PROGRAMMABLE SYNCHRO/RESOLVER-TO-DIGITAL CONVERTER

FEATURES

- Single +5 V Power Supply
- Accuracy to 1.3 Arc-Minutes
- Pin Programmable Synchro/Resolver Input Option
- Pin Programmable 14-Bit or 16-Bit Resolution
- No 180° False Lock-up
- Internal Synthesized Reference
- Built-In-Test (BIT) Output
- Low Power Consumption
- Pin-for-Pin Replacement for Natel's 1006 and 1056

DESCRIPTION

The SD-14531 is a low-cost, high reliability, programmable synchro/ resolver-to-digital converter with pin programmable 14- or 16 -bit resolution. Packaged in a 36 -pin DDIP, the SD-14531 features Built-InTest (BIT) output.

The SD-14531 series accepts broadband inputs: 360 to 1 kHz , or 47 to 1 kHz . Other features include solid-state signal and reference isolation and high common-mode rejection. The digital angle output from the SD-14531 is a natural binary code, parallel positive logic and is TTL/CMOS compatible. Synchronization to a computer is accomplished with the Converter Busy (CB) output and/or the Inhibit (INH) input.

APPLICATIONS

Because of its high reliability, small size, and low power consumption, the SD-14531 is ideal for military ground or avionics applications. All models are available with MIL-PRF-38534 processing.

Designed with three-state output, the SD-14531 is especially well suited for use with computer based systems. Among the many possible applications are radar and navigation systems, fire control systems, flight instrumentation and flight trainers or simulators.

Data Device Corporation
105 Wilbur Place
Bohemia, New York 11716
631-567-5600 Fax: 631-567-7358
www.ddc-web.com

FOR MORE INFORMATION CONTACT:

FIGURE 1. SD-14531 BLOCK DIAGRAM

TABLE 1. SD-14531 SPECIFICATIONS
Speciications apply over temperature range, power supply range, reference frequency, and amplitude range; 15% signal amplitude variation, up to 10% harmonic distortion in the reference, and up to 45° of signal to reference phase shift.

\begin{tabular}{|c|c|c|}
\hline PARAMETER \& UNIT \& VALUE \\
\hline RESOLUTION \& Bits \& 14 or 16 (See note 1) \\
\hline ACCURACY \& Min \& 5.2, 2.6, 1.6, or 1.3 (See note 3) \\
\hline REPEATABILITY \& LSB \& 1 max \\
\hline \begin{tabular}{l}
REFERENCE INPUT CHARACTERISTICS \\
Carrier Frequency Range \\
Voltage Range \\
Input Impedance: \\
- Single Ended \\
- Differential \\
Common Mode Range
\end{tabular} \& \begin{tabular}{l}
\[
\begin{gathered}
\mathrm{Hz} \\
\mathrm{~Hz} \\
\text { Vrms }
\end{gathered}
\] \\
Ohm Ohm V
\end{tabular} \& \[
\begin{aligned}
\& 47-1000(60 \mathrm{~Hz} \text { Unit) } \\
\& 360-1000(400 \mathrm{~Hz} \text { Unit) } \\
\& 4-130 \text { (for } 11.8 \mathrm{~V} \text { or } 90 \mathrm{~V} \\
\& \text { signal input) } \\
\& 3-100 \text { (for } 1 \mathrm{~V} \text { direct signal } \\
\& \text { input) } \\
\& 250 \mathrm{k} \text { min } \\
\& 500 \mathrm{k} \text { min } \\
\& 250 \text { peak max }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
SIGNAL INPUT CHARACTERISTICS \\
(voltage options and minimum input impedance) \\
Input Impedance Imbalance \\
- Synchro mode \\
- Zin Line-to-Line \\
- Zin Each Line-to-Gnd \\
- Common Mode Range \\
- Resolver mode \\
- Zin Single Ended \\
- Zin Differential \\
- Zin Each Line-to Gnd \\
- Common Mode Range \\
- Direct (\(1.0 \mathrm{VL}-\mathrm{L}\)) \\
- Input Signal Type \\
- Sin/Cos Voltage Range \\
- Max Voltage w/o Damage \\
- Input Impedance \\
REFERENCE SYNTHESIZER \\
\(\pm\) Sig/Ref Phase Shift
\end{tabular} \& \%
V
Ohm
Ohm
V
V
Ohm
Ohm
Ohm
V

Vrms
Ohm
Deg \&

\hline | DIGITAL INPUT/OUTPUT |
| :--- |
| Logic Type |
| INPUTS: |
| Inhibit ($\overline{\mathrm{NH}}$) |
| Resolution Control (14B) (for Programmable Units Only) |
| Enable Bits 1 to 8 ($\overline{\mathrm{HBE}})$ Enable Bits 9 to 16 (LBE) (9 to 14 for 14 -bit mode) | \& \& | TTL/CMOS compatible |
| :--- |
| Logic $0=0.8 \mathrm{~V}$ max. Logic $1=2.0 \mathrm{~V}$ min. Loading $=30 \mu \mathrm{~A}$ max. Logic 0 inhibits Data stable within $0.5 \mu \mathrm{~s}$ (pull up) Logic 1 for 14 bits Logic 0 for 16 Bits (Pull-up current source to +5 V \|| 5 pF max CMOS transient protected) Logic 0 enables Data Valid within 150 ns Logic 1 = High Z |
| Data High Z within 100 ns Pull-down current source to GND \|| 5 pF max CMOS transient protected |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{TABLE 1. SD-14531 SPECIFICATIONS (CONT.)} \\
\hline PARAMETER \& UNIT \& VALUE \\
\hline \begin{tabular}{l}
DIGITAL INPUT/OUTPUT (CONT.) \\
OUTPUTS: \\
Parallel Data \\
Converter Busy (CB) \\
BIT \\
Drive Capability
\end{tabular} \& Bits

