User's Manual

μ PD780024A, 780034A, 780024AY, 780034AY Subseries

8-Bit Single-Chip Microcontrollers

μΡD780021A μΡD780022A μΡD780023A μΡD780024A μΡD780021A(A) μΡD780022A(A) μΡD780023A(A) μΡD780024A(A)	μPD780031A μPD780032A μPD780033A μPD780034A μPD780031A(A) μPD780032A(A) μPD780033A(A) μPD780034A(A) μPD78F0034A μPD78F0034B	μΡD780021AY μΡD780022AY μΡD780023AY μΡD780024AY μΡD780021AY(A) μΡD780022AY(A) μΡD780023AY(A) μΡD780024AY(A)	μPD780031AY μPD780032AY μPD780033AY μPD780034AY μPD780031AY(A) μPD780032AY(A) μPD780033AY(A) μPD780034AY(A) μPD78F0034AY μPD78F0034BY
	μ PD78F0034B(A)		μ PD78F0034BY(A)

Document No. U14046EJ3V0UD00 (3rd edition) Date Published October 2003 N CP(K)

© NEC Electronics Corporation 1999, 2003 Printed in Japan [MEMO]

① PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

EEPROM, FIP, and IEBus are trademarks of NEC Electronics Corporation.

Windows and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

HP9000 Series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

TRON is an abbreviation of The Realtime Operating system Nucleus.

ITRON is an abbreviation of Industrial TRON.

These commodities, technology or software, must be exported in accordance with the export administration regulations of the exporting country. Diversion contrary to the law of that country is prohibited.

Purchase of NEC Electronics I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

- The information in this document is current as of March, 2003. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC Electronics product in your application, please contact the NEC Electronics office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

[GLOBAL SUPPORT] http://www.necel.com/en/support/support.html

NEC Electronics America, Inc. (U.S.) Santa Clara, California Tel: 408-588-6000 800-366-9782	NEC Electronics (Europe) Gmb Duesseldorf, Germany Tel: 0211-65 03 01
800-300-9782	• Sucursal en España Madrid, Spain Tel: 091-504 27 87
	• Succursale Française Vélizy-Villacoublay, France Tel: 01-30-675800
	• Filiale Italiana Milano, Italy Tel: 02-66 75 41
	• Branch The Netherlands Eindhoven, The Netherlands Tel: 040-2445845
	• Tyskland Filial Taeby, Sweden Tel: 08-63 80 820
	United Kingdom Branch

 United Kingdom Branch Milton Keynes, UK Tel: 01908-691-133

GmbH NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318

> NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-558-3737

NEC Electronics Shanghai, Ltd. Shanghai, P.R. China Tel: 021-6841-1138

NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-2719-2377

NEC Electronics Singapore Pte. Ltd. Novena Square, Singapore Tel: 6253-8311

Major Revisions in This Edition (1/3)

Page	Description
Throughout	Addition of the following products μPD780021AY(A), 780022AY(A), 780023AY(A), 780024AY(A), μPD780031AY(A), 780032AY(A), 780033AY(A), 780034AY(A), μPD78F0034B, 78F0034B(A), 78F0034BY, 78F0034BY(A)
	Addition of the following packages • 64-pin plastic LQFP (GC-8BS type) • 73-pin plastic FBGA (F1-CN3 type)
	Addition of expanded-specification products to μ PD780024A, 780034A Subseries
p.34	Addition of 1.1 Expanded-Specification Products and Conventional Products
p.54	Addition of 1.10 Correspondence Between Mask ROM Versions and Flash Memory Versions
p.54	Modification of 1.11 Differences Between Standard Grade Products and Special Grade Products
p.55	Addition of 1.12 Correspondence Between Products and Packages
p.74	Addition of 2.9 Correspondence Between Mask ROM Versions and Flash Memory Versions
p.75	Modification of 2.10 Differences Between Standard Grade Products and Special Grade Products
p.75	Addition of 2.11 Correspondence Between Products and Packages
p.84	Addition of description of pin processing in 3.2.18 VPP (flash memory versions only)
p.85	Modification of Table 3-1 Pin I/O Circuit Types
p.96	Addition of description of pin processing in 4.2.18 VPP (flash memory versions only)
p.97	Modification of Table 4-1 Pin I/O Circuit Types
p.108	Addition of description of program area in 5.1.2 Internal data memory space
pp.116, 117	Modification of Figure 5-14 Data to Be Saved to Stack Memory and Figure 5-15 Data to Be Restored from Stack Memory
p.130	Modification of [Description example] in 5.4.4 Short direct addressing
pp.133 to 135	Addition of [Illustration] in 5.4.7 Based addressing, 5.4.8 Based indexed addressing, and 5.4.9 Stack addressing
pp.140 to 160	Modification of port block diagram (Figures 6-2 Block Diagram of P00 to P03 to 6-23 Block Diagram of P74 and P75)
p.163	Addition of Table 6-6 Port Mode Registers and Output Latch Settings When Alternate Function Is Used
pp.171, 174	Addition of description of internal feedback resistor and oscillation stabilization time select register (OSTS) in 7.3 Clock Generator Control Registers
p.185	Modification of Figure 8-1 Block Diagram of 16-Bit Timer/Event Counter 0
pp.186, 187	Modification of Tables 8-2 TI00/TO0/P70 Pin Valid Edge and CR00, CR01 Capture Trigger and 8-3 TI01/ P71 Pin Valid Edge and CR00 Capture Trigger in 2nd edition to Table 8-2 CR00 Capture Trigger and Valid Edges of TI00 and TI01 Pins and Table 8-3 CR01 Capture Trigger and Valid Edge of TI00 Pin (CRC02 = 1)
p.194	Modification of description procedure of each function in 8.4 Operation of 16-Bit Timer/Event Counter 0
p.208	Addition of Figure 8-26 PPG Output Configuration Diagram and Figure 8-27 PPG Output Operation Timing
p.209	Addition of 8.5 Program List
pp.216, 218	Modification of 8.6 (3) Capture register data retention timing and addition of (11) STOP mode or main system clock stop mode setting

Major	Revisions	in	This	Edition	(2/3)
-------	-----------	----	------	---------	-------

Page	Description
p.220	Modification of Figures 9-1 Block Diagram of 8-Bit Timer/Event Counter 50 and 9-2 Block Diagram of 8- Bit Timer/Event Counter 51
pp.224, 225	Deletion of Caution in Figures 9-5 Format of 8-Bit Timer Mode Control Register 50 (TMC50) and 9-6 Format of 8-Bit Timer Mode Control Register 51 (TMC51)
p.231	Addition of [Setting] in 9.4.2 External event counter operation
p.232	Addition of description of frequency to [Setting] in 9.4.3 Square-wave output (8-bit resolution) operation
p.233	Addition of description of cycle and duty ratio to [Setting] in 9.4.4 8-bit PWM output operation
p.238	Addition of 9.5 Program List
p.200 in 2nd edition	Deletion of 9.5 (2) Operation after compare register change during timer count operation in 2nd edition
p.208 in 2nd edition	Deletion of oscillation stabilization time select register (OSTS) from 11.3 Registers to Control Watchdog Timer in 2nd edition
p.252	Modification of Figure 12-1 Block Diagram of Clock Output/Buzzer Output Controller
pp.259, 260	Modification of description in 13.2 (3) Sample & hold circuit, (4) Voltage comparator, and addition of (10) ADTRG pin
p.266	Addition of Table 13-2 Sampling Time and A/D Conversion Start Delay Time of A/D Converter
pp.277, 278	Deletion of 13.6 (4) Noise countermeasures (contents of deletion are added to Figure 13-18 Example of Connecting Capacitor to AVREF Pin and Figure 13-20 Example of Connection If Signal Source Impedance Is High), and addition of (14) Input impedance of ANI0 to ANI7 pins
p.278	Modification of Table 13-3 Resistances and Capacitances of Equivalent Circuit (Reference Values)
p.281	Addition of Figure 14-2 Format of A/D Conversion Result Register 0 (ADCR0)
pp.281, 282	Modification of description in 14.2 (3) Sample & hold circuit, (4) Voltage comparator, and addition of (10) ADTRG pin
p.288	Addition of Table 14-2 Sampling Time and A/D Conversion Start Delay Time of A/D Converter
pp.298, 299	Deletion of 14.6 (4) Noise countermeasures (contents of deletion are added to Figure 14-19 Example of Connecting Capacitor to AVREF Pin and Figure 14-21 Example of Connection If Signal Source Impedance Is High), and addition of (14) Input impedance of ANI0 to ANI7 pins
p.299	Modification of Table 14-3 Resistances and Capacitances of Equivalent Circuit (Reference Values)
p.302	Modification of Figure 16-1 Block Diagram of Serial Interface UART0
p.304	Move of description of asynchronous serial interface status register 0 (ASIS0) in 16.3 Registers to Control Serial Interface UART0 to 16.2 Configuration of Serial Interface UART0
p.315	Addition of Caution in Figure 16-7 Error Tolerance (When k = 0), Including Sampling Errors
p.319	Modification of Caution in Figure 16-10 Timing of Asynchronous Serial Interface Receive Completion Interrupt Request
pp.321, 326	Addition of (1) Registers to be used and (3) Relationship between main system clock and baud rate in 16.4.3 Infrared data transfer mode
p.328	Addition of Table 16-6 Register Settings
p.329	Modification of Figure 17-1 Block Diagram of Serial Interface SIO3n
pp.332, 333	Addition of Note 3 and Caution in Figures 17-2 Format of Serial Operation Mode Register 30 (CSIM30) and 17-3 Format of Serial Operation Mode Register 31 (CSIM31)
p.339	Addition of Table 17-2 Register Settings
p.341	Modification of Figure 18-1 Block Diagram of Serial Interface IIC0

Major Revisions in This Edition (3/3)

Page	Description
p.343	Unification of 18.2 (1) IIC shift register 0 (IIC0) and (4) IIC shift register 0 (IIC0) in 2nd edition, and (2) Slave address register 0 (SVA0) and (3) Slave address register 0 (SVA0) in 2nd edition
p.360	Addition of description to "Transfer lines" in Figure 18-16 Wait Signal
p.362	Addition of description to Notes 1 and 2 in Table 18-2 INTIIC0 Timing and Wait Control
p.369	Modification of Figure 18-21 Master Operation Flowchart
p.374	Modification of 18.5.15 (2) Slave operation
p.396	Modification of (1) Start condition ~ address and (2) Data in Figure 18-23 Example of Master to Slave Communication (When 9-Clock Wait Is Selected for Both Master and Slave)
p.399	Modification of Figure 18-24 Example of Slave to Master Communication (When 9-Clock Wait Is Selected for Both Master and Slave)
p.405	Modification of (E) Software interrupt in Figure 19-1 Basic Configuration of Interrupt Function
p.407	Addition of Caution 5 in Figure 19-2 Format of Interrupt Request Flag Registers (IF0L, IF0H, IF1L)
p.410	Addition of Caution in Figure 19-5 Format of External Interrupt Rising Edge Enable Register (EGP), External Interrupt Falling Edge Enable Register (EGN)
p.412	Addition of description and Remark in 19.4.1 Non-maskable interrupt request acknowledgment operation
p.415	Addition of description in 19.4.2 Maskable interrupt request acknowledgment operation
p.418	Addition of an item in Table 19-4 Interrupt Requests Enabled for Nesting During Interrupt Servicing
p.422	Addition of description of using expanded-specification products in CHAPTER 20 EXTERNAL DEVICE EXPANSION FUNCTION
p.435	Addition of clock output and buzzer output in Table 21-1 HALT Mode Operating Statuses
p.438	Modification of clock output in Table 21-3 STOP Mode Operating Statuses
p.445	Revision of CHAPTER 23 μPD78F0034A, 78F0034B, 78F0034AY, 78F0034BY
p.487	Addition of CHAPTER 25 ELECTRICAL SPECIFICATIONS (EXPANDED-SPECIFICATION PRODUCTS: for = 1.0 TO 12 MHz)
p.518	Addition of CHAPTER 26 ELECTRICAL SPECIFICATIONS (CONVENTIONAL PRODUCTS: fx = 1.0 TO 8.38 MHz)
p.550	Addition of CHAPTER 27 PACKAGE DRAWINGS
p.556	Addition of CHAPTER 28 RECOMMENDED SOLDERING CONDITIONS
p.561	Revision of APPENDIX A DIFFERENCES BETWEEN μPD78018F, 780024A, 780034A, AND 780078 SUBSERIES
p.564	Revision of APPENDIX B DEVELOPMENT TOOLS
p.581	Addition of APPENDIX C NOTES ON TARGET SYSTEM DESIGN

The mark \star shows major revised points.

INTRODUCTION

Readers	This manual has been prepared for user engineers who understand the functions of the μ PD780024A, 780034A, 780024AY, and 780034AY Subseries and wish to design and develop application systems and programs for these devices.			
	 μPD780024A Subseries μPD780021A, 780022A, 780023A, 780024A μPD780021A(A), 780022A(A), 780023A(A), 780024A(A) μPD780031A(A), 780022A(A), 780033A, 780034A, 78F0034A, 78F0034B μPD780031A(A), 780032A, 780033A, 780034A, 78F0034A(A), 78F0034B(A) μPD780021AY, 780022AY, 780023AY, 780024AY μPD780021AY(A), 780022AY(A), 780023AY(A), 780024AY(A) μPD780031AY, 780032AY, 780033AY, 780034AY, 78F0034AY, 78F0034BY μPD780031AY, 780032AY(A), 780033AY(A), 780034AY(A), 78F0034BY(A) 			
Purpose	This manual is intended to provide users an understanding of the functions described in the organization below.			
Organization	 The µPD780024A, 780034A, 780024AY, and 780034AY Subseries manual is separated into two parts: this manual and the instructions edition (common to the 78K/0 Series). µPD780024A, 780034A, 780024AY, 780034AY Subseries User's Manual (This Manual) Pin functions Internal block functions Instruction set 			

- Interrupt
- Other on-chip peripheral functions
- · Electrical specifications

- · Explanation of each instruction

How To Read This Manual It is assumed that the reader of this manual has general knowledge in the fields of electrical engineering, logic circuits, and microcontrollers.

• For readers who use this as an (A) product:

→ Standard products differ from (A) products in their quality grade only. Re-read the product name as indicated below if your product is an (A) product.

```
\muPD780021A \rightarrow \muPD780021A(A)
                                              \muPD780021AY \rightarrow \muPD780021AY(A)
\muPD780022A \rightarrow \muPD780022A(A)
                                              \muPD780022AY \rightarrow \muPD780022AY(A)
\muPD780023A \rightarrow \muPD780023A(A)
                                              \muPD780023AY \rightarrow \muPD780023AY(A)
\muPD780024A \rightarrow \muPD780024A(A)
                                              \muPD780024AY \rightarrow \muPD780024AY(A)
\muPD780031A \rightarrow \muPD780031A(A)
                                              \muPD780031AY \rightarrow \muPD780031AY(A)
\muPD780032A \rightarrow \muPD780032A(A)
                                              \muPD780032AY \rightarrow \muPD780032AY(A)
                                              \muPD780033AY \rightarrow \muPD780033AY(A)
\muPD780033A \rightarrow \muPD780033A(A)
\muPD780034A \rightarrow \muPD780034A(A)
                                              \muPD780034AY \rightarrow \muPD780034AY(A)
\muPD78F0034B \rightarrow \muPD78F0034B(A)
                                             \muPD78F0034BY \rightarrow \muPD78F0034BY(A)
```

- To gain a general understanding of functions:
 - \rightarrow Read this manual in the order of the contents.
- · How to interpret the register format:
 - → For the bit number enclosed in brackets, the bit name is defined as a reserved word in RA78K0, and in CC78K0, already defined in the header file named sfrbit.h.
- To check the details of a register when you know the register name:
 - \rightarrow See APPENDIX D REGISTER INDEX.
- To know the details of the 78K/0 Series instruction functions:
 - \rightarrow Refer to the **78K/0 Series Instructions User's Manual (U12326E).**
- To know the electrical specifications of the μ PD780024A, 780034A, 780024AY, 780034AY Subseries:
 - → See CHAPTER 25 ELECTRICAL SPECIFICATIONS (EXPANDED-SPECIFICATION PRODUCTS: $f_x = 1.0$ TO 12 MHz) and CHAPTER 26 ELECTRICAL SPECIFICATIONS (CONVENTIONAL PRODUCTS: $f_x = 1.0$ TO 8.38 MHz).
- Caution Examples in this manual employ the "standard" quality grade for general electronics. When using examples in this manual for the "special" quality grade, review the quality grade of each part and/or circuit actually used.

Differences between μ PD780024A, 780034A, 780024AY, and 780034AY Subseries

The configuration of the serial interface and the resolution of the A/D converter differ on μ PD780024A, 780034A, 780024AY, and 780034AY Subseries products.

	Subseries	μPD780024A	μPD780034A	μPD780024AY	μPD780034AY
Item					
Configuration of 3-wire serial I/O mode		2ch (SIO30, SIO31)		1ch (SIO30 only)	
serial interface	UART mode	1ch		1ch	
	I ² C mode			1ch	
A/D converter		8-bit resolution	10-bit resolution	8-bit resolution	10-bit resolution

Chapter Organization

This manual divides the descriptions for the subseries into different chapters as shown below. Read only the chapters related to the device you use.

	Chapter	µPD780024A Subseries	μPD780034A Subseries	μPD780024AY Subseries	μPD780034AY Subseries
Chapter 1	Outline (µPD780024A, 780034A Subseries)	√		_	_
Chapter 2	Outline (µPD780024AY, 780034AY Subseries)	_	_	√	\checkmark
Chapter 3	Pin Function (µPD780024A, 780034A Subseries)	√	√	_	_
Chapter 4	Pin Function (µPD780024AY, 780034AY Subseries)	-	-	\checkmark	\checkmark
Chapter 5	CPU Architecture	V	V	\checkmark	
Chapter 6	Port Functions	V	V	\checkmark	\checkmark
Chapter 7	Clock Generator	√	V	\checkmark	
Chapter 8	16-Bit Timer/Event Counter 0	\checkmark		\checkmark	\checkmark
Chapter 9	8-Bit Timer/Event Counters 50, 51	√	V	√	
Chapter 10	Watch Timer	√		\checkmark	
Chapter 11	Watchdog Timer	√		\checkmark	\checkmark
Chapter 12	Clock Output/Buzzer Output Controller	V	V	V	
Chapter 13	8-Bit A/D Converter (μPD780024A, 780024AY Subseries)	√	-	\checkmark	-
Chapter 14	10-Bit A/D Converter (µPD780034A, 780034AY Subseries)	-	V	_	V
Chapter 15	Serial Interface Outline	√	√	\checkmark	\checkmark
Chapter 16	Serial Interface UART0	√	√	√	√
Chapter 17	Serial Interface SIO3	√	\checkmark	√	\checkmark
Chapter 18	Serial Interface IIC0 (µPD780024AY, 780034AY Subseries only)	-	_	\checkmark	V
Chapter 19	Interrupt Functions	V	V	\checkmark	\checkmark
Chapter 20	External Device Expansion Function	V	V	\checkmark	
Chapter 21	Standby Function	V	V	\checkmark	\checkmark
Chapter 22	Reset Function	√		\checkmark	\checkmark
Chapter 23	μPD78F0034A, 78F0034B, 78F0034AY, 78F0034BY	\checkmark		\checkmark	\checkmark
Chapter 24	Instruction Set	\checkmark		\checkmark	\checkmark
Chapter 25	Electrical Specifications (Expanded-Specification Products: fx = 1.0 to 12 MHz)	√	\checkmark	\checkmark	\checkmark
Chapter 26	Electrical Specifications (Conventional Products: fx = 1.0 to 8.38 MHz)	√	V	\checkmark	V
Chapter 27	Package Drawings	√	√	√	√
Chapter 28	Recommended Soldering Conditions	√		√	\checkmark

Conventions

Data significance:Higher digits on the left and lower digits on the rightActive low representation:XXX (overscore over pin or signal name)Note:Footnote for item marked with Note in the textCaution:Information requiring particular attentionRemark:Supplementary informationNumerical representation:BinaryDecimal··· XXXXHexadecimal··· XXXXH

User's Manual U14046EJ3V0UD

Related Documents

★

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents Related to Devices

Document Name	Document No.
µPD780024A, 780034A, 780024AY, 780034AY Subseries User's Manual	This manual
78K/0 Series Instructions User's Manual	U12326E
78K/0 Series Basic (I) Application Note	U12704E

Documents Related to Development Tools (Software) (User's Manuals)

Docum	Document No.	
RA78K0 Assembler Package	78K0 Assembler Package Operation	
	Language	U14446E
	Structured Assembly Language	U11789E
CC78K0 C Compiler	Operation	U14297E
	Language	U14298E
SM78K Series System Simulator Ver.2.30 or	Operation (Windows TM Based)	U15373E
Later	External Part User Open Interface Specifications	U15802E
ID78K Series Integrated Debugger Ver.2.30 or Later	Operation (Windows Based)	U15185E
RX78K0 Real-Time OS	Fundamentals	U11537E
	Installation	U11536E
Project Manager Ver.3.12 or Later (Windows Based)		U14610E

* Documents Related to Development Tools (Hardware) (User's Manuals)

Document Name	Document No.
IE-78K0-NS In-Circuit Emulator	U13731E
IE-78K0-NS-A In-Circuit Emulator	U14889E
IE-78K0-NS-PA Performance Board	To be prepared
IE-780034-NS-EM1 Emulation Board	U14642E
IE-78001-R-A In-Circuit Emulator	U14142E
IE-78K0-R-EX1 In-Circuit Emulator	To be prepared

* Documents Related to Flash Memory Programming

Document Name	Document No.
PG-FP3 Flash Memory Programmer User's Manual	U13502E
PG-FP4 Flash Memory Programmer User's Manual	U15260E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

***** Other Documents

Document Name	Document No.
SEMICONDUCTOR SELECTION GUIDE – Products and Packages –	X13769X
Semiconductor Device Mount Manual	Note
Quality Grades on NEC Semiconductor Devices	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E

Note See the "Semiconductor Device Mount Manual" website (http://www.necel.com/pkg/en/mount/index.html).

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

CONTENTS

	CHAPTI	ER 1 OUTLINE (μPD780024A, 780034A SUBSERIES)	34
*	1.1	Expanded-Specification Products and Conventional Products	34
	1.2	Features	35
	1.3	Applications	36
	1.4	Ordering Information	37
	1.5	Quality Grade	41
	1.6	Pin Configuration (Top View)	45
	1.7	78K/0 Series Lineup	49
	1.8	Block Diagram	51
	1.9	Outline of Function	52
*	1.10	Correspondence Between Mask ROM Versions and Flash Memory Versions	54
	1.11	Differences Between Standard Grade Products and Special Grade Products	54
*	1.12	Correspondence Between Products and Packages	55
	1.13	Mask Options	55
			50
	2.1	ER 2 OUTLINE (μPD780024AY, 780034AY SUBSERIES) Features	56 56
	2.1		50 57
	2.2	Applications Ordering Information	57 58
	2.3	Quality Grade	62
*	2.4	Pin Configuration (Top View)	66
	2.5	78K/0 Series Lineup	70
	2.7	Block Diagram	72
	2.8	Outline of Function	73
*	2.9	Correspondence Between Mask ROM Versions and Flash Memory Versions	74
*	2.10	Differences Between Standard Grade Products and Special Grade Products	75
*	2.11	Correspondence Between Products and Packages	75
	2.12		76
	CHAPTI	ER 3 PIN FUNCTION (µPD780024A, 780034A SUBSERIES)	77
	3.1	Pin Function List	77
	3.2	Description of Pin Functions	80
		3.2.1 P00 to P03 (Port 0)	80
		3.2.2 P10 to P17 (Port 1)	80
		3.2.3 P20 to P25 (Port 2)	81
		3.2.4 P30 to P36 (Port 3)	81
		3.2.5 P40 to P47 (Port 4)	82
		3.2.6 P50 to P57 (Port 5)	82
		3.2.7 P64 to P67 (Port 6)	82
		3.2.8 P70 to P75 (Port 7)	83
		3.2.9 AVREF	83
		3.2.10 AVDD	83
		3.2.11 AVss	83
		3.2.12 RESET	84
*		3.2.13 NC	84

	3.2.14	X1 and X2	84
	3.2.15	XT1 and XT2	84
	3.2.16	VDD0 and VDD1	84
	3.2.17	Vsso and Vss1	84
	3.2.18	VPP (flash memory versions only)	84
	3.2.19	IC (mask ROM version only)	84
3.3	Pin I/C	O Circuits and Recommended Connection of Unused Pins	85
CHAPT	ER 4 I	PIN FUNCTION (μPD780024AY, 780034AY SUBSERIES)	89
4.1		Inction List	89
4.2		iption of Pin Functions	92
	4.2.1	P00 to P03 (Port 0)	92
	4.2.2	P10 to P17 (Port 1)	
	4.2.3	P20 to P25 (Port 2)	
	4.2.4	P30 to P36 (Port 3)	
	4.2.5	P40 to P47 (Port 4)	
	4.2.6	P50 to P57 (Port 5)	
	4.2.7	P64 to P67 (Port 6)	-
	4.2.8	P70 to P75 (Port 7)	-
	4.2.9	AV _{REF}	
		AV _{DD}	
		AVss	
		RESET	
		NC	
		X1 and X2	
		XT and XZ	
		VDD0 and VDD1	
		Vsso and Vss1	
		VPP (flash memory versions only)	
4.0		IC (mask ROM version only)	
4.3	Pin I/C	O Circuits and Recommended Connection of Unused Pins	97
			101
5.1		ry Spaces	
	5.1.1	Internal program memory space	
	5.1.2	Internal data memory space	
	5.1.3	Special function register (SFR) area	
	5.1.4	External memory space	
	5.1.5	Data memory addressing	
5.2		ssor Registers	
	5.2.1	Control registers	
	5.2.2	General-purpose registers	
	5.2.3	Special function register (SFR)	
5.3	Instru	ction Address Addressing	123
	5.3.1	Relative addressing	123
	5.3.2	Immediate addressing	124
	5.3.3	Table indirect addressing	125
	5.3.4	Register addressing	126

16

 \star

5.4	Operand Address Addressing	127
	5.4.1 Implied addressing	127
	5.4.2 Register addressing	128
	5.4.3 Direct addressing	129
	5.4.4 Short direct addressing	
	5.4.5 Special function register (SFR) addressing	131
	5.4.6 Register indirect addressing	132
	5.4.7 Based addressing	133
	5.4.8 Based indexed addressing	
	5.4.9 Stack addressing	
СНАРТ	ER 6 PORT FUNCTIONS	136
6.1	Port Functions	136
6.2	Port Configuration	139
	6.2.1 Port 0	139
	6.2.2 Port 1	141
	6.2.3 Port 2	
	6.2.4 Port 3 (μPD780024A, 780034A Subseries)	145
	6.2.5 Port 3 (μPD780024AY, 780034AY Subseries)	150
	6.2.6 Port 4	
	6.2.7 Port 5	155
	6.2.8 Port 6	156
	6.2.9 Port 7	
6.3	Port Function Control Registers	161
6.4	Port Function Operations	167
	6.4.1 Writing to I/O port	
	6.4.2 Reading from I/O port	
	6.4.3 Operations on I/O port	
6.5	Selection of Mask Option	
СНАРТ	ER 7 CLOCK GENERATOR	
7.1	Clock Generator Functions	
7.2	Clock Generator Configuration	169
7.3	Clock Generator Control Registers	171
7.4	System Clock Oscillator	175
	7.4.1 Main system clock oscillator	
	7.4.2 Subsystem clock oscillator	176
	7.4.3 When subsystem clock is not used	179
7.5	Clock Generator Operations	180
	7.5.1 Main system clock operations	
	7.5.2 Subsystem clock operations	
7.6	Changing System Clock and CPU Clock Settings	182
	7.6.1 Time required for switchover between system clock and CPU clock	
	7.6.2 System clock and CPU clock switching procedure	
СНАРТ	ER 8 16-BIT TIMER/EVENT COUNTER 0	
8.1	Functions of 16-Bit Timer/Event Counter 0	
8.2	Configuration of 16-Bit Timer/Event Counter 0	
	- · · · · · · · · · · · · · · · · · · ·	

	8.3	Regis	ters to Control 16-Bit Timer/Event Counter 0	188
	8.4	Opera	tion of 16-Bit Timer/Event Counter 0	194
		8.4.1	Interval timer operation	194
		8.4.2	External event counter operation	197
		8.4.3	Pulse width measurement operations	199
		8.4.4	Square-wave output operation	206
		8.4.5	PPG output operation	207
*	8.5	Progra	am List	209
		8.5.1	Interval timer	210
		8.5.2	Pulse width measurement by free-running counter and one capture register	211
		8.5.3	Two pulse widths measurement by free-running counter	212
		8.5.4	Pulse width measurement by restart	214
		8.5.5	PPG output	215
	8.6	Cautio	ons Related to 16-Bit Timer/Event Counter 0	216
			B-BIT TIMER/EVENT COUNTERS 50, 51	
	9.1		ions of 8-Bit Timer/Event Counters 50, 51	
	9.2		guration of 8-Bit Timer/Event Counters 50, 51	
	9.3	-	ters to Control 8-Bit Timer/Event Counters 50, 51	
	9.4	Opera	tion of 8-Bit Timer/Event Counters 50, 51	
		9.4.1	8-bit interval timer operation	
		9.4.2	External event counter operation	
		9.4.3	Square-wave output (8-bit resolution) operation	
		9.4.4	8-bit PWM output operation	
		9.4.5	Interval timer (16-bit) operations	237
*	9.5	Progra	am List	238
		9.5.1	Interval timer (8-bit)	238
		9.5.2	External event counter	
		9.5.3	Interval timer (16-bit)	
	9.6	Cautio	ons Related to 8-Bit Timer/Event Counters 50, 51	241
				0.40
			n Timer Functions	
	10.2		n Timer Configuration	
		•	ter to Control Watch Timer	
	10.4		1 Timer Operations	
			Watch timer operation	
		10.4.2	Interval timer operation	245
	СНАРТЕ	R 11	WATCHDOG TIMER	247
			ndog Timer Functions	
			ndog Timer Configuration	
			ters to Control Watchdog Timer	
		-	ndog Timer Operations	
	11.4		Watchdog timer operation	
			Interval timer operation	
		11.4.2		∠J I

СНАРТЕ	R 12 CLOCK OUTPUT/BUZZER OUTPUT CONTROLLER	252
12.1	Clock Output/Buzzer Output Controller Functions	252
12.2	Configuration of Clock Output/Buzzer Output Controller	253
12.3	Register to Control Clock Output/Buzzer Output Controller	253
12.4	Operation of Clock Output/Buzzer Output Controller	256
	12.4.1 Operation as clock output	256
	12.4.2 Operation as buzzer output	256
СНАРТЕ	ER 13 8-BIT A/D CONVERTER (μPD780024A, 780024AY SUBSERIES)	257
	A/D Converter Functions	
	A/D Converter Configuration	
	Registers to Control A/D Converter	
	A/D Converter Operations	
	13.4.1 Basic operations of A/D converter	
	13.4.2 Input voltage and conversion results	
	13.4.3 A/D converter operation mode	
13.5	How to Read A/D Converter Characteristics Table	
13.6	A/D Converter Cautions	274
СНАРТЕ	ER 14 10-BIT A/D CONVERTER (µPD780034A, 780034AY SUBSERIES)	279
14.1	A/D Converter Functions	279
14.2	A/D Converter Configuration	281
14.3	Registers to Control A/D Converter	283
14.4	A/D Converter Operation	286
	14.4.1 Basic operations of A/D converter	286
	14.4.2 Input voltage and conversion results	289
	14.4.3 A/D converter operation mode	290
14.5	How to Read A/D Converter Characteristics Table	292
14.6	A/D Converter Cautions	295
СНАРТЕ	R 15 SERIAL INTERFACE OUTLINE	300
		500
СНАРТЕ	R 16 SERIAL INTERFACE UART0	301
16.1	Functions of Serial Interface UART0	301
16.2	Configuration of Serial Interface UART0	303
16.3	Registers to Control Serial Interface UART0	305
	Operation of Serial Interface UART0	
	16.4.1 Operation stop mode	310
	16.4.2 Asynchronous serial interface (UART) mode	310
	16.4.3 Infrared data transfer mode	321
СНАРТЯ	ER 17 SERIAL INTERFACES SIO30 AND SIO31	329
	Functions of Serial Interfaces SIO30 and SIO31	
	Configuration of Serial Interfaces SIO30 and SIO31	
	Registers to Control Serial Interfaces SIO30 and SIO31	
	Operations of Serial Interfaces SIO30 and SIO31	
	17.4.1 Operation stop mode	
	17.4.2 3-wire serial I/O mode	

CHAPTE	ER 18 SERIAL INTERFACE IICO (µPD780024AY, 780034AY SUBSERIES ONLY)	340
18.1	Functions of Serial Interface IIC0	340
18.2	Configuration of Serial Interface IIC0	343
18.3	Registers to Control Serial Interface IIC0	345
18.4	I ² C Bus Mode Functions	355
	18.4.1 Pin configuration	355
18.5	I ² C Bus Definitions and Control Methods	356
	18.5.1 Start conditions	356
	18.5.2 Addresses	357
	18.5.3 Transfer direction specification	357
	18.5.4 Acknowledge (ACK) signal	358
	18.5.5 Stop condition	359
	18.5.6 Wait signal (WAIT)	360
	18.5.7 Interrupt request (INTIIC0) generation timing and wait control	362
	18.5.8 Address match detection method	363
	18.5.9 Error detection	363
	18.5.10 Extension code	363
	18.5.11 Arbitration	364
	18.5.12 Wake-up function	365
	18.5.13 Communication reservation	366
	18.5.14 Other cautions	368
	18.5.15 Communication operations	369
	18.5.16 Timing of I ² C interrupt request (INTIIC0) occurrence	377
18.6	Timing Charts	395
	ER 19 INTERRUPT FUNCTIONS	
19.1	Interrupt Function Types	402
19.1		402
19.1 19.2 19.3	Interrupt Function Types Interrupt Sources and Configuration Interrupt Function Control Registers	402 402 406
19.1 19.2 19.3	Interrupt Function Types Interrupt Sources and Configuration	402 402 406
19.1 19.2 19.3	Interrupt Function Types Interrupt Sources and Configuration Interrupt Function Control Registers Interrupt Servicing Operations 19.4.1 Non-maskable interrupt request acknowledgment operation	402 402 406 412 412
19.1 19.2 19.3	Interrupt Function Types Interrupt Sources and Configuration Interrupt Function Control Registers Interrupt Servicing Operations	402 402 406 412 412
19.1 19.2 19.3	Interrupt Function Types Interrupt Sources and Configuration Interrupt Function Control Registers Interrupt Servicing Operations 19.4.1 Non-maskable interrupt request acknowledgment operation 19.4.2 Maskable interrupt request acknowledgment operation 19.4.3 Software interrupt request acknowledgment operation	402 406 412 412 415 417
19.1 19.2 19.3	Interrupt Function Types Interrupt Sources and Configuration Interrupt Function Control Registers Interrupt Servicing Operations 19.4.1 Non-maskable interrupt request acknowledgment operation 19.4.2 Maskable interrupt request acknowledgment operation	402 406 412 412 415 417
19.1 19.2 19.3	Interrupt Function Types Interrupt Sources and Configuration Interrupt Function Control Registers Interrupt Servicing Operations 19.4.1 Non-maskable interrupt request acknowledgment operation 19.4.2 Maskable interrupt request acknowledgment operation 19.4.3 Software interrupt request acknowledgment operation	402 406 412 412 415 417 418
19.1 19.2 19.3 19.4	Interrupt Function Types Interrupt Sources and Configuration Interrupt Function Control Registers Interrupt Servicing Operations 19.4.1 Non-maskable interrupt request acknowledgment operation 19.4.2 Maskable interrupt request acknowledgment operation 19.4.3 Software interrupt request acknowledgment operation 19.4.4 Nesting interrupt servicing 19.4.5 Interrupt request hold	402 406 412 412 415 417 418 421
19.1 19.2 19.3 19.4 CHAPTE	Interrupt Function Types Interrupt Sources and Configuration Interrupt Function Control Registers Interrupt Servicing Operations 19.4.1 Non-maskable interrupt request acknowledgment operation 19.4.2 Maskable interrupt request acknowledgment operation 19.4.3 Software interrupt request acknowledgment operation 19.4.4 Nesting interrupt servicing 19.4.5 Interrupt request hold	402 406 412 412 415 417 418 421 422
19.1 19.2 19.3 19.4 CHAPTE 20.1	Interrupt Function Types Interrupt Sources and Configuration Interrupt Function Control Registers Interrupt Servicing Operations 19.4.1 Non-maskable interrupt request acknowledgment operation 19.4.2 Maskable interrupt request acknowledgment operation 19.4.3 Software interrupt request acknowledgment operation 19.4.4 Nesting interrupt servicing 19.4.5 Interrupt request hold	402 406 412 412 415 417 418 421 422 422
19.1 19.2 19.3 19.4 CHAPTE 20.1 20.2	Interrupt Function Types Interrupt Sources and Configuration Interrupt Function Control Registers Interrupt Servicing Operations 19.4.1 Non-maskable interrupt request acknowledgment operation 19.4.2 Maskable interrupt request acknowledgment operation 19.4.3 Software interrupt request acknowledgment operation 19.4.4 Nesting interrupt servicing 19.4.5 Interrupt request hold	402 406 412 412 415 417 418 421 422 422 422 425
19.1 19.2 19.3 19.4 CHAPTE 20.1 20.2 20.3	Interrupt Function Types Interrupt Sources and Configuration Interrupt Function Control Registers Interrupt Servicing Operations 19.4.1 Non-maskable interrupt request acknowledgment operation 19.4.2 Maskable interrupt request acknowledgment operation 19.4.3 Software interrupt request acknowledgment operation 19.4.4 Nesting interrupt servicing 19.4.5 Interrupt request hold Provide Expansion Function External Device Expansion Function Control Registers External Device Expansion Function Timing External Device Expansion Function Timing	402 406 412 412 415 417 418 421 422 422 422 425 427
19.1 19.2 19.3 19.4 CHAPTE 20.1 20.2 20.3	Interrupt Function Types Interrupt Sources and Configuration Interrupt Function Control Registers Interrupt Servicing Operations 19.4.1 Non-maskable interrupt request acknowledgment operation 19.4.2 Maskable interrupt request acknowledgment operation 19.4.3 Software interrupt request acknowledgment operation 19.4.4 Nesting interrupt servicing 19.4.5 Interrupt request hold	402 406 412 412 415 417 418 421 422 422 422 425 427
19.1 19.2 19.3 19.4 CHAPTE 20.1 20.2 20.3 20.4	Interrupt Function Types Interrupt Sources and Configuration Interrupt Function Control Registers Interrupt Servicing Operations 19.4.1 Non-maskable interrupt request acknowledgment operation 19.4.2 Maskable interrupt request acknowledgment operation 19.4.3 Software interrupt request acknowledgment operation 19.4.4 Nesting interrupt servicing 19.4.5 Interrupt request hold ER 20 EXTERNAL DEVICE EXPANSION FUNCTION External Device Expansion Function External Device Expansion Function Control Registers External Device Expansion Function Timing External Device Expansion Function Timing External Device Expansion Function Timing	402 406 412 415 417 418 421 422 422 422 425 427 432
19.1 19.2 19.3 19.4 CHAPTE 20.1 20.2 20.3 20.4 CHAPTE	Interrupt Function Types Interrupt Sources and Configuration Interrupt Function Control Registers Interrupt Servicing Operations 19.4.1 Non-maskable interrupt request acknowledgment operation 19.4.2 Maskable interrupt request acknowledgment operation 19.4.3 Software interrupt request acknowledgment operation 19.4.4 Nesting interrupt servicing 19.4.5 Interrupt request hold ER 20 EXTERNAL DEVICE EXPANSION FUNCTION External Device Expansion Function External Device Expansion Function Timing External Device Expansion Function Timing Example of Connection with Memory Example of Connection with Memory	402 406 412 415 417 418 421 422 422 422 422 425 427 432 433
19.1 19.2 19.3 19.4 CHAPTE 20.1 20.2 20.3 20.4 CHAPTE	Interrupt Function Types Interrupt Sources and Configuration Interrupt Function Control Registers Interrupt Servicing Operations 19.4.1 Non-maskable interrupt request acknowledgment operation 19.4.2 Maskable interrupt request acknowledgment operation 19.4.3 Software interrupt request acknowledgment operation 19.4.4 Nesting interrupt servicing 19.4.5 Interrupt request hold ER 20 EXTERNAL DEVICE EXPANSION FUNCTION External Device Expansion Function External Device Expansion Function Timing External Device Expansion Function Timing Example of Connection with Memory Example of Connection and Configuration	402 406 412 415 417 418 421 422 422 422 425 427 432 433 433
19.1 19.2 19.3 19.4 CHAPTE 20.1 20.2 20.3 20.4 CHAPTE	Interrupt Function Types Interrupt Sources and Configuration Interrupt Function Control Registers Interrupt Servicing Operations 19.4.1 Non-maskable interrupt request acknowledgment operation 19.4.2 Maskable interrupt request acknowledgment operation 19.4.3 Software interrupt request acknowledgment operation 19.4.4 Nesting interrupt servicing 19.4.5 Interrupt request hold ER 20 EXTERNAL DEVICE EXPANSION FUNCTION External Device Expansion Function External Device Expansion Function Control Registers External Device Expansion Function Timing External Device Expansion Function Timing Example of Connection with Memory Example of Connection of Standby Function 21.1.1 Standby function	402 406 412 415 417 418 421 422 422 422 425 427 432 433 433 433
19.1 19.2 19.3 19.4 CHAPTE 20.1 20.2 20.3 20.4 CHAPTE 21.1	Interrupt Function Types Interrupt Sources and Configuration Interrupt Function Control Registers Interrupt Servicing Operations 19.4.1 Non-maskable interrupt request acknowledgment operation 19.4.2 Maskable interrupt request acknowledgment operation 19.4.3 Software interrupt request acknowledgment operation 19.4.4 Nesting interrupt request acknowledgment operation 19.4.5 Interrupt request hold ER 20 EXTERNAL DEVICE EXPANSION FUNCTION External Device Expansion Function External Device Expansion Function Control Registers External Device Expansion Function Timing Extample of Connection with Memory Extant Device Expansion Function Timing Example of Connection with Memory 21.1.1 Standby function 21.1.2 Standby function control register	402 406 412 415 417 418 421 422 422 422 422 425 427 432 433 433 433
19.1 19.2 19.3 19.4 CHAPTE 20.1 20.2 20.3 20.4 CHAPTE 21.1	Interrupt Function Types Interrupt Sources and Configuration Interrupt Function Control Registers Interrupt Servicing Operations 19.4.1 Non-maskable interrupt request acknowledgment operation 19.4.2 Maskable interrupt request acknowledgment operation 19.4.3 Software interrupt request acknowledgment operation 19.4.4 Nesting interrupt request acknowledgment operation 19.4.5 Interrupt request hold Interrupt Request hold Interrupt Device Expansion Function External Device Expansion Function Control Registers External Device Expansion Function Timing Example of Connection with Memory 21.1.1 Standby function 21.1.2 Standby function control register Standby Function Operations	402 406 412 415 417 418 421 422 422 422 425 427 432 433 433 433 434 435
19.1 19.2 19.3 19.4 CHAPTE 20.1 20.2 20.3 20.4 CHAPTE 21.1	Interrupt Function Types Interrupt Sources and Configuration Interrupt Function Control Registers Interrupt Servicing Operations 19.4.1 Non-maskable interrupt request acknowledgment operation 19.4.2 Maskable interrupt request acknowledgment operation 19.4.3 Software interrupt request acknowledgment operation 19.4.4 Nesting interrupt request acknowledgment operation 19.4.5 Interrupt request hold ER 20 EXTERNAL DEVICE EXPANSION FUNCTION External Device Expansion Function External Device Expansion Function Control Registers External Device Expansion Function Timing Extample of Connection with Memory Extant Device Expansion Function Timing Example of Connection with Memory 21.1.1 Standby function 21.1.2 Standby function control register	402 406 412 415 417 418 421 422 422 422 425 427 432 433 433 433 433 433 435

	CHAPTE	ER 22 RESET FUNCTION	441
	CHAPTE	ER 23 μPD78F0034A, 78F0034B, 78F0034AY, 78F0034BY	445
*	23.1	Differences Between μ PD78F0034A, 78F0034AY and μ PD78F0034B, 78F0034BY	446
*	23.2	Differences Between μ PD78F0034B, 78F0034BY and	
		μPD78F0034B(A), 78F0034BY(A)	447
*	23.3	Differences Between μ PD78F0034A, 78F0034B, 78F0034AY, 78F0034BY	
		and Mask ROM Versions	448
	23.4	Memory Size Switching Register	450
*	23.5	Flash Memory Characteristics	451
		23.5.1 Programming environment	451
		23.5.2 Communication mode	452
		23.5.3 On-board pin processing	457
		23.5.4 Connection on adapter for flash memory writing	460
	СНАРТ	ER 24 INSTRUCTION SET	170
	-	Conventions	
	27.1	24.1.1 Operand identifiers and specification methods	
		24.1.2 Description of "operation" column	
		24.1.3 Description of "flag operation" column	
	24.2	Operation List	
		Instructions Listed by Addressing Type	
*	-	ER 25 ELECTRICAL SPECIFICATIONS (EXPANDED-SPECIFICATION PRODUCTS: fx = 1.0 TO 12 MHz) 4 ER 26 ELECTRICAL SPECIFICATIONS	487
^		(CONVENTIONAL PRODUCTS: $fx = 1.0 \text{ TO } 8.38 \text{ MHz}$)	518
*	CHAPTE	ER 27 PACKAGE DRAWINGS	550
*	CHAPTE	ER 28 RECOMMENDED SOLDERING CONDITIONS	556
	APPEN	DIX A DIFFERENCES BETWEEN μ PD78018F, 780024A, 780034A,	
		AND 780078 SUBSERIES	561
	APPEN	DIX B DEVELOPMENT TOOLS	564
	B.1	Software Package	
	B.2	Language Processing Software	
	B.3	Control Software	
	B.4	Flash Memory Writing Tools	
	B.5	Debugging Tools (Hardware)	
		B.5.1 When using the in-circuit emulator IE-78K0-NS, IE-78K0-NS-A	
	_	B.5.2 When using the in-circuit emulator IE-78001-R-A	
	B.6	Debugging Tools (Software)	
	B.7		573
	B.8	System Upgrade from Former In-Circuit Emulator for 78K/0 Series to IE-78001-R-A 5	
	B.9	Package Drawings of Conversion Socket and Conversion Adapter	575

* APPENDIX C NOTES ON TARGET SYSTEM DESIGN	581
APPENDIX D REGISTER INDEX	591
D.1 Register Name Index	591
D.2 Register Symbol Index	594
APPENDIX E REVISION HISTORY	597

LIST OF FIGURES (1/8)

Figure No.	Title	Page
3-1	Pin I/O Circuit List	
4-1	Pin I/O Circuit List	
5-1	Memory Map (μPD780021A, 780031A, 780021AY, 780031AY)	101
5-2	Memory Map (μPD780022A, 780032A, 780022AY, 780032AY)	
5-3	Memory Map (μPD780023A, 780033A, 780023AY, 780033AY)	
5-4	Memory Map (μPD780024A, 780034A, 780024AY, 780034AY)	
5-5	Memory Map (µPD78F0034A, 78F0034B, 78F0034AY, 78F0034BY)	
5-6	Correspondence Between Data Memory and Addressing	
	(μPD780021A, 780031A, 780021AY, 780031AY)	
5-7	Correspondence Between Data Memory and Addressing	
	(μPD780022A, 780032A, 780022AY, 780032AY)	110
5-8	Correspondence Between Data Memory and Addressing	
	(μPD780023A, 780033A, 780023AY, 780033AY)	111
5-9	Correspondence Between Data Memory and Addressing	
	(μPD780024A, 780034A, 780024AY, 780034AY)	112
5-10	Correspondence Between Data Memory and Addressing	
	(µPD78F0034A, 78F0034B, 78F0034AY, 78F0034BY)	113
5-11	Program Counter Format	114
5-12	Program Status Word Format	114
5-13	Stack Pointer Format	116
5-14	Data to Be Saved to Stack Memory	116
5-15	Data to Be Restored from Stack Memory	117
5-16	General-Purpose Register Configuration	118
6-1	Port Types	136
6-2	Block Diagram of P00 to P03	
6-3	Block Diagram of P10 to P17	141
6-4	Block Diagram of P20, P23, and P25	
6-5	Block Diagram of P21 and P24	
6-6	Block Diagram of P22	
6-7	Block Diagram of P30 and P31 (µPD780024A, 780034A Subseries)	
6-8	Block Diagram of P32 and P33 (µPD780024A, 780034A Subseries)	
6-9	Block Diagram of P34 (µPD780024A, 780034A Subseries)	
6-10	Block Diagram of P35 (µPD780024A, 780034A Subseries)	
6-11	Block Diagram of P36 (µPD780024A, 780034A Subseries)	
6-12	Block Diagram of P30 and P31 (µPD780024AY, 780034AY Subseries)	151
6-13	Block Diagram of P32 and P33 (µPD780024AY, 780034AY Subseries)	151
6-14	Block Diagram of P34 and P36 (µPD780024AY, 780034AY Subseries)	

LIST OF FIGURES (2/8)

Figure No.	Title	Page
6-15	Block Diagram of P35 (µPD780024AY, 780034AY Subseries)	153
6-16	Block Diagram of P40 to P47	
6-17	Block Diagram of Falling Edge Detector	
6-18	Block Diagram of P50 to P57	
6-19	Block Diagram of P64, P65, and P67	156
6-20	Block Diagram of P66	157
6-21	Block Diagram of P70, P72, and P73	158
6-22	Block Diagram of P71	159
6-23	Block Diagram of P74 and P75	160
6-24	Format of Port Mode Register (PM0, PM2 to PM7)	162
6-25	Format of Pull-Up Resistor Option Register (PU0, PU2 to PU7)	166
7-1	Block Diagram of Clock Generator	170
7-2	Format of Processor Clock Control Register (PCC)	172
7-3	Format of Oscillation Stabilization Time Select Register (OSTS)	174
7-4	External Circuit of Main System Clock Oscillator	175
7-5	External Circuit of Subsystem Clock Oscillator	176
7-6	Examples of Incorrect Oscillator Connection	177
7-7	Subsystem Clock Feedback Resistor	179
7-8	Main System Clock Stop Function	181
7-9	System Clock and CPU Clock Switching	183
8-1	Block Diagram of 16-Bit Timer/Event Counter 0	185
8-2	Format of 16-Bit Timer Mode Control Register 0 (TMC0)	189
8-3	Format of Capture/Compare Control Register 0 (CRC0)	190
8-4	Format of 16-Bit Timer Output Control Register 0 (TOC0)	191
8-5	Format of Prescaler Mode Register 0 (PRM0)	192
8-6	Format of Port Mode Register 7 (PM7)	193
8-7	Control Register Settings for Interval Timer Operation	194
8-8	Interval Timer Configuration Diagram	195
8-9	Timing of Interval Timer Operation	195
8-10	Timing After Change of Compare Register During Timer Count Operation	196
8-11	Control Register Settings in External Event Counter Mode	197
8-12	External Event Counter Configuration Diagram	198
8-13	External Event Counter Operation Timing (with Rising Edge Specified)	198
8-14	Control Register Settings for Pulse Width Measurement with Free-Running Counter	
	and One Capture Register	199
8-15	Configuration Diagram for Pulse Width Measurement with Free-Running Counter	200
8-16	Timing of Pulse Width Measurement Operation with Free-Running Counter	
	and One Capture Register (with Both Edges Specified)	200
8-17	Control Register Settings for Measurement of Two Pulse Widths with Free-Running Counter	201

LIST OF FIGURES (3/8)

Figure No.	Title	Page
8-18	Timing of Pulse Width Measurement Operation with Free-Running Counter	
	(with Both Edges Specified)	. 202
8-19	Control Register Settings for Pulse Width Measurement with Free-Running Counter	
	and Two Capture Registers	. 203
8-20	Timing of Pulse Width Measurement Operation with Free-Running Counter	
	and Two Capture Registers (with Rising Edge Specified)	. 204
8-21	Control Register Settings for Pulse Width Measurement by Means of Restart	. 205
8-22	Timing of Pulse Width Measurement Operation by Means of Restart (with Rising Edge Specified)	. 205
8-23	Control Register Settings in Square-Wave Output Mode	. 206
8-24	Square-Wave Output Operation Timing	. 206
8-25	Control Register Settings for PPG Output Operation	. 207
8-26	PPG Output Configuration Diagram	. 208
8-27	PPG Output Operation Timing	. 208
8-28	Start Timing of 16-Bit Timer Counter 0 (TM0)	. 216
8-29	Capture Register Data Retention Timing	. 216
8-30	Operation Timing of OVF0 Flag	. 217
8-31	CR01 Capture Operation with Rising Edge Specified	. 218
9-1	Block Diagram of 8-Bit Timer/Event Counter 50	. 220
9-2	Block Diagram of 8-Bit Timer/Event Counter 51	. 220
9-3	Format of Timer Clock Select Register 50 (TCL50)	. 222
9-4	Format of Timer Clock Select Register 51 (TCL51)	. 223
9-5	Format of 8-Bit Timer Mode Control Register 50 (TMC50)	. 224
9-6	Format of 8-Bit Timer Mode Control Register 51 (TMC51)	. 225
9-7	Format of Port Mode Register 7 (PM7)	. 226
9-8	Interval Timer Operation Timing	. 228
9-9	External Event Counter Operation Timing (with Rising Edge Specified)	. 231
9-10	Square-Wave Output Operation Timing	. 233
9-11	PWM Output Operation Timing	. 235
9-12	Timing of Operation by Change of CR5n	. 236
9-13	16-Bit Resolution Cascade Connection Mode	. 237
9-14	Start Timing of 8-Bit Timer Counter 5n (TM5n)	. 241
10-1	Watch Timer Block Diagram	. 242
10-2	Format of Watch Timer Operation Mode Register (WTM)	. 244
10-3	Operation Timing of Watch Timer/Interval Timer	. 246
11-1	Watchdog Timer Block Diagram	. 247
11-2	Format of Watchdog Timer Clock Select Register (WDCS)	. 248
11-3	Format of Watchdog Timer Mode Register (WDTM)	. 249

LIST OF FIGURES (4/8)

Figure No.	Title	Page
12-1	Block Diagram of Clock Output/Buzzer Output Controller	
12-2	Format of Clock Output Select Register (CKS)	
12-3	Format of Port Mode Register 7 (PM7)	
12-4	Remote Control Output Application Example	256
13-1	8-Bit A/D Converter Block Diagram	258
13-2	Format of A/D Converter Mode Register 0 (ADM0)	262
13-3	Format of Analog Input Channel Specification Register 0 (ADS0)	263
13-4	Basic Operation of 8-Bit A/D Converter	265
13-5	Relationship Between Analog Input Voltage and A/D Conversion Result	267
13-6	A/D Conversion by Hardware Start (When Falling Edge Is Specified)	
13-7	A/D Conversion by Software Start	270
13-8	Overall Error	271
13-9	Quantization Error	271
13-10	Zero Scale Error	272
13-11	Full Scale Error	272
13-12	Integral Linearity Error	272
13-13	Differential Linearity Error	272
13-14	Circuit Configuration of Series Resistor String	274
13-15	A/D Conversion End Interrupt Request Generation Timing	275
13-16	Timing of Reading Conversion Result (When Conversion Result Is Undefined)	276
13-17	AVDD Pin Connection	276
13-18	Example of Connecting Capacitor to AVREF Pin	277
13-19	Internal Equivalent Circuit of Pins ANI0 to ANI7	277
13-20	Example of Connection If Signal Source Impedance Is High	278
14-1	10-Bit A/D Converter Block Diagram	280
14-2	Format of A/D Conversion Result Register 0 (ADCR0)	281
14-3	Format of A/D Converter Mode Register 0 (ADM0)	284
14-4	Format of Analog Input Channel Specification Register 0 (ADS0)	285
14-5	Basic Operation of 10-Bit A/D Converter	287
14-6	Relationship Between Analog Input Voltage and A/D Conversion Result	289
14-7	A/D Conversion by Hardware Start (When Falling Edge Is Specified)	290
14-8	A/D Conversion by Software Start	291
14-9	Overall Error	292
14-10	Quantization Error	292
14-11	Zero Scale Error	293
14-12	Full Scale Error	293
14-13	Integral Linearity Error	293
14-14	Differential Linearity Error	293

LIST OF FIGURES (5/8)

Figure No.	Title	Page
14-15	Circuit Configuration of Series Resistor String	295
14-16	A/D Conversion End Interrupt Request Generation Timing	
14-17	Timing of Reading Conversion Result (When Conversion Result Is Undefined)	297
14-18	AVDD Pin Connection	297
14-19	Example of Connecting Capacitor to AVREF Pin	298
14-20	Internal Equivalent Circuit of Pins ANI0 to ANI7	298
14-21	Example of Connection If Signal Source Impedance Is High	299
16-1	Block Diagram of Serial Interface UART0	302
16-2	Block Diagram of Baud Rate Generator	302
16-3	Format of Asynchronous Serial Interface Status Register 0 (ASIS0)	304
16-4	Format of Asynchronous Serial Interface Mode Register 0 (ASIM0)	306
16-5	Format of Baud Rate Generator Control Register 0 (BRGC0)	308
16-6	Format of Port Mode Register 2 (PM2)	309
16-7	Error Tolerance (When k = 0), Including Sampling Errors	315
16-8	Example of Transmit/Receive Data Format in Asynchronous Serial Interface	316
16-9	Timing of Asynchronous Serial Interface Transmit Completion Interrupt Request	318
16-10	Timing of Asynchronous Serial Interface Receive Completion Interrupt Request	319
16-11	Receive Error Timing	320
16-12	Data Format Comparison Between Infrared Data Transfer Mode and UART Mode	326
17-1	Block Diagram of Serial Interface SIO3n	329
17-2	Format of Serial Operation Mode Register 30 (CSIM30)	332
17-3	Format of Serial Operation Mode Register 31 (CSIM31)	333
17-4	Format of Port Mode Register 2 (PM2)	334
17-5	Format of Port Mode Register 3 (PM3)	334
17-6	Timing of 3-Wire Serial I/O Mode	338
18-1	Block Diagram of Serial Interface IIC0	341
18-2	Serial Bus Configuration Example Using I ² C Bus	342
18-3	Format of IIC Shift Register 0 (IIC0)	343
18-4	Format of Slave Address Register 0 (SVA0)	343
18-5	Format of IIC Control Register 0 (IICC0)	346
18-6	Format of IIC Status Register 0 (IICS0)	350
18-7	Format of IIC Transfer Clock Select Register 0 (IICCL0)	353
18-8	Format of Port Mode Register 3 (PM3)	354
18-9	Pin Configuration Diagram	355
18-10	I ² C Bus Serial Data Transfer Timing	356
18-11	Start Conditions	356
18-12	Address	357
18-13	Transfer Direction Specification	357

LIST OF FIGURES (6/8)

Figure No.	Title	Page
18-14	ACK Signal	358
18-15	Stop Condition	359
18-16	Wait Signal	360
18-17	Arbitration Timing Example	364
18-18	Communication Reservation Timing	367
18-19	Timing for Accepting Communication Reservations	367
18-20	Communication Reservation Protocol	368
18-21	Master Operation Flowchart	369
18-22	Slave Operation Flowchart	375
18-23	Example of Master to Slave Communication	
	(When 9-Clock Wait Is Selected for Both Master and Slave)	396
18-24	Example of Slave to Master Communication	
	(When 9-Clock Wait Is Selected for Both Master and Slave)	399
19-1	Basic Configuration of Interrupt Function	404
19-2	Format of Interrupt Request Flag Registers (IF0L, IF0H, IF1L)	407
19-3	Format of Interrupt Mask Flag Registers (MK0L, MK0H, MK1L)	408
19-4	Format of Priority Specification Flag Registers (PR0L, PR0H, PR1L)	409
19-5	Format of External Interrupt Rising Edge Enable Register (EGP),	
	External Interrupt Falling Edge Enable Register (EGN)	410
19-6	Program Status Word Format	411
19-7	Non-Maskable Interrupt Request Generation to Acknowledge Flowchart	413
19-8	Non-Maskable Interrupt Request Acknowledge Timing	413
19-9	Non-Maskable Interrupt Request Acknowledge Operation	414
19-10	Interrupt Request Acknowledge Processing Algorithm	416
19-11	Interrupt Request Acknowledge Timing (Minimum Time)	417
19-12	Interrupt Request Acknowledge Timing (Maximum Time)	417
19-13	Nesting Examples	419
19-14	Interrupt Request Hold	421
20-1	Memory Map When Using External Device Expansion Function	
20-2	Format of Memory Expansion Mode Register (MEM)	425
20-3	Format of Memory Expansion Wait Setting Register (MM)	426
20-4	Instruction Fetch from External Memory	428
20-5	External Memory Read Timing	429
20-6	External Memory Write Timing	430
20-7	External Memory Read Modify Write Timing	431
20-8	Connection Example of μ PD780024A and Memory	432
21-1	Format of Oscillation Stabilization Time Select Register (OSTS)	434
21-2	HALT Mode Release by Interrupt Request Generation	436

LIST OF FIGURES (7/8)

Figure No.	Title	Page
21-3	HALT Mode Release by RESET Input	437
21-4	STOP Mode Release by Interrupt Request Generation	
21-5	STOP Mode Release by RESET Input	
22-1	Reset Function Block Diagram	441
22-2	Timing of Reset by RESET Input	442
22-3	Timing of Reset Due to Watchdog Timer Overflow	442
22-4	Timing of Reset in STOP Mode by RESET Input	442
23-1	Format of Memory Size Switching Register (IMS)	450
23-2	Environment for Writing Program to Flash Memory	451
23-3	Communication Mode Selection Format	453
23-4	Example of Connection with Dedicated Flash Programmer	454
23-5	VPP Pin Connection Example	457
23-6	Signal Conflict (Input Pin of Serial Interface)	458
23-7	Abnormal Operation of Other Device	458
23-8	Signal Conflict (RESET Pin)	459
23-9	Example of Wiring Adapter for Flash Memory Writing in 3-Wire Serial I/O (SIO30) Mode	460
23-10	Example of Wiring Adapter for Flash Memory Writing in 3-Wire Serial I/O (SIO31) Mode (μ PD78F0034A, 78F0034B only)	462
23-11	Example of Wiring Adapter for Flash Memory Writing in 3-Wire Serial I/O (SIO30 + HS) Mode $(\mu$ PD78F0034B, 78F0034BY only)	
23-12	Example of Wiring Adapter for Flash Memory Writing in I ² C Bus (IIC0) Mode	
	(μPD78F0034AY, 78F0034BY only)	
23-13	Example of Wiring Adapter for Flash Memory Writing in UART (UART0) Mode	
23-14	Example of Wiring Adapter for Flash Memory Writing in Pseudo 3-Wire Serial I/O Mode	470
B-1	Development Tool Configuration	565
B-2	EV-9200GC-64 Package Drawing (for Reference Only)	575
B-3	EV-9200GC-64 Recommended Board Mounting Pattern (for Reference Only)	576
B-4	TGC-064SAP Package Drawing (for Reference Only)	577
B-5	TGK-064SBW Package Drawing (for Reference Only)	578
B-6	TGB-064SDP Package Drawing (for Reference Only)	579
C-1	Distance Between In-Circuit Emulator and Conversion Adapter (When Using 64CW)	582
C-2	Connection Conditions of Target System (When Using NP-64CW)	582
C-3	Connection Conditions of Target System (When Using NP-H64CW)	583
C-4	Distance Between In-Circuit Emulator and Conversion Adapter (When Using 64GC)	584
C-5	Connection Conditions of Target System (When Using NP-64GC-TQ)	584
C-6	Connection Conditions of Target System (When Using NP-H64GC-TQ)	585

LIST OF FIGURES (8/8)

Figure No.	Title	Page
C-7	Distance Between In-Circuit Emulator and Conversion Adapter (When Using 64GK)	586
C-8	Connection Conditions of Target System (When Using NP-64GK)	586
C-9	Connection Conditions of Target System (When Using NP-H64GK-TQ)	587
C-10	Distance Between In-Circuit Emulator and Conversion Adapter (When Using 64GB)	588
C-11	Connection Conditions of Target System (When Using NP-64GB-TQ)	588
C-12	Connection Conditions of Target System (When Using NP-H64GB-TQ)	589
C-13	Distance Between In-Circuit Emulator and Conversion Socket (When Using NP-73F1-CN3)	590
C-14	Connection Conditions of Target System (When Using NP-73F1-CN3)	590

LIST OF TABLES (1/3)

Table No.	Title	Page
1-1	Correspondence Between Mask ROM Versions and Flash Memory Versions	54
1-2	Differences Between Standard Grade Products and Special Grade Products	
1-3	Correspondence Between Products and Packages	
1-4	Mask Options of Mask ROM Versions	
2-1	Correspondence Between Mask ROM Versions and Flash Memory Versions	74
2-2	Differences Between Standard Grade Products and Special Grade Products	75
2-3	Correspondence Between Products and Packages	75
2-4	Mask Options of Mask ROM Versions	76
3-1	Pin I/O Circuit Types	85
4-1	Pin I/O Circuit Types	97
5-1	Internal ROM Capacity	106
5-2	Vector Table	107
5-3	Internal High-Speed RAM Capacity	108
5-4	Internal High-Speed RAM Area	115
5-5	Special Function Register List	120
6-1	Port Functions (μPD780024A, 780034A Subseries)	137
6-2	Port Functions (μPD780024AY, 780034AY Subseries)	
6-3	Port Configuration	
6-4	Pull-Up Resistor of Port 3 (µPD780024A, 780034A Subseries)	
6-5	Pull-Up Resistor of Port 3 (µPD780024AY, 780034AY Subseries)	
6-6	Port Mode Registers and Output Latch Settings When Alternate Function Is Used	
6-7	Comparison Between Mask ROM Version and Flash Memory Version	168
7-1	Clock Generator Configuration	
7-2	Relationship Between CPU Clock and Minimum Instruction Execution Time	
7-3	Maximum Time Required for CPU Clock Switchover	182
8-1	Configuration of 16-Bit Timer/Event Counter 0	185
8-2	CR00 Capture Trigger and Valid Edges of TI00 and TI01 Pins	186
8-3	CR01 Capture Trigger and Valid Edge of TI00 Pin (CRC02 = 1)	187
9-1	Configuration of 8-Bit Timer/Event Counters 50, 51	221
10-1	Watch Timer Configuration	243
10-2	Interval Timer Interval Time	245

LIST OF TABLES (2/3)

Table No.	Title	Page
11-1	Watchdog Timer Configuration	
11-2	Watchdog Timer Loop Detection Time	
11-3	Interval Timer Interval Time	
12-1	Configuration of Clock Output/Buzzer Output Controller	253
13-1	A/D Converter Configuration	259
13-2	Sampling Time and A/D Conversion Start Delay Time of A/D Converter	
13-3	Resistances and Capacitances of Equivalent Circuit (Reference Values)	278
14-1	A/D Converter Configuration	
14-2	Sampling Time and A/D Conversion Start Delay Time of A/D Converter	
14-3	Resistances and Capacitances of Equivalent Circuit (Reference Values)	299
15-1	Differences Between μ PD780024A, 780034A Subseries and	
	μPD780024AY, 780034AY Subseries	300
16-1	Configuration of Serial Interface UART0	
16-2	Relationship Between Main System Clock and Baud Rate Error	
16-3	Causes of Receive Errors	
16-4	Relationship Between Main System Clock and Baud Rate	
16-5	Bit Rate and Pulse Width Values	
16-6	Register Settings	
17-1	Configuration of Serial Interface SIO3n	
17-2	Register Settings	339
18-1	Configuration of Serial Interface IIC0	
18-2	INTIIC0 Timing and Wait Control	
18-3	Extension Code Bit Definitions	
18-4	Status During Arbitration and Interrupt Request Generation Timing	
18-5	Wait Periods	
19-1	Interrupt Source List	403
19-2	Flags Corresponding to Interrupt Request Sources	
19-3	Times from Generation of Maskable Interrupt Until Servicing	415
19-4	Interrupt Requests Enabled for Nesting During Interrupt Servicing	418
20-1	Pin Functions in External Memory Expansion Mode	
20-2	State of Port 4 to 6 Pins in External Memory Expansion Mode	

LIST OF TABLES (3/3)

Table No.	Title	Page
21-1	HALT Mode Operating Statuses	435
21-2	Operation After HALT Mode Release	437
21-3	STOP Mode Operating Statuses	438
21-4	Operation After STOP Mode Release	440
22-1	Hardware Statuses After Reset	443
23-1	Correspondence Between μ PD78F0034A, 78F0034B, 78F0034AY, 78F0034BY,	
	and Mask ROM Versions	-
23-2	Differences Between µPD78F0034A and µPD78F0034B	
23-3	Differences Between μ PD78F0034AY and μ PD78F0034BY	
23-4	Differences Between µPD78F0034B, 78F0034BY and µPD78F0034B(A), 78F0034BY(A)	
23-5	Differences Between µPD78F0034A, 78F0034B and Mask ROM Versions	
23-6	Differences Between μ PD78F0034AY, 78F0034BY and Mask ROM Versions	
23-7	Memory Size Switching Register Settings	
23-8	Communication Mode List	
23-9	Pin Connection List	456
24-1	Operand Identifiers and Specification Methods	473
28-1	Surface Mounting Type Soldering Conditions	556
28-2	Insertion Type Soldering Conditions	560
A-1	Major Differences Between μ PD78018F, 780024A, 780034A, and 780078 Subseries (Hardware)	561
A-2	Major Differences Between μ PD78018F, 780024A, 780034A, and 780078 Subseries (Software)	562
B-1	System Upgrade Method from Former In-Circuit Emulator for 78K/0 Series to IE-78001-R-A	574
C-1	Distance Between IE System and Conversion Adapter	581

CHAPTER 1 OUTLINE (µPD780024A, 780034A SUBSERIES)

* 1.1 Expanded-Specification Products and Conventional Products

The expanded-specification products and conventional products refer to the following products.

Expanded-specification products	: μPD780021A, 780022A, 780023A, 780024A, 780031A, 780032A, 780033A,
	780034A for which orders were received after December 1, 2001
	(Products with a rank ^{Note} other than K, E, P, X)
	μPD78F0034B
Conventional products:	Products other than the above expanded-specification products
	(Products with rank ^{Note} K, E, P, X)
	μPD78F0034A

Note The rank is indicated by the 5th digit from the left in the lot number marked on the package.

Expanded-specification products and conventional products differ in the operating frequency ratings.

Power Supply Voltage (VDD)	Guaranteed Operating Speed (Operating Frequency)	
	Conventional Products	Expanded-Specification Products
4.5 to 5.5 V	8.38 MHz (0.238 μs)	12 MHz (0.166 μs)
4.0 to 5.5 V	8.38 MHz (0.238 μs)	8.38 MHz (0.238 μs)
3.0 to 5.5 V	5 MHz (0.4 μs)	8.38 MHz (0.238 μs)
2.7 to 5.5 V	5 MHz (0.4 μs)	5 MHz (0.4 μs)
1.8 to 5.5 V	1.25 MHz (1.6 μs)	1.25 MHz (1.6 μs)

Remark The parenthesized values indicate the minimum instruction execution time.

Caution Only the conventional products are available in the μ PD780024AY and 780034AY Subseries (μ PD780021AY, 780022AY, 780023AY, 780024AY, 780031AY, 780032AY, 780033AY, 780034AY, 78F0034AY, 78F0034BY).

