
SD-14531 PROGRAMMABLE SYNCHRO/RESOLVER-TO-DIGITAL CONVERTER

DESCRIPTION

The SD-14531 is a low-cost, high reliability, programmable synchro/ resolver-to-digital converter with pin programmable 14- or 16-bit resolution. Packaged in a 36-pin DDIP, the SD-14531 features Built-In-Test (BIT) output.

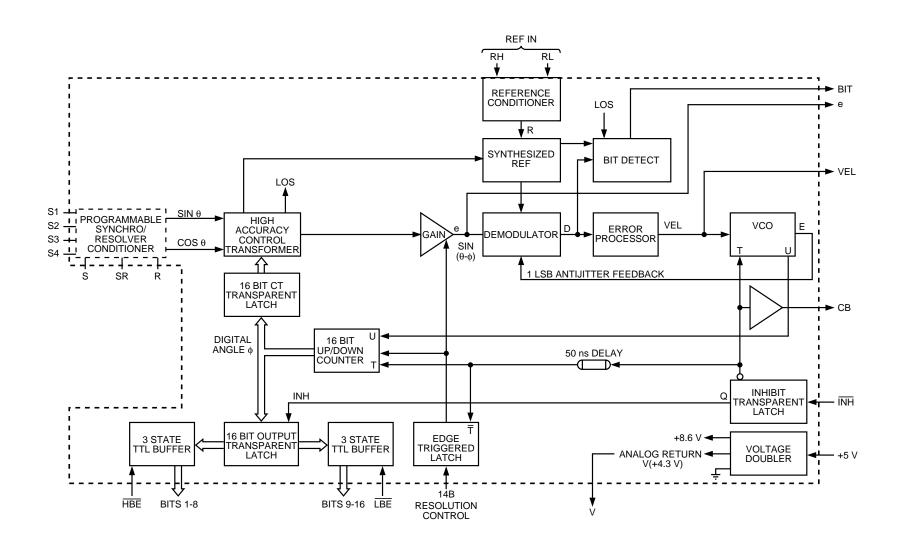
The SD-14531 series accepts broadband inputs: 360 to 1 kHz, or 47 to 1 kHz. Other features include solid-state signal and reference isolation and high common-mode rejection. The digital angle output from the SD-14531 is a natural binary code, parallel positive logic and is TTL/CMOS compatible. Synchronization to a computer is accomplished with the Converter Busy (CB) output and/or the Inhibit (INH) input.

APPLICATIONS

Because of its high reliability, small size, and low power consumption, the SD-14531 is ideal for military ground or avionics applications. All models are available with MIL-PRF-38534 processing.

Designed with three-state output, the SD-14531 is especially well suited for use with computer based systems. Among the many possible applications are radar and navigation systems, fire control systems, flight instrumentation and flight trainers or simulators.

• FEATURES


- Single +5 V Power Supply
- Accuracy to 1.3 Arc-Minutes
- Pin Programmable
 Synchro/Resolver Input Option
- Pin Programmable 14-Bit or 16-Bit Resolution
- No 180° False Lock-up
- Internal Synthesized Reference
- Built-In-Test (BIT) Output
- Low Power Consumption
- Pin-for-Pin Replacement for Natel's 1006 and 1056

FOR MORE INFORMATION CONTACT:

Data Device Corporation

Data Device Corporation 105 Wilbur Place Bohemia, New York 11716 631-567-5600 Fax: 631-567-7358 www.ddc-web.com Technical Support: 1-800-DDC-5757 ext. 7382

© 1992, 1999 Data Device Corporation

N

TABLE 1. SD-14531 SPECIFICATIONS

Specifications apply over temperature range, power supply range, reference frequency, and amplitude range; 15% signal amplitude variation, up to 10% harmonic distortion in the reference, and up to 45° of signal to reference phase shift.

PARAMETER	UNIT	VALUE
RESOLUTION	Bits	14 or 16 (See note 1)
ACCURACY	Min	5.2, 2.6, 1.6, or 1.3 (See note 3)
REPEATABILITY	LSB	1 max
REFERENCE INPUT CHARACTERISTICS Carrier Frequency Range	Hz	47-1000 (60 Hz Unit)
Voltage Range	Hz Vrms	360-1000 (400 Hz Unit) 4-130 (for 11.8 V or 90 V signal input) 3-100 (for 1 V direct signal input)
Input Impedance:		, ,
■ Single Ended	Ohm	250k min
Differential Common Mode Range	Ohm V	500k min 250 peak max
5	v	
SIGNAL INPUT CHARACTERISTICS (voltage options and minimum input impedance) Input Impedance Imbalance Synchro mode Zin Line-to-Line Zin Each Line-to-Gnd Common Mode Range Resolver mode Zin Single Ended Zin Differential Zin Each Line-to Gnd Common Mode Range Direct (1.0 VL-L) Input Signal Type Sin/Cos Voltage Range Max Voltage w/o Damage	% V Ohm Ohm V Ohm Ohm V Vrms	0.2 max <u>11.8 VL-L</u> <u>90 VL-L</u> 60k 500k 30k 250k 30 max 180 max <u>11.8 VL-L</u> 30k 60k 30k 30 max Sin and Cos resolver signals referenced to converter inter- nal DC reference V. 1 V nominal, 1.15 V max. 15 V continuous 100 V Peak Transient Zin > 20M 10pf voltage follower
REFERENCE SYNTHESIZER ± Sig/Ref Phase Shift	Deg	60 typ, 45 guaranteed
DIGITAL INPUT/OUTPUT Logic Type		TTL/CMOS compatible
INPUTS:		Logic 0 = 0.8 V max. Logic 1 = 2.0 V min. Loading = 30 μ A max.
Inhibit (INH)		Logic 0 inhibits Data stable within 0.5 µs (pull up)
Resolution Control (14B) (for Programmable Units Only) Enable Bits 1 to 8 (<u>HBE)</u> Enable Bits 9 to 16 (LBE) (9 to 14 for 14-bit mode)		Logic 1 for 14 bits Logic 0 for 16 Bits (Pull-up current source to +5 V 5 pF max CMOS transient protected) Logic 0 enables Data Valid within 150 ns Logic 1 = High Z Data High Z within 100 ns
		Pull-down current source to GND 5 pF max CMOS transient protected

