Features

■ 0.8 V to 1.8 V Input Voltage Range
－Typical $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}=17 \mathrm{~m} \Omega @ \mathrm{~V}_{\mathrm{ON}}-\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
－Output Discharge Function
－Internal Pull－down at ON Pin
－Accurate Slew Rate Controlled Turn－on time
－Low＜ $1 \mu \mathrm{~A}$ Quiescent Current
■ ESD Protected，above 8000V HBM，2000V CDM
－RoHS Compliant
－Free from Halogenated Compounds and Antimony Oxides

Applications

－PDAs
－Cell Phones
－GPS Devices
－MP3 Players
－Digital Cameras
■ Notebook Computer

General Description

The FPF1013／4 series is an IntelliMAX advanced slew rate loadswitch offering a very low operating voltage．These devices consist of a $17 \mathrm{~m} \Omega \mathrm{~N}$－channel MOSFET that supports an input voltage up to 2.0 V ．These slew rate devices control the switch turn－on and prevent excessive in－rush current from the supply rails．The input voltage range operates from 0.8 V to 1.8 V to fulfill today＇s lowest Ultraportable Device＇s supply requirements． Switch control is via a logic input（ON）capable of interfacing directly with low voltage control signals．

The FPF1014 has an On－Chip pull down allowing for quick and controlled output discharge when switch is turned off．The FPF1013／4 series is available in a space－saving 1X1．5 CSP－6L package．

BOTTOM

TOP

Typical Application Circuit

Ordering Information

Part	Switch	Turn－on Time	Output Discharge	ON Pin Activity	Package
FPF1013	$17 \mathrm{~m} \Omega$, NMOS	$43 \mu \mathrm{~s}$	$\mathrm{~N} / \mathrm{A}$	Active HI	CSP1X1．5
FPF1014	$17 \mathrm{~m} \Omega$, NMOS	$43 \mu \mathrm{~s}$	60Ω	Active HI	CSP1X1．5

Functional Block Diagram

Pin Configuration

Pin Description

Pin	Name	Function
A2, B2	$\mathrm{V}_{\text {IN }}$	Supply Input: Input to the power switch and the supply voltage for the IC
C2	ON	ON Control Input
A1, B1	V $_{\text {OUT }}$	Switch Output: Output of the power switch
C1	GND	Ground

Absolute Maximum Ratings

Parameter	Min	Max	Unit
$\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}$ to GND	-0.3	2	V
$\mathrm{~V}_{\mathrm{ON}}$ to GND	-0.3	4.2	V
Maximum Continuous Switch Current		1.5	A
Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 1)		1.2	W
Operating Temperature Range	-40	85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-65	150	${ }^{\circ} \mathrm{C}$
Thermal Resistance, Junction to Ambient			85
C / W			
	HBM	8000	

Note 1: Package power dissipation on 1 square inch pad, 2 oz. copper board

Recommended Operating Range

Parameter	Min	Max	Unit
$\mathrm{V}_{\mathbb{I N}}$	0.8	1.8	V
Ambient Operating Temperature, T_{A}	-40	85	${ }^{\circ} \mathrm{C}$

Electrical Characteristics
$\mathrm{V}_{\text {IN }}=0.8$ to $1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{IN}}=1.8 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter	Symbol	Conditions	Min	Typ	Max	Units
Basic Operation						
Operating Voltage	$\mathrm{V}_{\text {IN }}$		0.8		1.8	V
ON Input Voltage	$\mathrm{V}_{\text {ON(MIN })}$	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$	1.8	2.8	4.0	V
	$\mathrm{V}_{\text {ON(MAX) }}$	$\mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}$ (Note 2)	2.8	3.8	4.0	V
Operating Current	I_{CC}	$\mathrm{V}_{\text {IN }}=1 \mathrm{~V}, \mathrm{~V}_{\text {ON }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=$ Open			1	$\mu \mathrm{A}$
Quiescent Current	I_{Q}	$\mathrm{V}_{\text {IN }}=1 \mathrm{~V}, \mathrm{~V}_{\text {ON }}=\mathrm{GND}, \mathrm{V}_{\text {OUT }}=$ Open			2	$\mu \mathrm{A}$
Off Switch Current	Iswoff	$\mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {ON }}=\mathrm{GND}, \mathrm{V}_{\text {OUT }}=\mathrm{GND}$			2	$\mu \mathrm{A}$
On-Resistance	R_{ON}	$\mathrm{V}_{\text {IN }}=1 \mathrm{~V}, \mathrm{~V}_{\text {ON }}=3 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25 \mathrm{C}$		17	27	$\mathrm{m} \Omega$
		$\mathrm{V}_{\text {IN }}=1 \mathrm{~V}, \mathrm{~V}_{\text {ON }}=2.3 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		25	38	
Output Pull Down Resistance	R_{PD}	$\mathrm{V}_{\mathrm{IN}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{ON}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=1 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C},$ FPF1014		60	120	Ω
ON Input Logic Low Voltage	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega$			0.3	V
		$\mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega$			0.8	
ON Input Leakage		$\mathrm{V}_{\text {ON }}=\mathrm{V}_{\text {IN }}$ or GND	-1		1	$\mu \mathrm{A}$
Dynamic ($\left.\mathrm{V}_{\text {IN }}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{ON}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$						
$V_{\text {Out }}$ Rise Time	T_{R}	$\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$		28		$\mu \mathrm{s}$
		$\mathrm{R}_{\mathrm{L}}=3.3 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mu \mathrm{~F}$		38		
Turn On Time	Ton	$\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$		43		$\mu \mathrm{s}$
		$\mathrm{R}_{\mathrm{L}}=3.3 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mu \mathrm{~F}$		58		
$\mathrm{V}_{\text {OUT }}$ Fall Time heet4U.com	T_{F}	FPF1014, $\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$		14		$\mu \mathrm{s}$
		FPF1014, $\mathrm{R}_{\mathrm{L}}=3.3 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mu \mathrm{~F}$		76		
Turn Off Time	TofF	FPF1014, $\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$		50		$\mu \mathrm{s}$
		FPF1014, $\mathrm{R}_{\mathrm{L}}=3.3 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mu \mathrm{~F}$		96		