1.2 Features

Internal memory

Type Part Number	Program Memory (ROM/Flash Memory)	Data Memory (High-Speed RAM)
μPD780021A, 780031A	8 KB	512 bytes
μPD780022A, 780032A	16 KB	
μPD780023A, 780033A	24 KB	1024 bytes
μPD780024A, 780034A	32 KB	
μPD78F0034A, 78F0034B	32 KB ^{Note}	1024 bytes ^{Note}

- **Note** The capacities of internal flash memory and internal high-speed RAM can be changed by means of the memory size switching register (IMS).
- External memory expansion space: 64 KB
- Minimum instruction execution time changeable from high speed (expanded-specification product (0.166 μs: @12 MHz operation with main system clock), conventional product (0.238 μs: @ 8.38 MHz operation with main system clock)) to ultra-low speed (122 μs: @ 32.768 kHz operation with subsystem clock)
- Instruction set suited to system control
 - · Bit manipulation possible in all address spaces
 - · Multiply and divide instructions
- Fifty-one I/O ports: (Four N-ch open-drain ports)
- 8-bit resolution A/D converter: 8 channels (µPD780024A Subseries only)
- 10-bit resolution A/D converter: 8 channels (μPD780034A Subseries only)
- Serial interface: 3 channels
 - 3-wire serial I/O mode: 2 channels
 - UART mode: 1 channel
- Timer: Five channels
 - 16-bit timer/event counter: 1 channel
 - 8-bit timer/event counter: 2 channels
 - Watch timer: 1 channel
 - Watchdog timer: 1 channel
- Vectored interrupt sources: 20
- Two types of on-chip clock oscillators (main system clock and subsystem clock)
- Power supply voltage: VDD = 1.8 to 5.5 V

1.3 Applications

μPD780021A, 780022A, 780023A, 780024A

μPD780031A, 780032A, 780033A, 780034A, 78F0034A, 78F0034B Home electric appliances, pagers, AV equipment, car audios, car electric equipment, office automation equipment, etc.

μPD780021A(A), 780022A(A), 780023A(A), 780024A(A)

µPD780031A(A), 780032A(A), 780033A(A), 780034A(A), 78F0034B(A)

Control of transportation equipment, gas detection breakers, safety devices, etc.

1.4 Ordering Information

*

(1) µPD780024A Subseries (1/2)

Part Number	Package	Internal ROM
μ PD780021ACW- \times \times	64-pin plastic SDIP (19.05 mm (750))	Mask ROM
μ PD780021AGC- \times AB8	64-pin plastic QFP (14 $ imes$ 14)	Mask ROM
μ PD780021AGC- \times ×-8BS	64-pin plastic LQFP (14 $ imes$ 14)	Mask ROM
μ PD780021AGK-×××-9ET	64-pin plastic TQFP (12 \times 12)	Mask ROM
μPD780021AGB-×××-8EU	64-pin plastic LQFP (10 $ imes$ 10)	Mask ROM
μPD780021AF1-xx-CN3	73-pin plastic FBGA (9 \times 9)	Mask ROM
μ PD780022ACW- \times \times	64-pin plastic SDIP (19.05 mm (750))	Mask ROM
μPD780022AGC-×××-AB8	64-pin plastic QFP (14 $ imes$ 14)	Mask ROM
μPD780022AGC-×××-8BS	64-pin plastic LQFP (14 $ imes$ 14)	Mask ROM
μPD780022AGK-×××-9ET	64-pin plastic TQFP (12 \times 12)	Mask ROM
μPD780022AGB-×××-8EU	64-pin plastic LQFP (10 $ imes$ 10)	Mask ROM
μPD780022AF1-xxx-CN3	73-pin plastic FBGA (9 \times 9)	Mask ROM
μ PD780023ACW- \times \times	64-pin plastic SDIP (19.05 mm (750))	Mask ROM
μPD780023AGC-×××-AB8	64-pin plastic QFP (14 $ imes$ 14)	Mask ROM
μPD780023AGC-×××-8BS	64-pin plastic LQFP (14 $ imes$ 14)	Mask ROM
μPD780023AGK-×××-9ET	64-pin plastic TQFP (12 \times 12)	Mask ROM
μPD780023AGB-×××-8EU	64-pin plastic LQFP (10 $ imes$ 10)	Mask ROM
μPD780023AF1-xx-CN3	73-pin plastic FBGA (9 \times 9)	Mask ROM
μ PD780024ACW- \times \times	64-pin plastic SDIP (19.05 mm (750))	Mask ROM
μPD780024AGC-×××-AB8	64-pin plastic QFP (14 $ imes$ 14)	Mask ROM
μPD780024AGC-×××-8BS	64-pin plastic LQFP (14 $ imes$ 14)	Mask ROM
μPD780024AGK-×××-9ET	64-pin plastic TQFP (12 \times 12)	Mask ROM
μPD780024AGB-×××-8EU	64-pin plastic LQFP (10 \times 10)	Mask ROM
μPD780024AF1-xxx-CN3	73-pin plastic FBGA (9×9)	Mask ROM

(1) μ PD780024A Subseries (2/2)

Part Number	Package	Internal ROM
μ PD780021ACW(A)- \times ××	64-pin plastic SDIP (19.05 mm (750))	Mask ROM
μPD780021AGC(A)-×××-AB8	64-pin plastic QFP (14 $ imes$ 14)	Mask ROM
μ PD780021AGC(A)- \times 8BS	64-pin plastic LQFP (14 $ imes$ 14)	Mask ROM
μ PD780021AGK(A)- \times -9ET	64-pin plastic TQFP (12 $ imes$ 12)	Mask ROM
μ PD780021AGB(A)- \times +8EU ^{Note}	64-pin plastic LQFP (10 $ imes$ 10)	Mask ROM
μ PD780022ACW(A)- \times ××	64-pin plastic SDIP (19.05 mm (750))	Mask ROM
μPD780022AGC(A)-×××-AB8	64-pin plastic QFP (14 $ imes$ 14)	Mask ROM
μ PD780022AGC(A)- \times 8BS	64-pin plastic LQFP (14 $ imes$ 14)	Mask ROM
μ PD780022AGK(A)- \times -9ET	64-pin plastic TQFP (12 $ imes$ 12)	Mask ROM
μ PD780022AGB(A)- \times +8EU ^{Note}	64-pin plastic LQFP (10 $ imes$ 10)	Mask ROM
μ PD780023ACW(A)- \times ××	64-pin plastic SDIP (19.05 mm (750))	Mask ROM
μPD780023AGC(A)-×××-AB8	64-pin plastic QFP (14 $ imes$ 14)	Mask ROM
μ PD780023AGC(A)- \times 8BS	64-pin plastic LQFP (14 $ imes$ 14)	Mask ROM
μ PD780023AGK(A)- \times -9ET	64-pin plastic TQFP (12 $ imes$ 12)	Mask ROM
μ PD780023AGB(A)- \times +8EU ^{Note}	64-pin plastic LQFP (10 $ imes$ 10)	Mask ROM
μ PD780024ACW(A)- \times ××	64-pin plastic SDIP (19.05 mm (750))	Mask ROM
μ PD780024AGC(A)- \times AB8	64-pin plastic QFP (14 $ imes$ 14)	Mask ROM
μ PD780024AGC(A)- \times 8BS	64-pin plastic LQFP (14 $ imes$ 14)	Mask ROM
μ PD780024AGK(A)- \times -9ET	64-pin plastic TQFP (12 $ imes$ 12)	Mask ROM
μ PD780024AGB(A)-×××-8EU ^{Note}	64-pin plastic LQFP (10 $ imes$ 10)	Mask ROM

Note Under development

(2) µPD780034A Subseries (1/2)

Part Number	Package	Internal ROM
μPD780031ACW-×××	64-pin plastic SDIP (19.05 mm (750))	Mask ROM
μPD780031AGC-×××-AB8	64-pin plastic QFP (14 $ imes$ 14)	Mask ROM
μPD780031AGC-×××-8BS	64-pin plastic LQFP (14 $ imes$ 14)	Mask ROM
μPD780031AGK-×××-9ET	64-pin plastic TQFP (12 \times 12)	Mask ROM
μPD780031AGB-×××-8EU	64-pin plastic LQFP (10 \times 10)	Mask ROM
μPD780031AF1-×××-CN3	73-pin plastic FBGA (9 \times 9)	Mask ROM
μ PD780032ACW- \times \times	64-pin plastic SDIP (19.05 mm (750))	Mask ROM
μPD780032AGC-×××-AB8	64-pin plastic QFP (14 $ imes$ 14)	Mask ROM
μPD780032AGC-×××-8BS	64-pin plastic LQFP (14 $ imes$ 14)	Mask ROM
μ PD780032AGK- \times +9ET	64-pin plastic TQFP (12 \times 12)	Mask ROM
μPD780032AGB-×××-8EU	64-pin plastic LQFP (10 \times 10)	Mask ROM
μPD780032AF1-×××-CN3	73-pin plastic FBGA (9 \times 9)	Mask ROM
μ PD780033ACW- \times \times	64-pin plastic SDIP (19.05 mm (750))	Mask ROM
μPD780033AGC-×××-AB8	64-pin plastic QFP (14 $ imes$ 14)	Mask ROM
μPD780033AGC-×××-8BS	64-pin plastic LQFP (14 \times 14)	Mask ROM
μ PD780033AGK- \times -9ET	64-pin plastic TQFP (12 \times 12)	Mask ROM
μPD780033AGB-×××-8EU	64-pin plastic LQFP (10 \times 10)	Mask ROM
μPD780033AF1-xx-CN3	73-pin plastic FBGA (9 \times 9)	Mask ROM
μ PD780034ACW- \times \times	64-pin plastic SDIP (19.05 mm (750))	Mask ROM
μPD780034AGC-×××-AB8	64-pin plastic QFP (14 $ imes$ 14)	Mask ROM
μPD780034AGC-×××-8BS	64-pin plastic LQFP (14 \times 14)	Mask ROM
μ PD780034AGK-xxx-9ET	64-pin plastic TQFP (12 \times 12)	Mask ROM
μPD780034AGB-×××-8EU	64-pin plastic LQFP (10 \times 10)	Mask ROM
μPD780034AF1-xx-CN3	73-pin plastic FBGA (9 \times 9)	Mask ROM
μ PD78F0034ACW	64-pin plastic SDIP (19.05 mm (750))	Flash memory
µPD78F0034AGC-AB8 ^{Note}	64-pin plastic QFP (14 $ imes$ 14)	Flash memory
μ PD78F0034AGC-8BS	64-pin plastic LQFP (14 \times 14)	Flash memory
μ PD78F0034AGK-9ET	64-pin plastic TQFP (12 \times 12)	Flash memory
μ PD78F0034AGB-8EU	64-pin plastic LQFP (10 \times 10)	Flash memory
μ PD78F0034BGC-8BS	64-pin plastic LQFP (14 \times 14)	Flash memory
μ PD78F0034BGK-9ET	64-pin plastic TQFP (12 \times 12)	Flash memory
μ PD78F0034BGB-8EU	64-pin plastic LQFP (10 \times 10)	Flash memory
μPD78F0034BF1-CN3	73-pin plastic FBGA (9 \times 9)	Flash memory

Note Maintenance product

(2) µPD780034A Subseries (2/2)

isk ROM isk ROM isk ROM isk ROM
isk ROM isk ROM
isk ROM
isk ROM
h memory
h memory
h memory

Note Under development

1.5 Quality Grade

*

(1) µPD780024A Subseries (1/2)

Part Number	Package	Quality Grades
μPD780021ACW-×××	64-pin plastic SDIP (19.05 mm (750))	Standard
μPD780021AGC-×××-AB8	64-pin plastic QFP (14 $ imes$ 14)	Standard
µPD780021AGC-×××-8BS	64-pin plastic LQFP (14 $ imes$ 14)	Standard
μPD780021AGK-×××-9ET	64-pin plastic TQFP (12 \times 12)	Standard
μPD780021AGB-×××-8EU	64-pin plastic LQFP (10 $ imes$ 10)	Standard
μPD780021AF1-×××-CN3	73-pin plastic FBGA (9 \times 9)	Standard
μPD780022ACW-×××	64-pin plastic SDIP (19.05 mm (750))	Standard
μPD780022AGC-×××-AB8	64-pin plastic QFP (14 $ imes$ 14)	Standard
µPD780022AGC-×××-8BS	64-pin plastic LQFP (14 $ imes$ 14)	Standard
μPD780022AGK-xxx-9ET	64-pin plastic TQFP (12×12)	Standard
μPD780022AGB-×××-8EU	64-pin plastic LQFP (10 $ imes$ 10)	Standard
μPD780022AF1-×××-CN3	73-pin plastic FBGA (9×9)	Standard
μPD780023ACW-×××	64-pin plastic SDIP (19.05 mm (750))	Standard
µPD780023AGC-×××-AB8	64-pin plastic QFP (14 \times 14)	Standard
μPD780023AGC-×××-8BS	64-pin plastic LQFP (14 $ imes$ 14)	Standard
μPD780023AGK-×××-9ET	64-pin plastic TQFP (12×12)	Standard
μPD780023AGB-×××-8EU	64-pin plastic LQFP (10 $ imes$ 10)	Standard
μPD780023AF1-×××-CN3	73-pin plastic FBGA (9 \times 9)	Standard
μPD780024ACW-×××	64-pin plastic SDIP (19.05 mm (750))	Standard
μPD780024AGC-×××-AB8	64-pin plastic QFP (14 $ imes$ 14)	Standard
μPD780024AGC-×××-8BS	64-pin plastic LQFP (14 $ imes$ 14)	Standard
μPD780024AGK-×××-9ET	64-pin plastic TQFP (12×12)	Standard
μPD780024AGB-xxx-8EU	64-pin plastic LQFP (10×10)	Standard
μPD780024AF1-xxx-CN3	73-pin plastic FBGA (9 \times 9)	Standard

Remark ××× indicates ROM code suffix.

(1) μ PD780024A Subseries (2/2)

Part Number	Package	Quality Grades
μ PD780021ACW(A)- \times ×	64-pin plastic SDIP (19.05 mm (750))	Special
μPD780021AGC(A)-×××-AB8	64-pin plastic QFP (14 $ imes$ 14)	Special
μPD780021AGC(A)-×××-8BS	64-pin plastic LQFP (14 $ imes$ 14)	Special
μPD780021AGK(A)-×××-9ET	64-pin plastic TQFP (12 $ imes$ 12)	Special
μPD780021AGB(A)-×××-8EU ^{Note}	64-pin plastic LQFP (10 $ imes$ 10)	Special
μ PD780022ACW(A)- \times ×	64-pin plastic SDIP (19.05 mm (750))	Special
μPD780022AGC(A)-×××-AB8	64-pin plastic QFP (14 $ imes$ 14)	Special
μPD780022AGC(A)-×××-8BS	64-pin plastic LQFP (14 $ imes$ 14)	Special
μPD780022AGK(A)-×××-9ET	64-pin plastic TQFP (12 $ imes$ 12)	Special
μPD780022AGB(A)-×××-8EU ^{Note}	64-pin plastic LQFP (10 $ imes$ 10)	Special
μ PD780023ACW(A)- \times ×	64-pin plastic SDIP (19.05 mm (750))	Special
μPD780023AGC(A)-×××-AB8	64-pin plastic QFP (14 $ imes$ 14)	Special
μPD780023AGC(A)-×××-8BS	64-pin plastic LQFP (14 $ imes$ 14)	Special
μPD780023AGK(A)-×××-9ET	64-pin plastic TQFP (12 $ imes$ 12)	Special
μPD780023AGB(A)-×××-8EU ^{Note}	64-pin plastic LQFP (10 $ imes$ 10)	Special
μ PD780024ACW(A)- \times ×	64-pin plastic SDIP (19.05 mm (750))	Special
μPD780024AGC(A)-×××-AB8	64-pin plastic QFP (14 \times 14)	Special
μPD780024AGC(A)-×××-8BS	64-pin plastic LQFP (14 $ imes$ 14)	Special
μPD780024AGK(A)-×××-9ET	64-pin plastic TQFP (12 $ imes$ 12)	Special
μPD780024AGB(A)-×××-8EU ^{Note}	64-pin plastic LQFP (10 $ imes$ 10)	Special

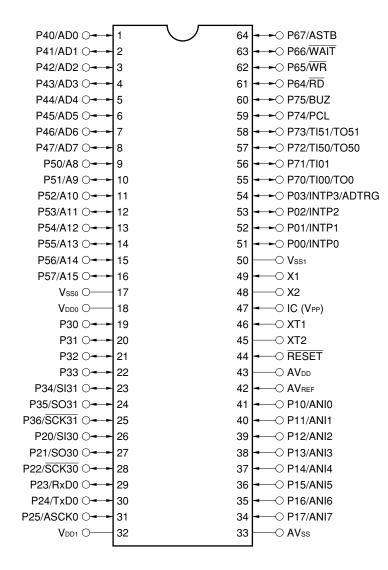
Note Under development

Remark ××× indicates ROM code suffix.

(2) µPD780034A Subseries (1/2)

Part Number	Package	Quality Grades
μPD780031ACW-×××	64-pin plastic SDIP (19.05 mm (750))	Standard
μPD780031AGC-×××-AB8	64-pin plastic QFP (14 \times 14)	Standard
μ PD780031AGC-×××-8BS	64-pin plastic LQFP (14 \times 14)	Standard
μ PD780031AGK-×××-9ET	64-pin plastic TQFP (12 \times 12)	Standard
μ PD780031AGB-×××-8EU	64-pin plastic LQFP (10 \times 10)	Standard
μPD780031AF1-×××-CN3	73-pin plastic FBGA (9×9)	Standard
μ PD780032ACW- \times \times	64-pin plastic SDIP (19.05 mm (750))	Standard
μPD780032AGC-×××-AB8	64-pin plastic QFP (14 $ imes$ 14)	Standard
μ PD780032AGC- \times ×-8BS	64-pin plastic LQFP (14 \times 14)	Standard
μ PD780032AGK-×××-9ET	64-pin plastic TQFP (12 \times 12)	Standard
μ PD780032AGB-×××-8EU	64-pin plastic LQFP (10 \times 10)	Standard
μPD780032AF1-xx-CN3	73-pin plastic FBGA (9 \times 9)	Standard
μ PD780033ACW- \times \times	64-pin plastic SDIP (19.05 mm (750))	Standard
μPD780033AGC-×××-AB8	64-pin plastic QFP (14 $ imes$ 14)	Standard
μPD780033AGC-×××-8BS	64-pin plastic LQFP (14 \times 14)	Standard
μ PD780033AGK-×××-9ET	64-pin plastic TQFP (12 \times 12)	Standard
μPD780033AGB-×××-8EU	64-pin plastic LQFP (10 \times 10)	Standard
μPD780033AF1-xx-CN3	73-pin plastic FBGA (9 \times 9)	Standard
μ PD780034ACW- \times \times	64-pin plastic SDIP (19.05 mm (750))	Standard
μPD780034AGC-×××-AB8	64-pin plastic QFP (14 \times 14)	Standard
μ PD780034AGC-×××-8BS	64-pin plastic LQFP (14 \times 14)	Standard
μ PD780034AGK-×××-9ET	64-pin plastic TQFP (12 \times 12)	Standard
μ PD780034AGB-×××-8EU	64-pin plastic LQFP (10 \times 10)	Standard
μPD780034AF1-xx-CN3	73-pin plastic FBGA (9 \times 9)	Standard
μ PD78F0034ACW	64-pin plastic SDIP (19.05 mm (750))	Standard
µPD78F0034AGC-AB8 ^{Note}	64-pin plastic QFP (14 $ imes$ 14)	Standard
μ PD78F0034AGC-8BS	64-pin plastic LQFP (14 \times 14)	Standard
μ PD78F0034AGK-9ET	64-pin plastic TQFP (12×12)	Standard
μ PD78F0034AGB-8EU	64-pin plastic LQFP (10 \times 10)	Standard
μ PD78F0034BGC-8BS	64-pin plastic LQFP (14 \times 14)	Standard
μ PD78F0034BGK-9ET	64-pin plastic TQFP (12 \times 12)	Standard
μ PD78F0034BGB-8EU	64-pin plastic LQFP (10 \times 10)	Standard
μPD78F0034BF1-CN3	73-pin plastic FBGA (9 \times 9)	Standard

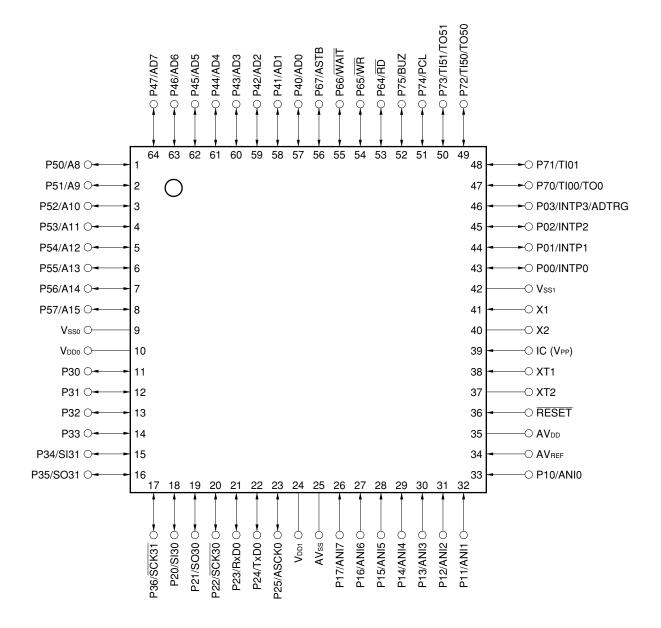
Note Maintenance product


(2) μ PD780034A Subseries (2/2)

Part Number	Package	Quality Grades
μPD780031ACW(A)-×××	64-pin plastic SDIP (19.05 mm (750))	Special
μPD780031AGC(A)-×××-AB8	64-pin plastic QFP (14 $ imes$ 14)	Special
μPD780031AGC(A)-×××-8BS	64-pin plastic LQFP (14 $ imes$ 14)	Special
μ PD780031AGK(A)-×××-9ET	64-pin plastic TQFP (12 $ imes$ 12)	Special
µPD780031AGB(A)-≫≫-8EU ^{Note}	64-pin plastic LQFP (10 \times 10)	Special
μ PD780032ACW(A)- \times ××	64-pin plastic SDIP (19.05 mm (750))	Special
μPD780032AGC(A)-×××-AB8	64-pin plastic QFP (14 $ imes$ 14)	Special
μPD780032AGC(A)-×××-8BS	64-pin plastic LQFP (14 \times 14)	Special
μPD780032AGK(A)-×××-9ET	64-pin plastic TQFP (12 $ imes$ 12)	Special
μPD780032AGB(A)-×××-8EU ^{Note}	64-pin plastic LQFP (10 $ imes$ 10)	Special
μ PD780033ACW(A)- \times ××	64-pin plastic SDIP (19.05 mm (750))	Special
μPD780033AGC(A)-×××-AB8	64-pin plastic QFP (14 $ imes$ 14)	Special
μPD780033AGC(A)-×××-8BS	64-pin plastic LQFP (14 $ imes$ 14)	Special
μPD780033AGK(A)-×××-9ET	64-pin plastic TQFP (12 $ imes$ 12)	Special
µPD780033AGB(A)-×××-8EU ^{Note}	64-pin plastic LQFP (10 $ imes$ 10)	Special
μ PD780034ACW(A)- \times ××	64-pin plastic SDIP (19.05 mm (750))	Special
μPD780034AGC(A)-×××-AB8	64-pin plastic QFP (14×14)	Special
μPD780034AGC(A)-×××-8BS	64-pin plastic LQFP (14 $ imes$ 14)	Special
μ PD780034AGK(A)- \times -9ET	64-pin plastic TQFP (12 $ imes$ 12)	Special
µPD780034AGB(A)-≫≫-8EU ^{Note}	64-pin plastic LQFP (10 $ imes$ 10)	Special
µPD78F0034BGC(A)-8BS	64-pin plastic LQFP (14 $ imes$ 14)	Special
μ PD78F0034BGK(A)-9ET	64-pin plastic TQFP (12 \times 12)	Special
μPD78F0034BGB(A)-8EU	64-pin plastic LQFP (10 \times 10)	Special
		•

Note Under development

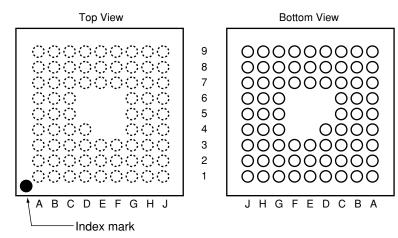
1.6 Pin Configuration (Top View)


• 64-pin plastic SDIP (19.05 mm (750))

Cautions 1. Connect the IC (Internally Connected) pin directly to V_{SS0} or V_{SS1}. 2. Connect the AVss pin to V_{SS0}.

- Remarks 1. When the μPD780024A, 780034A Subseries products are used in applications where the noise generated inside the microcontroller needs to be reduced, the implementation of noise reduction measures, such as supplying voltage to V_{DD0} and V_{DD1} individually and connecting V_{SS0} and V_{SS1} to different ground lines, is recommended.
 - 2. Pin connection in parentheses is intended for the μ PD78F0034A.

- 64-pin plastic QFP (14 × 14)
- 64-pin plastic LQFP (14 \times 14)
- 64-pin plastic TQFP (12 × 12)
- 64-pin plastic LQFP (10 × 10)



Cautions 1. Connect the IC (Internally Connected) pin directly to V_{SS0} or V_{SS1}. 2. Connect the AV_{SS} pin to V_{SS0}.

- Remarks 1. When the μPD780024A, 780034A Subseries products are used in applications where the noise generated inside the microcontroller needs to be reduced, the implementation of noise reduction measures, such as supplying voltage to VDD0 and VDD1 individually and connecting VSS0 and VSS1 to different ground lines, is recommended.
 - **2.** Pin connection in parentheses is intended for the μ PD78F0034A, 78F0034B.

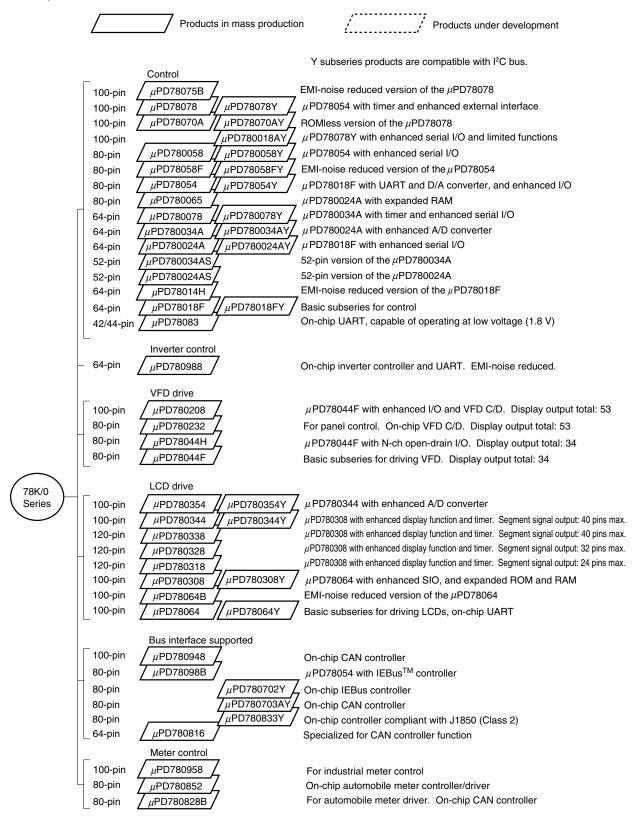
• 73-pin plastic FBGA (9 × 9)

*

Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name
A1	NC	C1	P52/A10	E1	P57/A15	G1	P33	J1	NC
A2	P46/AD6	C2	P53/A11	E2	Vddo	G2	P32	J2	P36/SCK31
A3	P44/AD4	C3	P45/AD5	E3	P54/A12	G3	P20/SI30	J3	NC
A4	P41/AD1	C4	P42/AD2	E4	-	G4	P21/SO30	J4	P25/ASCK0
A5	P67/ASTB	C5	P64/RD	E5	-	G5	P24/TxD0	J5	NC
A6	P65/WR	C6	P73/TI51/TO51	E6	-	G6	V _{DD1}	J6	P17/ANI7
A7	P74/PCL	C7	P03/INTP3/ADTRG	E7	P00/INTP0	G7	P16/ANI6	J7	P12/ANI2
A8	NC	C8	P01/INTP1	E8	XT1	G8	AVdd	J8	P13/ANI3
A9	NC	C9	Vss1	E9	X2	G9	NC	J9	NC
B1	P51/A9	D1	P55/A13	F1	P30	H1	P34/SI31		
B2	P47/AD7	D2	P56/A14	F2	P31	H2	P35/SO31		
B3	P43/AD3	D3	P50/A8	F3	Vsso	НЗ	P23/RxD0		
B4	P40/AD0	D4	NC	F4	_	H4	P22/SCK30		
B5	P66/WAIT	D5	_	F5	-	H5	AVss		
B6	P75/BUZ	D6	_	F6	_	H6	P15/ANI5		
B7	P72/TI50/TO51	D7	P02/INTP2	F7	P14/ANI4	H7	P11/ANI1		
B8	P71/TI01	D8	IC (VPP)	F8	RESET	H8	P10/ANI0		
B9	P70/TI00/TO0	D9	X1	F9	XT2	H9	AVREF		

Cautions 1. Connect the IC (Internally Connected) pin directly to $V_{\mbox{\scriptsize SS0}}$ or $V_{\mbox{\scriptsize SS1}}.$

2. Connect the AVss pin to Vsso.


2. Pin connection in parentheses is intended for the μ PD78F0034B.

Remarks 1. When the μPD780024A, 780034A Subseries products are used in applications where the noise generated inside the microcontroller needs to be reduced, the implementation of noise reduction measures, such as supplying voltage to VDD0 and VDD1 individually and connecting VSS0 and VSS1 to different ground lines, is recommended.

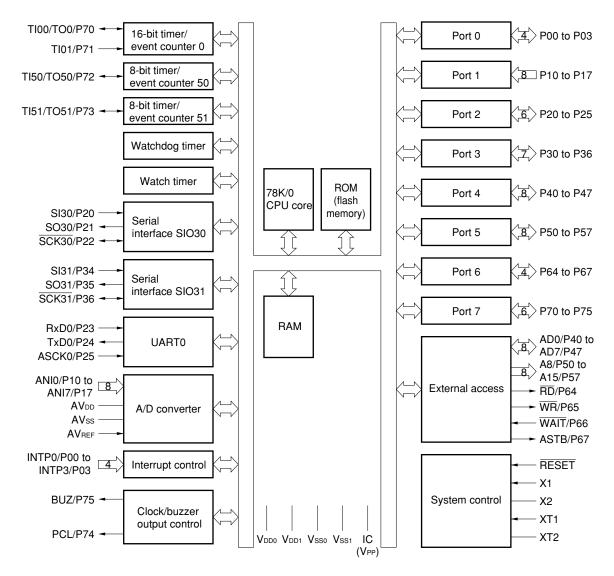
A8 to A15:	Address bus	P64 to P67:	Port 6
AD0 to AD7:	Address/data bus	P70 to P75:	Port 7
ADTRG:	AD trigger input	PCL:	Programmable clock
ANI0 to ANI7:	Analog input	RD:	Read strobe
ASCK0:	Asynchronous serial clock	RESET:	Reset
ASTB:	Address strobe	RxD0:	Receive data
AVDD:	Analog power supply	SCK30, SCK31:	Serial clock
AVREF:	Analog reference voltage	SI30, SI31:	Serial input
AVss:	Analog ground	SO30, SO31:	Serial output
BUZ:	Buzzer clock	TI00, TI01, TI50, TI51:	Timer input
IC:	Internally connected	TO0, TO50, TO51:	Timer output
INTP0 to INTP3:	External interrupt input	TxD0:	Transmit data
NC:	Non-connection	Vddo, Vdd1:	Power supply
P00 to P03:	Port 0	Vpp:	Programming power supply
P10 to P17:	Port 1	VSSO, VSS1:	Ground
P20 to P25:	Port 2	WAIT:	Wait
P30 to P36:	Port 3	WR:	Write strobe
P40 to P47:	Port 4	X1, X2:	Crystal (main system clock)
P50 to P57:	Port 5	XT1, XT2:	Crystal (subsystem clock)

1.7 78K/0 Series Lineup

The products in the 78K/0 Series are listed below. The names enclosed in boxes are subseries name.

Remark VFD (Vacuum Fluorescent Display) is referred to as FIP[™] (Fluorescent Indicator Panel) in some documents, but the functions of the two are the same.

The major functional differences between the subseries are shown below.


• Subseries without the suffix Y

	Function	ROM		Tin	ner		8-Bit	10-Bit	8-Bit	Serial Interface	I/O	VDD MIN.	External
Subseries	Name	Capacity	8-Bit	16-Bit	Watch	WDT	A/D	A/D	D/A			Value	Expansion
Control	μPD78075B	32 KB to 40 KB	4 ch	1 ch	1 ch	1 ch	8 ch	-	2 ch	3 ch (UART: 1 ch)	88	1.8 V	Yes
	µPD78078	48 KB to 60 KB											
	μPD78070A	-									61	2.7 V	
	µPD780058	24 KB to 60 KB	2 ch							3 ch (time-division UART: 1 ch)	68	1.8 V	
	μ PD78058F	48 KB to 60 KB								3 ch (UART: 1 ch)	69	2.7 V	
	μPD78054	16 KB to 60 KB										2.0 V	
	µPD780065	40 KB to 48 KB							-	4 ch (UART: 1 ch)	60	2.7 V	
	µPD780078	48 KB to 60 KB		2 ch			-	8 ch		3 ch (UART: 2 ch)	52	1.8 V	
	μPD780034A	8 KB to 32 KB		1 ch						3 ch (UART: 1 ch)	51		
	μPD780024A						8 ch	-					
	μPD780034AS						-	4 ch			39		-
	μPD780024AS						4 ch	-					
	μPD78014H						8 ch			2 ch	53		Yes
	μ PD78018F	8 KB to 60 KB											
	µPD78083	8 KB to 16 KB		_	-					1 ch (UART: 1 ch)	33		-
Inverter	µPD780988	16 KB to 60 KB	3 ch	Note	-	1 ch	-	8 ch	-	3 ch (UART: 2 ch)	47	4.0 V	Yes
control													
VFD	μPD780208	32 KB to 60 KB	2 ch	1 ch	1 ch	1 ch	8 ch	_	-	2 ch	74	2.7 V	-
drive	μPD780232	16 KB to 24 KB	3 ch	_	-		4 ch				40	4.5 V	
	μPD78044H	32 KB to 48 KB	2 ch	1 ch	1 ch		8 ch			1 ch	68	2.7 V	
	μ PD78044F	16 KB to 40 KB								2 ch			
LCD	μPD780354	24 KB to 32 KB	4 ch	1 ch	1 ch	1 ch	-	8 ch	-	3 ch (UART: 1 ch)	66	1.8 V	-
drive	µPD780344						8 ch	-					
	µPD780338	48 KB to 60 KB	3 ch	2 ch			-	10 ch	1 ch	2 ch (UART: 1 ch)	54		
	μPD780328										62		
	µPD780318										70		
	µPD780308	48 KB to 60 KB	2 ch	1 ch			8 ch	-	-	3 ch (time-division UART: 1 ch)	57	2.0 V	
	μPD78064B	32 KB								2 ch (UART: 1 ch)			
	μPD78064	16 KB to 32 KB											
Bus	µPD780948	60 KB	2 ch	2 ch	1 ch	1 ch	8 ch	-	-	3 ch (UART: 1 ch)	79	4.0 V	Yes
interface	μPD78098B	40 KB to 60 KB		1 ch					2 ch		69	2.7 V	-
supported	μPD780816	32 KB to 60 KB		2 ch			12 ch		-	2 ch (UART: 1 ch)	46	4.0 V	
Meter control	μPD780958	48 KB to 60 KB	4 ch	2 ch	_	1 ch	-	-	-	2 ch (UART: 1 ch)	69	2.2 V	-
Dashboard	μPD780852	32 KB to 40 KB	3 ch	1 ch	1 ch	1 ch	5 ch	-	-	3 ch (UART: 1 ch)	56	4.0 V	-
control	μ PD780828B	32 KB to 60 KB									59		

Note 16-bit timer: 2 channels

10-bit timer: 1 channel

1.8 Block Diagram

Remarks 1. The internal ROM and RAM capacities depend on the product.

2. Pin connection in parentheses is intended for the μ PD78F0034A, 78F0034B.

1.9 Outline of Function

Item	Part Number	μPD780021A μPD780031A	μPD780022A μPD780032A	μPD780023A μPD780033A	μPD780024A μPD780034A	μPD78F0034A μPD78F0034B		
Internal memory	ROM	8 KB	16 KB	24 KB	32 KB	32 KBNote		
internal memory		(Mask ROM)	(Mask ROM)	(Mask ROM)	(Mask ROM)	(Flash memory)		
	High-speed RAM	512 bytes		1024 bytes	1	1024 bytes ^{Note}		
Memory space	1	64 KB		1		1		
General-purpose re	gister	8 bits × 32 reg	isters (8 bits $ imes$ 8	registers \times 4 ba	nks)			
Minimum instruction		Minimum instru	uction execution	time changeable	e function			
execution time	When main system clock selected	expanded-sp	33 μs/0.666 μs/1 ecification produ 77 μs/0.954 μs/1	ct only)	-			
	When subsystem clock selected	122 μs (@ 32.	768 kHz operatic	on)				
Instruction set			de (8 bits $ imes$ 8 bits te (set, reset, tes		,			
I/O port		Total: 51 • CMOS input: 8 • CMOS I/O: 39 • N-ch open-drain I/O (5 V breakdown): 4						
A/D converter		• 10-bit resolu	on \times 8 channels tion \times 8 channels operation: AV	s (μPD780031A 78F0034A, 78	, 780032A, 7800	,		
Serial interface		3-wire serial I/O mode: 2 channels UART mode: 1 channel						
Timer		 16-bit timer/event counter: 1 channel 8-bit timer/event counter: 2 channels Watch timer: 1 channel Watchdog timer: 1 channel 						
Timer output		Three outputs (8-bit PWM output enable: 2)						
Clock output		 93.7 kHz, 187 kHz, 375 kHz, 750 kHz, 1.5 MHz, 3 MHz, 6 MHz, 12 MHz (12 MHz with main system clock, expanded-specification product only) 65.5 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.10 MHz, 4.19 MHz, 8.38 MHz (8.38 MHz with main system clock) 32.768 kHz (32.768 kHz with subsystem clock) 						
Buzzer output		 1.46 kHz, 2.92 kHz, 5.85 kHz, 11.7 kHz (12 MHz with main system clock, expanded-specification product only) 1.02 kHz, 2.05 kHz, 4.10 kHz, 8.19 kHz (8.38 MHz with main system clock) 						
		,,						
Vectored interrupt	Maskable	Internal: 13,	External: 5					
Vectored interrupt source	Maskable Non-maskable		External: 5					

Note The capacities of internal flash memory and internal high-speed RAM can be changed by means of the memory size switching register (IMS).

Part Number	μPD780021A μPD780031A	μPD780022A μPD780032A	μPD780023A μPD780033A	μPD780024A μPD780034A	μPD78F0034A μPD78F0034B
Power supply voltage	V _{DD} = 1.8 to 5.5 V				
Operating ambient temperature	$T_{A} = -40 \text{ to } +85^{\circ}\text{C}$				
Package	 64-pin plasti 64-pin plasti 64-pin plasti 64-pin plasti 64-pin plasti 	c SDIP (19.05 m c QFP (14 \times 14) c LQFP (14 \times 14 c TQFP (12 \times 12 c LQFP (10 \times 10 c FBGA (9 \times 9) (-) 2) 1)	product only)	

The outline of the timer/event counter is as follows (for details, see CHAPTER 8 16-BIT TIMER/EVENT COUNTER 0, CHAPTER 9 8-BIT TIMER/EVENT COUNTERS 50, 51, CHAPTER 10 WATCH TIMER, and CHAPTER 11 WATCHDOG TIMER).

		16-Bit Timer/ Event Counter 0	8-Bit Timer/ Event Counters 50, 51	Watch Timer	Watchdog Timer
Operation	Interval timer	1 channel	2 channels	1 channel ^{Note 1}	1 channel ^{Note 2}
Mode	External event counter	\checkmark	\checkmark	_	_
Function	Timer output	\checkmark	√	_	_
	PPG output	\checkmark	-	-	-
	PWM output	_	\checkmark	_	-
	Pulse width measurement	\checkmark	-	-	-
	Square-wave output	\checkmark	\checkmark	_	_
	Interrupt request	\checkmark	\checkmark	\checkmark	\checkmark

Notes 1. The watch timer can perform both watch timer and interval timer functions at the same time.

2. The watchdog timer can perform either the watchdog timer function or the interval timer function.

* 1.10 Correspondence Between Mask ROM Versions and Flash Memory Versions

Mask ROM Version	μPD780021A/2A/3A/4A μPD780031A/2A/3A/4A		μPD780021A(A)/2A(A)/3A(A)/4A(A) μPD780031A(A)/2A(A)/3A(A)/4A(A)	
	Conventional Expanded-		Conventional	Expanded-
Flash Memory Version	Products	Specification Products	Products	Specification Products
μPD78F0034A	\checkmark	_	_	_
μPD78F0034B	_	\checkmark	_	-
μPD78F0034B(A)	_	_	√Note	\checkmark

Table 1-1. Correspondence Between Mask ROM Versions and Flash Memory Versions

Note The μPD78F0034B(A) and the conventional products of the μPD780021A(A), 780022A(A), 780023A(A), 780024A(A), 780031A(A), 780032A(A), 780033A(A), and 780034A(A) differ in the operating frequency. When replacing a flash memory version with a mask ROM version, note the supply voltage and operating frequency.

Remarks 1. $\sqrt{:}$ Supported, -: Not supported

- The μPD780034A and μPD78F0034B, 78F0034B(A) differ in operating frequency ratings and the communication mode of flash memory programming. See 23.1 Differences Between μPD78F0034A, 78F0034AY and μPD78F0034B, 78F0034BY.
- Expanded-specification products and conventional products of the μPD780024A and 780034A Subseries differ in operating frequency ratings. For details, see CHAPTER 25 ELECTRICAL SPECIFICATIONS (EXPANDED-SPECIFICATION PRODUCTS: fx = 1.0 TO 12 MHz) and CHAPTER 26 ELECTRICAL SPECIFICATIONS (CONVENTIONAL PRODUCTS: fx = 1.0 TO 8.38 MHz).
- 4. A special grade product of the μ PD78F0034A is not available. Only a standard grade product is available.

★ 1.11 Differences Between Standard Grade Products and Special Grade Products

The differences between standard grade products (µPD780021A, 780022A, 780023A, 780024A, 780031A, 780032A, 780033A, 780034A, 78F0034A, 78F0034B) and special grade products (µPD780021A(A), 780022A(A), 780023A(A), 780024A(A), 780031A(A), 780032A(A), 780033A(A), 780034A(A), 78F0034B(A)) are shown in Table 1-2.

	μPD780021A, 780022A, 780023A, 780024A, 780031A, 780032A, 780033A, 780034A, 78F0034A, 78F0034B	μPD780021A(A), 780022A(A), 780023A(A), 780024A(A), 780031A(A), 780032A(A), 780033A(A), 780034A(A), 78F0034B(A)
Quality grade	Standard	Special
Package	See 1.12 Correspondence Between Pro	ducts and Packages
Other (functions, electrical specifications, etc.)	Same	

Table 1-2. Differences Between Standard Grade Products and Special Grade Products

1.12 Correspondence Between Products and Packages

The following table shows the correspondence between the products and packages.

	Mask ROM Version μPD780021A/2A/3A/4A μPD780031A/2A/3A/4A		Flash Memory Version		
			μPD78F0034A	μPD78F	=0034B
	Standard	Special	Standard	Standard	Special
64-pin SDIP (CW type)	\checkmark	\checkmark	\checkmark	_	_
64-pin QFP (GC-AB8 type)	\checkmark	\checkmark	√Note 1	_	_
64-pin LQFP (GC-8BS type)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
64-pin TQFP (GK-9ET type)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
64-pin LQFP (GB-8EU type)	\checkmark	$\sqrt{Note 2}$	\checkmark	\checkmark	\checkmark
73-pin FBGA (F1-CN3 type)	\checkmark	_	_	\checkmark	_

Table 1-3. Correspondence Between Products and Packages

Notes 1. Maintenance product

2. Under development

Remarks 1. $\sqrt{}$: Package available, –: Package not available

 A special grade product of the μPD78F0034A is not available. Only a standard grade product is available.

1.13 Mask Options

The mask ROM versions (μ PD780021A, 780022A, 780023A, 780024A, 780031A, 780032A, 780033A, and 780034A) provide pull-up resistor mask options which allow users to specify whether to connect a pull-up resistor to a specific port pin when the user places an order for device production. Using the mask option when pull-up resistors are required reduces the number of components to add to the device, resulting in board space saving.

The mask options provided in the $\mu \text{PD780024A}$ and 780034A Subseries are shown in Table 1-4.

Table 1-4.	Mask	Options	of	Mask	ROM	Versions
------------	------	---------	----	------	-----	----------

Pin Names	Mask Option
P30 to P33	Pull-up resistor connection can be specified in 1-bit units.

2.1 Features

Internal memory

Type Part Number	Program Memory (ROM/Flash Memory)	Data Memory (High-Speed RAM)
μPD780021AY, 780031AY	8 KB	512 bytes
μPD780022AY, 780032AY	16 KB	
μPD780023AY, 780033AY	24 KB	1024 bytes
μPD780024AY, 780034AY	32 KB	
μPD78F0034AY, 78F0034BY	32 KB ^{Note}	1024 bytes ^{Note}

Note The capacities of internal flash memory and internal high-speed RAM can be changed by means of the memory size switching register (IMS).

- · External memory expansion space: 64 KB
- Minimum instruction execution time changeable from high speed (0.238 μs: @ 8.38 MHz operation with main system clock) to ultra-low speed (122 μs: @ 32.768 kHz operation with subsystem clock)
- Instruction set suited to system control
 - · Bit manipulation possible in all address spaces
 - · Multiply and divide instructions
- Fifty-one I/O ports: (Four N-ch open-drain ports)
- 8-bit resolution A/D converter: 8 channels (µPD780024AY Subseries only)
- 10-bit resolution A/D converter: 8 channels (µPD780034AY Subseries only)
- Serial interface: 3 channels
 - 3-wire serial mode: 1 channel
 - UART mode: 1 channel
 - I²C mode: 1 channel
- Timer: Five channels
 - 16-bit timer/event counter: 1 channel
 - 8-bit timer/event counter: 2 channels
 - Watch timer: 1 channel
 - Watchdog timer: 1 channel
- Vectored interrupt sources: 20
- Two types of on-chip clock oscillators (main system clock and subsystem clock)
- Power supply voltage: VDD = 1.8 to 5.5 V
 - Caution Only the conventional products are available in the μPD780024AY and 780034AY Subseries (for details of conventional products, see 1.1 Expanded-Specification Products and Conventional Products).

2.2 Applications

μPD780021AY, 780022AY, 780023AY, 780024AY
 μPD780031AY, 780032AY, 780033AY, 780034AY, 78F0034AY, 78F0034BY
 Home electric appliances, pagers, AV equipment, car audios, car electric equipment, office automation equipment, etc.

μPD780021AY(A), 780022AY(A), 780023AY(A), 780024AY(A)
 μPD780031AY(A), 780032AY(A), 780033AY(A), 780034AY(A), 78F0034BY(A)
 Control of transportation equipment, gas detection breakers, safety devices, etc.

★ 2.3 Ordering Information

(1) μ PD780024AY Subseries (1/2)

Part Number	Package	Internal ROM
μ PD780021AYCW- \times \times	64-pin plastic SDIP (19.05 mm (750))	Mask ROM
μPD780021AYGC-×××-AB8	64-pin plastic QFP (14 $ imes$ 14)	Mask ROM
μPD780021AYGC-×××-8BS	64-pin plastic LQFP (14×14)	Mask ROM
μPD780021AYGK-xxx-9ET	64-pin plastic TQFP (12 \times 12)	Mask ROM
μPD780021AYGB-×××-8EU	64-pin plastic LQFP (10 \times 10)	Mask ROM
μPD780021AYF1-×××-CN3	73-pin plastic FBGA (9 \times 9)	Mask ROM
μPD780022AYCW-×××	64-pin plastic SDIP (19.05 mm (750))	Mask ROM
μPD780022AYGC-×××-AB8	64-pin plastic QFP (14 $ imes$ 14)	Mask ROM
μPD780022AYGC-×××-8BS	64-pin plastic LQFP (14 \times 14)	Mask ROM
μPD780022AYGK-×××-9ET	64-pin plastic TQFP (12 \times 12)	Mask ROM
μPD780022AYGB-×××-8EU	64-pin plastic LQFP (10 \times 10)	Mask ROM
μPD780022AYF1-×××-CN3	73-pin plastic FBGA (9 \times 9)	Mask ROM
μPD780023AYCW-×××	64-pin plastic SDIP (19.05 mm (750))	Mask ROM
μPD780023AYGC-×××-AB8	64-pin plastic QFP (14 $ imes$ 14)	Mask ROM
μPD780023AYGC-×××-8BS	64-pin plastic LQFP (14 \times 14)	Mask ROM
μPD780023AYGK-×××-9ET	64-pin plastic TQFP (12 \times 12)	Mask ROM
μPD780023AYGB-×××-8EU	64-pin plastic LQFP (10 $ imes$ 10)	Mask ROM
μPD780023AYF1-×××-CN3	73-pin plastic FBGA (9 \times 9)	Mask ROM
μ PD780024AYCW- \times \times	64-pin plastic SDIP (19.05 mm (750))	Mask ROM
μPD780024AYGC-×××-AB8	64-pin plastic QFP (14 $ imes$ 14)	Mask ROM
μPD780024AYGC-×××-8BS	64-pin plastic LQFP (14 $ imes$ 14)	Mask ROM
μPD780024AYGK-×××-9ET	64-pin plastic TQFP (12 \times 12)	Mask ROM
μPD780024AYGB-×××-8EU	64-pin plastic LQFP (10 \times 10)	Mask ROM
μPD780024AYF1-×××-CN3	73-pin plastic FBGA (9 \times 9)	Mask ROM

(1) μ PD780024AY Subseries (2/2)

Part Number	Package	Internal ROM
µPD780021AYCW(A)-××× ^{Note}	64-pin plastic SDIP (19.05 mm (750))	Mask ROM
µPD780021AYGC(A)-×××-AB8 ^{Note}	64-pin plastic QFP (14 \times 14)	Mask ROM
µPD780021AYGC(A)-×××-8BS ^{Note}	64-pin plastic LQFP (14 \times 14)	Mask ROM
µPD780021AYGK(A)-×××-9ET ^{Note}	64-pin plastic TQFP (12×12)	Mask ROM
µPD780021AYGB(A)-×××-8EU ^{Note}	64-pin plastic LQFP (10 $ imes$ 10)	Mask ROM
µPD780022AYCW(A)-xxx ^{Note}	64-pin plastic SDIP (19.05 mm (750))	Mask ROM
μ PD780022AYGC(A)- \times AB8	64-pin plastic QFP (14 $ imes$ 14)	Mask ROM
µPD780022AYGC(A)-×××-8BS ^{Note}	64-pin plastic LQFP (14 $ imes$ 14)	Mask ROM
µPD780022AYGK(A)-×××-9ET ^{Note}	64-pin plastic TQFP (12 \times 12)	Mask ROM
µPD780022AYGB(A)-×××-8EU ^{Note}	64-pin plastic LQFP (10 $ imes$ 10)	Mask ROM
µPD780023AYCW(A)-≫≫ ^{Note}	64-pin plastic SDIP (19.05 mm (750))	Mask ROM
µPD780023AYGC(A)-×××-AB8 ^{Note}	64-pin plastic QFP (14 $ imes$ 14)	Mask ROM
µPD780023AYGC(A)-×××-8BS ^{Note}	64-pin plastic LQFP (14 $ imes$ 14)	Mask ROM
µPD780023AYGK(A)-×××-9ET ^{Note}	64-pin plastic TQFP (12 \times 12)	Mask ROM
µPD780023AYGB(A)-×××-8EU ^{Note}	64-pin plastic LQFP (10 $ imes$ 10)	Mask ROM
µPD780024AYCW(A)-≫≫ ^{Note}	64-pin plastic SDIP (19.05 mm (750))	Mask ROM
µPD780024AYGC(A)-×××-AB8 ^{Note}	64-pin plastic QFP (14 $ imes$ 14)	Mask ROM
µPD780024AYGC(A)-×××-8BS ^{Note}	64-pin plastic LQFP (14 $ imes$ 14)	Mask ROM
μ PD780024AYGK(A)- \times -9ET ^{Note}	64-pin plastic TQFP (12 $ imes$ 12)	Mask ROM
μ PD780024AYGB(A)- \times *-8EU ^{Note}	64-pin plastic LQFP (10 $ imes$ 10)	Mask ROM

Note Under development

(2) μ PD780034AY Subseries (1/2)

Part Number	Package	Internal ROM
ιPD780031AYCW-×××	64-pin plastic SDIP (19.05 mm (750))	Mask ROM
ℓPD780031AYGC-×××-AB8	64-pin plastic QFP (14 $ imes$ 14)	Mask ROM
IPD780031AYGC-xxx-8BS	64-pin plastic LQFP (14 \times 14)	Mask ROM
ℓPD780031AYGK-×××-9ET	64-pin plastic TQFP (12×12)	Mask ROM
ℓPD780031AYGB-×××-8EU	64-pin plastic LQFP (10 \times 10)	Mask ROM
ℓPD780031AYF1-×××-CN3	73-pin plastic FBGA (9 \times 9)	Mask ROM
IPD780032AYCW-XXX	64-pin plastic SDIP (19.05 mm (750))	Mask ROM
ℓPD780032AYGC-×××-AB8	64-pin plastic QFP (14 $ imes$ 14)	Mask ROM
ıPD780032AYGC-×××-8BS	64-pin plastic LQFP (14 \times 14)	Mask ROM
ℓPD780032AYGK-×××-9ET	64-pin plastic TQFP (12 \times 12)	Mask ROM
uPD780032AYGB-×××-8EU	64-pin plastic LQFP (10 \times 10)	Mask ROM
ℓPD780032AYF1-×××-CN3	73-pin plastic FBGA (9 \times 9)	Mask ROM
ℓPD780033AYCW-×××	64-pin plastic SDIP (19.05 mm (750))	Mask ROM
ℓPD780033AYGC-×××-AB8	64-pin plastic QFP (14 $ imes$ 14)	Mask ROM
IPD780033AYGC-xxx-8BS	64-pin plastic LQFP (14 \times 14)	Mask ROM
ℓPD780033AYGK-×××-9ET	64-pin plastic TQFP (12 \times 12)	Mask ROM
uPD780033AYGB-×××-8EU	64-pin plastic LQFP (10 \times 10)	Mask ROM
ℓPD780033AYF1-×××-CN3	73-pin plastic FBGA (9 \times 9)	Mask ROM
uPD780034AYCW-×××	64-pin plastic SDIP (19.05 mm (750))	Mask ROM
ıPD780034AYGC-×××−AB8	64-pin plastic QFP (14 $ imes$ 14)	Mask ROM
ıPD780034AYGC-×××−8BS	64-pin plastic LQFP (14 \times 14)	Mask ROM
ℓPD780034AYGK-×××-9ET	64-pin plastic TQFP (12 \times 12)	Mask ROM
ℓPD780034AYGB-×××-8EU	64-pin plastic LQFP (10 \times 10)	Mask ROM
ℓPD780034AYF1-×××-CN3	73-pin plastic FBGA (9 \times 9)	Mask ROM
ιPD78F0034AYCW	64-pin plastic SDIP (19.05 mm (750))	Flash memory
PD78F0034AYGC-AB8،	64-pin plastic QFP (14 $ imes$ 14)	Flash memory
ιPD78F0034AYGC-8BS	64-pin plastic LQFP (14 \times 14)	Flash memory
ιPD78F0034AYGK-9ET	64-pin plastic TQFP (12×12)	Flash memory
ιPD78F0034AYGB-8EU	64-pin plastic LQFP (10×10)	Flash memory
PD78F0034BYGC-8BS،	64-pin plastic LQFP (14 \times 14)	Flash memory
ιPD78F0034BYGK-9ET	64-pin plastic TQFP (12×12)	Flash memory
ιPD78F0034BYGB-8EU	64-pin plastic LQFP (10×10)	Flash memory
ιPD78F0034BYF1-CN3	73-pin plastic FBGA (9 $ imes$ 9)	Flash memory

(2) μ PD780034AY Subseries (2/2)

Part Number	Package	Internal ROM
µPD780031AYCW(A)-××× ^{Note}	64-pin plastic SDIP (19.05 mm (750))	Mask ROM
µPD780031AYGC(A)-×××-AB8 ^{Note}	64-pin plastic QFP (14 \times 14)	Mask ROM
μ PD780031AYGC(A)- \times 8BS ^{Note}	64-pin plastic LQFP (14 $ imes$ 14)	Mask ROM
μ PD780031AYGK(A)- \times -9ET ^{Note}	64-pin plastic TQFP (12 $ imes$ 12)	Mask ROM
µPD780031AYGB(A)-×××-8EU ^{Note}	64-pin plastic LQFP (10 $ imes$ 10)	Mask ROM
µPD780032AYCW(A)-××× ^{Note}	64-pin plastic SDIP (19.05 mm (750))	Mask ROM
µPD780032AYGC(A)-×××-AB8 ^{Note}	64-pin plastic QFP (14 \times 14)	Mask ROM
µPD780032AYGC(A)-×××-8BS ^{Note}	64-pin plastic LQFP (14 $ imes$ 14)	Mask ROM
µPD780032AYGK(A)-×××-9ET ^{Note}	64-pin plastic TQFP (12 $ imes$ 12)	Mask ROM
µPD780032AYGB(A)-×××-8EU ^{Note}	64-pin plastic LQFP (10 $ imes$ 10)	Mask ROM
µPD780033AYCW(A)-≫≫ ^{Note}	64-pin plastic SDIP (19.05 mm (750))	Mask ROM
µPD780033AYGC(A)-×××-AB8 ^{Note}	64-pin plastic QFP (14 \times 14)	Mask ROM
μ PD780033AYGC(A)- \times 8BS ^{Note}	64-pin plastic LQFP (14 $ imes$ 14)	Mask ROM
μ PD780033AYGK(A)- \times -9ET ^{Note}	64-pin plastic TQFP (12 $ imes$ 12)	Mask ROM
µPD780033AYGB(A)-×××-8EU ^{Note}	64-pin plastic LQFP (10 $ imes$ 10)	Mask ROM
µPD780034AYCW(A)-≫≫ ^{Note}	64-pin plastic SDIP (19.05 mm (750))	Mask ROM
µPD780034AYGC(A)-×××-AB8 ^{Note}	64-pin plastic QFP (14 \times 14)	Mask ROM
µPD780034AYGC(A)-×××-8BS ^{Note}	64-pin plastic LQFP (14 $ imes$ 14)	Mask ROM
µPD780034AYGK(A)-×××-9ET ^{Note}	64-pin plastic TQFP (12 $ imes$ 12)	Mask ROM
µPD780034AYGB(A)-×××-8EU ^{Note}	64-pin plastic LQFP (10 $ imes$ 10)	Mask ROM
μ PD78F0034BYGC(A)-8BS	64-pin plastic LQFP (14 $ imes$ 14)	Mask ROM
μ PD78F0034BYGK(A)-9ET	64-pin plastic TQFP (12 \times 12)	Mask ROM
μ PD78F0034BYGB(A)-8EU	64-pin plastic LQFP (10 \times 10)	Mask ROM

Note Under development

★ 2.4 Quality Grade

(1) *µ*PD780024AY Subseries (1/2)

Part Number	Package	Quality Grades
μ PD780021AYCW- \times ×	64-pin plastic SDIP (19.05 mm (750))	Standard
μ PD780021AYGC- \times AB8	64-pin plastic QFP (14 $ imes$ 14)	Standard
μ PD780021AYGC-×××-8BS	64-pin plastic LQFP (14 $ imes$ 14)	Standard
μ PD780021AYGK- \times +9ET	64-pin plastic TQFP (12 $ imes$ 12)	Standard
μPD780021AYGB-×××-8EU	64-pin plastic LQFP (10 \times 10)	Standard
μPD780021AYF1-×××-CN3	73-pin plastic FBGA (9 \times 9)	Standard
μPD780022AYCW-×××	64-pin plastic SDIP (19.05 mm (750))	Standard
μPD780022AYGC-×××-AB8	64-pin plastic QFP (14 $ imes$ 14)	Standard
μPD780022AYGC-×××-8BS	64-pin plastic LQFP (14 \times 14)	Standard
μPD780022AYGK-×××-9ET	64-pin plastic TQFP (12 $ imes$ 12)	Standard
μPD780022AYGB-×××-8EU	64-pin plastic LQFP (10 \times 10)	Standard
μPD780022AYF1-×××-CN3	73-pin plastic FBGA (9×9)	Standard
μPD780023AYCW-×××	64-pin plastic SDIP (19.05 mm (750))	Standard
μPD780023AYGC-×××-AB8	64-pin plastic QFP (14 $ imes$ 14)	Standard
μPD780023AYGC-×××-8BS	64-pin plastic LQFP (14 \times 14)	Standard
μPD780023AYGK-×××-9ET	64-pin plastic TQFP (12 $ imes$ 12)	Standard
μPD780023AYGB-×××-8EU	64-pin plastic LQFP (10 $ imes$ 10)	Standard
μPD780023AYF1-×××-CN3	73-pin plastic FBGA (9 \times 9)	Standard
μPD780024AYCW-×××	64-pin plastic SDIP (19.05 mm (750))	Standard
μPD780024AYGC-×××-AB8	64-pin plastic QFP (14 $ imes$ 14)	Standard
μPD780024AYGC-×××-8BS	64-pin plastic LQFP (14 $ imes$ 14)	Standard
μPD780024AYGK-×××-9ET	64-pin plastic TQFP (12 $ imes$ 12)	Standard
μPD780024AYGB-×××-8EU	64-pin plastic LQFP (10 $ imes$ 10)	Standard
μPD780024AYF1-×××-CN3	73-pin plastic FBGA (9 \times 9)	Standard

Remark ××× indicates ROM code suffix.

(1) μ PD780024AY Subseries (2/2)

Part Number	Package	Quality Grades
µPD780021AYCW(A)-××× ^{Note}	64-pin plastic SDIP (19.05 mm (750))	Special
μPD780021AYGC(A)-×××-AB8 ^{Note}	64-pin plastic QFP (14 $ imes$ 14)	Special
µPD780021AYGC(A)-×××-8BS ^{Note}	64-pin plastic LQFP (14 \times 14)	Special
μPD780021AYGK(A)-×××-9ET ^{Note}	64-pin plastic TQFP (12 \times 12)	Special
μPD780021AYGB(A)-×××-8EU ^{Note}	64-pin plastic LQFP (10 \times 10)	Special
µPD780022AYCW(A)-xxx ^{Note}	64-pin plastic SDIP (19.05 mm (750))	Special
μPD780022AYGC(A)-×××-AB8	64-pin plastic QFP (14 $ imes$ 14)	Special
μ PD780022AYGC(A)- \times *-8BS ^{Note}	64-pin plastic LQFP (14 \times 14)	Special
μ PD780022AYGK(A)- \times +9ET ^{Note}	64-pin plastic TQFP (12 \times 12)	Special
μ PD780022AYGB(A)- \times *-8EU ^{Note}	64-pin plastic LQFP (10 \times 10)	Special
µPD780023AYCW(A)-xxx ^{Note}	64-pin plastic SDIP (19.05 mm (750))	Special
µPD780023AYGC(A)-×××-AB8 ^{Note}	64-pin plastic QFP (14 $ imes$ 14)	Special
μ PD780023AYGC(A)- \times *-8BS ^{Note}	64-pin plastic LQFP (14 \times 14)	Special
µPD780023AYGK(A)-×××-9ET ^{Note}	64-pin plastic TQFP (12 \times 12)	Special
μ PD780023AYGB(A)- \times *-8EU ^{Note}	64-pin plastic LQFP (10 \times 10)	Special
µPD780024AYCW(A)-xxx ^{Note}	64-pin plastic SDIP (19.05 mm (750))	Special
μPD780024AYGC(A)-×××-AB8 ^{Note}	64-pin plastic QFP (14 $ imes$ 14)	Special
μPD780024AYGC(A)-×××-8BS ^{Note}	64-pin plastic LQFP (14 \times 14)	Special
μ PD780024AYGK(A)-×××-9ET ^{Note}	64-pin plastic TQFP (12 \times 12)	Special
μPD780024AYGB(A)-×××-8EU ^{Note}	64-pin plastic LQFP (10 \times 10)	Special

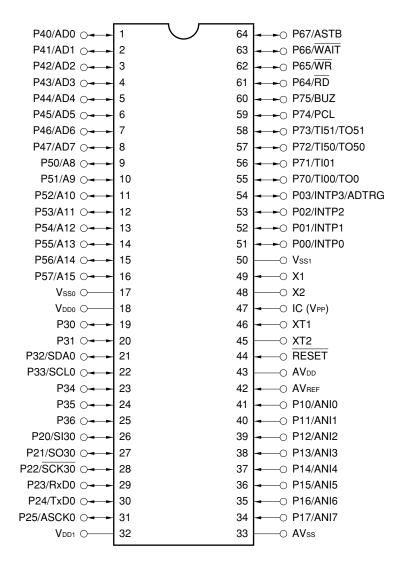
Note Under development

Remark ××× indicates ROM code suffix.

(2) μ PD780034AY Subseries (1/2)

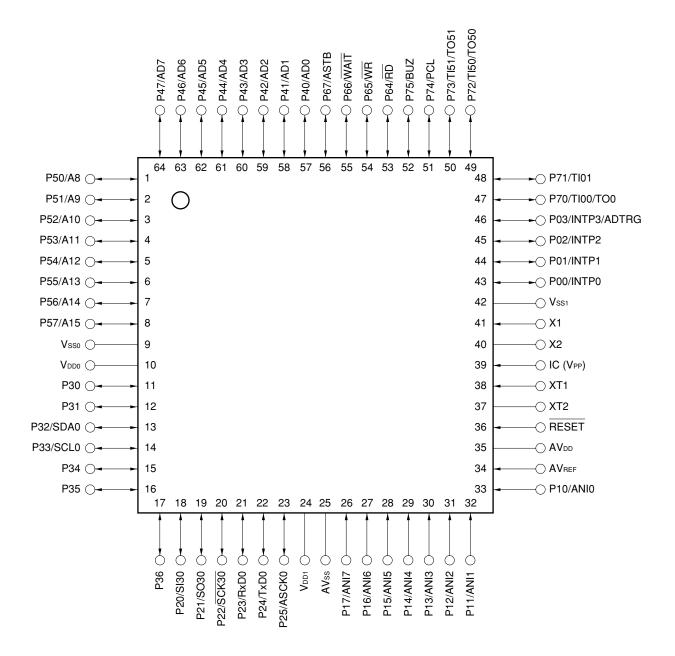
Part Number	Package	Quality Grades
µPD780031AYCW-×××	64-pin plastic SDIP (19.05 mm (750))	Standard
μPD780031AYGC-×××-AB8	64-pin plastic QFP (14 $ imes$ 14)	Standard
µPD780031AYGC-×××-8BS	64-pin plastic LQFP (14 $ imes$ 14)	Standard
μ PD780031AYGK-×××-9ET	64-pin plastic TQFP (12 $ imes$ 12)	Standard
μ PD780031AYGB-×××-8EU	64-pin plastic LQFP (10 $ imes$ 10)	Standard
μPD780031AYF1-×××-CN3	73-pin plastic FBGA (9 \times 9)	Standard
μ PD780032AYCW- $\times\!\!\times\!\!\times$	64-pin plastic SDIP (19.05 mm (750))	Standard
μ PD780032AYGC- \times AB8	64-pin plastic QFP (14 $ imes$ 14)	Standard
μ PD780032AYGC- \times **-8BS	64-pin plastic LQFP (14 $ imes$ 14)	Standard
μ PD780032AYGK-×××-9ET	64-pin plastic TQFP (12 \times 12)	Standard
μPD780032AYGB-×××-8EU	64-pin plastic LQFP (10 $ imes$ 10)	Standard
μPD780032AYF1-×××-CN3	73-pin plastic FBGA (9 \times 9)	Standard
μ PD780033AYCW- \times \times	64-pin plastic SDIP (19.05 mm (750))	Standard
μ PD780033AYGC-×××-AB8	64-pin plastic QFP (14 $ imes$ 14)	Standard
μ PD780033AYGC-×××-8BS	64-pin plastic LQFP (14 $ imes$ 14)	Standard
μ PD780033AYGK-×××-9ET	64-pin plastic TQFP (12 $ imes$ 12)	Standard
μ PD780033AYGB-×××-8EU	64-pin plastic LQFP (10 $ imes$ 10)	Standard
μPD780033AYF1-×××-CN3	73-pin plastic FBGA (9 \times 9)	Standard
μ PD780034AYCW- \times \times	64-pin plastic SDIP (19.05 mm (750))	Standard
μ PD780034AYGC- \times +AB8	64-pin plastic QFP (14 $ imes$ 14)	Standard
μ PD780034AYGC-×××-8BS	64-pin plastic LQFP (14 $ imes$ 14)	Standard
μ PD780034AYGK-×××-9ET	64-pin plastic TQFP (12 $ imes$ 12)	Standard
μ PD780034AYGB- \times ××-8EU	64-pin plastic LQFP (10 $ imes$ 10)	Standard
μPD780034AYF1-xx-CN3	73-pin plastic FBGA (9 \times 9)	Standard
μ PD78F0034AYCW	64-pin plastic SDIP (19.05 mm (750))	Standard
μ PD78F0034AYGC-AB8	64-pin plastic QFP (14 $ imes$ 14)	Standard
μ PD78F0034AYGC-8BS	64-pin plastic LQFP (14 $ imes$ 14)	Standard
μ PD78F0034AYGK-9ET	64-pin plastic TQFP (12 \times 12)	Standard
μ PD78F0034AYGB-8EU	64-pin plastic LQFP (10 $ imes$ 10)	Standard
μ PD78F0034BYGC-8BS	64-pin plastic LQFP (14 $ imes$ 14)	Standard
μ PD78F0034BYGK-9ET	64-pin plastic TQFP (12 \times 12)	Standard
μ PD78F0034BYGB-8EU	64-pin plastic LQFP (10 $ imes$ 10)	Standard
μPD78F0034BYF1-CN3	73-pin plastic FBGA (9 \times 9)	Standard

(2) μ PD780034AY Subseries (2/2)


Part Number	Package	Quality Grades
µPD780031AYCW(A)-××× ^{Note}	64-pin plastic SDIP (19.05 mm (750))	Special
$\mu PD780031AYGC(A)\text{-}\times\!\!\times\!\!\!\times\!\!AB8^{\textbf{Note}}$	64-pin plastic QFP (14 $ imes$ 14)	Special
μ PD780031AYGC(A)-×××-8BS ^{Note}	64-pin plastic LQFP (14 $ imes$ 14)	Special
μ PD780031AYGK(A)-×××-9ET ^{Note}	64-pin plastic TQFP (12×12)	Special
$\mu \texttt{PD780031AYGB}(\texttt{A})\text{-}\times\!\!\times\!\!\text{-}8\texttt{EU}^{\textbf{Note}}$	64-pin plastic LQFP (10 $ imes$ 10)	Special
μPD780032AYCW(A)-××× ^{Note}	64-pin plastic SDIP (19.05 mm (750))	Special
μ PD780032AYGC(A)-×××-AB8 ^{Note}	64-pin plastic QFP (14 \times 14)	Special
μ PD780032AYGC(A)-×××-8BS ^{Note}	64-pin plastic LQFP (14 $ imes$ 14)	Special
μPD780032AYGK(A)-×××-9ET ^{Note}	64-pin plastic TQFP (12 $ imes$ 12)	Special
μ PD780032AYGB(A)-×××-8EU ^{Note}	64-pin plastic LQFP (10 $ imes$ 10)	Special
μPD780033AYCW(A)-××× ^{Note}	64-pin plastic SDIP (19.05 mm (750))	Special
μPD780033AYGC(A)-×××-AB8 ^{Note}	64-pin plastic QFP (14 $ imes$ 14)	Special
μ PD780033AYGC(A)-×××-8BS ^{Note}	64-pin plastic LQFP (14 $ imes$ 14)	Special
μPD780033AYGK(A)-×××-9ET ^{Note}	64-pin plastic TQFP (12 \times 12)	Special
μ PD780033AYGB(A)-×××-8EU ^{Note}	64-pin plastic LQFP (10 $ imes$ 10)	Special
μPD780034AYCW(A)-××× ^{Note}	64-pin plastic SDIP (19.05 mm (750))	Special
μ PD780034AYGC(A)-×××-AB8 ^{Note}	64-pin plastic QFP (14 \times 14)	Special
μ PD780034AYGC(A)-×××-8BS ^{Note}	64-pin plastic LQFP (14 $ imes$ 14)	Special
μPD780034AYGK(A)-×××-9ET ^{Note}	64-pin plastic TQFP (12 $ imes$ 12)	Special
μ PD780034AYGB(A)-×××-8EU ^{Note}	64-pin plastic LQFP (10 $ imes$ 10)	Special
µPD78F0034BYGC(A)-8BS	64-pin plastic LQFP (14 \times 14)	Special
μPD78F0034BYGK(A)-9ET	64-pin plastic TQFP (12 \times 12)	Special
μPD78F0034BYGB(A)-8EU	64-pin plastic LQFP (10×10)	Special

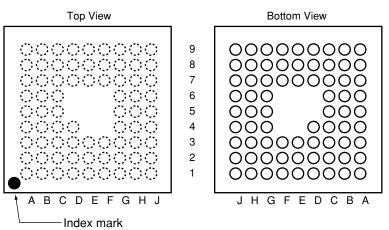
Note Under development

Remark xxx indicates ROM code suffix.


