift instructions.
- Built-in on-chip debugging function
- Minimum instruction execution time:
 - 31.25 µs (@ 32kHz system clock)
 - 0.25 µs (@ 4.096 MHz system clock)
- Internal memory
 - ML610Q347
 - Has 128-Kbyte flash memory (64K × 16-bit) built in. (including unusable 1KByte TEST area) ML610347
 - Has 128-Kbyte mask memory (64K × 16-bit) built in. (including unusable 1KByte TEST area)
 - Has 1-Kbyte RAM (1024×8 -bit) built in.
- Interrupt controller
 - Non-maskable interrupt: 2 sources (1 internal source and 1 external sources)
 - Maskable interrupt: 18 sources (10 internal sources and 8 external sources)
- Time-base counter
 - Low-speed side time-base counter × 1ch
 - High-speed side time-base counter × 1ch
- Watchdog timer
 - Generates a non-maskable interrupt upon the first overflow and a system reset occurs upon the second
 - Free-running
 - Selectable overflow period: 4 types (125 ms, 500 ms, 2 sec, 8 sec)
- Timer
 - 8-bit × 2ch (16-bit configuration also enabled)

- Voice output function
 - Voice synthesis method: HQ-ADPCM / 4-bit ADPCM2 / 8-bit non-linear PCM / 8-bit PCM / 16-bit PCM
 - Sampling frequency: 8/10.7/12.8/16/21.3/25.6/32 kHz
- Synchronous serial port
 - Master/slave selectable
 - LSB/MSB-first selectable
 - 8-bit/16-bit length selectable
- UART
 - Half-Duplex Communication
 - TXD/RXD \times 1 channel
 - Bit length, with/without parity, odd/even parity, 1 or 2 stop bits
 - Positive/negative logic selectable
 - Built-in baud-rate generator
- Successive-approximation type A/D converter
 - 12-bit A/D converter
 - Input: 12ch
 - Conversion time: 26.86 µs per channel at 4.096 MHz
- General-purpose port
 - Input-only port × 8ch
 - Output-only port \times 4ch (those as secondary functions are also included)
 - Input-output port × 16ch (those as secondary functions are also included)
- Reset
 - Resetting by the RESET_N pin
 - Resetting upon power-on detection
 - Resetting upon WDT overflow detection
- Clock
 - Low-speed side clock
 - Built-in RC oscillator (32 kHz)
 - High-speed side clock
 - Crystal/ceramic oscillation (4.096 MHz), external clock
- Power management
 - HALT mode: Halts the execution of instructions issued by the CPU (the peripheral circuits continue operating)
 - STOP mode: Stops low-speed and high-speed oscillation (the CPU and the peripheral circuits stop operating)
 - Clock gear: Allows changing the frequency of the high-speed system clock by software (oscillator clock divided by 1, 2, 4, or 8)
 - Block Control Function: Power down (reset registers and stop clock supply) the circuits of unused peripherals.

- Shipment

 - 64-pin TQFP
 High-speed side clock : Crystal/ceramic oscillation (4.096 MHz) Flash Memory :ML610Q347-xxxTB (blank product: ML610Q347-NNNTB) Mask Memory :ML610347-xxxTB
 - High-speed side clock : external clock Flash Memory :ML610Q347J-xxxTB (blank product: ML610Q347J-NNNTB) Mask Memory :ML610347J-xxxTB

xxx: ROM code number

- Guaranteed operating range

 - Operating temperature: -40°C to +85°C
 Operating voltage: VDD = 2.2 to 5.5 V, SPVDD = 2.3 to 5.5 V, AVDD = 2.2 to 5.5 V (Be sure to apply the same voltage to V_{DD} and SPV_{DD} power supplies.)

BLOCK DIAGRAM

Figure 1 is a block diagram of the ML610Q347.

Symbols with an asterisk "*" indicate that each of them is the secondary or tertiary function of the corresponding port.