$\mu \mathrm{s}$ \& | 14 or 16 parallel lines; natural binary angles, positive logic. |
| :--- |
| 0.8 to 3.0 positive pulse; leading edge initiates counter update. |
| Logic 1 for fault conditions. |
| $50 \mathrm{pF}+$ rated logic drive Logic 0; 1 TTL load, 1.6 mA at 0.4 V max Logic 1; 10 TTL loads, 0.4 mA at 2.8 V min High Z; $10 \mu \mathrm{~A}\|\mid 5 \mathrm{pF}$ max Logic 0; 100 mV max driving CMOS Logic $1 ;+5 \mathrm{~V}$ supply minus 100 mV min driving CMOS |

\hline | ANALOG OUTPUT |
| :--- |
| Analog Return (V) |
| Velocity (VEL) (See note 2) |
| AC error (e) |
| - 14-Bit Mode |
| - 16-Bit Mode |
| Load | \& mVrms mVrms mA \& | +4.3 V nom |
| :--- |
| See TABLE 4. |
| 3.5 per LSB of error 1.75 per LSB of error |
| 1 |

\hline DYNAMIC CHARACTERISTICS \& \& See TABLE 6.

\hline | POWER SUPPLY CHARACTERISTICS |
| :--- |
| Nominal Voltage Voltage Tolerance Max Voltage w/o Damage Current | \& \[

$$
\begin{gathered}
\mathrm{V} \\
\% \\
\mathrm{~V} \\
\mathrm{~mA}
\end{gathered}
$$
\] \& ```