2.5 Pin Configuration (Top View)

64-pin plastic SDIP (19.05 mm (750))

- Cautions 1. Connect the IC (Internally Connected) pin directly to V_{SS0} or V_{SS1}. 2. Connect the AVss pin to V_{SS0}.
- Remarks 1. When the μPD780024AY, 780034AY Subseries products are used in applications where the noise generated inside the microcontroller needs to be reduced, the implementation of noise reduction measures, such as supplying voltage to VDD0 and VDD1 individually and connecting VSS0 and VSS1 to different ground lines, is recommended.
 - 2. Pin connection in parentheses is intended for the μ PD78F0034AY.


- 64-pin plastic QFP (14 × 14)
- 64-pin plastic LQFP (14 × 14)
- 64-pin plastic TQFP (12 × 12)
- 64-pin plastic LQFP (10 × 10)

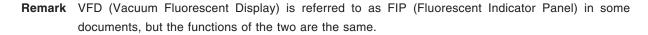
Cautions 1. Connect the IC (Internally Connected) pin directly to $V_{\mbox{\scriptsize SS0}}$ or $V_{\mbox{\scriptsize SS1}}.$

- 2. Connect the AVss pin to Vsso.
- Remarks 1. When the μPD780024AY, 780034AY Subseries products are used in applications where the noise generated inside the microcontroller needs to be reduced, the implementation of noise reduction measures, such as supplying voltage to VDD0 and VDD1 individually and connecting VSS0 and VSS1 to different ground lines, is recommended.
 - 2. Pin connection in parentheses is intended for the μ PD78F0034AY, 78F0034BY.

★ • 73-pin plastic FBGA (9 × 9)

Pin No.	Pin Name	Pin No.	Pin Name	Pin No. Pin Name F		Pin No.	Pin Name	Pin No.	Pin Name
A1	NC	C1	P52/A10	E1	E1 P57/A15		P33/SCL0	J1	NC
A2	P46/AD6	C2	P53/A11	E2	Vddo	G2	P32/SDA0	J2	P36
A3	P44/AD4	C3	P45/AD5	E3	P54/A12	G3	P20/SI30	JЗ	NC
A4	P41/AD1	C4	P42/AD2	E4	-	G4	P21/SO30	J4	P25/ASCK0
A5	P67/ASTB	C5	P64/RD	E5	_	G5	P24/TxD0	J5	NC
A6	P65/WR	C6	P73/TI51/TO51	E6	_	G6	V _{DD1}	J6	P17/ANI7
A7	P74/PCL	C7	P03/INTP3/ADTRG	E7	P00/INTP0	G7	P16/ANI6	J7	P12/ANI2
A8	NC	C8	P01/INTP1	E8	XT1	G8	AVDD	J8	P13/ANI3
A9	NC	C9	V _{SS1}	E9	X2	G9	NC	J9	NC
B1	P51/A9	D1	P55/A13	F1	P30	H1	P34		
B2	P47/AD7	D2	P56/A14	F2	P31	H2	P35		
B3	P43/AD3	D3	P50/A8	F3	Vsso	H3	P23/RxD0		
B4	P40/AD0	D4	NC	F4	_	H4	P22/SCK30		
B5	P66/WAIT	D5	-	F5	-	H5	AVss		
B6	P75/BUZ	D6	_	F6	_	H6	P15/ANI5		
B7	P72/TI50/TO51	D7	P02/INTP2	F7	P14/ANI4	H7	P11/ANI1		
B8	P71/TI01	D8	IC (VPP)	F8	RESET	H8	P10/ANI0		
B9	P70/TI00/TO0	D9	X1	F9	XT2	H9	AVREF		

Cautions 1. Connect the IC (Internally Connected) pin directly to $V_{\mbox{\scriptsize SS0}}$ or $V_{\mbox{\scriptsize SS1}}.$

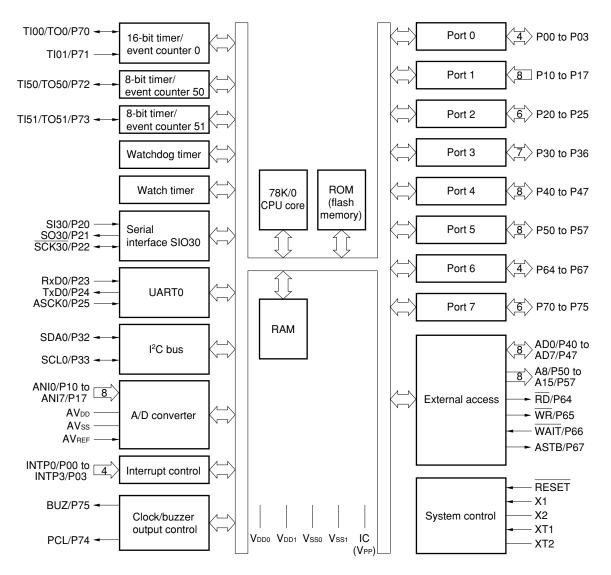

2. Connect the AVss pin to Vsso.

- Remarks 1. When the μPD780024AY, 780034AY Subseries products are used in applications where the noise generated inside the microcontroller needs to be reduced, the implementation of noise reduction measures, such as supplying voltage to VDD0 and VDD1 individually and connecting VSS0 and VSS1 to different ground lines, is recommended.
 - **2.** Pin connection in parentheses is intended for the μ PD78F0034BY.

A8 to A15:	Address bus	P70 to P75:	Port 7
AD0 to AD7:	Address/data bus	PCL:	Programmable clock
ADTRG:	AD trigger input	RD:	Read strobe
ANI0 to ANI7:	Analog input	RESET:	Reset
ASCK0:	Asynchronous serial clock	RxD0:	Receive data
ASTB:	Address strobe	SCK30:	Serial clock
AVDD:	Analog power supply	SCL0:	Serial clock
AVREF:	Analog reference voltage	SDA0:	Serial data
AVss:	Analog ground	SI30:	Serial input
BUZ:	Buzzer clock	SO30:	Serial output
IC:	Internally connected	TI00, TI01, TI50, TI51	: Timer input
INTP0 to INTP3	: External interrupt input	TO0, TO50, TO51:	Timer output
NC:	Non-connection	TxD0:	Transmit data
P00 to P03:	Port 0	VDD0, VDD1:	Power supply
P10 to P17:	Port 1	Vpp:	Programming power supply
P20 to P25:	Port 2	Vsso, Vss1:	Ground
P30 to P36:	Port 3	WAIT:	Wait
P40 to P47:	Port 4	WR:	Write strobe
P50 to P57:	Port 5	X1, X2:	Crystal (main system clock)
P64 to P67:	Port 6	XT1, XT2:	Crystal (subsystem clock)

★ 2.6 78K/0 Series Lineup

The products in the 78K/0 Series are listed below. The names enclosed in boxes are subseries name. Products in mass production Products under development Y subseries products are compatible with I²C bus. Control EMI-noise reduced version of the μ PD78078 μPD78075B 100-pin μPD78078 μPD78078Y μ PD78054 with timer and enhanced external interface 100-pin μPD78070A μPD78070AY 100-pin ROMless version of the µPD78078 μPD780018AY μ PD78078Y with enhanced serial I/O and limited functions 100-pin μPD780058 $\mu\,\mathrm{PD78054}$ with enhanced serial I/O µPD780058Y 80-pin μPD78058F μPD78058FY EMI-noise reduced version of the μ PD78054 80-pin μPD78054 μPD78054Y μ PD78018F with UART and D/A converter, and enhanced I/O 80-pin 80-pin μPD780065 µPD780024A with expanded RAM µPD780078 μPD780078Y μ PD780034A with timer and enhanced serial I/O 64-pin $\mu\,\text{PD780024A}$ with enhanced A/D converter μPD780034AY 64-pin μPD780034A 64-pin μ PD780024A μPD780024AY μ PD78018F with enhanced serial I/O /µPD780034AS 52-pin version of the µPD780034A 52-pin 52-pin /μPD780024AS 52-pin version of the μ PD780024A EMI-noise reduced version of the µPD78018F 64-pin μPD78014H µPD78018F μPD78018FY Basic subseries for control 64-pin µPD78083 On-chip UART, capable of operating at low voltage (1.8 V) 42/44-pin Inverter control 64-pin µPD780988 On-chip inverter controller and UART. EMI-noise reduced. VFD drive µPD780208 μ PD78044F with enhanced I/O and VFD C/D. Display output total: 53 100-pin μPD780232 80-pin For panel control. On-chip VFD C/D. Display output total: 53 80-pin μPD78044H µPD78044F with N-ch open-drain I/O. Display output total: 34 80-pin μPD78044F Basic subseries for driving VFD. Display output total: 34 LCD drive 78K/0 Series µPD780354 μPD780354Y μ PD780344 with enhanced A/D converter 100-pin μPD780344Y 100-pin µPD780344 μ PD780308 with enhanced display function and timer. Segment signal output: 40 pins max. μ PD780308 with enhanced display function and timer. Segment signal output: 40 pins max. 120-pin µPD780338 μ PD780308 with enhanced display function and timer. Segment signal output: 32 pins max. 120-pin µPD780328 μ PD780308 with enhanced display function and timer. Segment signal output: 24 pins max. 120-pin µPD780318 ^µPD780308Y μ PD78064 with enhanced SIO, and expanded ROM and RAM 100-pin µPD780308 100-pin EMI-noise reduced version of the μ PD78064 µPD78064B 100-pin µPD78064 μPD78064Υ Basic subseries for driving LCDs, on-chip UART Bus interface supported 100-pin µPD780948 On-chip CAN controller 80-pin μPD78098B µPD78054 with IEBus controller 80-pin μPD780702Y On-chip IEBus controller µPD780703AY 80-pin On-chip CAN controller μPD780833Y 80-pin On-chip controller compliant with J1850 (Class 2) µPD780816 64-pin Specialized for CAN controller function Meter control 100-pin μPD780958 For industrial meter control 80-pin μPD780852 On-chip automobile meter controller/driver 80-pin μPD780828B For automobile meter driver. On-chip CAN controller


The major functional differences between the subseries are shown below.

• Subseries with the suffix Y

Function ROM Subseries Name Capacity 8-E			Timer			8-Bit	8-Bit 10-Bit 8	8-Bit	Serial Interface	I/O	Vdd	External	
		Capacity	8-Bit	16-Bit	Watch	WDT	A/D	A/D	D/A			MIN. Value	Expansion
Control	μPD78078Y	48 KB to 60 KB	4 ch	1 ch	1 ch	1 ch	8 ch	:h _	2 ch	3 ch (UART: 1 ch, I ² C: 1 ch)	88	1.8 V	Yes
	μ PD78070AY	-									61	2.7 V	
	μPD780018AY	48 KB to 60 KB							-	3 ch (l ² C: 1 ch)	88		
	μPD780058Y	24 KB to 60 KB	2 ch						2 ch	3 ch (time-division UART: 1 ch, I ² C: 1 ch)	68	1.8 V	
	μPD78058FY	48 KB to 60 KB								3 ch (UART: 1 ch,	69	2.7 V	
	μPD78054Y	16 KB to 60 KB			-					I ² C: 1 ch)		2.0 V	
	μPD780078Y	48 KB to 60 KB		2 ch			– 8 ch	8 ch –	_	4 ch (UART: 2 ch, I ² C: 1 ch)	52	1.8 V	
	μPD780034AY	8 KB to 32 KB		1 ch	1				3 ch (UART: 1 ch,	51	1		
	μPD780024AY						8 ch	_	1	l ² C: 1 ch)			
	μPD78018FY	8 KB to 60 KB								2 ch (l ² C: 1 ch)	53	1	
LCD	μPD780354Y	24 KB to 32 KB	4 ch	1 ch	1 ch	1 ch	_	8 ch	-	- 4 ch (UART: 1 ch,	66	1.8 V	-
drive	μPD780344Y						8 ch	:h –		I ² C: 1 ch)			
	μPD780308Y	48 KB to 60 KB	2 ch							3 ch (time-division UART: 1 ch, I ² C: 1 ch)	57	2.0 V	
	μPD78064Y	16 KB to 32 KB								2 ch (UART: 1 ch, I ² C: 1 ch)			
Bus interface supported	μPD780702Y	60 KB	3 ch 2	2 ch	1 ch	1 ch	16 ch	ch –		4 ch (UART: 1 ch, I ² C: 1 ch)	67	3.5 V	-
	μPD780703AY	59.5 KB											
	μPD780833Y	60 KB									65	4.5 V	

Remark The functions of the subseries without the suffix Y and the subseries with the suffix Y are the same, except for the serial interface (if a subseries without the suffix Y is available).

2.7 Block Diagram

Remarks 1. The internal ROM and RAM capacities depend on the product.

2. Pin connection in parentheses is intended for the μ PD78F0034AY, 78F0034BY.

2.8 Outline of Function

Item	Part Number	μPD780021AY μPD780031AY	μPD780022AY μPD780032AY	l'	μPD780024AY μPD780034AY	μPD78F0034A\ μPD78F0034B\	
Internal memory	ROM	8 KB (Mask ROM)	16 KB (Mask ROM)	24 KB (Mask ROM)	32 KB (Mask ROM)	32 KB ^{Note} (Flash memory)	
	High-speed RAM	512 bytes		1024 bytes		1024 bytes Note	
Memory space		64 KB					
General-purpose re	gister	8 bits × 32 reg	jisters (8 bits $ imes$ 8	registers $ imes$ 4 ba	nks)		
Minimum instruction	ו	Minimum instr	uction execution	time changeable	e function		
execution time	When main system clock selected	0.238 µs/0.477	7 μs/0.954 μs/1.9	0 μs/3.81 μs (@	8.38 MHz opera	ation)	
	When subsystem clock selected	122 μs (@ 32.	768 kHz operatio	on)			
Instruction set			de (8 bits $ imes$ 8 bits ate (set, reset, tes				
I/O port		Total: • CMOS input • CMOS I/O: • N-ch open-c	:: Irain I/O (5 V bre	51 8 39 akdown): 4			
A/D converter		 8-bit resolution × 8 channels (μPD780021AY, 780022AY, 780023AY, 780024AY) 10-bit resolution × 8 channels (μPD780031AY, 780032AY, 780033AY, 780034AY, 78F0034AY, 78F0034BY) Low-voltage operation: AV_{DD} = 1.8 to 5.5 V 					
Serial interface		3-wire serial I/O mode: 1 channel UART mode: 1 channel I ² C bus mode: 1 channel					
Timer		 16-bit timer/event counter: 1 channel 8-bit timer/event counter: 2 channels Watch timer: 1 channel Watchdog timer: 1 channel 					
Timer output		Three outputs (8-bit PWM output enable: 2)					
Clock output		 65.5 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.10 MHz, 4.19 MHz, 8.38 MHz (8.38 MHz with main system clock) 32.768 kHz (32.768 kHz with subsystem clock) 					
Buzzer output		1.02 kHz, 2.05 kHz, 4.10 kHz, 8.19 kHz (8.38 MHz with main system clock)					
Vectored interrupt	Maskable	Internal: 13,	External: 5				
source	Non-maskable	Internal: 1					
	Software	1					
Power supply voltage	ge	V _{DD} = 1.8 to 5.5 V					
Operating ambient	temperature	$T_A = -40 \text{ to } +85^{\circ}\text{C}$					
Package		 64-pin plastic SDIP (19.05 mm (750)) 64-pin plastic QFP (14 × 14) 64-pin plastic LQFP (14 × 14) 64-pin plastic TQFP (12 × 12) 64-pin plastic LQFP (10 × 10) 73-pin plastic FBGA (9 × 9) (standard grade product only) 					

Note The capacities of internal flash memory and internal high-speed RAM can be changed by means of the memory size switching register (IMS).

The outline of the timer/event counter is as follows (for details, see CHAPTER 8 16-BIT TIMER/EVENT COUNTER 0, CHAPTER 9 8-BIT TIMER/EVENT COUNTERS 50, 51, CHAPTER 10 WATCH TIMER, and CHAPTER 11 WATCHDOG TIMER).

		16-Bit Timer/ Event Counter 0	8-Bit Timer/ Event Counters 50, 51	Watch Timer	Watchdog Timer
Operation	Interval timer	1 channel	2 channels	1 channel ^{Note 1}	1 channel ^{Note 2}
Mode	External event counter	\checkmark	\checkmark	_	-
Function	Timer output	\checkmark	\checkmark	-	-
	PPG output	\checkmark	_	_	-
	PWM output	_	\checkmark	_	-
	Pulse width measurement	\checkmark	_	-	-
	Square-wave output	\checkmark	\checkmark	_	-
	Interrupt request		\checkmark	\checkmark	\checkmark

Notes 1. The watch timer can perform both watch timer and interval timer functions at the same time.

2. The watchdog timer can perform either the watchdog timer function or the interval timer function.

★ 2.9 Correspondence Between Mask ROM Versions and Flash Memory Versions

Table 2-1. Correspondence Between Mask ROM Versions and Flash Memory Versions

Mask ROM Version	μΡD780021AY/2AY/3AY/4AY μΡD780031AY/2AY/3AY/4AY	μPD780021AY(A)/2AY(A)/3AY(A)/4AY(A) μPD780031AY(A)/2AY(A)/3AY(A)/4AY(A)
Flash Memory Version		
μPD78F0034AY	\checkmark	_
μPD78F0034BY	\checkmark	_
μPD78F0034BY(A)	_	\checkmark

Remarks 1. \checkmark : Supported, –: Not supported

- The μPD780034AY and μPD78F0034BY, 78F0034BY(A) differ in the communication mode of flash memory programming. See 23.1 Differences Between μPD78F0034A, 78F0034AY and μPD78F0034B, 78F0034BY.
- Expanded-specification products of the μPD780024AY and 780034AY Subseries are not available.
 Only conventional products are available.
- A special grade product of the μPD78F0034AY is not available. Only a standard grade product is available.

2.10 Differences Between Standard Grade Products and Special Grade Products

The differences between standard grade products (µPD780021AY, 780022AY, 780023AY, 780024AY, 780031AY, 780032AY, 780033AY, 780034AY, 78F0034AY, 78F0034BY) and special grade products (µPD780021AY(A), 780022AY(A), 780023AY(A), 780024AY(A), 780031AY(A), 780032AY(A), 780033AY(A), 780034AY(A), 78F0034BY(A)) are shown in Table 2-2.

	μPD780021AY, 780022AY, 780023AY, 780024AY, 780031AY, 780032AY, 780033AY, 780034AY, 78F0034AY, 78F0034BY	μPD780021AY(A), 780022AY(A), 780023AY(A), 780024AY(A), 780031AY(A), 780032AY(A), 780033AY(A), 780034AY(A), 78F0034BY(A)	
Quality grade	Standard	Special	
Package	See 2.11 Correspondence Between Products and Packages		
Other (functions, electrical specifications, etc.)	Same		

Table 2-2. Differences Between Standard Grade Products and Special Grade Products

2.11 Correspondence Between Products and Packages

The following table shows the correspondence between the products and packages.

	Mask ROM Version μPD780021AY/2AY/3AY/4AY μPD780031AY/2AY/3AY/4AY		Flash Memory Version		
			μPD78F0034AY	μPD78F	0034BY
	Standard	Special	Standard	Standard	Special
64-pin SDIP (CW type)	\checkmark	$\sqrt{Note 1}$	\checkmark	_	_
64-pin QFP (GC-AB8 type)		$\sqrt{Note 2}$	\checkmark	_	_
64-pin LQFP (GC-8BS type)	\checkmark	_√ Note 1	\checkmark	\checkmark	\checkmark
64-pin TQFP (GK-9ET type)	\checkmark	$\sqrt{Note 1}$	√	\checkmark	\checkmark
64-pin LQFP (GB-8EU type)	\checkmark	$\sqrt{Note 1}$	\checkmark	\checkmark	\checkmark
73-pin FBGA (F1-CN3 type)	\checkmark	_	_		_

Table 2-3. Correspondence Between Products and Packages

Notes 1. Under development

★

 Only the μPD780022AYGC(A)-AB8 is under mass production. The other models are still under development.

Remarks 1. $\sqrt{:}$ Package available, -: Package not available

 A special grade product of the μPD78F0034AY is not available. Only a standard grade product is available.

2.12 Mask Options

The mask ROM versions (μ PD780021AY, 780022AY, 780023AY, 780024AY, 780031AY, 780032AY, 780033AY, 780034AY) provide pull-up resistor mask options which allow users to specify whether to connect a pull-up resistor to a specific port pin when the user places an order for device production. Using the mask option when pull-up resistors are required reduces the number of components to add to the device, resulting in board space saving.

The mask options provided in the $\mu\text{PD780024AY}$ and 780034AY Subseries are shown in Table 2-4.

Table 2-4. Mask Options of Mask ROM Versions

Pin Names	Mask Option
P30, P31	Pull-up resistor connection can be specified in 1-bit units.

CHAPTER 3 PIN FUNCTION (µPD780024A, 780034A SUBSERIES)

3.1 Pin Function List

(1) Port pins (1/2)

Pin Name	I/O		Function	After Reset	Alternate Function
P00	I/O	Port 0		Input	INTP0
P01		4-bit I/O port			INTP1
P02			can be specified in 1-bit units. resistor can be used by software		INTP2
P03		settings.			INTP3/ADTRG
P10 to P17	Input	Port 1 8-bit input-only port		Input	ANI0 to ANI7
P20	I/O	Port 2		Input	SI30
P21		6-bit I/O port			SO30
P22			can be specified in 1-bit units. resistor can be used by software		SCK30
P23		settings.			RxD0
P24					TxD0
P25					ASCK0
P30	I/O	Port 3	N-ch open-drain I/O port	Input	_
P31		7-bit I/O port	On-chip pull-up resistor can be		
P32		Input/output mode can be specified in	specified by mask option (mask ROM version only).		
P33		1-bit units.	LEDs can be driven directly.		
P34			An on-chip pull-up resistor can be		SI31
P35			used by software settings.		SO31
P36					SCK31
P40 to P47	I/O	An on-chip pull-up re	8-bit I/O port Input/output mode can be specified in 1-bit units. An on-chip pull-up resistor can be used by software settings. Interrupt request flag (KRIF) is set to 1 by falling edge		AD0 to AD7
P50 to P57	I/O	Port 5 8-bit I/O port LEDs can be driven directly. Input/output mode can be specified in 1-bit units. An on-chip pull-up resistor can be used by software settings.		Input	A8 to A15
P64	I/O	Port 6		Input	RD
P65		4-bit I/O port	an be specified in 1-bit units.		WR
P66			esistor can be used by software		WAIT
P67		settings.	-		ASTB

(1) Port pins (2/2)

Pin Name	I/O	Function	After Reset	Alternate Function
P70	I/O	Port 7	Input	TI00/TO0
P71		6-bit I/O port		TI01
P72		Input/output mode can be specified in 1-bit units. An on-chip pull-up resistor can be used by software		TI50/TO50
P73		settings.		TI51/TO51
P74				PCL
P75				BUZ

(2) Non-port pins (1/2)

Pin Name	I/O	Function	After Reset	Alternate Function
INTP0	Input	External interrupt request input with specifiable valid edges	Input	P00
INTP1	-	(rising edge, falling edge, both rising and falling edges)		P01
INTP2	-			P02
INTP3				P03/ADTRG
SI30	Input	Serial interface serial data input	Input	P20
SI31	-			P34
SO30	Output	Serial interface serial data output	Input	P21
SO31	=			P35
SCK30	I/O	Serial interface serial clock input/output	Input	P22
SCK31	-			P36
RxD0	Input	Asynchronous serial interface serial data input	Input	P23
TxD0	Output	Asynchronous serial interface serial data output	Input	P24
ASCK0	Input	Asynchronous serial interface serial clock input	Input	P25
T100	Input	External count clock input to 16-bit timer/event counter 0 Capture trigger input to 16-bit timer/event counter 0 capture register (CR00, CR01)	Input	P70/TO0
TI01	-	Capture trigger input to 16-bit timer/event counter 0 capture register (CR00)		P71
TI50	=	External count clock input to 8-bit timer/event counter 50		P72/TO50
TI51	-	External count clock input to 8-bit timer/event counter 51		P73/TO51
TO0	Output	16-bit timer/event counter 0 output	Input	P70/TI00
TO50	_	8-bit timer/event counter 50 output (also used for 8-bit PWM output)	Input	P72/TI50
TO51		8-bit timer/event counter 51 output (also used for 8-bit PWM output)		P73/TI51
PCL	Output	Clock output (for main system clock and subsystem clock trimming)	Input	P74
BUZ	Output	Buzzer output	Input	P75
AD0 to AD7	I/O	Lower address/data bus when expanding external memory	Input	P40 to P47

(2) Non-port pins (2/2)

Pin Name	I/O	Function	After Reset	Alternate Function
A8 to A15	Output	Higher address bus when expanding external memory	Input	P50 to P57
RD	Output	Strobe signal output for read operation from external memory	Input	P64
WR		Strobe signal output for write operation from external memory		P65
WAIT	Input	Wait insertion when accessing external memory	Input	P66
ASTB	Output	Strobe output externally latching address information output to ports 4, 5 to access external memory	Input	P67
ANI0 to ANI7	Input	A/D converter analog input	Input	P10 to P17
ADTRG	Input	A/D converter trigger signal input	Input	P03/INTP3
AVREF	Input	A/D converter reference voltage input	_	_
AVDD	_	A/D converter analog power supply. Connect to V_{DD0} or $V_{\text{DD1}}.$	_	_
AVss	-	A/D converter ground potential. Connect to Vsso or Vss1.	_	_
RESET	Input	System reset input	Input	_
X1	Input	Crystal/ceramic connection for main system clock oscillation	_	_
X2	_		_	_
XT1	Input	Crystal connection for subsystem clock oscillation	_	_
XT2	_		_	_
VDD0	_	Positive power supply for ports	_	_
V _{DD1}	_	Positive power supply other than ports	_	_
Vsso	_	Ground potential for ports	_	_
VSS1	_	Ground potential other than ports	_	_
IC	_	Internally connected. Connect directly to Vsso or Vss1.	_	_
NC ^{Note}	_	Not internally connected. Leave open.	_	_
Vpp	-	High-voltage application for program write/verify.	_	-

Note The NC pin is available only for a 73-pin plastic FBGA.

3.2 Description of Pin Functions

3.2.1 P00 to P03 (Port 0)

These are 4-bit I/O ports. Besides serving as I/O ports, they function as an external interrupt input, and A/D converter external trigger input.

The following operating modes can be specified in 1-bit units.

(1) Port mode

These ports function as 4-bit I/O ports.

P00 to P03 can be specified as input or output ports in 1-bit units with port mode register 0 (PM0). On-chip pullup resistors can be used by setting pull-up resistor option register 0 (PU0).

(2) Control mode

These ports function as an external interrupt request input, and A/D converter external trigger input.

(a) INTP0 to INTP3

INTP0 to INTP3 are external interrupt request input pins which can specify valid edges (rising edge, falling edge, and both rising and falling edges).

(b) ADTRG

A/D converter external trigger input pin.

Caution When P03 is used as an A/D converter external trigger input, specify the valid edge by bits 1, 2 (EGA00, EGA01) of A/D converter mode register (ADM0) and set interrupt mask flag (PMK3) to 1.

3.2.2 P10 to P17 (Port 1)

These are 8-bit input-only ports. Besides serving as input ports, they function as an A/D converter analog input. The following operating modes can be specified in 1-bit units.

(1) Port mode

These ports function as 8-bit input-only ports.

(2) Control mode

These ports function as A/D converter analog input pins (ANI0 to ANI7).

3.2.3 P20 to P25 (Port 2)

These are 6-bit I/O ports. Besides serving as I/O ports, they function as data I/O and clock I/O of serial interface SIO30 or UART0.

The following operating modes can be specified in 1-bit units.

(1) Port mode

These ports function as 6-bit I/O ports. They can be specified as input or output ports in 1-bit units with port mode register 2 (PM2). On-chip pull-up resistors can be used by setting pull-up resistor option register 2 (PU2).

(2) Control mode

These ports function as data I/O and clock I/O of serial interface SIO30 or UART0.

(a) SI30 and SO30

Serial data I/O pins of serial interface SIO30.

(b) SCK30

Serial clock I/O pin of serial interface SIO30.

(c) RxD0 and TxD0

Serial data I/O pins of serial interface UART0.

(d) ASCK0

Serial clock input pin of serial interface UART0.

3.2.4 P30 to P36 (Port 3)

These are 7-bit I/O ports. Besides serving as I/O ports, they function as data I/O and clock I/O of serial interface SIO31.

P30 to P33 can drive LEDs directly.

The following operating modes can be specified in 1-bit units.

(1) Port mode

These ports function as 7-bit I/O ports. They can be specified as input or output ports in 1-bit units with port mode register 3 (PM3). P30 to P33 are N-ch open-drain I/O port. On-chip pull-up resistor can be used by mask option (mask ROM version only). On-chip pull-up resistors of P34 to P36 can be used by setting pull-up resistor option register 3 (PU3).

(2) Control mode

These ports function as data I/O and clock I/O of serial interface SIO31.

(a) SI31 and SO31

Serial data I/O pins of serial interface SIO31.

(b) SCK31

Serial clock I/O pin of serial interface SIO31.

3.2.5 P40 to P47 (Port 4)

These are 8-bit I/O ports. Besides serving as I/O ports, they function as an address/data bus. The interrupt request flag (KRIF) can be set to 1 by detecting a falling edge. The following operating mode can be specified in 1-bit units.

Caution When using the falling edge detection interrupt (INTKR), be sure to set the memory expansion mode register (MEM) to 01H.

(1) Port mode

These ports function as 8-bit I/O ports. They can be specified as input or output ports in 1-bit units with port mode register 4 (PM4). On-chip pull-up resistors can be used by setting pull-up resistor option register 4 (PU4).

(2) Control mode

These ports function as lower address/data bus pins (AD0 to AD7) in external memory expansion mode.

3.2.6 P50 to P57 (Port 5)

These are 8-bit I/O ports. Besides serving as I/O ports, they function as an address bus. Port 5 can drive LEDs directly.

The following operating modes can be specified in 1-bit units.

(1) Port mode

These ports function as 8-bit I/O ports. They can be specified as input or output ports in 1-bit units with port mode register 5 (PM5). On-chip pull-up resistors can be used by setting pull-up resistor option register 5 (PU5).

(2) Control mode

These ports function as higher address bus pins (A8 to A15) in external memory expansion mode.

3.2.7 P64 to P67 (Port 6)

These are 4-bit I/O ports. Besides serving as I/O ports, they are used for control in external memory expansion mode.

The following operating modes can be specified in 1-bit units.

(1) Port mode

These ports function as 4-bit I/O ports. They can be specified as input or output ports in 1-bit units with port mode register 6 (PM6).

On-chip pull-up resistors can be used by setting pull-up resistor option register 6 (PU6).

(2) Control mode

These ports function as control signal output pins (RD, WR, WAIT, ASTB) in external memory expansion mode.

Caution When external wait is not used in external memory expansion mode, P66 can be used as an I/O port.

3.2.8 P70 to P75 (Port 7)

These are 6-bit I/O ports. Besides serving as I/O ports, they function as a timer I/O, clock output, and buzzer output. The following operating modes can be specified in 1-bit units.

(1) Port mode

Port 7 functions as a 6-bit I/O port. They can be specified as an input port or output port in 1-bit units with port mode register 7 (PM7). On-chip pull-up resistors can be used by setting pull-up resistor option register 7 (PU7). P70 and P71 are also 16-bit timer/event counter 0 capture trigger signal input pins with a valid edge input.

(2) Control mode

Port 7 functions as timer I/O, clock output, and buzzer output.

(a) TI00

External count clock input pin to 16-bit timer/event counter 0 and capture trigger signal input pin to 16-bit timer/event counter capture register (CR01).

(b) TI01

Capture trigger signal input pin to 16-bit timer/event counter 0 capture register (CR00).

(c) TI50 and TI51

External count clock input pins to 8-bit timer/event counters 50 and 51.

(d) TO0, TO50, and TO51

Timer output pins.

(e) PCL

Clock output pin.

(f) BUZ

Buzzer output pin.

3.2.9 AVREF

This is an A/D converter reference voltage input pin. When no A/D converter is used, connect this pin directly to V_{SS0} or V_{SS1} .

3.2.10 AVDD

This is an analog power supply pin of A/D converter. Always use the same potential as that of the VDD0 pin or VDD1 pin even when no A/D converter is used.

3.2.11 AVss

This is a ground potential pin of A/D converter. Always use the same potential as that of the Vsso pin or Vss1 pin even when no A/D converter is used.

3.2.12 RESET

This is a low-level active system reset input pin.

★ 3.2.13 NC

NC (Non-connection) pin is not internally connected. Leave this pin open.

3.2.14 X1 and X2

Crystal/ceramic resonator connection pins for main system clock oscillation. For external clock supply, input clock signal to X1 and its inverted signal to X2.

3.2.15 XT1 and XT2

Crystal resonator connection pins for subsystem clock oscillation. For external clock supply, input the clock signal to XT1 and its inverted signal to XT2.

3.2.16 VDD0 and VDD1

 V_{DD0} is a positive power supply port pin. V_{DD1} is a positive power supply pin other than port pin.

3.2.17 Vsso and Vss1

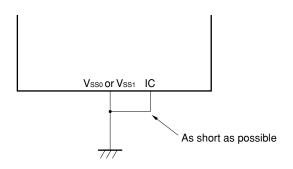
Vsso is a ground potential port pin.

Vss1 is a ground potential pin other than port pin.

3.2.18 VPP (flash memory versions only)

High-voltage apply pin for flash memory programming mode setting and program write/verify.

- ★ Handle in either of the following ways.
 - Independently connect a 10 k Ω pull-down resistor.
 - Set the jumper on the board so that this pin is connected directly to the dedicated flash programmer in programming mode and directly to Vsso or Vss1 in normal operation mode.


When there is a potential difference between the VPP pin and Vss0 pin or Vss1 pin because the wiring between the two pins is too long or external noise is input to the VPP pin, the user program may not operate normally.

3.2.19 IC (mask ROM version only)

The IC (Internally Connected) pin is provided to set the test mode to check the μ PD780024A, 780034A Subseries at delivery. Connect it directly to the Vsso or Vss1 pin with the shortest possible wire in the normal operating mode.

When a potential difference is produced between the IC pin and V_{SS0} pin or V_{SS1} pin, because the wiring between those two pins is too long or an external noise is input to the IC pin, the user's program may not operate normally.

• Connect IC pins to Vsso pins or Vsso pins directly.

3.3 Pin I/O Circuits and Recommended Connection of Unused Pins

*

Table 3-1 shows the types of pin I/O circuit and the recommended connections of unused pins. See Figure 3-1 for the configuration of the I/O circuit of each type.

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P00/INTP0 to P02/INTP2 P03/INTP3/ADTRG	8-C	I/O	Input: Independently connect to V _{SS0} or V _{SS1} via a resistor. Output: Leave open.
P10/ANI0 to P17/ANI7	25	Input	Connect directly to VDD0, VDD1, VSS0, or VSS1.
P20/SI30	8-C	I/O	Input: Independently connect to VDD0, VDD1, VSS0,
P21/SO30	5-H		or Vss1 via a resistor.
P22/SCK30	8-C		Output: Leave open.
P23/RxD0			
P24/TxD0	5-H		
P25/ASCK0	8-C		
P30, P31 (for mask ROM version)	13-Q	-	Input: Connect directly to Vsso or Vss1. Output: Set the output latch of the port to 0, and
P30, P31 (for flash memory version)	13-P	-	leave these pins open at low level.
P32, P33 (for mask ROM version)	13-S	-	
P32, P33 (for flash memory version)	13-R	-	
P34/SI31	8-C		Input: Independently connect to VDD0, VDD1, VSS0,
P35/SO31	5-H	1	or V _{SS1} via a resistor.
P36/SCK31	8-C	1	Output: Leave open.
P40/AD0 to P47/AD7	5-H		Input: Independently connect to V _{DD0} or V _{DD1} via a resistor. Output: Leave open.

Table 3-1. Pin I/O Circuit Types (1/2)

 \star

Table 3-1. Pin I/O Circuit Types (2/2)

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P50/A8 to P57/A15	5-H	I/O	Input: Independently connect to VDD0, VDD1, VSS0,
P64/RD			or Vss1 via a resistor.
P65/WR			Output: Leave open.
P66/WAIT			
P67/ASTB			
P70/TI00/TO0	8-C	-	
P71/TI01			
P72/TI50/TO50			
P73/TI51/TO51			
P74/PCL	5-H		
P75/BUZ			
RESET	2	Input	_
NC ^{Note}	_	_	Leave open.
XT1	16	Input	Connect directly to VDD0 or VDD1.
XT2		_	Leave open.
AVdd	_		Connect directly to VDD0 or VDD1.
AVREF			Connect directly to Vsso or Vss1.
AVss			
IC (for mask ROM version)			
Vpp			Independently connect a 10 k Ω pull-down resistor
(for flash memory version)			to this pin, or connect directly to $V_{\mbox{\scriptsize SS0}}$ or $V_{\mbox{\scriptsize SS1}}.$

Note The NC pin is available only for a 73-pin plastic FBGA.

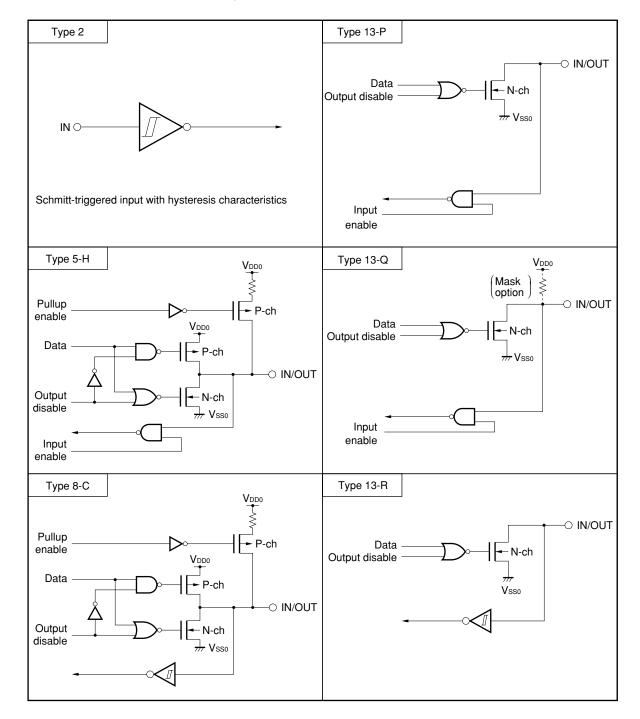


Figure 3-1. Pin I/O Circuit List (1/2)

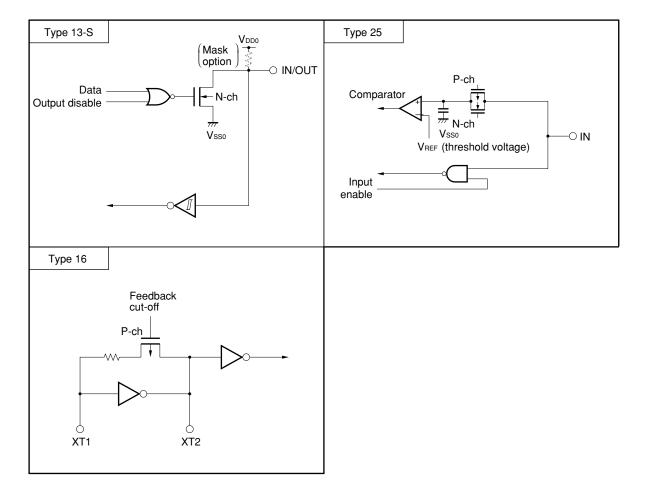


Figure 3-1. Pin I/O Circuit List (2/2)

CHAPTER 4 PIN FUNCTION (µPD780024AY, 780034AY SUBSERIES)

4.1 Pin Function List

(1) Port pins (1/2)

Pin Name	I/O	Function		After Reset	Alternate Function
P00	I/O	Port 0	Input	INTP0	
P01		4-bit I/O port		INTP1	
P02			can be specified in 1-bit units. resistor can be used by software		INTP2
P03		settings.	·····		INTP3/ADTRG
P10 to P17	Input	Port 1 8-bit input-only por	t.	Input	ANI0 to ANI7
P20	I/O	Port 2		Input	SI30
P21		6-bit I/O port	and the encoding in the later set		SO30
P22			can be specified in 1-bit units. resistor can be used by software		SCK30
P23		settings.	·····		RxD0
P24					TxD0
P25					ASCK0
P30	I/O	Port 3	N-ch open-drain I/O port	Input	_
P31		7-bit I/O port Input/output mode can be	On-chip pull-up resistor can be specified by mask option (P30 and P31 are mask ROM version only).		
P32					SDA0
P33		specified in 1-bit	LEDs can be driven directly.		SCL0
P34		units.	An on-chip pull-up resistor can be		_
P35			used by software settings.		
P36					
P40 to P47	I/O	An on-chip pull-up i	8-bit I/O port Input/output mode can be specified in 1-bit units. An on-chip pull-up resistor can be used by software settings. Interrupt request flag (KRIF) is set to 1 by falling edge		AD0 to AD7
P50 to P57	I/O	Port 5 8-bit I/O port LEDs can be driven directly. Input/output mode can be specified in 1-bit units. An on-chip pull-up resistor can be used by software settings.		Input	A8 to A15
P64	I/O	Port 6		Input	RD
P65		4-bit I/O port	can be enerified in 1 bit unite		WR
P66			Input/output mode can be specified in 1-bit units. An on-chip pull-up resistor can be used by software		WAIT
P67		settings.	-		ASTB

(1) Port pins (2/2)

Pin Name	I/O	Function	After Reset	Alternate Function
P70	I/O	Port 7	Input	TI00/TO0
P71		6-bit I/O port		TI01
P72		Input/output mode can be specified in 1-bit units. An on-chip pull-up resistor can be used by software		TI50/TO50
P73		settings.		TI51/TO51
P74				PCL
P75				BUZ

(2) Non-port pins (1/2)

Pin Name	I/O	Function	After Reset	Alternate Function
INTP0	Input	External interrupt request input with specifiable valid edges	Input	P00
INTP1		(rising edge, falling edge, both rising and falling edges)		P01
INTP2				P02
INTP3				P03/ADTRG
SI30	Input	Serial interface serial data input	Input	P20
SO30	Output	Serial interface serial data output	Input	P21
SDA0	I/O	Serial interface serial data input/output	Input	P32
SCK30	I/O	Serial interface serial clock input/output	Input	P22
SCL0				P33
RxD0	Input	Asynchronous serial interface serial data input	Input	P23
TxD0	Output	Asynchronous serial interface serial data output	Input	P24
ASCK0	Input	Asynchronous serial interface serial clock input	Input	P25
ΤΙΟΟ	Input	External count clock input to 16-bit timer/event counter 0 Capture trigger input to 16-bit timer/event counter 0 capture register (CR00, CR01)	Input	P70/TO0
TI01		Capture trigger input to 16-bit timer/event counter 0 capture register (CR00)	•	P71
TI50		External count clock input to 8-bit timer/event counter 50		P72/TO50
TI51		External count clock input to 8-bit timer/event counter 51		P73/TO51
TO0	Output	16-bit timer/event counter 0 output	Input	P70/TI00
TO50		8-bit timer/event counter 50 output (also used for 8-bit PWM output)	Input	P72/TI50
TO51		8-bit timer/event counter 51 output (also used for 8-bit PWM output)	•	P73/TI51
PCL	Output	Clock output (for main system clock and subsystem clock trimming)	Input	P74
BUZ	Output	Buzzer output	Input	P75
AD0 to AD7	I/O	Lower address/data bus when expanding external memory	Input	P40 to P47
A8 to A15	Output	Higher address bus when expanding external memory	Input	P50 to P57
RD	Output	Strobe signal output for read operation from external memory Input P64		P64
WR	1	Strobe signal output for write operation from external memory		P65

(2) Non-port pins (2/2)

 \star

Pin Name	I/O	Function	After Reset	Alternate Function
WAIT	Input	Wait insertion when accessing external memory	Input	P66
ASTB	Output	Strobe output externally latching address information output to ports 4, 5 to access external memory	Input	P67
ANI0 to ANI7	Input	A/D converter analog input	Input	P10 to P17
ADTRG	Input	A/D converter trigger signal input	Input	P03/INTP3
AVREF	Input	A/D converter reference voltage input	_	_
AVDD	_	A/D converter analog power supply. Connect to V_{DD0} or V_{DD1} .	_	_
AVss	_	A/D converter ground potential. Connect to V _{SS0} or V _{SS1} .	-	-
RESET	Input	System reset input	Input	-
X1	Input	Crystal connection for main system clock oscillation	_	-
X2	_	_	-	-
XT1	Input	Crystal connection for subsystem clock oscillation	_	_
XT2	_	_	_	_
VDD0	_	Positive power supply for ports	_	_
V _{DD1}	_	Positive power supply other than ports	_	-
Vsso	_	Ground potential for ports	_	_
V _{SS1}	_	Ground potential other than ports	_	_
IC	-	Internally connected. Connect directly to Vsso or Vss1.	_	_
NC ^{Note}	-	Not internally connected. Leave open.	-	_
Vpp	_	High-voltage application for program write/verify.	_	_

Note The NC pin is available only for a 73-pin plastic FBGA.

4.2 Description of Pin Functions

4.2.1 P00 to P03 (Port 0)

These are 4-bit I/O ports. Besides serving as I/O ports, they function as an external interrupt input, and A/D converter external trigger input.

The following operating modes can be specified in 1-bit units.

(1) Port mode

These ports function as 4-bit I/O ports.

P00 to P03 can be specified as input or output ports in 1-bit units with port mode register 0 (PM0). On-chip pullup resistors can be used by setting pull-up resistor option register 0 (PU0).

(2) Control mode

These ports function as an external interrupt request input, and A/D converter external trigger input.

(a) INTP0 to INTP3

INTP0 to INTP3 are external interrupt request input pins which can specify valid edges (rising edge, falling edge, and both rising and falling edges).

(b) ADTRG

A/D converter external trigger input pin.

Caution When P03 is used as an A/D converter external trigger input, specify the valid edge by bits 1, 2 (EGA00, EGA01) of A/D converter mode register (ADM0) and set interrupt mask flag (PMK3) to 1.

4.2.2 P10 to P17 (Port 1)

These are 8-bit input-only ports. Besides serving as input ports, they function as an A/D converter analog input. The following operating modes can be specified in 1-bit units.

(1) Port mode

These ports function as 8-bit input-only ports.

(2) Control mode

These ports function as A/D converter analog input pins (ANI0 to ANI7).

4.2.3 P20 to P25 (Port 2)

These are 6-bit I/O ports. Besides serving as I/O ports, they function as serial interface data I/O and clock I/O. The following operating modes can be specified in 1-bit units.

(1) Port mode

These ports function as 6-bit I/O ports. They can be specified as input or output ports in 1-bit units with port mode register 2 (PM2). On-chip pull-up resistors can be used by setting pull-up resistor option register 2 (PU2).

(2) Control mode

These ports function as data I/O and clock I/O of serial interface SIO30 or UART0.

(a) SI30 and SO30

Serial data I/O pins of serial interface SIO30.

(b) SCK30 Serial clock I/O pin of serial interface SIO30.

(c) RxD0 and TxD0

Serial data I/O pins of serial interface UART0.

(d) ASCK0

Serial clock input pin of serial interface UART0.

4.2.4 P30 to P36 (Port 3)

These are 7-bit I/O ports. Besides serving as I/O ports, they function as data I/O and clock I/O of serial interface IICO.

P30 to P33 can drive LEDs directly.

The following operating modes can be specified in 1-bit units.

(1) Port mode

These ports function as 7-bit I/O ports. They can be specified as input or output ports in 1-bit units with port mode register 3 (PM3). P30 to P33 are N-ch open-drain I/O port. Mask ROM version can contain pull-up resistors in P30 and P31 with the mask option. On-chip pull-up resistors of P34 to P36 can be used by setting pull-up resistor option register 3 (PU3).

(2) Control mode

These ports function as data I/O and clock I/O of serial interface IICO.

(a) SDA0

Serial data I/O pin of serial interface IIC0.

(b) SCL0

Serial clock I/O pin of serial interface IIC0.

4.2.5 P40 to P47 (Port 4)

These are 8-bit I/O ports. Besides serving as I/O ports, they function as an address/data bus. The interrupt request flag (KRIF) can be set to 1 by detecting a falling edge. The following operating mode can be specified in 1-bit units.

Caution When using the falling edge detection interrupt (INTKR), be sure to set the memory expansion mode register (MEM) to 01H.

(1) Port mode

These ports function as 8-bit I/O ports. They can be specified as input or output ports in 1-bit units with port mode register 4 (PM4). On-chip pull-up resistors can be used by setting pull-up resistor option register 4 (PU4).

(2) Control mode

These ports function as lower address/data bus pins (AD0 to AD7) in external memory expansion mode.

4.2.6 P50 to P57 (Port 5)

These are 8-bit I/O ports. Besides serving as I/O ports, they function as an address bus. Port 5 can drive LEDs directly.

The following operating modes can be specified in 1-bit units.

(1) Port mode

These ports function as 8-bit I/O ports. They can be specified as input or output ports in 1-bit units with port mode register 5 (PM5). On-chip pull-up resistors can be used by setting pull-up resistor option register 5 (PU5).

(2) Control mode

These ports function as higher address bus pins (A8 to A15) in external memory expansion mode.

4.2.7 P64 to P67 (Port 6)

These are 4-bit I/O ports. Besides serving as I/O ports, they are used for control in external memory expansion mode.

The following operating modes can be specified in 1-bit units.

(1) Port mode

These ports function as 4-bit I/O ports. They can be specified as input or output ports in 1-bit units with port mode register 6 (PM6).

On-chip pull-up resistors can be used by setting pull-up resistor option register 6 (PU6).

(2) Control mode

These ports function as control signal output pins (RD, WR, WAIT, ASTB) in external memory expansion mode.

Caution When external wait is not used in external memory expansion mode, P66 can be used as an I/O port.

4.2.8 P70 to P75 (Port 7)

These are 6-bit I/O ports. Besides serving as I/O ports, they function as a timer I/O, clock output, and buzzer output. The following operating modes can be specified in 1-bit units.

(1) Port mode

Port 7 functions as a 6-bit I/O port. They can be specified as an input port or output port in 1-bit units with port mode register 7 (PM7). On-chip pull-up resistors can be used by setting pull-up resistor option register 7 (PU7). P70 and P71 are also 16-bit timer/event counter 0 capture trigger signal input pins with a valid edge input.

(2) Control mode

Port 7 functions as timer I/O, clock output, and buzzer output.

(a) TI00

External count clock input pin to 16-bit timer/event counter 0 and capture trigger signal input pin to 16-bit timer/event counter capture register (CR01).

(b) TI01

Capture trigger signal input pin to 16-bit timer/event counter 0 capture register (CR00).

(c) TI50 and TI51

External count clock input pins to 8-bit timer/event counters 50 and 51.

(d) TO0, TO50, and TO51

Timer output pins.

(e) PCL

Clock output pin.

(f) BUZ

Buzzer output pin.

4.2.9 AVREF

This is an A/D converter reference voltage input pin. When no A/D converter is used, connect this pin directly to V_{SS0} or V_{SS1} .

4.2.10 AVDD

This is an analog power supply pin of A/D converter. Always use the same potential as that of the VDD0 pin or VDD1 pin even when no A/D converter is used.

4.2.11 AVss

This is a ground potential pin of A/D converter. Always use the same potential as that of the Vsso pin or Vss1 pin even when no A/D converter is used.

4.2.12 RESET

This is a low-level active system reset input pin.

★ 4.2.13 NC

NC (Non-connection) pin is not internally connected. Leave this pin open.

4.2.14 X1 and X2

Crystal/ceramic resonator connection pins for main system clock oscillation. For external clock supply, input the clock signal to X1 and its inverted signal to X2.

4.2.15 XT1 and XT2

Crystal resonator connection pins for subsystem clock oscillation. For external clock supply, input the clock signal to XT1 and its inverted signal to XT2.

4.2.16 VDD0 and VDD1

 $V_{\text{DD0}} \text{ is a positive power supply pin.}$ $V_{\text{DD1}} \text{ is a positive power supply pin other than port pin.}$

4.2.17 Vsso and Vss1

*

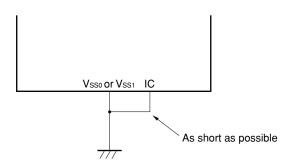
Vsso is a ground potential port pin.

Vss1 is a ground potential pin other than port pin.

4.2.18 VPP (flash memory versions only)

High-voltage apply pin for flash memory programming mode setting and program write/verify.

- Handle in either of the following ways.
 - Independently connect a 10 k Ω pull-down resistor.
 - Set the jumper on the board so that this pin is connected directly to the dedicated flash programmer in programming mode and directly to Vsso or Vss1 in normal operation mode.


When there is a potential difference between the VPP pin and Vss0 pin or Vss1 pin because the wiring between the two pins is too long or external noise is input to the VPP pin, the user program may not operate normally.

4.2.19 IC (mask ROM version only)

The IC (Internally Connected) pin is provided to set the test mode to check the μ PD780024AY, 780034AY Subseries at delivery. Connect it directly to the V_{SS0} or V_{SS1} pin with the shortest possible wire in the normal operating mode.

When a potential difference is produced between the IC pin and V_{SS0} pin or V_{SS1} pin, because the wiring between those two pins is too long or an external noise is input to the IC pin, the user's program may not operate normally.

• Connect IC pins to Vsso pins or Vsso pins directly.

4.3 Pin I/O Circuits and Recommended Connection of Unused Pins

 \star

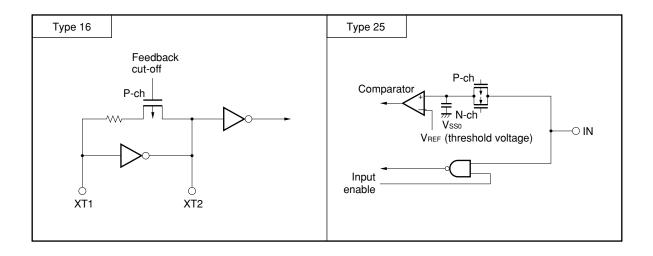
Table 4-1 shows the types of pin I/O circuit and the recommended connections of unused pins. See Figure 4-1 for the configuration of the I/O circuit of each type.

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P00/INTP0 to P02/INTP2	8-C	I/O	Input: Independently connect to Vsso or Vssi via a
P03/INTP3/ADTRG			resistor.
			Output: Leave open.
P10/ANI0 to P17/ANI7	25	Input	Connect directly to VDD0, VDD1, VSS0, or VSS1.
P20/SI30	8-C	I/O	Input: Independently connect to VDD0, VDD1, VSS0,
P21/SO30	5-H		or Vss1 via a resistor.
P22/SCK30	8-C	_	Output: Leave open.
P23/RxD0			
P24/TxD0	5-H	_	
P25/ASCK0	8-C		
P30, P31	13-Q		Input: Connect directly to Vsso or Vss1.
(for mask ROM version)			Output: Set the output latch of the port to 0, and
P30, P31	13-P		leave these pins open at low level.
(for flash memory version)		_	
P32/SDA0	13-R		
P33/SCL0			
P34	8-C		Input: Independently connect to VDD0, VDD1, VSS0,
P35	5-H		or Vss1 via a resistor.
P36	8-C		Output: Leave open.
P40/AD0 to P47/AD7	5-H		Input: Independently connect to VDD0 or VDD1 via a
			resistor.
			Output: Leave open.

Table 4-1. Pin I/O Circuit Types (1/2)

7	

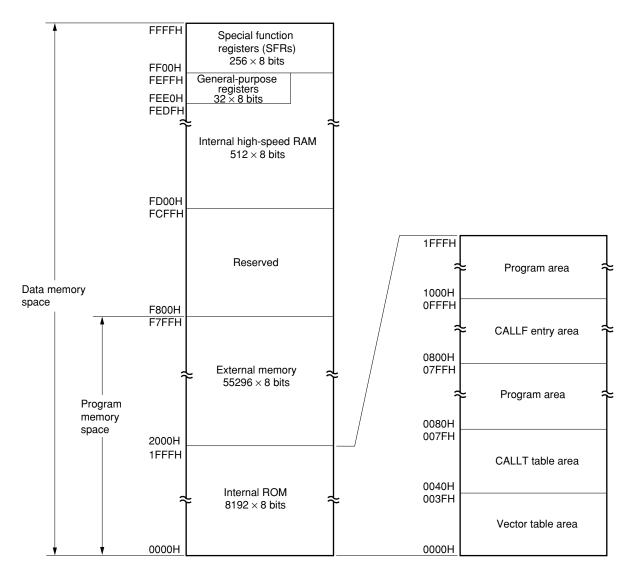
Table 4-1. Pin I/O Circuit Types (2/2)

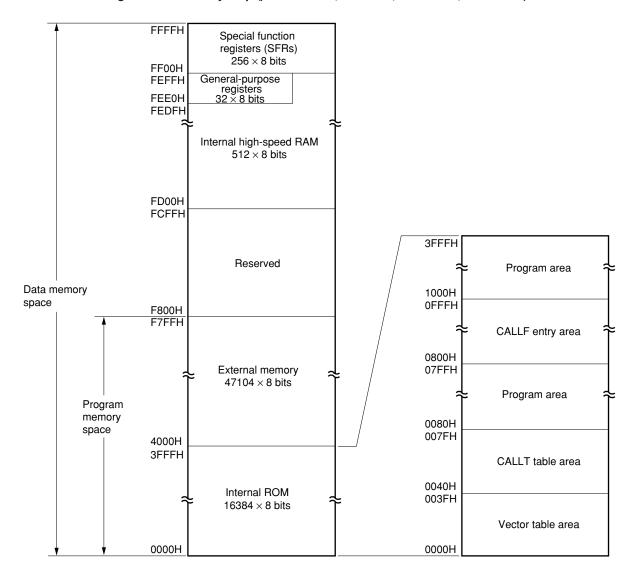

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P50/A8 to P57/A15	5-H	I/O	Input: Independently connect to VDD0, VDD1, VSS0,
P64/RD			or Vssi via a resistor.
P65/WR			Output: Leave open.
P66/WAIT			
P67/ASTB			
P70/TI00/TO0	8-C		
P71/TI01			
P72/TI50/TO50			
P73/TI51/TO51			
P74/PCL	5-H	-	
P75/BUZ			
RESET	2	Input	-
NC ^{Note}	_	_	Leave open.
XT1	16	Input	Connect directly to VDD0 or VDD1.
XT2		_	Leave open.
AVDD	_		Connect directly to VDD0 or VDD1.
AVREF			Connect directly to Vsso or Vss1.
AVss			
IC (for mask ROM version)			
V _{PP} (for flash memory version)			Independently connect a 10 k Ω pull-down resistor to this pin, or connect directly to V _{SS0} or V _{SS1} .

Note The NC pin is available only for a 73-pin plastic FBGA.

Type 2 Type 13-P O IN/OUT Data - N-ch Output disable ₩ Vsso IN O Schmitt-triggered input with hysteresis characteristics Input enable Type 5-H Type 13-Q VDDO $\binom{\mathsf{Mask}}{\mathsf{option}}$ ≶ Pullup -O IN/OUT - P-ch enable Data VDD0 - N-ch Output disable Data ← P-ch ₩Vsso - IN/OUT Output - N-ch disable ₩ Vsso Input enable Input enable Type 8-C Type 13-R -O IN/OUT Pullup - P-ch Data enable N-ch VDD0 Output disable Data - P-ch 777 Vsso O IN/OUT Output – N-ch disable ₩Vsso

Figure 4-1. Pin I/O Circuit List (2/2)


CHAPTER 5 CPU ARCHITECTURE


5.1 Memory Spaces

 μ PD780024A, 780034A, 780024AY, 780034AY Subseries can access 64 KB memory space respectively. Figures 5-1 to 5-5 show memory maps.

Caution In case of the internal memory capacity, the initial value of memory size switching register (IMS) of all products (μ PD780024A, 780034A, 780024AY, and 780034AY Subseries) is fixed (IMS = CFH). Therefore, set the value corresponding to each product indicated below. μ PD780021A, 780031A, 780021AY, 780031AY: 42H μ PD780022A, 780032A, 780022AY, 780032AY: 44H μ PD780023A, 780033A, 780023AY, 780033AY: C6H μ PD780024A, 780034A, 780024AY, 780034AY: C8H μ PD78F0034A, 78F0034B, 78F0034AY, 78F0034BY: Value for mask ROM version

Figure 5-1. Memory Map (µPD780021A, 780031A, 780021AY, 780031AY)

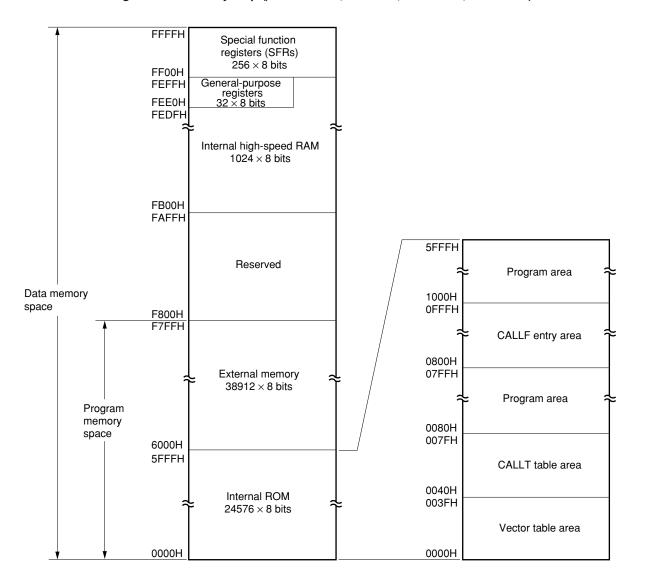
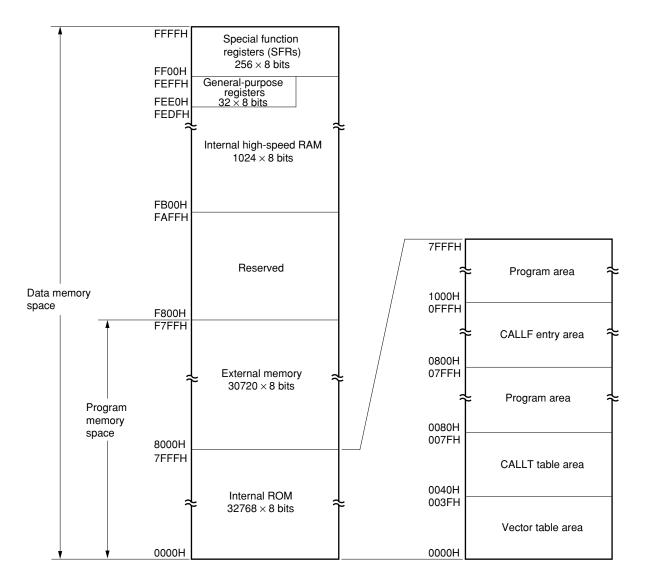



Figure 5-3. Memory Map (µPD780023A, 780033A, 780023AY, 780033AY)

Figure 5-4. Memory Map (µPD780024A, 780034A, 780024AY, 780034AY)

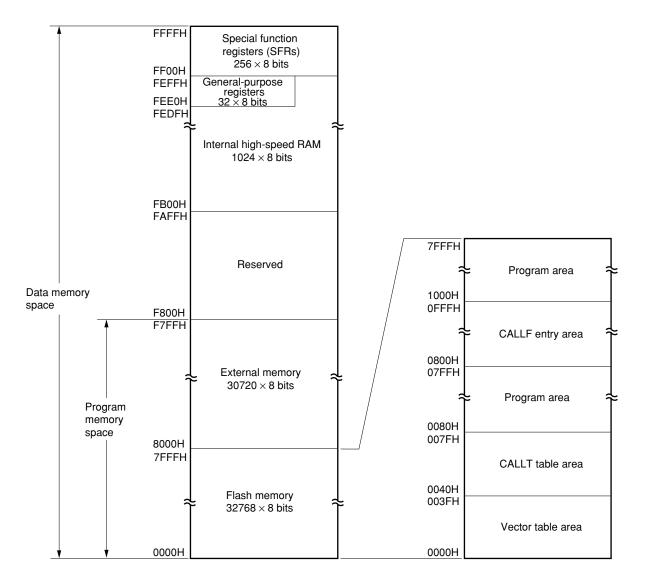


Figure 5-5. Memory Map (µPD78F0034A, 78F0034B, 78F0034AY, 78F0034BY)

5.1.1 Internal program memory space

The internal program memory space contains the program and table data. Normally, it is addressed with the program counter (PC).

The μ PD780024A, 780034A, 780024AY, and 780034AY Subseries products incorporate an on-chip ROM (mask ROM or flash memory), as listed below.

Part Number	Туре	Capacity
μPD780021A, 780031A, 780021AY, 780031AY	Mask ROM	8192 \times 8 bits (0000H to 1FFFH)
μPD780022A, 780032A, 780022AY, 780032AY		16384 \times 8 bits (0000H to 3FFFH)
μPD780023A, 780033A, 780023AY, 780033AY		24576 × 8 bits (0000H to 5FFFH)
μPD780024A, 780034A, 780024AY, 780034AY		32768 × 8 bits (0000H to 7FFFH)
μPD78F0034A, 78F0034B, 78F0034AY, 78F0034BY	Flash memory	32768 \times 8 bits (0000H to 7FFFH)

Table 5-1.	Internal	ROM	Capacity
------------	----------	-----	----------

The internal program memory space is divided into the following three areas.

(1) Vector table area

The 64-byte area 0000H to 003FH is reserved as a vector table area. The RESET input and program start addresses for branch upon generation of each interrupt request are stored in the vector table area. Of the 16-bit address, lower 8 bits are stored at even addresses and higher 8 bits are stored at odd addresses.

Vector Table Address	Interrupt Source
0000H	RESET input
0004H	INTWDT
0006H	INTP0
0008H	INTP1
000AH	INTP2
000CH	INTP3
000EH	INTSER0
0010H	INTSR0
0012H	INTST0
0014H	INTCSI30
0016H	INTCSI31 ^{Note 1}
0018H	INTIIC0 ^{Note 2}
001AH	INTWTI
001CH	INTTM00
001EH	INTTM01
0020H	INTTM50
0022H	INTTM51
0024H	INTAD0
0026H	INTWT
0028H	INTKR
003EH	BRK

Table 5-2. Vector Table

Notes 1. µPD780024A, 780034A Subseries only

2. μPD780024AY, 780034AY Subseries only

(2) CALLT instruction table area

The 64-byte area 0040H to 007FH can store the subroutine entry address of a 1-byte call instruction (CALLT).

(3) CALLF instruction entry area

The area 0800H to 0FFFH can perform a direct subroutine call with a 2-byte call instruction (CALLF).

5.1.2 Internal data memory space

The μ PD780024A, 780034A, 780024AY, and 780034AY Subseries products incorporate an internal high-speed RAM, as listed below.

Part Number	Internal High-Speed RAM
μPD780021A, 780031A, 780021AY, 780031AY	512 \times 8 bits (FD00H to FEFFH)
μPD780022A, 780032A, 780022AY, 780032AY	
μPD780023A, 780033A, 780023AY, 780033AY	1024 $\times8$ bits (FB00H to FEFFH)
μPD780024A, 780034A, 780024AY, 780034AY	
μPD78F0034A, 78F0034B, 78F0034AY, 78F0034BY	

Table 5-3. Internal High-Speed RAM Capacity

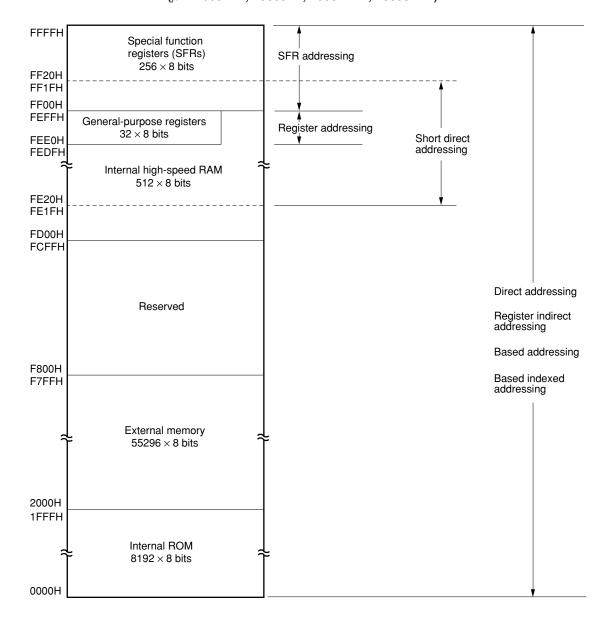
The 32-byte area FEE0H to FEFFH is allocated four general-purpose register banks composed of eight 8-bit registers.

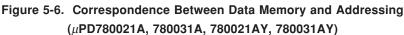
★ This area cannot be used as a program area in which instructions are written and executed. The internal high-speed RAM can also be used as a stack memory.

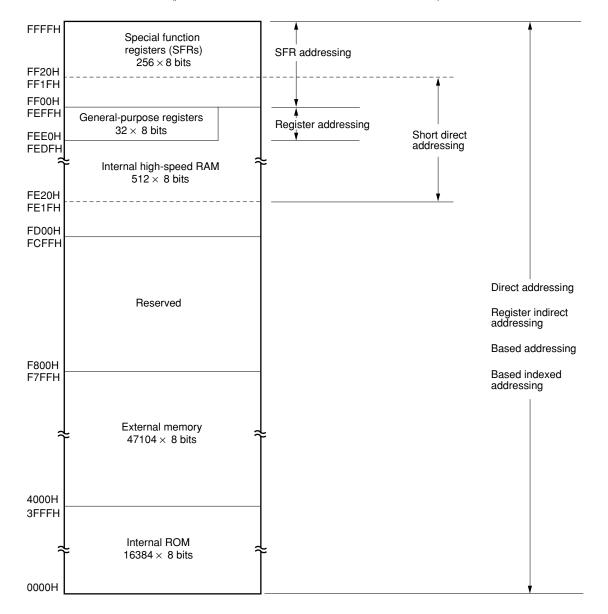
5.1.3 Special function register (SFR) area

An on-chip peripheral hardware special function register (SFR) is allocated in the area FF00H to FFFFH (see 5.2.3 Special function register (SFR) Table 5-5 Special Function Register List).