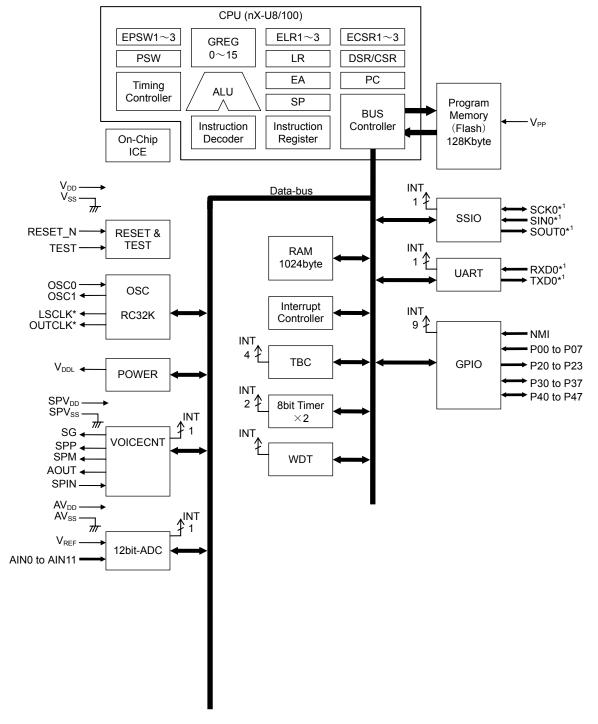


Figure 1 Block Diagram of ML610Q347

Figure 2 is a block diagram of the ML610347.

Symbols with an asterisk "*" indicate that each of them is the secondary or tertiary function of the corresponding port.

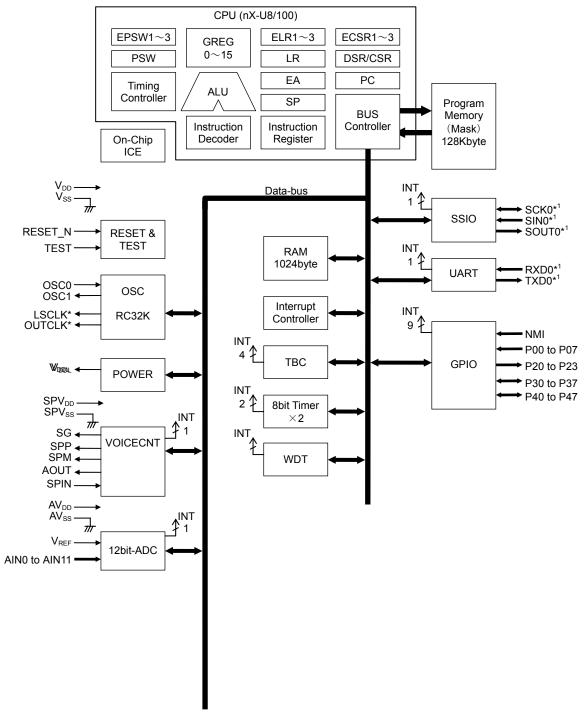
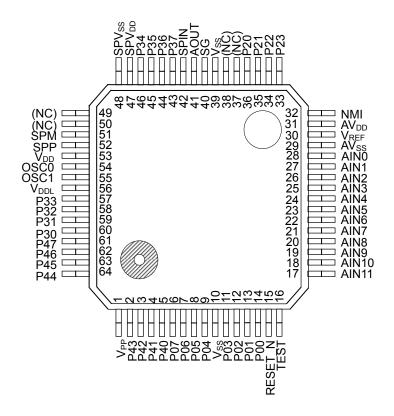
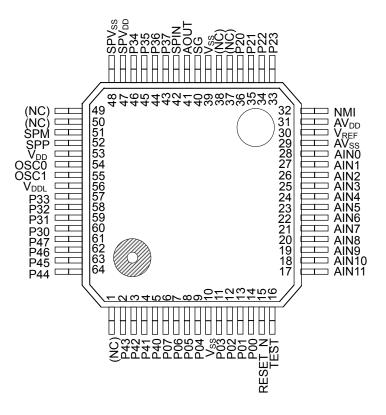



Figure 2 Block Diagram of ML610347

PIN CONFIGURATION

ML610Q347 TQFP package product



NC: No Connection

Figure 3 Pin Configuration of ML610Q347 Package Product

ML610347 TQFP package product

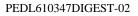
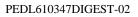