+5
\pm10
+7
25 max+digital output load

``` \\
\hline \begin{tabular}{l}
TEMPERATURE RANGES \\
Operating (-1XXX or \(-4 X X X\) ) \\
(-3XXX or -8XXX) \\
Storage
\end{tabular} & \[
\begin{aligned}
& { }^{\circ} \mathrm{C} \\
& { }^{\circ} \mathrm{C} \\
& { }^{\circ} \mathrm{C}
\end{aligned}
\] & \[
\begin{aligned}
& -55 \text { to }+125 \\
& 0 \text { to } 70 \\
& -65 \text { to }+150
\end{aligned}
\] \\
\hline \begin{tabular}{l}
PHYSICAL CHARACTERISTICS \\
Type \\
Size \\
Weight
\end{tabular} & \[
\begin{gathered}
\text { in } \\
(\mathrm{mm}) \\
\mathrm{oz}(\mathrm{~g})
\end{gathered}
\] & \[
\begin{aligned}
& 36 \text {-Pin DDIP } \\
& 1.9 \times 0.78 \times 0.21 \\
& (48 \times 20 \times 5.3) \\
& 0.7 \max (20)
\end{aligned}
\] \\
\hline \begin{tabular}{l}
TRANSFORMER \\
CHARACTERISTICS \\
(See ordering information for list Transformers. \\
Reference Transformers are Option for Both Solid-State and Voltage Follower Input Options.) 400 Hz TRANSFORMERS Reference Transformer \\
Carrier Frequency Range \\
Voltage Range \\
Input Impedance \\
Breakdown Voltage to GND \\
SIGNAL TRANSFORMER \\
Carrier Frequency Range \\
Breakdown Voltage to GND
\end{tabular} & & \[
\begin{aligned}
& -1000 \mathrm{~Hz} \\
& -130 \mathrm{~V} \\
& \mathrm{k} \Omega \mathrm{~min} \\
& 0 \mathrm{~V} \text { peak } \\
& -1000 \mathrm{~Hz} \\
& \mathrm{~V} \text { peak }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{TABLE 1. SD-14531 SPECIFICATIONS (CONT.)} \\
\hline PARAMETER & VALUE \\
\hline TRANSFORMER & \\
\hline CHARACTERISTICS (CONT.) & \\
\hline Minimum Input impedances & SynchroZin(Zso) ResolverZin \\
\hline 90 V L-L &  \\
\hline 26 V L-L & \(30 \mathrm{k} \Omega\) \\
\hline 11.8 V L-L & \(20 \mathrm{k} \Omega \quad 30 \mathrm{k} \Omega\) \\
\hline \multicolumn{2}{|l|}{60 Hz TRANSFORMERS} \\
\hline Reference Transformer & \\
\hline Carrier Frequency Range & 47-440 Hz \\
\hline Input Voltage Range & \(80-138 \mathrm{~V}\) rms; 115 V rms nominal resistive \\
\hline Input Impedance & \(600 \mathrm{k} \Omega \mathrm{min}\), resistive \\
\hline Input Common-Mode Voltage & 500 V rms transformer isolated \\
\hline Output Description & +R (in phase with RH-RL) and -R (in phase with RL-RH) derived from op-amps. Short-Circuit proof. \\
\hline Output Voltage & 3.0 V nominal riding on ground reference V. Output Voltage level tracks input level. \\
\hline Power Required & 4 mA typ, 7 mA max from +15 V supply. \\
\hline \multicolumn{2}{|l|}{Signal Transformer} \\
\hline Carrier Frequency Range & 47-440 Hz \\
\hline Input Voltage Range & \(10-100 \mathrm{~V}\) rms L- L; 90 V rms L-L nominal \\
\hline Input Impedance & \(148 \mathrm{k} \Omega\) min L-L balanced resistive \\
\hline Input Common-Mode Voltage & \(\pm 500 \mathrm{~V} \mathrm{rms}\), transformer isolated \\
\hline Output Description & Resolver output, - Sine (-S) + Cosine (+C) derived from op-amps. Short circuit proof. \\
\hline Output Voltage & 1.0 V rms nominal riding on ground reference V. Output voltage level tracks input level. \\
\hline Power Required & 4 mA typ, 7 mA max from +15 V supply. \\
\hline \multicolumn{2}{|l|}{Notes:} \\
\hline \multicolumn{2}{|l|}{(1) Pin Programmable.} \\
\hline \multicolumn{2}{|l|}{(2) VEL polarity is negative voltage for positive angular rate.} \\
\hline \multicolumn{2}{|l|}{(3) XX5 ordering option \(= \pm 1.3\) minutes resolver mode, \(\pm 1.6\) minutes synchro mode ( 16 -bit mode only).} \\
\hline
\end{tabular}

\section*{THEORY OF OPERATION}

The SD-14531 Series are small, 36-pin DDIP synchro-to-digital hybrid converters. As shown in the block diagram (FIGURE 1), the SD-14531 can be broken down into the following functional parts: Signal Input Option, Converter, Analog Conditioner, Power Supply Conditioner, and Digital Interface.

\section*{CONVERTER OPERATION}

As shown in FIGURE 1, the converter section of the SD-14531 contains a high accuracy control transformer, demodulator, error processor, voltage-controlled oscillator (VCO), up-down counter, and reference conditioner. The converter produces a digital angle which tracks the analog input angle to within the specified
accuracy of the converter. The control transformer performs the following trigonometric computation:
\[
\sin (\theta-\phi)=\sin \theta \cos \phi-\cos \theta \sin \phi
\]

Where:
\(\theta\) is angle theta representing the resolver shaft position \(\phi\) is digital angle phi contained in the up/down counter

The tracking process consists of continually adjusting \(\phi\) to make \((\theta-\phi)=0\), so that \(\phi\) will represent the shaft position \(\theta\).

The output of the demodulator is an analog DC level proportional to \(\sin (\theta-\phi)\). The error processor receives its input from the demodulator and integrates this \(\sin (\theta-\phi)\) error signal which then drives the VCO. The VCO's clock pulses are accumulated by the up/down counter. The velocity voltage accuracy, linearity and offset are determined by the quality of the VCO. Functionally, the up/down counter is an incremental integrator. Therefore, there are two stages of integration which makes the converter a Type II tracking servo.