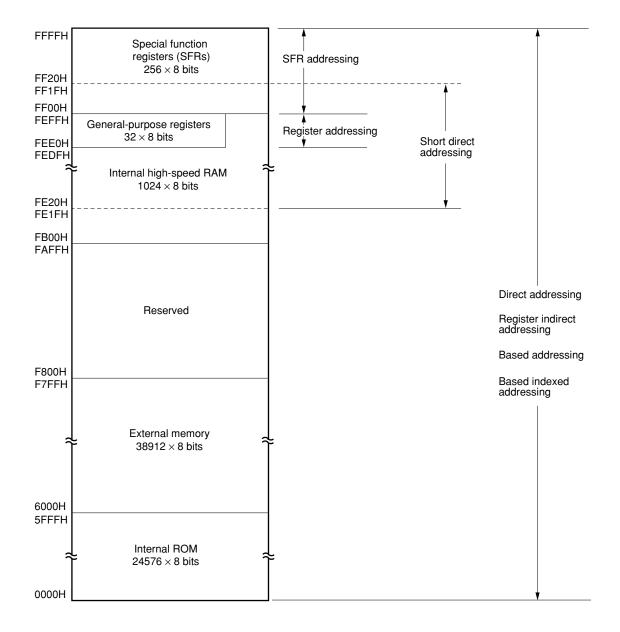
Caution Do not access addresses where the SFR is not assigned.

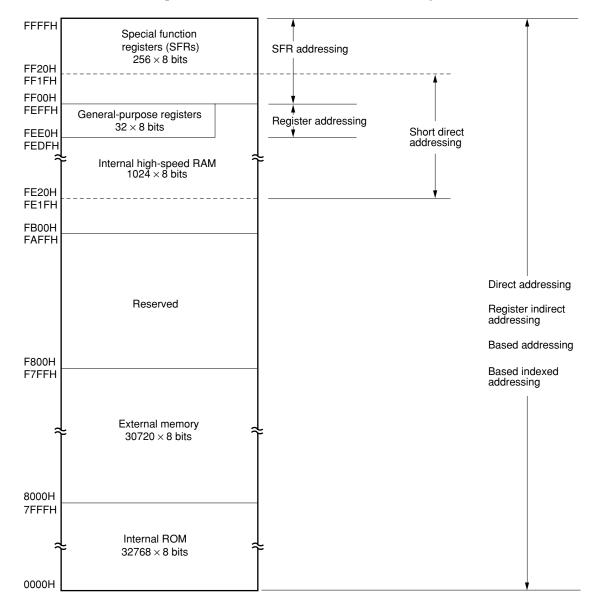

5.1.4 External memory space


The external memory space is accessible with memory expansion mode register (MEM). External memory space can store program, table data, etc., and allocate peripheral devices.


5.1.5 Data memory addressing

Addressing refers to the method of specifying the address of the instruction to be executed next or the address of the register or memory relevant to the execution of instructions.


Several addressing modes are provided for addressing the memory relevant to the execution of instructions for the µPD780024A, 780034A, 780024AY, and 780034AY Subseries, based on operability and other considerations. For areas containing data memory in particular, special addressing methods designed for the functions of special function registers (SFR) and general-purpose registers are available for use. Correspondence between data memory and addressing is illustrated in Figures 5-6 to 5-10. For the details of each addressing mode, see **5.4 Operand Address Addressing**.



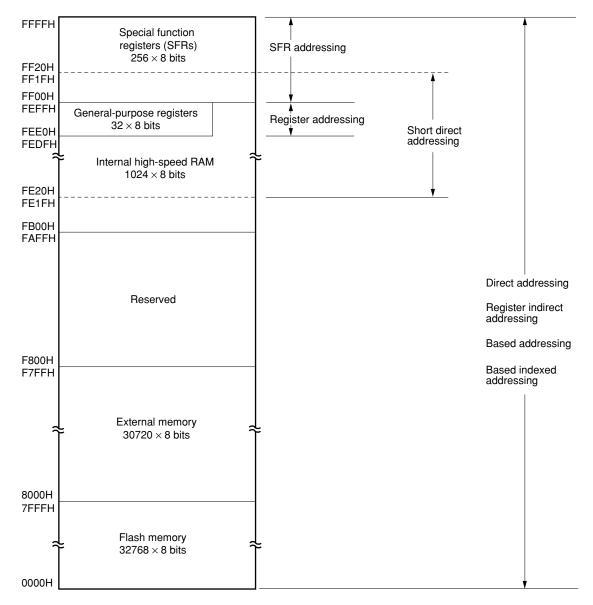

Figure 5-7. Correspondence Between Data Memory and Addressing (μPD780022A, 780032A, 780022AY, 780032AY)

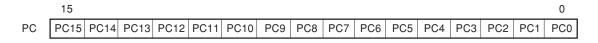
Figure 5-8. Correspondence Between Data Memory and Addressing (μPD780023A, 780033A, 780023AY, 780033AY)

Figure 5-9. Correspondence Between Data Memory and Addressing (μPD780024A, 780034A, 780024AY, 780034AY)

Figure 5-10. Correspondence Between Data Memory and Addressing (µPD78F0034A, 78F0034B, 78F0034AY, 78F0034BY)

5.2 Processor Registers

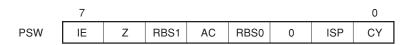
The μ PD780024A, 780034A, 780024AY, 780034AY Subseries products incorporate the following processor registers.


5.2.1 Control registers

The control registers control the program sequence, statuses and stack memory. The control registers consist of a program counter (PC), a program status word (PSW) and a stack pointer (SP).

(1) Program counter (PC)

The program counter is a 16-bit register which holds the address information of the next program to be executed. In normal operation, the PC is automatically incremented according to the number of bytes of the instruction to be fetched. When a branch instruction is executed, immediate data and register contents are set. RESET input sets the reset vector table values at addresses 0000H and 0001H to the program counter.



(2) Program status word (PSW)

The program status word is an 8-bit register consisting of various flags to be set/reset by instruction execution. Program status word contents are automatically stacked upon interrupt request generation or PUSH PSW instruction execution and are automatically reset upon execution of the RETB, RETI and POP PSW instructions. RESET input sets the PSW to 02H.

(a) Interrupt enable flag (IE)

This flag controls the interrupt request acknowledge operations of the CPU.

When 0, the IE is set to the disable interrupt (DI) state, and only non-maskable interrupt request becomes acknowledgeable. Other interrupt requests are all disabled.

When 1, the IE is set to the enable interrupt (EI) state and interrupt request acknowledge enable is controlled with an in-service priority flag (ISP), an interrupt mask flag for various interrupt sources and a priority specification flag.

The IE is reset (0) upon DI instruction execution or interrupt acknowledgment and is set (1) upon EI instruction execution.

(b) Zero flag (Z)

When the operation result is zero, this flag is set (1). It is reset (0) in all other cases.

(c) Register bank select flags (RBS0 and RBS1)

These are 2-bit flags to select one of the four register banks. In these flags, the 2-bit information which indicates the register bank selected by SEL RBn instruction execution is stored.

(d) Auxiliary carry flag (AC)

If the operation result has a carry from bit 3 or a borrow at bit 3, this flag is set (1). It is reset (0) in all other cases.

(e) In-service priority flag (ISP)

This flag manages the priority of acknowledgeable maskable vectored interrupts. When this flag is 0, lowlevel vectored interrupt requests specified with a priority specification flag register (PR0L, PR0H, PR1L) (see **19.3 (3) Priority specification flag registers (PR0L, PR0H, PR1L)**) are disabled for acknowledgment. When it is 1, all interrupts are acknowledgeable. Actual request acknowledgment is controlled with the interrupt enable flag (IE).

(f) Carry flag (CY)

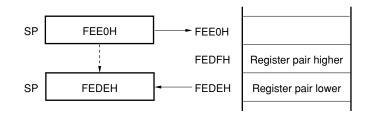
This flag stores overflow and underflow upon add/subtract instruction execution. It stores the shift-out value upon rotate instruction execution and functions as a bit accumulator during bit manipulation instruction execution.

(3) Stack pointer (SP)

This is a 16-bit register to hold the start address of the memory stack area. Only the internal high-speed RAM area can be set as the stack area. The internal high-speed RAM areas of each product are as follows.

Part Number	Internal High-Speed RAM Area
μPD780021A, 780031A, 780021AY, 780031AY μPD780022A, 780032A, 780022AY, 780032AY	FD00H to FEFFH
μPD780023A, 780033A, 780023AY, 780033AY μPD780024A, 780034A, 780024AY, 780034AY μPD78F0034A, 78F0034B, 78F0034AY, 78F0034BY	FB00H to FEFFH

Figure 5-13. Stack Pointer Format


The SP is decremented ahead of write (save) to the stack memory and is incremented after read (restore) from the stack memory.

Each stack operation saves/restores data as shown in Figures 5-14 and 5-15.

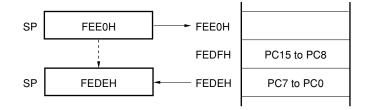
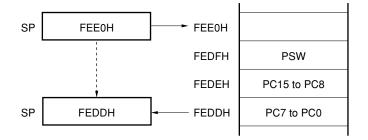
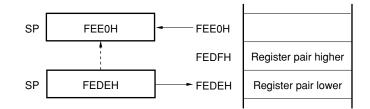

Caution Since RESET input makes the SP contents undefined, be sure to initialize the SP before using the stack.

Figure 5-14. Data to Be Saved to Stack Memory


(a) PUSH rp instruction (when SP is FEE0H)

(b) CALL, CALLF, CALLT instructions (when SP is FEE0H)

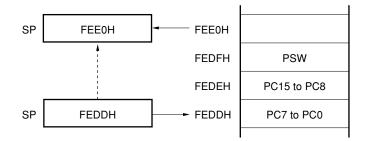
(c) Interrupt, BRK instruction (when SP is FEE0H)



*

Figure 5-15. Data to Be Restored from Stack Memory

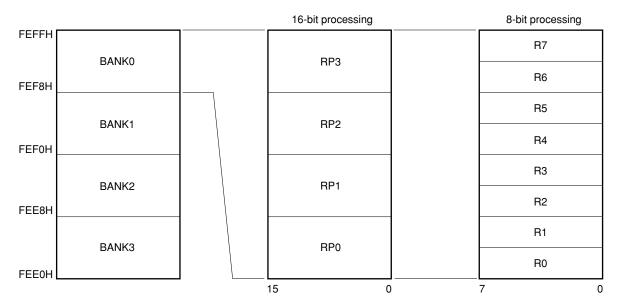
 \star


(a) POP rp instruction (when SP is FEDEH)

(b) RET instruction (when SP is FEDEH)

(c) RETI, RETB instructions (when SP is FEDDH)

5.2.2 General-purpose registers


A general-purpose register is mapped at particular addresses (FEE0H to FEFFH) of the data memory. It consists of 4 banks, each bank consisting of eight 8-bit registers (X, A, C, B, E, D, L, and H).

Each register can also be used as an 8-bit register. Two 8-bit registers can be used in pairs as a 16-bit register (AX, BC, DE, and HL).

They can be described in terms of function names (X, A, C, B, E, D, L, H, AX, BC, DE, and HL) and absolute names (R0 to R7 and RP0 to RP3).

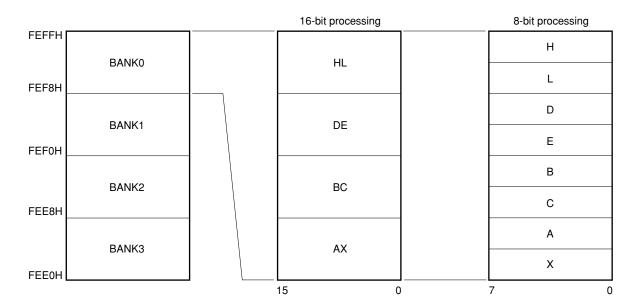

Register banks to be used for instruction execution are set with the CPU control instruction (SEL RBn). Because of the 4-register bank configuration, an efficient program can be created by switching between a register for normal processing and a register for interrupts for each bank.

Figure 5-16. General-Purpose Register Configuration

(a) Absolute name

(b) Function name

5.2.3 Special function register (SFR)

Unlike a general-purpose register, each special function register has special functions. It is allocated in the FF00H to FFFFH area.

The special function register can be manipulated like the general-purpose register, with the operation, transfer and bit manipulation instructions. Manipulatable bit units, 1, 8, and 16, depend on the special function register type. Each manipulation bit unit can be specified as follows.

• 1-bit manipulation

Describe the symbol reserved with assembler for the 1-bit manipulation instruction operand (sfr.bit). This manipulation can also be specified with an address.

· 8-bit manipulation

Describe the symbol reserved with assembler for the 8-bit manipulation instruction operand (sfr). This manipulation can also be specified with an address.

• 16-bit manipulation

Describe the symbol reserved with assembler for the 16-bit manipulation instruction operand (sfrp). When addressing an address, describe an even address.

Table 5-5 gives a list of special function registers. The meaning of items in the table is as follows.

• Symbol

Symbol indicating the address of a special function register. It is a reserved word in the RA78K0, and is defined via the header file "sfrbit.h" in the CC78K0. When using the RA78K0, ID78K0-NS, ID78K0, or SM78K0, symbols can be written as an instruction operand.

• R/W

Indicates whether the corresponding special function register can be read or written.

- R/W: Read/write enable
- R: Read only
- W: Write only
- Manipulatable bit units

Indicates the manipulatable bit unit (1, 8, or 16). "-" indicates a bit unit for which manipulation is not possible.

After reset

Indicates each register status upon RESET input.

Address	Special Function Register (SFR) Name	Syn	nbol	R/W	Manipu	ulatable	Bit Unit	After Reset
					1 Bit	8 Bits	16 Bits	
FF00H	Port 0	P0		R/W	\checkmark	\checkmark	-	00H
FF01H	Port 1	P1		R	\checkmark	\checkmark	-	
FF02H	Port 2	P2		R/W	\checkmark	\checkmark	-	
FF03H	Port 3	P3			\checkmark	\checkmark	_	
FF04H	Port 4	P4			\checkmark	\checkmark	-	
FF05H	Port 5	P5			\checkmark	\checkmark	-	
FF06H	Port 6	P6			\checkmark	\checkmark	_	
FF07H	Port 7	P7			\checkmark	\checkmark	-	
FF0AH	16-bit timer capture/compare register 00	CR00			-	-	\checkmark	Undefined
FF0BH								
FF0CH	16-bit timer capture/compare register 01	CR01			-	-		
FF0DH								
FF0EH	16-bit timer counter 0	TM0		R	-	-	\checkmark	0000H
FF0FH								
FF10H	8-bit timer compare register 50	CR50		R/W	-	V	-	Undefined
FF11H	8-bit timer compare register 51	CR51			-	\checkmark	-	
FF12H	8-bit timer counter 50	TM5	TM50	R	-	\checkmark	\checkmark	00H
FF13H	8-bit timer counter 51		TM51		-	\checkmark		
FF16H	A/D conversion result register 0	ADCR	0		-	-	$\sqrt{Note 2}$	
FF17H					-	$\sqrt{Note 1}$		
FF18H	Transmit shift register 0	TXS0		W	-	V	-	FFH
	Receive buffer register 0	RXB0		 R				
FF1AH	Serial I/O shift register 30	SIO30		R/W	-	\checkmark	-	Undefined
FF1BH	Serial I/O shift register 31Note 3	SIO31	SIO31		_		_	
FF1FH	IIC shift register 0 ^{Note 4}	IIC0			_	1	_	00H

Table 5-5. Special Function Register List (1/3)

Notes 1. $\mu\text{PD780024A},$ 780024AY Subseries only

2. µPD780034A, 780034AY Subseries only, 16-bit access possible

3. μ PD780024A, 780034A Subseries only

4. µPD780024AY, 780034AY Subseries only

Address	Special Function Register (SFR) Name	Symbol	R/W	Manipu	ulatable	After Reset	
				1 Bit	8 Bits	16 Bits	
FF20H	Port mode register 0	PM0	R/W	\checkmark	\checkmark	-	FFH
FF22H	Port mode register 2	PM2		\checkmark	\checkmark	-	
FF23H	Port mode register 3	PM3	_	\checkmark	\checkmark	-	
FF24H	Port mode register 4	PM4		\checkmark	\checkmark	-	
FF25H	Port mode register 5	PM5	_	\checkmark	\checkmark	-	
FF26H	Port mode register 6	PM6		\checkmark	\checkmark	-	
FF27H	Port mode register 7	PM7		\checkmark	\checkmark	-	
FF30H	Pull-up resistor option register 0	PU0	_	\checkmark	\checkmark	-	00H
FF32H	Pull-up resistor option register 2	PU2	_	\checkmark	\checkmark	-	
FF33H	Pull-up resistor option register 3	PU3	_	\checkmark	√	-	
FF34H	Pull-up resistor option register 4	PU4	_	\checkmark	V	-	
FF35H	Pull-up resistor option register 5	PU5	_		√	_	
FF36H	Pull-up resistor option register 6	PU6	_	\checkmark	√	_	
FF37H	Pull-up resistor option register 7	PU7	_		√	_	
FF40H	Clock output select register	CKS	_		√	_	
FF41H	Watch timer operation mode register	WTM	_	\checkmark	\checkmark	-	
FF42H	Watchdog timer clock select register	WDCS	_	_	√	-	
FF47H	Memory expansion mode register	MEM	_	\checkmark	\checkmark	_	
FF48H	External interrupt rising edge enable register	EGP	_	\checkmark	\checkmark	-	
FF49H	External interrupt falling edge enable register	EGN	_	\checkmark	√	-	
FF60H	16-bit timer mode control register 0	TMC0	_	\checkmark	\checkmark	-	
FF61H	Prescaler mode register 0	PRM0	_	-	\checkmark	-	
FF62H	Capture/compare control register 0	CRC0	_	\checkmark	\checkmark	-	
FF63H	16-bit timer output control register 0	TOC0	_	\checkmark	\checkmark	-	
FF70H	8-bit timer mode control register 50	TMC50	_	\checkmark	\checkmark	-	
FF71H	Timer clock select register 50	TCL50	_	_	√	-	
FF78H	8-bit timer mode control register 51	TMC51		V	V	-]
FF79H	Timer clock select register 51	TCL51		-	V	-	
FF80H	A/D converter mode register 0	ADM0		V	V	-	1
FF81H	Analog input channel specification register 0	ADS0		-	V	-]
FFA0H	Asynchronous serial interface mode register 0	ASIM0		√	√	_	1
FFA1H	Asynchronous serial interface status register 0	ASIS0	R	-	V	_	1
FFA2H	Baud rate generator control register 0	BRGC0	R/W	_	√	_	1

Table 5-5. Special Function Register List (2/3)

Address	Special Function Register (SFR) Name	Symbol		R/W	Manipu	ulatable	Bit Unit	After Reset
					1 Bit	8 Bits	16 Bits	
FFA8H	IIC control register 0 ^{Note 1}	IICC0		R/W	\checkmark	\checkmark	-	00H
FFA9H	IIC status register 0 ^{Note 1}	IICS0		R	\checkmark	\checkmark	-	
FFAAH	IIC transfer clock select register 0 ^{Note 1}	IICCL)	R/W	\checkmark	\checkmark	-	
FFABH	Slave address register 0 ^{Note 1}	SVA0			-	\checkmark	_	
FFB0H	Serial operation mode register 30	CSIM	30		\checkmark	\checkmark	_	
FFB8H	Serial operation mode register 31Note 2	CSIM	31		\checkmark	\checkmark	_	
FFE0H	Interrupt request flag register 0L	IF0	IF0 IF0L		\checkmark	\checkmark	\checkmark	
FFE1H	Interrupt request flag register 0H		IF0H		\checkmark	\checkmark		
FFE2H	Interrupt request flag register 1L	IF1L	IF1L		\checkmark	\checkmark	_	
FFE4H	Interrupt mask flag register 0L	MK0	MKOL		\checkmark	\checkmark	\checkmark	FFH
FFE5H	Interrupt mask flag register 0H		МКОН		\checkmark	\checkmark		
FFE6H	Interrupt mask flag register 1L	MK1L			\checkmark	\checkmark	-	
FFE8H	Priority level specification flag register 0L	PR0	PR0L		\checkmark	\checkmark	\checkmark	
FFE9H	Priority level specification flag register 0H		PR0H		\checkmark	\checkmark		
FFEAH	Priority level specification flag register 1L	PR1L			\checkmark	\checkmark	-	
FFF0H	Memory size switching register	IMS			_	\checkmark	-	CFHNote 3
FFF8H	Memory expansion wait setting register	ММ			\checkmark	\checkmark	-	10H
FFF9H	Watchdog timer mode register	WDTM			\checkmark	\checkmark	_	00H
FFFAH	Oscillation stabilization time select register	OSTS			_	\checkmark	_	04H
FFFBH	Processor clock control register	PCC			V	\checkmark	-	

Table 5-5. Special Function Register List (3/3)

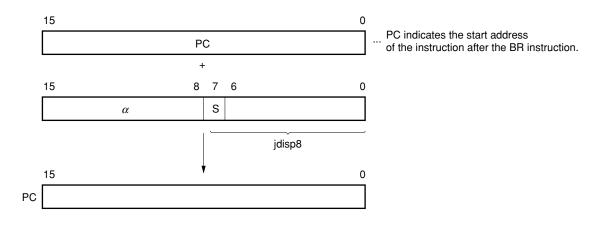
Notes 1. µPD780024AY, 780034AY Subseries only

2. *µ*PD780024A, 780034A Subseries only

3. The default is CFH, but set the value corresponding to each respective product as indicated below. μPD780021A, 780031A, 780021AY, 780031AY:
 42H
 μPD780022A, 780032A, 780022AY, 780032AY:
 44H
 μPD780023A, 780033A, 780023AY, 780033AY:
 C6H
 μPD780024A, 780034A, 780024AY, 780034AY:
 C8H
 μPD78F0034A, 78F0034B, 78F0034AY, 78F0034BY:
 Value for mask ROM version

5.3 Instruction Address Addressing

An instruction address is determined by program counter (PC) contents and is normally incremented (+1 for each byte) automatically according to the number of bytes of an instruction to be fetched each time another instruction is executed. When a branch instruction is executed, the branch destination information is set to the PC and branched by the following addressing (for details of instructions, refer to **78K/0 Series Instructions User's Manual (U12326E)**).


5.3.1 Relative addressing

[Function]

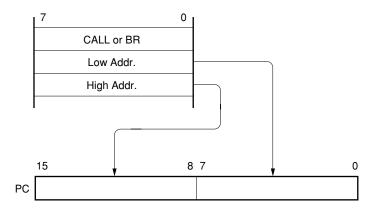
The value obtained by adding 8-bit immediate data (displacement value: jdisp8) of an instruction code to the start address of the following instruction is transferred to the program counter (PC) and branched. The displacement value is treated as signed two's complement data (-128 to +127) and bit 7 becomes a sign bit. In other words, relative addressing consists in relative branching from the start address of the following instruction to the -128 to +127 range.

This function is carried out when the BR \$addr16 instruction or a conditional branch instruction is executed.

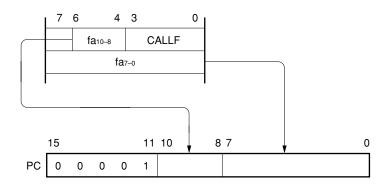
[Illustration]

When S = 0, all bits of α are 0. When S = 1, all bits of α are 1.

5.3.2 Immediate addressing


[Function]

Immediate data in the instruction word is transferred to the program counter (PC) and branched.


This function is carried out when the CALL laddr16 or BR laddr16 or CALLF laddr11 instruction is executed. CALL laddr16 and BR laddr16 instructions can be branched to the entire memory space. The CALLF laddr11 instruction is branched to the 0800H to 0FFFH area.

[Illustration]

In the case of CALL !addr16 and BR !addr16 instructions

In the case of CALLF !addr11 instruction

5.3.3 Table indirect addressing

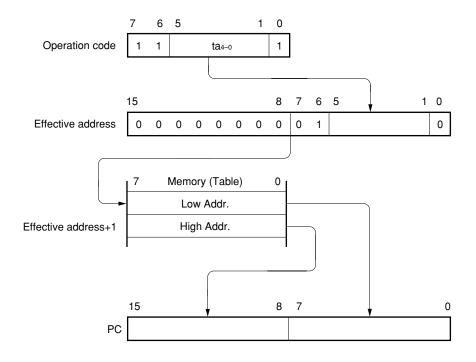
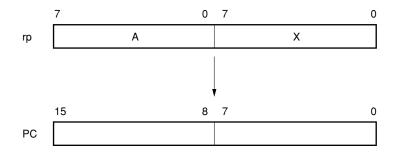

[Function]

Table contents (branch destination address) of the particular location to be addressed by bits 1 to 5 of the immediate data of an operation code are transferred to the program counter (PC) and branched.

This function is carried out when the CALLT [addr5] instruction is executed.

This instruction references the address stored in the memory table from 40H to 7FH, and allows branching to the entire memory space.

[Illustration]


5.3.4 Register addressing

[Function]

Register pair (AX) contents to be specified with an instruction word are transferred to the program counter (PC) and branched.

This function is carried out when the BR AX instruction is executed.

[Illustration]

5.4 Operand Address Addressing

The following various methods are available to specify the register and memory (addressing) which undergo manipulation during instruction execution.

5.4.1 Implied addressing

[Function]

The register which functions as an accumulator (A and AX) in the general-purpose register is automatically (implicitly) addressed.

Of the μ PD780024A, 780034A, 780024AY, 780034AY Subseries instruction words, the following instructions employ implied addressing.

Instruction	Register to Be Specified by Implied Addressing
MULU	A register for multiplicand and AX register for product storage
DIVUW	AX register for dividend and quotient storage
ADJBA/ADJBS	A register for storage of numeric values which become decimal correction targets
ROR4/ROL4	A register for storage of digit data which undergoes digit rotation

[Operand format]

Because implied addressing can be automatically employed with an instruction, no particular operand format is necessary.

[Description example]

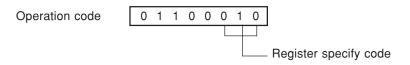
In the case of MULU X

With an 8-bit \times 8-bit multiply instruction, the product of A register and X register is stored in AX. In this example, the A and AX registers are specified by implied addressing.

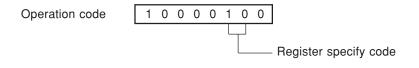
5.4.2 Register addressing

[Function]

The general-purpose register to be specified is accessed as an operand with the register specify code (Rn and RPn) of an instruction word in the registered bank specified with the register bank select flag (RBS0 and RBS1). Register addressing is carried out when an instruction with the following operand format is executed. When an 8-bit register is specified, one of the eight registers is specified with 3 bits in the operation code.


[Operand format]

Identifier	Description
r	X, A, C, B, E, D, L, H
rp	AX, BC, DE, HL


'r' and 'rp' can be described with absolute names (R0 to R7 and RP0 to RP3) as well as function names (X, A, C, B, E, D, L, H, AX, BC, DE, and HL).

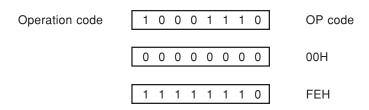
[Description example]

MOV A, C; when selecting C register as r

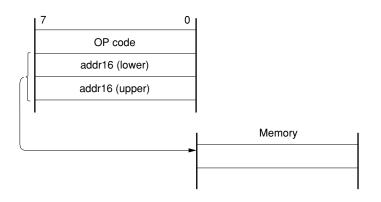
INCW DE; when selecting DE register pair as rp

5.4.3 Direct addressing

[Function]


The memory to be manipulated is addressed with immediate data in an instruction word becoming an operand address.

[Operand format]


Identifier	Description
addr16	Label or 16-bit immediate data

[Description example]

MOV A, !0FE00H; when setting !addr16 to FE00H

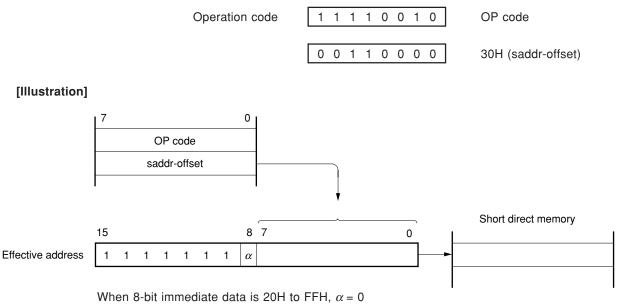
[Illustration]

5.4.4 Short direct addressing

[Function]

The memory to be manipulated in the fixed space is directly addressed with 8-bit data in an instruction word. This addressing is applied to the 256-byte space FE20H to FF1FH. Internal RAM and special function registers (SFRs) are mapped at FE20H to FEFFH and FF00H to FF1FH, respectively.

If the SFR area (FF00H to FF1FH) where short direct addressing is applied, ports which are frequently accessed in a program and compare and capture registers of the timer/event counter are mapped, and these SFRs can be manipulated with a small number of bytes and clocks.


When 8-bit immediate data is at 20H to FFH, bit 8 of an effective address is cleared to 0. When it is at 00H to 1FH, bit 8 is set to 1. See the **[Illustration]** below.

[Operand format]

Identifier	Description			
saddr	Label or immediate data indicating FE20H to FF1FH			
saddrp	Label or immediate data indicating FE20H to FF1FH (even address only)			

★ [Description example]

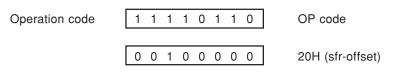
MOV 0FE30H, A; when transferring the value in register A to saddr (FE30H)

When 8-bit immediate data is 00H to 1FH, $\alpha = 1$

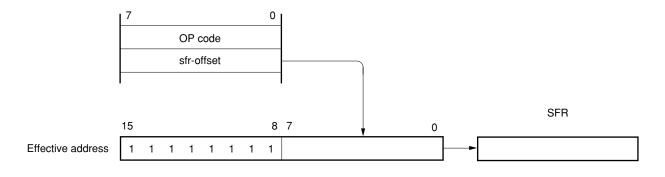
5.4.5 Special function register (SFR) addressing

[Function]

The memory-mapped special function register (SFR) is addressed with 8-bit immediate data in an instruction word.


This addressing is applied to the 240-byte spaces FF00H to FFCFH and FFE0H to FFFFH. However, the SFR mapped at FF00H to FF1FH can be accessed with short direct addressing.

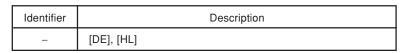
[Operand format]


Identifier	Description		
sfr	Special function register name		
sfrp	16-bit manipulatable special function register name (even address only)		

[Description example]

MOV PM0, A; when selecting PM0 (FF20H) as sfr

[Illustration]

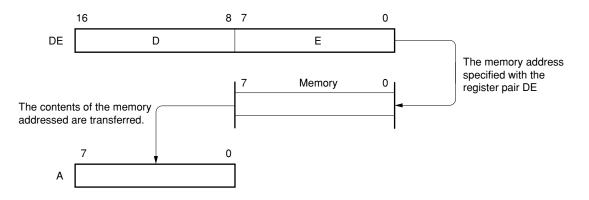


5.4.6 Register indirect addressing

[Function]

Register pair contents specified with a register pair specify code in an instruction word of the register bank specified with a register bank select flag (RBS0 and RBS1) serve as an operand address for addressing the memory to be manipulated. This addressing can be carried out for all the memory spaces.

[Operand format]



[Description example]

MOV A, [DE]; when selecting [DE] as register pair

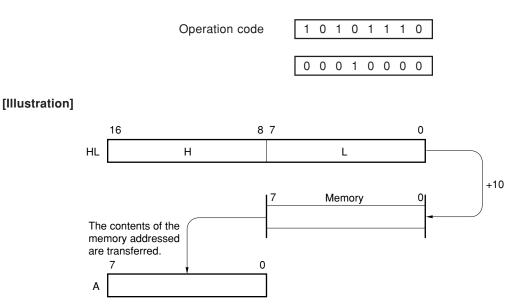
Operation code 1 0 0 0 1 0 1

[Illustration]

5.4.7 Based addressing

[Function]

8-bit immediate data is added as offset data to the contents of the base register, that is, the HL register pair in an instruction word of the register bank specified by the register bank select flags (RBS0 and RBS1) and the sum is used to address the memory. Addition is performed by expanding the offset data as a positive number to 16 bits. A carry from the 16th bit is ignored. This addressing can be carried out for all the memory spaces.


[Operand format]

Identifier	Description
_	[HL + byte]

[Description example]

*

MOV A, [HL + 10H]; when setting byte to 10H

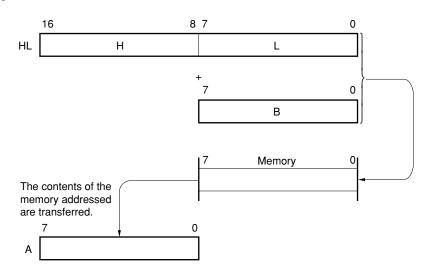
5.4.8 Based indexed addressing

[Function]

The B or C register contents specified in an instruction word are added to the contents of the base register, that is, the HL register pair in the register bank specified by the register bank select flags (RBS0 and RBS1) and the sum is used to address the memory. Addition is performed by expanding the B or C register contents as a positive number to 16 bits. A carry from the 16th bit is ignored. This addressing can be carried out for all the memory spaces.

[Operand format]

Identifier	Des	cription
-	[HL + B], [HL + C]	


[Description example]

In the case of MOV A, [HL + B] (selecting the B register)

Operation code

10101011

★ [Illustration]

5.4.9 Stack addressing

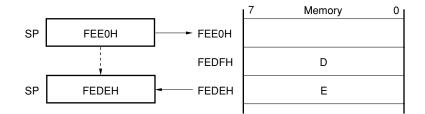
[Function]

The stack area is indirectly addressed with the stack pointer (SP) contents.

This addressing method is automatically employed when the PUSH, POP, subroutine call and return instructions are executed or the register is saved/reset upon generation of an interrupt request.

Stack addressing can be used to address the internal high-speed RAM area only.

[Description example]


In the case of PUSH DE (saving the DE register)

Operation code

10110101

[Illustration]

★

6.1 Port Functions

The μ PD780024A, 780034A, 780024AY, and 780034AY Subseries products incorporate eight input ports and 43 I/O ports. Figure 6-1 shows the port configuration. Every port is capable of 1-bit and 8-bit manipulations and can carry out considerably varied control operations. Besides port functions, the ports can also serve as on-chip hardware I/O pins.

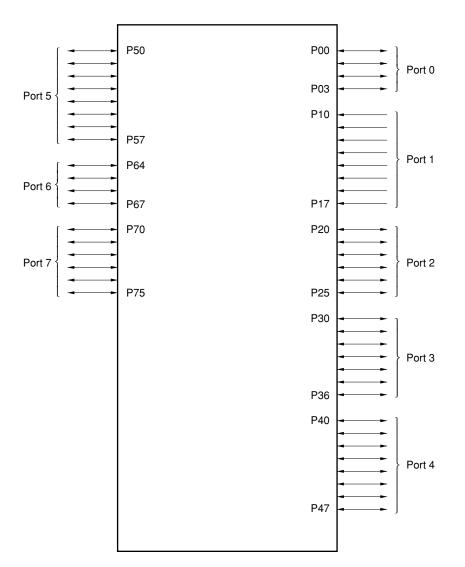


Figure 6-1. Port Types

Pin Name	Function		Alternate Function
P00	Port 0	Port 0	
P01	 4-bit I/O port. Input/output mode can be specified in 1-bit units. An on-chip pull-up resistor can be used by software settings. 		INTP1
P02			INTP2
P03			INTP3/ADTRG
P10 to P17	Port 1 8-bit input-only port.		ANI0 to ANI7
P20	Port 2 6-bit I/O port. Input/output mode can be specified in 1-bit units. An on-chip pull-up resistor can be used by software settings.		SI30
P21			SO30
P22			SCK30
P23			RxD0
P24	-		TxD0
P25	-		ASCK0
P30	Port 3	N-ch open-drain I/O port.	_
P31	7-bit I/O port.	On-chip pull-up resistor can be specified by mask option (mask ROM version only). LEDs can be driven directly.	
P32	Input/output mode can be specified		
P33	– in 1-bit units.		
P34	-	An on-chip pull-up resistor can be specified by software settings.	SI31
P35	-		SO31
P36	-		SCK31
P40 to P47	Port 4 8-bit I/O port. Input/output mode can be specified in 1-bit units. An on-chip pull-up resistor can be specified by software settings. Interrupt request flag (KRIF) is set to 1 by falling edge detection.		AD0 to AD7
P50 to P57	Port 5 8-bit I/O port. LEDs can be driven directly. Input/output mode can be specified in 1-bit units. An on-chip pull-up resistor can be used by software settings.		A8 to A15
P64	Port 6		RD
P65	4-bit I/O port. Input/output mode can be specified in 1-bit units.		WR
P66			WAIT
P67		An on-chip pull-up resistor can be used by software settings.	
P70	Port 7		TI00/TO0
P71	 6-bit I/O port. Input/output mode can be specified in 1-bit units. An on-chip pull-up resistor can be used by software settings. 		TI01
P72			TI50/TO50
P73			TI51/TO51
P74			PCL
P75			BUZ

Table 6-1. Port Functions (µPD780024A, 780034A Subseries)

Pin Name		Function	Alternate Function
P00	Port 0		INTP0
P01	4-bit I/O port.	4-bit I/O port.	
P02	 Input/output mode can be specified in 1-bit units. An on-chip pull-up resistor can be used by software settings. 		INTP2
P03			INTP3/ADTRG
P10 to P17	Port 1 8-bit input-only port.		ANI0 to ANI7
P20	Port 2 6-bit I/O port		SI30
P21			SO30
P22		Input/output mode can be specified in 1-bit units. An on-chip pull-up resistor can be used by software settings.	
P23	An on-chip pull-up resistor can be u		
P24	_		TxD0
P25	_		ASCK0
P30	Port 3	N-ch open-drain I/O port.	_
P31	7-bit I/O port.	On-chip pull-up resistor can be specified by mask option (P30 and P31 are mask ROM version only).	
P32	Input/output mode can be specified		SDA0
P33	– in 1-bit units.	LEDs can be driven directly.	SCL0
P34	-	An on-chip pull-up resistor can be used by software	_
P35	_	settings.	
P36	-		
P40 to P47	Port 4 8-bit I/O port. Input/output mode can be specified in 1-bit units. An on-chip pull-up resistor can be used by software settings. Interrupt request flag (KRIF) is set to 1 by falling edge detection.		AD0 to AD7
P50 to P57	Port 5 8-bit I/O port. LEDs can be driven directly. Input/output mode can be specified in 1-bit units. An on-chip pull-up resistor can be used by software settings.		A8 to A15
P64	Port 6		RD
P65	4-bit I/O port. Input/output mode can be specified in 1-bit units. An on-chip pull-up resistor can be used by software settings.		WR
P66			WAIT
P67			ASTB
P70	Port 7		TI00/TO0
P71	6-bit I/O port. Input/output mode can be specified in 1-bit units. An on-chip pull-up resistor can be used by software settings.		TI01
P72			TI50/TO50
P73			TI51/TO51
P74			PCL
P75			BUZ

Table 6-2. Port Functions (µPD780024AY, 780034AY Subseries)

6.2 Port Configuration

A port consists of the following hardware.

Table 6-3.	Port Configuration	

Item	Configuration	
Control register	Port mode register (PMm: m = 0, 2 to 7) Pull-up resistor option register (PUm: m = 0, 2 to 7)	
Port	Total: 51 ports (8 inputs, 43 inputs/outputs)	
Pull-up resistor	 Mask ROM version Total: 43 (software control: 39, mask option: 4^{Note}) Flash memory version Total: 39 	

Note Two mask options for the μ PD780024AY and 780034AY Subseries.

6.2.1 Port 0

*

*

Port 0 is a 4-bit I/O port with output latch. P00 to P03 pins can specify the input mode/output mode in 1-bit units with port mode register 0 (PM0). An on-chip pull-up resistor of P00 to P03 pins can be used for them in 1-bit units with pull-up resistor option register 0 (PU0).

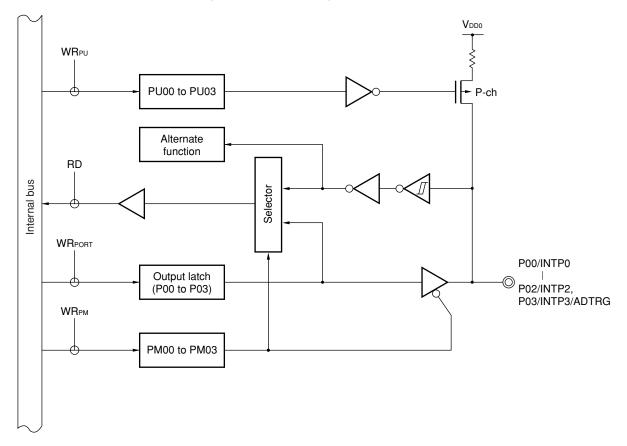

This port can also be used as an external interrupt request input and A/D converter external trigger input. RESET input sets port 0 to input mode.

Figure 6-2 shows a block diagram of port 0.

- Cautions 1. Port 0 functions alternately as an external interrupt request input pin. If the output mode of the port function is specified and the output level of the port is changed while interrupts are not disabled by the external interrupt rising edge enable register (EGP) and external interrupt falling edge enable register (EGN), the interrupt request flag is set. Thus, when the output mode is used, set the interrupt mask flag to 1.
 - 2. When the external interrupt request function is switched to the port function, edge detection may be performed. Therefore, clear bit n (EGPn) of EGP and bit n (EGNn) of EGN to 0 before selecting the port mode.
 - 3. When using P03/INTP3/ADTRG as an A/D converter external trigger input, specify valid edges by setting bits 1 and 2 (EGA00 and EGA01) of A/D converter mode register 0 (ADM0) and set the interrupt mask flag (PMK3) to 1.

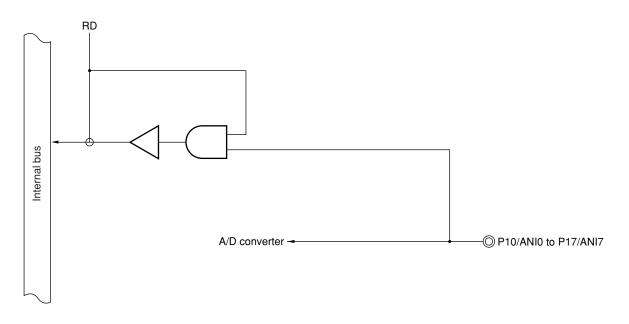
Remark n = 0 to 3

Figure 6-2. Block Diagram of P00 to P03

- PU: Pull-up resistor option register
- PM: Port mode register
- RD: Port 0 read signal
- WR: Port 0 write signal

*

6.2.2 Port 1


★

Port 1 is an 8-bit input-only port.

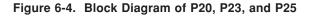
This port can also be used as an A/D converter analog input.

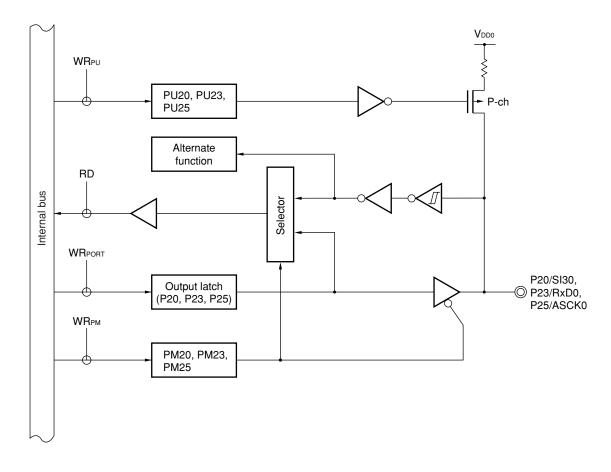
Figure 6-3 shows a block diagram of port 1.

Figure 6-3. Block Diagram of P10 to P17

RD: Port 1 read signal

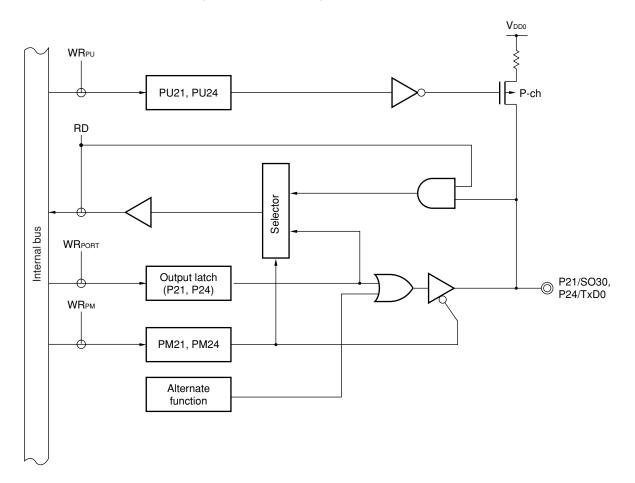
6.2.3 Port 2


*

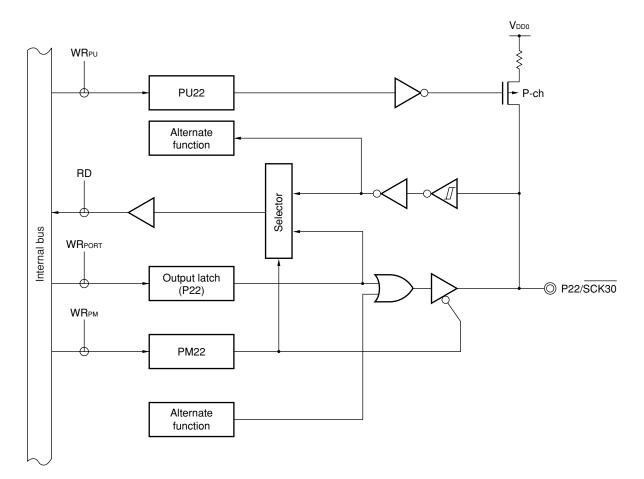

Port 2 is a 6-bit I/O port with output latch. P20 to P25 pins can specify the input mode/output mode in 1-bit units with port mode register 2 (PM2). An on-chip pull-up resistor of P20 to P25 pins can be used for them in 1-bit units with pull-up resistor option register 2 (PU2).

This port has also alternate functions as serial interface data I/O and clock I/O.

RESET input sets port 2 to input mode.


Figures 6-4 to 6-6 show block diagrams of port 2.

- PU: Pull-up resistor option register
- PM: Port mode register
- RD: Port 2 read signal
- WR: Port 2 write signal



- PU: Pull-up resistor option register
- PM: Port mode register

 \star

- RD: Port 2 read signal
- WR: Port 2 write signal

Figure 6-6. Block Diagram of P22

- PU: Pull-up resistor option register
- PM: Port mode register
- RD: Port 2 read signal
- WR: Port 2 write signal

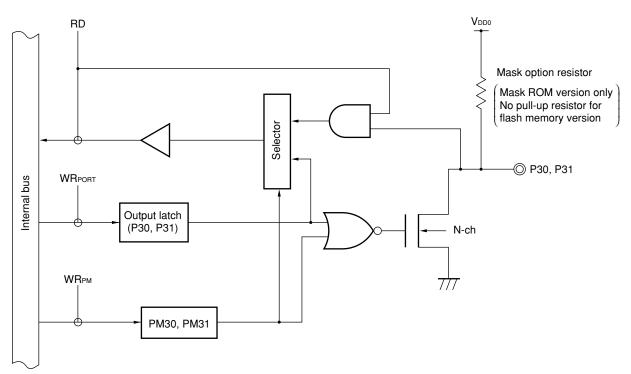
*

6.2.4 Port 3 (µPD780024A, 780034A Subseries)

Port 3 is a 7-bit I/O port with output latch. P30 to P36 pins can specify the input mode/output mode in 1-bit units with port mode register 3 (PM3).

This port has the following functions for pull-up resistors. These functions differ depending on the port's higher 3-bit/lower 4-bit, and whether the product is a mask ROM version or a flash memory version.

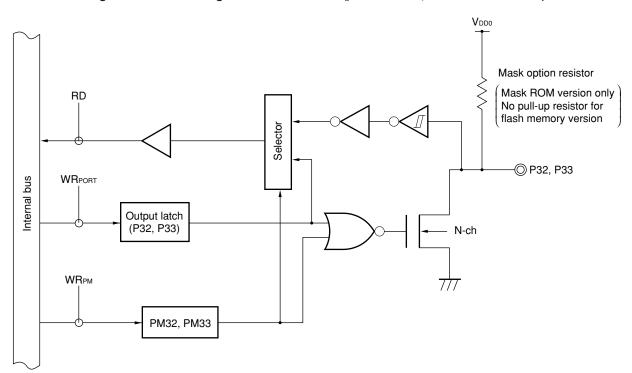
Table 6-4	Pull-Up	Resistor	of Port 3	(μPD780024A,	780034A	Subseries)
-----------	---------	----------	-----------	--------------	---------	------------


	Higher 3-Bit (P34 to P36 Pins)	Lower 4-Bit (P30 to P33 Pins)
Mask ROM version	An on-chip pull-up resistor can be connected in 1-bit units by PU3	An on-chip pull-up resistor can be specified in 1-bit units by mask option
Flash memory version		On-chip pull-up resistor is not provided

PU3: Pull-up resistor option register 3

*

The P30 to P33 pins can drive LEDs directly. The P34 to P36 pins can also be used for serial interface data I/O and clock I/O. RESET input sets port 3 to input mode. Figures 6-7 to 6-11 show block diagrams of port 3.



PM: Port mode register

RD: Port 3 read signal

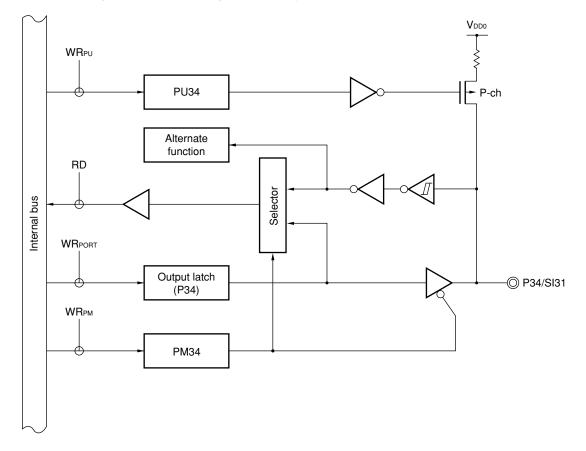
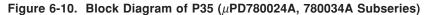
WR: Port 3 write signal

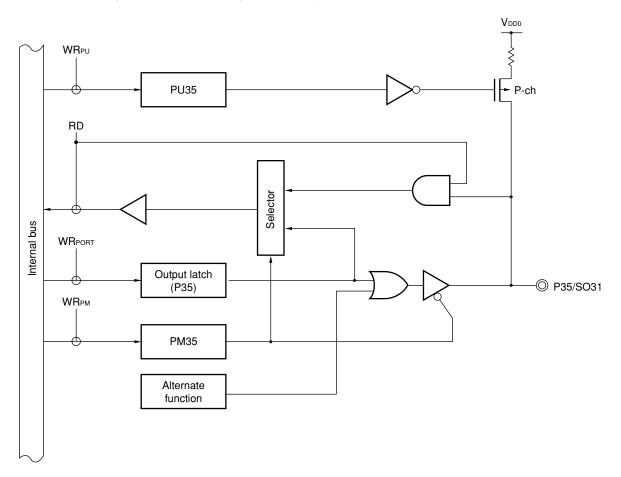
Figure 6-8. Block Diagram of P32 and P33 (µPD780024A, 780034A Subseries)

- PM: Port mode register
- RD: Port 3 read signal

★

WR: Port 3 write signal


Figure 6-9. Block Diagram of P34 (µPD780024A, 780034A Subseries)

- PU: Pull-up resistor option register
- PM: Port mode register

 \star

- RD: Port 3 read signal
- WR: Port 3 write signal

- PU: Pull-up resistor option register
- PM: Port mode register
- RD: Port 3 read signal
- WR: Port 3 write signal

*

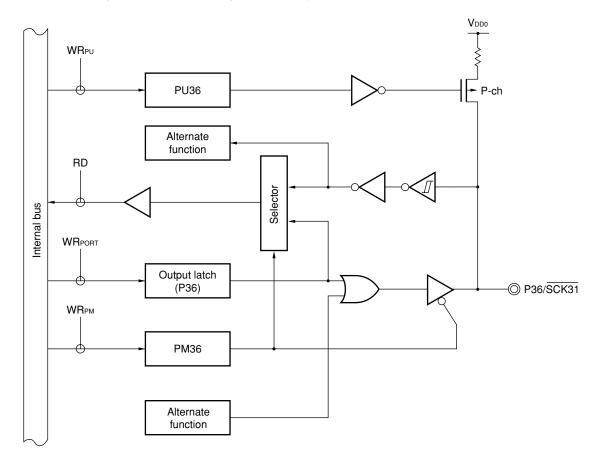


Figure 6-11. Block Diagram of P36 (µPD780024A, 780034A Subseries)

- PU: Pull-up resistor option register
- PM: Port mode register
- RD: Port 3 read signal
- WR: Port 3 write signal

 \star

6.2.5 Port 3 (µPD780024AY, 780034AY Subseries)

Port 3 is a 7-bit I/O port with output latch. P30 to P36 pins can specify the input mode/output mode in 1-bit units with port mode register 3 (PM3).

This port has the following functions for pull-up resistors. These functions differ depending on port's bits location and mask ROM version/flash memory version.

	P34 to P36 Pins	P30 and P31 Pins
Mask ROM version	An on-chip pull-up resistor can be connected in 1-bit units by	An on-chip pull-up resistor can be specified in 1-bit units by mask option
Flash memory version	PU3	On-chip pull-up resistor is not provided

Table 6-5. Pull-Up Resistor of Port 3 (µPD780024AY, 780034AY Subseries)

PU3: Pull-up resistor option register 3

Caution P32 and P33 pins have no pull-up resistor.

The P30 to P33 pins can drive LEDs directly.

The P32 and P33 pins can also be used for serial interface data I/O and clock I/O.

RESET input sets port 3 to input mode.

Figures 6-12 to 6-15 show block diagrams of port 3.

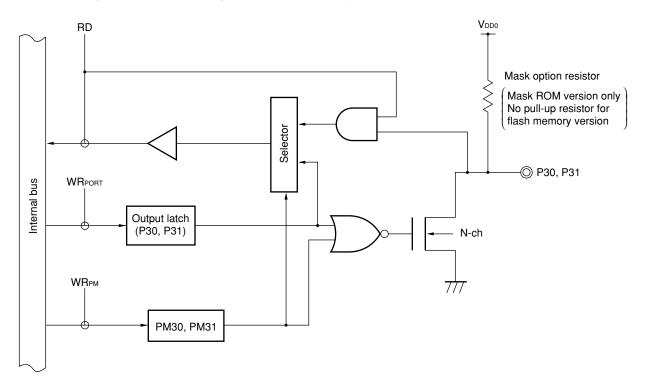
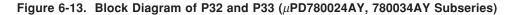
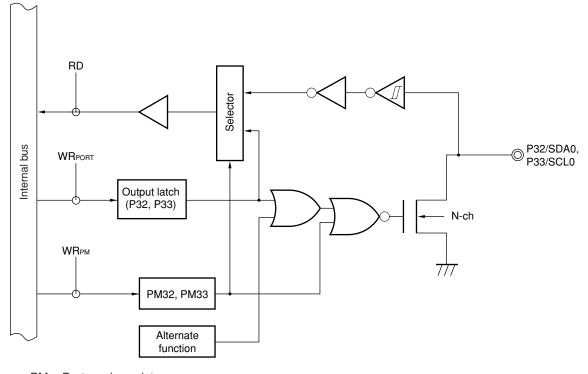


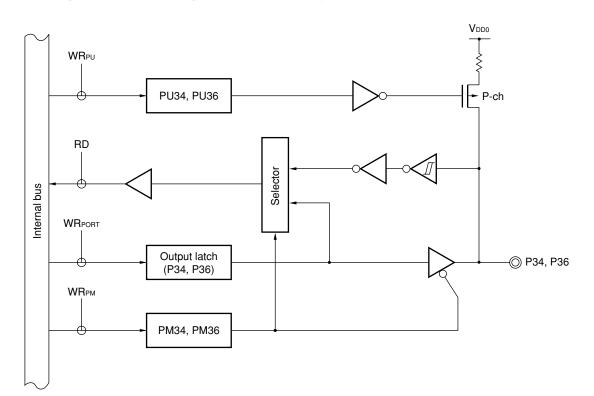
Figure 6-12. Block Diagram of P30 and P31 (µPD780024AY, 780034AY Subseries)


PM: Port mode register


★

★

RD: Port 3 read signal


WR: Port 3 write signal

- PM: Port mode register
- RD: Port 3 read signal
- WR: Port 3 write signal

Figure 6-14. Block Diagram of P34 and P36 (µPD780024AY, 780034AY Subseries)

- PU: Pull-up resistor option register
- PM: Port mode register
- RD: Port 3 read signal
- WR: Port 3 write signal

★

Figure 6-15. Block Diagram of P35 (µPD780024AY, 780034AY Subseries)

- PU: Pull-up resistor option register
- PM: Port mode register
- RD: Port 3 read signal

 \star

WR: Port 3 write signal

6.2.6 Port 4

*

Port 4 is an 8-bit I/O port with output latch. The P40 to P47 pins can specify the input mode/output mode in 1bit units with port mode register 4 (PM4). An on-chip pull-up resistor of P40 to P47 pins can be used for them in 1bit units with pull-up resistor option register 4 (PU4).

The interrupt request flag (KRIF) can be set to 1 by detecting falling edges.

This port can also be used as an address/data bus in external memory expansion mode.

RESET input sets port 4 to input mode.

Figures 6-16 and 6-17 show a block diagram of port 4 and block diagram of the falling edge detector, respectively.

- ★ Cautions 1. The internal pull-up resistor is not disconnected even if the external memory expansion mode is set when PU4n = 1 (n = 0 to 7).
 - 2. When using the falling edge detection interrupt (INTKR), be sure to set the memory expansion mode register (MEM) to 01H.

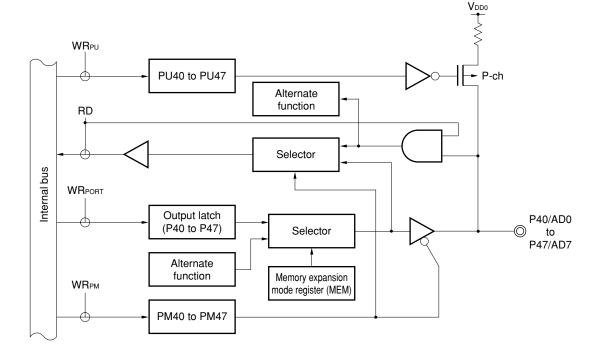
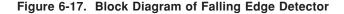
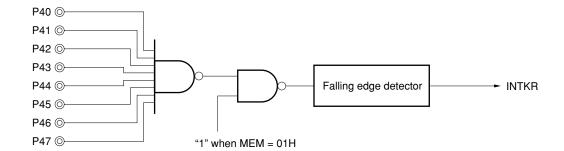




Figure 6-16. Block Diagram of P40 to P47

- PU: Pull-up resistor option register
- PM: Port mode register
- RD: Port 4 read signal
- WR: Port 4 write signal

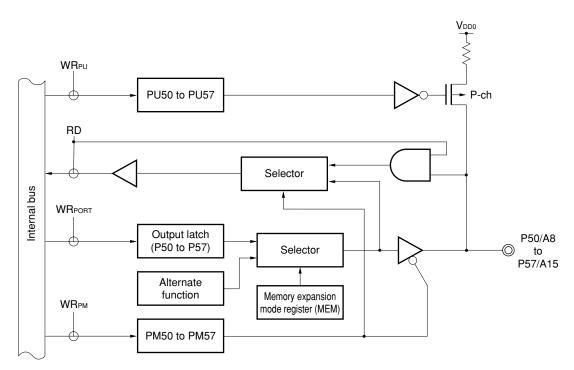
6.2.7 Port 5

*

*

Port 5 is an 8-bit I/O port with output latch. The P50 to P57 pins can specify the input mode/output mode in 1bit units with port mode register 5 (PM5). An on-chip pull-up resistor of P50 to P57 pins can be used for them in 1bit units with pull-up resistor option register 5 (PU5).

Port 5 can drive LEDs directly.


This port can also be used as an address bus in external memory expansion mode.

RESET input sets port 5 to input mode.

Figure 6-18 shows a block diagram of port 5.

Caution The internal pull-up resistor is not disconnected even if the external memory expansion mode is set when PU5n = 1 (n = 0 to 7).

- PU: Pull-up resistor option register
- PM: Port mode register
- RD: Port 5 read signal
- WR: Port 5 write signal

6.2.8 Port 6

*

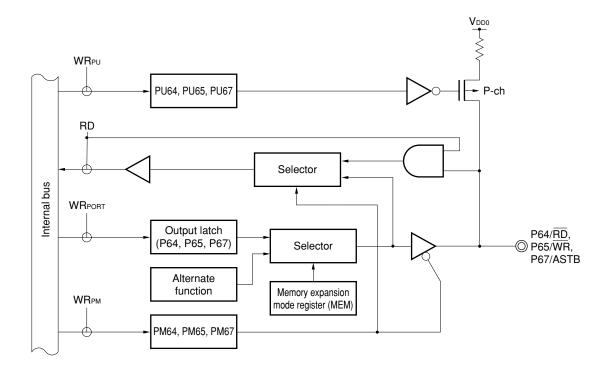
Port 6 is a 4-bit I/O port with output latch. The P64 to P67 pins can specify the input mode/output mode in 1-bit units with port mode register 6 (PM6). An on-chip pull-up resistor of P64 to P67 pins can be used for them in 1-bit units with pull-up resistor option register 6 (PU6).

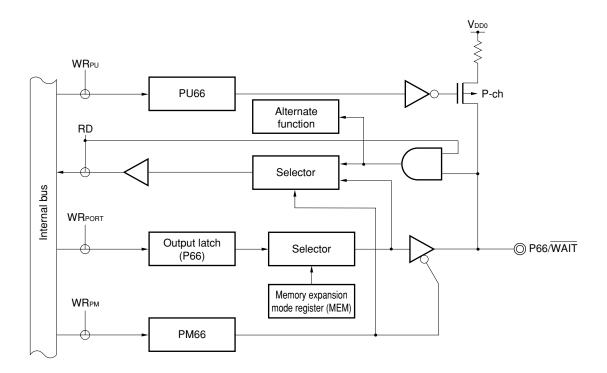
This port can also be used as a control signal output in external memory expansion mode.

RESET input sets port 6 to input mode.

Figures 6-19 and 6-20 show block diagrams of port 6.

- ★ Cautions 1. The internal pull-up resistor is not disconnected even if the external memory expansion mode is set when PU6n = 1 (n = 4 to 7).
 - 2. When external wait is not used in external memory expansion mode, P66 can be used as an I/O port.




Figure 6-19. Block Diagram of P64, P65, and P67

PU: Pull-up resistor option register

PM: Port mode register

- RD: Port 6 read signal
- WR: Port 6 write signal

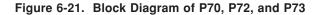
Figure 6-20. Block Diagram of P66

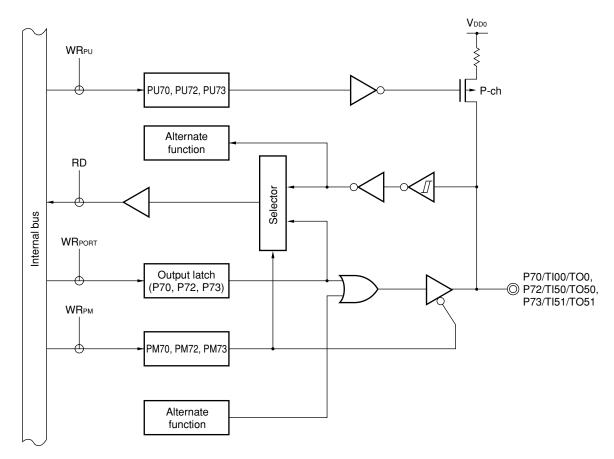
- PU: Pull-up resistor option register
- PM: Port mode register

 \star

- RD: Port 6 read signal
- WR: Port 6 write signal

6.2.9 Port 7

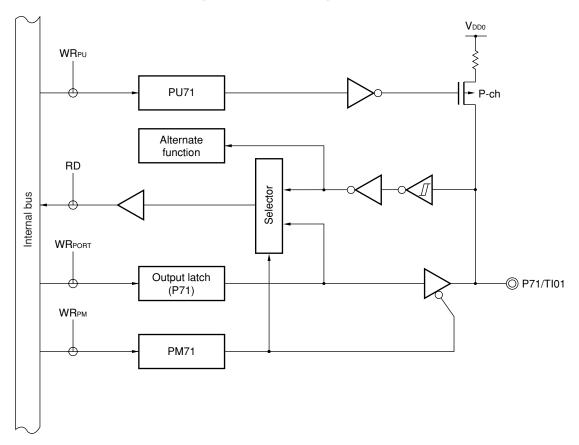

★


Port 7 is a 6-bit I/O port with output latch. The P70 to P75 pins can specify the input mode/output mode in 1-bit units with port mode register 7 (PM7). An on-chip pull-up resistor of P70 to P75 pins can be used for them in 1-bit units with pull-up resistor option register 7 (PU7).

This port can also be used as a timer I/O, clock output, and buzzer output.

RESET input sets the input mode.

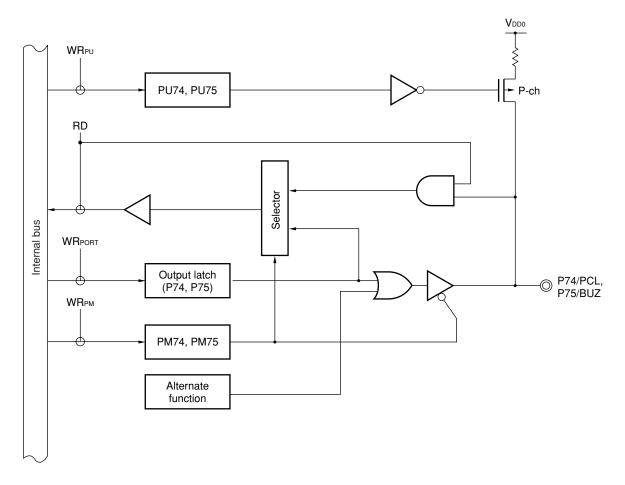
Figures 6-21 to 6-23 show block diagrams of port 7.


PU: Pull-up resistor option register

PM: Port mode register

RD: Port 7 read signal

WR: Port 7 write signal



- PU: Pull-up resistor option register
- PM: Port mode register

 \star

- RD: Port 7 read signal
- WR: Port 7 write signal

Figure 6-23. Block Diagram of P74 and P75

- PU: Pull-up resistor option register
- PM: Port mode register
- RD: Port 7 read signal
- WR: Port 7 write signal

★

6.3 Port Function Control Registers

The following two types of registers control the ports.

- Port mode registers (PM0, PM2 to PM7)
- Pull-up resistor option registers (PU0, PU2 to PU7)

(1) Port mode registers (PM0, PM2 to PM7)

These registers are used to set port input/output in 1-bit units.

PM0 and PM2 to PM7 are independently set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets registers to FFH.

*

When using a port pin as its alternate-function pin, set the port mode registers and output latches as shown in Table 6-6.

Cautions 1. Pins P10 to P17 are input-only pins.

- 2. Port 0 functions alternately as an external interrupt request input pin. If the output mode of the port function is specified and the output level of the port is changed while interrupts are not disabled by the external interrupt rising edge enable register (EGP) and external interrupt falling edge enable register (EGN), the interrupt request flag is set. When the output mode is used, therefore, the interrupt mask flag should be set to 1 beforehand.
- 3. If a port has an alternate function pin and it is used as an alternate output function, clear the corresponding output latches (P0 and P2 to P7) to 0.

Figure 6-24. Format of Port Mode Register (PM0, PM2 to PM7)

Address: F	F20H After F	Reset: FFH	R/W					
Symbol	7	6	5	4	3	2	1	0
PM0	1	1	1	1	PM03	PM02	PM01	PM00
Address: F	F22H After F	Reset: FFH	R/W					
Symbol	7	6	5	4	3	2	1	0
PM2	1	1	PM25	PM24	PM23	PM22	PM21	PM20
Address: F	F23H After F	Reset: FFH	R/W					
Symbol	7	6	5	4	3	2	1	0
PM3	1	PM36	PM35	PM34	PM33	PM32	PM31	PM30
Address: F	F24H After F	Reset: FFH	R/W					
Symbol	7	6	5	4	3	2	1	0
PM4	PM47	PM46	PM45	PM44	PM43	PM42	PM41	PM40
Address: F	F25H After F	Reset: FFH	R/W					
Symbol	7	6	5	4	3	2	1	0
PM5	PM57	PM56	PM55	PM54	PM53	PM52	PM51	PM50
Address: F	F26H After F	Reset: FFH	R/W					
Symbol	7	6	5	4	3	2	1	0
PM6	PM67	PM66	PM65	PM64	1	1	1	1
Address: F	F27H After F	Reset: FFH	R/W					
Symbol	7	6	5	4	3	2	1	0
PM7	1	1	PM75	PM74	PM73	PM72	PM71	PM70
	PMmn		Pmn Pir	n I/O Mode S	election (m =	0, 2 to 7; n =	= 0 to 7)	
	0	Output mod	Output mode (Output buffer on)					

1

Input mode (Output buffer off)

Pin Name	Alternate	Function	PM××	P××
	Name	I/O		
P00 to P02	INTP0 to INTP2	Input	1	×
P03	INTP3	Input	1	×
	ADTRG	Input	1	×
P10 to P17	ANI0 to ANI7	Input	1 (fix)	×
P20	SI30	Input	1	×
P21	SO30	Output	0	0
P22	SCK30	Input	1	×
		Output	0	0
23 RxD0		Input	1	×
P24	TxD0	Output	0	0
P25	ASCK0	Input	1	×
P32	SDA0 ^{Note 1}	I/O	0	0
P33	SCL0 ^{Note 1}	I/O	0	0
P34	SI31	Input	1	×
P35	SO31	Output	0	0
P36	SCK31	Input	1	×
		Output	0	0
P40 to P47	AD0 to AD7	I/O	×Note 2	
P50 to P57	A8 to A15	Output	×Note 2	
P64	RD	Output	×Note 2	
P65	WR	Output	×Note 2	
P66	WAIT	Input	1 Note 2	× ^{Note 2}
P67	ASTB	Output	×Note 2	

Table 6-6. Port Mode Registers and Output Latch Settings When Alternate Function Is Used (1/2)

Notes 1. µPD780024AY, 780034AY Subseries only

2. When using the P40 to P47, P50 to P57, and P64 to P67 pins as alternate-function pins, set the function using the memory expansion mode register (MEM).

Remark ×: Don't care

★

г

 $\mathsf{PM}\!\!\times\!\!\times\!\!: \text{ Port mode register }$

Pxx: Port output latch

Table 6-6. Port Mode Registers and Output Latch Settings When Alternate Function Is Used (2/2)

Pin Name	Alternate	Function	PM××	P××
	Name	I/O		
P70	T100	Input	1	×
	TO0	Output	0	0
P71	TI01	Input	1	×
P72	TI50	Input	1	×
	TO50	Output	0	0
P73	TI51	Input	1	×
	TO51	Output	0	0
P74	PCL	Output	0	0
P75	BUZ	Output	0	0

Remark ×: Don't care

*

PM××: Port mode register

Pxx: Port output latch

(2) Pull-up resistor option registers (PU0, PU2 to PU7)

These registers are used to set whether to use an on-chip pull-up resistor at each port or not. By setting PU0 and PU2 to PU7, the on-chip pull-up resistors of the port pins corresponding to the bits in PU0 and PU2 to PU7 can be used.

PU0 and PU2 to PU7 are independently set by a 1-bit or 8-bit memory manipulation instruction. RESET input clears registers to 00H.

Cautions 1. The P10 to P17 pins do not incorporate a pull-up resistor.

- 2. Pins P30 to P33 (in μ PD780024AY and 780034AY Subseries, P30 and P31 pins) can be used with pull-up resistor by mask option only for mask ROM version.
- 3. When PUm is set to 1, the on-chip pull-up resistor is connected irrespective of the input/ output mode. When using in output mode, clear the bit of PUm to 0 (m = 0, 2 to 7).