Note 2: $\mathrm{V}_{\mathrm{ON}(\mathrm{MAX})}$ is limited by the absolute rating.

Typical Characteristics

Figure 1. Supply Current vs. V_{IN}

www.DataSheet4U.cFigure 3. Operating Current vs. Temperature

Figure 5. R_{ON} vs. Temperature

Figure 2. Off Quiescent Current vs. Temperature

Figure 4. Off Switch Current vs. Temperature

Figure 6. R_{ON} vs. $\mathrm{V}_{\mathrm{ON}}-\mathrm{V}_{\mathrm{IN}}$

Typical Characteristics

Figure 7. V_{IL} vs. $\mathrm{V}_{\text {IN }}$

www.DataSheet4U.com Figure 9. $\mathrm{T}_{\text {RISE }} / \mathrm{T}_{\text {FALL }}$ vs. Temperature

Figure 11. FPF1013/4 Turn ON Response

Figure 8. V_{IL} vs. Temperature

Figure 10. $\mathrm{T}_{\text {ON }} / \mathrm{T}_{\text {OFF }}$ vs. Temperature

Figure 12. FPF1014 Turn OFF Response

Typical Characteristics

Figure 13. FPF1013/4 Turn ON Response

Figure 14. FPF1014 Turn OFF Response

Description of Operation

The FPF1013/4 are low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \mathrm{N}$-Channel load switches with controlled turn-on. The core of each device is a $17 \mathrm{~m} \Omega\left(\mathrm{~V}_{\mathrm{IN}}=1 \mathrm{~V}\right.$, $\mathrm{V}_{\mathrm{ON}}=3 \mathrm{~V}$) N -Channel MOSFET and is customized for a low input operating range of 0.8 to 1.8 V . The ON pin controls the state of the switch.
The FPF1014 contains a 60Ω (typ) on-chip resistor which is connected internally from $V_{\text {OUt }}$ to GND for quick output discharge when the switch is turned off.

On/Off Control

The ON pin is active high and it controls the state of the switch. Applying a continuous high signal will hold the switch in the ON state. In order to minimize the switch on resistance, the ON pin voltage should exceed the input voltage by 2 V . This device is compatible with a GPIO (General Purpose Input/Output) port, where the logic voltage level can be configured to $4 \mathrm{~V} \geq \mathrm{V}_{\mathrm{ON}} \geq$ $\mathrm{V}_{\mathrm{IN}^{\prime}}+2 \mathrm{~V}$ and power consumed is less than $1 \mu \mathrm{~A}$ in steady state.

Timing Diagram

Input Capacitor

To limit the voltage drop on the input supply caused by transient in-rush currents when the switch turns-on, a capacitor must be placéd between V_{IN} and GND. For minimized voltage drop, especially when the operating voltage approaches 1 V a $10 \mu \mathrm{~F}$ ceramic capacitor should be placed close to the $\mathrm{V}_{\text {IN }}$ pins. Higher values of $\mathrm{C}_{\mathbb{I N}}$ can be used to further reduce the voltage drop during higher current modes of operation.

Output Capacitor

A $0.1 \mu \mathrm{~F}$ capacitor, C_{L}, should be placed between $\mathrm{V}_{\text {OUt }}$ and GND. This capacitor will prevent parasitic board inductance from forcing $\mathrm{V}_{\text {OUT }}$ below GND when the switch turns-off. If the application has a capacitive load, the FPF1014 can be used to discharged that load through an on-chip output discharge path.

Board Layout

For best performance, all traces should be as short as possible. To be most effective, the input and output capacitors should be placed close to the device to minimize the effects that parasitic trace inductances may have on normal and short-circuit operation. Using wide traces or large copper planes for all pins $\left(\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\text {OUT }}\right.$, ON and GND) will help minimize the parasitic electrical effects along with minimizing the case to ambient thermal impedance.