PARAMETER	TABLE 1. SD-14531 SPECIFICATIONS (CONT.) PARAMETER UNIT VALUE					
DIGITAL INPUT/OUTPUT	0	111	VALUE			
(CONT.)						
OUTPUTS:						
Parallel Data	B	lits	14 or 16 parallel lines;			
			natural binary angles, pos- itive logic.			
Converter Busy (CB)	ł	JS	0.8 to 3.0 positive pulse; leading edge initiates			
			counter update.			
			Lesis 4 for fourt conditions			
BIT			Logic 1 for fault conditions.			
Drive Capability			50 pF + rated logic drive			
			Logic 0; 1 TTL load,			
			1.6 mA at 0.4 V max Logic 1; 10 TTL loads,			
			0.4 mA at 2.8 V min High			
			Z;10 µA 5 pF max			
			Logic 0; 100 mV max			
			driving CMOS			
			Logic 1; +5 V supply minus 100 mV min			
			driving CMOS			
ANALOG OUTPUT						
Analog Return (V)			+4.3 V nom			
Velocity (VEL) (See note 2)			See TABLE 4.			
AC error (e) ■ 14-Bit Mode	mVrms		3.5 per LSB of error			
■ 16-Bit Mode	mVrms					
Load	mA		1			
DYNAMIC CHARACTERISTICS			See TABLE 6.			
POWER SUPPLY						
CHARACTERISTICS Nominal Voltage		v	+5			
Voltage Tolerance		%	±10			
Max Voltage w/o Damage		V.	+7			
Current	n	nA	25 max+digital output load			
TEMPERATURE RANGES Operating (-1XXX or -4XXX)	c	°C	-55 to +125			
(-3XXX or -8XXX)		2 2	0 to 70			
Storage		°Č	-65 to +150			
PHYSICAL CHARACTERISTICS						
Туре			36-Pin DDIP			
Size		in าm)	1.9 x 0.78 x 0.21 (48 x 20 x 5.3)			
Weight		(g)	(48 x 20 x 5.3) 0.7 max (20)			
TRANSFORMER		/	, <i>'</i>			
CHARACTERISTICS						
(See ordering information for list of	of					
Transformers. Reference Transformers are Optic	nel					
for Both Solid-State and Voltage	nai					
Follower Input Options.)						
400 Hz TRANSFORMERS						
Reference Transformer		261) - 1000 Hz			
, , , ,			0 - 1000 Hz - 130 V			
• •			kΩ min			
Breakdown Voltage to GND		120	00 V peak			
SIGNAL TRANSFORMER	IER					
Carrier Frequency Range Breakdown Voltage to GND	arrier Frequency Range 360-1000 Hz reakdown Voltage to GND 700 V peak					

TABLE 1. SD-14531 SPECIFICATIONS (CONT.)				
PARAMETER	VA	LUE		
TRANSFORMER CHARACTERISTICS (CONT.) Minimum Input impedances	SynchroZIN(Zso)) ResolverZın		
(Balanced) 90 V L-L 26 V L-L 11.8 V L-L	180 Ω - 20 kΩ	100 kΩ 30 kΩ 30 kΩ		
60 Hz TRANSFORMERS Reference Transformer Carrier Frequency Range Input Voltage Range	47 - 440 Hz 80 -138 V rms; 115 V rms			
Input Impedance	nominal resistive 600 k Ω min, resistive			
Input Common-Mode Voltage	500 V rms transformer isolated			
Output Description	+R (in phase with RH-RL) and -R (in phase with RL- RH) derived			
Output Voltage Power Required	from op-amps. Short-Circuit proof. 3.0 V nominal riding on ground reference V. Output Voltage level tracks input level.			
	4 mA typ, 7 mA max from +15 V supply.			
Signal Transformer Carrier Frequency Range	47 440 11-			
Input Voltage Range	47 - 440 Hz 10 -100 V rms L L- L nominal	- L; 90 V rms		
Input Impedance	148 kΩ min L- L resistive	balanced		
Input Common-Mode Voltage Output Description	±500 V rms, transformer isolated Resolver output, - Sine (- S) + Cosine (+C) derived from op-amps. Short circuit proof. 1.0 V rms nominal riding on ground reference V. Output volt-			
Output Voltage				
Power Required	age level tracks 4 mA typ, 7 mA supply.	input level. max from +15 V		

Notes:

(1) Pin Programmable.

(2) VEL polarity is negative voltage for positive angular rate.

(3) XX5 ordering option = ±1.3 minutes resolver mode, ±1.6 minutes synchro mode (16-bit mode only).

THEORY OF OPERATION

The SD-14531 Series are small, 36-pin DDIP synchro-to-digital hybrid converters. As shown in the block diagram (FIGURE 1), the SD-14531 can be broken down into the following functional parts: Signal Input Option, Converter, Analog Conditioner, Power Supply Conditioner, and Digital Interface.

CONVERTER OPERATION

As shown in FIGURE 1, the converter section of the SD-14531 contains a high accuracy control transformer, demodulator, error processor, voltage-controlled oscillator (VCO), up-down counter, and reference conditioner. The converter produces a digital angle which tracks the analog input angle to within the specified

accuracy of the converter. The control transformer performs the following trigonometric computation:

 $sin(\theta - \phi) = sin\theta \cos\phi - \cos\theta \sin\phi$

Where:

 θ is angle theta representing the resolver shaft position ϕ is digital angle phi contained in the up/down counter

The tracking process consists of continually adjusting ϕ to make $(\theta - \phi) = 0$, so that ϕ will represent the shaft position θ .