In a Type II servo, the VCO always settles to a counting rate which makes \(\mathrm{d} \phi / \mathrm{dt}\) equal to \(\mathrm{d} \theta / \mathrm{dt}\) without lag. The output data will always be fresh and available as long as the maximum tracking rate of the converter is not exceeded.

The reference conditioner is a comparator that produces the square wave reference voltage which drives the demodulator. It's single-ended Input \(Z\) is 250 k Ohms min, 500 k Ohms differential.

\section*{SPECIAL FUNCTIONS}

The synthesized reference section of the SD-14531 eliminates errors caused by quadrature voltage. Due to the inductive nature of synchros and resolvers, their signals typically lead the reference signal (RH and RL) by about \(6^{\circ}\). When an uncompensated reference signal is used to demodulate the control transformer's output, quadrature voltages are not completely eliminated. In a 14-bit converter it is not necessary to compensate for the reference signal's phase shift. A \(6^{\circ}\) phase shift will, however, cause problems for the one minute accuracy converters. As shown in FIGURE 1, the converter synthesizes its own \(\cos (\omega t+\alpha)\) reference signal from the \(\sin \theta-\cos (\omega t+\alpha), \cos \theta-\cos (\omega t+\alpha)\) signal inputs and from the cos \(\omega\) t reference input. The phase angle of the synthesized reference is determined by the signal input. The reference input is used to choose between the \(+180^{\circ}\) and \(-180^{\circ}\) phases. The synthesized reference will always be exactly in phase with the signal input, and quadrature errors will therefore be eliminated. The synthesized reference circuit also eliminates the \(180^{\circ}\) false error null hangup.

Quadrature voltages in a resolver or synchro are by definition the resulting \(90^{\circ}\) fundamental signal in the nulled out error voltage
(e) in the converter. A digital position error will result due to the interaction of this quadrature voltage and a reference phase shift between the converter signal and reference inputs. The magnitude of this error is given by the following formula:

Magnitude of Error=(Quadrature Voltage/F.S.signal) \(\cdot \tan (\alpha)\)
Where:
Magnitude of Error is in radians,
Quadrature Voltage is in volts,
Full Scale signal is in volts,
\(\alpha=\) signal-to-REF phase shift.

An example of the magnitude of error is as follows:
Let: \(\quad\) Quadrature Voltage \(=11.8 \mathrm{mV}\)
Let: \(\quad\) F.S. signal \(=11.8 \mathrm{~V}\)
Let: \(\quad \alpha=6^{\circ}\)

Then: Magnitude of Error \(=0.35 \mathrm{~min} \cong 1 \mathrm{LSB}\) in the 16 th bit.
Note: Quadrature is composed of static quadrature which is specified by the synchro or resolver supplier plus the speed voltage which is determined by the following formula:

Speed Voltage=(rotational speed/carrier frequency) • F.S. signal

\section*{Where:}

Speed Voltage is the quadrature due to rotation,
Rotational speed is the rps (rotations per second) of the synchro or resolver,
Carrier frequency is the REF in Hz .

\section*{BUILT-IN-TEST (BIT, PIN 15)}

The Built-In-Test output (BIT) monitors the level of error (D) from the demodulator. D represents the difference in the input and output angles and ideally should be zero; if it exceeds approximately 180 LSBs (of the selected resolution) the logic level at BIT will change from a logic 0 to logic 1 . This condition will occur during a large step


FIGURE 2. RESOLUTION CONTROL TIMING DIAGRAM
\(\cos \omega\) t, and \(\sin \left(\theta+240^{\circ}\right) \cos \omega\) t are internally converted to resolver format; \(\sin \theta \cos \omega t\) and \(\cos \theta \cos \omega t\).

FIGURE 3 illustrates synchro and resolver signals as a function of the angle \(\theta\).

The solid-state signal and reference inputs are true differential inputs with high AC and DC common mode rejection. Input impedance is maintained with power off.

\section*{SYNCHRO/RESOLVER PROGRAMMABLE INPUT OPTION}

The Synchro or Resolver Programmable input options are shown in FIGURES 4 and 5.


FIGURE 4. SYNCHRO INPUT CONNECTION DIAGRAM


FIGURE 5. RESOLVER INPUT CONNECTION DIAGRAM

\section*{TRANSFORMER ISOLATION}

Many applications require electrical isolation to the input of the converter. DDC offers transformers suitable for these applications, as indicated in TABLE 8. These transformers are connected as shown in FIGURES 21 and 22.

\section*{INTERFACING - DIGITAL OUTPUTS AND CONTROLS}

\section*{DIGITAL INTERFACE}

The digital interface circuitry performs three main functions:
1. Latches the output bits during an Inhibit (INH) command allowing stable data to be read out of the SD-14531.
2. Furnishes parallel tri-state data formats.
3. Acts as a buffer between the internal CMOS logic and the external TTL logic.

In the SD-14531 applying an Inhibit ( \(\overline{\mathrm{NH}}\) ) command will lock the data in the inhibit transparent latch without interfering with the continuous tracking of the converter's feedback loop. Therefore the digital angle \(\phi\) is always updated, and the \(\overline{\mathrm{NH}}\) can be applied for an arbitrary amount of time. The Inhibit Transparent Latch and the 50 ns delay are part of the inhibit circuitry. For further information see the INHIBIT ( \(\overline{\mathbf{N H}, \text { PIN 13) paragraph. }}\)

