3Stacked MCP (Multi-Chip Package) FLASH \& FLASH \& FCRAM
cmos

96M (×16) Page Mode FLASH MEMORY \&
 64M ($\times 16$) FLASH MEMORY \&
 64M ($\times 16$) Mobile FCRAM ${ }^{\text {TM }}$

MB84VFAF5F5J1-70

FEATURES

- Power Supply Voltage of 2.7 to 3.1 V
- High Performance

25 ns maximum Page read access time, 65 ns maximum random access time (Flash_1)
70 ns maximum access time (Flash_2)
65 ns maximum access time (FCRAM)

- Operating Temperature
$-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Package 115-ball BGA
(Continued)

PRODUCT LINEUP

Flash_1	Flash_2	FCRAM
Supply Voltage (V)	Vcci_2 ${ }^{\text {a }}=3.0 \mathrm{~V}_{-0.3 \mathrm{~V}}^{+0.1 \mathrm{~V}}$	$\mathrm{Vccr}^{*}=3.0 \mathrm{~V}_{-0.3 \mathrm{~V}}^{+0.1 \mathrm{~V}}$
Max. Random Address Access Time (ns)	70	65
Max. Page Address Access Time (ns)	-	-
Max. CE Access Time (ns) $\quad 65$	70	65
Max. OE Access Time (ns) , 25	30	40

Note:*1,All of Vccf_1, Vcof 2 and Vcor must be the same level when either part is being accessed.

PACKAGE

115-pin plastic FBGA
T.B.D.

MB84VFAF5F5J1-70

(Continued)

- FLASH MEMORY
- Two chip Enable ($\overline{\mathbf{C E O}} \mathrm{f}, \overline{\mathrm{CE}} \mathrm{f})$

CEOf contorols 64 Mb . CE1f controls 32Mb region

- Single 3.0 V read, program and erase

Minimized system level power requirements

- Simultaneous Read/Write operations (Dual Bank)
- FlexBank ${ }^{\text {TM }}$

Bank A: 12 Mbit ($\overline{\mathrm{CEO}}$: $8 \mathrm{~KB} \times 8$ and $64 \mathrm{~KB} \times 23$)
Bank B: 36 Mbit (CEOf: $64 \mathrm{~KB} \times 72$)
Bank C: 36 Mbit (CEOf: $64 \mathrm{~KB} \times 32$, CE1: $64 \mathrm{~KB} \times 40$)
Bank D: 12 Mbit ($\overline{C E 1 f} 8 \mathrm{~KB} \times 8$ and $64 \mathrm{~KB} \times 23$)

- High Performance Page Mode

25 ns maximum page access time (65 ns random access time)

- 8 words Page
- Minimum 100,000 program/erase cycles
- Sector erase architecture

Eight 8 Kbytes, a hundred eighty-four 64 Kbytes, eight 8 Kbytes sectors.
Any combination of sectors can be concurrently erased. Also supports full chip erase

- Dual Boot Block

16 to 8 Kbytes bootblock sectors, 8 at the top of the address range and 8 at the bottom of the address range

- Hidden ROM (Hi-ROM) region

256 byte of Hi-ROM, accessible through a new "Hi-ROM Enable" command sequence
Factory serialized and protected to provide a secure electronic serial number (ESN)

- WP/ACC input pin

At $\mathrm{V}_{\text {IL }}$, allows protection of "outermost" $2 \times 16 \mathrm{~K}$ words on both ends of boot sectors, regardless of sector protection/unprotection status
At V_{H}, allows removal of boot sector protection
At $V_{\text {Acc, }}$, increases program performance

- Low Vcc write inhibit $\leq 2.5 \mathrm{~V}$
- Embedded Erase ${ }^{\text {TM }}$ Algorithms

Automatically preprograms and erases the chip or any sector

- Embedded Program ${ }^{\text {TM }}$ Algorithms

Automatically writes and verifies data at specified address

- Data Polling and Toggle Bit feature for detection of program or erase cycle completion
- Ready/Busy output (RY/BY)

Hardware method for detection of program or erase cycle completion

- Automatic sleep mode

When addresses remain stable, the device automatically switches itself to low power mode.

- Program Suspend/Resume

Suspends the program operation to allow a read in another byte

- Erase Suspend/Resume

Suspends the erase operation to allow a read data and/or program in another sector within the same device

- Hardware Reset Pin (RESET)

Hardware method to reset the device for reading array data

- New Sector Protection

Persistent Sector Protection
Password Sector Protection

- Please refer to "MBM29RM96DF" Datasheet in deteiled function

MB84VFAF5F5J1-70

(Continued)

- FLASH MEMORY_2

- Simultaneous Read/Write Operations (Dual Bank)
- FlexBank ${ }^{\text {TM }}$

Bank A: 8 Mbit ($8 \mathrm{~KB} \times 8$ and $64 \mathrm{~KB} \times 15$)
Bank B : 24 Mbit ($64 \mathrm{~KB} \times 48$)
Bank C : 24 Mbit ($64 \mathrm{~KB} \times 48$)
Bank D : 8 Mbit ($8 \mathrm{~KB} \times 8$ and $64 \mathrm{~KB} \times 15$)
Two virtual Banks are chosen from the combination of four physical banks.
Host system can program or erase in one bank, and then read immediately and simultaneously from the other bank with zero latency between read and write operations.
Read-while-erase
Read-while-program

- Minimum 100,000 Program/Erase Cycles
- Sector Erase Architecture

Sixteen 4 Kword and one hundred twenty-six 32 Kword sectors in word.
Any combination of sectors can be concurrently erased. It also supports full chip erase.

- Hidden ROM (Hi-ROM) Region

256 byte of Hi-ROM, accessible through a new "Hi-ROM Enable" command sequence
Factory serialized and protected to provide a secure electronic serial number (ESN)

- WP/ACC Input Pin

At V_{L}, allows protection of "outermost" 2×8 Kbytes on both ends of boot sectors, regardless of sector protection/ unprotection status
At $\mathrm{V}_{\mathbf{H}}$, allows removal of boot sector protection
At $V_{A c c}$, increases program performance

- Embedded Erase ${ }^{\mathrm{TM}}$ Algorithms

Automatically preprograms and erases the chip or any sector

- Embedded Program ${ }^{\text {TM }}$ Algorithms

Automatically writes and verifies data at specified address

- Data Polling and Toggle Bit Feature for Detection of Program or Erase Cycle Completion
- Ready/Busy Output (RY/ $\overline{\mathrm{BY}}$ _1 or RY/ $\overline{\mathrm{BY}} \mathbf{- 2}$)

Hardware method for detection of program or erase cycle completion

- Automatic Sleep Mode

When addresses remain stable, the device automatically switches itself to low power mode.

- Low Vccf write Inhibit $\leq 2.5 \mathrm{~V}$
- Program Suspend/Resume

Suspends the program operation to allow a read in another byte

- Erase Suspend/Resume

Suspends the erase operation to allow a read data and/or program in another sector within the same device

- Please Refer to "MBM29DL64DF" Datasheet in Detailed Function.

MB84VFAF5F5J1-70

(Continued)

- FCRAM
- Power Dissipation

Operating : 25 mA max.
Standby : $200 \mu \mathrm{~A}$ max.

- Power Down Mode

Sleep $: 10 \mu \mathrm{~A}$ max.
NAP : $65 \mu \mathrm{~A}$ max.
16M Partial : $85 \mu \mathrm{~A}$ max.

- Power Down Control by CE2r
- Byte Write Control: $\overline{\mathrm{LB}}\left(\mathrm{DQ}_{7}-\mathrm{DQ}_{0}\right), \overline{\mathrm{UB}}\left(\mathrm{DQ}_{15}-\mathrm{DQ}_{8}\right)$
- 8 words Address Access Capability
*: FlexBank ${ }^{\text {TM }}$ is a trademark of Fujitsu Limited, Japan.
*: Embedded Erase ${ }^{T M}$ and Embedded Program ${ }^{T M}$ are trademarks of Advanced Micro Devices, Inc.
*: Mobile FCRAM ${ }^{\text {TM }}$ is a trademark of Fujitsu Limited, Japan.

PIN ASSIGNMENT

(Top View)
Marking Side

(BGA-115P-Mxx)

MB84VFAF5F5J1-70

PIN DESCRIPTION

Pin name	Input/ Output	Description
A_{18} to A_{0}	1	Address Inputs (Common)
A_{21} to A_{19}	1	Address Inputs (FCRAM \& Flash_1\& Flash_2)
DQ15 to DQ	I/O	Data Inputs/Outputs (Common)
CEf0_1	I	Chip Enable (Flash_1)
$\overline{\mathrm{CE}} \mathrm{f} 1$ _1	I	Chip Enable (Flash_1)
$\overline{\mathrm{CE}}$ ¢_2	1	Chip Enable (Flash_2)
$\overline{\mathrm{CE} 1 r}$	1	Chip Enable (FCRAM)
CE2r	1	Chip Enable (FCRAM)
$\overline{\mathrm{OE}}$	1	Output Enable (Common)
$\overline{W E}$	1	Write Enable (Common)
RY/ $\overline{B Y}{ }_{-1}$	0	Ready/Busy Output (Flash_1) Open Drain Output
RY/ $\overline{B Y}$ _2	0	Ready/Busy Output (Flash_2) Open Drain Output
$\overline{\text { UB }}$	1	Upper Byte Control (FCRAM)
$\overline{\text { LB }}$	1	Lower Byte Control (FCRAM)
RESET_1	1	Hardware Reset Pin/Sector Protection Unlock (Flash_1)
RESET_2	1	Hardware Reset Pin/Sector Protection Unlock (Flash_2)
$\overline{\text { WP/ACC }}$	1	Write Protect / Acceleration (Flash_1\& Flash_2)
$\overline{\mathrm{PE}}$	1	Partial Enable (FCRAM)
N.C.	-	No Internal Connection
Vss	Power	Device Ground (Common)
Vccf_1	Power	Device Power Supply (Flash_1)
Vccf_2	Power	Device Power Supply (Flash_2)
Vccr	Power	Device Power Supply (FCRAM)

BLOCK DIAGRAM

MB84VFAF5F5J1-70

DEVICE BUS OPERATIONS

		$\frac{\text { ? }}{\substack{3 \\ \mathrm{I}_{-}}}$	$\frac{n}{\underset{N}{n}}$	$\underset{\underset{7}{\mathbf{n}}}{\substack{0}}$	$\begin{aligned} & \text { O} \\ & \underset{\sim}{\mathbf{N}} \end{aligned}$	운	\sum_{m}	「回	둔	융	$\stackrel{\text { B }}{\stackrel{\text { B }}{\sim}}$	$\begin{aligned} & 0 \\ & 00 \\ & 00 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$			$\begin{aligned} & \stackrel{\rightharpoonup}{\lambda} \\ & \frac{\mathrm{O}}{\mathrm{~N}} \\ & \stackrel{N}{\mathrm{~N}} \end{aligned}$
Full Standby	H	H	H	H	H	X	X	X	X	H	X	High-Z	High-Z	H	H	X
Output Disable(3)	H	H	H	L	H	H	H	X	X	H	$\begin{gathered} \mathrm{X} \\ (10) \end{gathered}$	High-Z	High-Z	H	H	X
	H	H	H	H	H	H	H	X	X		X					
	H	H	H	H		X	X	H	H							
	L	H	H	H		H	H	X	X							
	H	L	H	H												
	H	H	L	H												
Read from Flash_1 (4)	L	H	H	H	H	L	H	X	X	H	Valid	Dout	Dout	H	H	X
	H	L	H	H	H	L	H	X	X	H	Valid	Dout	Dout	H	H	X
Read from Flash_2 (4)	H	H	L	H	H	L	H	X	X	H	Valid	Dout	Dout	H	H	X
Write to Flash _1	L	H	H	H	H	H	L	X	X	H	Valid	Din	Din	H	H	X
	H	L	H	H	H	H	L	X	X	H	Valid	Din	Din	H	H	X
Write to Flash_2	H	H	L	H	H	H	L	X	X	H	Valid	Din	Din	H	H	X
Read from FCRAM(5)	H	H	H	L	H	L	H	$\begin{gathered} \mathrm{L} \\ (9) \end{gathered}$	$\begin{gathered} \mathrm{L} \\ (9) \end{gathered}$	H	Valid	Dout	Dout	H	H	X
Write to FCRAM	H	H	H	L	H	H	L	L	L	H	Valid	Din	Din	H	H	X
								H	L			High-Z	Din			
								L	H			Din	High-Z			

(Continued)
(Continued)

	魚	$\underset{\sim}{\substack{n \\ \vdots}}$	$\begin{gathered} \text { n } \\ \stackrel{m}{N} \end{gathered}$	$\stackrel{\text { Ọ}}{7}$	No Nָ	인	$\|\underset{m}{ }\|$	¢	디	T	$\stackrel{\text { x }}{2}$	\%\%웅	-			
Flash_1 Temporary Sector Group Unprotection(6)	X	X	X	X	X	X	X	X	X	X	X	X	X	VID	X	X
Flash_2 Temporary Sector Group Unprotection(6)	X	X	X	X	X	X	X	X	X	X	X	X	X	X	VII	X
Flash_1 Hardware Reset	X	X	X	H	H	X	X	X	X	X	X	$\begin{gathered} \text { High- } \\ \text { Z } \end{gathered}$	$\begin{gathered} \text { High- } \\ \text { Z } \end{gathered}$	L	X	X
Flash_2 Hardware Reset	X	X	X	H	H	X	X	X	X	X	X	$\begin{gathered} \text { High- } \\ Z \end{gathered}$	$\begin{gathered} \text { High- } \\ \text { Z } \end{gathered}$	X	L	X
Flash 1 or 2 Boot Block Sector Write Protection	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	L
FCRAM Power Down Program	H	H	H	H	H	X	X	X	X	L	KEY (11)	$\begin{gathered} \text { High- } \\ Z \end{gathered}$	$\begin{gathered} \text { High- } \\ \text { Z } \end{gathered}$	H	H	X
FCRAM NO READ (7)	H	H	H	L	H	L	H	H	H	H	Valid	$\begin{array}{\|c} \hline \text { High- } \\ Z \end{array}$	$\begin{gathered} \text { High- } \\ \text { Z } \end{gathered}$	H	H	X
FCRAM Power Down (8)	X	X	X	X	L	X	X	X	X	X	X	X	X	X	X	X

Legend: $\mathrm{L}=\mathrm{V}_{\mathrm{IL}}, \mathrm{H}=\mathrm{V}_{\mathrm{IH}}, \mathrm{X}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}. See DC Characteristics for voltage levels.
Notes: 1. Other operations except for indicated this column are inhibited.
2. Do not apply for a following state two or more on the same time;

1) $\left.\left.\left.\overline{C E f 0 _1}=V_{I L}, 2\right) \overline{C E f} 1 _1=V_{I L}, 3\right) \overline{C E f} 2=V_{I L}, 4\right) \overline{C E} 1 r=V_{I L}$ and $C E 2 r=V_{I H}$,
3. FCRAM Output Disable condition should not be kept longer than $1 \mu \mathrm{~s}$.
4. $\overline{\mathrm{WE}}$ can be V_{LL} if $\overline{\mathrm{OE}}$ is $\mathrm{V}_{\mathrm{L}}, \overline{\mathrm{OE}}$ at V_{H} initiates the write operations.
5. FCRAM $\overline{L B}, \overline{U B}$ control at Read operation is not supported.
6. It is also used for the extended sector group protections.
7. The FCRAM Power Down Program can be performed one time after compliance of Power-UP timings and it should not be re-programmed after regular Read or Write.
8. FCRAM Power Down mode can be entered from Standby state and all DQ pins are in High-Z state. Ipdr current and data retention depends on the selection of Power Down Program.
9. Either or both $\overline{\mathrm{LB}}$ and $\overline{\mathrm{UB}}$ must be Low for FCRAM Read Operation.
10. Can be either $\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$ but must be valid before Read or Write.
11. See " FCRAM Power Down Program Key Table " in FCRAM Part.
12. Protect " outer most " $2 \times 8 \mathrm{~K}$ bytes (4 words) on both ends of the boot block sectors.

- ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating		Unit
		Min.	Max.	
Storage Temperature	Tstg	-55	+125	${ }^{\circ} \mathrm{C}$
Ambient Temperature with Power Applied	TA	-30	+85	${ }^{\circ} \mathrm{C}$
Voltage with Respect to Ground All pins except $\overline{\text { RESET_1 }}$ or RESET_2, $\overline{\text { WP/ACC * }}$	Vin, Vout	-0.3	Vccf_1 +0.3	V
			Vccf_2 +0.3	V
			Vccr +0.3	V
Vccf_1/Vccf_2/Vccr Supply *1	Vccf_1,Vccf_2, Vccr	-0.3	+3.3	V
RESET_1 or RESET_2 *2	Vin	-0.5	+ 13.0	V
WP/ACC *3	Vin	-0.5	+10.5	V

*1 Minimum DC voltage on input or I/O pins is -0.3 V . During voltage transitions, input or I/O pins may undershoot Vss to -1.0 V for periods of up to 20 ns . Maximum DC voltage on input or I/O pins is Vccf_1 + 0.3 V or Vccf_2 +0.3 V or $\mathrm{Vccr}+0.3 \mathrm{~V}$. During voltage transitions, input or I/O pins may overshoot to Vccf_1 + 2.0 V or Vccf_2 +2.0 V or $\mathrm{Vccr}+1.0 \mathrm{~V}$ for periods of up to 20 ns .
*2: Minimum DC input voltage on RESET_1 or $\overline{\text { RESET_2 }} 2$ in is -0.5 V . During voltage transitions $\overline{\mathrm{RESET}}$ _1 or RESET_2 pins may undershoot $\mathrm{Vss}^{\text {s }}$ to -2.0 V for periods of up to 20 ns .
Voltage difference between input and supply voltage (VIN-Vccf_1 or Vccf_2) does not exceed +9.0 V . Maximum DC input voltage on RESET_1 or RESET_2 pins is +13.0 V which may overshoot to +14.0 V for periods of up to 20 ns .
*3: Minimum DC input voltage on WP/ACC pin is -0.5 V . During voltage transitions, WP/ACC pin may undershoot Vss to -2.0 V for periods of up to 20 ns . Maximum DC input voltage on WP/ACC pin is +10.5 V which may overshoot to +12.0 V for periods of up to 20 ns , when Vccf_1 or Vccf_2 is applied.
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value		Unit
		Min.	Max.	
Ambient Temperature	TA	-30	+85	${ }^{\circ} \mathrm{C}$
Vccf_1/Vccf_2/Vccr Supply Voltages	Vccf_1,Vccf_2,Vccr	+2.7	+3.1	V

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.
Note: Operating ranges define those limits between which the functionality of the device is guaranteed.