The output of the demodulator is an analog DC level proportional to $sin(\theta - \phi)$. The error processor receives its input from the demodulator and integrates this $sin(\theta - \phi)$ error signal which then drives the VCO. The VCO's clock pulses are accumulated by the up/down counter. The velocity voltage accuracy, linearity and offset are determined by the quality of the VCO. Functionally, the up/down counter is an incremental integrator. Therefore, there are two stages of integration which makes the converter a Type II tracking servo.

In a Type II servo, the VCO always settles to a counting rate which makes $d\phi/dt$ equal to $d\theta/dt$ without lag. The output data will always be fresh and available as long as the maximum tracking rate of the converter is not exceeded.

The reference conditioner is a comparator that produces the square wave reference voltage which drives the demodulator. It's single-ended Input Z is 250k Ohms min, 500k Ohms differential.

SPECIAL FUNCTIONS

The synthesized reference section of the SD-14531 eliminates errors caused by quadrature voltage. Due to the inductive nature of synchros and resolvers, their signals typically lead the reference signal (RH and RL) by about 6°. When an uncompensated reference signal is used to demodulate the control transformer's output, quadrature voltages are not completely eliminated. In a 14-bit converter it is not necessary to compensate for the reference signal's phase shift. A 6° phase shift will, however, cause problems for the one minute accuracy converters. As shown in FIGURE 1, the converter synthesizes its own $\cos(\omega t + \alpha)$ reference signal from the $\sin\theta - \cos(\omega t + \alpha)$, $\cos\theta - \cos(\omega t + \alpha)$ signal inputs and from the cosot reference input. The phase angle of the synthesized reference is determined by the signal input. The reference input is used to choose between the +180° and -180° phases. The synthesized reference will always be exactly in phase with the signal input, and quadrature errors will therefore be eliminated. The synthesized reference circuit also eliminates the 180° false error null hangup.

Quadrature voltages in a resolver or synchro are by definition the resulting 90° fundamental signal in the nulled out error voltage

(e) in the converter. A digital position error will result due to the interaction of this quadrature voltage and a reference phase shift between the converter signal and reference inputs. The magnitude of this error is given by the following formula:

Magnitude of Error=(Quadrature Voltage/F.S.signal) • $tan(\alpha)$

Where:

Magnitude of Error is in radians, Quadrature Voltage is in volts, Full Scale signal is in volts, α = signal-to-REF phase shift.

An example of the magnitude of error is as follows:

Let:	Quadrature Voltage = 11.8 mV
Let:	F.S. signal = 11.8 V
Let:	$\alpha = 6^{\circ}$

Then: Magnitude of Error = 0.35 min \cong 1 LSB in the 16th bit.

Note: Quadrature is composed of static quadrature which is specified by the synchro or resolver supplier plus the speed voltage which is determined by the following formula:

Speed Voltage=(rotational speed/carrier frequency) • F.S. signal

Where:

Speed Voltage is the quadrature due to rotation,

Rotational speed is the rps (rotations per second) of the synchro or resolver,

Carrier frequency is the REF in Hz.

BUILT-IN-TEST (BIT, PIN 15)

The Built-In-Test output (BIT) monitors the level of error (D) from the demodulator. D represents the difference in the input and output angles and ideally should be zero; if it exceeds approximately 180 LSBs (of the selected resolution) the logic level at BIT will change from a logic 0 to logic 1. This condition will occur during a large step

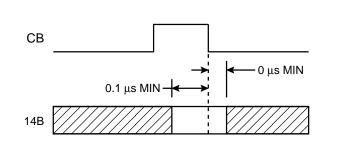
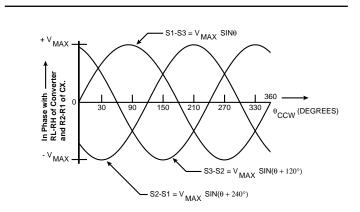
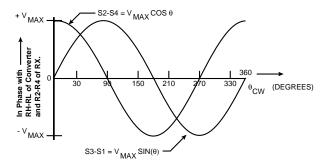


FIGURE 2. RESOLUTION CONTROL TIMING DIAGRAM Data Device Corporation www.ddc-web.com and reset after the converter settles out. BIT will also change to logic 1 for an over-velocity condition, because the converter loop cannot maintain input-output and/or if the converter malfunctions where it cannot maintain the loop at a null. BIT will also be set for a Loss-of-Signal (LOS) and/or a Loss-of-Reference (LOR).


PROGRAMMABLE RESOLUTION (14B, PIN 16)

Resolution is controlled by one logic input,14B. The resolution can be changed during converter operation so the appropriate resolution and velocity dynamics can be changed as needed. To insure that a race condition does not exist between counting and changing the resolution, input 14B is latched internally on the trailing edge of CB (see FIGURE 2).


INTERFACING - INPUTS

SIGNAL INPUT OPTIONS

The SD-14531 series offers programmable synchro or resolver inputs. In a synchro or resolver, shaft angle data is transmitted as the ratio of carrier amplitudes across the input terminals. Synchro signals, which are of the form $sin\theta cos\omega t$, $sin(\theta+120^\circ)$

Standard Synchro Control Transmitter (CX) Outputs as a Function of CCW Rotation From Electrical Zero (EZ).

Standard Resolver Control Transmitter (RX) Outputs as a Function of CW Rotation From Electrical Zero (EZ) With R2-R4 Excited.