\section*{DIGITAL ANGLE OUTPUTS (LOGIC INPUT/OUTPUT)}

The digital angle outputs are buffered and provided in a two-byte format. The first byte contains the MSBs (bits 1-8) and is enabled by placing \(\overline{\mathrm{HBE}}\) (pin 35) to a logic 0 . Depending on the user-programmed resolution, the second byte contains the LSBs and is enabled by placing \(\overline{\mathrm{LBE}}(\operatorname{pin} 17)\) to a logic 0.

The second byte will contain either bits 9-14 (14-bit resolution) or bits 9-16 (16-bit resolution). All unused LSB's will be at logic 0 . TABLE 3 lists the angular weight for the digital angle outputs.

The digital angle outputs are valid 150 ns after \(\overline{\mathrm{HBE}}\) or \(\overline{\mathrm{LBE}}\) are activated with a logic 0 and are high impedance within 100 ns , max after \(\overline{\mathrm{HBE}}\) and \(\overline{\mathrm{LBE}}\) are set to logic 1 (See FIGURE 7). Both enables are internally pulled down.

\section*{DIGITAL ANGLE OUTPUT TIMING}

The digital angle output is 14 or 16 parallel data bits and Converter Busy (CB). All logic outputs are short-circuit proof to ground and +5 V . The CB output is a positive, 0.8 to \(3.0 \mu\) s pulse.

The digital output data changes approximately 50 ns after the leading edge of the CB pulse because of an internal delay. Data is valid \(0.2 \mu \mathrm{~s}\) after the leading edge of CB (See FIGURE 8). The
angle is determined by the sum of the bits at logic 1 . The digital outputs are valid 150 ns max after \(\overline{\mathrm{HBE}}\) or \(\overline{\mathrm{LBE}}\) go low and are high impedance within 100 ns max of \(\overline{\mathrm{HBE}}\) or \(\overline{\mathrm{LBE}}\) going high.

\section*{INHIBIT (INH, PIN 13)}

When an Inhibit ( \(\overline{\mathrm{NH}}\) ) input is applied to the SD-14531, the Output Transparent Latch is locked causing the output data bits to remain stable while data is being transferred (See FIGURE 9). The output data bits are stable \(0.5 \mu\) s after \(\overline{\mathrm{INH}}\) goes to logic 0 .

A logic 0 at the T input of the Inhibit Transparent Latch latches the data, and a logic 1 applied to T allows the bits to change. This latch also prevents the transmission of invalid data when there is an overlap between CB and \(\overline{\mathrm{NH}}\). While the counter is not being updated, CB is at logic 0 and the \(\overline{\mathrm{INH}}\) latch is transparent; when CB goes to logic 1 , the \(\overline{\mathrm{NH}}\) latch is locked. If CB occurs after \(\overline{\mathrm{NH}}\) has been applied, the latch will remain locked and its data will not change until CB returns to logic 0 ; if \(\overline{\mathrm{NH}}\) is applied during CB, the latch will not lock until the CB pulse is over. The purpose of the 50 ns delay is to prevent a race condition between CB and \(\overline{\mathrm{INH}}\) where the up-down counter begins to change as an \(\overline{\mathrm{INH}}\) is applied.

An \(\overline{\mathrm{NH}}\) input, regardless of its duration, does not affect the converter update. A simple method of interfacing to a computer asynchronous to CB is: (1) Apply \(\overline{\mathrm{NH}}\); (2) Wait \(0.5 \mu \mathrm{~s} \mathrm{~min}\); (3) Transfer the data; (4) Release \(\overline{\mathrm{NH}}\).

A logic 1 for the \(\overline{\mathrm{NH}}\) enables the output data to be updated. The time it takes for \(\overline{\mathrm{INH}}\) to go to a logic 1 should be 100 ns minimum before valid data is transferred. To allow the update of the output data with valid information the \(\overline{\mathrm{INH}}\) must remain at a logic 1 for \(1 \mu \mathrm{~s}\) minimum (See FIGURE 10).

\section*{DATA TRANSFERS}

Digital output data from the SD-14531 can be transferred to 8-bit and 16 -bit bus systems. For 8 -bit systems, the MSB and LSB bytes are transferred sequentially. For 16 -bit systems all bits are transferred at the same time

\section*{DATA TRANSFER TO 8-BIT BUS}

FIGURES 11 and 12 show the connections and timing for transferring data from the SD-14531 to an 8-bit bus.

As can be seen by the timing diagram, the following occurs:
1. The converter \(\overline{\mathrm{NH}}\) control is applied and must remain low for a minimum of 500 ns before valid data is transferred.
2. \(\overline{\mathrm{HBE}}\) is set to a low state (logic 0 ) 350 ns MIN after \(\overline{\mathrm{NH}}\) goes low and must remain low for a minimum of 150 ns before the MSB data (1-8) is valid and transferred.
3. As \(\overline{\mathrm{HBE}}\) is set to a high state (logic 1), \(\overline{\mathrm{LBE}}\) is brought low for a 150 ns MIN before the LSB data is valid and transferred.
4. \(\overline{\mathrm{LBE}}\) should go high (to logic 1 ) at least 100 ns MAX before another device uses the bus.