NC: No Connection

Figure 4 Pin Configuration of ML610347 Package Product

LIST OF PINS


PAD		Prima	ary function	Sec	ondary	function	Те	Tertiary function		
No	Pin name	I/O	Description	Pin name	I/O	Description	Pin name	I/O	Description	
10,39	Vss	_	Negative power supply pin	_	_	_	_	_	_	
53	V _{DD}	—	Positive power supply pin		_	_	—	_	_	
56	V _{DDL}		Power supply for internal logic (internally generated)					_		
48	SPV _{ss}		Negative power supply pin for built-in speaker amplifier							
47	SPV _{DD}		Positive power supply pin for built-in speaker amplifier			_	_		_	
29	AV_{SS}	_	Negative power supply pin for successive-approxima tion type ADC	_		_	_	_	_	
31	AV_{DD}	_	Positive power supply pin for successive-approxima tion type ADC	_		_	_	_	_	
1	V _{PP} (*)	—	Power supply pin for flash memory	_	—	—	—	_	_	
16	TEST	I/O	Input/output pin for testing	_	—	_			_	
15	RESET_N	I	Reset input pin			_			_	
54	OSC0	I	Connection pin for high-speed clock oscillation	_		_	_		_	
55	OSC1	ο	Connection pin for high-speed clock oscillation	P11	Ι	Input port	—		_	
41	AOUT	0	LINE output							
42	SPIN	I	Analog input to the built-in speaker amplifier	_		_	—	_	_	
40	SG	0	Reference power supply pin of the built-in speaker amplifier	_	_	_	_	_	_	
52	SPP	0	Positive output pin of the built-in speaker amplifier			_	_		_	
51	SPM	0	Negative output pin of the built-in speaker amplifier			_	_		_	
30	V_{REF}	_	Reference power supply pin for successive-approxima tion type ADC		_		_	_		
28	AIN0	I	Successive-approxim ation type ADC input							
27	AIN1	I	Successive-approxim ation type ADC input			_	_		_	
26	AIN2	I	Successive-approxim ation type ADC input	_		_			_	
25	AIN3	I	Successive-approxim ation type ADC input							

ML	61	00	34	7/3	47
 VIL.	UL	υQ	54	115	

PAD		Prima	ary function	Sec	ondary	function	Те	rtiary fu	unction
No	Pin name	I/O	Description	Pin name	I/O	Description	Pin name	I/O	Description
24	AIN4	I	Successive-approxim ation type ADC input						
23	AIN5	Ι	Successive-approxim ation type ADC input						
22	AIN6	Ι	Successive-approxim ation type ADC input						
21	AIN7	I	Successive-approxim ation type ADC input						
20	AIN8	I	Successive-approxim ation type ADC input						
19	AIN9	I	Successive-approxim ation type ADC input						
18	AIN10	I	Successive-approxim ation type ADC input						
17	AIN11	I	Successive-approxim ation type ADC input						
32	NMI	Ι	Input port, non-maskable interrupt			—	_		
14	P00/EXI0	I	Input port / External interrupt	_			—		—
13	P01/EXI1	I	Input port / External interrupt						_
12	P02/EXI2/ RXD0	I	Input port / External interrupt / UART0 data input			_	_		_
11	P03/EXI3	I	Input port / External interrupt			—	_		—
9	P04/EXI4/ T0P0CK	I	Input port / External interrupt / Timer 0 external clock input	_		_	_		_
8	P05/EXI5/ T1P1CK	I	Input port / External interrupt / Timer 1 external clock input	—	—	—	—	—	_
7	P06/EXI6	Ι	Input port / External interrupt				_		_
6	P07/EXI7	I	Input port / External interrupt	_		_	—		_
36	P20/LED0	0	Output port / LED drive	LSCLK	0	Low-speed clock output		_	
35	P21/LED1	0	Output port / LED drive	OUTCLK	0	high-speed clock output	—	—	
34	P22/LED2	0	Output port / LED drive	_	_	—	_	_	—
33	P23/LED3	0	Output port / LED drive	_	_	—	_	_	—
60	P30	I/O	Input/output port			—			—
59	P31	I/O	Input/output port		_	—		_	
58	P32	1/0	Input/output port		_	—	_	_	—
57 46	P33 P34	1/O 1/O	Input/output port Input/output port		_				
40	P35	1/0	Input/output port					_	
44	P36	1/0	Input/output port	LSCLK	0	Low-speed clock output	_		
43	P37	I/O	Input/output port	OUTCLK	0	high-speed clock output	_	_	_
5	P40	I/O	Input/output port	_	_	_	SIN0	I	SSIO0 data input
4	P41	I/O	Input/output port	—	_	_	SCK0	I/O	SSIO0 synchronous

PAD		Prima	ary function	Secondary function			Tertiary function		
No	No Pin name I/O Description		Description	Pin name	I/O	Description	Pin name	I/O	Description
									clock input/output
3	P42	I/O	Input/output port	RXD0	Ι	UART0 data input	SOUT0	0	SSIO0 data output
2	P43	I/O	Input/output port	TXD0	0	UART0 data output	-	_	—
64	P44/T0P0 CK	I/O	Input/output port, Timer 0 external clock input	_		—	SIN0	I	SSIO0 data input
63	P45/T1P1 CK	I/O	Input/output port, Timer 1 external clock input	_	_		SCK0	I/O	SSIO0 synchronous clock input/output
62	P46	I/O	Input/output port		_	_	SOUT0	0	SSIO0 data output
61	P47	I/O	Input/output port	_		_			

*: Applies to the ML610Q347.