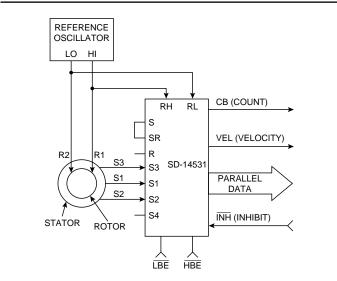
FIGURE 3. SYNCHRO AND RESOLVER SIGNALS

SD-14531

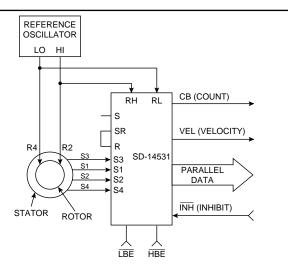
 $\cos\omega t$, and $\sin(\theta+240^\circ)\cos\omega t$ are internally converted to resolver format; $\sin\theta\cos\omega t$ and $\cos\theta\cos\omega t$.

FIGURE 3 illustrates synchro and resolver signals as a function of the angle $\boldsymbol{\theta}.$

The solid-state signal and reference inputs are true differential inputs with high AC and DC common mode rejection. *Input impedance is maintained with power off.*


SYNCHRO/RESOLVER PROGRAMMABLE INPUT OPTION

The Synchro or Resolver Programmable input options are shown in FIGURES 4 and 5.


SOLID-STATE BUFFER INPUT PROTECTION — TRANSIENT VOLTAGE SUPPRESSION

The solid-state signal and reference inputs are true differential inputs with high AC and DC common rejection, so most applications will not require units with isolation transformers. Input impedance is maintained with power off. The recurrent AC peak + DC common-mode voltage should not exceed the values in TABLE 2.

The 90 V line-to-line systems may have voltage transients which exceed the 500 V specification listed in TABLE 2. *These transients can destroy the thin-film input resistor network in the hybrid.* Therefore, 90 V L-L solid-state input modules may be protected by installing voltage suppressors as shown. Voltage transients are likely to occur whenever synchro or resolver are switched on and off. For instance a 1000 V transient can be generated when the primary of a CX or TX driving a synchro or resolver input is opened (see FIGURE 6).

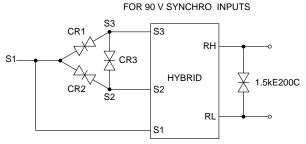

FIGURE 4. SYNCHRO INPUT CONNECTION DIAGRAM

FIGURE 5. RESOLVER INPUT CONNECTION DIAGRAM

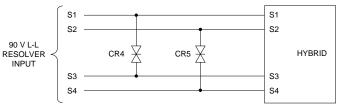

Data Device Corporation www.ddc-web.com

TABLE 2. COMMON-MODE AND TRANSIENT MAXIMUMS				
INPUT COMMON-MODE MAX.TRANSIENT MAXIMUM PEAK VOLTAGE				
11.8 VL-L 90 VL-L Reference 1 VL-L	30 V Peak 180 V Peak 250 V Peak —	150 V 500 V 500 V 100 V		

CR1, CR2, and CR3 are SA150CA, bipolar transient voltage suppressors or equivalent.

FOR 90 V RESOLVER INPUTS

CR4 and CR5 are SA150CA, bipolar transient voltage suppressors or equivalent.

FIGURE 6. CONNECTIONS FOR VOLTAGE TRANSIENT SUPPRESSORS

TRANSFORMER ISOLATION

Many applications require electrical isolation to the input of the converter. DDC offers transformers suitable for these applications, as indicated in TABLE 8. These transformers are connected as shown in FIGURES 21 and 22.

INTERFACING - DIGITAL OUTPUTS AND CONTROLS

DIGITAL INTERFACE

The digital interface circuitry performs three main functions:

1. Latches the output bits during an Inhibit (INH) command allowing stable data to be read out of the SD-14531.

2. Furnishes parallel tri-state data formats.

3. Acts as a buffer between the internal CMOS logic and the external TTL logic.

In the SD-14531 applying an Inhibit ($\overline{\text{INH}}$) command will lock the data in the inhibit transparent latch without interfering with the continuous tracking of the converter's feedback loop. Therefore the digital angle ϕ is always updated, and the $\overline{\text{INH}}$ can be applied for an arbitrary amount of time. The Inhibit Transparent Latch and the 50 ns delay are part of the inhibit circuitry. For further information see the *INHIBIT (INH, PIN 13)* paragraph.

DIGITAL ANGLE OUTPUTS (LOGIC INPUT/OUTPUT)

The digital angle outputs are buffered and provided in a two-byte format. The first byte contains the MSBs (bits 1-8) and is enabled by placing $\overline{\text{HBE}}$ (pin 35) to a logic 0. Depending on the user-programmed resolution, the second byte contains the LSBs and is enabled by placing $\overline{\text{LBE}}$ (pin 17) to a logic 0.

The second byte will contain either bits 9-14 (14-bit resolution) or bits 9-16 (16-bit resolution). All unused LSB's will be at logic 0. TABLE 3 lists the angular weight for the digital angle outputs.

The digital angle outputs are valid 150 ns after HBE or LBE are activated with a logic 0 and are high impedance within 100 ns, max after HBE and LBE are set to logic 1 (See FIGURE 7). Both enables are internally pulled down.

DIGITAL ANGLE OUTPUT TIMING

The digital angle output is 14 or 16 parallel data bits and Converter Busy (CB). All logic outputs are short-circuit proof to ground and +5 V. The CB output is a positive, 0.8 to $3.0 \,\mu$ s pulse.

The digital output data changes approximately 50 ns after the leading edge of the CB pulse because of an internal delay. Data is valid 0.2 μ s after the leading edge of CB (See FIGURE 8). The

angle is determined by the sum of the bits at logic 1. The digital outputs are valid 150 ns max after $\overline{\text{HBE}}$ or $\overline{\text{LBE}}$ go low and are high impedance within 100 ns max of $\overline{\text{HBE}}$ or $\overline{\text{LBE}}$ going high.