ELECTRICAL CHARACTERISTICS (DC Characteristics)

Parameter	Symbol	Conditions		Value			Unit
				Min.	Typ.	Max.	
Input Leakage Current	lı	Vin = Vssto Vccf_1,Vccr		-1.0	-	+1.0	$\mu \mathrm{A}$
Output Leakage Current	ILo	Vour = Vssto Vccf_1,Vccr		-1.0	-	+1.0	$\mu \mathrm{A}$
RESET Inputs Leakage Current (Flash_1 \& Flash_2)	ILt	$\begin{aligned} & \mathrm{Vccf}=\mathrm{Vccf} \mathrm{Max} ., \\ & \mathrm{RESET}=12.5 \mathrm{~V} \end{aligned}$		-	-	35	$\mu \mathrm{A}$
$\overline{\mathrm{WP}} / \mathrm{ACC}$ Acceleration Program Current (Flash_1 \& Flash_2)	Iacc	$\begin{aligned} & \text { Vccf }=\text { Vccf Max., } \\ & \text { WP/ACC }=V_{A c C} \text { Max. } \end{aligned}$		-	-	20	mA
Flash_1 Vcc Active Current (Read) *1	Iccif1	$\overline{\mathrm{CE}}(\overline{\mathrm{CEOOf}} \text { or } \overline{\mathrm{CE}} 1 \mathrm{f})=\mathrm{V}_{\mathrm{IL}},$	$\mathrm{f}=10 \mathrm{MHz}$	-	-	45	mA
		$\begin{aligned} & \overline{\mathrm{CE}}(\overline{\mathrm{CEOf}} \text { or } \mathrm{CE} 1 \mathrm{f})=\mathrm{V}_{\mathrm{IL}}, \\ & \mathrm{OE}=\mathrm{V}_{\mathrm{H}} \end{aligned}$	$\mathrm{f}=5 \mathrm{MHz}$	-	-	20	mA
Flash_1 Vcc Active Current *2	Iccef1	$\overline{\mathrm{CE}}$ ('CE0f or $\overline{\mathrm{CE}} 1 \mathrm{f})=\mathrm{VIL}, \overline{\mathrm{OEf}}=\mathrm{V}_{\text {IH }}$		-	-	25	mA
Vcc Current (Standby)	Isbif1	Vccf = Vccf Max., CEOf, $\overline{\mathrm{CE}} \mathrm{f}=\mathrm{Vccf} \pm 0.3 \mathrm{~V}$ RESET $=$ Vccf $\pm 0.3 \mathrm{~V}$, WP/ACC $=\mathrm{Vccf} \pm 0.3 \mathrm{~V}$		-	1	5	$\mu \mathrm{A}$
Vcc Current (Standby,Reset)	Isb2f1	$\begin{aligned} & \text { Vccf = Vccf Max., } \\ & \text { RESET = Vss } \pm 0.3 \mathrm{~V}, \end{aligned}$		-	1	5	$\mu \mathrm{A}$
Vcc Current (Automatic Sleep Mode)*3	Isb3f1	Vccf $=$ Vccf Max., $\overline{\mathrm{CEOf}}, \overline{\mathrm{CE}} 1 \mathrm{f}=\mathrm{Vss} \pm 0.3 \mathrm{~V}$, RESET $=\mathrm{Vccf} \pm 0.3 \mathrm{~V}$, $\mathrm{V} \operatorname{IN}=\mathrm{Vccf} \pm 0.3 \mathrm{~V}$ or $\mathrm{Vssf} \pm 0.3 \mathrm{~V}$		-	1	5	$\mu \mathrm{A}$
Vcc Active Current (Read-while-Program)*5	Iccaf1	$\overline{\mathrm{CE}}$ ($\overline{\mathrm{CEO}} \mathrm{f}$ or $\overline{\mathrm{CE}} 1 \mathrm{f})=\mathrm{VIL}, \overline{\mathrm{OEf}}=\mathrm{V}_{\text {IH }}$		-	-	45	mA
Vcc Active Current (Read-while-Erase)	Iccaf1	$\overline{\mathrm{CE}}$ ($\overline{\mathrm{CEO}} \mathrm{f}$ or $\overline{\mathrm{CE} 1} \mathrm{f})=\mathrm{VIL}, \overline{\mathrm{OEf}}=\mathrm{V}_{\text {IH }}$		-	-	45	mA
Vcc Active Current (Erase-while-Program)*5	Iccsf1	$\overline{\mathrm{CE}}$ ($\overline{\mathrm{CEO}} \mathrm{f}$ or $\overline{\mathrm{CE}} 1 \mathrm{f})=\mathrm{VIL}^{\text {, }} \overline{\mathrm{OEf}}=\mathrm{V}_{\text {IH }}$		-	-	25	mA
Flash_2 Vcc Active Current	Iccif2	$\overline{\mathrm{CE}} \mathrm{f}=\mathrm{VIL}_{\text {L }}$,	tCYCLE $=5 \mathrm{MHz}$	-	-	18	mA
(Read)*1		$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$	tCYCLE $=1 \mathrm{MHz}$	-	-	4	mA
Flash_2 Vcc Active Current (Program/Erase) *2	Icc2f2	$\overline{\mathrm{CE}} \mathrm{f}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{H}}$		-	-	35	mA
Flash_2 Vcc Active Current (Read-While-Program) *5	Icc3f2	$\overline{\mathrm{CE}} \mathrm{f}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{I}}$		-	-	53	mA
Flash_2 Vcc Active Current (Read-While-Erase) *5	Iccaf2	$\overline{\mathrm{CEf}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{H}}$		-	-	53	mA
Flash_2 Vcc Active Current (Erase-Suspend-Program)	Iccof2	$\overline{\mathrm{CEf}}=\mathrm{VIL}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{H}}$		-	-	40	mA
Flash_2 Vcc Standby Current	Isbif	$\begin{aligned} & \text { Vccf }=\mathrm{V} \text { ccf } \mathrm{Max} ., \overline{\mathrm{CEf}}=\mathrm{V} \text { ccf } \pm 0.3 \mathrm{~V} \\ & \mathrm{RESET}=\mathrm{Vccf} \pm 0.3 \mathrm{~V}, \\ & \mathrm{WP} / \mathrm{ACC}=\mathrm{Vccf} \pm 0.3 \mathrm{~V} \end{aligned}$		-	1 *7	$5^{* 7}$	$\mu \mathrm{A}$
Flash_2 Vcc Standby Current (ㅈESET)	Isb2f	$\begin{aligned} & \mathrm{Vccf}=\mathrm{Vccf} \text { Max., RESET }=\mathrm{Vss} \pm 0.3 \mathrm{~V}, \\ & \mathrm{WP} / A C C=\mathrm{Vccf} \pm 0.3 \mathrm{~V} \end{aligned}$		-	1 *7	5 *7	$\mu \mathrm{A}$
Flash_2 Vcc Current (Automatic Sleep Mode) *3	Isb3f	$\begin{aligned} & \text { Vccf }=\mathrm{Vccf} \operatorname{Max} ., \mathrm{CEf}=\mathrm{Vss} \pm 0.3 \mathrm{~V} \\ & \mathrm{RESET}=\mathrm{Vccf} \pm 0.3 \mathrm{~V}, \\ & \mathrm{WP} / A C C=\mathrm{Vccf} \pm 0.3 \mathrm{~V}, \\ & \mathrm{~V} \text { In }=\mathrm{Vccf} \pm 0.3 \mathrm{~V} \text { or } \mathrm{Vss} \pm 0.3 \mathrm{~V} \\ & \hline \end{aligned}$		-	1 *7	5 *7	$\mu \mathrm{A}$
FCRAM Vcc Active Current	Iccir	$\begin{aligned} & \text { Vccr }=\text { Vccr Max., } \\ & \frac{\mathrm{CE} 1 \mathrm{r}}{}=\mathrm{V}_{\mathrm{LL}}, \mathrm{CE} 2 \mathrm{C}=\mathrm{V}_{\mathbf{H}}, \\ & \mathrm{V}_{\mathbf{N}}=\mathrm{V}_{\mathbf{H}} \text { or } \mathrm{V}_{\mathrm{IL}}, \text { lout }=0 \mathrm{~mA} \end{aligned}$	tre / twe = min.	-	-	25	mA
			trc $/ \mathrm{twc}=1 \mu \mathrm{~s}$	-	-	3	

(Continued)

MB84VFAF5F5J1-70

(Continued)

Parameter	Symbol	Conditions		Value			Unit
				Min.	Typ.	Max.	
FCRAM Vcc Standby Current	Isbir	$\begin{aligned} & \text { Vccr }=\text { Vccr Max., } \overline{\mathrm{CE}} \mathrm{r} \mathrm{r} \geq \mathrm{Vccr}- \\ & \mathrm{CE} 2 \mathrm{r} \geq \mathrm{Vccr}-0.2 \mathrm{~V}, \\ & \mathrm{~V} \text { IN } \leq 0.2 \mathrm{~V} \text { or Vccr }-0.2 \mathrm{~V} \end{aligned}$		-	-	200	$\mu \mathrm{A}$
FCRAM Vcc Power Down Current	Ipdsr	$\begin{aligned} & \text { Vccr }=\text { Vccr Max., } \\ & \text { CE1r } \geq \text { Vccr }-0.2 \mathrm{~V}, \\ & \text { CE2r } \leq 0.2 \mathrm{~V}, \\ & \text { Vin } \text { Cycle time }=\text { tRc min. } \end{aligned}$	Sleep	-	-	10	$\mu \mathrm{A}$
	IpDNr		NAP	-	-	65	$\mu \mathrm{A}$
	IpD8r		16M Partial	-	-	85	$\mu \mathrm{A}$
Input Low Level	VIL	-		-0.3	-	0.5	V
Input High Level	VIH	-		2.2	-	$\begin{aligned} & \text { Vcc+ } \\ & 0.3 * 6 \end{aligned}$	V
Voltage for Sector Protection, and Temporary Sector Unprotection (RESET) *4	VID	-		11.5	12.0	12.5	V
Voltage for $\overline{W P} / A C C$ Sector Protection/Unprotection and Program Acceleration *4	Vacc	-		8.5	9.0	9.5	V
Output Low Voltage Level	Volf_1	Vccf = Vccf Min., lol=4.0 mA	Flash_1	-	-	0.3	V
	Volf_2	Vccf = Vccf Min., lol=4.0 mA	Flash_2	-	-	0.45	V
	Vorr	$\mathrm{Vccr}=\mathrm{Vccr} \mathrm{Min} ., \mathrm{lol}=1.0 \mathrm{~mA}$	FCRAM	-	-	0.4	V
Output High Voltage Level	Vorf_1	Vccf $=$ Vccf Min., 1 OH $=-2.0 \mathrm{~mA}$	Flash_1	$\begin{gathered} \text { Vccf- } \\ 0.3 \end{gathered}$	-	-	V
	VoLf_2	Vccf $=$ Vccf Min., $\mathrm{IOH}=-2.0 \mathrm{~mA}$	Flash_2	2.4	-	-	V
	Vorr	$\mathrm{Vccr}=\mathrm{Vccr}$ Min., $\mathrm{loH}=-0.5 \mathrm{~mA}$	FCRAM	2.2	-	-	V
Flash Low Vccf Lock-Out Voltage	Vlko	-		2.3	2.4	2.5	V

Legend: Flash means Flash_1 or Flash_2, Vccf means Vccf_1 or Vccf_2, Vssf means Vssf_1 or Vssf_2, CEf means
$\overline{\mathrm{CEf}} _1$ or $\overline{\mathrm{CEf}} _2, \overline{\mathrm{RESET}}$ means $\overline{\mathrm{RESET}} _1$ or $\overline{\mathrm{RESET}} _2$
*1: The Icc current listed includes both the DC operating current and the frequency dependent component.
*2: Icc active while Embedded Algorithm (program or erase) is in progress.
*3: Automatic sleep mode enables the low power mode when address remains stable for 150 ns .
*4: Applicable for only Vccf applying.
*5: Embedded Alogorithm (program or erase) is in progress. (@5 MHz)
*6: Vcc indicates lower of Vccf_1 or Vccf_2 or Vccr.
*7: Actual Standby Current is twice of what is indicated in the table, due to two Flash memory chips embedment withn one device.

■ ELECTRICAL CHARACTERISTICS (AC Characteristics)

- $\overline{\text { CE Timing }}$

Parameter	Symbol		Condition	Value		Unit
	JEDEC	Standard		Min.	Max.	
CE Recover Time	-	tccr	-	0	-	ns
$\overline{\text { CE Hold Time }}$	-	tchold	-	3	-	ns
CE1r High to WE Invalid time for Standby Entry	-	tchwx	-	10	-	ns

- Timing Diagram for alternating RAM to Flash_1 or Flash_2

- Flash_1 Characteristics

Please refer to "96M Page Flash Memory for MCP" part. In this part, Flash means Flash_1, Vccf means Vccf_1, Vssf means Vssf_1, $\overline{\text { CEf0 }}$ means CEf0_1, CEf0 means CEf1_1, $\overline{R E S E T}$ means RESET_1

- Flash_2 Characteristics

Please refer to "64M Flash Memory for MCP" part. In this part, Flash means Flash_2, Vccf means Vccf_2, Vssf means Vssf_2, $\overline{\text { CEf }}$ means $\overline{\text { CEf }} _2$, $\overline{\text { RESET }}$ means $\overline{R E S E T} _2$

- FCRAM Characteristics

Please refer to "64M FCRAM for MCP" part.

96M Page Flash Memory for MCP

- Command Definitions

Command Sequence	Bus Write Cycles Req'd	First Bus Write Cycle		Second Bus Write Cycle		Third Bus Write Cycle		Fourth Bus Read/Write Cycle		Fifth Bus Write Cycle		Sixth Bus Write Cycle		Seventh Bus Write Cycle	
		Addr.	Data												
Read/Reset	1	XXXh	FOh	RA	RD	-	-	-	-	-	-	-	-	-	-
Read/Reset	3	555h	AAh	2AAh	55h	555h	F0h	RA	RD	-	-	-	-	-	-
Autoselect	3	555h	AAh	2AAh	55h	555h	90h	-	-	-	-	-	-	-	-
Program	4	555h	AAh	2AAh	55h	555h	A0h	PA	PD	-	-	-	-	-	-
Chip Erase	6	555h	AAh	2AAh	55h	555h	80h	555h	AAh	2AAh	55h	555h	10h	-	-
Sector Erase	6	555h	AAh	2AAh	55h	555h	80h	555h	AAh	2AAh	55h	SA	30h	-	-
Program/Erase Suspend	1	BA	B0h	-	-	-	-	-	-	-	-	-	-	-	-
Program/Erase Resume	1	BA	30h	-	-	-	-	-	-	-	-	-	-	-	-
Set to Fast Mode	3	555h	AAh	2AAh	55h	555h	20h								
Fast Program	2	XXXh	AOh	PA	PD										
Reset from Fast Mode*1	2	XXXh	90h	XX	00h										
Extended Sector Group Protection*2	4	XXXh	60h	SGA	60h	SGA	40h	SGA	SD						
Query	1	$\begin{aligned} & (\mathrm{BA}) \\ & 55 \mathrm{~h} \end{aligned}$	98h	-	-	-	-	-	-	-	-	-	-	-	-
Hi-ROM Entry	3	555h	AAh	2AAh	55h	555h	88h	-	-	-	-	-	-	-	-
Hi-ROM Program*3	4	555h	AAh	2AAh	55h	555h	A0h	$\begin{gathered} \text { (HRA) } \\ \text { PA } \end{gathered}$	PD	-	-	-	-	-	-
Hi-ROM Exit*3	4	555h	AAh	2AAh	55h	555h	90h	XXXh	00h	-	-	-	-	-	-
$\mathrm{Hi}-\mathrm{ROM}$ Protect*3	6	555h	AAh	2AAh	55h	555h	60h	OPBP	68h	OPBP	48h	XXXh	RD(0)	-	-

SMCP0.5E

96M Page Flash Memory for MCP

(Continued)

- Command Definitions

Command Sequence	Bus Write Cycles Req'd	First Bus Write Cycle		$\begin{array}{\|c} \text { Second } \\ \text { Bus } \\ \text { Write Cycle } \end{array}$		Third Bus Write Cycle		Fourth Bus Read/Write Cycle		Fifth Bus Write Cycle		Sixth Bus Write Cycle		Seventh Bus Write Cycle	
		Addr.	Data												
Password Program	4	555h	AAh	2AAh	55h	555h	38h	XXOh	PD0	-	-	-	-	-	-
								XX1h	PD1	-	-	-	-	-	-
								XX2h	PD2	-	-	-	-	-	-
								XX3h	PD3	-	-	-	-	-	-
Password Unlock	7	555h	AAh	2AAh	55h	555h	28h	XX0h	PD0	XX1h	PD1	XX2h	PD2	XX3h	PD3
Password Verify	4	555h	AAh	2AAh	55h	555h	C8h	PWA	PWD	-	-	-	-	-	-
Password Mode Locking Bit Program	6	555h	AAh	2AAh	55h	555h	60h	PL	68h	PL	48h	XXh	$R D(0)$	-	-
Persistent Protection Mode Locking Bit Program	6	555h	AAh	2AAh	55h	555h	60h	SPML	68h	SPML	48h	XXh	RD(0)	-	-
PPB Program	6	555h	AAh	2AAh	55h	555h	60h	SA+WP	68h	SA+WP	48h	XXh	$\mathrm{RD}(0)$	-	-
PPB Verify	4	555h	AAh	2AAh	55h	555h	90h	SA+x02	$\mathrm{RD}(0)$	-	-	-	-	-	-
All PPB Erase	6	555h	AAh	2AAh	55h	555h	60h	WP	60h	WP+SA	40h	XXh	$\mathrm{RD}(0)$	-	-
PPB Lock Bit Set	3	555h	AAh	2AAh	55h	555h	78h	-	-	-	-	-	-	-	-
PPB Lock Bit Verify	4	555h	AAh	2AAh	55h	555h	58h	SA	$\mathrm{RD}(1)$	-	-	-	-	-	-
DPB Write	4	555h	AAh	2AAh	55h	555h	48h	SA	X1h	-	-	-	-	-	-
DPB Erase	4	555h	AAh	2AAh	55h	555h	48h	SA	X0h	-	-	-	-	-	-
DPB Verify	4	555h	AAh	2AAh	55h	555h	58h	SA	$\mathrm{RD}(0)$	-	-	-	-	-	-

96M Page Flash Memory for MCP

Legend:

RA = Address of the memory location to be read
PA = Address of the memory location to be programmed
Addresses are latched on the falling edge of the write pulse.
SA = Address of the sector .
The combination of $A_{21}, A_{20}, A_{19}, A_{18}, A_{17}, A_{16}, A_{15}, A_{14}, A_{13}$ and A_{12} will uniquely select any sector.
$B A=$ Bank Address. Address setted by $A_{21}, A_{20}, A_{19}, A_{18}$ will select Bank A, Bank B, Bank C and Bank D.
$R D=$ Data read from location RA during read operation.
$\mathrm{PD}=$ Data to be programmed at location PA. Data is latched on the rising edge of write pulse.
SGA = Sector group address to be protected.
Set sector group address and ($\left.A_{6}, A_{5}, A_{4}, A_{3}, A_{2}, A_{1}, A_{0}\right)=(0,1,1,1,0,1,0)$
SD = Sector group protection verify data.
Output 01h at protected sector group addresses and output 00h at unprotected sector group
addresses.
HRA = Address of the Hi-ROM area 000000h to 00007Fh
HRBA $=$ Bank Address of the Hi-ROM area ($\left.\mathrm{A}_{21}=\mathrm{A}_{20}=\mathrm{A}_{19}=\mathrm{A}_{18}=\mathrm{V}_{\mathrm{LL}}\right)$
$R D(0)=$ Read Data bit. If programmed, $D Q_{0}=1$, if erased, $D_{0}=0$
$R D(1)=$ Read Data bit. If programmed, $\mathrm{DQ}_{1}=1$, if erased, $\mathrm{DQ}_{1}=0$
OPBP $=\left(A_{6}, A_{5}, A_{4}, A_{3}, A_{2}, A_{1}, A_{0}\right)$ is $(X, 0,1,1,0,1,0)$
SLA =Address of the sector to be locked.
Set sector address (SA) and either $\mathrm{A}_{6}=1$ for unlocked or $\mathrm{A}_{6}=0$ for locked
PWA/PWD = Password Address/Password Data
$P L=\left(A_{6}, A_{5}, A_{4}, A_{3}, A_{2}, A_{1}, A_{0}\right)$ is $(X, 0,0,1,0,1,0)$
SPML $=\left(A_{6}, A_{5}, A_{4}, A_{3}, A_{2}, A_{1}, A_{0}\right)$ is $(X, 0,1,0,0,1,0)$
$W P=\left(A_{6}, A_{5}, A_{4}, A_{3}, A_{2}, A_{1}, A_{0}\right)$ is $(X, 1,1,1,0,1,0)$
*1: This command is valid during Fast Mode.
*2: This command is valid while $\overline{\operatorname{RESET}}=\mathrm{V} \mathrm{II}$.
*3: This command is valid during Hi-ROM mode.
*4: The data "00h" is also acceptable.
Notes : 1. Address bits $\mathrm{A}_{21}=" \mathrm{~L} ", \mathrm{~A}_{20}$ to $\mathrm{A}_{11}=\mathrm{X}=$ " H " or " L " for all address commands except for PA, SA, BA, SGA, OPBP, SLA, PWA, PL, SPML, WP.
2. Bus operations are defined in Table 2.
3. The system should generate the following address patterns:

555 h or 2AAh to addresses A_{10} to A_{0}
4. Both Read/Reset commands are functionally equivalent, resetting the device to the read mode.
5. A21 must assert "L" to operate $\overline{\mathrm{CE} 1 f}$ region.