PIN DESCRIPTION

Pin name	I/O	Description	Primary/ Secondary/ Tertiary	Logic
Power supply				
V _{SS}	_	Negative power supply pin		
V _{DD}	_	Positive power supply pin	_	
V _{DDL}	-	Positive power supply pin for internal logic (internally generated) Capacitors C_L (see measuring circuit 1) are connected between this pin and V_{SS} .	_	_
SPVss	_	Negative power supply pin for built-in speaker amplifier	_	
SPVDD	_	Positive power supply pin for built-in speaker amplifier		_
AV _{SS}	—	Negative power supply pin for successive-approximation type ADC	—	—
AV _{DD}	—	Positive power supply pin for successive-approximation type ADC	—	—
V _{PP} (*)	_	Power supply pin for flash memory	_	
Test				
TEST	I/O	Input/output pin for testing. Has a pull-down resistor built in.		Positive
System				
RESET_N	I	Reset input pin. When this pin is set to a "L" level, the device is placed in system reset mode and the internal circuit is initialized. If after that this pin is set to a "H" level, program execution starts. This pin has a pull-up resistor built in.	_	Negative
OSC0	1	Pins for connecting a crystal unit for high speed clock.	_	
OSC1	0	Connect a 4.096 MHz crystal unit (see Measuring Circuit 1) to these pins. Also, connect capacitors (C_{DH} and C_{GH}) between these pins and V_{SS} as required.	_	_
LSCLK	0	Low-speed clock output. This function is allocated to the secondary function of the P20 and P36 pins.	Secondary	—
OUTCLK	0	High-speed clock output. This function is allocated to the secondary function of the P21 and P37 pins.	Secondary	—
General-purpo	se Input	port		
P00–P07	Ι	General-purpose input ports.	Primary	Positive
General-purpo	se Outp	ut port		
P20–P23	0	General-purpose output ports. Provided with a secondary function. Cannot be used as ports if their secondary function is used.	Primary	Positive
General-purpo				
P30–P37 P40–P47	I/O I/O	General-purpose input/output ports. Provided with a secondary function. Cannot be used as ports if their secondary function is used.	Primary	Positive

*Applies to the ML610Q347.

Pin name	I/O	Description	Primary/ Secondary/ Tertiary	Logic
UART				
TXD0	0	UART0 data output pin. Allocated to the secondary function of the P43 pin.	Secondary	Positive
RXD0	Ι	UART0 data input pin. Allocated to the primary function of the P02 pin and the secondary function of the P42 pin.	Secondary	Positive
Synchronous se	rial (S			
SIN0	I	Synchronous serial data input pin. Allocated to the tertiary function of the P40 pin and P44 pins.	Tertiary	Positive
SCK0	I/O	Synchronous serial clock input/output pin. Allocated to the tertiary function of the P41 and P45 pins.	Tertiary	_
SOUT0	0	Synchronous serial data output pin. Allocated to the tertiary function of the P42 and P46 pins.	Tertiary	Positive
External interrup	ot			
NMI	I	External non-maskable interrupt input pin. The interrupt occurs on both the rising and falling edges.	Primary	Positive/ Negative
EXI0-7	I	External maskable interrupt input pins. It is possible, for each bit, to specify whether the interrupt is enabled and select the interrupt edge by software. Allocated to the primary function of the P00–P07 pins.	Primary	Positive/ Negative
Timer				•
TOPOCK	Ι	External clock input pin for timer 0. Allocated to the primary function of the P04 and P44 pins.	Primary	_
T1P1CK	I	External clock input pin for timer 1. Allocated to the primary function of the P05 and P45 pins.	Primary	_
LED drive				
LED0–3	0	NMOS open drain pins to allow direct driving of LED. Allocated to the secondary function of the P20–P22 pins.	Primary	Positive/ Negative
Voice output fun	ction			
AOUT	0	LINE output pin. When you use built-in speaker amplifier, connect with the SPIN pin.	—	—
SPIN		Analog input pin of the internal speaker amplifier.		_
SG	0	Reference voltage output pin of the internal speaker amplifier.		—
SPP	0	Positive output pin of the internal speaker amplifier.	—	—
SPM	0	Negative output pin of the internal speaker amplifier.	—	—
Successive-app	roxima	tion type A/D converter		
V _{REF}	-	Reference power supply pin for the successive-approximation type A/D converter.	—	—
AIN0–AIN11	Ι	Analog inputs to Ch0 to Ch11 of the successive-approximation type A/D converter.	_	—