Figure 6-25. Format of Pull-Up Resistor Option Register (PU0, PU2 to PU7)

Address:	FF30H After I	Reset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
PU0	0	0	0	0	PU03	PU02	PU01	PU00
Address:	FF32H After I	Reset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
PU2	0	0	PU25	PU24	PU23	PU22	PU21	PU20
Address:	FF33H After I	Reset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
PU3	0	PU36	PU35	PU34	0	0	0	0
1.00	<u> </u>	1000	1 000	1001	Ŭ	Ŭ	Ū	<u> </u>
Address:	FF34H After I	Reset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
PU4	PU47	PU46	PU45	PU44	PU43	PU42	PU41	PU40
Address:	FF35H After I	Reset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
PU5	PU57	PU56	PU55	PU54	PU53	PU52	PU51	PU50
Address:	FF36H After I	Reset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
PU6	PU67	PU66	PU65	PU64	0	0	0	0
					-	-	-	-
Address:	FF37H After I	Reset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
PU7	0	0	PU75	PU74	PU73	PU72	PU71	PU70
	PUmn	Pn	nn Pin On-Ch	ip Pull-Up Re	esistor Select	ion (m = 0, 2	to 7; n = 0 to	7)
	0	On-chip pu	Il-up resistor i	not used				
	1	On-chip pu	On-chip pull-up resistor used					

6.4 Port Function Operations

Port operations differ depending on whether the input or output mode is set, as shown below.

Caution In the case of 1-bit memory manipulation instruction, although a single bit is manipulated, the port is accessed as an 8-bit unit. Therefore, on a port with a mixture of input and output pins, the output latch contents for pins specified as input are undefined, even for bits other than the manipulated bit.

6.4.1 Writing to I/O port

(1) Output mode

A value is written to the output latch by a transfer instruction, and the output latch contents are output from the pin.

Once data is written to the output latch, it is retained until data is written to the output latch again. The output latch data is cleared by reset.

(2) Input mode

A value is written to the output latch by a transfer instruction, but since the output buffer is off, the pin status does not change.

Once data is written to the output latch, it is retained until data is written to the output latch again.

6.4.2 Reading from I/O port

(1) Output mode

The output latch contents are read by a transfer instruction. The output latch contents do not change.

(2) Input mode

The pin status is read by a transfer instruction. The output latch contents do not change.

6.4.3 Operations on I/O port

(1) Output mode

An operation is performed on the output latch contents, and the result is written to the output latch. The output latch contents are output from the pins.

Once data is written to the output latch, it is retained until data is written to the output latch again. The output latch data is cleared by reset.

(2) Input mode

The output latch contents are undefined, but since the output buffer is off, the pin status does not change.

6.5 Selection of Mask Option

The following mask option is provided in the mask ROM version. The flash memory versions have no mask options.

Table 6-7. Comparison Between Mask ROM Version and Flash Memory Version

Pin Name	Mask ROM Version	Flash Memory Version
Mask option for pins P30 to P33 ^{Note}	On-chip pull-up resistors can be specified in 1-bit units.	An on-chip pull-up resistor is not provided.

Note For μPD780024AY and 780034AY Subseries products, only the P30 and P31 pins can incorporate a pullup resistor.

CHAPTER 7 CLOCK GENERATOR

7.1 Clock Generator Functions

The clock generator generates the clock to be supplied to the CPU and peripheral hardware. The following two types of system clock oscillators are available.

(1) Main system clock oscillator

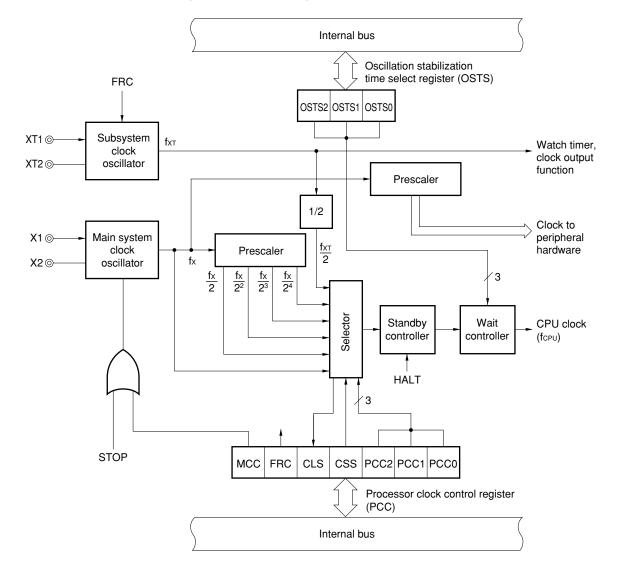
This circuit oscillates a clock with the following frequencies.

- 1.0 to 8.38 MHz: Conventional product of μPD780021A, 780022A, 780023A, 780024A, 780031A, 780032A, 780033A, 780034A and μPD780021AY, 780022AY, 780023AY, 780024AY, 780031AY, 780032AY, 780033AY, 780034AY, 78F0034A, 78F0034AY, 78F0034BY
- 1.0 to 12 MHz: Expanded-specification product of μPD780021A, 780022A, 780023A, 780024A, 780031A, 780032A, 780033A, 780034A and μPD78F0034B

Oscillation can be stopped by executing the STOP instruction or setting the processor clock control register (PCC).

(2) Subsystem clock oscillator

*


The circuit oscillates a clock with a frequency of 32.768 kHz. Oscillation cannot be stopped. If the subsystem clock oscillator is not used, the internal feedback resistor can be disabled by the processor clock control register (PCC). This enables to reduce the power consumption in the STOP mode.

7.2 Clock Generator Configuration

The clock generator consists of the following hardware.

Item	Configuration
Control registers	Processor clock control register (PCC) Oscillation stabilization time select register (OSTS)
Oscillators	Main system clock oscillator Subsystem clock oscillator
Controllers	Prescaler Standby controller Wait controller

Table 7-1. Clock Generator Configuration

*

7.3 Clock Generator Control Registers

The clock generator is controlled by the following two registers.

- Processor clock control register (PCC)
- Oscillation stabilization time select register (OSTS)

(1) Processor clock control register (PCC)

This register selects the CPU clock and the division ratio, sets main system clock oscillator operation/stop and sets whether to use the subsystem clock oscillator internal feedback resistor^{Note}. PCC is set by a 1-bit or 8-bit memory manipulation instruction. RESET input sets the value of PCC to 04H.

Note The feedback resistor is required to control the bias point of the oscillation waveform so that the bias point is in the middle of the power supply voltage.
 When the subsystem clock is not used, the power consumption in the STOP mode can be reduced by setting bit 6 (FRC) of PCC to 1 (see Figure 7-7 Subsystem Clock Feedback Resistor).

Figure 7-2. Format of Processor Clock Control Register (PCC)

Address: F	FFBH After	reset: 04H	R/WNote 1					
Symbol	<7>	<6>	<5>	<4>	3	2	1	0
PCC	MCC	FRC	CLS	CSS	0	PCC2	PCC1	PCC0

MCC	Main system clock oscillation control ^{Note 2}
0	Oscillation possible
1	Oscillation stopped

FRC	Subsystem clock feedback resistor selection	
0	Internal feedback resistor used	
1	Internal feedback resistor not used ^{Note 3}	

CLS	CPU clock status
0	Main system clock
1	Subsystem clock

CSS	PCC2	PCC1	PCC0	CPU clock (fcPu) selection
0	0	0	0	fx
	0	0	1	fx/2
	0	1	0	fx/2 ²
	0	1	1	fx/2 ³
	1	0	0	fx/2 ⁴
1	0	0	0	fxt/2
	0	0	1	
	0	1	0	
	0	1	1	
	1	0	0	
Other than above				Setting prohibited

Notes 1. Bit 5 is read-only.

- 2. When the CPU is operating on the subsystem clock, MCC should be used to stop the main system clock oscillation. The STOP instruction should not be used.
- 3. This bit can be set to 1 only when the subsystem clock is not used.

Cautions 1. Be sure to clear bit 3 to 0.

2. When the external clock is input, MCC should not be set. This is because the X2 pin is connected to VDD1 via a pull-up resistor.

Remarks 1. fx: Main system clock oscillation frequency

2. fxT: Subsystem clock oscillation frequency

 \star

The fastest instructions of the μ PD780024A, 780034A, 780024AY, and 780034AY Subseries are carried out in two CPU clocks. The relationship between the CPU clock (fcPu) and minimum instruction execution time is shown in Table 7-2.

CPU Clock (fcpu)	Minimum Instruction Execution Time: 2/fcPU			
	fx = 8.38 MHz	fx = 12 MHz ^{Note}	fxt = 32.768 kHz	
fx	0.238 μs	0.166 μs	_	
fx/2	0.477 μs	0.333 μs	-	
fx/2 ²	0.954 <i>μ</i> s	0.666 <i>µ</i> s	_	
fx/2 ³	1.90 <i>µ</i> s	1.33 μs	_	
fx/2 ⁴	3.81 <i>µ</i> s	2.66 μs	_	
fxt/2	_	_	122 μs	

Note Expanded-specification products of µPD780024A, 780034A Subseries only

Remark fx: Main system clock oscillation frequency fxT: Subsystem clock oscillation frequency

*

(2) Oscillation stabilization time select register (OSTS)

This register is used to select the oscillation stabilization time from when reset is effected or STOP mode is released to when oscillation is stabilized.

OSTS is set by an 8-bit memory manipulation instruction.

RESET input sets OSTS to 04H. Thus, when releasing the STOP mode by RESET input, the time required to release is $2^{17}/fx$.

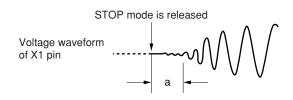

Address: F	FFAH A	fter reset: 04H	I R/W					
Symbol	7	6	5	4	3	2	1	0
OSTS	0	0	0	0	0	OSTS2	OSTS1	OSTS0

Figure 7-3.	Format of	Oscillation	Stabilization	Time Sele	t Register (OSTS)
-------------	-----------	-------------	---------------	-----------	-------------------

OSTS2	OSTS1	OSTS0	Selection of oscillation stabilization time			
				fx = 8.38 MHz	fx = 12 MHz ^{Note}	
0	0	0	2 ¹² /fx	488 µs	341 <i>μ</i> s	
0	0	1	2 ¹⁴ /fx	1.95 ms	1.36 ms	
0	1	0	2 ¹⁵ /fx	3.91 ms	2.73 ms	
0	1	1	2 ¹⁶ /fx	7.82 ms	5.46 ms	
1	0	0	2 ¹⁷ /fx	15.6 ms	10.9 ms	
Oth	Other than the above		Setting prohibited			

Note Expanded-specification products of *µ*PD780024A, 780034A Subseries only.

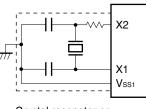
 ★ Caution The wait time when STOP mode is released does not include the time ("a" in the figure below) from when STOP mode is released until the clock starts oscillation. This also applies when RESET is input and an interrupt request is generated.

Remark fx: Main system clock oscillation frequency

 \star

7.4 System Clock Oscillator

7.4.1 Main system clock oscillator


The main system clock oscillator oscillates with a crystal resonator or a ceramic resonator (8.38 MHz TYP.) connected to the X1 and X2 pins.

External clocks can be input to the main system clock oscillator. In this case, input a clock signal to the X1 pin and an inverted-phase clock signal to the X2 pin.

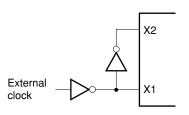

Figure 7-4 shows an external circuit of the main system clock oscillator.

Figure 7-4. External Circuit of Main System Clock Oscillator

(a) Crystal and ceramic oscillation

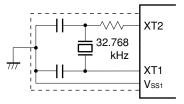
Crystal resonator or ceramic resonator

(b) External clock

Caution Do not execute the STOP instruction and do not set MCC (bit 7 of processor clock control register (PCC)) to 1 if an external clock is input. This is because when the STOP instruction is executed or MCC is set to 1, the main system clock operation stops and the X2 pin is connected to VDD1 via a pull-up resistor.

7.4.2 Subsystem clock oscillator

The subsystem clock oscillator oscillates with a crystal resonator (32.768 kHz TYP.) connected to the XT1 and XT2 pins.


External clocks can be input to the subsystem clock oscillator. In this case, input a clock signal to the XT1 pin and an inverted-phase clock signal to the XT2 pin.

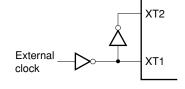

Figure 7-5 shows an external circuit of the subsystem clock oscillator.

Figure 7-5. External Circuit of Subsystem Clock Oscillator

(a) Crystal oscillation

(b) External clock

Cautions are listed on the next page.

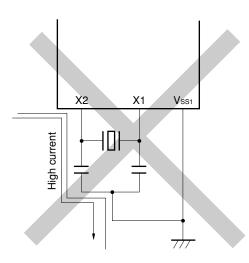
- Caution 1. When using the main system clock oscillator and subsystem clock oscillator, wire as follows in the area enclosed by broken lines in Figures 7-4 and 7-5 to avoid an adverse effect from wiring capacitance.
 - · Keep the wiring length as short as possible.
 - · Do not cross the wiring with other signal lines. Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss1. Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.

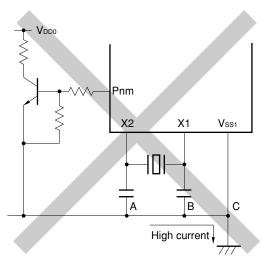
(a) Too long wiring

Note that the subsystem clock oscillator is designed as a low-amplitude circuit for reducing power consumption.

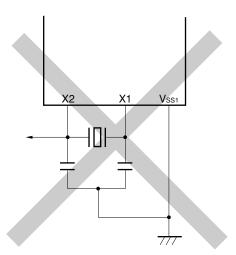
(b) Crossed signal line

Figure 7-6 shows examples of incorrect oscillator connection.


Figure 7-6. Examples of Incorrect Oscillator Connection (1/2)



Remark When using the subsystem clock, replace X1 and X2 with XT1 and XT2, respectively. Also, insert resistors in series on the XT2 side.


Figure 7-6. Examples of Incorrect Oscillator Connection (2/2)

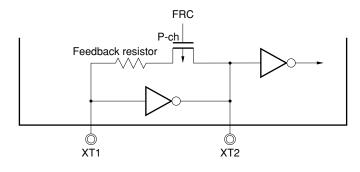
- (c) Wiring near high fluctuating current
- (d) Current flowing through ground line of oscillator (potential at points A, B, and C fluctuates)

(e) Signals are fetched

- **Remark** When using the subsystem clock, replace X1 and X2 with XT1 and XT2, respectively. Also, insert resistors in series on the XT2 side.
- Caution 2. When X2 and XT1 are wired in parallel, the crosstalk noise of X2 may increase with XT1, resulting in malfunction. To prevent that from occurring, it is recommended to wire X2 and XT1 so that they are not in parallel, and to connect the IC pin between X2 and XT1 directly to Vss1.

7.4.3 When subsystem clock is not used

If it is not necessary to use the subsystem clock for low power consumption operations and watch operations, connect the XT1 and XT2 pins as follows.


XT1: Connect directly to VDD0 or VDD1

XT2: Leave open

*

★

In this state, however, some current may leak via the internal feedback resistor of the subsystem clock oscillator when the main system clock stops. To minimize leakage current, the above internal feedback resistor can be removed by setting bit 6 (FRC) of the processor clock control register (PCC). In this case also, connect the XT1 and XT2 pins as described above.

Figure 7-7. Subsystem Clock Feedback Resistor

Remark The feedback resistor is required to control the bias point of the oscillation waveform so that the bias point is in the middle of the power supply voltage.

7.5 Clock Generator Operations

The clock generator generates the following types of clocks and controls the CPU operating mode including the standby mode.

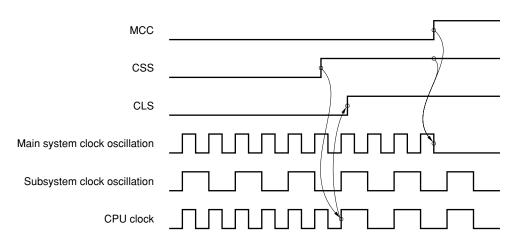
- Main system clock fx
- Subsystem clock fxt
- CPU clock fcpu
- Clock to peripheral hardware

The following clock generator functions and operations are determined by the processor clock control register (PCC).

- (a) Upon generation of the $\overline{\text{RESET}}$ signal, the lowest speed mode of the main system clock (3.81 μ s @ 8.38 MHz operation) is selected (PCC = 04H). Main system clock oscillation stops while a low level is applied to the $\overline{\text{RESET}}$ pin.
- * (b) With the main system clock selected, one of the five levels of minimum instruction execution time (0.166 μs, 0.333 μs, 0.666 μs, 1.33 μs, 2.66 μs: @ 12 MHz operation^{Note}, 0.238 μs, 0.476 μs, 0.954 μs, 1.90 μs, 3.81 μs: @ 8.38 MHz operation) can be selected by setting PCC.
 - (c) With the main system clock selected, two standby modes, the STOP and HALT modes, are available. To reduce power consumption in the STOP mode, the subsystem clock feedback resistor can be disconnected to stop the subsystem clock.
 - (d) PCC can be used to select the subsystem clock and to operate the system with low power consumption (122 μ s @ 32.768 kHz operation).
 - (e) With the subsystem clock selected, main system clock oscillation can be stopped via PCC. The HALT mode can be used. However, the STOP mode cannot be used. (Subsystem clock oscillation cannot be stopped.)
 - (f) The main system clock is divided and supplied to the peripheral hardware. The subsystem clock is supplied to the watch timer and clock output functions only. Thus the watch function and the clock output function can also be continued in the standby state. However, since all other peripheral hardware operate with the main system clock, the peripheral hardware also stops if the main system clock is stopped (except external input clock operation).

Note Expanded-specification products of µPD780024A, 780034A Subseries only

7.5.1 Main system clock operations


*

 \star

When operating with the main system clock (with bit 5 (CLS) of the processor clock control register (PCC) cleared to 0), the following operations are carried out by PCC setting.

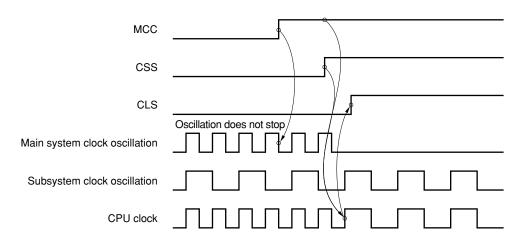

- (a) Because the operation-guaranteed instruction execution speed depends on the power supply voltage, the minimum instruction execution time can be changed by bits 0 to 2 (PCC0 to PCC2) of PCC.
- (b) When bit 4 (CSS) of PCC is set to 1 when operating with the main system clock, if bit 7 (MCC) of PCC is set to 1 after the operation has been switched to the subsystem clock (CLS = 1), the main system clock oscillation stops (see Figure 7-8 (1)).
- (c) If bit 7 (MCC) of PCC is set to 1 when operating with the main system clock, the main system clock oscillation does not stop. When bit 4 (CSS) of PCC is set to 1 and the operation is switched to the subsystem clock (CLS = 1) after that, the main system clock oscillation stops (see Figure 7-8 (2)).

Figure 7-8. Main System Clock Stop Function

(1) Operation when MCC is set after setting CSS with main system clock operation

(2) Operation when CSS is set after setting MCC with main system clock operation

7.5.2 Subsystem clock operations

When operating with the subsystem clock (with bit 5 (CLS) of the processor clock control register (PCC) set to 1), the following operations are carried out.

- (a) The minimum instruction execution time remains constant (122 μs @ 32.768 kHz operation) irrespective of bits
 0 to 2 (PCC0 to PCC2) of PCC.
- (b) Watchdog timer counting stops.

Caution Do not execute the STOP instruction while the subsystem clock is in operation.

7.6 Changing System Clock and CPU Clock Settings

7.6.1 Time required for switchover between system clock and CPU clock

The system clock and CPU clock can be switched over by means of bits 0 to 2 (PCC0 to PCC2) and bit 4 (CSS) of the processor clock control register (PCC).

The actual switchover operation is not performed directly after writing to the PCC; operation continues on the preswitchover clock for several instructions (see **Table 7-3**).

Determination as to whether the system is operating on the main system clock or the subsystem clock is performed by bit 5 (CLS) of the PCC register.

Set Value Before Switchover												Set	Valu	e Afte	er Sv	vitcho	over										
CSS	PCC2	PCC1	PCC0	CSS	PCC2	PCC1	PCC0	CSS	PCC2	PCC1	PCC0	CSS	PCC2	PCC1	PCC0	CSS	PCC2	PCC1	PCC0	CSS	PCC2	PCC1	PCC0	CSS	PCC2	PCC1	PCC0
				0	0	0	0	0	0	0	1	0	0	1	0	0	0	1	1	0	1	0	0	1	×	×	×
0	0	0	0				16 instructions 16 instructions			16 instructions		16 instructions		fx/2fxT instruction													
	0	0	1	8	instru	uctio	ns		<u> </u>			8 instructions 8 instructions			าร	8 instructions			fx/4fxT instruction								
	0	1	0	4	instru	uctio	ns	4	instru	uctior	าร		<u> </u>			4	instr	uctio	าร	4	instr	uctio	ns	fx/8	fxt in	struc	tion
	0	1	1	2	instru	uctio	ns	2	instru	uctior	าร	2	instru	uctior	าร				2 instructions		fx/16fxT instruction						
	1	0	0	1	instr	uctio	n	1	instr	uctio	n	1	1 instruction		1	instr	uctio	n				fx/32	2fx⊤ ir	nstru	ction		
1	×	×	×	1	instr	uctio	n	1	instr	uctio	n	1	instr	uctio	n	1	instr	uctio	n	1	inst	ructic	n			_	

Table 7-3. Maximum Time Required for CPU Clock Switchover

Remark One instruction is the minimum instruction execution time with the pre-switchover CPU clock.

Caution Selection of the CPU clock cycle division ratio (PCC0 to PCC2) and switchover from the main system clock to the subsystem clock (changing CSS from 0 to 1) should not be set simultaneously. Simultaneous setting is possible, however, for selection of the CPU clock cycle division ratio (PCC0 to PCC2) and switch over from the subsystem clock to the main system clock (changing CSS from 1 to 0).

7.6.2 System clock and CPU clock switching procedure

This section describes procedure for switching between the system clock and CPU clock.

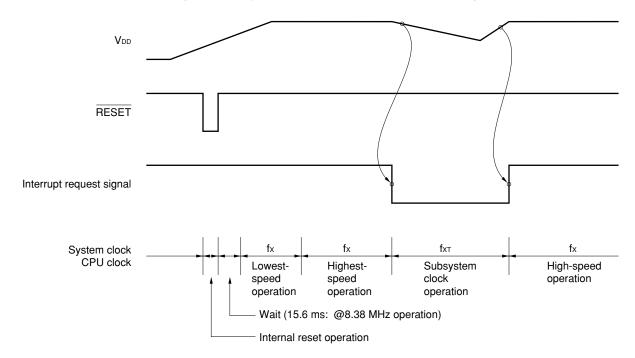


Figure 7-9. System Clock and CPU Clock Switching

<1> The CPU is reset by setting the RESET signal to low level after power-on. After that, when reset is released by setting the RESET signal to high level, the main system clock starts oscillation. At this time, the oscillation stabilization time (2¹⁷/fx) is secured automatically.

After that, the CPU starts executing instructions at the minimum speed of the main system clock (3.81 μ s @ 8.38 MHz operation).

- <2> After the lapse of sufficient time for the VDD voltage to increase to enable operation at maximum speeds, PCC is rewritten and maximum-speed operation is carried out.
- <3> Upon detection of a decrease of the VDD voltage due to an interrupt request signal, the main system clock is switched to the subsystem clock (which must be in an oscillation stable state).
- <4> Upon detection of VDD voltage reset due to an interrupt, 0 is set to the MCC and oscillation of the main system clock is started. After the lapse of the time required for stabilization of oscillation, PCC is rewritten and the maximum-speed operation is resumed.
 - Caution When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.

CHAPTER 8 16-BIT TIMER/EVENT COUNTER 0

8.1 Functions of 16-Bit Timer/Event Counter 0

16-bit timer/event counter 0 has the following functions.

(1) Interval timer

16-bit timer/event counter 0 generates interrupt requests at the preset time interval.Number of counts: 2 to 65536

(2) External event counter

16-bit timer/event counter 0 can measure the number of pulses with a high-/low-level width of a signal input externally.

• Valid level pulse width: 16/fx or more

(3) Pulse width measurement

16-bit timer/event counter 0 can measure the pulse width of an externally input signal.

• Valid level pulse width: 2/fx or more

(4) Square-wave output

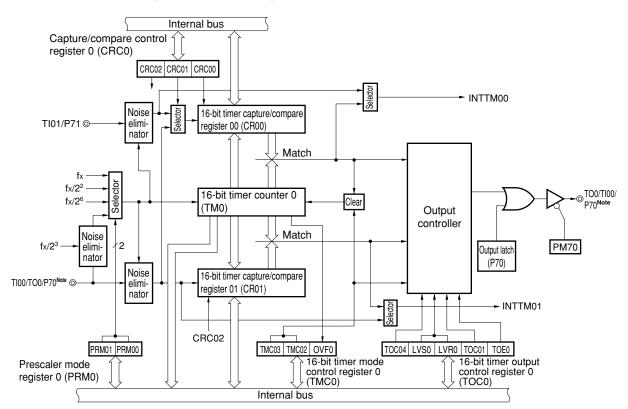
16-bit timer/event counter 0 can output a square wave with any selected frequency.

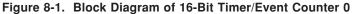
• Cycle: $(2 \times 2 \text{ to } 65536 \times 2) \times \text{count clock cycle}$

(5) PPG output

16-bit timer/event counter 0 can output a square wave that have arbitrary cycle and pulse width.

• 2 < Pulse width < Cycle \leq (FFFF + 1) H


8.2 Configuration of 16-Bit Timer/Event Counter 0


16-bit timer/event counter 0 consists of the following hardware.

Item	Configuration
Timer counter	16-bit timer counter 0 (TM0)
Register	16-bit timer capture/compare registers: 00, 01 (CR00, CR01)
Timer input	TI00, TI01
Timer output	ТОО
Control registers	16-bit timer mode control register 0 (TMC0) Capture/compare control register 0 (CRC0) 16-bit timer output control register 0 (TOC0) Prescaler mode register 0 (PRM0) Port mode register 7 (PM7) Port 7 (P7)

Figure 8-1 shows block diagram of this counter.

★

Note TI00 input and TO0 output cannot be used at the same time.

(1) 16-bit timer counter 0 (TM0)

TM0 is a 16-bit read-only register that counts count pulses.

The counter is incremented in synchronization with the rising edge of the count clock. If the count value is read during operation, input of the count clock is temporarily stopped, and the count value at that point is read. The count value is reset to 0000H in the following cases.

<1> At RESET input

<2> If TMC03 and TMC02 are cleared

<3> If the valid edge of TI00 is input in the clear & start mode entered by inputting the valid edge of TI00

<4> If TM0 and CR00 match in the clear & start mode entered on a match between TM0 and CR00

(2) 16-bit timer capture/compare register 00 (CR00)

CR00 is a 16-bit register which has the functions of both a capture register and a compare register. Whether it is used as a capture register or as a compare register is set by bit 0 (CRC00) of capture/compare control register 0 (CRC0).

· When CR00 is used as a compare register

The value set in CR00 is constantly compared with the 16-bit timer counter 0 (TM0) count value, and an interrupt request (INTTM00) is generated if they match. It can also be used as the register that holds the interval time then TM0 is set to interval timer operation.

· When CR00 is used as a capture register

It is possible to select the valid edge of the TI00 pin or the TI01 pin as the capture trigger. Setting of the TI00 or TI01 valid edge is performed by means of prescaler mode register 0 (PRM0) (see **Table 8-2**).

Table 8-2. CR00 Capture Trigger and Valid Edges of TI00 and TI01 Pins

(1) TI00 pin valid edge selected as capture trigger (CRC01 = 1, CRC00 = 1)

CR00 Capture Trigger	TI00 Pin Valid Edge					
		ES01	ES00			
Falling edge	Rising edge	0	1			
Rising edge	Falling edge	0	0			
No capture operation	Both rising and falling edges	1	1			

(2) TI01 pin valid edge selected as capture trigger (CRC01 = 0, CRC00 = 1)

CR00 Capture Trigger	TI01 Pin Valid Edge					
		ES11	ES10			
Falling edge	Falling edge	0	0			
Rising edge	Rising edge	0	1			
Both rising and falling edges	Both rising and falling edges	1	1			

Remarks 1. Setting ES01, ES00 = 1, 0 and ES11, ES10 = 1, 0 is prohibited.

2. ES01, ES00: Bits 5 and 4 of prescaler mode register 0 (PRM0)

ES11, ES10: Bits 7 and 6 of prescaler mode register 0 (PRM0)

CRC01, CRC00: Bits 1 and 0 of capture/compare control register 0 (CRC0)

*

CR00 is set by a 16-bit memory manipulation instruction. RESET input makes CR00 undefined.

- Cautions 1. Set CR00 to a value other than 0000H in the clear & start mode entered on a match between TM0 and CR00. However, in the free-running mode and in the clear mode using the valid edge of TI00, if CR00 is cleared to 0000H, an interrupt request (INTTM00) is generated when CR00 changes from 0000H to 0001H following overflow (FFFFH).
 - 2. If the new value of CR00 is less than the value of 16-bit timer counter 0 (TM0), TM0 continues counting, overflows, and then starts counting from 0 again. If the new value of CR00 is less than the old value, therefore, the timer must be reset to be restarted after the value of CR00 is changed.
 - 3. When P70 is used as the input pin for the valid edge of Tl00, it cannot be used as a timer output (TO0). Moreover, when P70 is used as TO0, it cannot be used as the input pin for the valid edge of Tl00.

(3) 16-bit timer capture/compare register 01 (CR01)

CR01 is a 16-bit register which has the functions of both a capture register and a compare register. Whether it is used as a capture register or a compare register is set by bit 2 (CRC02) of capture/compare control register 0 (CRC0).

When CR01 is used as a compare register

The value set in CR01 is constantly compared with the 16-bit timer counter 0 (TM0) count value, and an interrupt request (INTTM01) is generated if they match.

· When CR01 is used as a capture register

*

It is possible to select the valid edge of the TI00 pin as the capture trigger. The TI00 valid edge is set by means of prescaler mode register 0 (PRM0) (see **Table 8-3**).

Table 8-3.	CR01	Capture	Trigger	and Valid	Edge of	TI00 Pin	(CRC02 = 1)
------------	------	---------	---------	-----------	---------	----------	-------------

CR01 Capture Trigger	TI00 Pin Valid Edge					
		ES01	ES00			
Falling edge	Falling edge	0	0			
Rising edge	Rising edge	0	1			
Both rising and falling edges	Both rising and falling edges	1	1			

Remarks 1. Setting ES01, ES00 = 1, 0 is prohibited.

ES01, ES00: Bits 5 and 4 of prescaler mode register 0 (PRM0)
 CRC02: Bit 2 of capture/compare control register 0 (CRC0)

CR01 is set by a 16-bit memory manipulation instruction. RESET input makes CR01 undefined.

Caution Set CR01 to other than 0000H in the clear & start mode entered on a match between TM0 and CR00. However, in the free-running mode and in the clear mode using the valid edge of Tl00, if CR01 is cleared to 0000H, an interrupt request (INTTM01) is generated when CR01 changes from 0000H to 0001H following overflow (FFFFH).

8.3 Registers to Control 16-Bit Timer/Event Counter 0

The following six types of registers are used to control 16-bit timer/event counter 0.

- 16-bit timer mode control register 0 (TMC0)
- Capture/compare control register 0 (CRC0)
- 16-bit timer output control register 0 (TOC0)
- Prescaler mode register 0 (PRM0)
- Port mode register 7 (PM7)
- Port 7 (P7)

(1) 16-bit timer mode control register 0 (TMC0)

This register sets the 16-bit timer operating mode, the 16-bit timer counter 0 (TM0) clear mode, and output timing, and detects an overflow.

TMC0 is set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears TMC0 to 00H.

Caution 16-bit timer counter 0 (TM0) starts operation at the moment TMC02 and TMC03 (operation stop mode) are set to a value other than 0, 0, respectively. Clear TMC02 and TMC03 to 0, 0 to stop the operation.

Figure 8-2. Format of 16-Bit Timer Mode Control Register 0 (TMC0)

Addres	s: FF6	0H	After re	eset: 0	0H	R/W		
Symbol	7	6	5	4	<3>	<2>	1	<0>
ТМС0	0	0	0	0	TMC03	TMC02	0	OVF0

★

TMC03	TMC02	Operating mode and clear mode selection	TO0 output timing selection	Interrupt request generation	
0	0	Operation stop (TM0 cleared to 0)	No change	Not generated	
0	1	Free-running mode	Match between TM0 and CR00 or match between TM0 and CR01	Generated on match between TM0 and CR00, or match between TM0 and CR01	
1	0	Clear & start on TI00 valid edge ^{Note 1}	_		
1	1	Clear & start on match between TM0 and CR00 ^{Note 2}	Match between TM0 and CR00 or match between TM0 and CR01		

[OVF0	Overflow detection of 16-bit timer counter 0 (TM0)
	0	Overflow not detected
	1	Overflow detected

Notes 1. Set the valid edge of the TI00/TO0/P70 pin with prescaler mode register 0 (PRM0).

2. If the clear & start mode entered on a match between TM0 and CR00 is selected, when the set value of CR00 is FFFFH and the TM0 value changes from FFFFH to 0000H, the OVF0 flag is set to 1.

Cautions 1. To write different data to TMC0, stop the timer operation before writing.

2. The timer operation must be stopped before writing to bits other than the OVF0 flag.

Remarks 1. TOO: 16-bit timer/event counter 0 output pin

- 2. TI00: 16-bit timer/event counter 0 input pin
- 3. TM0: 16-bit timer counter 0
- 4. CR00: 16-bit timer capture/compare register 00
- 5. CR01: 16-bit timer capture/compare register 01

(2) Capture/compare control register 0 (CRC0)

This register controls the operation of the 16-bit timer capture/compare registers (CR00, CR01). CRC0 is set by a 1-bit or 8-bit memory manipulation instruction. RESET input clears CRC0 to 00H.

Figure 8-3. Format of Capture/Compare Control Register 0 (CRC0)

Address: F	F62H A	fter reset: 00	H R/W					
Symbol	7	6	5	4	3	2	1	0
CRC0	0	0	0	0	0	CRC02	CRC01	CRC00

CRC02	CR01 operating mode selection
0	Operate as compare register
1	Operate as capture register

CRC01	CR00 capture trigger selection						
0	Capture on valid edge of TI01						
1	Capture on valid edge of TI00 by reverse phase ^{Note}						

CRC00	CR00 operating mode selection							
0	Operate as compare register							
1	Operate as capture register							

Note If both the rising and falling edges have been selected as the valid edges of TI00, capture is not performed.

Cautions 1. The timer operation must be stopped before setting CRC0.

- 2. When the clear & start mode entered on a match between TM0 and CR00 is selected by 16bit timer mode control register 0 (TMC0), CR00 should not be specified as a capture register.
- To ensure the reliability of the capture operation, the capture trigger requires a pulse longer than two cycles of the count clock selected by prescaler mode register 0 (PRM0) (see Figure 8-31).

(3) 16-bit timer output control register 0 (TOC0)

*

This register controls the operation of the 16-bit timer/event counter output controller. It sets R-S type flip-flop (LV0) set/reset, output inversion enable/disable, and 16-bit timer/event counter timer output enable/disable. TOC0 is set by a 1-bit or 8-bit memory manipulation instruction. RESET input clears TOC0 to 00H.

Figure 8-4. Format of 16-Bit Timer Output Control Register 0 (TOC0)

Address: FF63H After reset: 00H			R/W					
Symbol	7	6	5	4	<3>	<2>	1	<0>
TOC0	0	0	0	TOC04	LVS0	LVR0	TOC01	TOE0

	TOC04	Timer output F/F control by match of CR01 and TM0						
Γ	0	Inversion operation disabled						
	1	Inversion operation enabled						

LVS0	LVR0	16-bit timer/event counter 0 timer output F/F status setting					
0	0	No change					
0	1	Timer output F/F reset (0)					
1	0	Timer output F/F set (1)					
1	1	Setting prohibited					

тос	01	Timer output F/F control by match of CR00 and TM0						
0		Inversion operation disabled						
1		Inversion operation enabled						

TOE0	16-bit timer/event counter 0 output control						
0	Output disabled (output set to level 0)						
1	Output enabled						

Cautions 1. The timer operation must be stopped before setting TOC0.

- 2. If LVS0 and LVR0 are read after data is set, they will be 0.
- 3. Be sure to clear bits 5 to 7 of TOC0 to 0.

(4) Prescaler mode register 0 (PRM0)

This register is used to set the 16-bit timer counter 0 (TM0) count clock and TI00, TI01 input valid edges. PRM0 is set by an 8-bit memory manipulation instruction. RESET input clears PRM0 to 00H.

Figure 8-5. Format of Prescaler Mode Register 0 (PRM0)

Address: F	F61H Afte	er reset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
PRM0	ES11	ES10	ES01	ES00	0	0	PRM01	PRM00

ES11	ES10	TI01 valid edge selection
0	0	Falling edge
0	1	Rising edge
1	0	Setting prohibited
1	1	Both falling and rising edges

ES01	ES00	TI00 valid edge selection
0	0	Falling edge
0	1	Rising edge
1	0	Setting prohibited
1	1	Both falling and rising edges

PRM01	PRM00	Count clock selection						
		fx = 8.38 MHz fx = 12 MHz ^{Note 1}						
0	0	fx	8.38 MHz	12 MHz				
0	1	fx/2 ²	2.09 MHz	3 MHz				
1	0	fx/2 ⁶	130 kHz	187 kHz				
1	1	TI00 valid edgeNotes 2, 3		·				

Notes 1. Expanded-specification products of *µ*PD780024A, 780034A Subseries only.

- 2. The external clock requires a pulse longer than two cycles of the internal count clock (fx/2³).
- **3.** When the valid edge of TI00 is selected, the main system clock is used as the sampling clock for noise elimination. The valid edge of TI00 can be used only when the main system clock is operating.

Cautions 1. Always set data to PRM0 after stopping the timer operation.

2. If the valid edge of TI00 is to be set as the count clock, do not set the clear & start mode and the capture trigger at the valid edge of TI00.

Moreover, do not use the P70/TI00/TO0 pin as a timer output (TO0).

3. If the TI00 or TI01 pin is high level immediately after system reset, the rising edge is immediately detected after the rising edge or both the rising and falling edges are set as the valid edge(s) of the TI00 pin or TI01 pin to enable the operation of 16-bit timer counter 0 (TM0). Be careful when pulling up the TI00 pin or the TI01 pin. However, when re-enabling operation after the operation has been stopped once, the rising edge is not detected.

Remarks 1. fx: Main system clock oscillation frequency

2. TI00, TI01: 16-bit timer/event counter 0 input pin

(5) Port mode register 7 (PM7)

★

This register sets port 7 input/output in 1-bit units.

When using the P70/TO0/TI00 pin for timer output, clear PM70 and the output latch of P70 to 0.

When using the P70/T00/TI00 pin for timer input, set PM70 to 1. At this time, the output latch of P70 can be either 0 or 1.

 $\ensuremath{\mathsf{PM7}}$ is set by a 1-bit or 8-bit memory manipulation instruction. $\ensuremath{\overline{\mathsf{RESET}}}$ input sets $\ensuremath{\mathsf{PM7}}$ to FFH.

Figure 8-6. Format of Port Mode Register 7 (PM7)

Address: FF27H After reset: FFH R/W

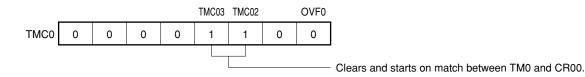
Symbol	7	6	5	4	3	2	1	0
PM7	1	1	PM75	PM74	PM73	PM72	PM71	PM70

PM7n	P7n pin I/O mode selection (n = 0 to 5)			
0	Output mode (output buffer on)			
1	Input mode (output buffer off)			

8.4 Operation of 16-Bit Timer/Event Counter 0

8.4.1 Interval timer operation

*


Setting 16-bit timer mode control register 0 (TMC0) and capture/compare control register 0 (CRC0) as shown in Figure 8-7 allows operation as an interval timer. Interrupt requests are generated repeatedly using the count value set in 16-bit timer capture/compare register 00 (CR00) beforehand as the interval.

When the count value of 16-bit timer counter 0 (TM0) matches the value set to CR00, counting continues with the TM0 value cleared to 0 and the interrupt request signal (INTTM00) is generated.

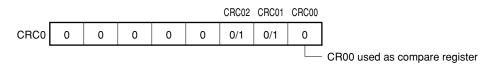
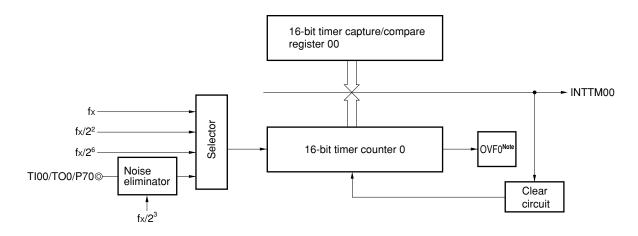

The count clock of the 16-bit timer/event counter can be selected using bits 0 and 1 (PRM00, PRM01) of prescaler mode register 0 (PRM0).

Figure 8-7. Control Register Settings for Interval Timer Operation


(a) 16-bit timer mode control register 0 (TMC0)



(b) Capture/compare control register 0 (CRC0)

Figure 8-8. Interval Timer Configuration Diagram

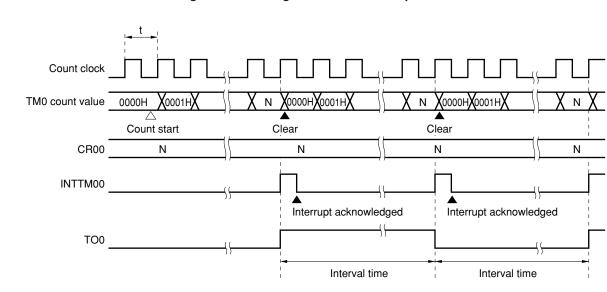


Figure 8-9. Timing of Interval Timer Operation

Remark Interval time = $(N + 1) \times t$ N = 0001H to FFFFH

*

★

When the compare register is changed during timer count operation, if the value after 16-bit timer capture/ compare register 00 (CR00) is changed is smaller than that of 16-bit timer counter 0 (TM0), TM0 continues counting, overflows and then restarts counting from 0. Thus, if the value (M) after the CR00 change is smaller than that (N) before the change, it is necessary to restart the timer after changing CR00.

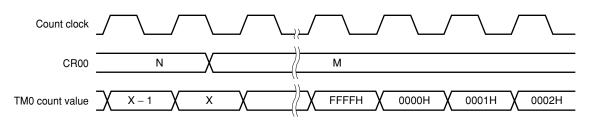


Figure 8-10. Timing After Change of Compare Register During Timer Count Operation

 $[\]label{eq:Remark} \textbf{Remark} \quad N > X > M$

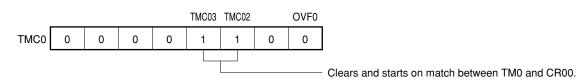
8.4.2 External event counter operation

*

The external event counter counts the number of external clock pulses to be input to the TI00 pin with using 16bit timer counter 0 (TM0).

TM0 is incremented each time the valid edge specified by prescaler mode register 0 (PRM0) is input.

When the TM0 count value matches the 16-bit timer capture/compare register 00 (CR00) value, TM0 is cleared to 0 and the interrupt request signal (INTTM00) is generated.

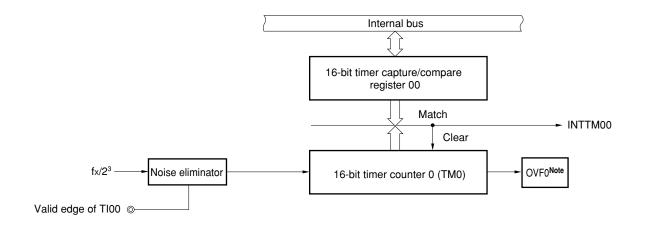

Input a value other than 0000H to CR00. (A count operation with a pulse cannot be carried out.)

The rising edge, the falling edge, or both edges can be selected using bits 4 and 5 (ES00 and ES01) of prescaler mode register 0 (PRM0).

Because an operation is carried out only when the valid edge of the TI00 pin is detected twice after sampling with the internal clock ($fx/2^3$), noise with a short pulse width can be removed.

Caution When used as an external event counter, the P70/TI00/TO0 pin cannot be used as a timer output (TO0).

Figure 8-11. Control Register Settings in External Event Counter Mode



(a) 16-bit timer mode control register 0 (TMC0)

(b) Capture/compare control register 0 (CRC0)

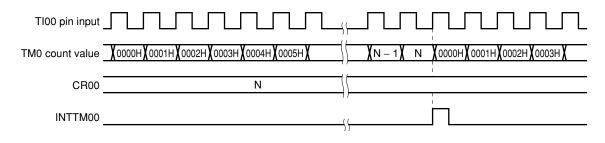

						CRC02	CRC01	CRC00	
CRC0	0	0	0	0	0	0/1	0/1	0	
									CR00 used as compare regis

Figure 8-12. External Event Counter Configuration Diagram

Note OVF0 is 1 only when 16-bit timer capture/compare register 00 is set to FFFFH.

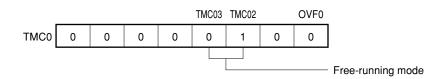
Figure 8-13. External Event Counter Operation Timing (with Rising Edge Specified)

Caution When reading the external event counter count value, TM0 should be read.

*

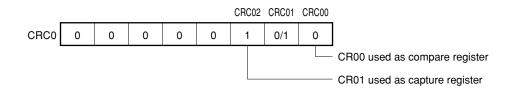
8.4.3 Pulse width measurement operations

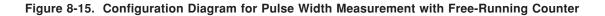
It is possible to measure the pulse width of the signals input to the TI00 pin and TI01 pin using 16-bit timer counter 0 (TM0).


There are two measurement methods: measuring with TM0 used in free-running mode, and measuring by restarting the timer in synchronization with the edge of the signal input to the TI00 pin.

(1) Pulse width measurement with free-running counter and one capture register

When 16-bit timer counter 0 (TM0) is operated in free-running mode (see register settings in **Figure 8-14**), and the edge specified by prescaler mode register 0 (PRM0) is input to the TI00 pin, the value of TM0 is taken into 16-bit timer capture/compare register 01 (CR01) and an external interrupt request signal (INTTM01) is set. Any of three edges can be selected—rising, falling, or both edges—specified by bits 4 and 5 (ES00 and ES01) of PRM0.


Sampling is performed with the count clock selected by PRM0, and a capture operation is only performed when a valid level of the TI00 pin is detected twice, thus eliminating noise with a short pulse width.


Figure 8-14. Control Register Settings for Pulse Width Measurement with Free-Running Counter and One Capture Register

(a) 16-bit timer mode control register 0 (TMC0)

(b) Capture/compare control register 0 (CRC0)

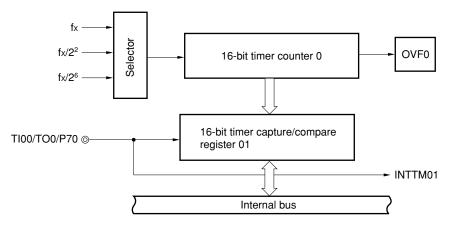
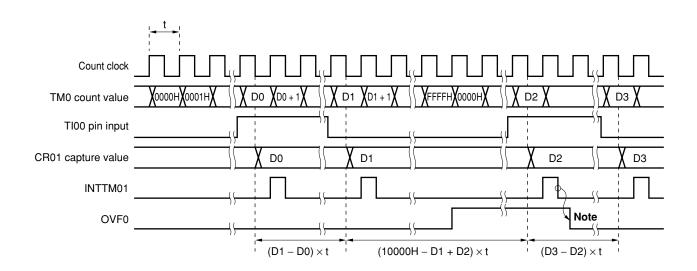
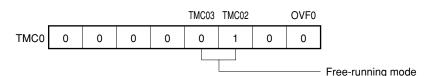



Figure 8-16. Timing of Pulse Width Measurement Operation with Free-Running Counter and One Capture Register (with Both Edges Specified)

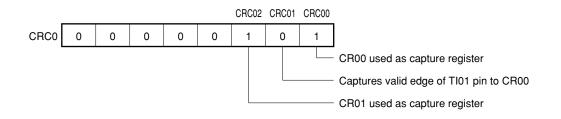
Note OVF0 must be cleared by software.

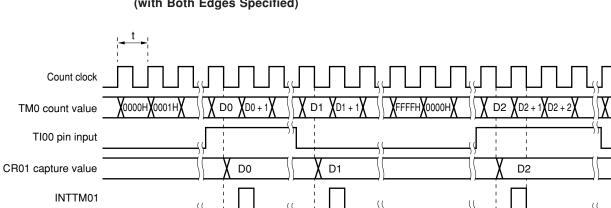
★


(2) Measurement of two pulse widths with free-running counter

When 16-bit timer counter 0 (TM0) is operated in free-running mode (see register settings in **Figure 8-17**), it is possible to simultaneously measure the pulse widths of the two signals input to the TI00 pin and the TI01 pin. When the edge specified by bits 4 and 5 (ES00 and ES01) of prescaler mode register 0 (PRM0) is input to the TI00 pin, the value of TM0 is taken into 16-bit timer capture/compare register 01 (CR01) and an interrupt request signal (INTTM01) is set.

Also, when the edge specified by bits 6 and 7 (ES10 and ES11) of PRM0 is input to the TI01 pin, the value of TM0 is taken into 16-bit timer capture/compare register 00 (CR00) and an interrupt request signal (INTTM00) is set.


Any of three edges can be selected—rising, falling, or both edges—as the valid edges for the TI00 pin and the TI01 pin specified by bits 4 and 5 (ES00 and ES01) and bits 6 and 7 (ES10 and ES11) of PRM0, respectively. Sampling is performed at the interval selected by prescaler mode register 0 (PRM0), and a capture operation is only performed when a valid level of the TI00 pin or TI01 pin is detected twice, thus eliminating noise with a short pulse width.


Figure 8-17. Control Register Settings for Measurement of Two Pulse Widths with Free-Running Counter

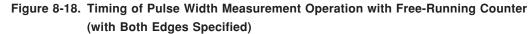
(a) 16-bit timer mode control register 0 (TMC0)

(b) Capture/compare control register 0 (CRC0)

D1

(10000H - D1 + D2) × t

 $(10000H - D1 + (D2 + 1)) \times t$


 $(D1 - D0) \times t$

D3

D2 + 1

 $(D3 - D2) \times t$

Note

Note OVF0 must be cleared by software.

TI01 pin input

INTTM00

OVF0

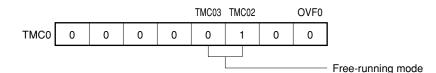
CR00 capture value

(3) Pulse width measurement with free-running counter and two capture registers

When 16-bit timer counter 0 (TM0) is operated in free-running mode (see register settings in **Figure 8-19**), it is possible to measure the pulse width of the signal input to the TI00 pin.

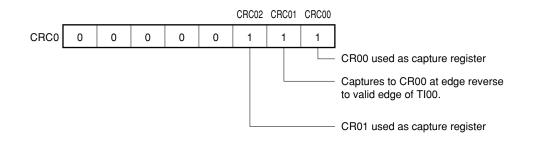
When the edge specified by bits 4 and 5 (ES00 and ES01) of prescaler mode register 0 (PRM0) is input to the TI00 pin, the value of TM0 is taken into 16-bit timer capture/compare register 01 (CR01) and an interrupt request signal (INTTM01) is set.

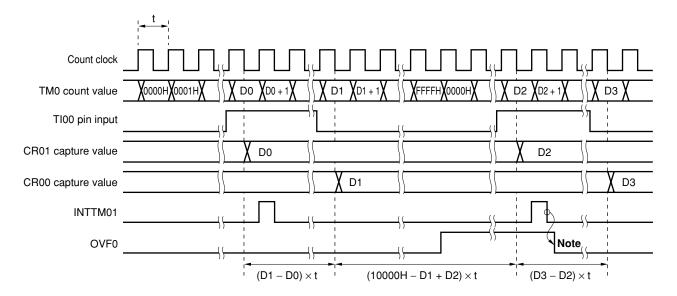
Also, when the inverse edge to that of the capture operation to CR01 is input, the value of TM0 is taken into 16bit timer capture/compare register 00 (CR00).

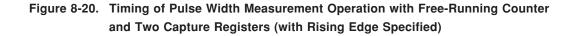

Either of two edges can be selected—rising or falling—as the valid edges for the TI00 pin specified by bits 4 and 5 (ES00 and ES01) of prescaler mode register 0 (PRM0).

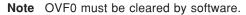
Sampling is performed at the interval selected by prescaler mode register 0 (PRM0), and a capture operation is only performed when a valid level of the TI00 pin is detected twice, thus eliminating noise with a short pulse width.

Caution If the valid edge of TI00 is specified to be both the rising and falling edges, 16-bit timer capture/ compare register 00 (CR00) cannot perform the capture operation.


Figure 8-19. Control Register Settings for Pulse Width Measurement with Free-Running Counter and Two Capture Registers


(a) 16-bit timer mode control register 0 (TMC0)




*

(b) Capture/compare control register 0 (CRC0)

(4) Pulse width measurement by means of restart

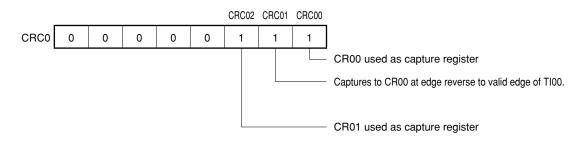
When input of a valid edge to the TI00 pin is detected, the count value of 16-bit timer counter 0 (TM0) is taken into 16-bit timer capture/compare register 01 (CR01), and then the pulse width of the signal input to the TI00 pin is measured by clearing TM0 and restarting the count (see register settings in **Figure 8-22**).

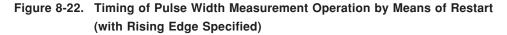
The edge specification can be selected from two types, rising or falling edges, by bits 4 and 5 (ES00 and ES01) of prescaler mode register 0 (PRM0).

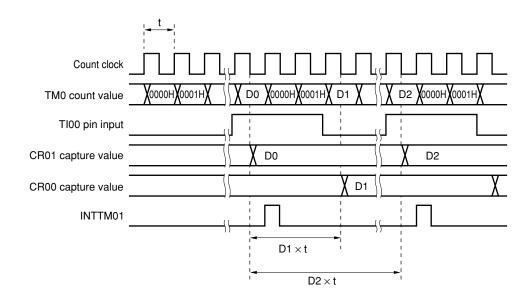
Sampling is performed at the interval selected by prescaler mode register 0 (PRM0) and a capture operation is only performed when a valid level of the TI00 pin is detected twice, thus eliminating noise with a short pulse width.

Caution If the valid edge of TI00 is specified to be both the rising and falling edges, 16-bit timer capture/ compare register 00 (CR00) cannot perform the capture operation.

User's Manual U14046EJ3V0UD


Figure 8-21. Control Register Settings for Pulse Width Measurement by Means of Restart

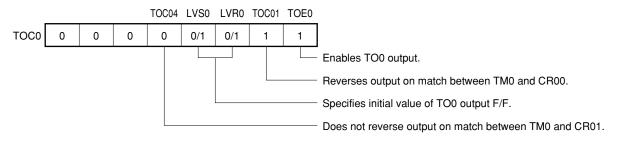

*


 \star

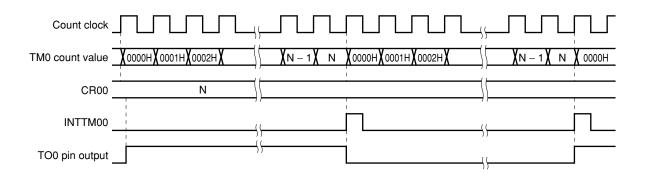
(a) 16-bit timer mode control register 0 (TMC0)

8.4.4 Square-wave output operation

*

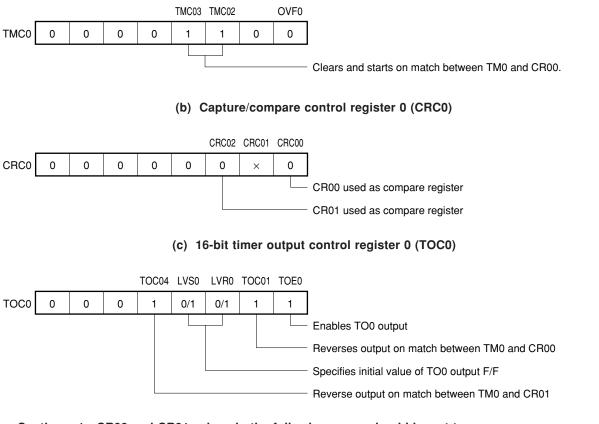

A square wave with any selected frequency can be output at intervals determined by the count value preset to 16-bit timer capture/compare register 00 (CR00).

The TO0 pin output status is reversed at intervals determined by the count value preset to CR00 by setting bit 0 (TOE0) and bit 1 (TOC01) of 16-bit timer output control register 0 (TOC0) to 1. This enables a square wave with any selected frequency to be output.


Figure 8-23. Control Register Settings in Square-Wave Output Mode

(a) 16-bit timer mode control register 0 (TMC0)

TMC03 TMC02 OVF0 TMC0 0 0 0 0 0 0 1 1 Clears and starts on match between TM0 and CR00. (b) Capture/compare control register 0 (CRC0) CRC02 CRC01 CRC00 CRC0 0 0 0 0 0 0/1 0/1 0 CR00 used as compare register (c) 16-bit timer output control register 0 (TOC0)


8.4.5 PPG output operation

*

Setting 16-bit timer mode control register 0 (TMC0) and capture/compare control register 0 (CRC0) as shown in Figure 8-25 allows operation as PPG (Programmable Pulse Generator) output.

In the PPG output operation, square waves are output from the TO0 pin with the pulse width and the cycle that correspond to the count values set beforehand in 16-bit timer capture/compare register 01 (CR01) and in 16-bit timer capture/compare register 00 (CR00), respectively.

Figure 8-25. Control Register Settings for PPG Output Operation

(a) 16-bit timer mode control register 0 (TMC0)

- Cautions 1. CR00 and CR01 values in the following range should be set to: 0000H < CR01 < CR00 \leq FFFFH
 - The cycle of the pulse generated via PPG output (CR00 setting value + 1) has a duty of (CR01 setting value + 1)/(CR00 setting value + 1).

Remark ×: Don't care

Figure 8-26. PPG Output Configuration Diagram

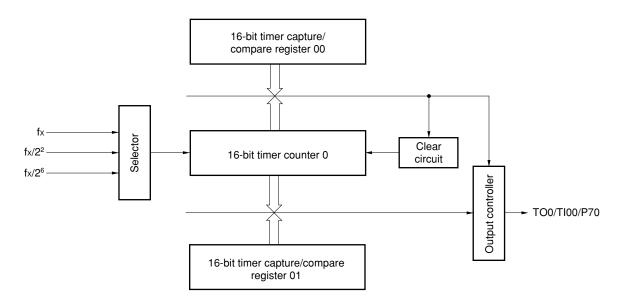
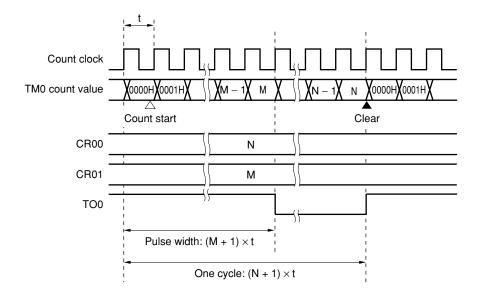



Figure 8-27. PPG Output Operation Timing

Remark 0000H < M < N \leq FFFFH

*

★

8.5 Program List

*

Caution The following sample program is shown as an example to describe the operation of semiconductor products and their applications. Therefore, when applying the following information to your devices, design the devices after performing evaluation under your own responsibility.

8.5.1 Interval timer

```
/*
                                                                        */
/*
           Setting example of timer 0 interval timer mode
                                                                        */
/*
       Cycle set to 130 as intervalTM0 (at 8.38 MHz for 1 ms)
                                                                        */
/*
       Variable ppgdata prepared as rewrite data area
                                                                        */
/*
        : Cycle (if 0000, no change)
                                                                        */
.
/ *
       ppgdata to be checked at every INTTM00, and changed if required.
                                                                        */
/*
        Therefore, if change is required, set the change data in ppgdata.
                                                                        */
/*
        When changed, ppgdata cleared to 0000.
                                                                        */
/*
                                                                        */
#pragma sfr
#pragma EI
#pragma DI
#define intervalTM0 130
                                    /* Cycle data to be set to CR00 */
#pragma interrupt INTTM00 intervalint rb2
      unsigned int ppgdata; /* Data area to be set to timer 0 */
void main(void)
{
      PCC = 0x0;
                                   /* Set high-speed operation mode */
      ppqdata = 0;
                                   /* Set port */
                                   /* Set the following to output */
                                   /* Clear P70 */
       P7 = 0b11111110;
                                   /* Set P70 as output */
       PM7.0 = 0;
                                   /* Set interrupt */
                               /* Set Interrupt */
/* Cancel INTTM00 interrupt mask */
/* Set timer 0 */
/* Count clock is fx/2^6 */
/* Set CR00 and CR01 to compare register */
/* Set cycle initial value to CR00 */
/* Invert on match with CR00, initial value L */
/* Clear & start on match between TM0 and CR00 */
      TMMK00 = 0;
      PRM0 = 0b0000010;
      CRC0 = 0b0000000;
       CR00 = intervalTM0;
      TOC0 = 0b00000111;
      TMC0 = 0b00001100;
      EI();
      while(1);
                                   /* Loop as dummy here */
}
/* Timer 0 interrupt function */
void intervalint()
{
      unsigned int work;
/*
                                              */
/* Define variables required for interrupt here
                                              */
/*
                                              * /
work = ppgdata;
      if (work != 0)
       {
              CR00 = work;
              ppgdata = 0;
              if (work == 0xfff)
              {
                     TMC0 = 0b00000000; /* Stop timer */
              }
         }
             /******
                                                     */
/* Describe processing required for interrupt below
                                                     */
/*
```

8.5.2 Pulse width measurement by free-running counter and one capture register

```
/*
                                                               */
/*
                                                               */
          Timer 0 operation sample
/*
      Pulse width measurement example by free-running and CR01
                                                               */
/*
      Measurement results to be up to 16 bits and not checked for errors
                                                               */
/*
      data[0]: End flag
                                                               */
/*
      data[1]: Measurement results (pulse width)
                                                               */
                                                               */
/*
       data[2]: Previous read value
/*
                                                               */
#pragma sfr
#pragma EI
#praqma DI
#pragma interrupt INTTM01 intervalint rb2
     unsigned int data[3]; /* Data area */
void main(void)
{
      unsigned int length;
      PCC = 0x0;
                               /* Set high-speed operation mode */
      data[0] = 0;
      data[1] = 0;
      data[2] = 0;
                               /* Set port */
      PM7.0 = 1;
                               /* Set P70 as input */
                               /* Set interrupt */
                               /* Cancel INTTM01 interrupt mask */
      TMMK01 = 0;
                               /* Set timer 0 */
                          /* Both rising and falling edges for TIOO */
/* Count clock is fx/2<sup>6</sup> */
/* Set CR01 to capture register */
/* Start in free-run mode */
      PRM0 = 0b00110010;
      CRC0 = 0b0000100;
      TMC0 = 0b00000100;
      EI();
      while(1){
                               /* Dummy loop */
            /* Prohibit interrupt for exclusive operation */
            DI();
                               /* Read measurement results */
            length = data[1];
                               /* Clear end flag */
            data[0] = 0;
                               /* Exclusive operation completed */
            EI();
      }
}
/* Timer 0 interrupt function */
void intervalint()
{
      unsigned int work;
  /*
                                           * /
/* Define variables required for interrupt here
                                           */
/*
                                           */
/* Read capture value */
/* Calculate and update interval */
/* Update read value */
      work = CR01;
      data[1] = work - data[2];
      data[2] = work;
                               /* Set measurement completion flag */
      data[0] = 0xffff;
*/
/* Describe processing required for interrupt below
                                                */
/*
                                                */
  /**
```

8.5.3 Two pulse widths measurement by free-running counter

```
/*
                                                                            */
/*
                                                                            */
            Timer 0 operation sample
/*
                                                                            */
        Two-pulse-width measurement sample by free-running
/*
      Measurement results to be up to 16 bits and not checked for errors
                                                                            */
/*
                                                                            */
*/
*/
*/
        Result area at TIOO side
/*
        data[0]: End flaq
/*
       data[1]: Measurement results (pulse width)
/*
        data[2]: Previous read value
/*
/*
         Result area at TI01 side
        data[3]: End flag
/*
        data[4]: Measurement results (pulse width)
/*
        data[5]: Previous read value
/*
                                                                            */
#pragma sfr
#pragma EI
#pragma DI
#pragma interrupt INTTM00 intervalint rb2
#pragma interrupt INTTM01 intervalint2 rb2
       unsigned int data[6];
                               /* Data area */
void main(void)
{
       unsigned int length, length2;
                                      /* Set high-speed operation mode */
       PCC = 0x0;
       data[0] = 0;
                                      /* Clear data area */
       data[1] = 0;
       data[2] = 0;
       data[3] = 0;
       data[4] = 0;
       data[5] = 0;
                                      /* Set port */
       PM7.0 = 1;
                                      /* Set P70 as input */
                                      /* Set P71 as input */
       PM7.1 = 1;
                                      /* Set interrupt */
                                      /* Cancel INTTM01 interrupt mask */
       TMMK01 = 0;
                                      /* Cancel INTTM00 interrupt mask */
       TMMK00 = 0;
                                      /* Set timer 0 */
                                    /* Both rising and falling edges */
/* Count clock is fx/2<sup>6</sup> */
/* Set CR00 and CR01 to capture register */
/* Start in free-run mode */
       PRM0 = 0b11110010;
       CRC0 = 0b00000101;
       TMC0 = 0b00000100;
       EI();
               ){ /* Dummy loop */
if(data[0] != 0) /* TI00 measurement completion check */
       while(1){
               {
                       TMMK01 = 1;
                                              /* INTTM01 interrupt prohibited for
                                                 exclusive operation */
                                              /* Read measurement results */
                       length = data[1];
                       data[0] = 0;
                                              /* Clear end flag */
                                              /* Exclusive operation completed */
                       TMMK01 = 0;
               if(data[3] != 0) /* TI01 measurement completion check */
               {
                       TMMK00 = 1;
                                             /* INTTM00 interrupt prohibited for
                                                exclusive operation */
                                              /* Read measurement results */
                       length2 = data[4];
                       data[3] = 0;
                                              /* Clear end flag */
                                              /* Exclusive operation completed */
                       TMMK00 = 0;
               }
       }
}
```

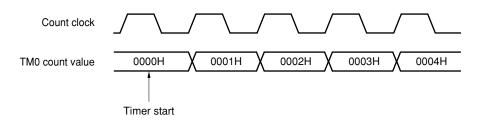
```
/* INTTM00 interrupt function */
void intervalint()
{
    unsigned int work;
/*
                                  */
/* Define variables required for interrupt here
                                  */
/*
                                  */
    /*****
    work = CR00; /* Read capture value */
data[4] = work - data[5]; /* Calculate and update interval */
data[5] = work; /* Update read value */

                        /* Set measurement completion flag */
    data[3] = 0xffff;
/*
                                   */
/*
 Describe processing required for interrupt below
                                   */
                                   * /
     *****
                                 *****/
}
/* INTTM01 interrupt function */
void intervalint2()
{
    unsigned int work;
/*
                                  */
/* Define variables required for interrupt here
                                  */
/*
                                  */
/* Set measurement completion flag */
    data[0] = 0xffff;
/*
                                   */
/* Describe processing required for interrupt below
                                   */
/*
                                   */
     /**
```

8.5.4 Pulse width measurement by restart

```
/*
                                                            */
/*
          Timer 0 operation sample
                                                            */
/*
      Pulse width measurement example by restart
                                                            * /
/*
     Measurement results up to 16 bits, not to be checked for errors
                                                            * /
/*
                                                            */
      data[0]: End flag
/*
      data[1]: Measurement results (pulse width)
                                                            */
/*
                                                            */
       data[2]: Previous read value
/*
                                                            * /
#praqma sfr
#pragma EI
#praqma DI
#pragma interrupt INTTM01 intervalint rb2
      unsigned int data[3]; /* Data area */
void main(void)
{
      unsigned int length;
      PCC = 0x0;
                               /* Set high-speed operation mode */
      data[0] = 0;
      data[1] = 0;
      data[2] = 0;
                                /* Set port */
                                /* Set P70 as input */
      PM7.0 = 1;
                                /* Set interrupt */
      TMMK01 = 0;
                               /* Cancel INTTM01 interrupt mask */
                               /* Set timer 0 */
                               /* Both rising and falling edges */
      PRM0 = 0b00110010;
                              /* Count clock is fx/2<sup>6</sup> */
/* Set CR01 to capture register */
/* Clear & start at TI00 valid edge */
      CRC0 = 0b0000100;
      TMC0 = 0b00001000;
      EI();
            { /* Dummy loop */
if(data[0] != 0) /* Wait for TI00 measurement completion */
}
      while(1){
             {
                   TMMK01 = 1;
                                       /* Prohibit INTTM01 interrupt for
                                        exclusive operation */
                   measurement results */
                   data[0] = 0;
                                     /* Clear end flag */
/* Exclusive operation completed */
                   TMMK01 = 0;
            }
      }
}
/* Timer 0 interrupt function */
void intervalint()
/*
                                           */
/* Define variables required for interrupt here
                                           */
/*
                                           */
data[2] = data[1]; /* Update old data */
      data[1] = CR01;
                               /* Update read value */
      data[0] = 0xffff;
                               /* Set measurement completion flag */
/*
                                             */
/* Describe processing required for interrupt below
                                             */
/*
```

8.5.5 PPG output

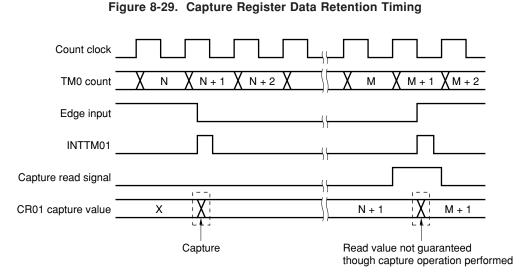

```
/*
                                                                               */
/*
                                                                               */
             Timer 0 PPG mode setting example
/*
        Cycle set to 130 as intervalTMO
                                                                               */
/*
                                                                               */
       Active period set to 65 as active time
/*
        Array ppgdata prepared as data area for rewriting
                                                                               */
,
/*
                                                                               */
*/
         [0]: Active period (0000: no change, 0xffff: stop)
         [1]: Cycle (0000: no change)
.
/ *
        ppgdata to be checked at every INTTM00, and changed if required.
                                                                               */
/*
         Therefore, if change is required, set the change data in ppgdata.
                                                                               */
/*
         When changed, ppgdata cleared to 0000.
                                                                               */
/*
                                                                               */
**/
#pragma sfr
#pragma EI
#pragma DI
                                     /* Cycle data to be set to CR00 */
#define intervalTM0 130
#define active time 65
                                     /* Initial value data of CR01 */
#pragma interrupt INTTM00 ppgint rb2
                                     /* Data area to be set to timer 0 */
       unsigned int ppgdata[2];
void main(void)
       PCC = 0x0;
                                     /* Set high-speed operation mode */
       ppgdata[0] = 0;
       ppgdata[1] = 0;
                                     /* Set port */
                                     /* Clear P70 */
        P7 = 0b11111110;
                                     /* Set P70 to output */
       PM7.0 = 0;
                                     /* Set interrupt */
                                     /* Cancel INTTM00 interrupt mask */
       TMMK00 = 0;
                                     /* Set timer 0 */
       PRM0 = 0b0000010;
                                    /* Count clock is fx/2<sup>6</sup> */
                                  /* Count clock is fx/2"6 */
/* Set CR00 and CR01 to compare register */
/* Set initial value of cycle */
/* Set initial value of active period */
/* Lowerted or match between CR00 and CR01
       CRC0 = 0b00000000;
       CR00 = intervalTM0;
       CR01 = active_time;
                                    /* Inverted on match between CR00 and CR01,
       TOC0 = 0b00010111;
                                       initial value L */
                                    /* Clear & start on match between TMO and CR00 */
       TMC0 = 0b00001100;
       EI();
       while(1);
}
/* Timer 0 interrupt function */
void ppgint()
{
       unsigned int work;
       work = ppgdata[0];
       if (work != 0)
        {
               CR01 = work;
               ppqdata[0] = 0;
                if (work == 0xfff)
                {
                       TMC0 = 0b00000000; /* Stop timer */
                }
        work = ppgdata[1];
       if (work != 0)
        {
               CR00 = work;
               ppgdata[1]=0;
        }
}
```

8.6 Cautions Related to 16-Bit Timer/Event Counter 0

(1) Timer start errors

An error of up to one clock may occur in the time required for a match signal to be generated after timer start. This is because 16-bit timer counter 0 (TM0) is started asynchronously to the count clock.