96M Page Flash Memory for MCP

- Sector Group Protection Verify Autoselect Codes :

Type	A_{21} to A_{12}	A_{6}	A_{5}	A_{4}	A_{3}	A_{2}	A_{1}	A0	Code (HEX)
Manufacture's Code	$B A^{*}$	VIL	X	X	VIL	VIL	VIL	VIL	04h
Device Code	BA^{*}	VIL	X	X	VIL	VIL	VIL	V_{H}	227Eh
Extended Device Code*3	$B A^{*}$	VIL	X	X	VIH	V_{H}	V_{H}	V_{H}	2217h
	$B A^{*}$	VIL	X	X	V_{H}	V_{H}	V_{H}	V_{H}	2201h
Sector Group Protection* ${ }^{*}$	Sector Group Addresses	VIL	V_{1}	VIH	VIH	VIL	V_{H}	VIL	014 ${ }^{11}$

*1 :Sector Group can be protected by "Sector Group Protection", "Extended Sector Group Protection" and
" New Sector Protection(PPB Protection)".
Outputs 01h at protected sector group addresses and outputs 00h at unprotected sector group addresses.
*2 :When VIo is applied to A9, both Bank 1 and Bank 2 are put into Autoselect mode, which makes simultaneous operation unable to be executed. Consequently, specifying the bank address is not required. However, the bank address needs to be indicated when Autoselect mode is read out at command mode, because then it becomes possible to activate simultaneous operation.
*3 :A read cycle at address (BA) 01h outputs device code. When 227Eh is output, it indicates that two additional codes, called Extended Device Codes, will be required. Therefore the system may continue reading out these Extended Device Codes at the address of (BA) OEh, as well as at (BA) OFh

- Extenede Auteselect Code Table

| Type | Code | DQ $_{15}$ | DQ $_{14}$ | DQ_{13} | DQ_{12} | DQ_{11} | DQ_{10} | DQ_{9} | DQ_{8} | DQ_{7} | DQ_{6} | DQ_{5} | DQ_{4} | DQ_{3} | DQ_{2} | DQ_{1} | DQ_{0} |
| :--- | ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Manufacturer's Code | 04 h | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| Device Code | 227 Eh | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
| Extended Device
 Code | 2217 h | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 |
| | 2201 h | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| PPB Protection | 01 h | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| PPB Unprotection | 00 h | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

96M Page Flash Memory for MCP

FLEXIBLE SECTOR-ERASE ARCHITECTURE

- Sector Address Tables (Bank A)

Bank	Sector	Chip Enable		Sector Address										$\begin{aligned} & \text { Sector } \\ & \text { Size } \\ & \text { (Kwords) } \end{aligned}$	Address Range
				Bank Address				A 17	A16	A15	A_{14}	A_{13}	A_{12}		
		CEO	CE1	A_{21}	A_{20}	A_{19}	A_{18}								
Bank A	SA0	0	1	0	0	0	0	0	0	0	0	0	0	4	000000h to 000FFFh
	SA1	0	1	0	0	0	0	0	0	0	0	0	1	4	001000h to 001FFFh
	SA2	0	1	0	0	0	0	0	0	0	0	1	0	4	002000h to 002FFFh
	SA3	0	1	0	0	0	0	0	0	0	0	1	1	4	003000h to 003FFFh
	SA4	0	1	0	0	0	0	0	0	0	1	0	0	4	004000h to 004FFFh
	SA5	0	1	0	0	0	0	0	0	0	1	0	1	4	005000h to 005FFFh
	SA6	0	1	0	0	0	0	0	0	0	1	1	0	4	006000h to 006FFFh
	SA7	0	1	0	0	0	0	0	0	0	1	1	1	4	007000h to 007FFFh
	SA8	0	1	0	0	0	0	0	0	1	X	X	X	32	008000h to 00FFFFh
	SA9	0	1	0	0	0	0	0	1	0	X	X	X	32	010000h to 017FFFh
	SA10	0	1	0	0	0	0	0	1	1	X	X	X	32	018000h to 01FFFFh
	SA11	0	1	0	0	0	0	1	0	0	X	X	X	32	020000h to 027FFFh
	SA12	0	1	0	0	0	0	1	0	1	X	X	X	32	028000h to 02FFFFh
	SA13	0	1	0	0	0	0	1	1	0	X	X	X	32	030000h to 037FFFh
	SA14	0	1	0	0	0	0	1	1	1	X	X	X	32	038000h to 03FFFFh
	SA15	0	1	0	0	0	1	0	0	0	X	X	X	32	040000h to 047FFFh
	SA16	0	1	0	0	0	1	0	0	1	X	X	X	32	048000h to 04FFFFh
	SA17	0	1	0	0	0	1	0	1	0	X	X	X	32	050000h to 057FFFh
	SA18	0	1	0	0	0	1	0	1	1	X	X	X	32	058000h to 05FFFFh
	SA19	0	1	0	0	0	1	1	0	0	X	X	X	32	060000h to 06FFFFh
	SA20	0	1	0	0	0	1	1	0	1	X	X	X	32	068000h to 06FFFFh
	SA21	0	1	0	0	0	1	1	1	0	X	X	X	32	070000h to 077FFFh
	SA22	0	1	0	0	0	1	1	1	1	X	X	X	32	078000h to 07FFFFh
	SA23	0	1	0	0	1	0	0	0	0	X	X	X	32	080000h to 087FFFh
	SA24	0	1	0	0	1	0	0	0	1	X	X	X	32	088000h to 08FFFFh
	SA25	0	1	0	0	1	0	0	1	0	X	X	X	32	090000h to 097FFFh
	SA26	0	1	0	0	1	0	0	1	1	X	X	X	32	098000h to 09FFFFh
	SA27	0	1	0	0	1	0	1	0	0	X	X	X	32	0A0000h to 0A7FFFh
	SA28	0	1	0	0	1	0	1	0	1	X	X	X	32	0A8000h to 0AFFFFh
	SA29	0	1	0	0	1	0	1	1	0	X	X	X	32	0B0000h to 0B7FFFh
	SA30	0	1	0	0	1	0	1	1	1	X	X	X	32	0B8000h to 0BFFFFh

96M Page Flash Memory for MCP

- Sector Address Tables (Bank B)

Bank	Sector	Chip Enable		Sector Address										$\begin{gathered} \text { Sector } \\ \text { Size } \\ \text { (Kwords) } \end{gathered}$	Address Range
				Bank Address				A_{17}	A16	A15	A_{14}	A_{13}	A_{12}		
		CEOf	CE1f	A_{21}	A_{20}	A_{19}	A_{18}								
Bank B	SA31	0	1	0	0	1	1	0	0	0	X	X	X	32	0C0000h to 0C7FFFh
	SA32	0	1	0	0	1	1	0	0	1	X	X	X	32	0C8000h to 0CFFFFFh
	SA33	0	1	0	0	1	1	0	1	0	X	X	X	32	0D0000h to 0D7FFFh
	SA34	0	1	0	0	1	1	0	1	1	X	X	X	32	0D8000h to 0DFFFFh
	SA35	0	1	0	0	1	1	1	0	0	X	X	X	32	0E0000h to 0E7FFFh
	SA36	0	1	0	0	1	1	1	0	1	X	X	X	32	0E8000h to 0EFFFFh
	SA37	0	1	0	0	1	1	1	1	0	X	X	X	32	0F0000h to 0F7FFFh
	SA38	0	1	0	0	1	1	1	1	1	X	X	X	32	0F8000h to 0FFFFFh
	SA39	0	1	0	1	0	0	0	0	0	X	X	X	32	100000h to 107FFFh
	SA40	0	1	0	1	0	0	0	0	1	X	X	X	32	108000h to 10FFFFh
	SA41	0	1	0	1	0	0	0	1	0	X	X	X	32	110000h to 117FFFh
	SA42	0	1	0	1	0	0	0	1	1	X	X	X	32	118000h to 11FFFFh
	SA43	0	1	0	1	0	0	1	0	0	X	X	X	32	120000h to 127FFFh
	SA44	0	1	0	1	0	0	1	0	1	X	X	X	32	128000h to 12FFFFh
	SA45	0	1	0	1	0	0	1	1	0	X	X	X	32	130000h to 137FFFh
	SA46	0	1	0	1	0	0	1	1	1	X	X	X	32	138000h to 13FFFFh
	SA47	0	1	0	1	0	1	0	0	0	X	X	X	32	140000h to 147FFFh
	SA48	0	1	0	1	0	1	0	0	1	X	X	X	32	148000h to 14FFFFh
	SA49	0	1	0	1	0	1	0	1	0	X	X	X	32	150000h to 157FFFh
	SA50	0	1	0	1	0	1	0	1	1	X	X	X	32	158000h to 15FFFFh
	SA51	0	1	0	1	0	1	1	0	0	X	X	X	32	160000h to 167FFFh
	SA52	0	1	0	1	0	1	1	0	1	X	X	X	32	168000h to 16FFFFh
	SA53	0	1	0	1	0	1	1	1	0	X	X	X	32	170000h to 177FFFh
	SA54	0	1	0	1	0	1	1	1	1	X	X	X	32	178000h to 17FFFFh
	SA55	0	1	0	1	1	0	0	0	0	X	X	X	32	180000h to 187FFFh
	SA56	0	1	0	1	1	0	0	0	1	X	X	X	32	188000h to 18FFFFh
	SA57	0	1	0	1	1	0	0	1	0	X	X	X	32	190000h to 197FFFh
	SA58	0	1	0	1	1	0	0	1	1	X	X	X	32	198000h to 19FFFFh
	SA59	0	1	0	1	1	0	1	0	0	X	X	X	32	1A0000h to 1A7FFFh
	SA60	0	1	0	1	1	0	1	0	1	X	X	X	32	1A8000h to 1AFFFFh
	SA61	0	1	0	1	1	0	1	1	0	X	X	X	32	1B0000h to 1B7FFFh
	SA62	0	1	0	1	1	0	1	1	1	X	X	X	32	1B8000h to 1BFFFFh
	SA63	0	1	0	1	1	1	0	0	0	X	X	X	32	1C0000h to 1C7FFFh
	SA64	0	1	0	1	1	1	0	0	1	X	X	X	32	1C8000h to 1CFFFFh
	SA65	0	1	0	1	1	1	0	1	0	X	X	X	32	1D0000h to 1D7FFFh
	SA66	0	1	0	1	1	1	0	1	1	X	X	X	32	1D8000h to 1DFFFFh
	SA67	0	1	0	1	1	1	1	0	0	X	X	X	32	1E0000h to 1E7FFFh
	SA68	0	1	0	1	1	1	1	0	1	X	X	X	32	1E8000h to 1EFFFFh
	SA69	0	1	0	1	1	1	1	1	0	X	X	X	32	1F0000h to 1F7FFFh
	SA70	0	1	0	1	1	1	1	1	1	X	X	X	32	1F8000h to 1FFFFFFh
	SA71	0	1	1	0	0	0	0	0	0	X	X	X	32	200000h to 207FFFh

(Continued)

96M Page Flash Memory for MCP

(Continued)

Bank	Sector	Chip Enable		Sector Address										$\begin{gathered} \text { Sector } \\ \text { Size } \\ \text { (Kwords) } \end{gathered}$	Address Range
				Bank Address				A 17	A_{16}	A 15	A_{14}	A_{13}	A_{12}		
		$\overline{\text { CEOf }}$	CE1f	A 21	A_{20}	A_{19}	A_{18}								
Bank B	SA72	0	1	1	0	0	0	0	0	1	X	X	X	32	208000h to 20FFFFh
	SA73	0	1	1	0	0	0	0	1	0	X	X	X	32	210000h to 217FFFh
	SA74	0	1	1	0	0	0	0	1	1	X	X	X	32	218000h to 21FFFFh
	SA75	0	1	1	0	0	0	1	0	0	X	X	X	32	220000h to 227FFFh
	SA76	0	1	1	0	0	0	1	0	1	X	X	X	32	228000h to 22FFFFh
	SA77	0	1	1	0	0	0	1	1	0	X	X	X	32	230000h to 237FFFh
	SA78	0	1	1	0	0	0	1	1	1	X	X	X	32	238000h to 23FFFFh
	SA79	0	1	1	0	0	1	0	0	0	X	X	X	32	240000h to 247FFFh
	SA80	0	1	1	0	0	1	0	0	1	X	X	X	32	248000h to 24FFFFh
	SA81	0	1	1	0	0	1	0	1	0	X	X	X	32	250000h to 257FFFh
	SA82	0	1	1	0	0	1	0	1	1	X	X	X	32	258000h to 25FFFFh
	SA83	0	1	1	0	0	1	1	0	0	X	X	X	32	260000h to 267FFFh
	SA84	0	1	1	0	0	1	1	0	1	X	X	X	32	268000h to 26FFFFh
	SA85	0	1	1	0	0	1	1	1	0	X	X	X	32	270000h to 277FFFh
	SA86	0	1	1	0	0	1	1	1	1	X	X	X	32	278000h to 27FFFFh
	SA87	0	1	1	0	1	0	0	0	0	X	X	X	32	280000h to 287FFFh
	SA88	0	1	1	0	1	0	0	0	1	X	X	X	32	288000h to 28FFFFh
	SA89	0	1	1	0	1	0	0	1	0	X	X	X	32	290000h to 297FFFh
	SA90	0	1	1	0	1	0	0	1	1	X	X	X	32	298000h to 29FFFFh
	SA91	0	1	1	0	1	0	1	0	0	X	X	X	32	2A0000h to 2A7FFFh
	SA92	0	1	1	0	1	0	1	0	1	X	X	X	32	2A8000h to 2AFFFFh
	SA93	0	1	1	0	1	0	1	1	0	X	X	X	32	2B0000h to 2B7FFFh
	SA94	0	1	1	0	1	0	1	1	1	X	X	X	32	2B8000h to 2BFFFFh
	SA95	0	1	1	0	1	1	0	0	0	X	X	X	32	2C0000h to 2C7FFFh
	SA96	0	1	1	0	1	1	0	0	1	X	X	X	32	2C8000h to 2CFFFFh
	SA97	0	1	1	0	1	1	0	1	0	X	X	X	32	2D0000h to 2D7FFFh
	SA98	0	1	1	0	1	1	0	1	1	X	X	X	32	2D8000h to 2DFFFFh
	SA99	0	1	1	0	1	1	1	0	0	X	X	X	32	2E0000h to 2E7FFFh
	SA100	0	1	1	0	1	1	1	0	1	X	X	X	32	2E8000h to 2EFFFFh
	SA101	0	1	1	0	1	1	1	1	0	X	X	X	32	2F0000h to 2F7FFFh
	SA102	0	1	1	0	1	1	1	1	1	X	X	X	32	2F8000h to 2FFFFFh

96M Page Flash Memory for MCP

- Sector Address Tables (Bank C)