TERMINATION OF UNUSED PINS

How to Terminate Unused Pins

Pin	Recommended pin termination
V _{PP}	Open
RESET_N	Open
TEST	Open
AV _{DD}	V _{SS}
AV _{SS}	V _{SS}
V _{REF}	V _{SS}
AIN0 – AIN11	Open
SPVDD	V _{SS}
SPV _{SS}	V _{SS}
AOUT	Open
SPIN	Open
SG	Open
SPP	Open
SPM	Open
P00–P07	V _{DD} or V _{SS}
P20–P23	Open
P30–P37	Open
P40–P47	Open

Note:

It is recommended to configure the unused input ports and input/output ports as inputs with pull-down resistors/pull-up resistors or outputs since the supply current may become excessively large if those pins are left open in the high impedance input setting.

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

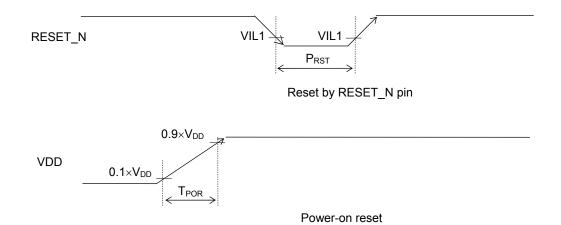
			$(V_{SS} = AV_{SS} = SF$	$PV_{SS} = 0V$)
Parameter	Symbol	Condition	Rating	Unit
Power supply voltage 1	V _{DD}	Ta = 25°C	-0.3 to +7.0	V
Power supply voltage 2	AV _{DD}	Ta = 25°C	-0.3 to +7.0	V
Power supply voltage 3	SPVDD	Ta = 25°C	-0.3 to +7.0	V
Power supply voltage 4	V _{DDL}	Ta = 25°C	-0.3 to +3.6	V
Power supply voltage 5	V _{PP}	Ta = 25°C	–0.3 to +9.5	V
Input voltage	V _{IN}	Ta = 25°C	–0.3 to V _{DD} +0.3	V
Output voltage	V _{OUT}	Ta = 25°C	–0.3 to V _{DD} +0.3	V
Output current 1	I _{OUT1}	P03, P04, Ta = 25°C	-12 to +11	mA
Output current 2	I _{OUT2}	P02, Ta = 25°C	-12 to +20	mA
Power dissipation	PD	Ta = 25°C	861	mW
Storage temperature	T _{STG}	_	–55 to +150	°C

Recommended Operating Conditions

			$(V_{SS} = AV_{SS} = SPV_{SS} = 0V)$			
Parameter	Symbol	Condition	Range	Unit		
Operating temperature	T _{OP}	—	-40 to +85	°C		
	V _{DD}	—	2.2 to 5.5			
Operating voltage	SPV_{DD}	—	2.3 to 5.5	V		
	AV_{DD}	_	2.2 to 5.5			
Operating frequency (CPU)	f _{OP}		27k to 4.2M	Hz		
High-speed crystal/ceramic oscillation frequency	f _{XTH}	_	4.0M, 4.096M	Hz		
High-speed crystal oscillation	CDH		15 to 32	<u>л</u> Г		
external capacitor	C _{GH}	_	15 to 32	pF		
Capacitor externally connected to V_{DDL} pin	CL	—	10±30%	μF		
Capacitor externally connected to SG pin	C _{SG}	_	0.1±30%	μF		

Flash Memory Operating Conditions

i lush memory operating eo	nanons		$(V_{SS} = AV_{SS} = S)$	SPV _{SS} = 0V)
Parameter	Symbol	Condition	Range	Unit
Operating temperature	T _{OP}	At write/erase	0 to +40	°C
Operating voltage	V _{DD}	At write/erase (*1)	2.7 to 3.6	V
Operating voltage	V _{PP}	At write/erase (*1)	7.7 to 8.3	v
Maximum rewrite count	C _{EP}	—	80	times
Data retention period	Y _{DR}	_	10	years


*1: When writing data to, or erasing data from, flash ROM, it is necessary to apply a voltage within the range specified above to the V_{DDL} pin.