Figure 8-28. Start Timing of 16-Bit Timer Counter 0 (TM0)



(2) 16-bit timer capture/compare register setting (clear & start mode entered on match between TM0 and CR00)

Set 16-bit timer capture/compare registers 00, 01 (CR00, CR01) to other than 0000H. This means a 1-pulse count operation cannot be performed.

★ (3) Capture register data retention timing

If the valid edge of the TI00 pin is input during 16-bit timer capture/compare register 01 (CR01) read, CR01 performs a capture operation but, the read value at this time is not guaranteed. The interrupt request signal (INTTM01) is generated upon detection of the valid edge.

(4) Valid edge setting

Set the valid edge of the TI00 pin after clearing bits 2 and 3 (TMC02 and TMC03) of 16-bit timer mode control register 0 (TMC0) to 0, 0, respectively, and then stopping the timer operation. The valid edge is set by bits 4 and 5 (ES00 and ES01) of prescaler mode register 0 (PRM0).

(5) Operation of OVF0 flag

*


<1> The OVF0 flag is also set to 1 in the following case.

Either of the clear & start mode entered on a match between TM0 and CR00, clear & start at the valid edge of TI00, or free-running mode is selected.

 \downarrow CR00 is set to FFFFH. \downarrow

When TM0 is counted up from FFFFH to 0000H.

<2> Even if the OVF0 flag is cleared before the next count clock is counted (before TM0 becomes 0001H) after the occurrence of a TM0 overflow, the OVF0 flag is reset newly and clear is disabled.

(6) Conflicting operations

When the 16-bit timer capture/compare register (CR00/CR01) is used as a compare register, if the write period and the match timing of 16-bit timer counter 0 (TM0) conflict, match determination is not successfully done. Do not perform a write operation of CR00/CR01 near the match timing.

(7) Timer operation

- <1> Even if 16-bit timer counter 0 (TM0) is read, the value is not captured by 16-bit timer capture/compare register 01 (CR01).
- <2> Regardless of the CPU's operation mode, when the timer stops, the signals input to pins TI00/TI01 are not acknowledged.

(8) Capture operation

- <1> If TI00 is specified as the valid edge of the count clock, a capture operation by the capture register specified as the trigger for TI00 is not possible.
- <2> If both the rising and falling edges are selected as the valid edges of TI00, capture is not performed.
- <3> To ensure the reliability of the capture operation, the capture trigger requires a pulse longer than two cycles of the count clock selected by prescaler mode register 0 (PRM0).

Figure 8-31. CR01 Capture Operation with Rising Edge Specified

<4> The capture operation is performed at the fall of the count clock. An interrupt request input (INTTMOn), however, occurs at the rise of the next count clock.

(9) Compare operation

- <1> When the 16-bit timer capture/compare register (CR00/CR01) is overwritten during timer operation, match interrupt may be generated or the clear operation may not be performed normally if that value is close to or large than the timer value.
- <2> The capture operation may not be performed for CR00/CR01 set in compare mode even if a capture trigger is input.

(10) Edge detection

- <1> If the TI00 pin or the TI01 pin is high level immediately after system reset and the rising edge or both the rising and falling edges are specified as the valid edge for the TI00 pin or TI01 pin to enable 16-bit timer counter 0 (TM0) operation, a rising edge is detected immediately. Be careful when pulling up the TI00 pin or the TI01 pin. However, the rising edge is not detected at restart after the operation has been stopped once.
- <2> The sampling clock used to remove noise differs when a TI00 valid edge is used as the count clock and when it is used as a capture trigger. In the former case, the count clock is fx/2³, and in the latter case the count clock is selected by prescaler mode register 0 (PRM0). The capture operation is not performed until the valid edge is sampled and the valid level is detected twice, thus eliminating noise with a short pulse width.

★ (11) STOP mode or main system clock stop mode setting

Except when TI00, TI01 input is selected, stop the timer operation before setting STOP mode or main system clock stop mode; otherwise the timer may malfunction when the main system clock starts.

CHAPTER 9 8-BIT TIMER/EVENT COUNTERS 50, 51

9.1 Functions of 8-Bit Timer/Event Counters 50, 51

8-bit timer/event counters 50, 51 (TM50, TM51) have the following two modes.

(1) Mode using 8-bit timer/event counters 50, 51 alone (discrete mode)

The timer operates as 8-bit timer/event counter 50 or 51. It has the following functions.

<1> Interval timer

Interrupt requests are generated at the preset interval.

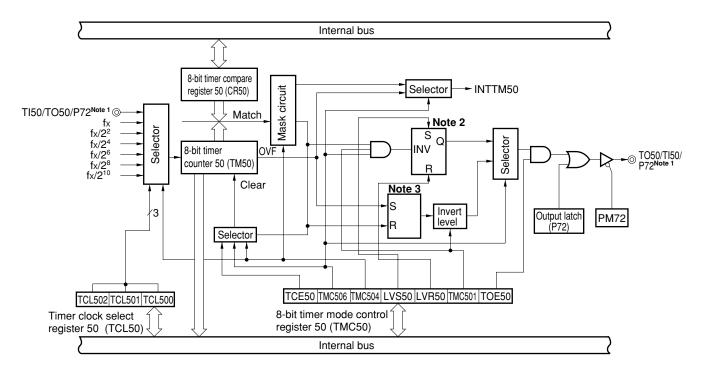
- Number of counts: 1 to 256
- <2> External event counter The number of pulses with high/low level widths of the signal input externally can be measured.
- <3> Square-wave output

A square wave with an arbitrary frequency can be output.

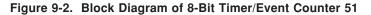
- Cycle: $(1 \times 2 \text{ to } 256 \times 2) \times \text{Cycles of count clock}$

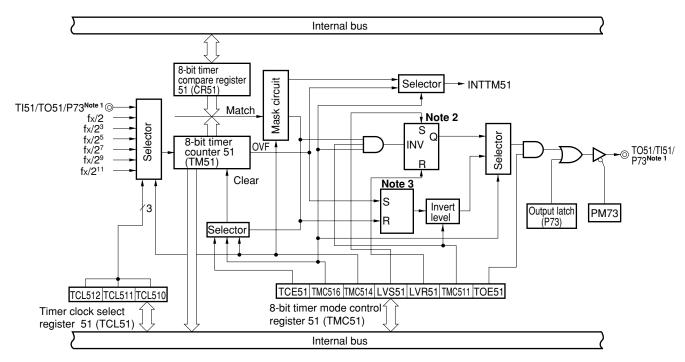
<4> PWM output

A pulse with an arbitrary duty ratio can be output.


- Cycle: Count clock × 256
- · Duty ratio: Set value of compare register/256

(2) Mode using cascade connection (16-bit resolution: cascade connection mode)


The timer operates as a 16-bit timer/event counter by combining two 8-bit timer/event counters. It has the following functions.


- Interval timer with 16-bit resolution
- External event counter with 16-bit resolution
- · Square-wave output with 16-bit resolution

Figures 9-1 and 9-2 show block diagrams of 8-bit timer/event counters 50 and 51.

Figure 9-1. Block Diagram of 8-Bit Timer/Event Counter 50

- **Notes 1.** The respective combinations, TI50 input and TO50 output, and TI51 input and TO51 output, cannot be used at the same time.
 - 2. Timer output F/F
 - 3. PWM output F/F

9.2 Configuration of 8-Bit Timer/Event Counters 50, 51

8-bit timer/event counters 50, 51 consist of the following hardware.

Table 9-1.	Configuration	of 8-Bit	Timer/Event	Counters	50, 5	51
------------	---------------	----------	-------------	----------	-------	----

Item	Configuration
Timer counter	8-bit timer counter 5n (TM5n)
Register	8-bit timer compare register 5n (CR5n)
Timer input	TI5n
Timer output	TO5n
Control registers	Timer clock select register 5n (TCL5n) 8-bit timer mode control register 5n (TMC5n) Port mode register 7 (PM7) Port 7 (P7)

(1) 8-bit timer counter 5n (TM5n: n = 0, 1)

TM5n is an 8-bit read-only register that counts the count pulses.

The counter is incremented in synchronization with the rising edge of the count clock.

When TM50 and TM51 can be connected in cascade and used as a 16-bit timer, they can be read by a 16-bit memory manipulation instruction. However, since they are connected by an internal 8-bit bus, TM50 and TM51 are read separately twice in that order. Thus, take reading during the count change into consideration and compare them by reading twice. When the count value is read during operation, the count clock input is temporarily stopped^{Note}, and then the count value is read. In the following situations, count value is cleared to 00H.

<1> RESET input

*

*

- <2> When TCE5n is cleared
- <3> When TM5n and CR5n match in the clear & start mode entered on a match between TM5n and CR5n.
- Note An error may occur in the count. Select a count clock with a high/low-level waveform longer than two cycles of the CPU clock.

Caution In cascade connection mode, the count value is reset to 0000H when TCE50 of the lowest timer is cleared.

(2) 8-bit timer compare register 5n (CR5n: n = 0, 1)

When CR5n is used as a compare register in other than PWM mode, the value set in CR5n is constantly compared with the 8-bit timer counter 5n (TM5n) count value, and an interrupt request (INTTM5n) is generated if they match. In PWM mode, the TO5n pin goes to the active level by the overflow of TM5n. When the values of TM5n and CR5n match, the TO5n pin goes to the inactive level.

It is possible to rewrite the value of CR5n within 00H to FFH during a count operation.

When TM50 and TM51 can be connected in cascade and used as a 16-bit timer, CR50 and CR51 operate as a 16-bit compare register. This register compares the count value with the register value, and if the values match, an interrupt request (INTTM50) is generated. The INTTM51 interrupt request is also generated at this time. Thus, mask the INTTM51 interrupt request. CR5n is set by an 8-bit memory manipulation instruction. RESET input makes CR5n undefined.

Caution In cascade connection mode, stop the timer operation before setting data.

Remark n = 0, 1

9.3 Registers to Control 8-Bit Timer/Event Counters 50, 51

The following four types of registers are used to control 8-bit timer/event counters 50, 51.

- Timer clock select register 5n (TCL5n)
- 8-bit timer mode control register 5n (TMC5n)
- Port mode register 7 (PM7)
- Port 7 (P7)

Remark n = 0, 1

(1) Timer clock select register 5n (TCL5n: n = 0, 1)

This register sets the count clock of 8-bit timer/event counter 5n and the valid edge of TI50, TI51 input. TCL5n is set by an 8-bit memory manipulation instruction.

RESET input clears TCL5n to 00H.

Figure 9-3. Format of Timer Clock Select Register 50 (TCL50)

Address: F	F71H Afte	er reset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
TCL50	0	0	0	0	0	TCL502	TCL501	TCL500

TCL502	TCL501	TCL500	Count clock selection				
				fx = 8.38 MHz	fx = 12 MHz ^{Note}		
0	0	0	TI50 falling edge	_	_		
0	0	1	TI50 rising edge	_	_		
0	1	0	fx	8.38 MHz	12 MHz		
0	1	1	fx/2 ²	2.09 MHz	3 MHz		
1	0	0	fx/2 ⁴	523 kHz	750 kHz		
1	0	1	fx/2 ⁶	131 kHz	187 kHz		
1	1	0	fx/2 ⁸	32.7 kHz	46.8 kHz		
1	1	1	fx/2 ¹⁰	8.18 kHz	11.7 kHz		

Note Expanded-specification products of µPD780024A, 780034A Subseries only.

Cautions 1. When rewriting TCL50 to other data, stop the timer operation beforehand.

2. Be sure to clear bits 3 to 7 to 0.

*

*

Remarks 1. When cascade connection is used, only TCL50 is valid for count clock setting.

2. fx: Main system clock oscillation frequency

Address: F	Address: FF79H After reset: 00H R/W									
Symbol	7	6	5	4	3	2	1	0		
TCL51	0	0	0	0	0	TCL512	TCL51	11 TCL510		
				-						
	TCL512	TCL511	TCL510		Co	unt clock sele	ection			
				fx = 8.38 MHz fx = 12 MHz ^{Nc}						
	0	0	0	TI51 falling edge		-		_		
	0	0	1	TI51 rising edge		_		_		
	0	1	0	fx/2		4.19 MHz 6		6 MHz		
	0	1	1	fx/2 ³		1.04 MHz		1.5 MHz		
	1	0	0	fx/2 ⁵		261 kHz		375 kHz		
	1	0	1	fx/2 ⁷		65.4 kHz		93.7 kHz		
	1	1	0	fx/2 ⁹		16.3 kHz		23.4 kHz		
	1	1	1	fx/2 ¹¹		4.09 kHz		5.85 kHz		

Figure 9-4. Format of Timer Clock Select Register 51 (TCL51)

Note Expanded-specification products of *µ*PD780024A, 780034A Subseries only.

Cautions 1. When rewriting TCL51 to other data, stop the timer operation beforehand. 2. Be sure to clear bits 3 to 7 to 0.

- Remarks 1. When cascade connection is used, only TCL50 is valid for count clock setting.
 - 2. fx: Main system clock oscillation frequency

(2) 8-bit timer mode control register 5n (TMC5n: n = 0, 1)

TMC5n is a register that makes the following six settings.

- <1> 8-bit timer counter 5n (TM5n) count operation control
- <2> 8-bit timer counter 5n (TM5n) operating mode selection
- <3> Discrete mode/cascade connection mode selection (TMC51 only)
- <4> Timer output F/F (flip-flop) status setting
- <5> Active level selection in timer F/F control or PWM (free-running) mode.
- <6> Timer output control

*

*

TMC5n is set by a 1-bit or 8-bit memory manipulation instruction. RESET input clears TMC5n to 00H.

Figure 9-5. Format of 8-Bit Timer Mode Control Register 50 (TMC50)

	Address: F	FF70H After reset: 00H		R/W					
	Symbol	<7>	6	5	4	<3>	<2>	1	<0>
*	TMC50	TCE50	TMC506	0	0	LVS50	LVR50	TMC501	TOE50

TCE50	TM50 count operation control
0	After clearing to 0, count operation disabled (prescaler disabled)
1	Count operation start

TMC506	TM50 operating mode selection
0	Clear and start mode by match between TM50 and CR50
1	PWM (free-running) mode

LVS50	LVR50	Timer output F/F status setting				
0	0	No change				
0	1	Timer output F/F reset (0)				
1	0	Timer output F/F set (1)				
1	1	Setting prohibited				

TMC501	In other modes (TMC506 = 0)	In PWM mode (TMC506 = 1)		
	Timer F/F control	Active level selection		
0	Inversion operation disabled	Active high		
1	Inversion operation enabled	Active low		

TOE50	Timer output control
0	Output disabled (port mode)
1	Output enabled

Remarks 1. In PWM mode, PWM output will be inactive because TCE50 = 0.

2. If LVS50 and LVR50 are read after data is set, 0 is read.

Figure 9-6. Format of 8-Bit Timer Mode Control Register 51 (TMC51)

Address: F	F78H Afte	er reset: 00H	R/W					
Symbol	<7>	6	5	4	<3>	<2>	1	<0>
TMC51	TCE51	TMC516	0	TMC514	LVS51	LVR51	TMC511	TOE51

TCE51	TM51 count operation control
0	After clearing to 0, count operation disabled (prescaler disabled)
1	Count operation start

TMC516	TM51 operating mode selection
0	Clear and start mode by match between TM51 and CR51
1	PWM (free-running) mode

TMC514	Discrete mode/cascade connection mode selection
0	Discrete mode
1	Cascade connection mode (TM50: Lower timer, TM51: Higher timer)

LVS51	LVR51	Timer output F/F status setting		
0	0	No change		
0	1	Timer output F/F reset (0)		
1	0	Timer output F/F set (1)		
1	1	Setting prohibited		

TMC511	In other modes (TMC516 = 0)	In PWM mode (TMC516 = 1)		
	Timer F/F control	Active level selection		
0	Inversion operation disabled	Active high		
1	Inversion operation enabled	Active low		

TOE51	Timer output control
0	Output disabled (port mode)
1	Output enabled

Remarks 1. In PWM mode, PWM output will be inactive because TCE51 = 0.

2. If LVS51 and LVR51 are read after data is set, 0 is read.

(3) Port mode register 7 (PM7)

This register sets port 7 input/output in 1-bit units. When using the P72/TO50/TI50 and P73/TI51/TO51 pins for timer output, clear PM72, PM73, and the output latches of P72 and P73 to 0.

★ When using the P72/TO50/TI50 and P73/TI51/TO51 pins for timer input, set PM72 and PM73 to 1. At this time, the output latches of P72 and P73 can be either 0 or 1.

PM7 is set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets PM7 to FFH.

Figure 9-7.	Format	of Port	Mode	Register	7	(PM7)
-------------	--------	---------	------	----------	---	-------

Address:	FF27H	After rese	t: FFH	R/W				
Symbol	7	6	5	4	3	2	1	0
PM7	1	1	PM75	PM74	PM73	PM72	PM71	PM70

PM7n	P7n pin I/O mode selection (n = 0 to 5)
0	Output mode (output buffer on)
1	Input mode (output buffer off)

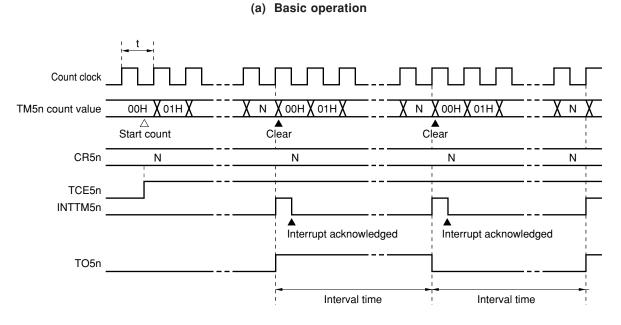
9.4 Operation of 8-Bit Timer/Event Counters 50, 51

9.4.1 8-bit interval timer operation

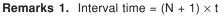
The 8-bit timer/event counters operate as interval timers that generate interrupt requests repeatedly at intervals of the count value preset to 8-bit timer compare register 5n (CR5n).

When the count value of 8-bit timer counter 5n (TM5n) matches the value set to CR5n, counting continues with the TM5n value cleared to 0 and an interrupt request signal (INTTM5n) is generated.

The count clock of TM5n can be selected with bits 0 to 2 (TCL5n0 to TCL5n2) of timer clock select register 5n (TCL5n).

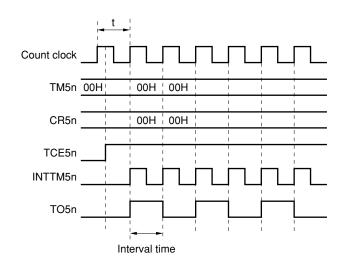

[Setting]

<1> Set the registers.


- TCL5n: Select count clock.
- CR5n: Compare value
- TMC5n: Count operation stop, clear & start mode on match between TM5n and CR5n.
 - $(TMC5n = 0000 \times \times 0B \times = don't care)$
- <2> After TCE5n = 1 is set, count operation starts.
- <3> If the values of TM5n and CR5n match, INTTM5n is generated (TM5n is cleared to 00H).
- <4> INTTM5n is generated repeatedly at the same interval. Clear TCE5n to 0 to stop the count operation.

Remark n = 0, 1

Figure 9-8. Interval Timer Operation Timing (1/3)



N = 00H to FFH

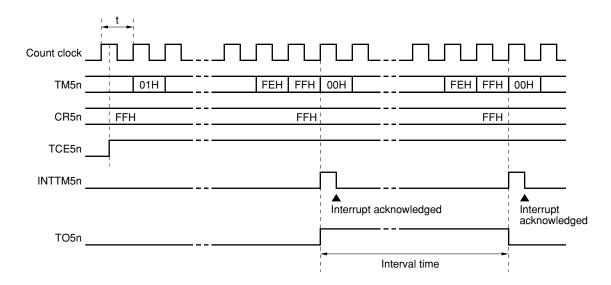

2. n = 0, 1

Figure 9-8. Interval Timer Operation Timing (2/3)

(b) When CR5n = 00H

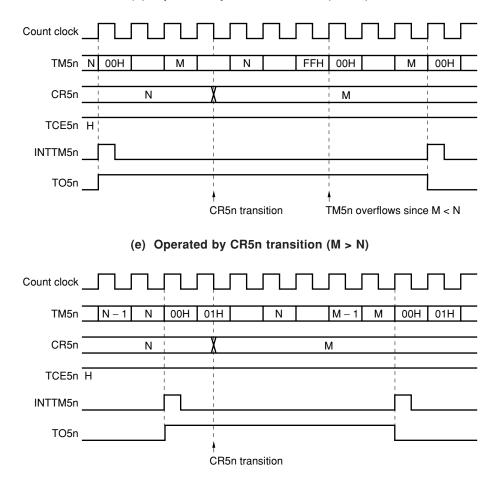


Figure 9-8. Interval Timer Operation Timing (3/3)

(d) Operated by CR5n transition (M < N)

Remark n = 0, 1

9.4.2 External event counter operation

The external event counter counts the number of external clock pulses to be input to TI5n using 8-bit timer counter 5n (TM5n).

TM5n is incremented each time the valid edge specified by timer clock select register 5n (TCL5n) is input. Either the rising or falling edge can be selected.

When the TM5n count value matches the value of 8-bit timer compare register 5n (CR5n), TM5n is cleared to 0 and an interrupt request signal (INTTM5n) is generated.

Whenever the TM5n count value matches the value of CR5n, INTTM5n is generated.

[Setting]

<1> Set each register

- TCL5n: Edge selection of TI5n input
 - Falling edge of TI5n \rightarrow TCL5n = 00H
 - Rising edge of TI5n \rightarrow TCL5n = 01H
- · CR5n: Compare value
- TMC5n: Count operation stop, clear & start mode on match between TM5n and CR5n, timer F/F inverted operation disable, timer output disable

 $(TMC5n = 0000 \times 00B, \times = don't care)$

- <2> When TCE5n = 1 is set, the number of pulses input from TI5n is counted.
- <3> When the values of TM5n and CR5n match, INTTM5n is generated (TM5n is cleared to 00H).
- <4> Each time the values of TM5n and CR5n match, INTTM5n is generated.

Figure 9-9. External Event Counter Operation Timing (with Rising Edge Specified)

TI5n		
TM5n count value	Х 00Н Х 01Н Х 02Н Х 03Н Х 04Н Х 05Н Х	<u>XN – 1X N X00H X01H X02H X03H X</u>
CR5n		
INTTM5n		

Remarks 1. N = 00H to FFH

2. n = 0, 1

9.4.3 Square-wave output (8-bit resolution) operation

A square wave with any selected frequency is output at intervals determined by the value preset to 8-bit timer compare register 5n (CR5n).

The TO5n pin output status is reversed at intervals determined by the count value preset to CR5n by setting bit 0 (TOE5n) of 8-bit timer mode control register 5n (TMC5n) to 1. This enables a square wave with any selected frequency to be output (duty = 50%).

[Setting]

*

*

<1> Set each register

- Clear port latches (P72, P73)^{Note} and port mode registers (PM72, PM73)^{Note} to 0.
- TCL5n: Select count clock
- CR5n: Compare value
- TMC5n: Count operation stop, clear & start mode on match between TM5n and CR5n

LVS5n	LVR5n	Timer Output F/F Status Setting
1	0	High-level output
0	1	Low-level output

Timer output F/F reverse enable Timer output enable \rightarrow TOE5n = 1 (TMC5n = 00001011B or 00000111B)

- <2> After TCE5n = 1 is set, the count operation starts.
- <3> Timer output F/F is reversed by match between TM5n and CR5n. After INTTM5n is generated, TM5n is cleared to 00H.
- <4> Timer output F/F is reversed at the same interval and a square wave is output from TO5n.
- The frequency is as follows.
 - Frequency = $f_{CNT}/2$ (N + 1)
 - (N = 00H to FFH, fCNT: Count clock)
- Note 8-bit timer/event counter 50: P72, PM72 8-bit timer/event counter 51: P73, PM73

	Figure 9-10. S	Square-Wave Output Operation Timing	
Count clock			
TM5n count value _ _ Co	 punt start	XN-1X N X 00H X 01H X 02H X	XN-1XNX 00H
CR5n	Ν	····	
TO5n ^{Note} _			

Note The TO5n output initial value can be set by bits 2 and 3 (LVR5n, LVS5n) of 8-bit timer mode control register 5n (TMC5n).

Remarks 1. N = 00H to FFH **2.** n = 0, 1

9.4.4 8-bit PWM output operation

The 8-bit timer/event counter operates as PWM output when bit 6 (TMC5n6) of 8-bit timer mode control register 5n (TMC5n) is set to 1.

The duty ratio pulse is determined by the value set to 8-bit timer compare register 5n (CR5n). Set the active level width of the PWM pulse to CR5n. The active level can be selected with bit 1 (TMC5n1) of TMC5n. The count clock can be selected with bits 0 to 2 (TCL5n0 to TCL5n2) of timer clock select register 5n (TCL5n). PWM output enable/disable can be selected with bit 0 (TOE5n) of TMC5n.

*

*

- Cycle = Count clock × 256
- Duty ratio = Set value of compare register

256

Caution CR5n can be rewritten in PWM mode only once per cycle.

Remark n = 0, 1

(1) PWM output basic operation

★ [Setting]

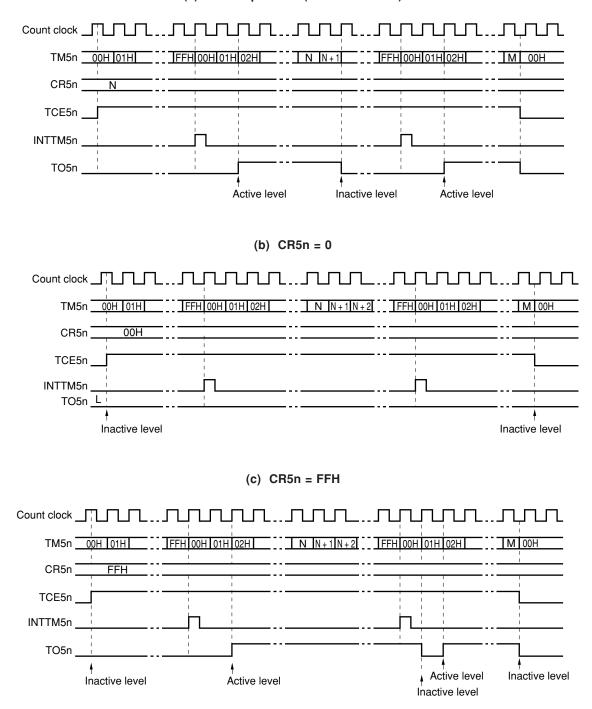
- <1> Set each register.
 - Clear port latches (P72, P73)^{Note} and port mode registers (PM72, PM73)^{Note} to 0.
 - TCL5n: Count clock selection
 - CR5n: Compare value
 - TMC5n: Count operation stop, PWM mode selection, timer output F/F not changed

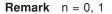
TMC5n1	Active Level Selection
0	Active high
1	Active low

Timer output enabled

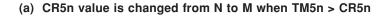
(TMC5n = 01000001B or 01000011B)

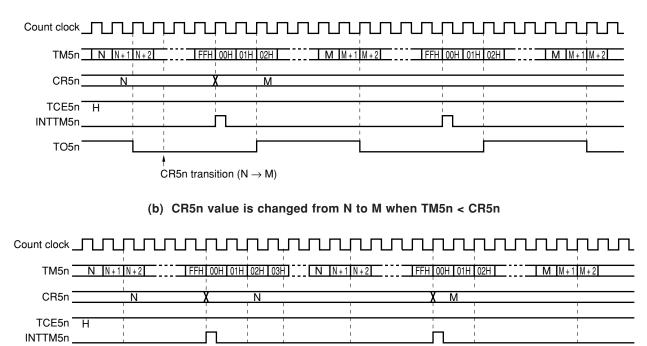
- <2> When TCE5n = 1 is set, the count operation is started. To stop the count operation, clear TCE5n to 0.
- Note 8-bit timer/event counter 50: P72, PM72 8-bit timer/event counter 51: P73, PM73


[PWM output operation]


- <1> PWM output (output from TO5n) outputs an inactive level after the count operation starts until an overflow occurs.
- <2> When an overflow occurs, the active level is output.
 The active level is output.
- The active level is output until CR5n matches the count value of 8-bit timer counter 5n (TM5n).
- <3> After CR5n matches the count value, PWM output outputs the inactive level again until an overflow occurs.
- <4> Operations <2> and <3> are repeated until the count operation stops.
- <5> When the count operation is stopped by setting TCE5n = 0, PWM output becomes the inactive level.

Remark n = 0, 1


(a) Basic operation (active level = H)



(2) Operated by CR5n transition

Figure 9-12. Timing of Operation by Change of CR5n

CR5n transition (N \rightarrow M)

Remark n = 0, 1

TO5n

9.4.5 Interval timer (16-bit) operations

When bit 4 (TMC514) of 8-bit timer mode control register 51 (TMC51) is set to 1, the 16-bit resolution timer/counter mode is entered.

The 8-bit timer/event counter operates as an interval timer that generates interrupt requests repeatedly at intervals of the count value preset to the 8-bit timer compare registers (CR50, CR51).

[Setting]

<1> Set each register

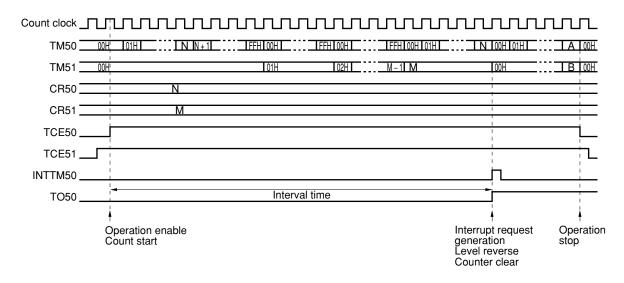
TCL50: Select count clock for TM50.

Cascade-connected TM51 need not be selected.

CR50, CR51: Compare value (each value can be set to 00H to FFH)

TMC50, TMC51: Select the clear & start mode entered on a match between TM50 and CR50 (TM51 and CR51).

 $\text{TM50} \rightarrow \text{TMC50} = \text{0000}{\times}{\times}\text{OB}~\times:~\text{don't care}$


- $\text{TM51} \rightarrow \text{TMC51} = \text{0001} \times \!\!\times \!\!\times \!\!\text{OB} \ \times \!\!: \ \text{don't care}$
- <2> When TMC51 is set to TCE51 = 1 and then TMC50 is set to TCE50 = 1, the count operation starts.
- <3> When the values of TM50 and CR50 of the cascade-connected timer match, INTTM50 of TM50 is generated (TM50 and TM51 are cleared to 00H).
- <4> INTTM50 is generated repeatedly at the same interval.

Cautions 1. Stop the timer operation without fail before setting the compare registers (CR50, CR51).

- 2. INTTM51 of TM51 is generated when the TM51 count value matches CR51, even if cascade connection is used. Be sure to mask TM51 to disable interrupts.
- 3. Set TCE50 and TCE51 in order of TM51 then TM50.
- 4. Count restart/stop can only be controlled by setting TCE50 of TM50 to 1/0.

Figure 9-13 shows an example of 16-bit resolution cascade connection mode timing.

Figure 9-13. 16-Bit Resolution Cascade Connection Mode

★ 9.5 Program List

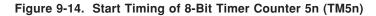
Caution The following sample program is shown as an example to describe the operation of semiconductor products and their applications. Therefore, when applying the following information to your devices, design the devices after performing evaluation under your own responsibility.

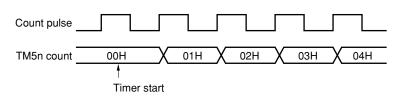
9.5.1 Interval timer (8-bit)

```
/*
                                                                         */
/*
         Timer 50 operation sample
                                                                         */
/*
     Interval timer setting example (cycle change by interrupt servicing)
                                                                         */
/*
                                                                         */
     data[0]: Data set flag (value changed when other than 00)
/*
                                                                         */
     data[1]: Set data
                                                                         */
/*
#pragma sfr
#pragma EI
#pragma DI
#pragma interrupt INTTM50 intervalint rb2
      unsigned char data[2]; /* Data area */
void main(void)
{
      PCC = 0x0;
                                /* Set high-speed operation mode */
                                /* Clear data area */
      data[0] = 0;
      data[1] = 0;
                                /* Set port
                                                 */
                                 /* When using TO50 */
      P7 = 0b11111011;
      PM7.2 = 0;
                                 /* Set P72 to output */
                                /* Set interrupt
      TMMK50 = 0;
                                 /* Clear INTTM50 interrupt mask */
                                /* Set timer 50
                                /* Clear & start mode, initial value L */
      TMC50 = 0b00000111;
                                /* Both rising and falling edges */
      TCL50 = 0b0000101;
                                /* Count clock is fx/2<sup>6</sup> */
                                /* Set interval to 1 ms as initial value */
      CR50 = 131;
                                 /* Timer start */
      TCE50 = 1;
      EI();
                                /* Dummy loop */
      while(1);
}
/* INTTM50 interrupt function */
void intervalint()
{
      if(data[0] != 0)
      {
             CR50 = data[1];
                                /* Set new set value */
             data[0] = 0;
                                /* Clear request flag */
      }
}
```

9.5.2 External event counter

```
/*
                                                */
/*
        Timer 50 operation sample
                                                */
/*
     Event counter setting example
                                                */
/*
                                                */
      data: Count up flag
/*
                                                */
#pragma sfr
#pragma EI
#pragma DI
#pragma interrupt INTTM50 intervalint rb2
     unsigned char data; /* Data area */
void main(void)
{
                            /* Set high-speed operation mode */
     PCC = 0x0;
     data = 0;
                             /* Clear data area */
                              /* Set port
                                                 */
     PM7.2 = 1;
                              /* Set P72 to input */
                          /* Set interrupt
/* Clear INTTM50 interrupt mask
/* Set timer 50
/* Clear & start mode
/* Specify rising edge of TI50
/* Set N = 16 as initial value
/* Timer start
     TMMK50 = 0;
     TMC50 = 0b0000000;
     TCL50 = 0b0000001;
     CR50 = 0x10;
     TCE50 = 1;
      EI();
*/
/*
/*
    Describe the processing to be executed
                                              */
/*
                                              */
while(data == 0);
                              /* Wait for count up */
/*
                                              */
/*
    Describe the processing after count up below
                                              */
/*
                                              * /
/* INTTM50 interrupt function */
void intervalint()
{
                             /* Set count up flag */
/* Timer stop */
     data = 0xff;
     TCE50 = 0;
}
```


9.5.3 Interval timer (16-bit)


```
*/
/*
/*
             Timer 5 operation sample
                                                     */
/*
             Cascade connection setting example
                                                     */
/*
                                                     */
#pragma sfr
#pragma EI
#pragma DI
#define intervalTM5 130
                                /* Cycle data to be set to CR */
#pragma interrupt INTTM50 ppgint rb2
      unsigned char ppgdata[2]; /* Data area to be set to timer 5 */
void main(void)
{
      int interval;
      interval = intervalTM5;
                                /* Select high-speed operation mode */
      PCC = 0x0;
      PCC = 0x0;
ppgdata[0] = 0;
                                /* Clear CR50 data */
/* Clear CR51 data */
/* Set port */
      ppgdata[1] = 0;
                                 /* Clear P72 */
      P7 = 0b11111011;
                                /* Set P72 to output */
      PM7.2 = 0;
                                /* Set interrupt */
                                /* Clear INTTM50 interrupt mask */
      TMMK50 = 0;
                                /* Set INTTM51 interrupt mask */
      TMMK51 = 1;
                                /* Set timer 5 */
      TCE51 = 1;
                                /* Timer starts */
      TCE50 = 1;
      EI();
      while(1);
}
/* Timer 5 interrupt function */
void ppgint()
{
      unsigned int work;
      work = ppgdata[0]+ppgdata[1]*0x100;
      if (work != 0)
      {
             TCE50 =0;
             CR51 = work >> 8;
             CR50 = work & Oxff;
             ppgdata[0] = 0;
             ppgdata[1] = 0;
             if (work != 0xffff)
             {
                    TCE50 = 1; /* Timer resumes */
             }
      }
}
```

9.6 Cautions Related to 8-Bit Timer/Event Counters 50, 51

(1) Timer start errors

An error of up to one clock may occur in the time required for a match signal to be generated after timer start. This is because 8-bit timer counter 5n (TM5n) is started asynchronously to the count pulse.

(2) Setting STOP mode or main system clock stop mode

Except when TI5n input is selected, always set TCE5n = 0 before setting the STOP mode or main system clock stop mode.

The timer may malfunction when the main system clock starts oscillating.

(3) TM5n (n = 0, 1) reading during timer operation

When reading TM5n during operation, the count clock stops temporarily, so select a count clock with a high/lowlevel waveform longer than two cycles of the CPU clock. For example, in the case where the CPU clock (fcPu) is fx, when the selected count clock is fx/4 or below, it can be read.

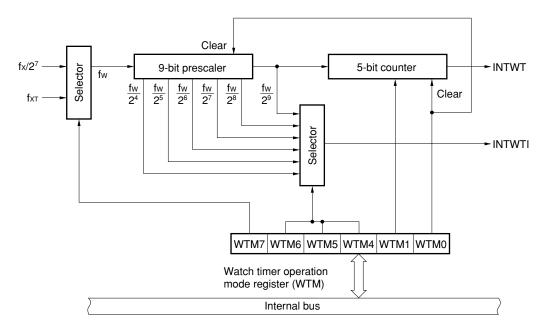
Remark n = 0, 1

CHAPTER 10 WATCH TIMER

10.1 Watch Timer Functions

The watch timer has the following functions.

(1) Watch timer


When the main system clock or subsystem clock is used, interrupt requests (INTWT) are generated at 2¹⁴/fw second intervals.

(2) Interval timer

Interrupt requests (INTWTI) are generated at the preset time interval. For the interval time, see **Table 10-2**.

The watch timer and the interval timer can be used simultaneously. Figure 10-1 shows the watch timer block diagram.

Remark fw: Watch timer clock frequency (fx/2⁷ or fxT)

- fx: Main system clock oscillation frequency
- fxr: Subsystem clock oscillation frequency

10.2 Watch Timer Configuration

The watch timer consists of the following hardware.

Table 10-1. Watch Timer Configuration

Item	Configuration
Counter	5 bits \times 1
Prescaler	9 bits × 1
Control register	Watch timer operation mode register (WTM)

10.3 Register to Control Watch Timer

The watch timer is controlled by the watch timer operation mode register (WTM).

• Watch timer operation mode register (WTM)

This register sets the watch timer count clock, enables/disables operation, sets the prescaler interval time, and controls the 5-bit counter operation.

WTM is set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears WTM to 00H.

Figure 10-2. Format of Watch Timer Operation Mode Register (WTM)

Address: F	F41H Afte	er reset: 00H	R/W					
Symbol	7	6	5	4	3	2	<1>	<0>
WTM	WTM7	WTM6	WTM5	WTM4	0	0	WTM1	WTM0

WTM7	Watch timer count clock selection
0	fx/2 ⁷ (65.4 kHz: fx = 8.38 MHz, 93.7 kHz: fx = 12 MHz ^{Note})
1	fxr (32.768 kHz: fxr = 32.768 kHz)

WTM6	WTM5	WTM4	Prescaler interval time selection
0	0	0	2 ⁴ /fw
0	0	1	2 ⁵ /fw
0	1	0	2 ⁶ /fw
0	1	1	2 ⁷ /fw
1	1 0 0		2 ⁸ /fw
1	0	1	2 ⁹ /fw
Ot	ther than abo	ve	Setting prohibited

WTM1	5-bit counter operation control					
0	Clear after operation stop					
1	Start					
WTM0	Watch timer operation enable					
0	Operation stopped (both prescaler and timer cleared)					
1	Operation enabled					

Note Expanded-specification products of *µ*PD780024A, 780034A Subseries only.

Caution Do not change the count clock and interval time (by using bits 4 to 7 (WTM4 to WTM7) of WTM) while the watch timer is operating.

- **Remarks 1.** fw: Watch timer clock frequency (fx/2⁷ or fxT)
 - 2. fx: Main system clock oscillation frequency
 - **3.** fxT: Subsystem clock oscillation frequency

*

10.4 Watch Timer Operations

10.4.1 Watch timer operation

The watch timer generates an interrupt request (INTWT) at specific time intervals (2¹⁴/fw seconds) by using the main system clock or subsystem clock. The interrupt request is generated at the following time intervals:

- · If main system clock (8.38 MHz) is selected: 0.25 seconds
- If subsystem clock (32.768 kHz) is selected: 0.5 seconds

When bit 0 (WTM0) and bit 1 (WTM1) of the watch timer operation mode register (WTM) are set to 1, the count operation starts, and when these bits are cleared to 0, the 5-bit counter is cleared and the count operation stops.

When the interval timer is simultaneously operated, a zero-second start can be achieved for the watch timer by setting WTM1 to 1 after clearing it to 0. In this case, however, the 9-bit prescaler is not cleared. Therefore, an error up to 2⁹/fw seconds occurs in the first overflow (INTWT) after the zero-second start.

Remark fw: Watch timer clock frequency $(fx/2^7 \text{ or } fx_T)$

10.4.2 Interval timer operation

The watch timer operates as interval timer that generates interrupt requests (INTWTI) repeatedly at an interval of the preset count value.

The interval time can be selected with bits 4 to 6 (WTM4 to WTM6) of the watch timer operation mode register (WTM).

WTM6	WTM5	WTM4	Interval Time	When Operated at fx = 12 MHz ^{Note}	When Operated at fx = 8.38 MHz	When Operated at fx = 4.19 MHz	When Operated at fxT = 32.768 kHz		
0	0	0	2 ⁴ /fw	170 <i>μ</i> s	244 µs	488 µs	488 μs		
0	0	1	2 ⁵ /fw	341 <i>μ</i> s	488 µs	977 μs	976 μs		
0	1	0	2 ⁶ /fw	682 <i>µ</i> s	977 μs	1.95 ms	1.95 ms		
0	1	1	2 ⁷ /fw	1.36 ms	1.95 ms	3.91 ms	3.90 ms		
1	0	0	2 ⁸ /fw	2.73 ms	3.91 ms	7.82 ms	7.81 ms		
1	0	1	2 ⁹ /fw	5.46 ms	7.82 ms	15.6 ms	15.6 ms		
Oth	Other than above			Setting prohibited					

Table 10-2. Interval Timer Interval Time

Note Expanded-specification products of *µ*PD780024A, 780034A Subseries only.

Remark fw: Watch timer clock frequency (fx/2⁷ or fxT)

- fx: Main system clock oscillation frequency
- fxT: Subsystem clock oscillation frequency

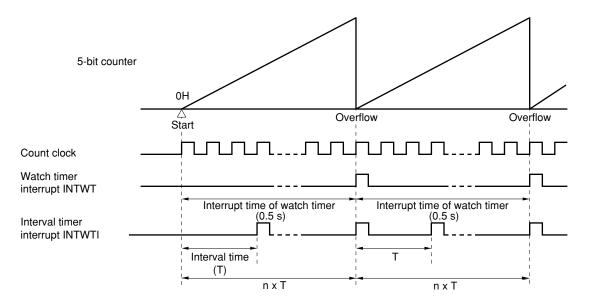


Figure 10-3. Operation Timing of Watch Timer/Interval Timer

- Caution If the watch timer and 5-bit counter are enabled by the watch timer mode control register (WTM) (by setting bits 0 (WTM0) and 1 (WTM1) of WTM to 1), the time from this setting to the occurrence of the first interrupt request (INTWT) is not exactly the value set by bit 3 (WTM3) of WTM. This is because the 5-bit counter is late by one output cycle of the 9-bit prescaler in starting counting. The second INTWT signal and those that follow are generated exactly at the set time.
- Remark fw: Watch timer clock frequency (fx/2⁷ or fxT)
 n: The number of interval timer operations
 Figures in parentheses are for operation with fw = 32.768 kHz.

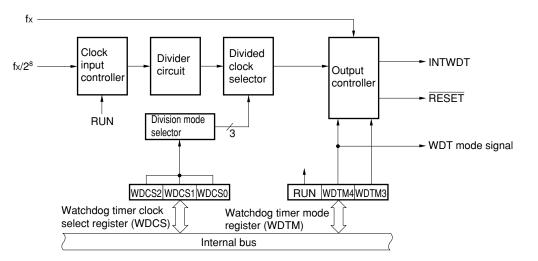
CHAPTER 11 WATCHDOG TIMER

11.1 Watchdog Timer Functions

The watchdog timer has the following functions.

(1) Watchdog timer

The watchdog timer detects a program loop. Upon detection of a program loop, a non-maskable interrupt request or RESET can be generated.


For the loop detection time, see Table 11-2.

(2) Interval timer

Interrupt requests are generated at the preset time intervals. For the interval time, see **Table 11-3**.

Caution Select the watchdog timer mode or the interval timer mode using the watchdog timer mode register (WDTM). (The watchdog timer and the interval timer cannot be used simultaneously.)

Figure 11-1 shows a block diagram of the watchdog timer.

11.2 Watchdog Timer Configuration

The watchdog timer consists of the following hardware.

Table 11-1. Watchdog Timer Configuration

Item	Configuration
Control registers	Watchdog timer clock select register (WDCS) Watchdog timer mode register (WDTM)

11.3 Registers to Control Watchdog Timer

The following two registers are used to control the watchdog timer.

- Watchdog timer clock select register (WDCS)
- Watchdog timer mode register (WDTM)

(1) Watchdog timer clock select register (WDCS)

This register sets the overflow time of the watchdog timer and the interval timer. WDCS is set by an 8-bit memory manipulation instruction. RESET input clears WDCS to 00H.

Figure 11-2. Format of Watchdog Timer Clock Select Register (WDCS)

Address: FF42H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
WDCS	0	0	0	0	0	WDCS2	WDCS1	WDCS0

4	١.
,	٩

WDCS2	WDCS1	WDCS0	Overflow time of watchdog timer/interval timer						
				fx = 8.38 MHz	fx = 12 MHz ^{Note}				
0	0	0	2 ¹² /fx	488 <i>µ</i> s	341 <i>μ</i> s				
0	0	1	2 ¹³ /fx	977 μs	682 μs				
0	1	0	2 ¹⁴ /fx	1.95 ms	1.36 ms				
0	1	1	2 ¹⁵ /fx	3.91 ms	2.73 ms				
1	0	0	2 ¹⁶ /fx	7.82 ms	5.46 ms				
1	0	1	2 ¹⁷ /fx	15.6 ms	10.9 ms				
1	1	0	2 ¹⁸ /fx	31.2 ms	21.8 ms				
1	1	1	2 ²⁰ /fx	125 ms	87.3 ms				

Note Expanded-specification products of *µ*PD780024A, 780034A Subseries only.

Remark fx: Main system clock oscillation frequency

(2) Watchdog timer mode register (WDTM)

This register sets the watchdog timer operating mode and enables/disables counting. WDTM is set by a 1-bit or 8-bit memory manipulation instruction. RESET input clears WDTM to 00H.

Figure 11-3. Format of Watchdog Timer Mode Register (WDTM)

Address: F	FF9H Afte	er reset: 00H	R/W					
Symbol	<7>	6	5	4	3	2	1	0
WDTM	RUN	0	0	WDTM4	WDTM3	0	0	0

RUN	Watchdog timer operation mode selection Note 1	
0	Count stop	
1	Counter is cleared and counting starts	

WDTM4	WDTM3	Watchdog timer operation mode selection Note 2	
0	×	Interval timer mode ^{Note 3} (Maskable interrupt request occurs upon generation of overflow)	
1	0	Watchdog timer mode 1 (Non-maskable interrupt request occurs upon generation of overflow)	
1	1	Watchdog timer mode 2 (Reset operation is activated upon generation of overflow)	

Notes 1. Once set to 1, RUN cannot be cleared to 0 by software.

Thus, once counting starts, it can only be stopped by RESET input.

- 2. Once set to 1, WDTM3 and WDTM4 cannot be cleared to 0 by software.
- 3. The watchdog timer starts operation as an interval timer when RUN is set to 1.

Caution When RUN is set to 1 so that the watchdog timer is cleared, the actual overflow time is up to $2^{8}/fx$ seconds shorter than the time set by the watchdog timer clock select register (WDCS).

Remark ×: Don't care

11.4 Watchdog Timer Operations

11.4.1 Watchdog timer operation

When bit 4 (WDTM4) of the watchdog timer mode register (WDTM) is set to 1, the watchdog timer is operated to detect a program loop.

The loop detection time interval is selected with bits 0 to 2 (WDCS0 to WDCS2) of the watchdog timer clock select register (WDCS). The watchdog timer starts by setting bit 7 (RUN) of WDTM to 1. After the watchdog timer is started, set RUN to 1 within the set loop time interval. The watchdog timer can be cleared and counting is started by setting RUN to 1.

If RUN is not set to 1 and the loop detection time is exceeded, system reset or a non-maskable interrupt request is generated according to the value of WDTM bit 3 (WDTM3).

The watchdog timer continues operating in the HALT mode but it stops in the STOP mode. Thus, set RUN to 1 before the STOP mode is set, clear the watchdog timer and then execute the STOP instruction.

Cautions 1. The actual loop detection time may be shorter than the set time by up to 2⁸/fx seconds.

When the subsystem clock is selected for the CPU clock, the watchdog timer count operation is stopped.

Loop Detection Time	When Operated at fx = 8.38 MHz	When Operated at fx = 12 MHz ^{Note}
2 ¹² /fx	488 µs	341 <i>μ</i> s
2 ¹³ /fx	977 μs	682 µs
2 ¹⁴ /fx	1.95 ms	1.36 ms
2 ¹⁵ /fx	3.91 ms	2.73 ms
2 ¹⁶ /fx	7.82 ms	5.46 ms
2 ¹⁷ /fx	15.6 ms	10.9 ms
2 ¹⁸ /fx	31.2 ms	21.8 ms
2 ²⁰ /fx	125 ms	87.3 ms

Table 11-2. Watchdog Timer Loop Detection Time

Note Expanded-specification products of µPD780024A, 780034A Subseries only.

Remark fx: Main system clock oscillation frequency

11.4.2 Interval timer operation

The watchdog timer operates as an interval timer that generates interrupt requests repeatedly at an interval of the preset count value when bit 4 (WDTM4) of the watchdog timer mode register (WDTM) is cleared to 0.

The interval time of the interval timer is selected with bits 0 to 2 (WDCS0 to WDCS2) of the watchdog timer clock select register (WDCS). When bit 7 (RUN) of WDTM is set to 1, the watchdog timer operates as an interval timer.

When the watchdog timer operates as an interval timer, the interrupt mask flag (WDTMK) and priority specification flag (WDTPR) are validated and the maskable interrupt request (INTWDT) can be generated. Among the maskable interrupts, INTWDT has the highest priority at default.

The interval timer continues operating in the HALT mode but it stops in STOP mode. Thus, set RUN to 1 before the STOP mode is set, clear the interval timer and then execute the STOP instruction.

- Cautions 1. Once bit 4 (WDTM4) of WDTM is set to 1 (this selects the watchdog timer mode), the interval timer mode is not set unless **RESET** is input.
 - 2. The interval time just after setting WDTM may be shorter than the set time by up to 2⁸/fx seconds.
 - 3. When the subsystem clock is selected for the CPU clock, the watchdog timer count operation is stopped.

Interval Time	When Operated at fx = 8.38 MHz	When Operated at fx = 12 MHz ^{Note}
2 ¹² /fx	488 μs	341 <i>μ</i> s
2 ¹³ /fx	977 μs	682 <i>µ</i> s
2 ¹⁴ /fx	1.95 ms	1.36 ms
2 ¹⁵ /fx	3.91 ms	2.73 ms
2 ¹⁶ /fx	7.82 ms	5.46 ms
2 ¹⁷ /fx	15.6 ms	10.9 ms
2 ¹⁸ /fx	31.2 ms	21.8 ms
2 ²⁰ /fx	125 ms	87.3 ms

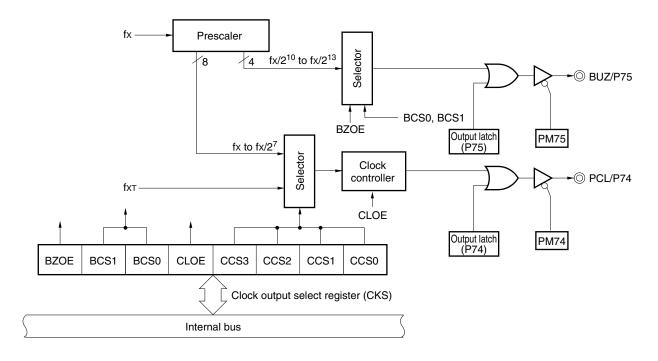
Table 11-3. Interval Timer Interval Time

Note Expanded-specification products of µPD780024A, 780034A Subseries only.

Remark fx: Main system clock oscillation frequency

CHAPTER 12 CLOCK OUTPUT/BUZZER OUTPUT CONTROLLER

12.1 Clock Output/Buzzer Output Controller Functions


Clock output is used for carrier output during remote controlled transmission and clock output for supply to peripheral ICs. The clock selected by the clock output select register (CKS) is output.

In addition, buzzer output is used for square-wave output of the buzzer frequency selected by CKS.

Figure 12-1 shows the block diagram of the clock output/buzzer output controller.

12.2 Configuration of Clock Output/Buzzer Output Controller

The clock output/buzzer output controller consists of the following hardware.

Table 12-1. Configuration of Clock Output/Buzzer Output Controller

Item	Configuration
Control registers	Clock output select register (CKS) Port mode register (PM7) Port 7 (P7)

12.3 Register to Control Clock Output/Buzzer Output Controller

The following three registers are used to control the clock output/buzzer output controller.

- Clock output select register (CKS)
- Port mode register (PM7)
- Port 7 (P7)

(1) Clock output select register (CKS)

This register sets output enable/disable for clock output (PCL) and for the buzzer frequency output (BUZ), and sets the output clock.

CKS is set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears CKS to 00H.

Figure 12-2. Format of Clock Output Select Register (CKS)

Symbol	<7>	6	5	<4>	3	2	1		0	
CKS	BZOE	BCS1	BCS0	CLOE	CCS3	CCS2	CC	S1	CCS0	
		i								
	BZOE				enable/disable		ו			
	0				ed to low leve					
	1	Enable cloo	ck divider ope	eration. BUZ	output enable	ed.				
	BCS1	BCS0			BUZ output c	lock selectior	<u></u> ו			
					fx = 8.3			= 12 N	1Hz ^{Note}	
	0	0	fx/2 ¹⁰		8.18 kHz		11.7	kHz		
	0	1	fx/2 ¹¹		4.09 kHz	4.09 kHz		5.85 kHz		
	1	0	fx/2 ¹²		2.04 kHz		2.92	2.92 kHz		
[1	1	fx/2 ¹³		1.02 kHz		1.46 kHz			
	CLOE		PCL output enable/disable specification							
	0	Stop clock	Stop clock divider operation. PCL fixed to low level.							
	1	Enable cloo	ck divider ope	eration. PCL	output enable	ed.				
	CCS3	CCS2	CCS1	CCS0		PCL output c	lock se	lection		
						fx = 8.38			2 MHz ^{No}	
	0	0	0	0	fx	8.38 MH	z	12 M	Hz	
	0	0	0	1	fx/2	4.19 MH	z	6 MH	Z	
	0	0	1	0	fx/2 ²	2.09 MH	z	3 MH	Z	
	0	0	1	1	fx/2 ³	1.04 MH	z	1.5 M	lHz	
	0	1	0	0	fx/2 ⁴	523 kHz		750 k	Hz	
	0	1	0	1	fx/2 ⁵	261 kHz		375 k	Hz	
	0	1	1	0	fx/2 ⁶	130 kHz		187 k	Hz	
	0	1	1	1	fx/2 ⁷	65.4 kHz	2	93.7	kHz	
	1	0	0	0	fxт (32.768	kHz)				
-		Other the	an above		Setting prohibited					

Note Expanded-specification products of μ PD780024A, 780034A Subseries only.

Remarks 1. fx: Main system clock oscillation frequency

- 2. fxT: Subsystem clock oscillation frequency
- 3. Figures in parentheses are for operation with fxT = 32.768 kHz.

*

★

(2) Port mode register (PM7)

This register sets port 7 input/output in 1-bit units.

When using the P74/PCL pin for clock output and the P75/BUZ pin for buzzer output, clear PM74, PM75 and the output latches of P74 and P75 to 0.

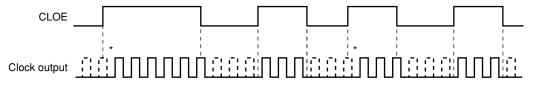
PM7 is set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets PM7 to FFH.

Figure 12-3. Format of Port Mode Register 7 (PM7)

Address:	FF27H After reset: FFH			R/W				
Symbol	7	6	5	4	3	2	1	0
PM7	1	1	PM75	PM74	PM73	PM72	PM71	PM70

PM7n	P7n pin I/O mode selection (n = 0 to 5)
0	Output mode (output buffer on)
1	Input mode (output buffer off)


12.4 Operation of Clock Output/Buzzer Output Controller

12.4.1 Operation as clock output

The clock pulse is output using the following procedure.

- <1> Select the clock pulse output frequency using bits 0 to 3 (CCS0 to CCS3) of the clock output select register (CKS) (clock pulse output in disabled state).
- <2> Set bit 4 (CLOE) of CKS to 1, and enable clock output.
- **Remark** The clock output controller is designed not to output pulses with a small width during output enable/ disable switching of the clock output. As shown in Figure 12-4, be sure to start output from the low period of the clock (marked with * in the figure). When stopping output, do so after securing the high level of the clock.

Figure 12-4. Remote Control Output Application Example

12.4.2 Operation as buzzer output

The buzzer frequency is output using the following procedure.

- <1> Select the buzzer output frequency using bits 5 and 6 (BCS0, BCS1) of the clock output select register (CKS) (buzzer output in disabled state).
- <2> Set bit 7 (BZOE) of CKS to 1 to enable buzzer output.

CHAPTER 13 8-BIT A/D CONVERTER (µPD780024A, 780024AY SUBSERIES)

13.1 A/D Converter Functions

A/D converter is an 8-bit resolution converter that converts analog inputs into digital values. It can control up to 8 analog input channels (ANI0 to ANI7).

(1) Hardware start

Conversion is started by trigger input (ADTRG: rising edge, falling edge, or both rising and falling edges can be specified).

(2) Software start

Conversion is started by setting A/D converter mode register 0 (ADM0).

Select one channel for analog input from ANI0 to ANI7 to perform A/D conversion. In the case of hardware start, A/D conversion stops when an A/D conversion operation ends and an interrupt request (INTAD0) is generated. In the case of software start, A/D conversion is repeated. Each time an A/D conversion operation ends, an interrupt request (INTAD0) is generated.

Caution Although the μ PD78F0034A, 78F0034B, 78F0034AY, and 78F0034BY incorporate a 10-bit A/D converter, this converter can be operated as an 8-bit A/D converter by using the device file DF780024.

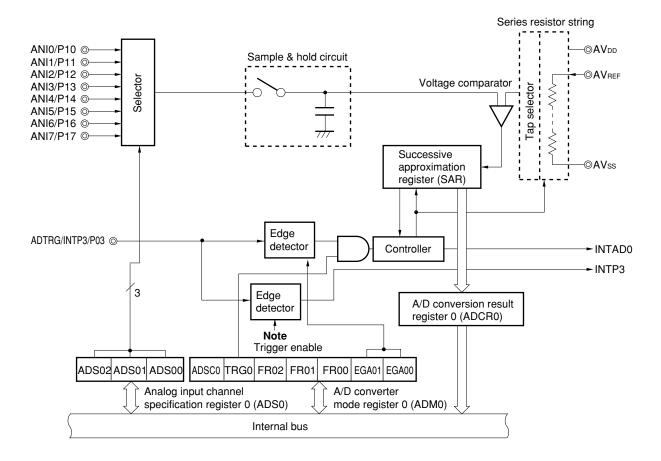


Figure 13-1. 8-Bit A/D Converter Block Diagram

Note The valid edge of external interrupt is specified by bit 3 of the EGP and EGN registers (see Figure 19-5 Format of External Interrupt Rising Edge Enable Register (EGP), External Interrupt Falling Edge Enable Register (EGN)).

13.2 A/D Converter Configuration

The A/D converter consists of the following hardware.

Table 13	8-1. A/D	Converter	Configuration
----------	----------	-----------	---------------

Item	Configuration
Analog input	8 channels (ANI0 to ANI7)
Hardware trigger input	1 (ADTRG)
Registers	Successive approximation register (SAR) A/D conversion result register 0 (ADCR0)
Control registers	A/D converter mode register 0 (ADM0) Analog input channel specification register 0 (ADS0)

(1) Successive approximation register (SAR)

This register compares the analog input voltage value to the voltage tap (compare voltage) value applied from the series resistor string, and holds the result from the most significant bit (MSB).

When up to the least significant bit (LSB) is held (end of A/D conversion), the SAR contents are transferred to A/D conversion result register 0 (ADCR0).

(2) A/D conversion result register 0 (ADCR0)

The ADCR0 is an 8-bit register that stores the A/D conversion result. Each time A/D conversion ends, the conversion result is loaded from the successive approximation register.

ADCR0 is read by an 8-bit memory manipulation instruction.

RESET input clears ADCR0 to 00H.

Caution When writing is performed to A/D converter mode register 0 (ADM0) and analog input channel specification register 0 (ADS0), the contents of ADCR0 may become undefined. Read the conversion result following conversion completion before writing to ADM0, ADS0. Using a timing other than the above may cause an incorrect conversion result to be read.

(3) Sample & hold circuit

*

The sample & hold circuit samples the input signal of the analog input pin selected by the selector when A/D conversion is started and holds the sampled analog input voltage value during A/D conversion.

(4) Voltage comparator

The voltage comparator compares the sampled analog input voltage to the series resistor string output voltage.

(5) Series resistor string

The series resistor string is connected between AV_{REF} and AV_{SS}, and generates a voltage to be compared to the analog input.

(6) ANI0 to ANI7 pins

These are eight analog input pins to input analog signals to undergo A/D conversion to the A/D converter. ANIO to ANI7 are alternate-function pins that can also be used for digital input.

- Cautions 1. Use ANI0 to ANI7 input voltages within the specification range. If a voltage higher than AVREF or lower than AVss is applied (even if within the absolute maximum rating range), the conversion value of that channel will be undefined and the conversion values of other channels may also be affected.
 - Analog input (ANI0 to ANI7) pins are alternate function pins that can also be used as input port (P10 to P17) pins. When A/D conversion is performed by selecting any one of ANI0 to ANI7, do not access port 1 during conversion. It may cause the lower conversion resolution.
 - 3. When a digital pulse is applied to a pin adjacent to the pin in the process of A/D conversion, A/D conversion values may not be obtained as expected due to coupling noise. Thus, do not apply any pulse to a pin adjacent to the pin in the process of A/D conversion.

(7) AVREF pin

This pin inputs the A/D converter reference voltage.

It converts signals input to ANI0 to ANI7 into digital signals according to the voltage applied between AVREF and AVss.

Caution A series resistor string of several 10 kΩ is connected between the AVREF pin and AVss pin. Therefore, when the output impedance of the reference voltage is too high, it seems as if the AVREF pin and the series resistor string are connected in series. This may cause a greater reference voltage error.

(8) AVss pin

This is the ground potential pin of the A/D converter. Always keep it at the same potential as the V_{SS0} or V_{SS1} pin even when not using the A/D converter.

(9) AVDD pin

This is the A/D converter analog power supply pin. Always keep it at the same potential as the V_{DD0} or V_{DD1} pin even when not using the A/D converter.

★ (10) ADTRG pin

This pin is a pin used to start the A/D converter by hardware.

13.3 Registers to Control A/D Converter

The following 2 types of registers are used to control the A/D converter.

- A/D converter mode register 0 (ADM0)
- Analog input channel specification register 0 (ADS0)

(1) A/D converter mode register 0 (ADM0)

This register sets the conversion time for analog input to be A/D converted, conversion start/stop, and external trigger.

ADM0 is set by a 1-bit or 8-bit memory manipulation instruction. RESET input clears ADM0 to 00H.

Figure 13-2. Format of A/D Converter Mode Register 0 (ADM0)

Address: FF80H After reset: 00H R/W								
Symbol	<7>	<6>	5	4	3	2	1	0
ADM0	ADCS0	TRG0	FR02	FR01	FR00	EGA01	EGA00	0

ADCS0	A/D conversion operation control			
0	Stop conversion operation.			
1	Enable conversion operation.			

TRG0	Software start/hardware start selection
0	Software start
1	Hardware start

FR02	FR01	FR00	Conversion time selection Note 1				
				fx = 8.38 MHz	fx = 12 MHz ^{Note 2}		
0	0	0	144/fx	17.1 μs	12.0 μs		
0	0	1	120/fx	14.3 μs	10.0 μs ^{Note 4}		
0	1	0	96/fx	11.4 μs ^{Note 3}	8.0 μs ^{Note 4}		
1	0	0	72/fx	8.5 μs ^{Note 3}	6.0 μs ^{Note 4}		
1	0	1	60/fx	7.1 μs ^{Note 3}	5.0 μs ^{Note 4}		
1	1	0	48/fx	5.7 μs ^{Note 3}	4.0 μs ^{Note 4}		
Ot	her than abo	ve	Setting prohibited				

EGA01	EGA00	External trigger signal, edge specification
0	0	No edge detection
0	1	Falling edge detection
1	0	Rising edge detection
1	1	Both falling and rising edge detection

Notes 1. Set the A/D conversion time as follows.

- When operated at fx = 12 MHz (V_{DD} = 4.5 to 5.5 V): 12 μ s or more
- When operated at fx = 8.38 MHz (V_{DD} = 4.0 to 5.5 V): 14 μ s or more
- **2.** Expanded-specification products of μ PD780024A Subseries only.
- 3. Setting is prohibited because the A/D conversion time is less than 14 μ s.
- 4. Setting is prohibited because the A/D conversion time is less than 12 μ s.

Caution When rewriting FR00 to FR02 to other than the same data, stop A/D conversion operations once prior to performing rewrite.

Remark fx: Main system clock oscillation frequency

★

(2) Analog input channel specification register 0 (ADS0)

This register specifies the analog voltage input port for A/D conversion. ADS0 is set by an 8-bit memory manipulation instruction. RESET input clears ADS0 to 00H.

Figure 13-3. Format of Analog Input Channel Specification Register 0 (ADS0)

Address: FF81H After reset: 00H R/W

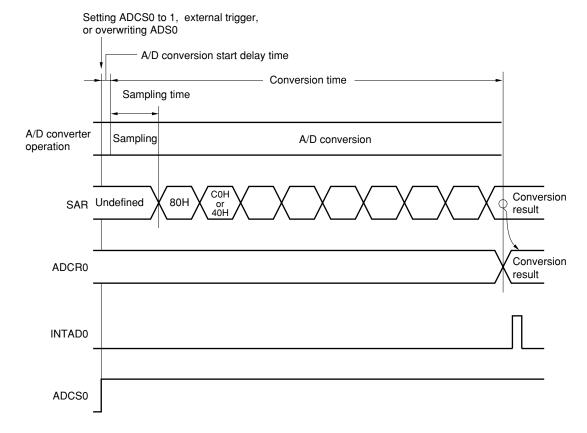
Symbol	7	6	5	4	3	2	1	0
ADS0	0	0	0	0	0	ADS02	ADS01	ADS00

ADS02	ADS01	ADS00	Analog input channel specification
0	0	0	ANIO
0	0	1	ANI1
0	1	0	ANI2
0	1	1	ANI3
1	0	0	ANI4
1	0	1	ANI5
1	1	0	ANI6
1	1	1	ANI7

13.4 A/D Converter Operations

13.4.1 Basic operations of A/D converter

- <1> Select one channel for A/D conversion with analog input channel specification register 0 (ADS0).
- <2> The voltage input to the selected analog input channel is sampled by the sample & hold circuit.
- <3> When sampling has been done for a certain time, the sample & hold circuit is placed in the hold state and the input analog voltage is held until the A/D conversion operation is ended.
- <4> Bit 7 of the successive approximation register (SAR) is set. The series resistor string voltage tap is set to (1/2) AVREF by the tap selector.
- <5> The voltage difference between the series resistor string voltage tap and analog input is compared by the voltage comparator. If the analog input is greater than (1/2) AVREF, the MSB of SAR remains set. If the analog input is smaller than (1/2) AVREF, the MSB is reset.
- <6> Next, bit 6 of SAR is automatically set, and the operation proceeds to the next comparison. The series resistor string voltage tap is selected according to the preset value of bit 7, as described below.
 - Bit 7 = 1: (3/4) AVREF
 - Bit 7 = 0: (1/4) AVREF


The voltage tap and analog input voltage are compared and bit 6 of SAR is manipulated as follows.

- Analog input voltage ≥ Voltage tap: Bit 6 = 1
- Analog input voltage < Voltage tap: Bit 6 = 0
- <7> Comparison is continued in this way up to bit 0 of SAR.
- <8> Upon completion of the comparison of 8 bits, an effective digital result value remains in SAR, and the result value is transferred to and latched in A/D conversion result register 0 (ADCR0).

At the same time, the A/D conversion end interrupt request (INTAD0) can also be generated.

- ★ Cautions 1. The first A/D conversion value immediately after A/D conversion has been started may not satisfy the rated value. Take measures such as polling the A/D conversion end interrupt request (INTAD0) and removing the first conversion results.
 - 2. The A/D converter stops operation in standby mode.

Figure 13-4. Basic Operation of 8-Bit A/D Converter

A/D conversion operations are performed continuously until bit 7 (ADCS0) of A/D converter mode register 0 (ADM0) is reset (0) by software.

RESET input clears A/D conversion result register 0 (ADCR0) to 00H.

Confirm the conversion results by referring to the A/D conversion end interrupt request flag (ADIF0).

The sampling time of the A/D converter varies depending on the values set in A/D converter mode register 0 (ADM0). There is a delay time from when the A/D converter is enabled for operation until sampling is actually performed. For the sets in which a strict A/D conversion time is required, note the contents described in Table 13-2.

*

\star

Table 13-2. Sampling Time and A/D Conversion Start Delay Time of A/D Converter

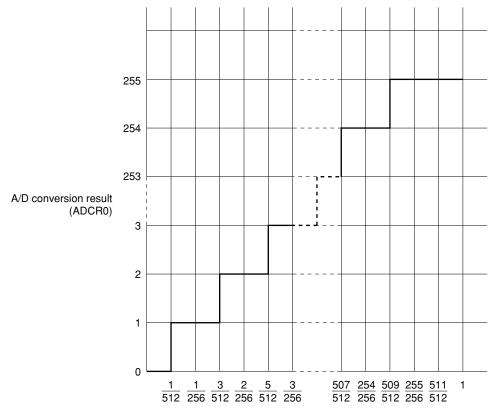
FR02	FR01	FR00	Conversion Time ^{Note 1}	onversion Time Note 1 Sampling Time A/D Conversion		Start Delay Time		
					MIN.	MAX.		
0	0	0	144/fx	20/fx	0.5/fcpu + 6/fx	0.5/fcpu + 8/fx		
0	0	1	120/fx	16/fx				
0	1	0	96/fx	12/fx				
1	0	0	72/fx	10/fx	0.5/fcpu + 3/fx	0.5/fcpu + 4/fx		
1	0	1	60/fx	8/fx				
1	1	0	48/fx	6/fx				
Other than above		Setting prohibited	_	_	_			

- Notes 1. Set the A/D conversion time as follows.
 - When operated at fx = 12 MHz^{Note 2} (V_{DD} = 4.5 to 5.5 V): 12 μ s or more
 - When operated at fx = 8.38 MHz (VDD = 4.0 to 5.5 V): 14 μ s or more
 - **2.** Expanded-specification products of μ PD780024A Subseries only.
- Remark fx: Main system clock oscillation frequency fcpu: CPU clock frequency

13.4.2 Input voltage and conversion results

The relationship between the analog input voltage input to the analog input pins (ANI0 to ANI7) and the theoretical A/D conversion result (stored in A/D conversion result register 0 (ADCR0)) is shown by the following expression.

$$ADCR0 = INT \ (\frac{V_{IN}}{AV_{REF}} \times 256 + 0.5)$$


or

$$(\text{ADCR0} - 0.5) \times \frac{\text{AV}_{\text{REF}}}{256} \le \text{V}_{\text{IN}} < (\text{ADCR0} + 0.5) \times \frac{\text{AV}_{\text{REF}}}{256}$$

where, INT(): Function which returns integer part of value in parentheses VIN: Analog input voltage AVREF: AVREF pin voltage ADCR0: A/D conversion result register 0 (ADCR0) value

Figure 13-5 shows the relationship between the analog input voltage and the A/D conversion result.