Bank	Sector	Chip		Sector Address										$\begin{gathered} \text { Sector } \\ \text { Size } \\ \text { (Kwords) } \end{gathered}$	Address Range
				Bank Address				A 17	A_{16}	A15	A_{14}	A_{13}	A_{12}		
		CEOf	CE1f	A_{21}	A_{20}	A_{19}	A_{18}								
Bank C	SA103	0	1	1	1	0	0	0	0	0	X	X	X	32	300000h to 307FFFh
	SA104	0	1	1	1	0	0	0	0	1	X	X	X	32	308000h to 30FFFFh
	SA105	0	1	1	1	0	0	0	1	0	X	X	X	32	310000h to 317FFFh
	SA106	0	1	1	1	0	0	0	1	1	X	X	X	32	318000h to 31FFFFh
	SA107	0	1	1	1	0	0	1	0	0	X	X	X	32	320000 h to 327FFFh
	SA108	0	1	1	1	0	0	1	0	1	X	X	X	32	328000h to 32FFFFh
	SA109	0	1	1	1	0	0	1	1	0	X	X	X	32	330000h to 337FFFh
	SA110	0	1	1	1	0	0	1	1	1	X	X	X	32	338000h to 33FFFFh
	SA111	0	1	1	1	0	1	0	0	0	X	X	X	32	340000h to 347FFFh
	SA112	0	1	1	1	0	1	0	0	1	X	X	X	32	348000h to 34FFFFh
	SA113	0	1	1	1	0	1	0	1	0	X	X	X	32	350000h to 357FFFh
	SA114	0	1	1	1	0	1	0	1	1	X	X	X	32	358000h to 35FFFFh
	SA115	0	1	1	1	0	1	1	0	0	X	X	X	32	360000h to 367FFFh
	SA116	0	1	1	1	0	1	1	0	1	X	X	X	32	368000h to 36FFFFh
	SA117	0	1	1	1	0	1	1	1	0	X	X	X	32	370000h to 377FFFh
	SA118	0	1	1	1	0	1	1	1	1	X	X	X	32	378000h to 37FFFFh
	SA119	0	1	1	1	1	0	0	0	0	X	X	X	32	380000h to 387FFFh
	SA120	0	1	1	1	1	0	0	0	1	X	X	X	32	388000h to 38FFFFh
	SA121	0	1	1	1	1	0	0	1	0	X	X	X	32	390000h to 397FFFh
	SA122	0	1	1	1	1	0	0	1	1	X	X	X	32	398000h to 39FFFFh
	SA123	0	1	1	1	1	0	1	0	0	X	X	X	32	3A0000h to 3A7FFFh
	SA124	0	1	1	1	1	0	1	0	1	X	X	X	32	3A8000h to 3AFFFFh
	SA125	0	1	1	1	1	0	1	1	0	X	X	X	32	3B0000h to 3B7FFFh
	SA126	0	1	1	1	1	0	1	1	1	X	X	X	32	3B8000h to 3BFFFFh
	SA127	0	1	1	1	1	1	0	0	0	X	X	X	32	3C0000h to 3C7FFFh
	SA128	0	1	1	1	1	1	0	0	1	X	X	X	32	3C8000h to 3CFFFFh
	SA129	0	1	1	1	1	1	0	1	0	X	X	X	32	3D0000h to 3D7FFFh
	SA130	0	1	1	1	1	1	0	1	1	X	X	X	32	3D8000h to 3DFFFFh
	SA131	0	1	1	1	1	1	1	0	0	X	X	X	32	3E0000h to 3E7FFFh
	SA132	0	1	1	1	1	1	1	0	1	X	X	X	32	3E8000h to 3EFFFFh
	SA133	0	1	1	1	1	1	1	1	0	X	X	X	32	3F0000h to 3F7FFFh
	SA134	0	1	1	1	1	1	1	1	1	X	X	X	32	3F8000h to 3FFFFFh
	SA135	1	0	0	0	0	0	0	0	0	X	X	X	32	400000h to 407FFFh
	SA136	1	0	0	0	0	0	0	0	1	X	X	X	32	408000h to 40FFFFh
	SA137	1	0	0	0	0	0	0	1	0	X	X	X	32	410000h to 417FFFh
	SA138	1	0	0	0	0	0	0	1	1	X	X	X	32	418000h to 41FFFFh
	SA139	1	0	0	0	0	0	1	0	0	X	X	X	32	420000h to 427FFFh
	SA140	1	0	0	0	0	0	1	0	1	X	X	X	32	428000h to 42FFFFh
	SA141	1	0	0	0	0	0	1	1	0	X	X	X	32	430000h to 437FFFh
	SA142	1	0	0	0	0	0	1	1	1	X	X	X	32	438000h to 43FFFFh
	SA143	1	0	0	0	0	1	0	0	0	X	X	X	32	440000h to 447FFFh

(Continued)

96M Page Flash Memory for MCP

(Continued)

Bank	Sector	Chip Enable		Sector Address										Sector Size (Kwords)	Address Range
				Bank Addres				A_{17}	A16	A15	A_{14}	A_{13}	A_{12}		
		$\overline{\text { CEOf }}$ CE1f		A_{21}	A_{20}	A_{19}	A_{18}								
Bank C	SA144	1	0	0	0	0	1	0	0	1	X	X	X	32	448000h to 44FFFFh
	SA145	1	0	0	0	0	1	0	1	0	X	X	X	32	450000h to 457FFFh
	SA146	1	0	0	0	0	1	0	1	1	X	X	X	32	458000h to 45FFFFh
	SA147	1	0	0	0	0	1	1	0	0	X	X	X	32	460000h to 467FFFh
	SA148	1	0	0	0	0	1	1	0	1	X	X	X	32	468000h to 46FFFFh
	SA149	1	0	0	0	0	1	1	1	0	X	X	X	32	470000h to 477FFFh
	SA150	1	0	0	0	0	1	1	1	1	X	X	X	32	478000h to 47FFFFh
	SA151	1	0	0	0	1	0	0	0	0	X	X	X	32	480000h to 487FFFh
	SA152	1	0	0	0	1	0	0	0	1	X	X	X	32	488000h to 48FFFFh
	SA153	1	0	0	0	1	0	0	1	0	X	X	X	32	490000h to 497FFFh
	SA154	1	0	0	0	1	0	0	1	1	X	X	X	32	498000h to 49FFFFh
	SA155	1	0	0	0	1	0	1	0	0	X	X	X	32	4A0000h to 4A7FFFh
	SA156	1	0	0	0	1	0	1	0	1	X	X	X	32	4A8000h to 4AFFFFh
	SA157	1	0	0	0	1	0	1	1	0	X	X	X	32	4B0000h to 4B7FFFh
	SA158	1	0	0	0	1	0	1	1	1	X	X	X	32	4B8000h to 4BFFFFh
	SA159	1	0	0	0	1	1	0	0	0	X	X	X	32	4C0000h to 4C7FFFh
	SA160	1	0	0	0	1	1	0	0	1	X	X	X	32	4C8000h to 4CFFFFh
	SA161	1	0	0	0	1	1	0	1	0	X	X	X	32	4D0000h to 4D7FFFh
	SA162	1	0	0	0	1	1	0	1	1	X	X	X	32	4D8000h to 4DFFFFh
	SA163	1	0	0	0	1	1	1	0	0	X	X	X	32	4E0000h to 4E7FFFh
	SA164	1	0	0	0	1	1	1	0	1	X	X	X	32	4E8000h to 4EFFFFh
	SA165	1	0	0	0	1	1	1	1	0	X	X	X	32	4F0000h to 4F7FFFh
	SA166	1	0	0	0	1	1	1	1	1	X	X	X	32	4F8000h to 4FFFFFh
	SA167	1	0	0	1	0	0	0	0	0	X	X	X	32	500000h to 507FFFh
	SA168	1	0	0	1	0	0	0	0	1	X	X	X	32	508000h to 50FFFFh
	SA169	1	0	0	1	0	0	0	1	0	X	X	X	32	510000h to 517FFFh
	SA170	1	0	0	1	0	0	0	1	1	X	X	X	32	518000h to 51FFFFh
	SA171	1	0	0	1	0	0	1	0	0	X	X	X	32	520000h to 527FFFh
	SA172	1	0	0	1	0	0	1	0	1	X	X	X	32	528000h to 52FFFFh
	SA173	1	0	0	1	0	0	1	1	0	X	X	X	32	530000 h to 537FFFh
	SA174	1	0	0	1	0	0	1	1	1	X	X	X	32	538000h to 53FFFFh

96M Page Flash Memory for MCP

- Sector Address Tables (Bank D)

Bank	Sector	Chip Enable		Sector Address										SectorSize(Kwords)	Address Range
				Bank Address				A 17	A_{16}	A 15	A14	A_{13}	A_{12}		
		CEOf	CE1f	A_{21}	A_{20}	A_{19}	A_{18}								
Bank D	SA175	1	0	0	1	0	1	0	0	0	X	X	X	32	540000h to 547FFFh
	SA176	1	0	0	1	0	1	0	0	1	X	X	X	32	548000h to 54FFFFh
	SA177	1	0	0	1	0	1	0	1	0	X	X	X	32	550000h to 557FFFh
	SA178	1	0	0	1	0	1	0	1	1	X	X	X	32	558000h to 55FFFFh
	SA179	1	0	0	1	0	1	1	0	0	X	X	X	32	560000h to 567FFFh
	SA180	1	0	0	1	0	1	1	0	1	X	X	X	32	568000h to 56FFFFh
	SA181	1	0	0	1	0	1	1	1	0	X	X	X	32	570000h to 577FFFh
	SA182	1	0	0	1	0	1	1	1	1	X	X	X	32	578000h to 57FFFFh
	SA183	1	0	0	1	1	0	0	0	0	X	X	X	32	580000h to 587FFFh
	SA184	1	0	0	1	1	0	0	0	1	X	X	X	32	588000h to 58FFFFh
	SA185	1	0	0	1	1	0	0	1	0	X	X	X	32	590000h to 597FFFh
	SA186	1	0	0	1	1	0	0	1	1	X	X	X	32	598000h to 59FFFFh
	SA187	1	0	0	1	1	0	1	0	0	X	X	X	32	5A0000h to 5A7FFFh
	SA188	1	0	0	1	1	0	1	0	1	X	X	X	32	5A8000h to 5AFFFFh
	SA189	1	0	0	1	1	0	1	1	0	X	X	X	32	5B0000h to 5B7FFFh
	SA190	1	0	0	1	1	0	1	1	1	X	X	X	32	5B8000h to 5BFFFFh
	SA191	1	0	0	1	1	1	0	0	0	X	X	X	32	5C0000h to 5C7FFFh
	SA192	1	0	0	1	1	1	0	0	1	X	X	X	32	5C8000h to 5CFFFFh
	SA193	1	0	0	1	1	1	0	1	0	X	X	X	32	6D0000h to 5D7FFFh
	SA194	1	0	0	1	1	1	0	1	1	X	X	X	32	6D8000h to 5DFFFFh
	SA195	1	0	0	1	1	1	1	0	0	X	X	X	32	5E0000h to 5E7FFFh
	SA196	1	0	0	1	1	1	1	0	1	X	X	X	32	5E8000h to 5EFFFFh
	SA197	1	0	0	1	1	1	1	1	0	X	X	X	32	5F0000h to 5F7FFFh
	SA198	1	0	0	1	1	1	1	1	1	0	0	0	4	5F8000h to 5F8FFFh
	SA199	1	0	0	1	1	1	1	1	1	0	0	1	4	5F9000h to 5F9FFFh
	SA200	1	0	0	1	1	1	1	1	1	0	1	0	4	5FA000h to 5FAFFFh
	SA201	1	0	0	1	1	1	1	1	1	0	1	1	4	5FB000h to 5FBFFFh
	SA202	1	0	0	1	1	1	1	1	1	1	0	0	4	5FC000h to 5FCFFFh
	SA203	1	0	0	1	1	1	1	1	1	1	0	1	4	5FD000h to 5FDFFFh
	SA204	1	0	0	1	1	1	1	1	1	1	1	0	4	5FE000h to 5FEFFFh
	SA205	1	0	0	1	1	1	1	1	1	1	1	1	4	5FF000h to 5FFFFFh

96M Page Flash Memory for MCP

- Sector Group Address Table

Sector Group	CEOf	CE1f	A_{21}	A_{20}	A_{19}	A18	A_{17}	A_{16}	A15	A_{14}	A_{13}	A_{12}	Sectors
SGAO	0	1	0	0	0	0	0	0	0	0	0	0	SAO
SGA1	0	1	0	0	0	0	0	0	0	0	0	1	SA1
SGA2	0	1	0	0	0	0	0	0	0	0	1	0	SA2
SGA3	0	1	0	0	0	0	0	0	0	0	1	1	SA3
SGA4	0	1	0	0	0	0	0	0	0	1	0	0	SA4
SGA5	0	1	0	0	0	0	0	0	0	1	0	1	SA5
SGA6	0	1	0	0	0	0	0	0	0	1	1	0	SA6
SGA7	0	1	0	0	0	0	0	0	0	1	1	1	SA7
SGA8	0	1	0	0	0	0	0	0	1	X	X	X	SA8 to SA10
								1	0				
								1	1				
SGA9	0	1	0	0	0	0	1	X	X	X	X	X	SA11 to SA14
SGA10	0	1	0	0	0	1	0	X	X	X	X	X	SA15 to SA18
SGA11	0	1	0	0	0	1	1	X	X	X	X	X	SA19 to SA22
SGA12	0	1	0	0	1	0	0	X	X	X	X	X	SA23 to SA26
SGA13	0	1	0	0	1	0	1	X	X	X	X	X	SA27 to SA30
SGA14	0	1	0	0	1	1	0	X	X	X	X	X	SA31 to SA34
SGA15	0	1	0	0	1	1	1	X	X	X	X	X	SA35 to SA38
SGA16	0	1	0	1	0	0	0	X	X	X	X	X	SA39 to SA42
SGA17	0	1	0	1	0	0	1	X	X	X	X	X	SA43 to SA46
SGA18	0	1	0	1	0	1	0	X	X	X	X	X	SA47 to SA50
SGA19	0	1	0	1	0	1	1	X	X	X	X	X	SA51 to SA54
SGA20	0	1	0	1	1	0	0	X	X	X	X	X	SA55 to SA58
SGA21	0	1	0	1	1	0	1	X	X	X	X	X	SA59 to SA62
SGA22	0	1	0	1	1	1	0	X	X	X	X	X	SA63 to SA66
SGA23	0	1	0	1	1	1	1	X	X	X	X	X	SA67 to SA70
SGA24	0	1	1	0	0	0	0	X	X	X	X	X	SA71 to SA74
SGA25	0	1	1	0	0	0	1	X	X	X	X	X	SA75 to SA78

(Continued)

SMCP0.5E

96M Page Flash Memory for MCP

(Continued)

Sector Group	CEOf	CE1f	A $_{21}$	A $_{20}$	\mathbf{A}_{19}	\mathbf{A}_{18}	\mathbf{A}_{17}	\mathbf{A}_{16}	\mathbf{A}_{15}	\mathbf{A}_{14}	\mathbf{A}_{13}	\mathbf{A}_{12}	Sectors
SGA26	0	1	1	0	0	1	0	X	X	X	X	X	SA79 to SA82
SGA27	0	1	1	0	0	1	1	X	X	X	X	X	SA83 to SA86
SGA28	0	1	1	0	1	0	0	X	X	X	X	X	SA87 to SA90
SGA29	0	1	1	0	1	0	1	X	X	X	X	X	SA91 to SA94
SGA30	0	1	1	0	1	1	0	X	X	X	X	X	SA95 to SA98
SGA31	0	1	1	0	1	1	1	X	X	X	X	X	SA99 to SA102
SGA32	0	1	1	1	0	0	0	X	X	X	X	X	SA103 to SA106
SGA33	0	1	1	1	0	0	1	X	X	X	X	X	SA107 to SA110
SGA34	0	1	1	1	0	1	0	X	X	X	X	X	SA111 to SA114
SGA35	0	1	1	1	0	1	1	X	X	X	X	X	SA115 to SA118
SGA36	0	1	1	1	1	0	0	X	X	X	X	X	SA119 to SA122
SGA37	0	1	1	1	1	0	1	X	X	X	X	X	SA123 to SA126
SGA38	0	1	1	1	1	1	0	X	X	X	X	X	SA127 to SA130
SGA39	0	1	1	1	1	1	1	X	X	X	X	X	SA131 to SA134
SGA40	1	0	0	0	0	0	0	X	X	X	X	X	SA135 to SA138
SGA41	1	0	0	0	0	0	1	X	X	X	X	X	SA139 to SA142
SGA42	1	0	0	0	0	1	0	X	X	X	X	X	SA143 to SA146
SGA43	1	0	0	0	0	1	1	X	X	X	X	X	SA147 to SA150
SGA44	1	0	0	0	1	0	0	X	X	X	X	X	SA151 to SA154
SGA45	1	0	0	0	1	0	1	X	X	X	X	X	SA155 to SA158
SGA46	1	0	0	0	1	1	0	X	X	X	X	X	SA159 to SA162
SGA47	1	0	0	0	1	1	1	X	X	X	X	X	SA163 to SA166
SGA48	1	0	0	1	0	0	0	X	X	X	X	X	SA167 to SA170
SGA49	1	0	0	1	0	0	1	X	X	X	X	X	SA171 to SA174

(Continued)

96M Page Flash Memory for MCP

(Continued)

Sector Group	CEOf	CE1f	A_{21}	A_{20}	A_{19}	A_{18}	A_{17}	A16	A15	A_{14}	A_{13}	A_{12}	Sectors
SGA50	0	1	0	1	0	1	0	X	X	X	X	X	SA175 to SA178
SGA51	0	1	0	1	0	1	1	X	X	X	X	X	SA179 to SA182
SGA52	0	1	0	1	1	0	0	X	X	X	X	X	SA183 to SA186
SGA53	0	1	0	1	1	0	1	X	X	X	X	X	SA187 to SA190
SGA54	0	1	0	1	1	1	0	X	X	X	X	X	SA191 to SA194
SGA55	0	1	0	1	1	1	1	0	0	X	X	X	SA195 to SA197
	0	1						0	1				
	0	1						1	0				
SGA56	0	1	0	1	1	1	1	1	1	0	0	0	SA198
SGA57	0	1	0	1	1	1	1	1	1	0	0	1	SA199
SGA58	0	1	0	1	1	1	1	1	1	0	1	0	SA200
SGA59	0	1	0	1	1	1	1	1	1	0	1	1	SA201
SGA60	0	1	0	1	1	1	1	1	1	1	0	0	SA202
SGA61	0	1	0	1	1	1	1	1	1	1	0	1	SA203
SGA62	1	0	0	1	1	1	1	1	1	1	1	0	SA204
SGA63	1	0	0	1	1	1	1	1	1	1	1	1	SA205

96M Page Flash Memory for MCP

AC CHARACTERISTICS

- Read Only Operations Characteristics

Parameter	Symbol		Conditions	Value(Note)		Unit
	JEDEC	Standard		Min.	Max.	
Read Cycle Time	tavav	trc	-	65	-	ns
Address to Output Delay	tavav	tacc	$\begin{aligned} & \overline{\mathrm{CEOf}} \text { or } \overline{\mathrm{CE} 1 \mathrm{f}}=\mathrm{V}_{\mathrm{IL}} \\ & \mathrm{OE}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$	-	65	ns
Page Read Cycle Time	-	tPRC	-	25	-	ns
Page Address to Output Delay	-	tpacc	$\begin{aligned} & \overline{\mathrm{CEO}} \text { or } \overline{\mathrm{CE} 1 \mathrm{f}}=\mathrm{V} \mathrm{~V} \\ & \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$	-	25	ns
Chip Enable to Output Delay	telav	tce	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$	-	65	ns
Output Enable to Output Delay	tglov	toe	-	-	25	ns
Chip Enable to Output HIGH-Z	tehaz	tof	-	-	25	ns
Output Enable to Output HIGH-Z	tghaz	tDF	-	-	25	ns
Output Hold Time From Address, $\overline{\mathrm{CE}}$ (CEOf or $\overline{\mathrm{CE} 1 f}$) or $\overline{\mathrm{OE}}$, Whichever Occurs First	taxax	toн	-	0	-	ns
RESET Pin Low to Read Mode	-	tready	-	-	20	$\mu \mathrm{s}$