INHIBIT (INH, PIN 13)

When an Inhibit ($\overline{\text{INH}}$) input is applied to the SD-14531, the Output Transparent Latch is locked causing the output data bits to remain stable while data is being transferred (See FIGURE 9). The output data bits are stable 0.5 μ s after $\overline{\text{INH}}$ goes to logic 0.

A logic 0 at the T input of the Inhibit Transparent Latch latches the data, and a logic 1 applied to T allows the bits to change. This latch also prevents the transmission of invalid data when there is an overlap between CB and \overline{INH} . While the counter is not being updated, CB is at logic 0 and the \overline{INH} latch is transparent; when CB goes to logic 1, the \overline{INH} latch is locked. If CB occurs after \overline{INH} has been applied, the latch will remain locked and its data will not change until CB returns to logic 0; if \overline{INH} is applied during CB, the latch will not lock until the CB pulse is over. The purpose of the 50 ns delay is to prevent a race condition between CB and \overline{INH} where the up-down counter begins to change as an \overline{INH} is applied.

An $\overline{\text{INH}}$ input, regardless of its duration, does not affect the converter update. A simple method of interfacing to a computer asynchronous to CB is: (1) Apply $\overline{\text{INH}}$; (2) Wait 0.5 μ s min; (3) Transfer the data; (4) Release $\overline{\text{INH}}$.

A logic 1 for the $\overline{\text{INH}}$ enables the output data to be updated. The time it takes for $\overline{\text{INH}}$ to go to a logic 1 should be 100 ns minimum before valid data is transferred. To allow the update of the output data with valid information the $\overline{\text{INH}}$ must remain at a logic 1 for 1 µs minimum (See FIGURE 10).

DATA TRANSFERS

Digital output data from the SD-14531 can be transferred to 8-bit and 16-bit bus systems. For 8-bit systems, the MSB and LSB bytes are transferred sequentially. For 16-bit systems all bits are transferred at the same time

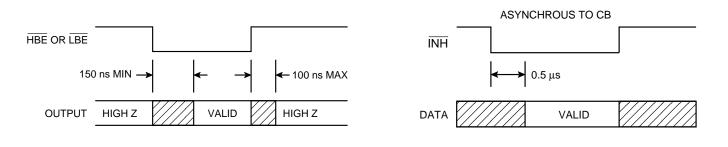
DATA TRANSFER TO 8-BIT BUS

FIGURES 11 and 12 show the connections and timing for transferring data from the SD-14531 to an 8-bit bus.

As can be seen by the timing diagram, the following occurs:

1. The converter INH control is applied and must remain low for a minimum of 500 ns before valid data is transferred.

2. $\overline{\text{HBE}}$ is set to a low state (logic 0) 350 ns MIN after $\overline{\text{INH}}$ goes low and must remain low for a minimum of 150 ns before the MSB data (1-8) is valid and transferred.

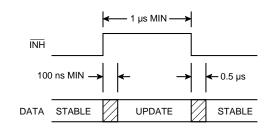

7

3. As $\overline{\text{HBE}}$ is set to a high state (logic 1), $\overline{\text{LBE}}$ is brought low for a 150 ns MIN before the LSB data is valid and transferred.

5. INH goes high and data transfer is done and the data refresh cycle can begin. Note the time it takes for INH to go to a logic 1 should be 100 ns minimum before valid data is transferred.

4. $\overline{\text{LBE}}$ should go high (to logic 1) at least 100 ns MAX before another device uses the bus.

TABLE 3. DIGITAL ANGLE OUTPUTS						
BIT	DEG/BIT	MIN/BIT				
1(MSB ALL MODES)	180	10800				
2	90	5400				
3	45	2700				
4	22.5	1350				
5	11.25	675				
6	5.625	337.5				
7	2.813	168.75				
8	1.405	84.38				
9	0.7031	42.19				
10	0.3516	21.09				
11	0.1758	10.55				
12	0.0879	5.27				
13	0.0439	2.64				
14(LSB 14 BIT MODE)	0.0220	1.32				
15	0.0110	0.66				
16(LSB 16 BIT MODE)						
Note: HBE enables the 8 MSBs and LBE enables the LSBs.						


FIGURE 7. TRI-STATE OUTPUT TIMING

DEPENDS ON dφ/dt

0.8-3.0 μs

VALID

FIGURE 8. CONVERTER BUSY TIMING DIAGRAM

FIGURE 9. INHIBIT TIMING DIAGRAM

FIGURE 10. OUTPUT DATA UPDATE TIMING

Data Device Corporation www.ddc-web.com

DATA

СВ

0.2 us

8

Note: For further understanding refer to the beginning of this section (i.e., Digital Interface, Digital Angle Outputs, Digital Angle Output Timing, and Inhibit).

DATA TRANSFER TO 16-BIT BUS

Data transfer to the 16-bit bus is much simpler than the 8-bit bus. FIGURES 13 and 14 show the connections and timing for transferring data from the SD-14531 to a 16-bit bus.

As can be seen by the timing diagram the following occurs:

1. The converter INH control is applied and must remain low for a minimum of 500 ns before valid data is transferred.

2. HBE and \overline{LBE} are set to a low state (logic 0) 350 ns minimum after \overline{INH} goes low and must remain low for a minimum of 150 ns before the data (1-16) is valid and transferred.

3. HBE and LBE should go high (to logic 1) at least 100 ns MAX before another device uses the bus.

4. INH goes high and data transfer is done and the data refresh cycle can begin. Note the time it takes for INH to go to a logic 1 should be 100 ns minimum before valid data is transferred.