Input voltage/AVREF

13.4.3 A/D converter operation mode

Select one analog input channel from among ANI0 to ANI7 using analog input channel specification register 0 (ADS0) to start A/D conversion.

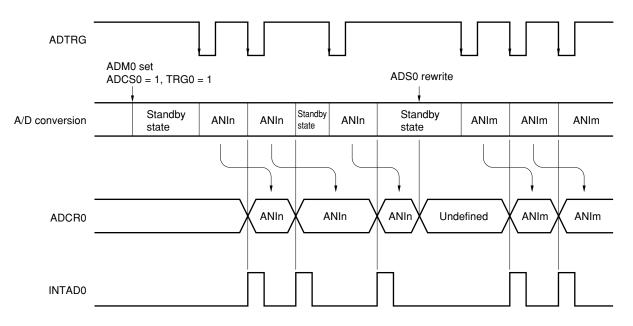
A/D conversion can be started in either of the following two ways.

- Hardware start: Conversion is started by trigger input (rising edge, falling edge, or both rising and falling edges enabled).
- Software start: Conversion is started by setting A/D converter mode register 0 (ADM0).
- * When A/D conversion is complete, the interrupt request signal (INTAD0) is generated.

(1) A/D conversion by hardware start

When bit 6 (TRG0) and bit 7 (ADCS0) of A/D converter mode register 0 (ADM0) are set to 1, the A/D conversion standby state is set. When the external trigger signal (ADTRG) is input, A/D conversion of the voltage applied to the analog input pin specified by analog input channel specification register 0 (ADS0) starts.

Upon the end of A/D conversion, the conversion result is stored in A/D conversion result register 0 (ADCR0), and the interrupt request signal (INTAD0) is generated. After one A/D conversion operation is started and finished, the next conversion operation is not started until a new external trigger signal is input.


If ADS0 is rewritten during A/D conversion, the converter suspends A/D conversion and waits for a new external trigger signal to be input. When the external trigger input signal is reinput, A/D conversion is carried out from the beginning. If ADS0 is rewritten during A/D conversion standby, A/D conversion starts when the following external trigger input signal is input.

If 1 is written to ADCS0 again during A/D conversion, the A/D conversion in progress is discontinued and a new A/D conversion is started when the next external trigger input signal is input.

If 0 is written to ADCS0 during A/D conversion, the A/D conversion operation stops immediately.

Caution When P03/INTP3/ADTRG is used as the external trigger input (ADTRG), specify the valid edge using bits 1, 2 (EGA00, EGA01) of A/D converter mode register 0 (ADM0) and set the interrupt mask flag (PMK3) to 1.

Figure 13-6. A/D Conversion by Hardware Start (When Falling Edge Is Specified)

Remarks 1. n = 0, 1,, 7 **2.** m = 0, 1,, 7

(2) A/D conversion by software start

When bit 6 (TRG0) and bit 7 (ADCS0) of A/D converter mode register 0 (ADM0) are set to 0 and 1, respectively, A/D conversion of the voltage applied to the analog input pin specified by analog input channel specification register 0 (ADS0) starts.

Upon the end of the A/D conversion, the conversion result is stored in A/D conversion result register 0 (ADCR0), and the interrupt request signal (INTAD0) is generated. After one A/D conversion operation is started and ended, the next conversion operation is immediately started. A/D conversion operations are repeated until new data is written to ADS0.

If ADS0 is rewritten during A/D conversion, the converter suspends A/D conversion and A/D conversion of the newly selected analog input channel is started.

If 1 is written to ADCS0 again during A/D conversion, the A/D conversion in progress is discontinued and a new A/D conversion is started.

If 0 is written to ADCS0 during A/D conversion, the A/D conversion operation stops immediately.

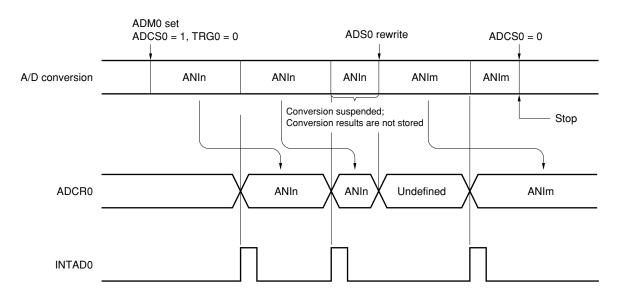


Figure 13-7. A/D Conversion by Software Start

Remarks 1. n = 0, 1,, 7 **2.** m = 0, 1,, 7

13.5 How to Read A/D Converter Characteristics Table

Here we will explain the special terms unique to A/D converters.

(1) Resolution

This is the minimum analog input voltage that can be identified. That is, the percentage of the analog input voltage per 1 bit of digital output is called 1LSB (Least Significant Bit). The percentage of 1LSB with respect to the full scale is expressed by %FSR (Full Scale Range).

When the resolution is 8 bits,

 $1LSB = 1/2^8 = 1/256$ = 0.4%FSR

Accuracy has no relation to resolution, but is determined by overall error.

(2) Overall error

This shows the maximum error value between the actual measured value and the theoretical value. Zero scale error, full scale error, integral linearity error, differential linearity error and errors which are combinations of these express overall error.

Furthermore, quantization error is not included in overall error in the characteristics table.

(3) Quantization error

When analog values are converted to digital values, there naturally occurs a $\pm 1/2$ LSB error. In an A/D converter, an analog input voltage in a range of $\pm 1/2$ LSB are converted to the same digital code, so a quantization error cannot be avoided.

Furthermore, it is not included in the overall error, zero scale error, full scale error, integral linearity error, and differential linearity error in the characteristics table.

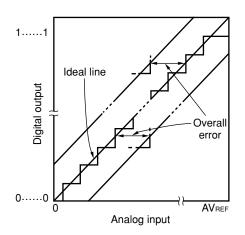
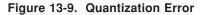
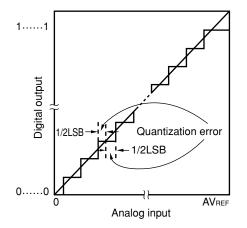




Figure 13-8. Overall Error

(4) Zero scale error

This shows the difference between the actual measured value of the analog input voltage and the theoretical value (1/2LSB) when the digital output changes from 0.....000 to 0.....001. If the actual measured value is greater than the theoretical value, it shows the difference between the actual measured value of the analog input voltage and the theoretical value (3/2LSB) when the digital output changes from 0.....001 to 0.....001 to 0.....001.

(5) Full scale error

This shows the difference between the actual measured value of the analog input voltage and the theoretical value (full scale -3/2LSB) when the digital output changes from 1.....110 to 1.....111.

(6) Integral linearity error

This shows the degree to which the conversion characteristics deviate from the ideal linear relationship. It expresses the maximum value of the difference between the actual measured value and the ideal straight line when the zero scale error and full scale error are 0.

(7) Differential linearity error

Although the ideal output width for a given code is 1LSB, this value shows the difference between the actual measured value and the ideal value of the width when outputting a particular code.

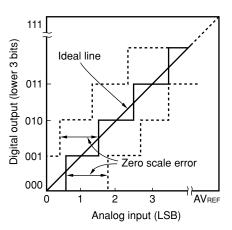


Figure 13-12. Integral Linearity Error

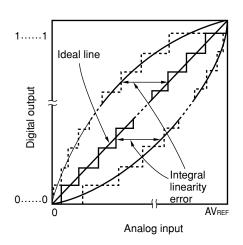


Figure 13-11. Full Scale Error

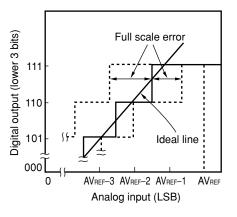
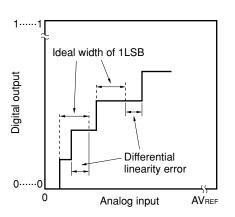



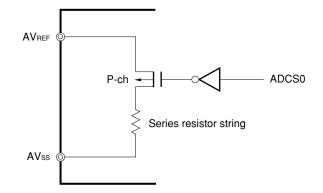
Figure 13-13. Differential Linearity Error

(8) Conversion time

This expresses the time from when the sampling was started to the time when the digital output was obtained. Sampling time is included in the conversion time in the characteristics table.

(9) Sampling time

This is the time the analog switch is turned on for the analog voltage to be sampled by the sample & hold circuit.


Sampling time	Conversion time —

13.6 A/D Converter Cautions

(1) Power consumption in standby mode

A/D converter stops operating in the standby mode. At this time, power consumption can be reduced by stopping the conversion operation (by clearing bit 7 (ADCS0) of A/D converter mode register 0 (ADM0) to 0). Figure 13-14 shows the circuit configuration of a series resistor string.

Figure 13-14. Circuit Configuration of Series Resistor String

(2) Input range of ANI0 to ANI7

The input voltages of ANI0 to ANI7 should be within the specification range. In particular, if a voltage higher than AV_{REF} or lower than AV_{SS} is input (even if within the absolute maximum rating range), the conversion value of that channel will be undefined and the conversion values of other channels may also be affected.

(3) Contending operations

- <1> Contention between A/D conversion result register 0 (ADCR0) write and ADCR0 read by instruction upon the end of conversion ADCR0 read is given priority. After the read operation, the new conversion result is written to ADCR0.
- <2> Contention between ADCR0 write and external trigger signal input upon the end of conversion The external trigger signal is not accepted during A/D conversion. Therefore, the external trigger signal is not accepted during ADCR0 write.
- <3> Contention between ADCR0 write and A/D converter mode register 0 (ADM0) write or analog input channel specification register 0 (ADS0) write upon the end of conversion ADM0 or ADS0 write is given priority. ADCR0 write is not performed, nor is the conversion end interrupt request signal (INTAD0) generated.

(4) ANI0/P10 to ANI7/P17

- <1> The analog input pins (ANI0 to ANI7) also function as input port pins (P10 to P17). When A/D conversion is performed with any of pins ANI0 to ANI7 selected, do not access port 1 while conversion is in progress, as this may reduce the conversion resolution.
- <2> If digital pulses are applied to the pin adjacent to a pin in the process of A/D conversion, the expected A/D conversion value may not be obtainable due to coupling noise. Therefore, avoid applying pulses to the pin adjacent to a pin undergoing A/D conversion.

(5) AVREF pin input impedance

A series resistor string is connected between the AVREF pin and the AVss pin.

Therefore, when the output impedance of the reference voltage is too high, it seems as if the AVREF pin and the series resistor string are connected in series. This may cause a greater reference voltage error.

(6) Interrupt request flag (ADIF0)

*

The interrupt request flag (ADIF0) is not cleared even if analog input channel specification register 0 (ADS0) is changed.

Therefore, if an analog input pin is changed during A/D conversion, the A/D conversion result and conversion end interrupt request flag for the pre-change analog input may be set just before the ADS0 rewrite. Caution is therefore required since, at this time, when ADIF0 is read immediately just after the ADS0 rewrite, ADIF0 is set despite the fact that the A/D conversion for the post-change analog input has not finished. When A/D conversion is restarted after it is stopped, clear ADIF0 before restart.

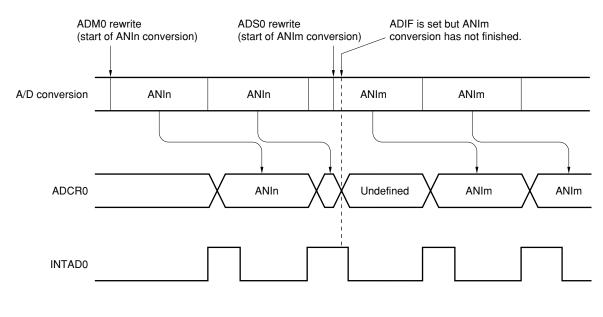


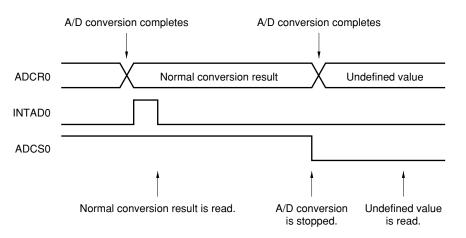
Figure 13-15. A/D Conversion End Interrupt Request Generation Timing

Remarks 1. n = 0, 1,, 7 **2.** m = 0, 1,, 7

(7) Conversion results just after A/D conversion start

The A/D conversion value immediately after A/D conversion has been started may not satisfy the rated value. Take measures such as polling the A/D conversion end interrupt request (INTAD0) and removing the first conversion results.

(8) A/D conversion result register 0 (ADCR0) read operation

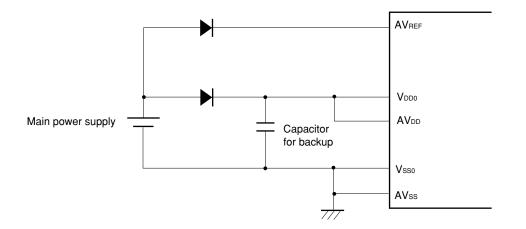

When A/D converter mode register 0 (ADM0) and analog input channel specification register 0 (ADS0) are written, the contents of ADCR0 may become undefined. Read the conversion result following conversion completion before writing to ADM0 and ADS0. Using a timing other than the above may cause an incorrect conversion result to be read.

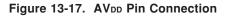
(9) Timing at which A/D conversion result is undefined

The A/D conversion value may be undefined if the timing of completion of A/D conversion and the timing of stopping the A/D conversion conflict with each other. Therefore, read the A/D conversion result before stopping the A/D conversion operation.

Figure 13-16 shows the timing of reading the conversion result.

(10) Notes on board design

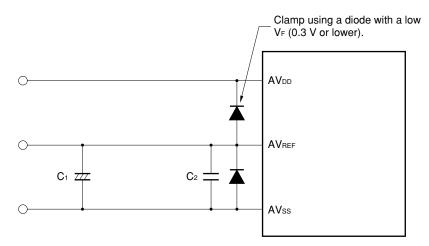

Locate analog circuits as far away from digital circuits as possible on the board because the analog circuits may be affected by the noise of the digital circuits. In particular, do not cross an analog signal line with a digital signal line, or wire an analog signal line in the vicinity of a digital signal line. Otherwise, the A/D conversion characteristics may be affected by the noise of the digital line.


Connect AVsso and Vsso at one location on the board where the voltages are stable.

(11) AV DD pin

The AV_{DD} pin is the analog circuit power supply pin. It supplies power to the input circuits of the ANI0 to ANI7 pins.

Therefore, be sure to apply the same potential as VDD0 to this pin even for applications designed to switch to a backup battery for power supply.

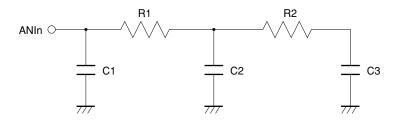


(12) AVREF pin

*

Connect a capacitor to the AVREF pin to minimize conversion errors due to noise. If an A/D conversion operation has been stopped and then is started, the voltage applied to the AVREF pin becomes unstable, causing the accuracy of the A/D conversion to drop. To prevent this, also connect a capacitor to the AVREF pin. Figure 13-18 shows an example of connecting a capacitor.

Remark C1: 4.7 μ F to 10 μ F (reference value) C2: 0.01 μ F to 0.1 μ F (reference value) Connect C2 as close to the pin as possible.


(13) Internal equivalent circuit of ANI0 to ANI7 pins and permissible signal source impedance

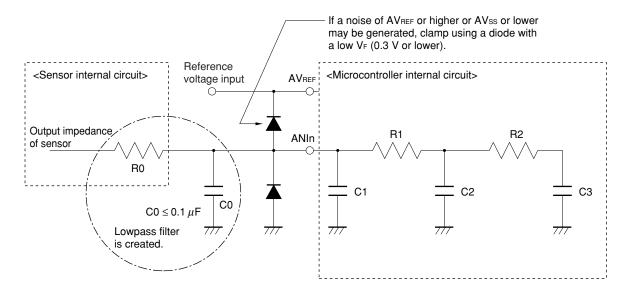
To complete sampling within the sampling time with sufficient A/D conversion accuracy, the impedance of the signal source such as a sensor must be sufficiently low. Figure 13-19 shows the internal equivalent circuit of the ANI0 to ANI7 pins.

If the impedance of the signal source is high, connect capacitors with a high capacitance to the pins ANI0 to ANI7. An example of this is shown in Figure 13-20. In this case, however, the microcontroller cannot follow an analog signal with a high differential coefficient because a lowpass filter is created.

To convert a high-speed analog signal or to convert an analog signal in the scan mode, insert a low-impedance buffer.

Remark n = 0 to 7

\star



					(111.)
AVREF	R1	R2	C1	C2	C3
2.7 V	12 kΩ	8.0 kΩ	3.0 pF	3.0 pF	2.0 pF
4.5 V	4 kΩ	2.7 kΩ	3.0 pF	1.4 pF	2.0 pF

Caution The resistances and capacitances in Table 13-3 are not guaranteed values.

(TVD)

Remark n = 0 to 7

* (14) Input impedance of ANI0 to ANI7 pins

This A/D converter executes sampling by charging the internal sampling capacitor for approximately 1/10 of the conversion time.

Therefore, only the leakage current flows during other than sampling, and the current for charging the capacitor flows during sampling. The input impedance therefore varies and has no meaning.

To achieve sufficient sampling, it is recommended that the output impedance of the analog input source be 10 $k\Omega$ or less, or attach a capacitor of around 100 pF to the ANI0 to ANI7 pins (see **Figure 13-20**).

CHAPTER 14 10-BIT A/D CONVERTER (µPD780034A, 780034AY SUBSERIES)

14.1 A/D Converter Functions

A/D converter is a 10-bit resolution converter that converts analog inputs into digital signals. It can control up to 8 analog input channels (ANI0 to ANI7).

(1) Hardware start

Conversion is started by trigger input (ADTRG: rising edge, falling edge, or both rising and falling edges can be specified).

(2) Software start

Conversion is started by setting A/D converter mode register 0 (ADM0).

Select one channel for analog input from ANI0 to ANI7 to start A/D conversion. In the case of hardware start, the A/D converter stops when A/D conversion is completed, and an interrupt request (INTAD0) is generated. In the case of software start, A/D conversion is repeated. Each time as A/D conversion operation ends, an interrupt request (INTAD0) is generated.

Caution Although the μPD78F0034A, 78F0034B, 78F0034AY, and 78F0034BY incorporate a 10-bit A/D converter, this converter can be operated as an 8-bit A/D converter by using the device file DF780024.

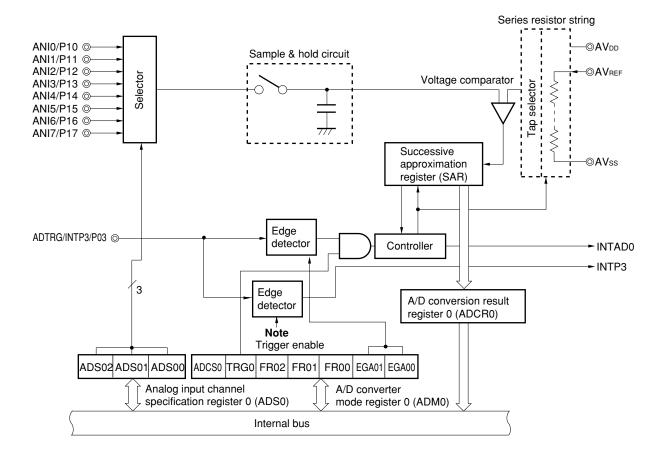


Figure 14-1. 10-Bit A/D Converter Block Diagram

Note The valid edge of external interrupt is specified by bit 3 of the EGP and EGN registers (see Figure 19-5 Format of External Interrupt Rising Edge Enable Register (EGP), External Interrupt Falling Edge Enable Register (EGN)).

14.2 A/D Converter Configuration

The A/D converter consists of the following hardware.

Table	14-1.	A/D	Converter	Configuration
-------	-------	-----	-----------	---------------

Item	Configuration
Analog input	8 channels (ANI0 to ANI7)
Hardware trigger input	1 (ADTRG)
Registers	Successive approximation register (SAR) A/D conversion result register 0 (ADCR0)
Control registers	A/D converter mode register 0 (ADM0) Analog input channel specification register 0 (ADS0)

(1) Successive approximation register (SAR)

This register compares the analog input voltage value to the voltage tap (compare voltage) value applied from the series resistor string, and holds the result from the most significant bit (MSB).

When up to the least significant bit (LSB) is held (end of A/D conversion), the SAR contents are transferred to A/D conversion result register 0 (ADCR0).

(2) A/D conversion result register 0 (ADCR0)

*

*

This is a 16-bit register that stores the A/D conversion results. The lower 6 bits are fixed to 0. Each time A/ D conversion ends, the conversion result is loaded from the successive approximation register (SAR) and held by this register. The most significant bit (MSB) is stored in ADCR0 first. The higher 8 bits of the conversion results are stored in FF17H. The lower 2 bits of the conversion results are stored in FF16H. ADCR0 is read by a 16-bit memory manipulation instruction. RESET input clears ADCR0 to 0000H.

Figure 14-2. Format of A/D Conversion Result Register 0 (ADCR0)

	Addres	ss: FF	16H, I	FF17H	ļ A	After re	eset: C	000H	R							
Symbol	nbol							FF16H								
ADCR0											0	0	0	0	0	0

Caution When A/D converter mode register 0 (ADM0) and analog input channel specification register 0 (ADS0) are written, the contents of ADCR0 may become undefined. Read the conversion result following conversion completion before writing to ADM0 and ADS0. Using a timing other than the above may cause an incorrect conversion result to be read.

(3) Sample & hold circuit

The sample & hold circuit samples the input signal of the analog input pin selected by the selector when A/D conversion is started and holds the sampled analog input voltage value during A/D conversion.

(4) Voltage comparator

*

The voltage comparator compares the sampled analog input voltage to the series resistor string output voltage.

(5) Series resistor string

The series resistor string is connected between AVREF and AVss, and generates the voltage to be compared to the analog input.

(6) ANI0 to ANI7 pins

These are eight analog input pins used to input analog signals to undergo A/D conversion to the A/D converter. ANI0 to ANI7 are alternate-function pins that can also be used for digital input.

- Cautions 1. Use ANI0 to ANI7 input voltages within the specification range. If a voltage higher than or equal to AV_{REF} or lower than or equal to AV_{SS} is applied (even if within the absolute maximum rating range), the conversion value of that or equal to channel will be undefined and the conversion values of other channels may also be affected.
 - Analog input (ANI0 to ANI7) pins are alternate-function pins that can also be used as input port pins (P10 to P17). When A/D conversion is performed by selecting any one of ANI0 through ANI7, do not access port 1 during conversion, as this may cause a lower conversion resolution.
 - 3. When a digital pulse is applied to a pin adjacent to the pin in the process of A/D conversion, A/D conversion values may not be obtained as expected due to coupling noise. Thus, do not apply a pulse to a pin adjacent to the pin in the process of A/D conversion.

(7) AVREF pin

This is the A/D converter reference voltage pin and also the analog power supply pin. It converts signals input to ANI0 to ANI7 into digital signals according to the voltage applied between AV_{REF} and AV_{ss}.

Caution A series resistor string is connected between the AVREF and AVSS pins. Therefore, when the output impedance of the reference voltage is too high, it seems as if the AVREF pin and the series resistor string are connected in series. This may cause a greater reference voltage error.

(8) AVss pin

*

This is the ground potential pin of the A/D converter. Always keep it at the same potential as the Vsso or Vsso pin even when not using the A/D converter.

(9) AV DD pin

This is the A/D converter analog power supply pin. Always keep it at the same potential as the V_{DD0} or V_{DD1} pin even when not using the A/D converter.

* (10) ADTRG pin

This pin is a pin used to start the A/D converter by hardware.

14.3 Registers to Control A/D Converter

The following 2 types of registers are used to control the A/D converter.

- A/D converter mode register 0 (ADM0)
- Analog input channel specification register 0 (ADS0)

(1) A/D converter mode register 0 (ADM0)

This register sets the conversion time for analog input to be A/D converted, conversion start/stop, and external trigger.

ADM0 is set by a 1-bit or 8-bit memory manipulation instruction. $\overrightarrow{\text{RESET}}$ input clears ADM0 to 00H.

Figure 14-3. Format of A/D Converter Mode Register 0 (ADM0)

|--|

Symbol	<7>	<6>	5	4	3	2	1	0
ADM0	ADCS0	TRG0	FR02	FR01	FR00	EGA01	EGA00	0

ADCS0	A/D conversion operation control			
0	Stop conversion operation.			
1	Enable conversion operation.			

TRG0	Software start/hardware start selection
0	Software start
1	Hardware start

FR02	FR01	FR00	Conversion time selection Note 1				
				fx = 8.38 MHz	fx = 12 MHz ^{Note 2}		
0	0	0	144/fx	17.1 μs	12.0 <i>μ</i> s		
0	0	1	120/fx	14.3 μs	10.0 μs ^{Note 4}		
0	1	0	96/fx	11.4 μs ^{Note 3}	8.0 μs ^{Note 4}		
1	0	0	72/fx	8.5 μs ^{Note 3}	6.0 μs ^{Note 4}		
1	0	1	60/fx	7.1 μs ^{Note 3}	5.0 μs ^{Note 4}		
1	1	0	48/fx	5.7 μs ^{Note 3}	4.0 μs ^{Note 4}		
Ot	ther than abo	ve	Setting prohibited				

EGA01	EGA00	External trigger signal, edge specification			
0	0	o edge detection			
0	1	Falling edge detection			
1	0	Rising edge detection			
1	1	Both falling and rising edge detection			

Notes 1. Set the A/D conversion time as follows.

- When operated at fx = 12 MHz (V_{DD} = 4.5 to 5.5 V): 12 μ s or more
- When operated at fx = 8.38 MHz (V_{DD} = 4.0 to 5.5 V): 14 μ s or more
- **2.** Expanded-specification products of μ PD780034A Subseries only.
- 3. Setting is prohibited because the A/D conversion time is less than 14 μ s.
- 4. Setting is prohibited because the A/D conversion time is less than 12 μ s.

Caution When rewriting FR00 to FR02 to other than the same data, stop A/D conversion operations once prior to performing rewrite.

Remark fx: Main system clock oscillation frequency

(2) Analog input channel specification register 0 (ADS0)

This register specifies the analog voltage input port for A/D conversion. ADS0 is set by an 8-bit memory manipulation instruction. RESET input clears ADS0 to 00H.

Figure 14-4. Format of Analog Input Channel Specification Register 0 (ADS0)

Address: FF81H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
ADS0	0	0	0	0	0	ADS02	ADS01	ADS00

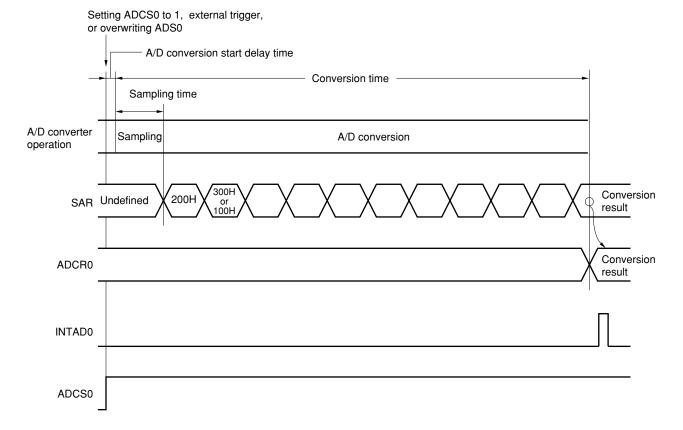
ADS02	ADS01	ADS00	Analog input channel specification
0	0	0	ANIO
0	0	1	ANI1
0	1	0	ANI2
0	1	1	ANI3
1	0	0	ANI4
1	0	1	ANI5
1	1	0	ANI6
1	1	1	ANI7

14.4 A/D Converter Operation

14.4.1 Basic operations of A/D converter

- <1> Select one channel for A/D conversion with analog input channel specification register 0 (ADS0).
- <2> The voltage input to the selected analog input channel is sampled by the sample & hold circuit.
- <3> When sampling has been done for a certain time, the sample & hold circuit is placed in the hold state and the input analog voltage is held until the A/D conversion operation is ended.
- <4> Bit 9 of the successive approximation register (SAR) is set. The series resistor string voltage tap is set to (1/2) AVREF by the tap selector.
- <5> The voltage difference between the series resistor string voltage tap and analog input is compared by the voltage comparator. If the analog input is greater than (1/2) AVREF, the MSB of SAR remains set. If the analog input is smaller than (1/2) AVREF, the MSB is reset.
- <6> Next, bit 8 of SAR is automatically set, and the operation proceeds to the next comparison. The series resistor string voltage tap is selected according to the preset value of bit 9, as described below.
 - Bit 9 = 1: (3/4) AVREF
 - Bit 9 = 0: (1/4) AVREF

The voltage tap and analog input voltage are compared and bit 8 of SAR is manipulated as follows.


- Analog input voltage ≥ Voltage tap: Bit 8 = 1
- Analog input voltage < Voltage tap: Bit 8 = 0
- <7> Comparison is continued in this way up to bit 0 of SAR.
- <8> Upon completion of the comparison of 10 bits, an effective digital result value remains in SAR, and the result value is transferred to and latched in A/D conversion result register 0 (ADCR0).

At the same time, the A/D conversion end interrupt request (INTAD0) can also be generated.

- ★ Cautions 1. The first A/D conversion value immediately after A/D conversion has been started may not satisfy the rated value. Take measures such as polling the A/D conversion end interrupt request (INTAD0) and removing the first conversion results.
 - 2. The A/D converter stops operation in standby mode.

Figure 14-5. Basic Operation of 10-Bit A/D Converter

*

A/D conversion operations are performed continuously until bit 7 (ADCS0) of A/D converter mode register 0 (ADM0) is reset (0) by software.

RESET input clears A/D conversion result register 0 (ADCR0) to 00H.

Confirm the conversion results by referring to the A/D conversion end interrupt request flag (ADIF0).

The sampling time of the A/D converter varies depending on the values set in A/D converter mode register 0 (ADM0). There is a delay time from when the A/D converter is enabled for operation until sampling is actually performed. For the sets in which a strict A/D conversion time is required, note the contents described in Table 14-2.

★

Table 14-2. Sampling Time and A/D Conversion Start Delay Time of A/D Converter

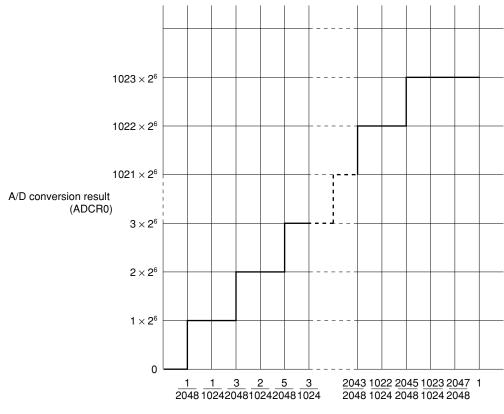
FR02	FR01	FR00	Conversion Time ^{Note 1}	Sampling Time	A/D Conversion Start Delay Time	
					MIN.	MAX.
0	0	0	144/fx	20/fx	0.5/fcpu + 6/fx	0.5/fcpu + 8/fx
0	0	1	120/fx	16/fx	•	
0	1	0	96/fx	12/fx	•	
1	0	0	72/fx	10/fx	0.5/fcpu + 3/fx	0.5/fcpu + 4/fx
1	0	1	60/fx	8/fx	•	
1	1	0	48/fx	6/fx	•	
Other than above		Setting prohibited	_	_	_	

- Notes 1. Set the A/D conversion time as follows.
 - When operated at fx = 12 MHz^{Note 2} (V_{DD} = 4.5 to 5.5 V): 12 μ s or more
 - When operated at fx = 8.38 MHz (V_{DD} = 4.0 to 5.5 V): 14 μ s or more
 - **2.** Expanded-specification products of μ PD780034A Subseries only.
- Remark fx: Main system clock oscillation frequency fcpu: CPU clock frequency

14.4.2 Input voltage and conversion results

The relationship between the analog input voltage input to the analog input pins (ANI0 to ANI7) and the theoretical A/D conversion result (stored in A/D conversion result register 0 (ADCR0)) is shown by the following expression.

$$ADCR0 = INT \ (\frac{V_{IN}}{AV_{REF}} \times 1024 + 0.5)$$


or

$$(\text{ADCR0} - 0.5) \times \frac{\text{AV}_{\text{REF}}}{1024} \le \text{V}_{\text{IN}} < (\text{ADCR0} + 0.5) \times \frac{\text{AV}_{\text{REF}}}{1024}$$

where, INT(): Function which returns integer part of value in parentheses VIN: Analog input voltage AVREF: AVREF pin voltage ADCR0: A/D conversion result register 0 (ADCR0) value

Figure 14-6 shows the relationship between the analog input voltage and the A/D conversion result.

Input voltage/AVREF

14.4.3 A/D converter operation mode

Select one analog input channel from among ANI0 to ANI7 using analog input channel specification register 0 (ADS0) to start A/D conversion.

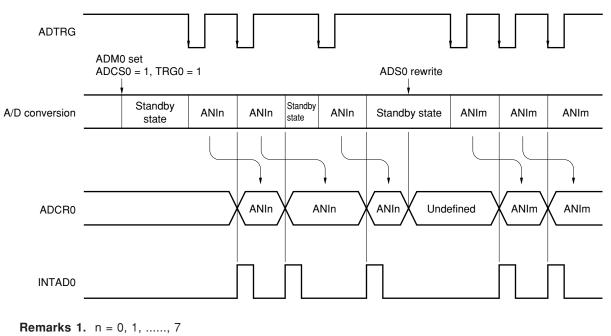
A/D conversion can be started in either of the following two ways.

- Hardware start: Conversion is started by trigger input (rising edge, falling edge, or both rising and falling edges enabled).
- Software start: Conversion is started by setting A/D converter mode register 0 (ADM0).
- ★ When A/D conversion is complete, the interrupt request signal (INTAD0) is generated.

(1) A/D conversion by hardware start

When bit 6 (TRG0) and bit 7 (ADCS0) of A/D converter mode register 0 (ADM0) are set to 1, the A/D conversion standby state is set. When the external trigger signal (ADTRG) is input, A/D conversion of the voltage applied to the analog input pin specified by analog input channel specification register 0 (ADS0) starts.

Upon the end of A/D conversion, the conversion result is stored in A/D conversion result register 0 (ADCR0), and the interrupt request signal (INTAD0) is generated. After one A/D conversion operation is started and finished, the next conversion operation is not started until a new external trigger signal is input.


If ADS0 is rewritten during A/D conversion, the converter suspends A/D conversion and waits for a new external trigger signal to be input. When the external trigger input signal is reinput, A/D conversion is carried out from the beginning. If ADS0 is rewritten during A/D conversion standby, A/D conversion starts when the following external trigger input signal is input.

If 1 is written to ADCS0 again during A/D conversion, the A/D conversion in progress is discontinued and a new A/D conversion is started when the next external trigger input signal is input.

If 0 is written to ADCS0 during A/D conversion, the A/D conversion operation stops immediately.

Caution When P03/INTP3/ADTRG is used as the external trigger input (ADTRG), specify the valid edge using bits 1, 2 (EGA00, EGA01) of A/D converter mode register 0 (ADM0) and set the interrupt mask flag (PMK3) to 1.

Figure 14-7. A/D Conversion by Hardware Start (When Falling Edge Is Specified)

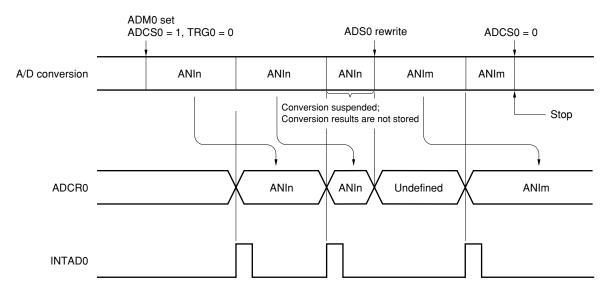
2. m = 0, 1,, 7

*

*

(2) A/D conversion by software start

*


When bit 6 (TRG0) and bit 7 (ADCS0) of A/D converter mode register 0 (ADM0) are set to 0 and 1, respectively, A/D conversion of the voltage applied to the analog input pin specified by analog input channel specification register 0 (ADS0) starts.

Upon the end of the A/D conversion, the conversion result is stored in A/D conversion result register 0 (ADCR0), and the interrupt request signal (INTAD0) is generated. After one A/D conversion operation is started and ended, the next conversion operation is immediately started. A/D conversion operations are repeated until new data is written to ADS0.

If ADS0 is rewritten during A/D conversion, the converter suspends A/D conversion and A/D conversion of the new selected analog input channel is started.

If 1 is written to ADCS0 again during A/D conversion, the A/D conversion in progress is discontinued and a new A/D conversion is started.

If 0 is written to ADCS0 during A/D conversion, the A/D conversion operation stops immediately.

Figure 14-8. A/D Conversion by Software Start

Remarks 1. n = 0, 1,, 7

2. m = 0, 1,, 7

14.5 How to Read A/D Converter Characteristics Table

Here we will explain the special terms unique to A/D converters.

(1) Resolution

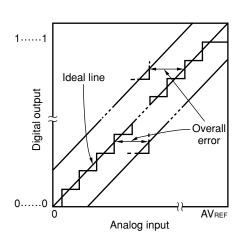
This is the minimum analog input voltage that can be identified. That is, the percentage of the analog input voltage per 1 bit of digital output is called 1LSB (Least Significant Bit). The percentage of 1LSB with respect to the full scale is expressed by %FSR (Full Scale Range).

When the resolution is 10 bits,

 $1LSB = 1/2^{10} = 1/1024$ = 0.098%FSR

Accuracy has no relation to resolution, but is determined by overall error.

(2) Overall error


This shows the maximum error value between the actual measured value and the theoretical value. Zero scale error, full scale error, integral linearity error, differential linearity error and errors which are combinations of these express overall error.

Furthermore, quantization error is not included in overall error in the characteristics table.

(3) Quantization error

When analog values are converted to digital values, there naturally occurs a $\pm 1/2$ LSB error. In an A/D converter, an analog input voltage in a range of $\pm 1/2$ LSB are converted to the same digital code, so a quantization error cannot be avoided.

Furthermore, it is not included in the overall error, zero scale error, full scale error, integral linearity error, and differential linearity error in the characteristics table.

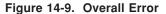
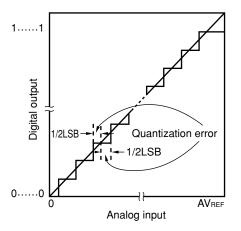



Figure 14-10. Quantization Error

(4) Zero scale error

This shows the difference between the actual measured value of the analog input voltage and the theoretical value (1/2LSB) when the digital output changes from 0.....000 to 0.....001. If the actual measured value is greater than the theoretical value, it shows the difference between the actual measured value of the analog input voltage and the theoretical value (3/2LSB) when the digital output changes from 0.....001 to 0.....001 to 0.....010.

(5) Full scale error

This shows the difference between the actual measured value of the analog input voltage and the theoretical value (full scale -3/2LSB) when the digital output changes from 1.....110 to 1.....111.

(6) Integral linearity error

This shows the degree to which the conversion characteristics deviate from the ideal linear relationship. It expresses the maximum value of the difference between the actual measured value and the ideal straight line when the zero scale error and full scale error are 0.

(7) Differential linearity error

Although the ideal output width for a given code is 1LSB, this value shows the difference between the actual measured value and the ideal value of the width when outputting a particular code.

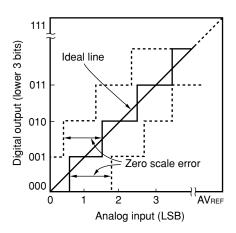
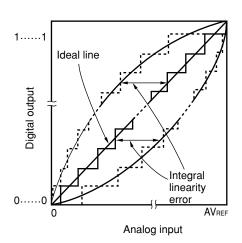



Figure 14-13. Integral Linearity Error

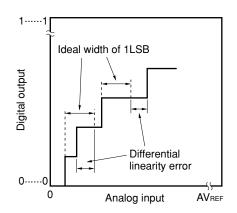



Figure 14-14. Differential Linearity Error

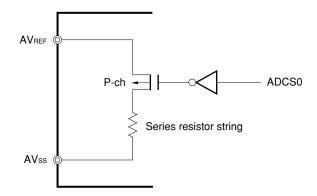


(8) Conversion time

This expresses the time from when the sampling was started to the time when the digital output was obtained. Sampling time is included in the conversion time in the characteristics table.

(9) Sampling time


This is the time the analog switch is turned on for the analog voltage to be sampled by the sample & hold circuit.



14.6 A/D Converter Cautions

(1) Power consumption in standby mode

A/D converter stops operating in the standby mode. At this time, power consumption can be reduced by stopping the conversion operation (by clearing bit 7 (ADCS0) of A/D converter mode register 0 (ADM0) to 0). Figure 14-15 shows the circuit configuration of a series resistor string.

(2) Input range of ANI0 to ANI7

The input voltages of ANI0 to ANI7 should be within the specification range. In particular, if a voltage higher than AV_{REF} or lower than AV_{SS} is input (even if within the absolute maximum rating range), the conversion value of that channel will be undefined and the conversion values of other channels may also be affected.

(3) Contending operations

- <1> Contention between A/D conversion result register 0 (ADCR0) write and ADCR0 read by instruction upon the end of conversion ADCR0 read is given priority. After the read operation, the new conversion result is written to ADCR0.
- <2> Contention between ADCR0 write and external trigger signal input upon the end of conversion The external trigger signal is not accepted during A/D conversion. Therefore, the external trigger signal is not accepted during ADCR0 write.
- <3> Contention between ADCR0 write and A/D converter mode register 0 (ADM0) write or analog input channel specification register 0 (ADS0) write upon the end of conversion ADM0 or ADS0 write is given priority. ADCR0 write is not performed, nor is the conversion end interrupt request signal (INTAD0) generated.

(4) ANI0/P10 to ANI7/P17

- <1> The analog input pins (ANI0 to ANI7) also function as input port pins (P10 to P17). When A/D conversion is performed with any of pins ANI0 to ANI7 selected, do not access port 1 while conversion is in progress, as this may reduce the conversion resolution.
- <2> If digital pulses are applied to the pin adjacent to a pin in the process of A/D conversion, the expected A/D conversion value may not be obtainable due to coupling noise. Therefore, avoid applying pulses to the pin adjacent to a pin undergoing A/D conversion.

(5) AVREF pin input impedance

A series resistor string is connected between the AVREF pin and the AVss pin.

Therefore, when the output impedance of the reference voltage is too high, it seems as if the AVREF pin and the series resistor string are connected in series. This may cause a greater reference voltage error.

(6) Interrupt request flag (ADIF0)

The interrupt request flag (ADIF0) is not cleared even if analog input channel specification register 0 (ADS0) is changed.

Therefore, if an analog input pin is changed during A/D conversion, the A/D conversion result and conversion end interrupt request flag for the pre-change analog input may be set just before the ADS0 rewrite. Caution is therefore required since, at this time, when ADIF0 is read immediately just after the ADS0 rewrite, ADIF0 is set despite the fact that the A/D conversion for the post-change analog input has not finished. When A/D conversion is restarted after it is stopped, clear ADIF0 before restart.

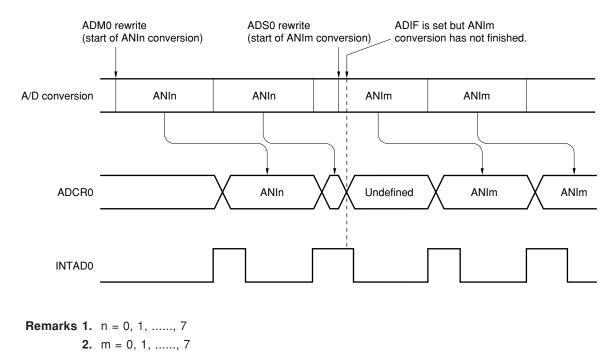
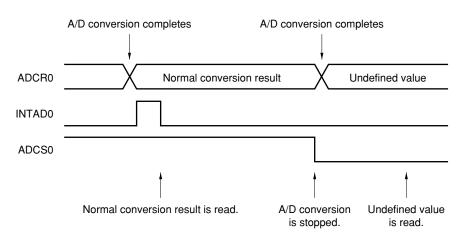


Figure 14-16. A/D Conversion End Interrupt Request Generation Timing

(7) Conversion results just after A/D conversion start

The A/D conversion value immediately after A/D conversion has been started may not satisfy the rated value. Take measures such as polling the A/D conversion end interrupt request (INTAD0) and removing the first conversion results.


(8) A/D conversion result register 0 (ADCR0) read operation

When A/D converter mode register 0 (ADM0) and analog input channel specification register 0 (ADS0) are written, the contents of ADCR0 may become undefined. Read the conversion result following conversion completion before writing to ADM0 and ADS0. Using a timing other than the above may cause an incorrect conversion result to be read.

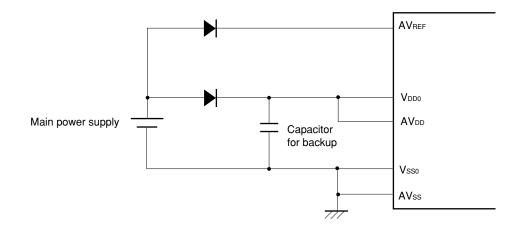
(9) Timing at which A/D conversion result is undefined

The A/D conversion value may be undefined if the timing of completion of A/D conversion and the timing of stopping the A/D conversion conflict with each other. Therefore, read the A/D conversion result before stopping the A/D conversion operation.

Figure 14-17 shows the timing of reading the conversion result.

(10) Notes on board design

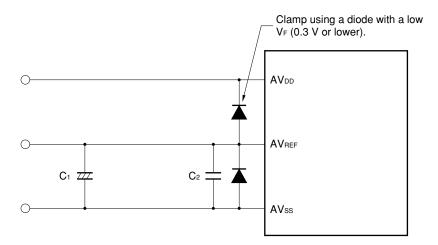
Locate analog circuits as far away from digital circuits as possible on the board because the analog circuits may be affected by the noise of the digital circuits. In particular, do not cross an analog signal line with a digital signal line, or wire an analog signal line in the vicinity of a digital signal line. Otherwise, the A/D conversion characteristics may be affected by the noise of the digital line.


Connect AVsso and Vsso at one location on the board where the voltages are stable.

(11) AV DD pin

The AV_{DD} pin is the analog circuit power supply pin. It supplies power to the input circuits of the ANI0 to ANI7 pins.

Therefore, be sure to apply the same potential as VDD0 to this pin even for applications designed to switch to a backup battery for power supply.



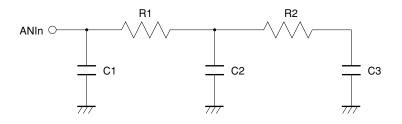
(12) AVREF pin

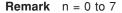
*

Connect a capacitor to the AVREF pin to minimize conversion errors due to noise. If an A/D conversion operation has been stopped and then is started, the voltage applied to the AVREF pin becomes unstable, causing the accuracy of the A/D conversion to drop. To prevent this, also connect a capacitor to the AVREF pin. Figure 14-19 shows an example of connecting a capacitor.

Figure 14-19. Example of Connecting Capacitor to AVREF Pin

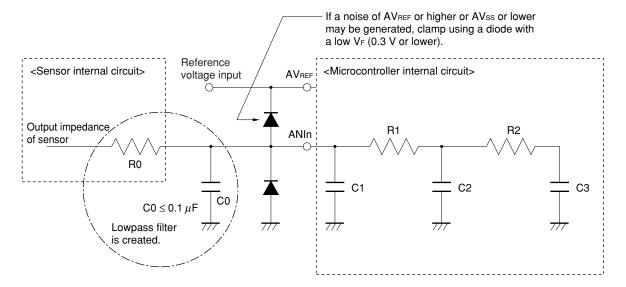
Remark C1: 4.7 μ F to 10 μ F (reference value) C2: 0.01 μ F to 0.1 μ F (reference value) Connect C2 as close to the pin as possible.


(13) Internal equivalent circuit of ANI0 to ANI7 pins and permissible signal source impedance


To complete sampling within the sampling time with sufficient A/D conversion accuracy, the impedance of the signal source such as a sensor must be sufficiently low. Figure 14-20 shows the internal equivalent circuit of the ANI0 to ANI7 pins.

If the impedance of the signal source is high, connect capacitors with a high capacitance to the pins ANI0 to ANI7. An example of this is shown in Figure 14-21. In this case, however, the microcontroller cannot follow an analog signal with a high differential coefficient because a lowpass filter is created.

To convert a high-speed analog signal or to convert an analog signal in the scan mode, insert a low-impedance buffer.


Table 14-3.	Resistances and	l Capacitances o	f Equivalent	Circuit (Reference Values))
-------------	-----------------	------------------	--------------	----------------------------	---

(TYP.)

AVREF	R1	R2	C1	C2	C3
2.7 V	12 kΩ	8.0 kΩ	3.0 pF	3.0 pF	2.0 pF
4.5 V	4 kΩ	2.7 kΩ	3.0 pF	1.4 pF	2.0 pF

Caution	The resistances and capacitances in Table 14-3 are not guaranteed values.
---------	---

Figure 14-21. Example of Connection If Signal Source Impedance Is High

Remark n = 0 to 7

*

*

(14) Input impedance of ANI0 to ANI7 pins

This A/D converter executes sampling by charging the internal sampling capacitor for approximately 1/10 of the conversion time.

Therefore, only the leakage current flows during other than sampling, and the current for charging the capacitor flows during sampling. The input impedance therefore varies and has no meaning.

To achieve sufficient sampling, it is recommended that the output impedance of the analog input source be 10 k Ω or less, or attach a capacitor of around 100 pF to the ANI0 to ANI7 pins (see **Figure 14-21**).

CHAPTER 15 SERIAL INTERFACE OUTLINE

The μ PD780024A, 780034A Subseries and the μ PD780024AY, 780034AY Subseries have differences in their serial interfaces. These differences are listed in Table 15-1.

lt	em	μPD780024A, 780034A	μPD780024AY, 780034AY	Relevant Section
UART0		\checkmark	\checkmark	CHAPTER 16
SIO3	SIO30	\checkmark	\checkmark	CHAPTER 17
	SIO31		-	
IIC0		-	1	CHAPTER 18

Table 15-1. Differences Between μ PD780024A, 780034A Subseries and μ PD780024AY, 780034AY Subseries

CHAPTER 16 SERIAL INTERFACE UARTO

16.1 Functions of Serial Interface UART0

Serial interface UART0 has the following three modes.

(1) Operation stop mode

*

This mode is used when serial transfers are not performed to reduce power consumption. For details, see **16.4.1 Operation stop mode**.

(2) Asynchronous serial interface (UART) mode (fixed to LSB first)

This mode enables full-duplex operation wherein one byte of data after the start bit is transmitted and received. The on-chip baud rate generator dedicated to UART enables communications using a wide range of selectable baud rates. The communication range is between 1.2 kbps and 131 kbps (when operated at fx = 8.38 MHz). In addition, a baud rate (39 kbps max. (when operated at fx = 1.25 MHz)) can also be defined by dividing the clock input to the ASCK0 pin.

The UART baud rate generator can also be used to generate a MIDI-standard baud rate (31.25 kbps). For details, see **16.4.2 Asynchronous serial interface (UART) mode**.

(3) Infrared data transfer mode

For details, see 16.4.3 Infrared data transfer mode.

Figure 16-1 shows a block diagram of serial interface UART0.

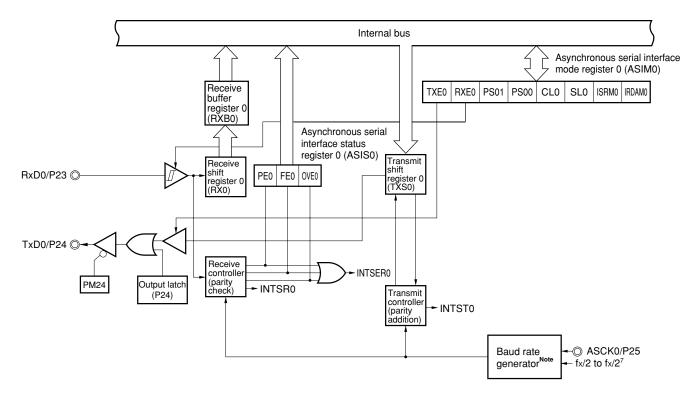
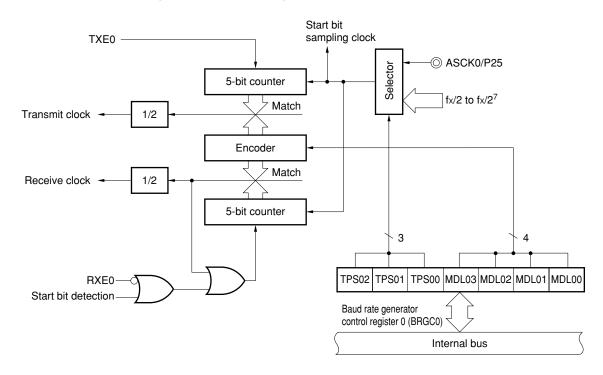



Figure 16-1. Block Diagram of Serial Interface UART0

Note For the configuration of the baud rate generator, see Figure 16-2.

Figure 16-2. Block Diagram of Baud Rate Generator

 Remark
 TXE0: Bit 7 of asynchronous serial interface mode register 0 (ASIM0)
 RXE0: Bit 6 of asynchronous serial interface mode register 0 (ASIM0)

*

★

16.2 Configuration of Serial Interface UART0

Serial interface UART0 includes the following hardware.

Table 16-1. Configuration of Serial Interface UART0

Item	Configuration
Registers	Transmit shift register 0 (TXS0) Receive shift register 0 (RX0) Receive buffer register 0 (RXB0) Asynchronous serial interface status register 0 (ASIS0)
Control registers	Asynchronous serial interface mode register 0 (ASIM0) Baud rate generator control register 0 (BRGC0) Port mode register 2 (PM2) Port 2 (P2)

(1) Transmit shift register 0 (TXS0)

*

This is a register for setting transmit data. Data written to TXS0 is transmitted as serial data. When the data length is set as 7 bits, bits 0 to 6 of the data written to TXS0 are transferred as transmit data. Writing data to TXS0 starts the transmit operation.

TXS0 can be written by an 8-bit memory manipulation instruction. It cannot be read. $\overline{\text{RESET}}$ input sets TXS0 to FFH.

Caution Do not write to TXS0 during a transmit operation. The same address is assigned to TXS0 and receive buffer register 0 (RXB0), so a read operation reads values from RXB0.

(2) Receive shift register 0 (RX0)

This register converts serial data input via the RxD0 pin to parallel data. When one byte of data is received at this register, the receive data is transferred to receive buffer register 0 (RXB0). RX0 cannot be manipulated directly by a program.

(3) Receive buffer register 0 (RXB0)

This register is used to hold receive data. When one byte of data is received, one byte of new receive data is transferred from the receive shift register (RX0).

When the data length is set as 7 bits, receive data is sent to bits 0 to 6 of RXB0. In this case, the MSB of RXB0 is always 0.

RXB0 can be read by an 8-bit memory manipulation instruction. It cannot be written. RESET input sets RXB0 to FFH.

Caution The same address is assigned to RXB0 and transmit shift register 0 (TXS0), so during a write operation, values are written to TXS0.

★ (4) Asynchronous serial interface status register 0 (ASIS0)

When a receive error occurs in UART mode, this register indicates the type of error. ASIS0 can be read by an 8-bit memory manipulation instruction. RESET input clears ASIS0 to 00H.

Figure 16-3. Format of Asynchronous Serial Interface Status Register 0 (ASIS0)

Address: FFA1H After reset: 00H R

Symbol	7	6	5	4	3	2	1	0
ASIS0	0	0	0	0	0	PE0	FE0	OVE0

PE0	Parity error flag	
0	No parity error	
1	Parity error (Transmit data parity not matched)	

FE0	Framing error flag
0	No framing error
1	Framing error ^{Note 1} (Stop bit not detected)

OVE0	Overrun error flag
0	No overrun error
1	Overrun error ^{Note 2} (Next receive operation was completed before data was read from receive buffer register 0 (RXB0))

- Even if the stop bit length is set to two bits by setting bit 2 (SL0) of asynchronous serial interface mode register 0 (ASIM0), stop bit detection during a receive operation only applies to a stop bit length of 1 bit.
 - 2. When an overrun error has occurred, further overrun errors will continue to occur until the contents of receive buffer register 0 (RXB0) are read.

(5) Transmission controller

The transmission controller controls transmit operations, such as adding a start bit, parity bit, and stop bit to data that is written to transmit shift register 0 (TXS0), based on the values set to asynchronous serial interface mode register 0 (ASIM0).

(6) Reception controller

The reception controller controls receive operations based on the values set to asynchronous serial interface mode register 0 (ASIM0). During a receive operation, it performs error checking, such as for parity errors, and sets various values to asynchronous serial interface status register 0 (ASIS0) according to the type of error that is detected.

16.3 Registers to Control Serial Interface UART0

Serial interface UART0 uses the following four registers for control functions.

- Asynchronous serial interface mode register 0 (ASIM0)
- Baud rate generator control register 0 (BRGC0)
- Port mode register 2 (PM2)
- Port 2 (P2)

(1) Asynchronous serial interface mode register 0 (ASIM0)

This is an 8-bit register that controls serial interface UARTO's serial transfer operations. ASIMO is set by a 1-bit or 8-bit memory manipulation instruction. RESET input clears ASIMO to 00H. Figure 16-4 shows the format of ASIMO.

Figure 16-4. Format of Asynchronous Serial Interface Mode Register 0 (ASIM0)

Address:	FFA0H After	reset: 00H	R/W					
Symbol	<7>	<6>	5	4	3	2	1	0
ASIM0	TXE0	RXE0	PS01	PS00	CL0	SL0	ISRM0	IRDAM0

TXE0	RXE0	Operation mode	RxD0/P23 pin function	TxD0/P24 pin function
0	0	Operation stop	Port function (P23)	Port function (P24)
0	1	UART mode (receive only)	Serial function (RxD0)	
1	0	UART mode (transmit only)	Port function (P23)	Serial function (TxD0)
1	1	UART mode (transmit and receive)	Serial function (RxD0)	

PS01	PS00	Parity bit specification
0	0	No parity
0	1	Zero parity always added during transmission No parity detection during reception (parity errors do not occur)
1	0	Odd parity
1	1	Even parity

CL0	Character length specification
0	7 bits
1	8 bits

SL0	Stop bit length specification for transmit data
0	1 bit
1	2 bits

ISRM0	Receive completion interrupt control when error occurs
0	Receive completion interrupt request is issued when an error occurs
1	Receive completion interrupt request is not issued when an error occurs

IRDAM0	Operation specified for infrared data transfer mode ^{Note 1}
0	UART (transmit/receive) mode
1	Infrared data transfer (transmit/receive) modeNote 2

Notes 1. The UART/infrared data transfer mode specification is controlled by TXE0 and RXE0.

- 2. When using infrared data transfer mode, be sure to set baud rate generator control register 0 (BRGC0) to "10H".
- ***** Caution Before writing different data to ASIM0, stop operation.

(2) Baud rate generator control register 0 (BRGC0)

This register sets the serial clock for the serial interface. BRGC0 is set by an 8-bit memory manipulation instruction. RESET input clears BRGC0 to 00H. Figure 16-5 shows the format of BRGC0.

Figure 16-5. Format of Baud Rate Generator Control Register 0 (BRGC0)

Symbol	7	6	5	4	3	2	1	0		
BRGC0	0	TPS02	TPS01	TPS00 MDL03 MDL02 MDL01 N					0	
				(fx = 8.3						
	TPS02	TPS01	TPS00	So	Source clock selection for 5-bit counter					
	0	0	0	External cl	ock input to A	SCK0			0	
	0	0	1	fx/2					1	
	0	1	0	fx/2 ²					2	
	0	1	1	fx/2 ³					3	
	1	0	0	fx/2 ⁴					4	
	1	0	1	fx/2 ⁵					5	
	1	1	0	fx/2 ⁶					6	
	1	1	1	fx/2 ⁷					7	
ı			1							
	MDL03	MDL02	MDL01	MDL00	Output clock	selection for l	baud rate gene	rator	k	
-	0	0	0	0	fscко/16				0	
	0	0	0	1	fscкo/17				1	
	0	0	1	0	fscко/18				2	
	0	0	1	1	fscко/19				3	
	0	1	0	0	fscко/20				4	
	0	1	0	1	fscко/21				5	
	0	1	1	0	fscко/22				6	
	0	1	1	1	fscк0/23				7	
	1	0	0	0	fscк0/24				8	
	1	0	0	1	fscко/25				9	
	1	0	1	0	fscко/26				10	
	1	0	1	1	fscко/27				11	
	1	1	0	0	fscк0/28				12	
	1	1	0	1	fscкo/29				13	
	1	1	1	0	fscкo/30				14	
	1	1	1	1	Setting prof	nibited			_	

Cautions 1. Writing to BRGC0 during a communication operation may cause abnormal output from the baud rate generator and disable further communication operations. Therefore, do not write to BRGC0 during a communication operation.

2. Set BRGC0 to 10H when using in infrared data transfer mode.

Remarks 1. fx: Main system clock oscillation frequency

- 2. fscko: Source clock for 5-bit counter
- **3.** n: Value set via TPS00 to TPS02 ($0 \le n \le 7$)
- **4.** k: Value set via MDL00 to MDL03 ($0 \le k \le 14$)
- 5. The equation for the baud rate is as follows.

[Baud rate] =
$$\frac{fx}{2^{n+1}(k+16)}$$
 [Hz]

*

(3) Port mode register 2 (PM2)

*

Port mode register 2 is used to set input/output of port 2 in 1-bit units. To use the P24/TxD0 pin as a serial data output, clear PM24 and the output latch of P24 to 0. To use the P23/RxD0 pin as a serial data input, and the P25/ASCK0 pin as a clock input, set PM23 and PM25 to 1. At this time, the output latches of P23 and P25 can be either 0 or 1. PM2 is set by a 1-bit or 8-bit memory manipulation instruction. RESET input sets PM2 to FFH.

Figure 16-6. Format of Port Mode Register 2 (PM2)

Address: FF22H After reset: FFH R/W

Symbol	7	6	5	4	3	2	1	0
PM2	1	1	PM25	PM24	PM23	PM22	PM21	PM20

PM2n	I/O mode selection of P2n pin (n = 0 to 5)
0	Output mode (output buffer on)
1	Input mode (output buffer off)

16.4 Operation of Serial Interface UART0

This section explains the three modes of serial interface UART0.

16.4.1 Operation stop mode

Because serial transfer is not performed in this mode, the power consumption can be reduced. In addition, pins can be used as ordinary ports.

(1) Register to be used

Operation stop mode is set by asynchronous serial interface mode register 0 (ASIM0). ASIM0 is set by a 1-bit or 8-bit memory manipulation instruction. RESET input clears ASIM0 to 00H.

Address: F	FA0H After	reset: 00H	R/W						
Symbol	<7>	<6>	5	4	3	2	1	0	
ASIM0	TXE0	RXE0	PS01	PS00	CL0	SL0	ISRM0	IRDAM0	
	TXE0	RXE0	Operatio	Operation mode		RxD0/P23 pin function		TxD0/P24 pin function	
	0	0	Operation s	stop	Port function (P23)		Port function (P24)		

16.4.2 Asynchronous serial interface (UART) mode

This mode enables full-duplex operation wherein one byte of data after the start bit is transmitted or received. The on-chip baud rate generator dedicated to UART enables communications using a wide range of selectable

★ baud rates. The communication range is between 1.2 kbps and 131 kbps (when operated at fx = 8.38 MHz). The baud rate (39 kbps max. (when operated of fx = 1.25 MHz)) can be defined by dividing the input clock to the ASCK0 pin.

The UART baud rate generator can also be used to generate a MIDI-standard baud rate (31.25 kbps).

(1) Registers to be used

- · Asynchronous serial interface mode register 0 (ASIM0)
- · Asynchronous serial interface status register 0 (ASIS0)
- Baud rate generator control register 0 (BRGC0)
- Port mode register 2 (PM2)
- Port 2 (P2)

(a) Asynchronous serial interface mode register 0 (ASIM0)

ASIM0 is set by a 1-bit or 8-bit memory manipulation instruction. RESET input clears ASIM0 to 00H.

lod	<7>	<6>	5	4	3	2	1	0			
SIM0	TXE0	RXE0	PS01	PS00	CL0	SL0	ISRM0	IRDAM0			
	T)/50	DVEO									
	TXE0	RXE0	· ·	on mode		pin function		pin function			
	0	0	Operation	•	Port functio		Port functic	on (P24)			
	0	1	UART mod (receive or		Serial func	tion (RxD0)					
	1	0	UART mod (transmit o		Port function	on (P23)	Serial funct	tion (TxD0)			
	1	1	UART moc (transmit a	le nd receive)	Serial func	tion (RxD0)	-				
	PS01	PS00	PS00 Parity bit specification								
F	0	0	No parity								
	0	I Zero parity always added during transmission No parity detection during reception (parity errors do not occur)									
	1	0	0 Odd parity								
	1	1	1 Even parity								
	CL0	Character length specification									
	0	7 bits	7 bits								
	1	8 bits	8 bits								
	SL0	Stop bit length specification for transmit data									
	0	1 bit		5							
	1	2 bits									
		1									
	ISRM0				-	rol when erro					
	0		-			en an error o					
	1	Receive co	mpletion inte	errupt request	IS NOT ISSUED	when an erro	or occurs				
	IRDAM0		Operatio	on specified f	or infrared da	ta transfer m	ode ^{Note 1}				
	0	UART (trar	smit/receive)) mode							
	1	Infrared da	ta transfer (tr	ransmit/receiv	e) mode ^{Note}	2					
Notes	s 1. The U	IART/infrare	d data trans	sfer mode s	pecification	is controlled	l by TXE0 a	Ind RXE0.			

Caution Before writing different data to ASIM0, stop operation.

★

(b) Asynchronous serial interface status register 0 (ASIS0)

ASIS0 can be read by an 8-bit memory manipulation instruction. RESET input clears ASIS0 to 00H.

Address: F	FA1H After	reset: 00H	R					
Symbol	7	6	5	4	3	2	1	0
ASIS0	0	0	0	0	0	PE0	FE0	OVE0
		_						
	PE0			P	arity error flag	g		
	0	No parity er	ror					
	1	Parity error						
		(Transmit d	ata parity not	t matched)				
	FE0		6 5 4 3 2 1 0 0 0 0 0 PE0 FE0 OVE0					
	0	No framing	error			PE0 FE0 OVE0		
	1	Framing err	orNote 1					
		(Stop bit no	t detected)					

OVE0	Overrun error flag
0	No overrun error
1	Overrun error ^{Note 2} (Next receive operation was completed before data was read from receive buffer register 0 (RXB0))

- Notes 1. Even if the stop bit length is set to two bits by setting bit 2 (SL0) of asynchronous serial interface mode register 0 (ASIM0), stop bit detection during a receive operation only applies to a stop bit length of 1 bit.
 - 2. When an overrun error has occurred, further overrun errors will continue to occur until the contents of receive buffer register 0 (RXB0) are read.

(c) Baud rate generator control register 0 (BRGC0)

BRGC0 is set by an 8-bit memory manipulation instruction. RESET input clears BRGC0 to 00H.

Address. r	FAZH AILEI							
Symbol	7	6	5	4	3	2	1	0
BRGC0	0	TPS02	TPS01	TPS00	MDL03	MDL02	MDL01	MDL00
							(fx	= 8.38 MHz
	TPS02	TPS01	TPS00	So	urce clock se	lection for 5-b	oit counter	n
	0	0	0	External cl	ock input to A	SCK0		0
	0	0	1	fx/2				1
	0	1	0	fx/2 ²				2
	0	1	1	fx/2 ³				3
	1	0	0	fx/2 ⁴				4
	1	0	1	fx/2 ⁵				5
	1	1	0	fx/2 ⁶				6
	1	1	1	fx/2 ⁷				7
	MDL03	MDL02	MDL01	MDL00	Output clock	selection for l	paud rate gene	erator k
	0	0	0	0	fscкo/16			0
	0	0	0	1	fscко/17			1
	0	0	1	0	fscкo/18			2
	0	0	1	1	fscкo/19			3
	0	1	0	0	fscкo/20			4
	0	1	0	1	fscкo/21			5
	0	1	1	0	fscкo/22			6
	0	1	1	1	fscко/23			7
	1	0	0	0	fscкo/24			8
	1	0	0	1	fscкo/25			9
	1	0	1	0	fscко/26			10
	1	0	1	1	fscко/27			11
	1	1	0	0	fscко/28			12
	1	1	0	1	fscко/29			13
	1	1	1	0	fscкo/30			14
	1	1	1	1	Setting pro	hibited		

Address: FFA2H After reset: 00H R/W

Caution Writing to BRGC0 during a communication operation may cause abnormal output from the baud rate generator and disable further communication operations. Therefore, do not write to BRGC0 during a communication operation.

- Remarks 1. fx: Main system clock oscillation frequency
 - 2. fscko: Source clock for 5-bit counter
 - **3.** n: Value set via TPS00 to TPS02 ($0 \le n \le 7$)
 - **4.** k: Value set via MDL00 to MDL03 ($0 \le k \le 14$)

The transmit/receive clock that is used to generate the baud rate is obtained by dividing the main system clock.

Transmit/receive clock generation for baud rate by using main system clock
 The main system clock is divided to generate the transmit/receive clock. The baud rate generated from the main system clock is determined according to the following formula.

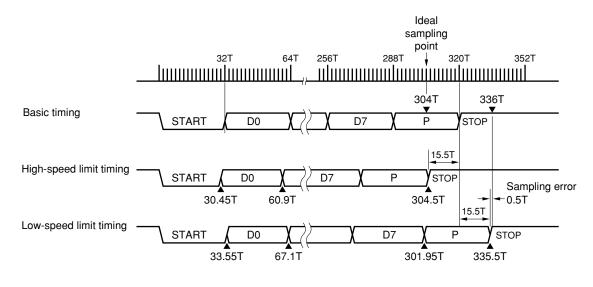
[Baud rate] =
$$\frac{fx}{2^{n+1}(k + 16)}$$
 [Hz]

fx: Main system clock oscillation frequency

When ASCK0 is selected as the source clock of the 5-bit counter, substitute the input clock frequency to the ASCK0 pin for fx in the above expression.