Improving Thermal Performance

An improper layout could result in higher junction temperature. This concern applies when continuous operation current is set to maximum allowed current and switch turns into a large capacitive load that introduce high inrush current in the transient. Since FPF1013/4 does not have thermal shutdown feature a proper layout can essentially reduce power dissipation of the switch in transient and prevents switch to exceed the maximum absolute power dissipation of 1.2 W .
The $\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\mathrm{OUT}}$ and $G N D$ pins will dissipate most of the heat generated during a high load current condition. The layout suggested in Figure 16 provides each pin with adequate copper so that heat may be transferred as efficiently as possible out of the device. The ON pin trace may be laid-out diagonally from the device to maximize the area available to the ground pad. Placing the input and output capacitors as close to the device as possible also contributes to heat dissipation, particularly during high load currents.

Figure 16: Proper layout of output, input and ground copper area

Demo Board Layout

FPF1013/4 Demo board has the components and circuitry to demonstrate FPF1013/4 load switches functions. Thermal performance of the board is improved using a few techniques recommended in the layout recommendations section of datasheet.

Figure 17. FPF1013/4 Demo Board Layout

FAIRCHILD

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

Build it $\mathrm{Now}^{\text {™ }}$	FRFET ${ }^{\circledR}$	Programmable Active Droop ${ }^{\text {TM }}$	the
CorePLUS ${ }^{\text {T }}$	Global Power Resource ${ }^{\text {SM }}$	QFET ${ }^{\circledR}$	Wer
CorePOWER ${ }^{\text {M }}$	Green FPS ${ }^{\text {™ }}$	QS ${ }^{\text {TM }}$	franchise
CROSSVOLT ${ }^{\text {TM }}$	Green FPS ${ }^{\text {TM }}$ e-Series ${ }^{\text {™ }}$	Quiet Series ${ }^{\text {TM }}$	
CTL ${ }^{\text {TM }}$	GTO $^{\text {m }}$	RapidConfigure ${ }^{\text {TM }}$	TinyBuck ${ }^{\text {M }}$
Current Transfer Logic ${ }^{\text {TM }}$	IntelliMAX ${ }^{\text {TM }}$)	TinyLogic ${ }^{\circledR}$ TINYOPTO™
EcoSPARK ${ }^{\circledR}$	ISOPLANAR ${ }^{\text {TM }}$	J TM $^{\text {(}}$	TinyPower™
EfficentMax ${ }^{\text {TM }}$	MegaBuck ${ }^{\text {TM }}$	Saving our world, $1 \mathrm{~mW} / \mathrm{W} / \mathrm{kW}$ at a time ${ }^{\text {TM }}$	TinyPWM ${ }^{\text {TM }}$
EZSWITCH ${ }^{\text {тм }}$ *	MICROCOUPLER ${ }^{\text {TM }}$	SmartMax ${ }^{\text {TM }}$	TinyPWM ${ }^{\text {m }}$ TinyWire ${ }^{\text {TM }}$
$E^{\text {¹ }}$	MicroFET ${ }^{\text {TM }}$	SMART START ${ }^{\text {TM }}$	μ SerDes $^{\text {TM }}$
-	MicroPak ${ }^{\text {™ }}$	SPM ${ }^{\circledR}$	
E^{\circledR}	MillerDrive ${ }^{\text {TM }}$	STEALTH ${ }^{\text {TM }}$	N
	MotionMax ${ }^{\text {TM }}$	SuperFET ${ }^{\text {тм }}$	SerDes ${ }^{\text {m }}$
Fairchild ${ }^{\circledR}$	Motion-SPM ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-3	UHC ${ }^{\circledR}$
Fairchild Semiconductor ${ }^{(®)}$	OPTOLOGIC ${ }^{\circledR}$	SuperSOT ${ }^{\text {TM }}$-6	Ultra FRFET ${ }^{\text {TM }}$
FACT Quiet Series ${ }^{\text {TM }}$	OPTOPLANAR ${ }^{\circledR}$	SuperSOT ${ }^{\text {TM }}$-8	UniFET ${ }^{\text {тм }}$
$\mathrm{FACT}^{\circledR}$	${ }^{\circledR}$	SupreMOS ${ }^{\text {™ }}$	VCX ${ }^{\text {™ }}$
$\mathrm{FAST}^{\circledR}$		SyncFET ${ }^{\text {tm }}$	VisualMax ${ }^{\text {TM }}$
FastvCore ${ }^{\text {TM }}$	PDP SPM ${ }^{\text {™ }}$	F SYSTEM ${ }^{\circledR}$	XS ${ }^{\text {TM }}$
FlashWriter ${ }^{\circledR}$ *	Power-SPM ${ }^{\text {™ }}$	GENERAL	
FPS ${ }^{\text {TM }}$	PowerTrench ${ }^{\circledR}$	The Power Franchise ${ }^{\circledR}$	
F-PFS ${ }^{\text {TM }}$	PowerXS ${ }^{\text {™ }}$		

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with expected to result in a significant injury of the user.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