Note: For further understanding refer to the beginning of this section (i.e., Digital Interface, Digital Angle Outputs, Digital Angle Output Timing, and Inhibit).

INTERFACING - ANALOG OUTPUTS

The analog outputs are AC error (e), Analog Return (V), and Velocity (VEL).

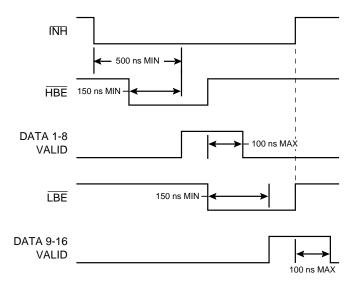
AC ERROR (e, PIN 12)

The AC error is proportional to the difference between the input angle θ and the digital input angle ϕ , (θ - ϕ), with a scaling of:

3.5 mV rms/LSB (14-bit mode) 1.75 mV rms/LSB (16-bit mode)


The e output can swing ±3 V min with respect to Analog Return (V).

ANALOG RETURN (V, PIN 11)


This internal voltage is not required externally for normal operation of the converter. It is used as the internal DC reference and the return for the VEL and e outputs. It is nominally +4.3 V and is proportional to the +5 V DC supply.

VELOCITY (VEL, PIN 10)

The velocity output (VEL, pin 10) is a DC voltage proportional to angular velocity $d\theta/dt$. The velocity is the input to the voltage-controlled oscillator (VCO), as shown in FIGURE 1. Its linearity

FIGURE 11. 8-BIT DATA TRANSFER

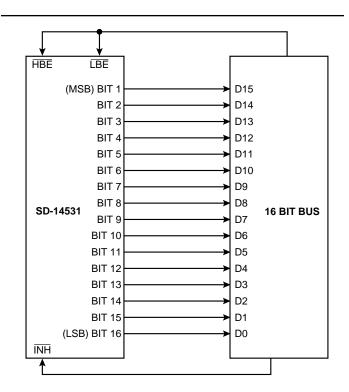
FIGURE 12. 8-BIT DATA TRANSFER TIMING

Data Device Corporation www.ddc-web.com and accuracy are dependent solely on the linearity and accuracy of the VCO.

The VEL output can swing ± 1.10 V with respect to Analog Return (V). The analog output VEL characteristics are listed in TABLES 4 and 5.

The VEL output has DC tachometer quality specs such that it can be used as the velocity feedback in servo applications.

INTERFACING - DYNAMIC PERFORMANCE


A Type II servo loop (Kv = ∞) and very high acceleration constants give the SD-14531 superior dynamic performance. If the power supply voltage is not the +5 V DC nominal value, the specified input rates will increase or decrease in proportion to the fractional change in voltage.

TRANSFER FUNCTIONS

The dynamic performance of the converter can be determined from its transfer function block diagram (FIGURE 15) and open and closed loop Bode plots (FIGURES 16 and 17). Values for the transfer function block can be obtained from TABLE 6.

RESPONSE PARAMETERS

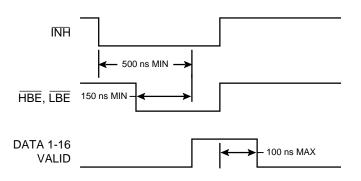
As long as the converter's maximum tracking rate is not exceeded, there will be no velocity lag in the converter output although momentary acceleration errors remain. If a step input occurs, as

FIGURE 13. 16-BIT DATA TRANSFER

when the power is initially applied, the response will be critically damped. FIGURE 18 shows the response to a step input. After initial slewing at the maximum tracking rate of the converter, there is one overshoot (which is inherent in a Type II servo). The overshoot settling to a final value is a function of the small signal settling time.

FASTER SETTLING TIME USING "BIT" TO REDUCE RESOLUTION

Since the SD-14531 has higher precision in the 16-bit mode and faster settling in the 14-bit mode, the BIT output can be used to


TABLE 4. VELOCITY CHARACTERISTICS						
PARAMETER	UNITS	TYP MAX				
Polarity	VEL is neg	VEL is negative for positive angular rate.				
Device Type		60 Hz 400 Hz 60 Hz 400 H				
Output Voltage (see note)	V	1.1	1.1	1.1	1.1	
Voltage Scaling	rps/1.1 V	ps/1.1 V See Vel. Voltage Scaling TABLE 5.				
Scale Factor Error Reversal Error Linearity Error Zero Offset Load	% % % output mV mA	10 1 0.5 5 0.5	10 1 0.5 5 0.5	15 2 1 20 0.5	15 2 1 20 0.5	

Note: With respect to Analog Return (V)

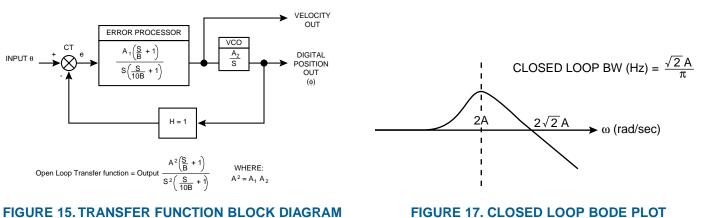
TABLE 5. VELOCITY VOLTAGE SCALING (values in V/rps)

DEVICE TYPE	14 BIT	16 BIT
60 Hz	0.56	2.23
400 Hz	0.11	0.44

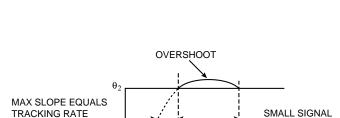
Note: If the resolution is changed while the input is changing, then the velocity output voltage and the digital output will have a transient until it settles to the new velocity scaling at a speed determined by the bandwidth.