5. \(\overline{\mathrm{NH}}\) goes high and data transfer is done and the data refresh cycle can begin. Note the time it takes for \(\overline{\mathrm{INH}}\) to go to a logic 1 should be 100 ns minimum before valid data is transferred.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ TABLE 3. DIGITAL ANGLE OUTPUTS } \\
\hline BIT & DEG/BIT & MIN/BIT \\
\hline 1(MSB ALL MODES) & 180 & 10800 \\
2 & 90 & 5400 \\
3 & 45 & 2700 \\
4 & 22.5 & 1350 \\
5 & 11.25 & 675 \\
6 & 5.625 & 337.5 \\
7 & 2.813 & 168.75 \\
8 & 1.405 & 84.38 \\
9 & 0.7031 & 42.19 \\
10 & 0.3516 & 21.09 \\
11 & 0.1758 & 10.55 \\
12 & 0.0879 & 5.27 \\
13 & 0.0439 & 2.64 \\
14(LSB 14 BIT MODE) & 0.0220 & 1.32 \\
15 & 0.0110 & 0.66 \\
16(LSB 16 BIT MODE) & 0.0055 & 0.33 \\
\hline \multicolumn{2}{|c|}{ Note: \(\overline{\text { HBE }}\) enables the 8 MSBs and \(\overline{\text { LBE }}\) enables the LSBs. } \\
\hline
\end{tabular}


FIGURE 7. TRI-STATE OUTPUT TIMING


FIGURE 9. INHIBIT TIMING DIAGRAM


FIGURE 8. CONVERTER BUSY TIMING DIAGRAM


FIGURE 10. OUTPUT DATA UPDATE TIMING

Note: For further understanding refer to the beginning of this section (i.e., Digital Interface, Digital Angle Outputs, Digital Angle Output Timing, and Inhibit).

\section*{DATA TRANSFER TO 16-BIT BUS}

Data transfer to the 16 -bit bus is much simpler than the 8 -bit bus. FIGURES 13 and 14 show the connections and timing for transferring data from the SD-14531 to a 16-bit bus.

As can be seen by the timing diagram the following occurs:
1. The converter \(\overline{\mathrm{NH}}\) control is applied and must remain low for a minimum of 500 ns before valid data is transferred.
2. \(\overline{\mathrm{HBE}}\) and \(\overline{\mathrm{LBE}}\) are set to a low state (logic 0 ) 350 ns minimum after \(\overline{\mathrm{NH}}\) goes low and must remain low for a minimum of 150 ns before the data (1-16) is valid and transferred.
3. \(\overline{\mathrm{HBE}}\) and \(\overline{\mathrm{LBE}}\) should go high (to logic 1) at least 100 ns MAX before another device uses the bus.
4. \(\overline{\mathrm{NH}}\) goes high and data transfer is done and the data refresh cycle can begin. Note the time it takes for \(\overline{\mathrm{INH}}\) to go to a logic 1 should be 100 ns minimum before valid data is transferred.

Note: For further understanding refer to the beginning of this section (i.e., Digital Interface, Digital Angle Outputs, Digital Angle Output Timing, and Inhibit).

\section*{INTERFACING - ANALOG OUTPUTS}

The analog outputs are AC error (e), Analog Return (V), and Velocity (VEL).

AC ERROR (e, PIN 12)
The AC error is proportional to the difference between the input angle \(\theta\) and the digital input angle \(\phi,(\theta-\phi)\), with a scaling of:
\(3.5 \mathrm{mV} \mathrm{rms} / \mathrm{LSB}\) (14-bit mode)
\(1.75 \mathrm{mV} \mathrm{rms} / \mathrm{LSB}\) (16-bit mode)

The e output can swing \(\pm 3 \mathrm{~V}\) min with respect to Analog Return (V).

\section*{ANALOG RETURN (V, PIN 11)}

This internal voltage is not required externally for normal operation of the converter. It is used as the internal DC reference and the return for the VEL and e outputs. It is nominally +4.3 V and is proportional to the +5 V DC supply.

VELOCITY (VEL, PIN 10)
The velocity output (VEL, pin 10) is a DC voltage proportional to angular velocity \(\mathrm{d} \theta / \mathrm{dt}\). The velocity is the input to the voltagecontrolled oscillator (VCO), as shown in FIGURE 1. Its linearity


FIGURE 11. 8-BIT DATA TRANSFER


FIGURE 12. 8-BIT DATA TRANSFER TIMING
and accuracy are dependent solely on the linearity and accuracy of the VCO.

The VEL output can swing \(\pm 1.10 \mathrm{~V}\) with respect to Analog Return (V). The analog output VEL characteristics are listed in TABLES 4 and 5.

The VEL output has DC tachometer quality specs such that it can be used as the velocity feedback in servo applications.

\section*{INTERFACING - DYNAMIC PERFORMANCE}

A Type II servo loop ( \(\mathrm{Kv}=\infty\) ) and very high acceleration constants give the SD-14531 superior dynamic performance. If the power supply voltage is not the +5 V DC nominal value, the specified input rates will increase or decrease in proportion to the fractional change in voltage.

\section*{TRANSFER FUNCTIONS}

The dynamic performance of the converter can be determined from its transfer function block diagram (FIGURE 15) and open and closed loop Bode plots (FIGURES 16 and 17). Values for the transfer function block can be obtained from TABLE 6.

\section*{RESPONSE PARAMETERS}

As long as the converter's maximum tracking rate is not exceeded, there will be no velocity lag in the converter output although momentary acceleration errors remain. If a step input occurs, as


FIGURE 13. 16-BIT DATA TRANSFER
when the power is initially applied, the response will be critically damped. FIGURE 18 shows the response to a step input. After initial slewing at the maximum tracking rate of the converter, there is one overshoot (which is inherent in a Type II servo). The overshoot settling to a final value is a function of the small signal settling time.

\section*{FASTER SETTLING TIME USING "BIT" TO REDUCE RESOLUTION}

Since the SD-14531 has higher precision in the 16-bit mode and faster settling in the 14-bit mode, the BIT output can be used to