DC Characteristics (1 of 5)

 $(V_{DD} = SPV_{DD} = AV_{DD} = 2.2 \text{ to } 5.5V, V_{SS} = AV_{SS} = SPV_{SS} = 0V,$ Ta = -40 to +85°C unless otherwise specified)

		Ta = -40 to $+85^{\circ}$ C, unless otherwise specified)					
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	Measuring circuit
High-speed oscillation start time	T _{XTH}	—	—	2	20	ms	
Low-speed RC oscillator frequency	f_{LCR}	_	27.2k	32k	36.8k	Hz	
Reset pulse width	P _{RST}	_	100	—	—		1
Reset noise rejection pulse width	P _{NRST}	_		_	0.4	μS	
Time from power-on reset to power-up	T _{POR}	_		_	10	ms	

Reset

DC Characteristics (2 of 5)

$(V_{DD} = SPV_{DD} = 2.3 \text{ to } 5.5V, \text{AV}_{DD} = 2.2 \text{ to } 5.5V, \text{V}_{SS} = \text{AV}_{SS} = SPV_{SS} = 0V, \\ Ta = -40 \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise specified})$

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	Measuring circuit
LINE amplifier output load resistance	R _{LA}	At 1/2V _{DD} output	10			kΩ	
LINE amplifier output voltage range	V _{AD}	At output load	DV _{DD} ×1/6	—	DV _{DD} ×5/6	V	
SG output voltage	V_{SG}	—	0.95 × DV _{DD} /2	DV _{DD} /2	1.05 × DV _{DD} /2	V	
SG output resistance	Rsg		57	96	135	kΩ	
SPM, SPP output load resistance	RLSP	_	8			Ω	
	PSPO1	$SPV_{DD} = 2.5V,$ f = 1kHz, RSPO = 8 Ω , THD ≥ 10% At SPIN Input		0.29		W	1
Speaker amplifier output power	PSPO2	$SPV_{DD} = 3.6V,$ f = 1kHz, RSPO = 8 Ω , THD ≥ 10% At SPIN Input		0.66		W	
	SPV _{DD} = 5.0 f = 1kHz, PSPO3 RSPO = 80 THD ≥ 109 At SPIN Inp			1.26		W	
Output offset voltage between SPM and SPP with no signal present	VOF	$SPV_{DD}=3.0V,$ SPIN - SPM gain = +6dB With a load of 8Ω	-50		+50	mV	

DC Characteristics (3 of 5) ML610Q347

DC Unaracteristics	(3 01 3) N		_D = AV _{DD} = 2.2 to					
			Ta = -40 to +8	35°C, ur	nless ot	herwise	specifi	ed)
Parameter	Symbol	Condition			Тур.	Max.	Unit	Meas uring circuit
		CPU: In STOP state.	Ta ≤ +40°C	_	0.5	2.0	μA	
Supply current 1	IDD1	Low-speed/high-speed oscillation: stopped	Ta ≤ +85°C		0.5	8		
Supply current 2	IDD2	CPU: In HALT state (LTBC: Operating ^{*3})	Ta ≤ +40°C	_	1.5	3.0		
	IDD2	High-speed oscillation:Stopped	Ta ≤ +85°C	_	1.5	10		
Supply current 3	IDD3	CPU: Running at 32 kHz* ¹ High-speed oscillation: Stopped		_	10	35		
Supply current 4	IDD4	CPU: Running at 4.096MHz Crystal/ceramic oscillating mode* ²	V _{DD} = AV _{DD} = SPV _{DD} = 3.0V	_	1.7	4		
			V _{DD} = AV _{DD} = SPV _{DD} = 5.0V		2.2	4		1
Supply current 5	4.09 IDD5 osc Dur	CPU: Running at 4.096MHz Crystal/ceramic oscillating mode ^{*2} During voice playback (no output load)	V _{DD} = AV _{DD} = SPV _{DD} = 3.0V	_	3	12	mA	
			V _{DD} = AV _{DD} = SPV _{DD} = 5.0V	_	8	12		
Supply current 6		CPU: Running at 4.096MHz Crystal/ceramic	V _{DD} = AV _{DD} = SPV _{DD} = 3.0V		1.9	5.5	5.5	
	IDD6	oscillating mode ^{*2} ADC: Operating	V _{DD} = AV _{DD} = SPV _{DD} = 5.0V	_	3.2	5.5		

*1: Case when the CPU operating rate is 100% (with no HALT state) *² : Use 4.096MHz Crystal Oscillator CHC49SFWB (Kyocera). *³ : Significant bits of BLKCON0~BLKCON4 registers are all "1".