Note: Test Conditions:
Output Load: Vccf $=2.7 \mathrm{~V}$ to 3.1 V :1 TTL gate and 30 pF Input rise and fall times: 5 ns
Input pulse levels: 0.0 V to Vccf
Timing measurement reference level
Input: $0.5 \times \mathrm{Vccf}$
Output: $0.5 \times \mathrm{Vccf}$

96M Page Flash Memory for MCP

- Write (Erase/Program) Operations

Parameter		Symbols		Value			Unit
		JEDEC	Standard	Min.	Typ.	Max.	
Write Cycle Time		tavav	twc	65	-	-	ns
Address Setup Time		tavwL	tAS	0	-	-	ns
Address Setup Time to OE Low During Toggle Bit Polling		-	taso	12	-	-	ns
Address Hold Time		twLAX	t_{AH}	45	-	-	ns
Address Hold Time from $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ High During Toggle Bit Polling		-	$\mathrm{t}_{\text {AHt }}$	0	-	-	ns
Data Setup Time		tovwh	tos	35	-	-	ns
Data Hold Time		twhDx	tDH	0	-	-	ns
Output Enable Hold Time	Read	-	toen	0	-	-	ns
	Toggle and $\overline{\text { Data Polling }}$			10	-	-	ns
$\overline{\overline{C E}}$ High During Toggle Bit Polling		-	tceph	20	-	-	ns
$\overline{\text { OE High During Toggle Bit Polling }}$		-	toeph	20	-	-	ns
Read Recover Time Before Write		tGHwL	tGHwL	0	-	-	ns
Read Recover Time Before Write		tghel	tghel	0	-	-	ns
$\overline{\text { CE Setup Time }}$		telwl	tcs	0	-	-	ns
$\overline{\text { WE Setup Time }}$		twlel	tws	0	-	-	ns
$\overline{\text { CE Hold Time }}$		twher	tch	0	-	-	ns
$\overline{\text { WE Hold Time }}$		terwh	twh	0	-	-	ns
Write Pulse Width		twLwh	twp	35	-	-	ns
$\overline{\text { CE Pulse Width }}$		teLeh	tcp	35	-	-	ns
Write Pulse Width High		twhwL	twph	30	-	-	ns
$\overline{\text { CE Pulse Width High }}$		tehel	tcPh	30	-	-	ns
Word Programming Operation		twhwh1	twhwh 1	-	6	-	μs
Sector Erase Operation*1		twhwH2	twhwh2	-	0.5	-	s
Vcc Setup Time		-	tves	50	-	-	$\mu \mathrm{s}$
Rise Time to VID *2		-	tvidr	500	-	-	ns
Rise Time to $\mathrm{V}_{\text {Acc }}{ }^{* 3}$		-	tvaccr	500	-	-	ns
Voltage Transition Time *2		-	tvLht	4	-	-	$\mu \mathrm{s}$
Write Pulse Width*2		-	twpp	100	-	-	$\mu \mathrm{s}$
$\overline{\text { OE Setup Time to } \overline{\mathrm{WE}} \text { Active*2 }}$		-	toesp	4	-	-	μs
$\overline{\mathrm{CE}}$ Setup Time to $\overline{\mathrm{WE}}$ Active*2		-	tcsp	4	-	-	$\mu \mathrm{s}$

(Continued)

SMCP0.5E

96M Page Flash Memory for MCP

(Continued)

Parameter	Symbols		Value			Unit
	JEDEC	Standard	Min.	Typ.	Max.	
Recover Time from RY//̄Y	-	t_{B}	0	-	-	ns
RESET Pulse Width	-	trp	500	-	-	ns
$\overline{\text { RESET }}$ High Level Period Before Read	-	trH	200	-	-	ns
Program/Erase Valid to RY/ $\overline{\mathrm{BY}}$ Delay	-	tBus	-	-	90	ns
Delay Time from Embedded Output Enable	-	teoe	-	-	65	ns
Erase Time-out Time	-	trow	50	-	-	us
Erase TiSuspend Transition Time	-	tspD	-	-	20	$\mu \mathrm{s}$

*1: This does not include the preprogramming time.
*2: This timing is for Sector Protection operation.
*3: This timing is for Accelerated Program operation.

96M Page Flash Memory for MCP

ERASE AND PROGRAMMING PERFORMANCE

冬 Parameter	Limits			Unit	Comments	
	Min.	Typ.	Max.		s	
Sector Erase Time	-	0.5	2	Excludes programming time prior to erasure		
Word Programming Time	-	6	100	$\mu \mathrm{~s}$	Excludes system-level overhead	
Chip Programming Time	-	37.7	150	s	Excludes system-level overhead	
Erase/Program Cycle	100,000	-	-	cycles	-	

Note: Test conditions $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$,Typical Erase conditions $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V} \mathrm{CC}=2.9 \mathrm{~V}$
Typical Program conditions $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V} \mathrm{cc}=2.9 \mathrm{~V}$, Data $=$ checker

SMCPO.5E

96M Page Flash Memory for MCP

- Read Operation Timing Diagram (Flash)

96M Page Flash Memory for MCP

- Page Read Operation Timing Diagram (Flash)

Note : It is required to set $\overline{\mathrm{CE} 1 \mathrm{f}}=\mathrm{LL}$ " and $\mathrm{A}_{21}=\mathrm{L} \mathrm{L} "$ for Page Read Operation in $\overline{\mathrm{CE} 1} \mathrm{f}$ region.

- Hardware Reset/Read Operation Timing Diagram (Flash)

Note : It is required to set $\overline{C E 1 f}=" L "$ and $A_{21}=" L "$ for Hardware Reset/Read Operation in CE1f region.

96M Page Flash Memory for MCP

- Alternate $\overline{\text { WE Controlled Program Operation Timing Diagram (Flash) }}$

Notes :1.PA is address of the memory location to be programmed.
2.PD is data to be programmed at word address.
$3 . \overline{\mathrm{DQ}}_{7}$ is the output of the complement of the data written to the device.
4.Dout is the output of the data written to the device.
5. Figure indicates last two bus cycles out of four bus cycle sequence.
6. $\overline{\mathrm{CE} 1 f}$ and A_{21} must be the same behavior for Alternate $\overline{\mathrm{WE}}$ Controlled Program Operation in $\overline{\mathrm{CE} 1} \mathrm{f}$ region.

96M Page Flash Memory for MCP

- Alternate $\overline{\mathrm{CE}}(\overline{\mathrm{CEOf}}$ or $\overline{\mathrm{CE1f}})$ Controlled Program Operation Timing Diagram (Flash)

Notes :1.PA is address of the memory location to be programmed.
2.PD is data to be programmed at word address.
$3 . \overline{D Q}_{7}$ is the output of the complement of the data written to the device.
4.Dout is the output of the data written to the device.
5.Figure indicates last two bus cycles out of four bus cycle sequence.
6. $\overline{C E} 1 f$ and A_{21} must be the same behavior for Alternate $\overline{\text { CE Controlled Program }}$ Operation in $\overline{\mathrm{CE}} 1 \mathrm{f}$ region.

SMCPO.5E

96M Page Flash Memory for MCP

- Chip/Sector Erase Operation Timing Diagram (Flash)

* : SA is the sector address for Sector Erase.

Note : It is required to set $\overline{\mathrm{CE} 1 \mathrm{f}}=\mathrm{LL} "$ and $\mathrm{A}_{21}=\mathrm{"L} \mathrm{~L}$ for Sector Erase Operation in $\overline{\mathrm{CE} 1 \mathrm{f}}$ region.

96M Page Flash Memory for MCP

- Data Polling during Embedded Algorithm Operation Timing Diagram (Flash)

*: $\mathrm{DQ}_{7}=$ Valid Data (The device has completed the Embedded operation).

SMCPO.5E

96M Page Flash Memory for MCP

- AC Waveforms for Toggle Bit I during Embedded Algorithm Operations (Flash)

96M Page Flash Memory for MCP

- Back-to-back Read/Write Timing Diagram (Flash)

Notes : 1 . It is required to set $\overline{\mathrm{CE} 1 f}=$ "L" and $\mathrm{A}_{21}=$ "L"for Read/Write in the bank including $\overline{\mathrm{CE}} \mathrm{f}$ region.
2.This is example of Read for Bank 1 and Embedded Algorithm (program) for Bank 2.

BA1 : Address corresponding to Bank 1
BA2 : Address corresponding to Bank 2

SMCP0.5E

96M Page Flash Memory for MCP

- RY/ $\overline{B Y}$ Timing Diagram during Program/Erase Operation Timing Diagram (Flash)

- $\overline{\mathrm{RESET}}, \mathrm{RY} / \overline{\mathrm{BY}}$ Timing Diagram (Flash)

96M Page Flash Memory for MCP

- Sector Group Protection Timing Diagram (Flash)

SMCPO.5E

96M Page Flash Memory for MCP

- Temporary Sector Group Unprotection Timing Diagram (Flash)

96M Page Flash Memory for MCP

- Extended Sector Group Protection Timing Diagram (Flash)

SMCP0.5E

96M Page Flash Memory for MCP

- Accelerated Program Timing Diagram (Flash)

FLEXIBLE SECTOR-ERASE ARCHITECTURE on FLASH MEMORY

- Sixteen 4K words, and one hundred twenty-six 32 K words.
- Individual-sector, multiple-sector, or bulk-erase capability.

		Word Mode			Word Mode
	SA0 : 8KB (4KW)	000000h	I	SA71 : 64 KB (32KW)	200000h
	SA1 : 8KB (4KW)	001000h	-	SA72: 64 KB (32KW)	208000h
	SA2 : 8 KB (4 KW)	003000h		SA73 : 64 KB (32 KW)	218000 h
	SA3 : 8KB (4KW)	004000 h		SA74 : 64KB (32KW)	220000 h
	SA4 : 8KB (4KW)	005000h		SA75:64KB (32KW)	228000h
	SA5: 8KB (4KW)	006000h		SA76 : 64 KBB (32KW)	230000h
	SA6: 8KB (4KW)	007000h		SA77 : 64 KB (32 KW)	238000h
	SA7: 8KB (4KW)	008000h		SA78 : 64 KBB (32KW)	240000h
	SA8: 64 KB (32 KW)	010000h		SA79 : 64 KBB (32KW)	248000h
	SA9 : 64 KB (32 KW)	018000h		SA80 : 64 KBB (32KW)	250000h
Ba	SA10: 64 KB (32KW)	020000h		SA81: 64 KB (32KW)	258000h
	SA11: 64 KB (32KW)	028000h		SA82 : 64 KB (32 KW)	260000 h
	SA12: 64 KB (32KW)	030000h		SA83 : 64KB (32KW)	268000 h
	SA13: 64 KB (32KW)	038000h		SA84: 64 KB (32 KW)	270000 h
	SA14: 64KB (32KW)	040000h		SA85: 64 KB (32 KW)	278000 h
	SA15: 64 KB (32KW)	048000h		SA86: 64 KB (32 KW)	280000 h
	SA16: 64 KB (32KW)	050000h		SA87 : 64 KB (32 KW)	288000h
	SA17: 64 KB (32KW)	058000h		SA88: 64 KB (32KW)	290000h
	SA18: 64 KB (32KW)	060000h		SA89 : 64 KBB (32KW)	298000h
	SA19: 64 KB (32KW)	068000h		SA90:64KB (32KW)	2A0000h
	SA20: 64KB (32KW)	070000h		SA91: 64KB (32KW)	2A8000h
	SA21: 64 KB (32KW)	078000h		SA92 : 64KB (32KW)	2R0000h
	SA22 : 64KB (32KW)	080000h		SA93 : 64KB (32KW)	2B8000h
	SA23: 64 KB (32KW)	088000h		SA94: 64 KB (32KW)	2C0000h
	SA24: 64KB (32KW)	090000h		SA95 : 64 KBB (32KW)	2C8000h
	SA25: 64KB (32KW)	098000h		SA96 : 64KB (32KW)	2D0000h
	SA26: 64KB (32KW)	0A0000h		SA97 : 64 KBB (32KW)	2D8000h
	SA27: 64KB (32KW)	0A8000h	Bank C	SA98 : 64KB (32KW)	2E0000h
	SA28 : 64KB (32KW)	OB0000h	ank C	SA99 : 64KB (32KW)	2E8000h
	SA29: 64KB (32KW)	0B8000h		SA100:64KB (32KW)	2F0000h
	SA30 : 64KB (32KW)	0C0000h		SA101: 64 KB (32 KWW)	2F8000h
	SA31: 64KB (32KW)	0C8000h		SA102: 64 KB (32 KW)	300000h
	SA32 : 64 KB (32 KW)	0D0000h		SA103: 64KB (32KW)	308000h
	SA33 : 64 KB (32KW)	0D8000h		SA104: 64 KB (32 KW)	310000 h
	SA34: 64KB (32KW)	0E0000h		SA105: 64KB (32KW)	318000 h
	SA35: 64 KB (32KW)	0E8000h		SA106: 64KB (32KW)	320000 h
	SA36: 64 KB (32KW)	0F0000h		SA107: 64KB (32KW)	328000h
	SA37: 64 KB (32KW)	0F8000h		SA108: 64KB (32KW)	330000 h
	SA38: 64KB (32KW)	100000h		SA109: 64KB (32KW)	338000 h
	SA39: 64KB (32KW)	108000 h		SA110:64KB (32KW)	340000h
	SA40: 64KB (32KW)	110000 h		SA111: 64KB (32KW)	348000h
	SA41: 64 KB (32KW)	118000 h		SA112 : 64 KB (32 KW)	350000 h
	SA42: 64 KB (32KW)	120000 h		SA113: 64KB (32KW)	358000 h
	SA43: 64KB (32KW)	128000 h		SA114: 64KB (32KW)	360000 h
	SA44: 64 KB (32KW)	1380000 h		SA115: 64 KB (32 KW)	368000h
Bank B	SA45: 64KB (32KW)	138000 h		SA116:64KB (32KW)	370000 h
Bank B	SA46: 64KB (32KW)	140000 h		SA117:64KB (32KW)	378000h
	SA47: $64 \mathrm{~KB}(32 \mathrm{KW})$	148000 h		SA118: 64KB (32KW)	380000 h
	SA48: 64 KB (32 KW)	150000 h		SA119:64KB (32KW)	388000h
	SA49:64KB (32KW)	158000 h		SA120:64KB (32KW)	390000h
	SA50 : 64KB (32KW)	160000 h		SA121: 64KB (32KW)	398000h
	SA51: 64KB (32KW)	168000 h		SA122: 64KB (32KW)	3A0000h
	SA52: 64KB (32KW)	170000 h		SA123: 64KB (32KW)	3A8000h
	SA53: 64KB (32KW)	178000 h		SA124: 64KB (32KW)	3B0000h
	SA54: 64KB (32KW)	180000 h		SA125: 64 KB (32 KW)	3B8000h
	SA55 : 64 KB (32 KW)	188000h		SA126: 64 KB (32 KW)	3C0000h
	SA56 : 64 KB (32KW)	1880000 h	Bank D	SA127: 64KB (32KW)	3C8000h
	SA57: 64KB (32KW)	198000h		SA128: 64KB (32KW)	3D0000h
	SA58: 64KB (32KW)	140000h		SA129: 64 KB (32 KW)	3D8000h
	SA59: 64 KB (32KW)	1A8000h		SA130:64KB (32KW)	3E0000h
	SA60: 64 KB (32KW)	180000h		SA131: 64 KB (32 KW)	3E8000h
	SA61: 64 KB (32KW)	188000h		SA132: 64 KB (32 KW)	3F0000h
	SA62 : 64 KB (32KW)	1C0000h		SA133: 64 KB (32 KW)	3F8000h
	SA63: 64 KB (32KW)	1 C 8000 h		SA134: 8KB (4KW)	3F9000h
	SA64: 64KB (32KW)	1D0000h		SA135: 8KB (4KW)	$3 \mathrm{FA000} \mathrm{~h}$
	SA65: 64KB (32KW)	1D8000h		SA136: 8KB (4KW)	3FB000h
	SA66: 64 KB (32KW)	1F0000h		SA137: 8KB (4KW)	3FC000h
	SA67: 64 KB (32KW)			SA138: 8KB (4KW)	3FD000h
	SA68: 64 KB (32KW)	1F8000h		SA139: 8KB (4KW)	3FF0000h
	SA69: 64 KB (32KW)	1F8000h	1	SA140: 8KB (4KW)	3FF000h
	SA70 : 64 KB (32KW)	1F8FFFFh		SA141: 8KB (4KW)	

Sector Architecture

64M Flash for MCP

Table 1 FlexBank ${ }^{\text {TM }}$ Architecture

Bank Splits	Bank 1		Bank 2	
	Volume	Combination	Volume	Combination
1	8 Mbit	Bank A	56 Mbit	Remainder (Bank B, C, D)
2	24 Mbit	Bank B	40 Mbit	Remainder (Bank A, C, D)
3	24 Mbit	Bank C	40 Mbit	Remainder (Bank A, B, D)
4	8 Mbit	Bank D	56 Mbit	Remainder (Bank A, B, C)

Table 2 Example of Virtual Banks Combination

Bank Splits	Bank 1			Bank 2		
	Volume	Combination	Sector Size	Volume	Combination	Sector Size
1	8 Mbit	Bank A	8×8 Kbyte/4 Kword + 15×64 Kbyte/32 Kword	56 Mbit	$\begin{gathered} \hline \text { Bank B } \\ + \\ \text { Bank C } \\ + \\ + \\ \text { Bank D } \end{gathered}$	8×8 Kbyte/4 Kword 111×64 Kbyte/32 Kword
2	16 Mbit	$\begin{gathered} \hline \text { Bank A } \\ + \\ \text { Bank D } \end{gathered}$	$\begin{gathered} 16 \times 8 \text { Kbyte } / 4 \text { Kword } \\ + \\ 30 \times 64 \text { Kbyte } / 32 \text { Kword } \end{gathered}$	48 Mbit	Bank B Bank C	96×64 Kbyte/32 Kword
3	24 Mbit	Bank B	$48 \times 64 \mathrm{Kbyte} / 32 \mathrm{Kword}$	40 Mbit	$\begin{gathered} \hline \text { Bank A } \\ + \\ \text { Bank C } \\ + \\ + \\ \text { Bank D } \end{gathered}$	16×8 Kbyte/4 Kword 78×64 Kbyte/32 Kword
4	32 Mbit	$\begin{gathered} \hline \text { Bank A } \\ + \\ \text { Bank B } \end{gathered}$	$\begin{gathered} 8 \times 8 \text { Kbyte } / 4 \text { Kword } \\ + \\ 63 \times 64 \text { Kbyte } / 32 \text { Kword } \end{gathered}$	32 Mbit	Bank C Bank D	8×8 Kbyte/4 Kword 63×64 Kbyte/32 Kword

Note : When multiple sector erase over several banks is operated, the system cannot read out of the bank to which a sector being erased belongs. For example, suppose that erasing is taking place at both Bank A and Bank B, neither Bank A nor Bank B is read out (they would output the sequence flag once they were selected.) Meanwhile the system would get to read from either Bank C or Bank D.