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{TABLE 4. VELOCITY CHARACTERISTICS} \\
\hline PARAMETER & UNITS & & P & & X \\
\hline Polarity & \multicolumn{5}{|l|}{VEL is negative for positive angular rate.} \\
\hline Device Type & & 60 Hz & 400 Hz & 60 Hz & 400 Hz \\
\hline Output Voltage (see note) & V & 1.1 & 1.1 & 1.1 & 1.1 \\
\hline Voltage Scaling & rps/1.1 V & \multicolumn{4}{|l|}{See Vel. Voltage Scaling TABLE 5.} \\
\hline Scale Factor Error & \% & 10 & 10 & 15 & 15 \\
\hline Reversal Error & \% & 1 & 1 & 2 & 2 \\
\hline Linearity Error & \% output & 0.5 & 0.5 & 1 & 1 \\
\hline Zero Offset & mV & 5 & 5 & 20 & 20 \\
\hline Load & mA & 0.5 & 0.5 & 0.5 & 0.5 \\
\hline
\end{tabular}

Note: With respect to Analog Return (V)

\section*{TABLE 5. VELOCITY VOLTAGE SCALING (values in V/rps)}
\begin{tabular}{|c|c|c|}
\hline DEVICE TYPE & 14 BIT & 16 BIT \\
\hline 60 Hz & 0.56 & 2.23 \\
\hline 400 Hz & 0.11 & 0.44 \\
\hline
\end{tabular}

Note: If the resolution is changed while the input is changing, then the velocity output voltage and the digital output will have a transient until it settles to the new velocity scaling at a speed determined by the bandwidth.


FIGURE 14. 16-BIT DATA TRANSFER TIMING
program the SD-14531 for lower resolution, allowing the converter to settle faster for step inputs. High precision, faster settling can therefore be obtained simultaneously and automatically in one unit.

CONNECTING THE SD-14531 TO A P.C. BOARD
The SD-14531 can be attached to a printed circuit board using hand solder or wave soldering techniques. Limit exposure to \(300^{\circ} \mathrm{C}\left(572^{\circ} \mathrm{F}\right)\) max, for 10 seconds maximum.

Since the SD-14531 Series converters contain a CMOS device, standard CMOS handling procedures should be followed.
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ TABLE 6. DYNAMIC CHARACTERISTICS } \\
\hline \multicolumn{1}{|c|}{ PARAMETER } & \multirow{2}{*}{ UNIT } & \multicolumn{2}{|c|}{60 Hz UNIT } & \multicolumn{2}{c|}{\(\mathbf{4 0 0} \mathbf{~ H z ~ U N I T ~}\)} \\
\cline { 3 - 6 } & & 14-BIT & 16-BIT & 14-BIT & 16-BIT \\
\hline Input Freq. & Hertz & \(47-1 \mathrm{k}\) & \(47-1 \mathrm{k}\) & \(360-1 \mathrm{k}\) & \(360-1 \mathrm{k}\) \\
Tracking Rate & rps & 2 & 0.5 & 10 & 2.5 \\
Bandwidth, cl & Hertz & 40 & 20 & 320 & 110 \\
Ka & \(1 / \mathrm{sec}\) & 7,680 & 1920 & 192,000 & 48,000 \\
A1 & \(1 / \mathrm{sec}\) & 0.1 & 0.045 & 1.2 & 0.3 \\
A2 & \(1 / \mathrm{sec}\) & 40 k & 40 k & 160,000 & 160,00 \\
A & \(1 / \mathrm{sec}\) & 88 & 44 & 440 & 220 \\
B & \(1 / \mathrm{sec}\) & 14.2 & 14.2 & 100 & 100 \\
acc-1 LSB lag & /sec & 169 & 11 & 4220 & 264 \\
Settling Time & & & & & \\
180º degree Step & ms & 450 & 2000 & 100 & 400 \\
1.4 degree Step & ms & 100 & 250 & 10 & 30 \\
\hline
\end{tabular}


FIGURE 15. TRANSFER FUNCTION BLOCK DIAGRAM


FIGURE 17. CLOSED LOOP BODE PLOT


FIGURE 16. OPEN LOOP BODE PLOT


FIGURE 18. RESPONSE TO STEP INPUT

TABLE 7. SD-14531 PINOUTS
\begin{tabular}{|c|c|c|c|c|c|}
\hline PIN & \multicolumn{3}{|c|}{FUNCTION} & PIN & FUNCTION \\
\hline 1 & S1(Res) & S1(Syn) & ------- & 36 & +5 V \\
\hline 2 & S2(Res) & S2(Syn) & \(\operatorname{Cos}(\mathrm{x})\) & 35 & HBE \\
\hline 3 & S3(Res) & S3(Syn) & \(\operatorname{Sin}(\mathrm{x})\) & 34 & B1 (MSB) \\
\hline 4 & S4(Res) & ---------- & ------- & 33 & B2 \\
\hline 5 & S(Res) & S(Syn) & N/C(x) & 32 & B3 \\
\hline 6 & SR(Res) & SR(Syn) & N/C(x) & 31 & B4 \\
\hline 7 & R(Res) & R(Syn) & N/C(x) & 30 & B5 \\
\hline 8 & & RL & & 29 & B6 \\
\hline 9 & & RH & & 28 & B7 \\
\hline 10 & & VEL & & 27 & B8 \\
\hline 11 & & alog Retur & & 26 & B9 \\
\hline 12 & & e & & 25 & B10 \\
\hline 13 & & \(\overline{\mathrm{NH}}\) & & 24 & B11 \\
\hline 14 & & CB & & 23 & B12 \\
\hline 15 & & BIT & & 22 & B13 \\
\hline 16 & & 14B & & 21 & B14 \\
\hline 17 & & LBE & & 20 & B15 \\
\hline 18 & & GND & & 19 & B16 (LSB) \\
\hline
\end{tabular}

Note: "(Res)" means resolver, "(Syn)" means synchro, and "(x)" means direct. For a direct input unit pins 5, 6, and 7 (S, SR, R) are no connect.


NOTES:
1. Dimensions shown are in inches (mm).
2. Lead identification numbers are for reference only.
3. Lead cluster shall be centered within \(\pm 0.01\) ( 0.25 ) of outline dimensions. Lead spacing dimensions apply only at seating plane.
4. Package is kovar with electroless nickel plating.
5. Case is electrically floating.
6. Leads are gold coated kovar.

FIGURE 19. SD-14531 MECHANICAL OUTLINE 36-PIN DDIP (KOVAR)


NOTES:
1. Dimensions shown are in inches (mm).
2. Lead Cluster to be centralized about case centerline within \(\pm .010\).

FIGURE 20. SD-14531 MECHANICAL OUTLINE 36-PIN FLAT PACK (CERAMIC)

400 Hz SYNCHRO TRANSFORMER T1 21044 OR 21045


400 Hz RESOLVER TRANSFORMER T1 21046 OR 21047 OR 21048


60 Hz SYNCHRO TRANSFORMER 24126 *


400 Hz REF TRANSFORMER 21049


60 Hz REF TRANSFORMER 24133

* NOTE S3 AND S1 CONNECTIONS

These external transformers are for use with converter modules with voltage follower buffer inputs.
400 Hz SYNCHRO AND RESOLVER TRANSFORMER DIAGRAMS (TIA AND TIB) EACH TRANSFORMER CONSISTS OF TWO SECTIONS, TIA AND TIB