FIGURE 14. 16-BIT DATA TRANSFER TIMING

Data Device Corporation www.ddc-web.com


program the SD-14531 for lower resolution, allowing the converter to settle faster for step inputs. High precision, faster settling can therefore be obtained simultaneously and automatically in one unit.

CONNECTING THE SD-14531 TO A P.C. BOARD


The SD-14531 can be attached to a printed circuit board using hand solder or wave soldering techniques. Limit exposure to 300°C (572°F) max, for 10 seconds maximum.

Since the SD-14531 Series converters contain a CMOS device, standard CMOS handling procedures should be followed.

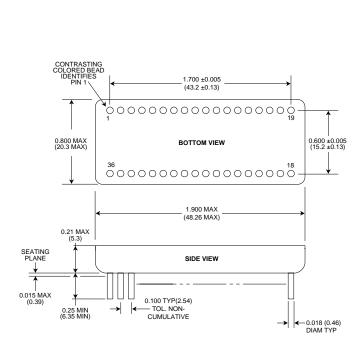
TABLE 6. DYNAMIC CHARACTERISTICS						
PARAMETER	UNIT	60 Hz	UNIT	400 Hz UNIT		
		14-BIT	16-BIT	14-BIT	16-BIT	
Input Freq.	Hertz	47-1k	47-1k	360-1k	360-1k	
Tracking Rate	rps	2	0.5	10	2.5	
Bandwidth, cl	Hertz	40	20	320	110	
Ка	1/sec	7,680	1920	192,000	48,000	
A1	1/sec	0.1	0.045	1.2	0.3	
A2	1/sec	40k	40k	160,000	160,00	
A	1/sec	88	44	440	220	
В	1/sec	14.2	14.2	100	100	
acc-1 LSB lag	/sec	169	11	4220	264	
Settling Time						
180° degree Step	ms	450	2000	100	400	
1.4° degree Step	ms	100	250	10	30	

FIGURE 15. TRANSFER FUNCTION BLOCK DIAGRAM

FIGURE 18. RESPONSE TO STEP INPUT

Data Device Corporation www.ddc-web.com

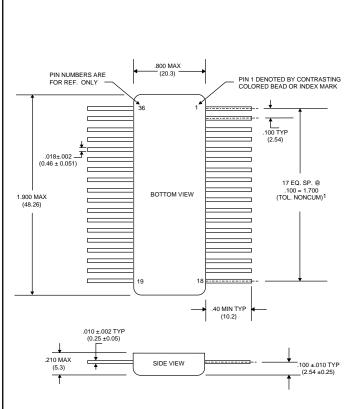
(SLEW RATE)


θı

SETTLING TIME

SETTLING TIME

	TABLE 7. SD-14531 PINOUTS					
PIN	FUNCTION	PIN	FUNCTION			
PIN	FUNCTION S1(Res) S1(Syn) S2(Res) S2(Syn) Cos(x) S3(Res) S3(Syn) Sin(x) S4(Res) S(Res) S(Res) S(Syn) N/C(x) SR(Res) SR(Syn) N/C(x) R(Res) SR(Syn) N/C(x) R(Res) R(Syn) N/C(x) RH VEL Analog Return (V) e INH CB BIT 14B State	PIN 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21	FUNCTION +5 V HBE B1 (MSB) B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14			
17 18	LBE GND	20 19	B15 B16 (LSB)			

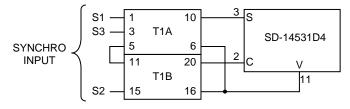

Note: "(Res)" means resolver, "(Syn)" means synchro, and "(x)" means direct. For a direct input unit pins 5, 6, and 7 (S, SR, R) are no connect.

NOTES:

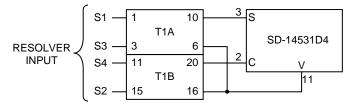
- 1. Dimensions shown are in inches (mm).
- 2. Lead identification numbers are for reference only.
- 3. Lead cluster shall be centered within ±0.01(0.25) of outline dimensions. Lead spacing dimensions apply only at seating plane.
- 4. Package is kovar with electroless nickel plating.
- 5. Case is electrically floating.
- 6. Leads are gold coated kovar.

FIGURE 19. SD-14531 MECHANICAL OUTLINE 36-PIN DDIP (KOVAR)

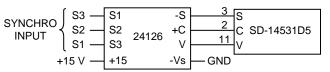
NOTES:


1. Dimensions shown are in inches (mm).

2. Lead Cluster to be centralized about case centerline within ±.010.


FIGURE 20. SD-14531 MECHANICAL OUTLINE 36-PIN FLAT PACK (CERAMIC)

Data Device Corporation www.ddc-web.com


400 Hz SYNCHRO TRANSFORMER T1 21044 OR 21045

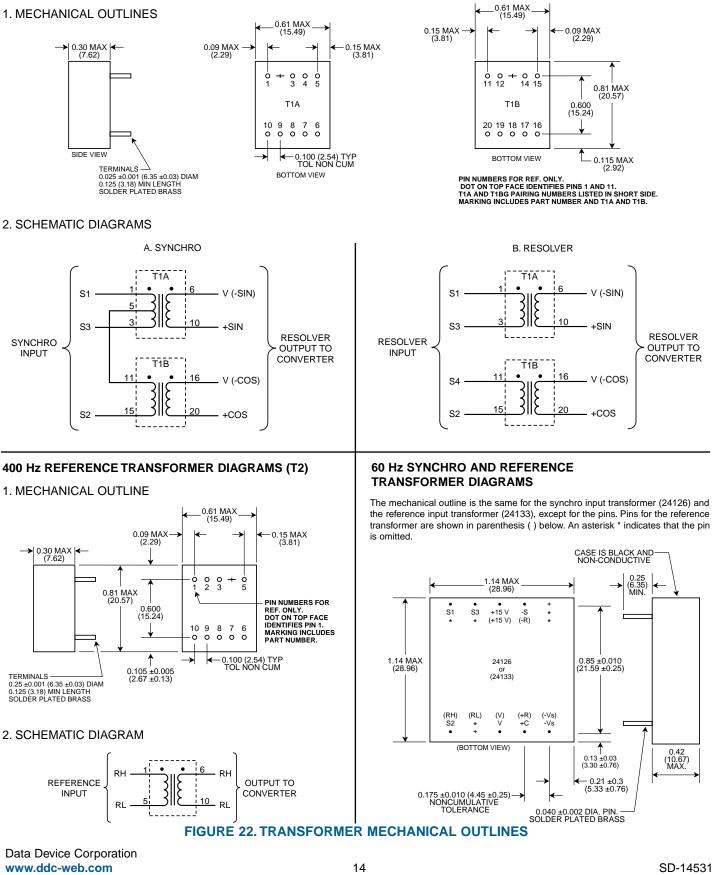
400 Hz RESOLVER TRANSFORMER T1 21046 OR 21047 OR 21048