Table 3 Simultaneous Operation

Case	Bank 1 Status	Bank 2 Status
1	Read mode	Read mode
2	Read mode	Autoselect mode
3	Read mode	Program mode
4	Read mode	Erase mode
5	Autoselect mode	Read mode
6	Program mode	Read mode
7	Erase mode $*$	Read mode

* : By writing erase suspend command on the bank address of sector being erased, the erase operation gets suspended so that it enables reading from or programming the remaining sectors.
Note: Bank 1 and Bank 2 are divided for the sake of convenience at Simultaneous Operation. Actually, the Bank consists of 4 banks, Bank A, Bank B, BankC and Bank D. Bank Address (BA) meant to specify each of the Banks.

64M Flash for MCP

Table 4 Sector Address Tables

Bank	Sector	Sector Address										Address Range Word Mode
		Bank Address										
		A21	A20	A_{19}	A18	A17	A_{16}	A15	A14	A_{13}	A_{12}	
Bank A	SA0	0	0	0	0	0	0	0	0	0	0	000000h to 000FFFh
	SA1	0	0	0	0	0	0	0	0	0	1	001000h to 001FFFh
	SA2	0	0	0	0	0	0	0	0	1	0	002000h to 002FFFh
	SA3	0	0	0	0	0	0	0	0	1	1	003000h to 003FFFh
	SA4	0	0	0	0	0	0	0	1	0	0	004000h to 004FFFh
	SA5	0	0	0	0	0	0	0	1	0	1	005000h to 005FFFh
	SA6	0	0	0	0	0	0	0	1	1	0	006000h to 006FFFh
	SA7	0	0	0	0	0	0	0	1	1	1	007000h to 007FFFh
	SA8	0	0	0	0	0	0	1	X	X	X	008000h to 00FFFFh
	SA9	0	0	0	0	0	1	0	X	X	X	010000h to 017FFFh
	SA10	0	0	0	0	0	1	1	X	X	X	018000h to 01FFFFh
	SA11	0	0	0	0	1	0	0	X	X	X	020000h to 027FFFh
	SA12	0	0	0	0	1	0	1	X	X	X	028000h to 02FFFFh
	SA13	0	0	0	0	1	1	0	X	X	X	030000h to 037FFFh
	SA14	0	0	0	0	1	1	1	X	X	X	038000h to 03FFFFh
	SA15	0	0	0	1	0	0	0	X	X	X	040000h to 047FFFh
	SA16	0	0	0	1	0	0	1	X	X	X	048000h to 04FFFFh
	SA17	0	0	0	1	0	1	0	X	X	X	050000h to 057FFFh
	SA18	0	0	0	1	0	1	1	X	X	X	058000h to 05FFFFh
	SA19	0	0	0	1	1	0	0	X	X	X	060000h to 067FFFh
	SA20	0	0	0	1	1	0	1	X	X	X	068000h to 06FFFFh
	SA21	0	0	0	1	1	1	0	X	X	X	070000h to 077FFFh
	SA22	0	0	0	1	1	1	1	X	X	X	078000h to 07FFFFh

(Continued)

64M Flash for MCP

(Continued)

Bank	Sector	Sector Address										Address Range Word Mode
		Bank Address										
		A_{21}	A20	A_{19}	A18	A_{17}	A16	A_{15}	A_{14}	A_{13}	A_{12}	
Bank B	SA23	0	0	1	0	0	0	0	X	X	X	080000h to 087FFFh
	SA24	0	0	1	0	0	0	1	X	X	X	088000h to 08FFFFh
	SA25	0	0	1	0	0	1	0	X	X	X	090000h to 097FFFh
	SA26	0	0	1	0	0	1	1	X	X	X	098000h to 09FFFFh
	SA27	0	0	1	0	1	0	0	X	X	X	0A0000h to 0A7FFFh
	SA28	0	0	1	0	1	0	1	X	X	X	0A8000h to 0AFFFFF
	SA29	0	0	1	0	1	1	0	X	X	X	0B0000h to 0B7FFFh
	SA30	0	0	1	0	1	1	1	X	X	X	0B8000h to 0BFFFFh
	SA31	0	0	1	1	0	0	0	X	X	X	0C0000h to 0C7FFFh
	SA32	0	0	1	1	0	0	1	X	X	X	0C8000h to 0CFFFFFh
	SA33	0	0	1	1	0	1	0	X	X	X	0D0000h to 0D7FFFh
	SA34	0	0	1	1	0	1	1	X	X	X	0D8000h to 0DFFFFh
	SA35	0	0	1	1	1	0	0	X	X	X	0E0000h to 0E7FFFh
	SA36	0	0	1	1	1	0	1	X	X	X	0E8000h to 0EFFFFF
	SA37	0	0	1	1	1	1	0	X	X	X	0F0000h to 0F7FFFh
	SA38	0	0	1	1	1	1	1	X	X	X	0F8000h to 0FFFFFh
	SA39	0	1	0	0	0	0	0	X	X	X	100000h to 107FFFh
	SA40	0	1	0	0	0	0	1	X	X	X	108000h to 10FFFFh
	SA41	0	1	0	0	0	1	0	X	X	X	110000h to 117FFFh
	SA42	0	1	0	0	0	1	1	X	X	X	118000h to 11FFFFh
	SA43	0	1	0	0	1	0	0	X	X	X	120000h to 127FFFh
	SA44	0	1	0	0	1	0	1	X	X	X	128000h to 12FFFFh
	SA45	0	1	0	0	1	1	0	X	X	X	130000h to 137FFFh
	SA46	0	1	0	0	1	1	1	X	X	X	138000h to 13FFFFh
	SA47	0	1	0	1	0	0	0	X	X	X	140000h to 147FFFh
	SA48	0	1	0	1	0	0	1	X	X	X	148000h to 14FFFFh
	SA49	0	1	0	1	0	1	0	X	X	X	150000h to 157FFFh
	SA50	0	1	0	1	0	1	1	X	X	X	158000h to 15FFFFh
	SA51	0	1	0	1	1	0	0	X	X	X	160000h to 167FFFh
	SA52	0	1	0	1	1	0	1	X	X	X	168000h to 16FFFFh
	SA53	0	1	0	1	1	1	0	X	X	X	170000h to 177FFFh
	SA54	0	1	0	1	1	1	1	X	X	X	178000h to 17FFFFh
	SA55	0	1	1	0	0	0	0	X	X	X	180000h to 187FFFh
	SA56	0	1	1	0	0	0	1	X	X	X	188000h to 18FFFFh
	SA57	0	1	1	0	0	1	0	X	X	X	190000h to 197FFFh
	SA58	0	1	1	0	0	1	1	X	X	X	198000h to 19FFFFh
	SA59	0	1	1	0	1	0	0	X	X	X	1A0000h to 1A7FFFh
	SA60	0	1	1	0	1	0	1	X	X	X	1A8000h to 1AFFFFF
	SA61	0	1	1	0	1	1	0	X	X	X	1B0000h to 1B7FFFh
	SA62	0	1	1	0	1	1	1	X	X	X	1B8000h to 1BFFFFh
	SA63	0	1	1	1	0	0	0	X	X	X	1C0000h to 1C7FFFh
	SA64	0	1	1	1	0	0	1	X	X	X	1C8000h to 1CFFFFh
	SA65	0	1	1	1	0	1	0	X	X	X	1D0000h to 1D7FFFh
	SA66	0	1	1	1	0	1	1	X	X	X	1D8000h to 1DFFFFh
	SA67	0	1	1	1	1	0	0	X	X	X	1E0000h to 1E7FFFh
	SA68	0	1	1	1	1	0	1	X	X	X	1E8000h to 1EFFFFh
	SA69	0	1	1	1	1	1	0	X	X	X	1F0000h to 1F7FFFh
	SA70	0	1	1	1	1	1	1	X	X	X	1F8000h to 1FFFFFh

(Continued)
(Continued)

Bank	Sector	Sector Address										Address Range Word Mode
		Bank Address										
		A_{21}	A_{20}	A_{19}	A_{18}	A17	A_{16}	A_{15}	A_{14}	A_{13}	A_{12}	
Bank C	SA71	1	0	0	0	0	0	0	X	X	X	200000h to 207FFFh
	SA72	1	0	0	0	0	0	1	X	X	X	208000h to 20FFFFh
	SA73	1	0	0	0	0	1	0	X	X	X	210000h to 217FFFh
	SA74	1	0	0	0	0	1	1	X	X	X	218000h to 21FFFFh
	SA75	1	0	0	0	1	0	0	X	X	X	220000h to 227FFFh
	SA76	1	0	0	0	1	0	1	X	X	X	228000h to 22FFFFh
	SA77	1	0	0	0	1	1	0	X	X	X	230000h to 237FFFh
	SA78	1	0	0	0	1	1	1	X	X	X	238000h to 23FFFFh
	SA79	1	0	0	1	0	0	0	X	X	X	240000h to 247FFFh
	SA80	1	0	0	1	0	0	1	X	X	X	248000h to 24FFFFh
	SA81	1	0	0	1	0	1	0	X	X	X	250000h to 257FFFh
	SA82	1	0	0	1	0	1	1	X	X	X	258000 to 25FFFFh
	SA83	1	0	0	1	1	0	0	X	X	X	260000h to 267FFFh
	SA84	1	0	0	1	1	0	1	X	X	X	268000h to 26FFFFh
	SA85	1	0	0	1	1	1	0	X	X	X	270000h to 277FFFh
	SA86	1	0	0	1	1	1	1	X	X	X	278000h to 27FFFFh
	SA87	1	0	1	0	0	0	0	X	X	X	280000h to 287FFFh
	SA88	1	0	1	0	0	0	1	X	X	X	288000h to 28FFFFh
	SA89	1	0	1	0	0	1	0	X	X	X	290000h to 297FFFh
	SA90	1	0	1	0	0	1	1	X	X	X	298000h to 29FFFFh
	SA91	1	0	1	0	1	0	0	X	X	X	2A0000h to 2A7FFFh
	SA92	1	0	1	0	1	0	1	X	X	X	2A8000h to 2AFFFFh
	SA93	1	0	1	0	1	1	0	X	X	X	2B0000h to 2B7FFFh
	SA94	1	0	1	0	1	1	1	X	X	X	2B8000h to 2BFFFFh
	SA95	1	0	1	1	0	0	0	X	X	X	2C0000h to 2C7FFFh
	SA96	1	0	1	1	0	0	1	X	X	X	2C8000h to 2CFFFFh
	SA97	1	0	1	1	0	1	0	X	X	X	2D0000h to 2D7FFFh
	SA98	1	0	1	1	0	1	1	X	X	X	2D8000h to 2DFFFFh
	SA99	1	0	1	1	1	0	0	X	X	X	2E0000h to 2E7FFFh
	SA100	1	0	1	1	1	0	1	X	X	X	2E8000h to 2EFFFFh
	SA101	1	0	1	1	1	1	0	X	X	X	2F0000h to 2F7FFFh
	SA102	1	0	1	1	1	1	1	X	X	X	2F8000 h to 2FFFFFh
	SA103	1	1	0	0	0	0	0	X	X	X	300000h to 307FFFh
	SA104	1	1	0	0	0	0	1	X	X	X	308000h to 30FFFFh
	SA105	1	1	0	0	0	1	0	X	X	X	310000h to 317FFFh
	SA106	1	1	0	0	0	1	1	X	X	X	318000 h to 31FFFFh
	SA107	1	1	0	0	1	0	0	X	X	X	320000h to 327FFFh
	SA108	1	1	0	0	1	0	1	X	X	X	328000h to 32FFFFh
	SA109	1	1	0	0	1	1	0	X	X	X	330000h to 337FFFh
	SA110	1	1	0	0	1	1	1	X	X	X	338000 h to 33FFFFh
	SA111	1	1	0	1	0	0	0	X	X	X	340000h to 347FFFh
	SA112	1	1	0	1	0	0	1	X	X	X	348000h to 34FFFFh
	SA113	1	1	0	1	0	1	0	X	X	X	350000h to 357FFFh
	SA114	1	1	0	1	0	1	1	X	X	X	358000 to 35FFFFh
	SA115	1	1	0	1	1	0	0	X	X	X	360000h to 367FFFh
	SA116	1	1	0	1	1	0	1	X	X	X	368000h to 36FFFFh
	SA117	1	1	0	1	1	1	0	X	X	X	370000h to 377FFFh
	SA118	1	1	0	1	1	1	1	X	X	X	378000h to 37FFFFh

(Continued)

SMCPO.4E

64M Flash for MCP

(Continued)

Bank	Sector	Sector Address										Address Range Word Mode
		Bank Address										
		A_{21}	A20	A_{19}	A18	A17	A_{16}	A15	A_{14}	A_{13}	A_{12}	
Bank D	SA119	1	1	1	0	0	0	0	X	X	X	380000h to 387FFFh
	SA120	1	1	1	0	0	0	1	X	X	X	388000 to 38FFFFh
	SA121	1	1	1	0	0	1	0	X	X	X	390000h to 397FFFh
	SA122	1	1	1	0	0	1	1	X	X	X	398000h to 39FFFFh
	SA123	1	1	1	0	1	0	0	X	X	X	3A0000h to 3A7FFFh
	SA124	1	1	1	0	1	0	1	X	X	X	3A8000h to 3AFFFFh
	SA125	1	1	1	0	1	1	0	X	X	X	3B0000h to 3B7FFFh
	SA126	1	1	1	0	1	1	1	X	X	X	3B8000h to 3BFFFFh
	SA127	1	1	1	1	0	0	0	X	X	X	3C0000h to 3C7FFFh
	SA128	1	1	1	1	0	0	1	X	X	X	3C8000h to 3CFFFFh
	SA129	1	1	1	1	0	1	0	X	X	X	3D0000h to 3D7FFFh
	SA130	1	1	1	1	0	1	1	X	X	X	3D8000h to 3DFFFFh
	SA131	1	1	1	1	1	0	0	X	X	X	3E0000h to 3E7FFFh
	SA132	1	1	1	1	1	0	1	X	X	X	3E8000h to 3EFFFFh
	SA133	1	1	1	1	1	1	0	X	X	X	3F0000h to 3F7FFFh
	SA134	1	1	1	1	1	1	1	0	0	0	3F8000h to 3F8FFFh
	SA135	1	1	1	1	1	1	1	0	0	1	3F9000h to 3F9FFFh
	SA136	1	1	1	1	1	1	1	0	1	0	3FA000h to 3FAFFFh
	SA137	1	1	1	1	1	1	1	0	1	1	3FB000h to 3FBFFFh
	SA138	1	1	1	1	1	1	1	1	0	0	3FC000h to 3FCFFFh
	SA139	1	1	1	1	1	1	1	1	0	1	3FD000h to 3FDFFFh
	SA140	1	1	1	1	1	1	1	1	1	0	3FE000h to 3FEFFFh
	SA141	1	1	1	1	1	1	1	1	1	1	3FF000h to 3FFFFFh

64M Flash for MCP

Table 5 Sector Group Addresses

Sector Group	A 21	A20	A19	A18	A17	A16	A15	A14	A13	A12	Sectors
SGA0	0	0	0	0	0	0	0	0	0	0	SA0
SGA1	0	0	0	0	0	0	0	0	0	1	SA1
SGA2	0	0	0	0	0	0	0	0	1	0	SA2
SGA3	0	0	0	0	0	0	0	0	1	1	SA3
SGA4	0	0	0	0	0	0	0	1	0	0	SA4
SGA5	0	0	0	0	0	0	0	1	0	1	SA5
SGA6	0	0	0	0	0	0	0	1	1	0	SA6
SGA7	0	0	0	0	0	0	0	1	1	1	SA7
SGA8	0	0	0	0	0	0	1	X	X	X	SA8 to SA10
						1	0				
						1	1				
SGA9	0	0	0	0	1	X	X	X	X	X	SA11 to SA14
SGA10	0	0	0	1	0	X	X	X	X	X	SA15 to SA18
SGA11	0	0	0	1	1	X	X	X	X	X	SA19 to SA22
SGA12	0	0	1	0	0	X	X	X	X	X	SA23 to SA26
SGA13	0	0	1	0	1	X	X	X	X	X	SA27 to SA30
SGA14	0	0	1	1	0	X	X	X	X	X	SA31 to SA34
SGA15	0	0	1	1	1	X	X	X	X	X	SA35 to SA38
SGA16	0	1	0	0	0	X	X	X	X	X	SA39 to SA42
SGA17	0	1	0	0	1	X	X	X	X	X	SA43 to SA46
SGA18	0	1	0	1	0	X	X	X	X	X	SA47 to SA50
SGA19	0	1	0	1	1	X	X	X	X	X	SA51 to SA54
SGA20	0	1	1	0	0	X	X	X	X	X	SA55 to SA58
SGA21	0	1	1	0	1	X	X	X	X	X	SA59 to SA62
SGA22	0	1	1	1	0	X	X	X	X	X	SA63 to SA66
SGA23	0	1	1	1	1	X	X	X	X	X	SA67 to SA70
SGA24	1	0	0	0	0	X	X	X	X	X	SA71 to SA74
SGA25	1	0	0	0	1	X	X	X	X	X	SA75 to SA78
SGA26	1	0	0	1	0	X	X	X	X	X	SA79 to SA82
SGA27	1	0	0	1	1	X	X	X	X	X	SA83 to SA86
SGA28	1	0	1	0	0	X	X	X	X	X	SA87 to SA90
SGA29	1	0	1	0	1	X	X	X	X	X	SA91 to SA94
SGA30	1	0	1	1	0	X	X	X	X	X	SA95 to SA98
SGA31	1	0	1	1	1	X	X	X	X	X	SA99 to SA102
SGA32	1	1	0	0	0	X	X	X	X	X	SA103 to SA106
SGA33	1	1	0	0	1	X	X	X	X	X	SA107 to SA110
SGA34	1	1	0	1	0	X	X	X	X	X	SA111 to SA114
SGA35	1	1	0	1	1	X	X	X	X	X	SA115 to SA118
SGA36	1	1	1	0	0	X	X	X	X	X	SA119 to SA122
SGA37	1	1	1	0	1	X	X	X	X	X	SA123 to SA126
SGA38	1	1	1	1	0	X	X	X	X	X	SA127 to SA130
						0	0				
SGA39	1	1	1	1	1	0	1	X	X	X	SA131 to SA133
						1	0				
SGA40	1	1	1	1	1	1	1	0	0	0	SA134
SGA41	1	1	1	1	1	1	1	0	0	1	SA135
SGA42	1	1	1	1	1	1	1	0	1	0	SA136
SGA43	1	1	1	1	1	1	1	0	1	1	SA137
SGA44	1	1	1	1	1	1	1	1	0	0	SA138
SGA45	1	1	1	1	1	1	1	1	0	1	SA139
SGA46	1	1	1	1	1	1	1	1	1	0	SA140
SGA47	1	1	1	1	1	1	1	1	1	1	SA141

SMCP0.4E

64M Flash for MCP

Table 6 Flash Memory Autoselect Codes

Type	\mathbf{A}_{21} to \mathbf{A}_{12}	\mathbf{A}_{6}	\mathbf{A}_{3}	\mathbf{A}_{2}	\mathbf{A}_{1}	$\mathbf{A}_{\mathbf{0}}$	Code (HEX)
Manufacture's Code	BA	L	L	L	L	L	04 h
Device Code	BA	L	L	L	L	H	227 Eh
Extended Device Code ${ }^{2}$	BA	L	H	H	H	L	2202 h
	BA	L	H	H	H	H	2201 h
Sector Group Protection	Sector Group Addresses	L	L	L	H	L	$01 \mathrm{~h}^{* 1}$

Legend: $\mathrm{L}=\mathrm{V}_{\mathrm{L}}, \mathrm{H}=\mathrm{V}_{\mathrm{IH}}$. See DC Characteristics for voltage levels.
*1 : Outputs 01h at protected sector group addresses and outputs 00h at unprotected sector group addresses.
*2 : A read cycle at address (BA) 01h outputs device code. When 227Eh was output, this indicates that there will require two additional codes, called Extended Device Codes. Therefore the system may continue reading out these Extended Device Codes at the address of (BA) OEh, as well as at (BA) OFh.