\section*{1. MECHANICAL OUTLINES}



PIN NUMBERS FOR REF. ONLY.
DOT ON TOP FACE IDENTIFIES PINS 1 AND 11. T1A AND T1BG PAIRING NUMBERS LISTED IN SHORT SIDE. T1A AND T1BG PAIRING NUMBERS LISTED IN SHORT SIDE.
MARKING INCLUDES PART NUMBER AND T1A AND T1B.

\section*{2. SCHEMATIC DIAGRAMS}


400 Hz REFERENCE TRANSFORMER DIAGRAMS (T2)

\section*{1. MECHANICAL OUTLINE}


\section*{2. SCHEMATIC DIAGRAM}


60 Hz SYNCHRO AND REFERENCE TRANSFORMER DIAGRAMS

The mechanical outline is the same for the synchro input transformer (24126) and the reference input transformer (24133), except for the pins. Pins for the reference transformer are shown in parenthesis () below. An asterisk *indicates that the pin is omitted.


FIGURE 22. TRANSFORMER MECHANICAL OUTLINES

\section*{ORDERING INFORMATION}
(see TABLE 8 for reference and signal transformer ordering information)
SD-14531XX-XXXX

\section*{Supplemental Process Requirements:}

S = Pre-Cap Source Inspection
L = Pull Test
Q = Pull Test and Pre-Cap Inspection
K = One Lot Date Code
W = One Lot Date Code and PreCap Source
Y = One Lot Date Code and 100\% Pull Test
Z = One Lot Date Code, PreCap Source and 100\% Pull Test
Blank = None of the Above

\section*{Accuracy:}
\(2= \pm 5.2\) Minutes
\(4= \pm 2.6\) Minutes
\(5= \pm 1.3\) Minutes Resolver Mode, \(\pm 1.6\) Minutes Synchro Mode (16-Bit Mode only)

\section*{Process Requirements:}

0 = Standard DDC Processing, no Burn-In (See table below.)
1 = MIL-PRF-38534 Compliant
\(2=B^{*}\)
3 = MIL-PRF-38534 Compliant with PIND Testing
4 = MIL-PRF-38534 Compliant with Solder Dip
\(5=\) MIL-PRF-38534 Compliant with PIND Testing and Solder Dip
\(6=B^{*}\) with PIND Testing
7 = B* with Solder Dip
8 = B* with PIND Testing and Solder Dip
9 = Standard DDC Processing with Solder Dip, no Burn-In (See table below.)
Temperature Grade/Data Requirements:
\(1=-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
\(2=-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
\(3=0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
\(4=-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) with Variables Test Data
\(5=-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) with Variables Test Data
\(8=0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) with Variables Test Data
Input:
\(1=11.8 / 400 \mathrm{~Hz}\)
\(2=90 / 400 \mathrm{~Hz}\)
\(3=90 / 60 \mathrm{~Hz}\)
4 = Direct/ 400 Hz
5 = Direct/60 Hz

\section*{Package:}

D = DIP
F = Flat Pack (Consult factory for availability.)
*Standard DDC Processing with burn-in and full temperature test - see table below.
STANDARD DDC PROCESSING
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ TEST } & \multicolumn{2}{|c|}{ MIL-STD-883 } \\
\cline { 2 - 3 } & METHOD(S) & CONDITION(S) \\
\hline INSPECTION & \(2009,2010,2017\), and 2032 & - \\
\hline SEAL & 1014 & A and C \\
\hline TEMPERATURE CYCLE & 1010 & C \\
\hline CONSTANT ACCELERATION & 2001 & A \\
\hline BURN-IN & 1015, Table 1 & - \\
\hline
\end{tabular}

\section*{TABLE 8. TRANSFORMER ORDERING INFORMATION}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ TYPE } & FREQ. & \begin{tabular}{c} 
REF. \\
VOLTAGE
\end{tabular} & \begin{tabular}{c} 
L-L \\
VOLTAGE
\end{tabular} & \begin{tabular}{c} 
PART NUMBERS
\end{tabular} \\
\cline { 5 - 6 } & & & & \begin{tabular}{c} 
REF. \\
XFMR
\end{tabular} & \begin{tabular}{c} 
SIGNAL \\
XFMR
\end{tabular} \\
\hline & & & & & \\
Synchro & 400 Hz & 115 V & 90 V & 21049 & \(21045^{*}\) \\
Synchro & 400 Hz & 26 V & 11.8 V & 21049 & \(21045^{*}\) \\
& & & & & \\
Resolver & 400 Hz & 115 V & 90 V & 21049 & \(21048^{*}\) \\
Resolver & 400 Hz & 26 V & 26 V & 21049 & \(21047^{*}\) \\
Resolver & 400 Hz & 26 V & 11.8 V & 21049 & \(21046^{*}\) \\
Synchro† & 60 Hz & 115 V & 90 V & \(24133-1\) & \(24126-1\) \\
& & & & \(24133-3\) & \(24126-3\) \\
& & & & & \\
\hline
\end{tabular}
* The part number for each 400 Hz synchro or resolver isolation transformer includes two separate modules as shown in the outline drawings.
\(\dagger 60 \mathrm{~Hz}\) synchro transformers are available in two temperature ranges:
XXXXX- \(1=-55^{\circ} \mathrm{C}\) to \(+105^{\circ} \mathrm{C}\)
XXXXX-3 \(=0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)

The information in this data sheet is believed to be accurate; however, no responsibility is assumed by Data Device Corporation for its use, and no license or rights are granted by implication or otherwise in connection therewith.

Specifications are subject to change without notice.


105 Wilbur Place, Bohemia, New York 11716-2482
For Technical Support - 1-800-DDC-5757 ext. 7382
Headquarters - Tel: (631) 567-5600 ext. 7382, Fax: (631) 567-7358
West Coast - Tel: (714) 895-9777, Fax: (714) 895-4988
Southeast - Tel: (703) 450-7900, Fax: (703) 450-6610
United Kingdom - Tel: +44-(0)1635-811140, Fax: +44-(0)1635-32264
Ireland - Tel: +353-21-341065, Fax: +353-21-341568
France - Tel: +33-(0)1-41-16-3424, Fax: +33-(0)1-41-16-3425
Germany - Tel: +49-(0)8141-349-087, Fax: +49-(0)8141-349-089
Japan - Tel: +81-(0)3-3814-7688, Fax: +81-(0)3-3814-7689
World Wide Web - http://www.ddc-web.com```