60 Hz SYNCHRO TRANSFORMER 24126 *

400 Hz REF TRANSFORMER 21049

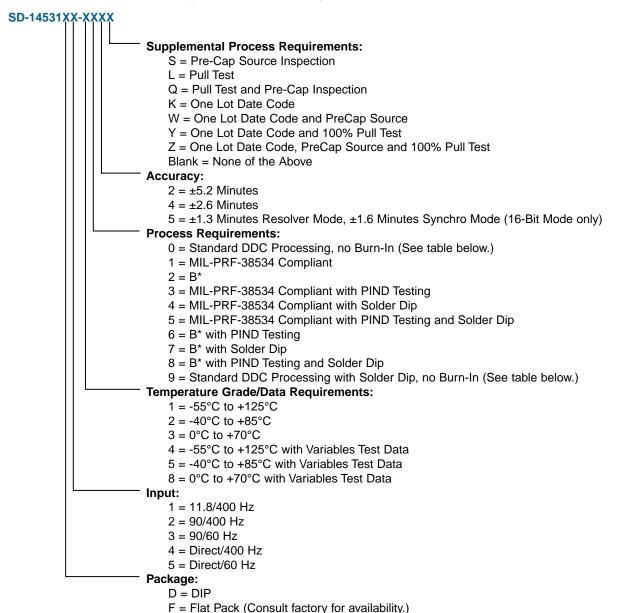
SYNCHRO	(RH –⊥[6	F	RH
INPUT	RL _5	T2	10	F	SD-14531D4 RL

60 Hz REF TRANSFORMER 24133


+15 - +15 V	V	11	V
GND			SD-14531D5
	+R	9	RH
REF RH RH INPUT RL RL	-R	8	RL

* NOTE S3 AND S1 CONNECTIONS

FIGURE 21. TRANSFORMER CONNECTION DIAGRAMS


These external transformers are for use with converter modules with voltage follower buffer inputs.

400 Hz SYNCHRO AND RESOLVER TRANSFORMER DIAGRAMS (TIA AND TIB) EACH TRANSFORMER CONSISTS OF TWO SECTIONS. TIA AND TIB

ORDERING INFORMATION

(see TABLE 8 for reference and signal transformer ordering information)

*Standard DDC Processing with burn-in and full temperature test — see table below.

STANDARD DDC PROCESSING					
TEST	MIL-STD-883				
	METHOD(S)	CONDITION(S)			
INSPECTION	2009, 2010, 2017, and 2032	—			
SEAL	1014	A and C			
TEMPERATURE CYCLE	1010	С			
CONSTANT ACCELERATION	2001	A			
BURN-IN	1015, Table 1	—			

TABLE 8. TRANSFORMER ORDERING INFORMATION						
TYPE	FREQ.	REF. VOLTAGE	L-L VOLTAGE	PART NUMBERS		
				REF. XFMR	SIGNAL XFMR	
Synchro	400 Hz	115 V	90 V	21049	21045*	
Synchro	400 Hz	26 V	11.8 V	21049	21045*	
Resolver	400 Hz	115 V	90 V	21049	21048*	
Resolver	400 Hz	26 V	26 V	21049	21047*	
Resolver	400 Hz	26 V	11.8 V	21049	21046*	
Synchro†	60 Hz	115 V	90 V	24133-1	24126-1	
				24133-3	24126-3	

* The part number for each 400 Hz synchro or resolver isolation transformer includes two separate modules as shown in the outline drawings.

† 60 Hz synchro transformers are available in two temperature ranges: XXXX-1 = -55 °C to +105 °C XXXX-1 = 0 °C to +70 °C

The information in this data sheet is believed to be accurate; however, no responsibility is assumed by Data Device Corporation for its use, and no license or rights are granted by implication or otherwise in connection therewith. Specifications are subject to change without notice.

105 Wilbur Place, Bohemia, New York 11716-2482

For Technical Support - 1-800-DDC-5757 ext. 7382

Headquarters - Tel: (631) 567-5600 ext. 7382, Fax: (631) 567-7358 West Coast - Tel: (714) 895-9777, Fax: (714) 895-4988 Southeast - Tel: (703) 450-7900, Fax: (703) 450-6610 United Kingdom - Tel: +44-(0)1635-811140, Fax: +44-(0)1635-32264 Ireland - Tel: +353-21-341065, Fax: +353-21-341568 France - Tel: +33-(0)1-41-16-3424, Fax: +33-(0)1-41-16-3425 Germany - Tel: +49-(0)8141-349-087, Fax: +49-(0)8141-349-089 Japan - Tel: +81-(0)3-3814-7688, Fax: +81-(0)3-3814-7689 World Wide Web - http://www.ddc-web.com