64M Flash for MCP

Table 7 Flash Memory Command Definitions

Command Sequence	BusWriteCycles Req'd	First Bus Write Cycle		Second Bus Write Cycle		Third Bus Write Cycle		Fourth Bus Read/Write Cycle		Fifth Bus Write Cycle		Sixth Bus Write Cycle	
		Addr.	Data										
Read/Reset	1	XXXh	FOh	-	-	-	-	-	-	-	-	-	-
Read/Reset	3	555h	AAh	2AAh	55h	555h	FOh	RA	RD	-	-	-	-
Autoselect	3	555h	AAh	2AAh	55h	$\begin{aligned} & \text { (BA) } \\ & 555 \mathrm{~h} \end{aligned}$	90h	-	-	-	-	-	-
Program	4	555h	AAh	2AAh	55h	555h	AOh	PA	PD	-	-	-	-
Program Suspend	1	BA	B0h	-	-	-	-	-	-	-	-	-	-
Program Resume	1	BA	30h	-	-	-	-	-	-	-	-	-	-
Chip Erase	6	555h	AAh	2AAh	55h	555h	80h	555h	AAh	2AAh	55h	555h	10h
Sector Erase	6	555h	AAh	2AAh	55h	555h	80h	555h	AAh	2AAh	55h	SA	30h
Erase Suspend	1	BA	B0h	-	-	-	-	-	-	-	-	-	-
Erase Resume	1	BA	30h	-	-	-	-	-	-	-	-	-	-
Extended Sector Group Protection	4	XXXh	60h	SPA	60h	SPA	40h	SPA	SD	-	-	-	-
$\begin{aligned} & \text { Set to } \\ & \text { Fast Mode } \end{aligned}$	3	555h	AAh	2AAh	55h	555h	20h	-	-	-	-	-	-
Fast Program *1	2	XXXh	A0h	PA	PD	-	-	-	-	-	-	-	-
Reset from Fast Mode *1	2	BA	90h	XXXh	FOh	-	-	-	-	-	-	-	-
Query	1	$\begin{aligned} & (\mathrm{BA}) \\ & 55 \mathrm{~h} \end{aligned}$	98h	-	-	-	-	-	-	-	-	-	-
$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \mathrm{Hi}-\mathrm{ROM} \\ \text { Entry } \end{array} \\ \hline \end{array}$	3	555h	AAh	2AAh	55h	555h	88h	-	-	-	-	-	-
$\begin{aligned} & \hline \text { Hi-ROM } \\ & \text { Program *3 } \end{aligned}$	4	555h	AAh	2AAh	55h	555h	AOh	(HRA) PA	PD	-	-	-	-
$\begin{aligned} & \mathrm{Hi}-\mathrm{ROM} \\ & \text { Exit *3 } \end{aligned}$	4	555h	AAh	2AAh	55h	$\begin{gathered} \text { (HRBA)5 } \\ 55 \mathrm{~h} \\ \hline \end{gathered}$	90h	XXXh	00h	-	-	-	-

(Continued)

SMCPO.4E

64M Flash for MCP

(Continued)
*1: This command is valid during Fast Mode.
${ }^{*} 2$: This command is valid while $\overline{\operatorname{RESET}}=\mathrm{V}_{\mathrm{ID}}$.
*3: This command is valid during Hi-ROM mode.
*4: The data "00h" is also acceptable.
Notes: 1. Address bits A_{21} to $A_{11}=X=$ " H " or "L" for all address commands except or Program Address (PA), Sector Address (SA), and Bank Address (BA), and Sector Group Address (SPA).
2. Bus operations are defined in \square DEVICE BUS OPERATION.
3. $\mathrm{RA}=$ Address of the memory location to be read
$\mathrm{PA}=$ Address of the memory location to be programmed
Addresses are latched on the falling edge of the write pulse.
$S A=$ Address of the sector to be erased. The combination of $A_{21}, A_{20}, A_{19}, A_{18}, A_{17}, A_{16}, A_{15}, A_{14}, A_{13}$, and A_{12} will uniquely select any sector.
$B A=$ Bank Address (A21, $\left.\mathrm{A}_{20}, \mathrm{~A}_{19}\right)$
4. $R D=$ Data read from location $R A$ during read operation.
$P D=$ Data to be programmed at location PA. Data is latched on the rising edge of write pulse.
5. SPA $=$ Sector group address to be protected. Set sector group address and $\left(A_{6}, A_{3}, A_{2}, A_{1}, A_{0}\right)=(0,0,0$, 1, 0).
SD = Sector group protection verify data. Output 01 h at protected sector group addresses and output 00h at unprotected sector group addresses.
6. $\mathrm{HRA}=$ Address of the Hi-ROM area: 000000h to 00007Fh
7. $\mathrm{HRBA}=$ Bank Address of the Hi-ROM area $\left(\mathrm{A}_{21}=\mathrm{A}_{20}=\mathrm{A}_{19}=\mathrm{V}_{\mathrm{LL}}\right)$
8. The system should generate the following address patterns: 555h or 2AAh to addresses A_{10} to A_{0}
9. Both Read/Reset commands are functionally equivalent, resetting the device to the read mode.
10. The command combinations not described in this table are illegal.

64M Flash for MCP

ELECTRICAL CHARACTERISTICS (AC Characteristics)

- Read Only Operations Characteristics (Flash)

Parameter	Symbol		Condition	Value (Note)		Unit
	JEDEC	Standard		Min.	Max.	
Read Cycle Time	tavav	trc	-	70	-	ns
Address to Output Delay	tavav	tacc	$\begin{aligned} & \overline{\overline{C E f}}=V_{\mathrm{IL}} \\ & \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$	-	70	ns
Chip Enable to Output Delay	telav	tcef	$\overline{\mathrm{OE}}=\mathrm{V}_{\text {IL }}$	-	70	ns
Output Enable to Output Delay	tglav	toe	-	-	30	ns
Chip Enable to Output High-Z	tehaz	tof	-	-	25	ns
Output Enable to Output High-Z	tghoz	tof	-	-	25	ns
Output Hold Time From Addresses, $\overline{\mathrm{CEf}}$ or $\overline{\mathrm{OE}}$, Whichever Occurs First	taxax	tor	-	0	-	ns
$\overline{\text { RESET Pin Low to Read Mode }}$	-	tready	-	-	20	$\mu \mathrm{s}$

[^0]
64M Flash for MCP

- Read Operation Timing Diagram (Flash)

- Hardware Reset/Read Operation Timing Diagram (Flash)

- Write/Erase/Program Operations (Flash)

Parameter		Symbol		Value			Unit
		JEDEC	Standard	Min.	Typ.	Max.	
Write Cycle Time		tavav	twc	70	-	-	ns
Address Setup Time		tavwl	$\mathrm{t}_{\text {AS }}$	0	-	-	ns
Address Setup Time to $\overline{\mathrm{OE}}$ Low During Toggle Bit Polling		-	taso	12	-	-	ns
Address Hold Time		twLAX	tah	30	-	-	ns
Address Hold Time from $\overline{\mathrm{CEf}}$ or $\overline{\mathrm{OE}}$ High During Toggle Bit Polling		-	$\mathrm{t}_{\text {AHT }}$	0	-	-	ns
Data Setup Time		tovwh	tos	25	-	-	ns
Data Hold Time		twhDx	toh	0	-	-	ns
Output Enable Hold Time	Read	-	toen	0	-	-	ns
	Toggle and $\overline{\text { Data Polling }}$			10	-	-	ns
$\overline{\overline{C E f}}$ High During Toggle Bit Polling		-	tceph	20	-	-	ns
$\overline{\text { OE High During Toggle Bit Polling }}$		-	toeph	20	-	-	ns
Read Recover Time Before Write		tGHwL	tghw	0	-	-	ns
Read Recover Time Before Write		tghel	tghel	0	-	-	ns
$\overline{\mathrm{CEf}}$ Setup Time		telwl	tcs	0	-	-	ns
$\overline{\text { WE S Setup Time }}$		twlel	tws	0	-	-	ns
$\overline{\text { CEf }}$ Hold Time		twher	tch	0	-	-	ns
$\overline{\text { WE Hold Time }}$		terwh	twh	0	-	-	ns
Write Pulse Width		twLwh	twp	35	-	-	ns
$\overline{\text { CEf Pulse Width }}$		teleh	tcp	35	-	-	ns
Write Pulse Width High		twhwL	twph	20	-	-	ns
$\overline{\text { CEf Pulse Width High }}$		tehel	tcPH	20	-	-	ns
Programming Operation		twhwh 1	twhwh1	-	6	-	$\mu \mathrm{s}$
Sector Erase Operation *1		twhwH2	twhwh2	-	0.5	-	S
Vocf Setup Time		-	tvcs	50	-	-	$\mu \mathrm{s}$
Rise Time to VID *2		-	tvidr	500	-	-	ns
Rise Time to $\mathrm{V}_{\text {Acc }}{ }^{*} 3$		-	tvaccr	500	-	-	ns
Voltage Transition Time *2		-	tvLht	4	-	-	$\mu \mathrm{s}$
Write Pulse Width *2		-	twpp	100	-	-	$\mu \mathrm{s}$

(Continued)

SMCPO.4E

64M Flash for MCP

(Continued)

Parameter	Symbol		Value			Unit
	JEDEC	Standard	Min.	Typ.	Max.	
$\overline{\overline{O E}}$ Setup Time to $\overline{\mathrm{WE}}$ Active *2	-	toesp	4	-	-	$\mu \mathrm{S}$
$\overline{\text { CEf }}$ Setup Time to $\overline{\mathrm{WE}}$ Active *2	-	tcsp	4	-	-	$\mu \mathrm{S}$
Recover Time from RY/ $\overline{\mathrm{BY}}$	-	trB	0	-	-	ns
RESET Pulse Width	-	trp	500	-	-	ns
RESET High Level Period Before Read	-	tri	200	-	-	ns
Program/Erase Valid to RY/ $\overline{\overline{\mathrm{Y}}}$ Delay	-	tBusy	-	-	90	ns
Delay Time from Embedded Output Enable	-	teoe	-	-	70	ns
Erase Time-out Time	-	trow	50		-	$\mu \mathrm{s}$
Erase Suspend Transition Time	-	tspd	-	-	20	$\mu \mathrm{s}$

*1: This does not include preprogramming time.
*2: This timing is for Sector Group Protection operation.
*3: This timing is for Accelerated Program operation.

64M Flash for MCP

- Write Cycle (WE control) (Flash)

Notes: 1. PA is address of the memory location to be programmed.
2. PD is data to be programmed at word address.
3. $\overline{\mathrm{DQ}}_{7}$ is the output of the complement of the data written to the device.
4. Dout is the output of the data written to the device.
5. Figure indicates last two bus cycles out of four bus cycle sequence.

SMCP0.4E
64M Flash for MCP

- Write Cycle (CEf control) (Flash)

Notes: 1. PA is address of the memory location to be programmed.
2. PD is data to be programmed at word address.
3. $\overline{\mathrm{DQ}}_{7}$ is the output of the complement of the data written to the device.
4. Dout is the output of the data written to the device.
5. Figure indicates last two bus cycles out of four bus cycle sequence.

- AC Waveforms Chip/Sector Erase Operations (Flash)

* : SA is the sector address for Sector Erase. Addresses $=555 \mathrm{~h}$ (Word) for Chip Erase.

SMCPO.4E

64M Flash for MCP

- AC Waveforms for Data Polling during Embedded Algorithm Operations (Flash)

*: $\mathrm{DQ}_{7}=$ Valid Data (the device has completed the Embedded operation) .

- AC Waveforms for Toggle Bit during Embedded Algorithm Operations (Flash)

*: DQ6 stops toggling (the device has completed the Embedded operation).

SMCPO.4E

64M Flash for MCP

- Back-to-back Read/Write Timing Diagram (Flash)

Note: This is example of Read for Bank 1 and Embedded Algorithm (program) for Bank 2.
BA1 : Address corresponding to Bank 1
BA2 : Address corresponding to Bank 2

64M Flash for MCP

- RY/ $\overline{\mathbf{B Y}}$ Timing Diagram during Write/Erase Operations (Flash)

- $\overline{\text { RESET, RY/BY Timing Diagram (Flash) }}$

64M Flash for MCP

- Temporary Sector Unprotection (Flash)

- Acceleration Mode Timing Diagram (Flash)

- Extended Sector Group Protection (Flash)

SPAX : Sector Group Address to be protected
SPAY : Next Sector Group Address to be protected
TIME-OUT : Time-Out window $=250 \mu \mathrm{~s}$ (Min.)

SMCP0.4E

64M Flash for MCP

ERASE AND PROGRAMMING PERFORMANCE (Flash)

Parameter	Value			Unit	Remarks
	Min.	Typ.	Max.		
Sector Erase Time	-	0.5	2.0	s	Excludes programming time prior to erasure
Word Programming Time	-	6	100	$\mu \mathrm{~s}$	Excludes system-level overhead
Chip Programming Time	-	-	200	s	Excludes system-level overhead
Erase/Program Cycle	100,000	-	-	cycle	

Typical Erase conditions $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, VCCf_1 \& VCCf_2 $=2.9 \mathrm{~V}$
Typical Program conditions $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, VCCf_1 \& VCCf_2 $=2.9 \mathrm{~V} \quad$ Data $=$ Checker

64M FCRAM for MCP

FCRAM Power Down Program Key Table

Basic Key Table

Definition	A16	A17	A19	A20	A21	
KEY	Mode Select			Area Select		

A19	A20	A21	AREA
L	L	L	BOTTOM 2
L	H	X	RESERVED
H	L	X	RESERVED
H	H	H	TOP $^{* 3}$

A16	A17	MODE
L	L	NAP ${ }^{* 4}$
L	H	RESERVED
H	L	16M Partial
H	H	SLEEP ${ }^{* 4,{ }^{*}}$

Available Key Table

MODE	A16	A17	A19	A20	A21	Data Retention Area
	Mode Select		Area Select			
NAP	L	L	X	X	X	None
16M Partial	H	L	L	L	L	Bottom 16M only
	H	L	H	H	H	Top 16M only
SLEEP	H	H	X	X	X	None

Notes *1: The Power Down Program can be performed one time after compliance of Power-up timings and it should not be re-programmed after regular Read or Write. Unspecified addresses, A0 to A15, can be either High or Low during the programming. The RESERVED key should not be used.
*2: BOTTOM area is from the lowest address location. (i.e., $\mathrm{A}(20: 0)=\mathrm{L}$)
*3: TOP area is from the highest address location. (i.e., $\mathrm{A}(20: 0)=\mathrm{H}$)
*4: NAP and SLEEP do not retain the data and Area Select is ignored.
*5: Default state. Power Down Program to this SLEEP mode can be omitted.

64M FCRAM for MCP

ELECTRICAL CHARACTERISTICS (AC Characteristics)

- READ OPERATION (FCRAM)

Parameter	Symbol	Value		Unit	Notes
		Min.	Max.		
Read Cycle Time	trc	70	-	ns	
Chip Enable Access Time	tce	-	65	ns	*1,*3
Output Enable Access Time	toe	-	40	ns	*1
Address Access Time	t A	-	65	ns	*1,*4
Output Data Hold Time	tor	5	-	ns	*1
$\overline{\text { CE1 }}$ Low to Output Low-Z	tctz	5	-	ns	*2
$\overline{\mathrm{OE}}$ Low to Output Low-Z	tolz	0	-	ns	*2
$\overline{\text { CE1r High to Output High-Z }}$	tchz	-	20	ns	*2
$\overline{\text { OE High to Output High-Z }}$	tohz	-	20	ns	*2
Address Setup Time to $\overline{\mathrm{CE}} 1 \mathrm{r}$ Low	tasc	-5	-	ns	*5
Address Setup Time to $\overline{\mathrm{OE}}$	taso	25	-	ns	*3,*6
	taso(ABS)	10	-	ns	* 7
$\overline{\overline{L B}}$ / $\overline{\text { UB }}$ Setup Time to $\overline{\mathrm{CE}}$ - r Low	tbsc	-5	-		*5
$\overline{\mathrm{LB}} / \overline{\mathrm{UB}}$ Setup Time to $\overline{\mathrm{OE}}$ Low	teso	10	-		
Address Invalid Time	tax	-	5	ns	*4,*8
Address Hold Time from $\overline{\mathrm{CE}}$ r L Low	tclah	70	-	ns	*4
Address Hold Time from OE Low	tolat	45	-	ns	*4,*9
Address Hold Time from $\overline{\mathrm{CE}} 1 \mathrm{r}$ High	tснан	-5	-	ns	
Address Hold Time from ОЕ High	Тонан	-5	-	ns	
$\overline{\mathrm{LB}} / \overline{\text { UB }}$ Hold Time from $\overline{\mathrm{CE}}$ r H High	tснвн	-5	-		
	tонвн	-5	-		
$\overline{\mathrm{CE}} 1 \mathrm{r}$ Low to OE Low Delay Time	tcloL	25	1000	ns	*3,*6,*9,*10
$\overline{\text { OE Low to } \overline{\mathrm{CE}} 1 \mathrm{r} \text { High Delay Time }}$	toLch	45	-	ns	*9
$\overline{\mathrm{CE}} 1 \mathrm{r}$ High Pulse Width	tcp	12	-	ns	
$\overline{\text { OE High Pulse Width }}$	top	25	1000	ns	*6, ${ }^{*}$ 9, ${ }^{*} 10$
	top(ABS)	12	-	ns	*7

Notes *1: The output load is 30 pF .
*2: The output load is 5 pF .
*3: The tcE is applicable if $\overline{\mathrm{OE}}$ is brought to Low before $\overline{\mathrm{CE}}$ 1r goes Low and is also applicable if actual value of both or either taso or tclo is shorter than specified value.
*4: Applicable only to AO and A 1 when both $\overline{\mathrm{CE}} 1 \mathrm{r}$ and $\overline{\mathrm{OE}}$ are kept at Low for the address access.
*5: Applicable if $\overline{\mathrm{OE}}$ is brought to Low before $\overline{\mathrm{CE}} 1 \mathrm{r}$ goes Low.
*6: The taso, tclol(min) and top(min) are reference values when the access time is determined by toe. If actual value of each parameter is shorter than specified minimum value, toe become longer by the amount of subtracting actual value from specified minimum value.
For example, if actual $t_{A s o,} t_{A s o}$ (actual), is shorter than specified minimum value, $\mathrm{t}_{\mathrm{Aso}}(\mathrm{min})$, during $\overline{\mathrm{OE}}$ control access (ie., CE1r stays Low), the toe become toe(max) + taso(min) $^{(t a s o(a c t u a l) . ~}$
*7: The $t_{A S O(A B S)}$ and top(ABS) is the absolute minimum value during $\overline{\mathrm{OE}}$ control access.
*8: The tax is applicable when both A0 and A1 are switched from previous state.
*9: If actual value of either tclol or top is shorter than specified minimum value, both tolaн and tocнн become $\operatorname{trc}(\mathrm{min})$ - tclol(actual) or trc (min) - top(actual).
*10: Maximum value is applicable if $\overline{\mathrm{CE}} 1 \mathrm{r}$ is kept at Low.