DC Characteristics (3 of 5) ML610347 (TBD)

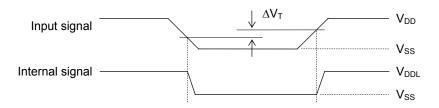
			Ta = -40 to +8	55°C, ur	niess ot	nerwise	specifie	ea)
Parameter	Symbol	Condition		Min.	Тур.	Max.	Unit	Meas uring circuit
Oursely surrent 4	IDD1	CPU: In STOP state.	$Ta \le +40^{\circ}C$	—	0.5	2.0	-	
Supply current 1		Low-speed/high-speed oscillation: stopped	Ta ≤ +85°C	—	0.5	8		
Supply current 2	IDD2	CPU: In HALT state (LTBC: Operating ^{*3})	Ta ≤ +40°C	— 1.5 3.0		μA		
		High-speed Ta ≤ +85°C —		1.5	10			
Supply current 3	IDD3	CPU: Running at 32 kHz* ¹ High-speed oscillation: Stopped		_	5	35		
Supply current 4	IDD4	CPU: Running at 4.096MHz Crystal/ceramic oscillating mode* ²	V _{DD} = AV _{DD} = SPV _{DD} = 3.0V	_	1	4		
			V _{DD} = AV _{DD} = SPV _{DD} = 5.0V	_	1.7	4		1
Supply current 5	IDD5	CPU: Running at 4.096MHz Crystal/ceramic oscillating mode ^{*2} During voice playback (no output load)	V _{DD} = AV _{DD} = SPV _{DD} = 3.0V	_	2.5	12	mA	
			V _{DD} = AV _{DD} = SPV _{DD} = 5.0V	_	8	12		
Supply current 6	IDD6 4.0	CPU: Running at 4.096MHz Crystal/ceramic oscillating mode ^{*2} ADC: Operating	V _{DD} = AV _{DD} = SPV _{DD} = 3.0V	_	1.2	5.5		
			V _{DD} = AV _{DD} = SPV _{DD} = 5.0V		2.6	5.5		

 $(V_{DD} = SPV_{DD} = AV_{DD} = 2.2 \text{ to } 5.5V, V_{SS} = AV_{SS} = SPV_{SS} = 0V,$ Ta = -40 to +85°C, unless otherwise specified)

*1: Case when the CPU operating rate is 100% (with no HALT state) *² : Use 4.096MHz Crystal Oscillator CHC49SFWB (Kyocera). *³ : Significant bits of BLKCON0~BLKCON4 registers are all "1".

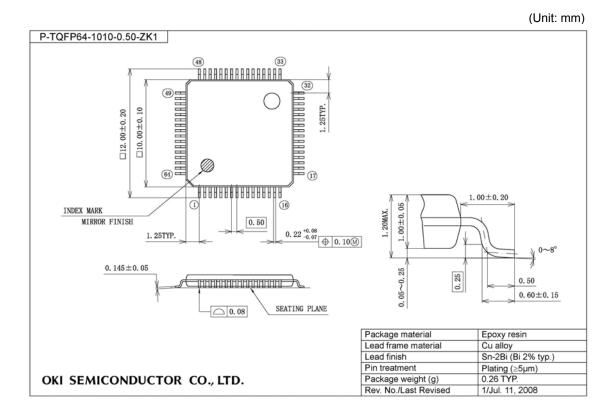
DC Characteristics (4 of 5)