- WRITE OPERATION (FCRAM)

Parameter	Symbol	Value		Unit	Notes
		Min.	Max.		
Write Cycle Time	twc	70	-	ns	*1
Address Setup Time	$\mathrm{t}_{\text {AS }}$	0	-	ns	*2
Address Hold Time	tah	35	-	ns	*2
$\overline{\mathrm{CE}} 1 \mathrm{r}$ Write Setup Time	tcs	0	1000	ns	
$\overline{\mathrm{CE}} 1 \mathrm{r}$ Write Hold Time	tch	0	1000	ns	
$\overline{\text { WE Setup Time }}$	tws	0	-	ns	
$\overline{\text { WE Hold Time }}$	twh	0	-	ns	
$\overline{\mathrm{LB}}$ and $\overline{\mathrm{UB}}$ Setup Time	tBs	-5	-	ns	
$\overline{\mathrm{LB}}$ and $\overline{\mathrm{UB}}$ Hold Time	tBH	-5	-	ns	
$\overline{\text { OE Setup Time }}$	toes	0	1000	ns	*3
$\overline{\text { OE Hold Time }}$	toen	25	1000	ns	*3, *4
	toen(ABS)	12	-	ns	*5
$\overline{\mathrm{OE}}$ High to $\overline{\mathrm{CE}} 1 \mathrm{r}$ Low Setup Time	tohcl	-5	-	ns	*6
$\overline{\text { OE High to Address Hold Time }}$	Тонан	-5	-	ns	*7
$\overline{\mathrm{CE}} 1 \mathrm{r}$ Write Pulse Width	tcw	45	-	ns	*1, *8
$\overline{\text { WE Write Pulse Width }}$	twp	45	-	ns	*1, *8
$\overline{\text { CE1r }}$ Write Recovery Time	twrc	10	-	ns	*1, *9
$\overline{\text { WE }}$ Write Recovery Time	twr	10	1000	ns	*1, *3, *9
Data Setup Time	tos	15	-	ns	
Data Hold Time	toh	0	-	ns	
$\overline{\mathrm{CE}} 1 \mathrm{r}$ High Pulse Width	tcp	12	-	ns	*9

Notes: *1: Minimum value must be equal or greater then the sum of actual tow (or twp) and twrc (or twr).
*2: New write address is valid from either $\overline{C E} 1 r$ or $\overline{W E}$ is bought to High.
*3: The toен is specified from end of $t_{\text {tw }}(\min)$. The $t_{\text {оЕн }}(\mathrm{min})$ is a reference value when the access time is determined by toe.
If actual value, to巨н(actual) is shorter than specified minimum value, to become longer by the amount of subtracting actual value from specified minimum value.
*4: The toen(max) is applicable if $\overline{\mathrm{CE}} 1 \mathrm{r}$ is kept at Low and both $\overline{\mathrm{WE}}$ and $\overline{\mathrm{OE}}$ are kept at High.
*5: The to巨н(Abs) is the absolute minimum value if write cycle is termnated by WE and CE1r stays Low.
*6: tohcl(min) must be satisfied if read operation is not performed prior to write operation.
In case $\overline{\mathrm{OE}}$ is disabled after toнc (min), $\overline{\mathrm{WE}}$ Low must be asserted after trc (min) from $\overline{\mathrm{CE}} 1 \mathrm{r}$ Low. In other words, read operation is initiated if toнcL (min) is not satisfied.
*7: Applicable if $\overline{\mathrm{CE}} 1 \mathrm{r}$ stays Low after read operation.
*8: tcw and twp is applicable if write operation is initiated by $\overline{C E} 1 r$ and $\overline{W E}$, respectively.
*9: twre and twr is applicable if write operation is terminated by $\overline{\mathrm{CE}} 1 r$ and $\overline{\mathrm{WE}}$, respectively. The twr (min) can be ignored if $\overline{\mathrm{CE}} 1 \mathrm{r}$ is brought to High together or after WE is brought to High. In such case, the tcp(min) must be satisfied.

64M FCRAM for MCP

- POWER DOWN and POWER DOWN PROGRAM PARAMETERS (FCRAM)

Parameter	Symbol	Value		Unit	Note
		Min.	Max.		
CE2r Low Setup Time for Power Down Entry	tcsp	10	-	ns	
CE2r Low Hold Time after Power Down Entry	tc2LP	70	-	ns	
$\overline{\mathrm{CE}} 1 \mathrm{r}$ High Hold Time following CE2r High after Power Down Exit(SLEEP mode only)	tснн	350	-	$\mu \mathrm{s}$	
$\overline{\mathrm{CE}} 1 \mathrm{r}$ High Setup Time following CE2r High after Power Down Exit(Except for SLEEP mode)	tchen	1	-	$\mu \mathrm{s}$	
$\overline{\mathrm{CE}} 1 \mathrm{r}$ High Setup Time following CE2r High after Power Down Exit	tchs	10	-	ns	
$\overline{\mathrm{CE}} 1 \mathrm{r}$ High to $\overline{\mathrm{PE}}$ Low Setup Time	teps	70	-	ns	*1
$\overline{\text { PE Power Down Program Pulse Width }}$	tep	70	-	ns	*1
$\overline{\text { PE }}$ High to $\overline{\mathrm{CE}} 1 \mathrm{r}$ Low Hold Time	teph	70	-	ns	*1
Address Setup Time to $\overline{\text { PE }}$ High	teas	15	-	ns	*1
Address Setup Time from PE High	teah	0	-	ns	*1

Notes: *1: Applicable to Down Program.

- OTHER TIMING PARAMETERS (FCRAM)

Parameter	Symbol	Value		Unit	Note
		Min.	Max.		
$\overline{\mathrm{CE}} 1 \mathrm{r}$ High to OE Invalid Time for Standby Entry	tснох	10	-	ns	
$\overline{\mathrm{CE}} 1 \mathrm{r}$ High to WE Invalid Time for Standby Entry	tchwx	10	-	ns	*1
CE2r Low Hold Time after Power-up	tcгLH	50	-	$\mu \mathrm{s}$	*2
CE2r High Hold Time after Power-up	tсгн⿱	50	-	$\mu \mathrm{S}$	*3
$\overline{\mathrm{CE}} 1 \mathrm{r}$ High Hold Time following CE2r High after Power-up	Існн	350	-	$\mu \mathrm{S}$	*2
Input Transition Time	t	1	25	ns	*4

Notes: *1: It may write some data into any address location if tchwx is not satisfied.

*3: Requires Power Down mode entry and exit after tczнL.
*4: The input Trasition Time(t) at AC testing is 5 ns as shown in below. If actual t is longer than 5 ns , it may violate AC specification of some timing parameters.

- AC TEST CONDITIONS (FCRAM)

Symbol	Description	Test Setup	Value	Unit	Note
V_{H}	Input High Level	$\mathrm{V}_{\text {ccr }}=2.7 \mathrm{~V}$ to 3.1 V	2.3	V	
$\mathrm{~V}_{\mathrm{IL}}$	Input Low Level	$\mathrm{V}_{\text {ccr }}=2.7 \mathrm{~V}$ to 3.1 V	0.4	V	
$\mathrm{~V}_{\text {REF }}$	Input Timing Measurement Level	$\mathrm{V}_{\text {ccr }}=2.7 \mathrm{~V}$ to 3.1 V	1.3	V	
$\mathrm{t} \boldsymbol{T}$	Input Transition Time	Between V_{IL} and V_{H}	5	ns	

64M FCRAM for MCP

- READ Timing \#1 ($\overline{\mathrm{OE}}$ Control Access) (FCRAM)

Note: CE2r, $\overline{\mathrm{PE}}$ and $\overline{\mathrm{WE}}$ must be High for entire read cycle.
Either or both $\overline{\mathrm{LB}}$ and $\overline{\mathrm{UB}}$ must be Low when both $\overline{\mathrm{CE}} 1 \mathrm{r}$ and $\overline{\mathrm{OE}}$ are Low.

SMCP0.1E

64M FCRAM for MCP

- READ Timing \#2 (CE1r Control Access) (FCRAM)

Note: CE2r, $\overline{\mathrm{PE}}$ and $\overline{\mathrm{WE}}$ must be High for entire read cycle.
Either or both $\overline{\mathrm{LB}}$ and $\overline{\mathrm{UB}}$ must be Low when both $\overline{\mathrm{CE}} 1 \mathrm{r}$ and $\overline{\mathrm{OE}}$ are Low.

64M FCRAM for MCP

- READ Timing \#3 (Address Access after OE Control Access) (FCRAM)

Note: CE2r, $\overline{\mathrm{PE}}$ and $\overline{\mathrm{WE}}$ must be High for entire read cycle.
Either or both $\overline{\mathrm{LB}}$ and $\overline{\mathrm{UB}}$ must be Low when both $\overline{\mathrm{CE}} 1 \mathrm{r}$ and $\overline{\mathrm{OE}}$ are Low.

SMCP0.1E

64M FCRAM for MCP

- READ Timing \#4 (Address Access after CE1r Control Access) (FCRAM)

Note: CE2r, $\overline{\mathrm{PE}}$ and $\overline{\mathrm{WE}}$ must be High for entire read cycle.
Either or both $\overline{\mathrm{LB}}$ and $\overline{\mathrm{UB}}$ must be Low when both $\overline{\mathrm{CE}} 1 \mathrm{r}$ and $\overline{\mathrm{OE}}$ are Low.

64M FCRAM for MCP

- WRITE Timing \#1 (CE1r Control) (FCRAM)

Note: CE2r and $\overline{\text { PE }}$ must be High for write cycle.

SMCP0.1E

64M FCRAM for MCP

- WRITE Timing \#2-1 (WE Control,Single Write Operetion) (FCRAM)

Note: CE2r and $\overline{\text { PE }}$ must be High for write cycle.

64M FCRAM for MCP

- WRITE Timing \#2-2 (WE Control,Continuous Write Operetion) (FCRAM)

Note: CE2r and $\overline{\text { PE }}$ must be High for write cycle.

SMCP0.1E

64M FCRAM for MCP

- READ / WRITE Timing \#1-1 (CE1r Control) (FCRAM)

Note: Write address is valid from either $\overline{\mathrm{CE}} 1 \mathrm{r}$ or $\overline{\mathrm{WE}}$ of last falling edge.

- READ / WRITE Timing \#1-2 (CE1r Control) (FCRAM)

Note: The to巨н is specified from the time satisfied both twrc and twr(min).

SMCP0.1E

64M FCRAM for MCP

- READ($\overline{\mathrm{OE}}$ Control) / WRITE(WE Control) Timing \#2-1 (FCRAM)

Note: $\overline{\mathrm{CE}} 1 \mathrm{r}$ can be tied to Low for $\overline{\mathrm{WE}}$ and $\overline{\mathrm{OE}}$ controlled operation.
When $\overline{\mathrm{CE}} 1 \mathrm{r}$ is tied to Low, output is exclusively controlled by $\overline{\mathrm{OE}}$.

64M FCRAM for MCP

- READ($\overline{\mathrm{OE}}$ Control) / WRITE($\overline{\mathrm{WE}}$ Control) Timing \#2-2

Note: $\overline{\mathrm{CE}} 1 \mathrm{r}$ can be tied to Low for $\overline{\mathrm{WE}}$ and $\overline{\mathrm{OE}}$ controlled operation.
When $\overline{\mathrm{CE}} 1 \mathrm{r}$ is tied to Low, output is exclusively controlled by $\overline{\mathrm{OE}}$.

- POWER DOWN PROGRAM Timing (FCRAM)

Note: CE2r must be High for Power Down Programming.
Any other inputs not specified above can be either High or Low.

SMCP0.1E

64M FCRAM for MCP

- POWER DOWN Entry and Exit Timing (FCRAM)

Note: This Power Down mode can be also used for Power-up \#2 below except that tchнn can not be used at Powerup timing.

- POWER-UP Timing \#1 (FCRAM)

Note: The tcalh specifies after Vccr reaches specified minimum level.

- POWER-UP Timing \#2 (FCRAM)

Note: The tc2 $\mathrm{tcl}_{\text {s }}$ specifies from CE2r Low to High transition after Vccr reaches specified minimum level. $\overline{\mathrm{CE}} 1 \mathrm{r}$ must be brought to High prior to or together with CE2r Low to High transition.

64M FCRAM for MCP

- Standby Entry Timing after Read or Write (FCRAM)

Note: Both tchox and tchwx define the earliest entry timing for Standby mode. If either of timing is not satisfied, it takes trc (min) period from either last address transition of A0 and A1, or CE1r Low to High transition.

SMCP0.1E

64M FCRAM for MCP

DATA RETENTION Low Vccr Characteristics (FCRAM)

Parameter	Symbol	Test Conditions	Value		Unit
			Min.	Max.	
Vccr Data Retention Supply Voltage	V ${ }_{\text {dR }}$	$\begin{aligned} & \overline{\mathrm{CE} 1 \mathrm{r}}=\mathrm{CE} 2 \mathrm{r} \geq \mathrm{V} \mathrm{Vcr}-0.2 \mathrm{~V} \text { or, } \\ & \overline{\mathrm{CE}} 1 \mathrm{r}=\mathrm{CE} 2 \mathrm{r}=\mathrm{V}_{\mathrm{H}}, \end{aligned}$	2.3	3.1	V
Vccr Data Retention Supply Current	Ior		-	1.5	mA
	ldr1	$\begin{aligned} & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{ccr}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{ccr}}-0.2 \mathrm{~V}, \\ & \mathrm{CE} 1 \mathrm{r}=\mathrm{CE} 2 \mathrm{~V} \geq \mathrm{V}_{\text {ccr }}-0.2 \mathrm{~V}, \\ & \text { lout }^{2} 0 \mathrm{~mA} \end{aligned}$	-	150	$\mu \mathrm{A}$
Data Retention Setup Time	tors	$2.7 \mathrm{~V} \leq \mathrm{Vccr} \leq 3.1 \mathrm{~V}$ at data retention entry	0	-	ns
Data Retention Recovery Time	torR	$2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{ccr} \leq 3.1 \mathrm{~V}$ after data retention	200	-	ns
Vocr Voltage Transition Time	$\Delta \mathrm{V} / \Delta \mathrm{t}$		0.2	-	V/us

Notes: *1: $2.0 \leq \mathrm{V}_{\mathrm{H}} \leq \mathrm{Vccr}+0.3 \mathrm{~V}$

- Data Retention Timing

MB84VFAF5F5J1-70

PIN CAPACITANCE

Parameter	Symbol	Condition	Value			Unit
			Min.	Typ.	Max.	
Input Capacitance	Cin	$\mathrm{V}_{\text {IN }}=0$	-	-	T.B.D.	pF
Output Capacitance	Cout	Vout $=0$	-	-	T.B.D.	pF
Control Pin Capacitance	Cin2	$\mathrm{V}_{\text {IN }}=0$	-	-	T.B.D.	pF

Note: Test conditions $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

■ HANDLING OF PACKAGE

Please handle this package carefully since the sides of package create acute angles.

■ CAUTION

- The high voltage (VID) cannot apply to address pins and control pins except RESET_1 or RESET_2. Exception is when autoselect and sector group protect function are used, then the high voltage (V_{ID}) can be applied to RESET_1 or RESET_2.
- Without the high voltage (VID) , sector group protection can be achieved by using "Extended Sector Group Protection" command.

ORDERING INFORMATION

[^1]
MB84VFAF5F5J1-70

PACKAGE DIMENSION

115-pin plastic FBGA (BGA-115P-Mxx)

NOW PRINTING

FUJITSU LIMITED

For further information please contact:
Japan
FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
Shinjuku Dai-Ichi Seimei Bldg. 7-1,
Nishishinjuku 2-chome, Shinjuku-ku,
Tokyo 163-0721, Japan
Tel: +81-3-5322-3347
Fax: +81-3-5322-3386
http://edevice.fujitsu.com/
North and South America
FUJITSU MICROELECTRONICS, INC. 3545 North First Street,
San Jose, CA 95134-1804, U.S.A.
Tel: +1-408-922-9000
Fax: +1-408-922-9179
Customer Response Center
Mon. - Fri.: 7 am-5 pm (PST)
Tel: +1-800-866-8608
Fax: +1-408-922-9179
http://www.fujitsumicro.com/
\section*{Europe}

FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10,
D-63303 Dreieich-Buchschlag, Germany
Tel: +49-6103-690-0
Fax: +49-6103-690-122
http://www.fujitsu-fme.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LTD. \#05-08, 151 Lorong Chuan, New Tech Park, Singapore 556741
Tel: +65-281-0770
Fax: +65-281-0220
http://www.fmap.com.sg/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280
Korea
Tel: +82-2-3484-7100
Fax: +82-2-3484-7111

F0211
© FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

[^0]: Note: Test Conditions- Output Load: 1 TTL gate and 30 pF
 Input rise and fall times: 5 ns
 Input pulse levels: 0.0 V to Vccf
 Timing measurement reference level
 Input: $0.5 \times \mathrm{Vccf}$
 Output: $0.5 \times \mathrm{V}$ ccf

[^1]: DEVICE NUMBER/DESCRIPTON
 96Mega-bit ($4 \mathrm{M} \times 16$ bit $+2 \mathrm{M} \times 16$ bit) PAge Mode Dual Operation Flash Memory 3.0V-only Read, Program, and Erase

 64Mega-bit (4M x 16bit) Dual Operation Flash Memory
 3.0V-only Read, Program, and Erase

 64Mega-bit (2M x 16bit) FCRAM