			1a -	-40 10 1	05 C, U	111033 01	HEI WISC	e specified)
Parameter	Symbol	Condition		Min.	Тур.	Max.	Unit	Measuring circuit
Output voltage 1 (P20–P23)	VOH1	IOH1 = -0.5mA		V _{DD} -0.5	_	_		2
(P30–P37) (P40–P47)	VOL1	IOL1 = +0.5mA		_	—	0.5	v	
Output voltage 2	VOL2	When LED drive	$\begin{array}{l} \text{IOL2 = +5mA} \\ \text{V}_{\text{DD}} \geq 2.2 \text{V} \end{array}$	_		0.5		
(P20–P23)	VOLZ	mode is selected	IOL2 = +8mA $V_{DD} \ge 2.3V$	_	_	0.5	-	
Output leakage current	ЮОН	VOH = V_{DD} (in high-impedance state)		—	—	1		
(P20–P23) (P30–P37) (P40–P47)	IOOL	VOL = V _{SS} (in high-impedance state)		-1	_	_	μA	3
Input current 1	IIH1	VIH1 = V _{DD}		0	—	-1		
(RESET_N)	IIL1	VIL1 = V _{SS}		-1500	-300	-20		
Input current 2	IIH2	VIH2 = V _{DD} (w	hen pulled down)	2	30	250		
(NMI) (P00–P07)	IIL2	VIL2 = V_{SS} (when pulled up)		-250	-30	-2	μA	4
(P11) (P30–P37) (P40–P47)	IIH2Z	VIH2 = V _{DD} (in high-impedance state)		_		1		
	IIL2Z	VIL2 = V_{SS} (in hig	h-impedance state)	-1	_			
Input current 3 (TEST)	IIH3	VIH	$B = V_{DD}$	20	300	1500		
	IIL3	VIL3 = V _{SS}		-1	—	—		



DC Characteristics (5 of 5)

$(V_{DD} = SPV_{DD} = AV_{DD} = 2.2 \text{ to } 5.5V, V_{SS} = AV_{SS} = SPV_{SS} = 0V, \\ Ta = -40 \text{ to } +85^\circ\text{C}, \text{ unless otherwise specified})$


			a = -40 c) +05°C,	uniess o	therwise	e specified)
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	Measuring circuit
Input voltage 1 (RESET_N) (TEST)	VIH1	_	0.7× V _{DD}	—	V_{DD}		
(NMI) (P00–P07) (P11) (P30–P37) (P40–P47)	VIL1	_	0		0.3× V _{DD}	v	5
Hysteresis width (RESET_N) (TEST) (NMI) (P00–P07) (P11) (P30–P37) (P40–P47)	ΔVΤ	_	0.05× V _{DD}	_	— 0.4× V _{DD}		
Input pin capacitance (NMI) (P00–P07) (P11) (P30–P37) (P40–P47)	CIN	f = 10kHz V _{ms} = 50mV Ta = 25°C			10	pF	_

Hysteresis Width

PACKAGE DIMENSIONS

Notes for Mounting the Surface Mount Type Package

The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact OKI SEMICONDUCTOR's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

NOTICE

- 1. The information contained herein can change without notice owing to product and/or technical improvements. Before using the product, please make sure that the information being referred to is up-to-date.
- 2. The outline of action and examples for application circuits described herein have been chosen as an explanation for the standard action and performance of the product. When planning to use the product, please ensure that the external conditions are reflected in the actual circuit, assembly, and program designs.
- 3. When designing your product, please use our product below the specified maximum ratings and within the specified operating ranges including, but not limited to, operating voltage, power dissipation, and operating temperature.
- 4. OKI SEMICONDUCTOR assumes no responsibility or liability whatsoever for any failure or unusual or unexpected operation resulting from misuse, neglect, improper installation, repair, alteration or accident, improper handling, or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified operating range.
- 5. Neither indemnity against nor license of a third party's industrial and intellectual property right, etc. is granted by us in connection with the use of the product and/or the information and drawings contained herein. No responsibility is assumed by us for any infringement of a third party's right which may result from the use thereof.
- 6. The products listed in this document are intended for use in general electronics equipment for commercial applications (e.g., office automation, communication equipment, measurement equipment, consumer electronics, etc.). These products are not, unless specifically authorized by OKI SEMICONDUCTOR authorized for use in any system or application that requires special or enhanced quality and reliability characteristics nor in any system or application where the failure of such system or application may result in the loss or damage of property, or death or injury to humans.

Such applications include, but are not limited to, traffic and automotive equipment, safety devices, aerospace equipment, nuclear power control, medical equipment, and life-support systems.

- 7. Certain products in this document may need government approval before they can be exported to particular countries. The purchaser assumes the responsibility of determining the legality of export of these products and will take appropriate and necessary steps at their own expense for these.
- 8. No part of the contents contained herein may be reprinted or reproduced without our prior permission.

Copyright 2009 OKI SEMICONDUCTOR CO., LTD.