- n: Value set via TPS00 to TPS02 ($0 \le n \le 7$)
- k: Value set via MDL00 to MDL03 ($0 \le k \le 14$)

Baud Rate	fx = 8.3886 MHz		fx = 8.000 MHz		fx = 7.3728 MHz		fx = 5.000 MHz		fx = 4.1943 MHz	
(bps)	BRGC0	ERR (%)	BRGC0	ERR (%)	BRGC0	ERR (%)	BRGC0	ERR (%)	BRGC0	ERR (%)
600	-	-	-	-	-	-	-	-	7BH	1.14
1200	7BH	1.10	7AH	0.16	78H	0	70H	1.73	6BH	1.14
2400	6BH	1.10	6AH	0.16	68H	0	60H	1.73	5BH	1.14
4800	5BH	1.10	5AH	0.16	58H	0	50H	1.73	4BH	1.14
9600	4BH	1.10	4AH	0.16	48H	0	40H	1.73	3BH	1.14
19200	3BH	1.10	ЗАН	0.16	38H	0	30H	1.73	2BH	1.14
31250	31H	-1.3	30H	0	2DH	1.70	24H	0	21H	-1.3
38400	2BH	1.10	2AH	0.16	28H	0	20H	1.73	1BH	1.14
76800	1BH	1.10	1AH	0.16	18H	0	10H	1.73	_	_
115200	12H	1.10	11H	2.12	10H	0	_	-	_	_


Table 16-2. Relationship Between Main System Clock and Baud Rate Error

Remark fx: Main system clock oscillation frequency

• Error tolerance range for baud rate

The error for the baud rate depends on the number of bits per frame and the 5-bit counter's division ratio [1/(16 + k)].

Figure 16-7 shows an example of the baud rate error tolerance range.

Figure 16-7. Error Tolerance (When k = 0), Including Sampling Errors

Baud rate error tolerance (when k = 0) = $\frac{\pm 15.5}{320} \times 100 = 4.8438$ (%)

Caution The above error tolerance value is the value calculated based on the ideal sample point. In the actual design, allow margins that include errors of timing for detecting a start bit.

Remark T: 5-bit counter's source clock cycle

(d) Port mode register 2 (PM2)

*

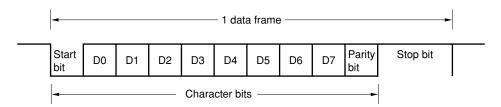
*

Port mode register 2 is used to set input/output of port 2 in 1-bit units.

To use the P24/TxD0 pin as a serial data output, clear PM24 and the output latch of P24 to 0. To use the P23/RxD0 pin as a serial data input, and the P25/ASCK0 pin as a clock input, set PM23 and PM25 to 1. At this time, the output latches of P23 and P25 can be either 0 or 1. PM2 is set by a 1-bit or 8-bit memory manipulation instruction. RESET input sets PM2 to FFH.

Address: FF22H After reset: FFH R/W

Symbol	7	6	5	4	3	2	1	0
PM2	1	1	PM25	PM24	PM23	PM22	PM21	PM20


PM2n	I/O mode selection of P2n pin (n = 0 to 5)			
0	Output mode (output buffer on)			
1	Input mode (output buffer off)			

(2) Communication operations

(a) Data format

Figure 16-8 shows the format of the transmit/receive data.

Figure 16-8. Example of Transmit/Receive Data Format in Asynchronous Serial Interface

1 data frame consists of the following bits.

- Start bit1 bit
- · Character bits ... 7 bits or 8 bits (LSB first)
- Parity bit Even parity, odd parity, zero parity, or no parity
- Stop bit(s)1 bit or 2 bits

Asynchronous serial interface mode register 0 (ASIM0) is used to set the character bit length, parity selection, and stop bit length within each data frame.

When "7 bits" is selected as the number of character bits, only the lower 7 bits (bits 0 to 6) are valid, so that during a transmission the highest bit (bit 7) is ignored and during reception the highest bit (bit 7) must be cleared to 0.

Baud rate generator control register 0 (BRGC0) is used to set the serial transfer rate.

If a receive error occurs, information about the receive error can be ascertained by reading asynchronous serial interface status register 0 (ASIS0).

(b) Parity types and operations

The parity bit is used to detect bit errors in communication data. Usually, the same type of parity bit is used by the transmitting and receiving sides. When odd parity or even parity is set, errors in the parity bit (the odd-number bit) can be detected. When zero parity or no parity is set, errors are not detected.

(i) Even parity

• During transmission

The number of bits in transmit data that includes a parity bit is controlled so that there are an even number of character bits whose value is 1. The value of the parity bit is as follows.

If the transmit data contains an odd number of character bits whose value is 1: the parity bit is "1" If the transmit data contains an even number of character bits whose value is 1: the parity bit is "0"

• During reception

The number of character bits whose value is 1 is counted in the receive data that includes a parity bit, and a parity error occurs when the counted result is an odd number.

(ii) Odd parity

During transmission

The number of bits in transmit data that includes a parity bit is controlled so that there is an odd number of character bits whose value is 1. The value of the parity bit is as follows.

If the transmit data contains an odd number of character bits whose value is 1: the parity bit is "0" If the transmit data contains an even number of character bits whose value is 1: the parity bit is "1"

· During reception

The number of character bits whose value is 1 is counted in the receive data that includes a parity bit, and a parity error occurs when the counted result is an even number.

(iii) Zero parity

During transmission, the parity bit is set to "0" regardless of the transmit data. During reception, the parity bit is not checked. Therefore, no parity errors will occur regardless of whether the parity bit is a "0" or a "1".

(iv) No parity

No parity bit is added to the transmit data.

During reception, receive data is regarded as having no parity bit. Since there is no parity bit, no parity errors will occur.

(c) Transmission

(i) Stop bit length: 1 bit

The transmit operation is enabled if bit 7 (TXE0) of asynchronous serial interface mode register 0 (ASIM0) is set to 1, and the transmit operation is started when transmit data is written to transmit shift register 0 (TXS0). A start bit, parity bit, and stop bit(s) are automatically added to the data.

Starting the transmit operation shifts out the data in TXS0, thereby emptying TXS0, after which a transmit completion interrupt request (INTST0) is issued.

The timing of the transmit completion interrupt request is shown in Figure 16-9.

Figure 16-9. Timing of Asynchronous Serial Interface Transmit Completion Interrupt Request

- STOP D1 Parity TxD0 (output) START D0 D7 D2 D6 **INTSTO** (ii) Stop bit length: 2 bits STOP Parity D1 D7 TxD0 (output) START D0 D2 D6 INTST0
- Caution Do not rewrite asynchronous serial interface mode register 0 (ASIM0) during a transmit operation. Rewriting the ASIM0 register during a transmit operation may disable further transmit operations (in such cases, enter a RESET to restore normal operation).

(d) Reception

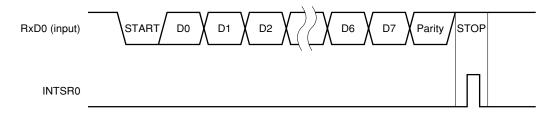
*

*

The receive operation performs level detection.

The receive operation is enabled when "1" is set to bit 6 (RXE0) of asynchronous serial interface mode register 0 (ASIM0), and the input via the RxD0 pin is sampled.

The serial clock specified by baud rate generator control register 0 (BRGC0) is used to sample the RxD0 pin.


When the RxD0 pin goes low, the 5-bit counter of the baud rate generator begins counting and the start timing signal for data sampling is output when half of the specified baud rate time has elapsed. If sampling the RxD0 pin input at this start timing signal yields a low-level result, a start bit is recognized, after which the 5-bit counter is initialized and starts counting and data sampling begins. After the start bit is recognized, the character data, parity bit, and one-bit stop bit are detected, at which point reception of one data frame is completed.

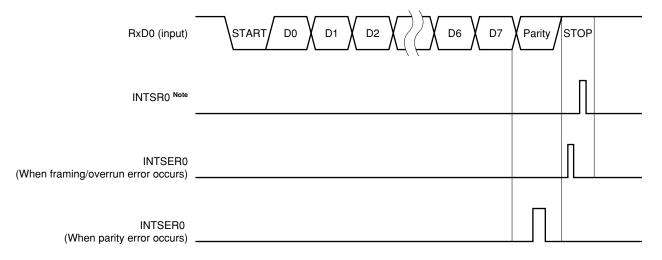
Once reception of one data frame is completed, the receive data in the shift register is transferred to receive buffer register 0 (RXB0) and INTSR0 (receive completion interrupt request) occurs.

If the RXE0 bit is reset (to 0) during a receive operation, the receive operation is stopped immediately. At this time, the contents of RXB0 and ASIS0 do not change, nor does INTSR0 or INTSER0 (receive error interrupt request) occur.

Figure 16-10 shows the timing of the asynchronous serial interface receive completion interrupt request.

Figure 16-10. Timing of Asynchronous Serial Interface Receive Completion Interrupt Request

Caution If the receive operation is enabled with the RxD0 pin input at the low level, the receive operation is immediately started. Make sure the RxD0 pin input is at the high level before enabling the receive operation.


(e) Receive errors

Three types of errors can occur during a receive operation: a parity error, framing error, or overrun error. If, as the result of data reception, an error flag is set in asynchronous serial interface status register 0 (ASIS0), a receive error interrupt request (INTSER0) will occur. Receive error interrupt requests are generated before the receive completion interrupt request (INTSR0). Table 16-3 lists the causes behind receive errors. As part of receive error interrupt request (INTSER0) servicing, the contents of ASIS0 can be read to determine which type of error occurred during the receive operation (see **Table 16-3** and **Figure 16-11**). The contents of ASIS0 are reset (to 0) when receive buffer register 0 (RXB0) is read or when the next data is received (if the next data contains an error, its error flag will be set).

Receive Error	Cause	ASIS0 Value
Parity error	Parity specified does not match parity of receive data	04H
Framing error	Stop bit was not detected	02H
Overrun error	Reception of the next data was completed before data was read from receive buffer register 0 (RXB0)	01H

Table 16-3. Causes of Receive Errors

Note Even if a receive error occurs when the ISRM0 bit has been set (1), INTSR0 does not occur.

- Cautions 1. The contents of asynchronous serial interface status register 0 (ASIS0) are reset (to 0) when receive buffer register 0 (RXB0) is read or when the next data is received. To obtain information about the error, be sure to read the contents of ASIS0 before reading RXB0.
 - 2. Be sure to read the contents of receive buffer register 0 (RXB0) after the receive completion interrupt request has occurred even when a receive error has occurred. If RXB0 is not read after the receive completion interrupt request has occurred, overrun errors will occur during the next data receive operations and the receive error status will remain until the contents of RXB0 are read.

16.4.3 Infrared data transfer mode

In infrared data transfer mode, pulses can be output and received in the data format shown in (2).

*

(1) Registers to be used

- Asynchronous serial interface mode register 0 (ASIM0)
- Asynchronous serial interface status register 0 (ASIS0)
- Baud rate generator control register 0 (BRGC0)
- Port mode register 2 (PM2)
- Port 2 (P2)

(a) Asynchronous serial interface mode register 0 (ASIM0)

ASIM0 is set by a 1-bit or 8-bit memory manipulation instruction. RESET input clears ASIM0 to 00H.

Address: FFA0H After reset: 00H R/W

Symbol	<7>	<6>	5	4	3	2	1	0
ASIM0	TXE0	RXE0	PS01	PS00	CL0	SL0	ISRM0	IRDAM0

TXE0	RXE0	Operation mode	RxD0/P23 pin function	TxD0/P24 pin function	
0	0	Operation stop	Port function (P23)	Port function (P24)	
0	1	UART mode (receive only)	Serial function (RxD0)		
1	0	UART mode (transmit only)	Port function (P23)	Serial function (TxD0)	
1	1	UART mode (transmit and receive)	Serial function (RxD0)		

PS01	PS00	Parity bit specification
0	0	No parity
0	1	Zero parity always added during transmission No parity detection during reception (parity errors do not occur)
1	0	Odd parity
1	1	Even parity

	CL0	Character length specification
ſ	0	7 bits
	1	8 bits

SL0	Stop bit length specification for transmit data
0	1 bit
1	2 bits

ISRM0	Receive completion interrupt control when error occurs
0	Receive completion interrupt request is issued when an error occurs
1	Receive completion interrupt request is not issued when an error occurs

	IRDAM0	Operation specified for infrared data transfer mode ^{Note 1}
Γ	0	UART (transmit/receive) mode
	1	Infrared data transfer (transmit/receive) mode ^{Note 2}

Notes 1. The UART/infrared data transfer mode specification is controlled by TXE0 and RXE0.

2. When using infrared data transfer mode, be sure to set baud rate generator control register 0 (BRGC0) to "10H".

★ Caution Before writing different data to ASIM0, stop operation.

(b) Asynchronous serial interface status register 0 (ASIS0)

(Stop bit not detected)

ASIS0 can be read by an 8-bit memory manipulation instruction. RESET input clears ASIS0 to 00H.

Address: FFA1H After reset: 00H R										
Symbol	7	6	5	4	3	2	1	0		
ASIS0	0	0	0	0	0	PE0	FE0	OVE0		
		-								
	PE0	Parity error flag								
	0	No parity er	No parity error							
	1	Parity error	Parity error							
		(Transmit d	ata parity not	matched)						
	FE0		Framing error flag							
	0	No framing	No framing error							
	1	Framing err	OrNote 1							

OVE0	Overrun error flag
0	No overrun error
1	Overrun errorNote 2 (Next receive operation was completed before data was read from receive buffer register 0 (RXB0))

- **Notes 1.** Even if the stop bit length is set to two bits by setting bit 2 (SL0) of asynchronous serial interface mode register 0 (ASIM0), stop bit detection during a receive operation only applies to a stop bit length of 1 bit.
 - 2. When an overrun error has occurred, further overrun errors will continue to occur until the contents of receive buffer register 0 (RXB0) are read.

(c) Baud rate generator control register 0 (BRGC0)

BRGC0 is set by an 8-bit memory manipulation instruction. RESET input clears BRGC0 to 00H.

Address: FFA2H After reset: 00H R/W											
Symbol	7	6	5	4	3	2	1	0			
BRGC0	0	TPS02	TPS01	TPS00	MDL03	MDL02	MDL01	MDL00			
	(fx = 8.3										
	TPS02	TPS01	TPS00	Source clock selection for 5-bit counter							
	0	0	0	External clock input to ASCK0							
	0	0	1	fx/2							
	0	1	0	fx/2 ²							
	0	1	1	fx/2 ³				3			
	1	0	0	fx/2 ⁴							
	1	0	1	fx/2 ⁵							
	1	1	0	fx/2 ⁶							
	1	1	1	fx/2 ⁷							
	MDL03	MDL02	MDL01	MDL00	Output clock	selection for	baud rate generate	or k			
	0	0	0	0	fscкo/16			0			
	0	0	0	1	fscко/17			1			
	0	0	1	0	fscкo/18			2			
	0	0	1	1	fscкo/19			3			
		i	i	i	i						

0	0	1	0	fscкo/18	2
0	0	1	1	fscкo/19	3
0	1	0	0	fscкo/20	4
0	1	0	1	fscкo/21	5
0	1	1	0	fscкo/22	6
0	1	1	1	fscкo/23	7
1	0	0	0	fscкo/24	8
1	0	0	1	fscкo/25	9
1	0	1	0	fscкo/26	10
1	0	1	1	fscкo/27	11
1	1	0	0	fscкo/28	12
1	1	0	1	fscкo/29	13
1	1	1	0	fscкo/30	14
1	1	1	1	Setting prohibited	_

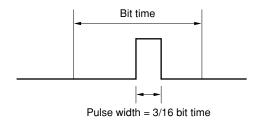
Cautions 1. Writing to BRGC0 during a communication operation may cause abnormal output from the baud rate generator and disable further communication operations. Therefore, do not write to BRGC0 during a communication operation.

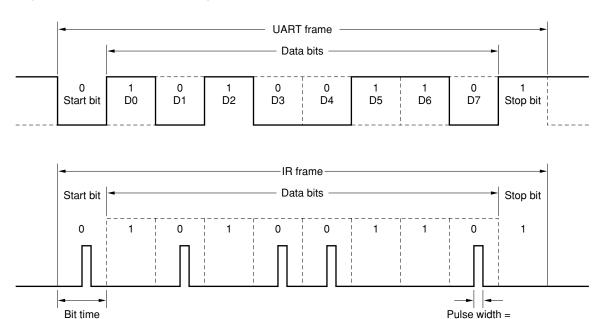
- 2. Set BRGC0 to 10H when using in infrared data transfer mode.
- Remarks 1. fx: Main system clock oscillation frequency
 - 2. fscko: Source clock for 5-bit counter
 - 3. n: Value set via TPS00 to TPS02 ($0 \le n \le 7$)
 - **4.** k: Value set via MDL00 to MDL03 ($0 \le k \le 14$)

(d) Port mode register 2 (PM2)

Port mode register 2 is used to set input/output of port 2 in 1-bit units. To use the P24/TxD0 pin as a serial data output, clear PM24 and the output latch of P24 to 0. To use the P23/RxD0 pin as a serial data input, and the P25/ASCK0 pin as a clock input, set PM23 and PM25 to 1. At this time, the output latches of P23 and P25 can be either 0 or 1. PM2 is set by a 1-bit or 8-bit memory manipulation instruction. RESET input sets PM2 to FFH.

Address: FF22H After reset: FFH R/W


Symbol	7	6	5	4	3	2	1	0
PM2	1	1	PM25	PM24	PM23	PM22	PM21	PM20


PM2n	I/O mode selection of P2n pin $(n = 0 \text{ to } 5)$
0	Output mode (output buffer on)
1	Input mode (output buffer off)

(2) Data format

Figure 16-12 compares the data format used in UART mode with that used in infrared data transfer mode. The IR (infrared) frame corresponds to the bit string of the UART frame, which consists of pulses that include a start bit, eight data bits, and a stop bit.

The length of the electrical pulses that are used to transmit and receive in an IR frame is 3/16 the length of the cycle time for one bit (i.e., the "bit time"). This pulse (whose width is 3/16 the length of one bit time) rises from the middle of the bit time (see the figure below).

Figure 16-12. Data Format Comparison Between Infrared Data Transfer Mode and UART Mode

\star (3) Relationship between main system clock and baud rate

Table 16-4 shows the relationship between the main system clock and the baud rate.

Table 16-4. Relationship Between Main System Clock and Baud Rate

3/16 bit time

	fx = 8.3886 MHz	fx = 8.000 MHz	fx = 7.3728 MHz	fx = 5.000 MHz	fx = 4.1943 MHz
Baud rate	131031 bps	125000 bps	115200 bps	78125 bps	65536 bps

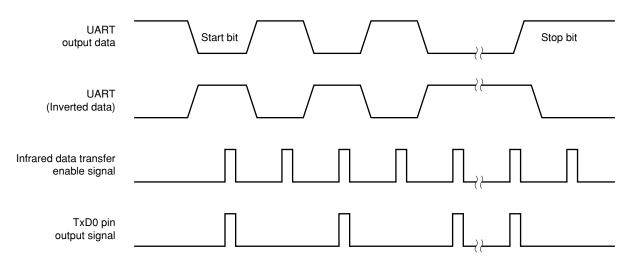
(4) Bit rate and pulse width

Table 16-5 lists the bit rate, bit rate error tolerance, and pulse width values.

Table 16-5. Bit Rate and Pulse Width Values	Table 16-5.	Bit Rate and	Pulse	Width	Values
---	-------------	--------------	-------	-------	--------

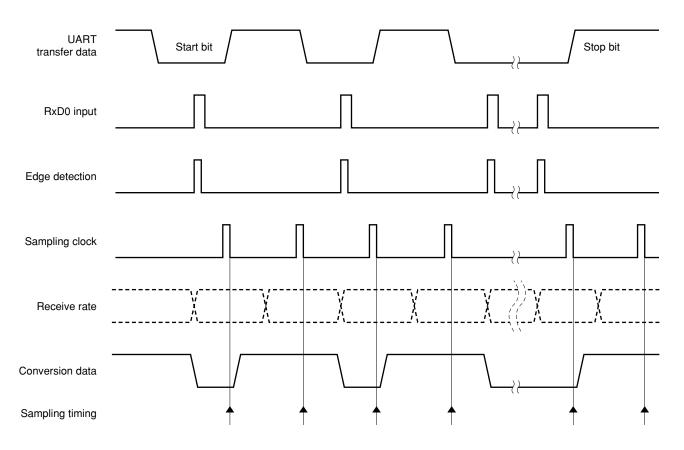
Bit Rate (kbps)	Bit Rate Error Tolerance (% of Bit Rate)	Pulse Width Minimum Value (µs) ^{Note 2}	3/16 Pulse Width <nominal value=""> (μs)</nominal>	Maximum Pulse Width (µs)
115.2 ^{Note 1}	+/- 0.87	1.41	1.63	2.71

Notes 1. Operation with fx = 7.3728 MHz


2. When a digital noise eliminator is used in a microcontroller operating at 1.41 MHz or above.

Caution When using baud rate generator control register 0 (BRGC0) in infrared data transfer mode, set it to 10H.

Remark fx: Main system clock oscillation frequency


(5) Input data and internal signals

Transmit operation timing

Receive operation timing

Data reception is delayed for one-half of the specified baud rate.

(1) Operation stop mode

			ASI	M0				BRGC0							PM23	P23	PM24	P24	Pin Fu	Inction	Operation
TXE0	TXE0 RXE0 PS01 PS00 CL0 SL0 ISRM0 IRDAM0 TPS02 TPS01 TPS00 MDL03 MDL02 MDL01 MDL00													P23/RxD0	P24/TxD0	Mode					
0	0 0 × × × × × × × × × × × × × ×									×	×	×	×	×	P23	P24	Stop				
	Other than above												Set	ting prohibited	k						

(2) Asynchronous serial interface (UART) mode

	ASIMO BRGCO PI									PM23	P23	PM24	P24	Pin Fu	Inction	Operation					
TXE0	RXE0	PS01	PS00	CL0	SL0	ISRM0	IRDAM0	TPS02	TPS01	TPS00	MDL03	MDL02	MDL01	MDL00					P23/RxD0	P24/TxD0	Mode
0	1	0/1	0/1	0/1	×	0/1	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	1	×	×	×	RxD0	P24	Receive
1	0	0/1	0/1	0/1	0/1	×	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	×	×	0	0	P23	TxD0	Transmit
1	1	0/1	0/1	0/1	0/1	0/1	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	1	×	0	0	RxD0	TxD0	Transmit /receive
	Other than above												Set	ting prohibited	d						

(3) Infrared data transfer mode

	ASIM0 BRGC0 PM23 P23 PM24 P24											Pin Function		Operation							
TXE0	RXE0	PS01	PS00	CL0	SL0	ISRM0	IRDAM0	TPS02	TPS01	TPS00	MDL03	MDL02	MDL01	MDL00					P23/RxD0	P24/TxD0	Mode
0	1	0/1	0/1	0/1	×	0/1	1	0	0	1	0	0	0	0	1	×	×	×	RxD0	P24	Receive
1	0	0/1	0/1	0/1	0/1	×	1	0	0	1	0	0	0	0	×	×	0	0	P23	TxD0	Transmit
1	1	0/1	0/1	0/1	0/1	0/1	1	0	0	1	0	0	0	0	1	×	0	0	RxD0	TxD0	Transmit /receive
	Other than above												Set	ting prohibited							

Caution When using the infrared data transfer mode, set the BRGC0 register to 10H.

Remark ×: Don't care, ASIM0: Asynchronous serial interface mode register 0

BRGC0: Baud rate generator control register 0, PMxx: Port mode register, Pxx: Output latch of port

User's Manual U14046EJ3V0UD

CHAPTER 17 SERIAL INTERFACES SIO30 AND SIO31

The μ PD780024A, 780034A Subseries products have two 3-wire serial I/O mode channels (SIO30, SIO31). The μ PD780024AY, 780034AY Subseries products have one 3-wire serial I/O mode channel (SIO30).

17.1 Functions of Serial Interfaces SIO30 and SIO31

Serial interface SIO3n has the following two modes.

(1) Operation stop mode

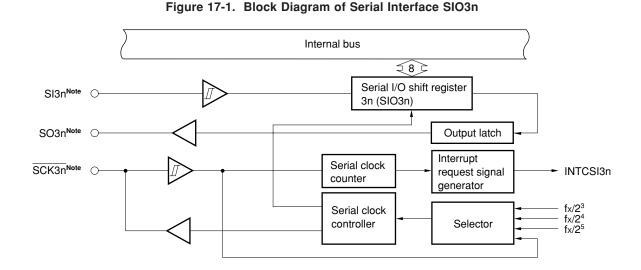
*

This mode is used when serial transfers are not performed. For details, see 17.4.1 Operation stop mode.

(2) 3-wire serial I/O mode (fixed as MSB first)

This is an 8-bit data transfer mode using three lines: a serial clock line (SCK3n), serial output line (SO3n), and serial input line (SI3n).

Since simultaneous transmit and receive operations are enabled in 3-wire serial I/O mode, the processing time for data transfers is reduced.


The first bit of the serial transferred 8-bit data is fixed as the MSB.

3-wire serial I/O mode is useful for connection to a peripheral IC incorporating a clocked serial interface, a display controller, etc. For details, see **17.4.2** 3-wire serial I/O mode.

Figure 17-1 shows a block diagram of serial interface SIO3n.

Remark n = 0, 1: µPD780024A, 780034A Subseries

n = 0: μ PD780024AY, 780034AY Subseries

Note SI30, SO30, and SCK30 pins are alternate with P20, P21, and P22 pins. SI31, SO31, and SCK31 pins are alternate with P34, P35, and P36 pins.

17.2 Configuration of Serial Interfaces SIO30 and SIO31

Serial interface SIO3n consists of the following hardware.

Item	Configuration
Register	Serial I/O shift register 3n (SIO3n)
Control registers	Serial operation mode register 3n (CSIM3n) Port mode registers 2, 3 (PM2, PM3) Ports 2, 3 (P2, P3)

(1) Serial I/O shift register 3n (SIO3n)

This is an 8-bit register that performs parallel-serial conversion and serial transmit/receive (shift operations) synchronized with the serial clock.

SIO3n is set by an 8-bit memory manipulation instruction.

When 1 is set to bit 7 (CSIE3n) of serial operation mode register 3n (CSIM3n), a serial operation can be started by writing data to or reading data from SIO3n.

When transmitting, data written to SIO3n is output to the serial output (SO3n).

When receiving, data is read from the serial input (SI3n) and written to SIO3n.

RESET input makes SIO3n undefined.

- Caution Do not access SIO3n during a transfer operation unless the access is triggered by a transfer start (read operation is disabled when MODEn = 0 and write operation is disabled when MODEn = 1).
- **Remark** n = 0, 1: µPD780024A, 780034A Subseries
 - n = 0: μ PD780024AY, 780034AY Subseries

17.3 Registers to Control Serial Interfaces SIO30 and SIO31

Serial interface SIO3n is controlled by the following three registers.

- Serial operation mode register 3n (CSIM3n)
- Port mode registers 2, 3 (PM2, PM3)
- Ports 2, 3 (P2, P3)

(1) Serial operation mode register 3n (CSIM3n)

This register is used to enable or disable SIO3n's serial clock, operation modes, and specific operations. CSIM3n is set by a 1-bit or 8-bit memory manipulation instruction. RESET input clears CSIM3n to 00H.

Remark n = 0, 1: μPD780024A, 780034A Subseries n = 0: μPD780024AY, 780034AY Subseries

Figure 17-2. Format of Serial Operation Mode Register 30 (CSIM30)

Address: F	FB0H After	reset: 00H	R/W					
Symbol	<7>	6	5	4	3	2	1	0
CSIM30	CSIE30	0	0	0	0	MODE0	SCL301	SCL300

CSIE30	Enable/disable specification for SIO30										
	Shift register operation	Serial counter	Port								
0	Operation stopped	Clear	Port function ^{Note 1}								
1	Operation enabled	Count operation enable	Serial function + port functionNote 2								

MODE0	Transfer operation modes and flags						
	Operation mode	Transfer start trigger	SO30/P21 pin function				
0	Transmit/transmit and receive mode	Write to SIO30	SO30				
1	Receive-only mode	Read from SIO30	P21 ^{Note 3}				

SCL301	SCL300	Clock selection			
			fx = 8.38 MHz	fx = 12 MHz ^{Note 4}	
0	0	External clock input to SCK30	_	_	
0	1	fx/2 ³	1.04 MHz	1.50 MHz	
1	0	fx/2 ⁴	523 kHz	750 kHz	
1	1	fx/2 ⁵	261 kHz	375 kHz	

- ★ Notes 1. When CSIE30 = 0 (SIO30 operation stopped status), the SI30, SO30, and SCK30 pins can be used as port functions.
 - 2. When CSIE30 = 1 (SIO30 operation enabled status), the SI30 pin can be used as a port pin if only the transmit function is used, and the SO30 pin can be used as a port pin if only the receive-only mode is used.
 - **3.** When MODE0 = 1 (receive-only mode), the SO30 pin can be used for port functions.
 - **4.** Expanded-specification products of μ PD780024A, 780034A Subseries only.

★ Caution Do not rewrite the value of CSIM30 during transfer. However, CSIE30 can be rewritten using a 1-bit memory manipulation instruction.

Remark fx: Main system clock oscillation frequency

*

 \star

Address: F	FB8H After	reset: 00H	R/W					
Symbol	<7>	6	5	4	3	2	1	0
CSIM31	CSIE31	0	0	0	0	MODE1	SCL311	SCL310

Figure 17-3. Format of Serial Operation Mode Register 31 (CSIM31)

CSIE31	Enable/disable specification for SIO31						
	Shift register operation	Serial counter	Port				
0	Operation stopped	Clear	Port function ^{Note 1}				
1	Operation enabled	Count operation enable	Serial function + port function ^{Note 2}				

MODE1	Transfer operation modes and flags							
	Operation mode	Transfer start trigger	SO31/P35 pin function					
0	Transmit/transmit and receive mode	Write to SIO31	SO31					
1	Receive-only mode	Read from SIO31	P35 ^{Note 3}					

SCL311	SCL310	Clock selection			
			fx = 8.38 MHz	fx = 12 MHz ^{Note 4}	
0	0	External clock input to SCK31	-	-	
0	1	fx/2 ³	1.04 MHz	1.50 MHz	
1	0	fx/2 ⁴	523 kHz	750 kHz	
1	1	fx/2 ⁵	261 kHz	375 kHz	

Notes 1. When CSIE31 = 0 (SIO31 operation stopped status), the SI31, SO31, and SCK31 pins can be used as port functions.

- 2. When CSIE31 = 1 (SIO31 operation enabled status), the SI31 pin can be used as a port pin if only the transmit function is used, and the SO31 pin can be used as a port pin if only the receive-only mode is used.
- 3. When MODE1 = 1 (receive-only mode), the SO31 pin can be used for port functions.
- 4. Expanded-specification products of µPD780024A, 780034A Subseries only.
- Caution Do not rewrite the value of CSIM31 during transfer. However, CSIE31 can be rewritten using a 1-bit memory manipulation instruction.
- Remark fx: Main system clock oscillation frequency

*

*

*

*

★ (2) Port mode registers 2, 3 (PM2, PM3)

These registers set the input/output of ports 2 and 3 in 1-bit units.

To use the P21/SO30 and P35/SO31 pins as serial data output, and the P22/SCK30 and P36/SCK31 pins as clock output, clear PM21, PM35, PM22, PM36, and the output latches of P21, P35, P22, and P36 to 0. To use the P20/SI30 and P34/SI31 pins as serial data input, and the P22/SCK30 and P36/SCK31 pins as clock input, set PM20, PM34, PM22, and PM36 to 1.

At this time, the output latches of P20, P34, P22, and P36 can be either 0 or 1.

PM2 and PM3 are set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets PM2 and PM3 to FFH.

Figure 17-4. Format of Port Mode Register 2 (PM2)

Address: F	F22H After I	reset: FFH	R/W					
Symbol	7	6	5	4	3	2	1	0
PM2	1	1	PM25	PM24	PM23	PM22	PM21	PM20
			-					
	PM2n		1/	O mode sele	ction of P2n	oin (n = 0 to 5	5)	
	0	Output mod	le (output buf	fer on)				
	1	Input mode	(output buffe	er off)				

Figure 17-5. Format of Port Mode Register 3 (PM3)

Address: FF23H After reset: FFH R/W Symbol 7 6 2 0 5 4 3 1 PM3 1 PM36 PM35 PM34 PM33 PM32 PM31 PM30

PM3n	I/O mode selection of P3n pin (n = 0 to 6)			
0	Output mode (output buffer on)			
1	Input mode (output buffer off)			

17.4 Operations of Serial Interfaces SIO30 and SIO31

This section explains the two modes of serial interface SIO3n.

17.4.1 Operation stop mode

Because the serial transfer is not performed during this mode, the power consumption can be reduced. In addition, pins can be used as normal I/O ports.

(1) Register settings

Operation stop mode is set by serial operation mode register 3n (CSIM3n). CSIM3n is set by a 1-bit or 8-bit memory manipulation instruction. RESET input clears CSIM3n to 00H.

Address: FFB0H (SIO30), FFB8H (SIO31) After reset: 00H R/W

Symbol	<7>	6	5	4	3	2	1	0
CSIM3n	CSIE3n	0	0	0	0	MODEn	SCL3n1	SCL3n0

CSIE3n	Enable/disable specification for SIO3n						
	Shift register operation	Serial counter	Port				
0	Operation disabled	Clear	Port function ^{Note}				

Note When CSIE3n = 0 (SIO3n operation stop status), the pins SI3n, SO3n, and SCK3n can be used for port functions.

Remark n = 0, 1

17.4.2 3-wire serial I/O mode

The 3-wire serial I/O mode can be used when connecting a peripheral IC incorporating a clocked serial interface, a display controller, etc.

This mode executes data transfers via three lines: a serial clock line (SCK3n), serial output line (SO3n), and serial input line (SI3n).

(1) Registers to be used

- Serial operation mode register 3n (CSIM3n)
- Port mode registers 2, 3 (PM2, PM3)
- Ports 2, 3 (P2, P3)

(a) Serial operation mode register 3n (CSIM3n)

CSIM3n is set by a 1-bit or 8-bit memory manipulation instruction. RESET input clears CSIM3n to 00H.

Address: FFB0H (SIO30), FFB8H (SIO31) After reset: 00H R/W

Symbol	<7>	6	5	4	3	2	1	0
CSIM3n	CSIE3n	0	0	0	0	MODEn	SCL3n1	SCL3n0

CSIE3n	Enable/disable specification for SIO3n						
	Shift register operation	Serial counter	Port				
0	Operation stopped	Clear	Port function ^{Note 1}				
1	Operation enabled	Count operation enable	Serial function + port functionNote 2				

MODEn	Tra	nsfer operation modes and fla	ags					
	Operation mode Transfer start trigger SO3n pin function							
0	Transmit/transmit and receive mode	Write to SIO3n	SO3n					
1	Receive-only mode	Read from SIO3n	Port function ^{Note 3}					

SCL3n1	SCL3n0	Clock s	election	
			fx = 8.38 MHz	fx = 12 MHz ^{Note 4}
0	0	External clock input to SCK3n	_	_
0	1	fx/2 ³	1.04 MHz	1.50 MHz
1	0	fx/2 ⁴	523 kHz	750 kHz
1	1	fx/2 ⁵	261 kHz	375 kHz

- Notes 1. When CSIE3n = 0 (SIO3n operation stopped status), the SI3n, SO3n, and SCK3n pins can be used as port functions.
 - 2. When CSIE3n = 1 (SIO3n operation enabled status), the SI3n pin can be used as a port pin if only the transmit function is used, and the SO3n pin can be used as a port pin if only the receive-only mode is used.
 - **3.** When MODEn = 1 (receive-only mode), the SO3n pin can be used for port functions.
 - 4. Expanded-specification products of µPD780024A, 780034A Subseries only.

*

*

Caution Do not rewrite the value of CSIM3n during transfer. However, CSIE3n can be rewritten using a 1-bit memory manipulation instruction.

Remarks 1. fx: Main system clock oscillation frequency

2. n = 0, 1: μPD780024A, 780034A Subseries

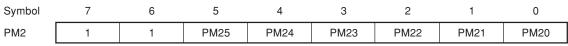
n = 0: μPD780024AY, 780034AY Subseries

(b) Port mode registers 2, 3 (PM2, PM3)

*

*

These registers set the input/output of ports 2 and 3 in 1-bit units.


To use the P21/SO30 and P35/SO31 pins as serial data output, and the P22/SCK30 and P36/SCK31 pins as clock output, clear PM21, PM35, PM22, PM36, and the output latches of P21, P35, P22, and P36 to 0. To use the P20/SI30 and P34/SI31 pins as serial data input, and the P22/SCK30 and P36/SCK31 pins as clock input, set PM20, PM34, PM22, and PM36 to 1.

At this time, the output latches of P20, P34, P22, and P36 can be either 0 or 1.

PM2 and PM3 are set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets PM2 and PM3 to FFH.

Address: FF22H After reset: FFH R/W

PM2n	I/O mode selection of P2n pin (n = 0 to 5)
0	Output mode (output buffer on)
1	Input mode (output buffer off)

Address: FF23H After reset: FFH R/W

Symbol	7	6	5	4	3	2	1	0
PM3	1	PM36	PM35	PM34	PM33	PM32	PM31	PM30

PM3n	I/O mode selection of P3n pin (n = 0 to 6)
0	Output mode (output buffer on)
1	Input mode (output buffer off)

(2) Transfer start

A serial transfer starts when the following two conditions have been satisfied and transfer data has been set (or read) to serial I/O shift register 3n (SIO3n).

<Transfer start conditions>

- SIO3n operation control bit (CSIE3n) = 1
- After an 8-bit serial transfer, either the internal serial clock is stopped or SCK3n is set to high level.
- <Transfer start timing>
- Transmit/transmit and receive mode (MODEn = 0) Transfer starts when writing to SIO3n.
- Receive-only mode (MODEn = 1) Transfer starts when reading from SIO3n.

Caution After data has been written to SIO3n, transfer will not start even if the CSIE3n bit value is set to 1.

(3) Communication operations

In the 3-wire serial I/O mode, data is transmitted and received in 8-bit units. Each bit of data is transmitted or received in synchronization with the serial clock.

Serial I/O shift register 3n (SIO3n) is shifted in synchronization with the falling edge of the serial clock. Transmit data is held in the SO3n latch and is output from the SO3n pin. Data that is received via the SI3n pin in synchronization with the rising edge of the serial clock is latched to SIO3n.

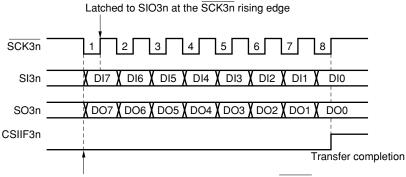


Figure 17-6. Timing of 3-Wire Serial I/O Mode

Transfer starts in synchronization with the SCK3n falling edge

(4) Transfer complete

Completion of an 8-bit transfer automatically stops the serial transfer operation and the interrupt request flag (CSIIF3n) is set.

Remark n = 0, 1: µPD780024A, 780034A Subseries

n = 0: µPD780024AY, 780034AY Subseries

(1) Operation stop mode

* Table 17-2. Register Settings

Serial interface SIO30

	CSI	M30		PM20	P20	PM21	P21	PM22	P22		Pin Function		Operation
CSIE30	MODE0	SCL301	SCL300							P20/SI30	P21/SO30	P22/SCK30	
0	×	×	×	×	×	×	×	×	×	P20	P21	P22	Stop
	Other than above										Sett	ing prohibited	

Serial interface SIO31

• Sella	arimenace	31031											
	CSIM31 PM34 P34 PM35 P35 PM36 P36									Pin Function		Operation	
CSIE31	MODE1	SCL311	SCL310							P34/SI31	P35/SO31	P36/SCK31	
0	×	×	×	×	×	×	×	×	×	P34	P35	P36	Stop
	Other than above										Sett	ing prohibited	

(2) 3-wire serial I/O mode

Serial interface SIO30

 Seria 	ai internace	51030											
	CSI	M30		PM20	P20	PM21	P21	PM22	P22	Pin Function		Operation	
CSIE30	MODE0	SCL301	SCL300							P20/SI30 P21/SO30 P22/SCK30			
1	1	0	0	1	×	×	×	1	×	SI30	P21	SCK30 input	Slave receive
1	0	0	0	1	×	0	0	1	×	SI30 ^{Note}	SO30	SCK30 input	Slave transmit/transmit and receive
1	1	Other that	an above	1	×	×	×	0	0	SI30	P21	SCK30 output	Master receive
1 0 1 × 0 0 0 0										SI30 ^{Note}	SO30	SCK30 output	Master transmit/transmit and receive
				Other	than above			Sett	ing prohibited				

• 06118	• Senai internace SiOST												
	CSI	V I31		PM34	P34	PM35	P35	PM36	P36		Pin Function	Operation	
CSIE31	MODE1	SCL311	SCL310							P21/SI31	P21/SO31	P22/SCK31	
1	1	0	0	1	×	×	×	1	×	SI31	P35	SCK31 input	Slave receive
1	0	0	0	1	×	0	0	1	×	SI31 ^{Note}	SO31	SCK31 input	Slave transmit/transmit and receive
1 1 Other than above				1	×	×	×	0	0	SI31	P35	SCK31 output	Master receive
1	1 0 1 × 0 0 0 0								0	SI31 ^{Note}	SO31	SCK31 output	Master transmit/transmit and receive
				Other		Set	ting prohibited						

Note When using for transmission only, it can be used as P20 or P34.

User's Manual U14046EJ3V0UD

18.1 Functions of Serial Interface IIC0

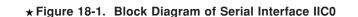
Serial interface IIC0 has the following two modes.

(1) Operation stop mode

This mode is used when serial transfers are not performed. It can therefore be used to reduce power consumption.

(2) I²C bus mode (multimaster supported)

This mode is used for 8-bit data transfers with several devices via two lines: a serial clock (SCL0) line and a serial data bus (SDA0) line.


The transfer rate is as follows.

• 97.5 kHz (standard mode) or 350 kHz (high-speed mode): When operated at fx = 8.38 MHz

This mode complies with the I²C bus format and can output "start condition", "data", and "stop condition" data segments when transmitting via the serial data bus. These data segments are automatically detected by hardware during reception.

Since SCL0 and SDA0 are open-drain outputs, the IIC0 requires pull-up resistors for the serial clock line (SCL0) and the serial data bus line (SDA0).

Figure 18-1 shows a block diagram of serial interface IIC0.

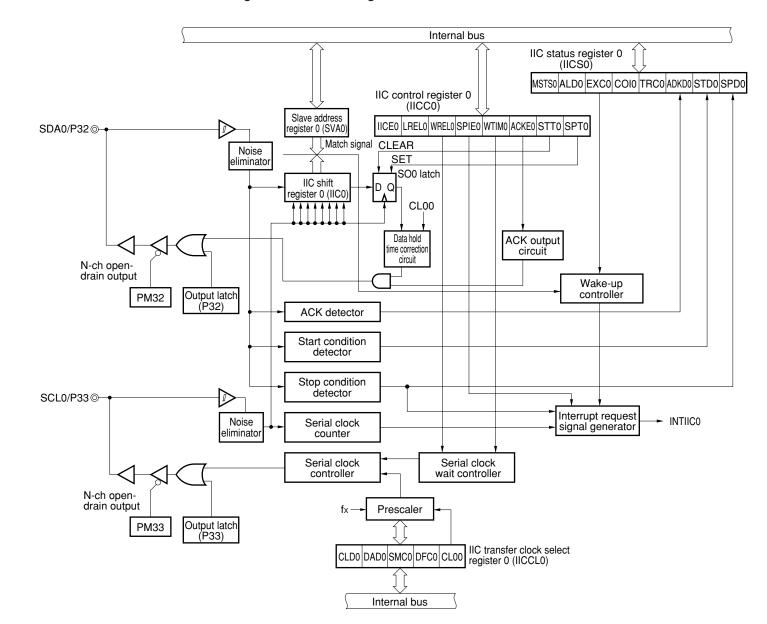


Figure 18-2 shows a serial bus configuration example.

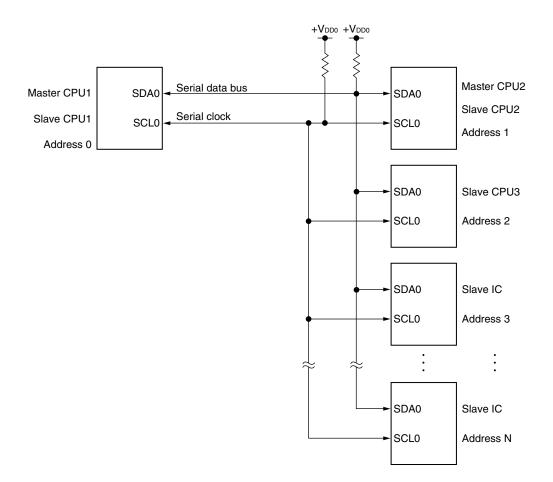


Figure 18-2. Serial Bus Configuration Example Using I²C Bus

18.2 Configuration of Serial Interface IIC0

Serial interface IIC0 includes the following hardware.

Table 18-1. Configuration of Serial Interface IIC0

Item	Configuration
Registers	IIC shift register 0 (IIC0) Slave address register 0 (SVA0)
Control registers	IIC control register 0 (IICC0) IIC status register 0 (IICS0) IIC transfer clock select register 0 (IICCL0) Port mode register 3 (PM3) Port 3 (P3)

(1) IIC shift register 0 (IIC0)

*

*

*

IIC0 is used to convert 8-bit serial data to 8-bit parallel data and vice versa in synchronization with the serial clock. IIC0 can be used for both transmission and reception.

Write and read operations to IIC0 are used to control the actual transmit and receive operations. IIC0 is set by an 8-bit memory manipulation instruction.

RESET input clears IIC0 to 00H.

Figure 18-3. Format of IIC Shift Register 0 (IIC0)

Address: FF1FH After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
IIC0								

Caution Do not write data to IIC0 during data transfer.

(2) Slave address register 0 (SVA0)

This register sets local addresses when in slave mode. SVA0 is set by an 8-bit memory manipulation instruction. RESET input clears SVA0 to 00H.

Figure 18-4. Format of Slave Address Register 0 (SVA0)

Address: F	FABH After	reset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
SVA0								0 ^{Note}

Note Bit 0 is fixed to 0.

(3) SO0 latch

The SO0 latch is used to retain the SDA0 pin's output level.

(4) Wake-up controller

This circuit generates an interrupt request when the address received by this register matches the address value set to slave address register 0 (SVA0) or when an extension code is received.

(5) Prescaler

This selects the sampling clock to be used.

(6) Serial clock counter

This counter counts the serial clocks that are output or input during transmit/receive operations and is used to verify that 8-bit data was transmitted or received.

(7) Interrupt request signal generator

This circuit controls the generation of interrupt request signals (INTIIC0). An I²C interrupt request is generated following either of two triggers.

- Falling of eighth or ninth clock of the serial clock (set by WTIM0 bit^{Note})
- Interrupt request generated when a stop condition is detected (set by SPIE0 bit^{Note})

Note WTIM0 bit: Bit 3 of IIC control register 0 (IICC0) SPIE0 bit: Bit 4 of IIC control register 0 (IICC0)

(8) Serial clock controller

In master mode, this circuit generates the clock output via the SCL0 pin from a sampling clock.

(9) Serial clock wait controller

This circuit controls the wait timing.

(10) ACK output circuit, stop condition detector, start condition detector, and ACK detector These circuits are used to output and detect various control signals.

(11) Data hold time correction circuit

This circuit generates the hold time for data corresponding to the falling edge of the serial clock.

18.3 Registers to Control Serial Interface IIC0

Serial interface IIC0 is controlled by the following five registers.

- IIC control register 0 (IICC0)
- IIC status register 0 (IICS0)
- IIC transfer clock select register 0 (IICCL0)
- Port mode register 3 (PM3)
- Port 3 (P3)

(1) IIC control register 0 (IICC0)

This register is used to enable/stop I²C operations, set wait timing, and set other I²C operations. IICC0 is set by a 1-bit or 8-bit memory manipulation instruction. RESET input clears IICC0 to 00H.

Figure 18-5. Format of IIC Control Register 0 (IICC0) (1/4)

Address:	FFA8H Afte	r reset: 00H	R/W					
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
IICC0	IICE0	LREL0	WREL0	SPIE0	WTIM0	ACKE0	STT0	SPT0

IICE0	I ² C operation enable				
0	Stop operation. Reset IIC status register 0 (IICS0). Stop internal operation.				
1	Enable operation.				
Condition for	or clearing (IICE0 = 0)	Condition for setting (IICE0 = 1)			
Cleared by instruction When RESET is input		Set by instruction			

LREL0	Exit from communications				
0	Normal operation				
1	This exits from the current communications operation and sets standby mode. This setting is automatically cleared after being executed. Its uses include cases in which a locally irrelevant extension code has been received. The SCL0 and SDA0 lines go into the high impedance state. The following flags of IIC status register 0 (IICS0) and IIC control register 0 (IICC0) are cleared. • STD0 • ACKD0 • TRC0 • COI0 • EXC0 • MSTS0 • STT0 • SPT0				
conditions a • After a st	 The standby mode following exit from communications remains in effect until the following communications entry conditions are met. After a stop condition is detected, restart is in master mode. An address match or extension code reception occurs after the start condition. 				
Condition for	Condition for clearing (LREL0 = 0) ^{Note} Condition for setting (LREL0 = 1)				
Automati	Automatically cleared after execution Set by instruction				

•	Automatically cleared after execution
•	When RESET is input

WREL0	Cancel wait				
0	Do not cancel wait				
1	Cancel wait. This setting is automatically cleared after wait is canceled.				
When WREL0 is set (wait canceled) during the wait period at the ninth clock pulse in the transmission status (TRC0 = 1), the SDA0 line goes into the high impedance state (TRC0 = 0).					
Condition for	Condition for clearing (WREL0 = 0) ^{Note} Condition for setting (WREL0 = 1)				
 Automatically cleared after execution When RESET is input 		Set by instruction			

SPIE0	Enable/disable generation of interrupt request when stop condition is detected			
0	Disable			
1	Enable			
Condition for clearing (SPIE0 = 0) ^{Note}		Condition for setting (SPIE0 = 1)		
Cleared by instruction When RESET is input		Set by instruction		

Note This flag's signal is invalid when IICE0 = 0.

Figure 18-5. Format of IIC Control Register 0 (IICC0) (2/4)

WTIM0	Control of wait and interrupt request generation				
0	Interrupt request is generated at the eighth clock's falling edge. Master mode: After output of eight clocks, clock output is set to low level and wait is set. Slave mode: After input of eight clocks, the clock is set to low level and wait is set for master device.				
	Slave mode: After input of nine clocks, the etting is invalid during an address transfer and	lock's falling edge. ock output is set to low level and wait is set. clock is set to low level and wait is set for master device. d is valid after the transfer is completed. When in master lock during address transfers. For a slave device that			
	has received a local address, a wait is inserted at the falling edge of the ninth clock after an ACK signal is issued. When the slave device has received an extension code, a wait is inserted at the falling edge of the eighth clock.				
Condition f	Condition for clearing (WTIM0 = 0) ^{Note} Condition for setting (WTIM0 = 1)				
	by instruction ESET is input	Set by instruction			

ACKE0	Acknowledgment control				
0	Disable acknowledgment.				
1	Enable acknowledgment. During the ninth clock period, the SDA0 line is set to low level. However, the ACK is invalid during address transfers and is valid when EXC0 = 1.				
Condition for clearing (ACKE0 = 0) ^{Note}		Condition for setting (ACKE0 = 1)			
 Cleared by instruction When RESET is input 		Set by instruction			

Note This flag's signal is invalid when IICE0 = 0.

STT0	Star	t condition trigger			
0	Do not generate a start condition.				
1	 When bus is released (during STOP mode): Generate a start condition (for starting as master). The SDA0 line is changed from high level to low level and then the start condition is generated. Next, after the rated amount of time has elapsed, SCL0 is changed to low level. When bus is not used: This trigger functions as a start condition reservation flag. When set, it releases the bus and then automatically generates a start condition. Wait status (during master mode): Generate a restart condition after wait is released. 				
For mastFor mast	Cautions concerning set timing For master reception: Cannot be set during transfer. Can be set only in the waiting period when ACKE0 has been set to 0 and slave has been notified of final reception. For master transmission: A start condition may not be generated normally during the ACK period. Therefore, set it during the waiting period. 				
Condition f	or clearing (STT0 = 0)	Condition for setting (STT0 = 1)			
 Cleared by loss in arbitration Cleared after start condition is generated by master device Cleared by LREL0 = 1 (exit from communications) When IICE0 = 0 (operation stop) When RESET is input 		Set by instruction			

Figure 18-5. Format of IIC Control Register 0 (IICC0) (3/4)

Remark Bit 1 (STT0) is 0 when read after data has been set.

SPT0	Stop condition trigger					
0	Stop condition is not generated.					
1	Stop condition is generated (termination of master device's transfer). After the SDA0 line goes to low level, either set the SCL0 line to high level or wait until it goes to high level. Next, after the rated amount of time has elapsed, the SDA0 line changes from low level to high level and a stop condition is generated.					
	 Cautions concerning set timing For master reception: Cannot be set during transfer. Can be set only in the waiting period when ACKE0 has been set to 0 and slave has 					
		been notified of final recept				
For mast	• For master transmission: A stop condition cannot be generated normally during the ACK0 period. Therefore, set it during the waiting period.					
	e set at the same					
	-	en in master mode. ^{Note}				
			the wait period that follows output of eight clocks, note			
		с с с	level period of the ninth clock. changed from 0 to 1 during the wait period following			
			the wait period that follows output of the ninth clock.			
Condition f	or clearing (SPT) = 0)	Condition for setting (SPT0 = 1)			
 Cleared by loss in arbitration Automatically cleared after stop condition is detected Cleared by LREL0 = 1 (exit from communications) 			Set by instruction			
 When IICE0 = 0 (operation stop) 						
	ESET is input					

Figure 18-5. Format of IIC Control Register 0 (IICC0) (4/4)

Note Set SPT0 only in master mode. However, SPT0 must be set and a stop condition generated before the first stop condition is detected following the switch to the operation enabled status. For details, see 18.5.14 Other cautions.

Caution When bit 3 (TRC0) of IIC status register 0 (IICS0) is set to 1, WREL0 is set during the ninth clock and wait is canceled, after which TRC0 is cleared and the SDA0 line is set to high impedance.

Remark Bit 0 (SPT0) becomes 0 when it is read after data setting.

(2) IIC status register 0 (IICS0)

This register indicates the status of I^2C . IICS0 is read by a 1-bit or 8-bit memory manipulation instruction. RESET input clears IICS0 to 00H.

Figure 18-6. Format of IIC Status Register 0 (IICS0) (1/3)

Address: FFA9H After reset: 00H R

Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
IICS0	MSTS0	ALD0	EXC0	COI0	TRC0	ACKD0	STD0	SPD0

MSTS0	Master device status			
0	Slave device status or communication standby status			
1	Master device communication status			
Condition f	for clearing (MSTS0 = 0) Condition for setting (MSTS0 = 1)			
When AL Cleared When IIC	stop condition is detected D0 = 1 (arbitration loss) by LREL0 = 1 (exit from communications) CE0 changes from 1 to 0 (operation stop) ESET is input	When a start condition is generated		

ALD0	Detection of arbitration loss		
0	This status means either that there was no arbitration or that the arbitration result was a "win".		
1	This status indicates the arbitration result was a "loss". MSTS0 is cleared.		
Condition for clearing (ALD0 = 0)		Condition for setting (ALD0 = 1)	
 Automatically cleared after IICS0 is read^{Note} When IICE0 changes from 1 to 0 (operation stop) When RESET is input 		• When the arbitration result is a "loss".	

EXC0	Detection of extension code reception		
0	Extension code was not received.		
1	Extension code was received.		
Condition for clearing (EXC0 = 0)		Condition for setting (EXC0 = 1)	
 When a start condition is detected When a stop condition is detected Cleared by LREL0 = 1 (exit from communications) When IICE0 changes from 1 to 0 (operation stop) When RESET is input 		 When the higher 4 bits of the received address data are either "0000" or "1111" (set at the rising edge of the eighth clock). 	

Note This register is also cleared when a bit manipulation instruction is executed for bits other than IICS0.

Remark LREL0: Bit 6 of IIC control register 0 (IICC0) IICE0: Bit 7 of IIC control register 0 (IICC0)

Figure 18-6. Format of IIC Status Register 0 (IICS0) (2/3)

COI0	Detection of matching addresses		
0	Addresses do not match.		
1	Addresses match.		
Condition for clearing (COI0 = 0)		Condition for setting (COI0 = 1)	
 When a start condition is detected When a stop condition is detected Cleared by LREL0 = 1 (exit from communications) When IICE0 changes from 1 to 0 (operation stop) When RESET is input 		 When the received address matches the local address (slave address register 0 (SVA0)) (set at the rising edge of the eighth clock). 	

TRC0	Detection of transmit/receive status		
0 Receive status (othe	Receive status (other than transmit status). The SDA0 line is set to high impedance.		
	Transmit status. The value in the SO0 latch is enabled for output to the SDA0 line (valid starting at the falling edge of the first byte's ninth clock).		
Condition for clearing (TRC0 = 0)	Condition for setting (TRC0 = 1)		
<both and="" master="" slave=""> When a stop condition is detect Cleared by LREL0 = 1 (exit from When IICE0 changes from 1 to Cleared by WREL0 = 1^{Note} (wath the start of t</both>	communications) <slave> (operation stop) • When "1" is input to the first byte's LSB cancel) (transfer direction specification bit) (arbitration loss) • e's LSB • t) • d • 's LSB •</slave>		

- **Note** If the wait status is cleared by setting bit 5 (WREL0) of IIC control register 0 (IICC0) to 1 at the ninth clock when bit 3 (TRC0) of IIC status register 0 (IICS0) is 1, TRC0 is cleared, and the SDA0 line goes into a high-impedance state.
- Remark LREL0: Bit 6 of IIC control register 0 (IICC0) IICE0: Bit 7 of IIC control register 0 (IICC0)

Figure 18-6. Format of IIC Status Register 0 (IICS0) (3/3)

ACKD0	Detection of ACK		
0	ACK was not detected.		
1	ACK was detected.		
Condition for clearing (ACKD0 = 0)		Condition for setting (ACKD0 = 1)	
 When a stop condition is detected At the rising edge of the next byte's first clock Cleared by LREL0 = 1 (exit from communications) When IICE0 changes from 1 to 0 (operation stop) When RESET is input 		 After the SDA0 line is set to low level at the rising edge of the SCL0's ninth clock 	

STD0	Detection of start condition		
0	Start condition was not detected.		
1	Start condition was detected. This indicates that the address transfer period is in effect.		
Condition for clearing (STD0 = 0) Condition for setting (STD0 = 1)		Condition for setting (STD0 = 1)	
 When a stop condition is detected At the rising edge of the next byte's first clock following address transfer Cleared by LREL0 = 1 (exit from communications) When IICE0 changes from 1 to 0 (operation stop) When RESET is input 		When a start condition is detected	

SPD0	Detection of stop condition		
0	Stop condition was not detected.		
1	Stop condition was detected. The master device's communication was terminated and the bus was released.		
Condition for clearing (SPD0 = 0)		Condition for setting (SPD0 = 1)	
 At the rising edge of the address transfer byte's first clock following setting of this bit and detection of a start condition When IICE0 changes from 1 to 0 (operation stop) When RESET is input 		When a stop condition is detected	

 Remark
 LREL0: Bit 6 of IIC control register 0 (IICC0)

 IICE0:
 Bit 7 of IIC control register 0 (IICC0)

(3) IIC transfer clock select register 0 (IICCL0)

This register is used to set the transfer clock for the I^2C bus. IICCL0 is set by a 1-bit or 8-bit memory manipulation instruction. RESET input clears IICCL0 to 00H.

Figure 18-7. Format of IIC Transfer Clock Select Register 0 (IICCL0) (1/2)

Address: FFAAH After reset: 00H R/WNote

Symbol	7	6	<5>	<4>	3	2	1	0
IICCL0	0	0	CLD0	DAD0	SMC0	DFC0	0	CL00

CLD0	Detection of SCL0 line level (valid only when IICE0 = 1)		
0	SCL0 line was detected at low level.		
1	SCL0 line was detected at high level.		
Condition for clearing (CLD0 = 0)		Condition for setting (CLD0 = 1)	
 When the SCL0 line is at low level When IICE0 = 0 (operation stop) When RESET is input 		When the SCL0 line is at high level	

DAD0	Detection of SDA0 line level (valid only when IICE0 = 1)		
0	SDA0 line was detected at low level.		
1	SDA0 line was detected at high level.		
Condition for clearing (DAD0 = 0)		Condition for setting (DAD0 = 1)	
 When the SDA0 line is at low level When IICE0 = 0 (operation stop) When RESET is input 		When the SDA0 line is at high level	

SMC0	Operation mode switching		
0	Operation in standard mode		
1	Operation in high-speed mode		
Condition for clearing (SMC0 = 0)		Condition for setting (SMC0 = 1)	
Cleared by instruction When RESET is input		Set by instruction	

Note Bits 4 and 5 are read-only bits.

Remark IICE0: Bit 7 of IIC control register 0 (IICC0)

Figure 18-7. Format of IIC Transfer Clock Select Register 0 (IICCL0) (2/2)

DFC0	Control of digital filter operation ^{Note 1}
0	Digital filter off
1	Digital filter on

CL00	Selection of transfer rate				
	Standar	d mode	High-speed mode		
		fx = 8.38 MHz		fx = 8.38 MHz	
0	fx/44	190.4 kHz ^{Note 2}	fx/24	350 kHz	
1	fx/86	97.5 kHz			

- **Notes 1.** The digital filter can be used when in high-speed mode. The response time is slower when the digital filter is used.
 - 2. The transfer rate in standard mode must not be set when fx is more than 100 kHz.

Caution Stop serial transfer once before rewriting CL00 to other than the same value.

- Remarks 1. fx: Main system clock oscillation frequency
 - 2. The transfer clock does not change in the high-speed mode even if DFC0 is turned on and off.

★ (4) Port mode register 3 (PM3)

PM3 is a register that sets the input/output of port 3 in 1-bit units.

To use the P32/SDA0 pin as serial data I/O and the P33/SCL0 pin as clock I/O, clear PM32, PM33, and the output latches of P32 and P33 to 0.

PM3 is set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets PM3 to FFH.

Figure 18-8. Format of Port Mode Register 3 (PM3)

Address: FF23FH After reset: FFH R/W

Symbol 7

PM3

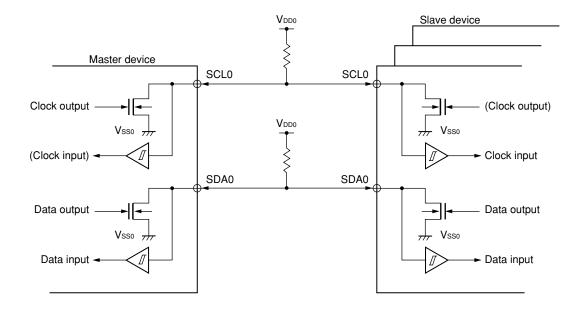
mbol	7	6	5	4	3	2	1	0
//3	1	PM36	PM35	PM34	PM33	PM32	PM31	PM30

PM3n	I/O mode selection of P3n pin (n = 0 to 6)	
0	Output mode (output buffer on)	
1	Input mode (output buffer off)	

18.4 I²C Bus Mode Functions

18.4.1 Pin configuration

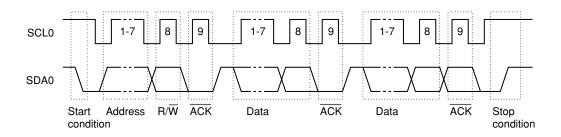
The serial clock pin (SCL0) and serial data bus pin (SDA0) are configured as follows.


- (1) SCL0 This pin is used for serial clock input and output.
 - This pin is an N-ch open-drain output for both master and slave devices. Input is Schmitt input.

(2) SDA0 This pin is used for serial data input and output.

This pin is an N-ch open-drain output for both master and slave devices. Input is Schmitt input.

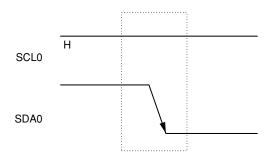

Since outputs from the serial clock line and the serial data bus line are N-ch open drain outputs, an external pullup resistor is required.


Figure 18-9. Pin Configuration Diagram

18.5 I²C Bus Definitions and Control Methods

The following section describes the I²C bus's serial data communication format and the signals used by the I²C bus. Figure 18-10 shows the transfer timing for the "start condition", "data", and "stop condition" output via the I²C bus's serial data bus.

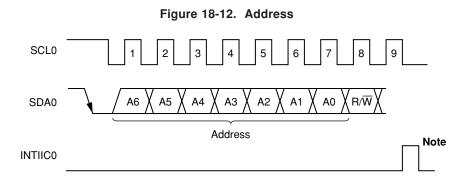
The master device outputs the start condition, slave address, and stop condition.


The acknowledge signal (ACK) can be output by either the master or slave device (normally, it is output by the device that receives 8-bit data).

The serial clock (SCL0) is continuously output by the master device. However, in the slave device, the SCL0's low level period can be extended and a wait can be inserted.

18.5.1 Start conditions

A start condition is met when the SCL0 pin is at high level and the SDA0 pin changes from high level to low level. The start conditions for the SCL0 pin and SDA0 pin are signals that the master device outputs to the slave device when starting a serial transfer. When the device is used as a slave, start conditions can be detected.

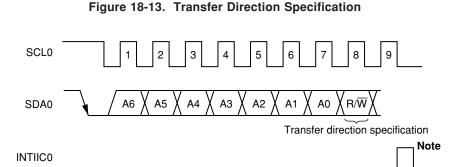

A start condition is output when bit 1 (STT0) of IIC control register 0 (IICC0) is set (to 1) after a stop condition has been detected (SPD0: Bit 0 = 1 in IIC status register 0 (IICS0)). When a start condition is detected, bit 1 (STD0) of IICS0 is set (to 1).

18.5.2 Addresses

The address is defined by the 7 bits of data that follow the start condition.

An address is a 7-bit data segment that is output in order to select one of the slave devices that are connected to the master device via the bus lines. Therefore, each slave device connected via the bus lines must have a unique address.

The slave devices include hardware that detects the start condition and checks whether or not the 7-bit address data matches the data values stored in slave address register 0 (SVA0). If the address data matches the SVA0 values, the slave device is selected and communicates with the master device until the master device transmits a start condition or stop condition.


Note INTIIC0 is not issued if data other than a local address or extension code is received during slave device operation.

The slave address and the eighth bit, which specifies the transfer direction as described in **18.5.3** Transfer direction specification below, are together written to IIC shift register 0 (IIC0) and are then output. Received addresses are written to IIC0.

The slave address is assigned to the higher 7 bits of IIC0.

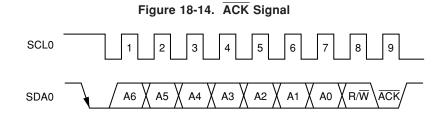
18.5.3 Transfer direction specification

In addition to the 7-bit address data, the master device sends 1 bit that specifies the transfer direction. When this transfer direction specification bit has a value of "0", it indicates that the master device is transmitting data to a slave device. When the transfer direction specification bit has a value of "1", it indicates that the master device is receiving data from a slave device.

Note INTIIC0 is not issued if data other than a local address or extension code is received during slave device operation.

18.5.4 Acknowledge (ACK) signal

The acknowledge (ACK) signal is used by the transmitting and receiving devices to confirm serial data reception. The receiving device returns one ACK signal for each 8 bits of data it receives. The transmitting device normally receives an ACK signal after transmitting 8 bits of data. However, when the master device is the receiving device, it does not output an ACK signal after receiving the final data to be transmitted. The transmitting device detects whether or not an ACK signal is returned after it transmits 8 bits of data. When an ACK signal is returned, the reception is judged as normal and processing continues. If the slave device does not return an ACK signal, the master device outputs either a stop condition or a restart condition and then stops the current transmission. Failure to return an ACK signal may be caused by the following two factors.

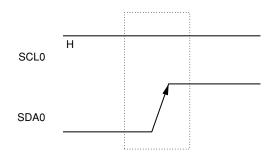

- (a) Reception was not performed normally.
- (b) The final data was received.

When the receiving device sets the SDA0 line to low level during the ninth clock, the ACK signal becomes active (normal receive response).

When bit 2 (ACKE0) of IIC control register 0 (IICC0) is set to 1, automatic ACK signal generation is enabled. Transmission of the eighth bit following the 7 address data bits causes bit 3 (TRC0) of IIC status register 0 (IICS0) to be set. When this TRC0 bit's value is "0", it indicates receive mode. Therefore, ACKE0 should be set to 1.

When the slave device is receiving (when TRC0 = 0), if the slave device does not need to receive any more data after receiving several bytes, setting ACKE0 to 0 will prevent the master device from starting transmission of the subsequent data.

Similarly, when the master device is receiving (when TRC0 = 0) and the subsequent data is not needed and when either a restart condition or a stop condition should therefore be output, setting ACKE0 to 0 will prevent the \overline{ACK} signal from being returned. This prevents the MSB data from being output via the SDA0 line (i.e., stops transmission) during transmission from the slave device.


When the local address is received, an ACK signal is automatically output in sync with the falling edge of the SCL0's eighth clock regardless of the ACKE0 value. No ACK signal is output if the received address is not a local address. The ACK signal output method during data reception is based on the wait timing setting, as described below.

- When 8-clock wait is selected: ACK signal is output when ACKE0 is set to 1 before wait cancellation. (WTIM0 = 0)
- When 9-clock wait is selected: ACK signal is automatically output at the falling edge of the SCL0's eighth clock (WTIM0 = 1) if ACKE0 has already been set to 1.

18.5.5 Stop condition

When the SCL0 pin is at high level, changing the SDA0 pin from low level to high level generates a stop condition. A stop condition is a signal that the master device outputs to the slave device when serial transfer has been completed. When the device is used as a slave, stop conditions can be detected.

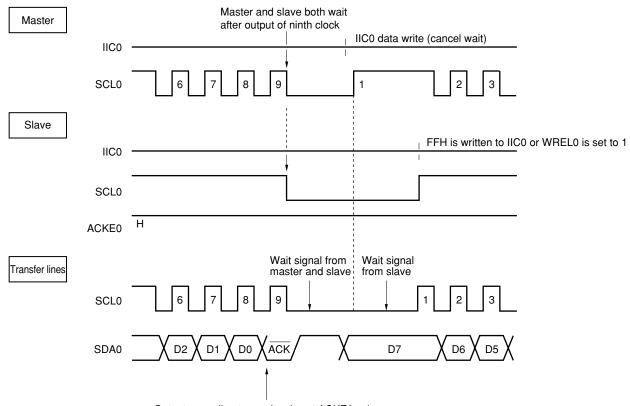
Figure 18-15. Stop Condition

A stop condition is generated when bit 0 (SPT0) of IIC control register 0 (IICC0) is set (to 1). When the stop condition is detected, bit 0 (SPD0) of IIC status register 0 (IICS0) is set (to 1) and INTIIC0 is generated when bit 4 (SPIE0) of IICC0 is set (to 1).

18.5.6 Wait signal (WAIT)

The wait signal (WAIT) is used to notify the communication partner that a device (master or slave) is preparing to transmit or receive data (i.e., is in a wait state).

Setting the SCL0 pin to low level notifies the communication partner of the wait status. When wait status has been canceled for both the master and slave devices, the next data transfer can begin.


Figure 18-16. Wait Signal (1/2)

(1) When master device has a nine-clock wait and slave device has an eight-clock wait (master transmits, slave receives, and ACKE0 = 1)

Master		Master returns to high
	IIC0	impedance but slave Wait after output is in wait state (low level). of ninth clock IIC0 data write (cancel wait)
	SCL0	
Slave		Wait after output of eighth clock
	IIC0	FFH is written to IIC0 or WREL0 is set to 1
	SCL0	
	ACKE0	Н
Transfer lines		Wait signal Wait signal from slave from master
	SCL0	
	SDA0	D2 D1 D0 ACK D7 D6 D5

*

Figure 18-16. Wait Signal (2/2)

(2) When master and slave devices both have a nine-clock wait (master transmits, slave receives, and ACKE0 = 1)

Output according to previously set ACKE0 value

Remark ACKE0: Bit 2 of IIC control register 0 (IICC0) WREL0: Bit 5 of IIC control register 0 (IICC0)

A wait may be automatically generated depending on the setting of bit 3 (WTIM0) of IIC control register 0 (IICC0). Normally, the receiving side cancels the wait status when bit 5 (WREL0) is set to 1 or when FFH is written to IIC shift register 0 (IIC0), and the transmitting side cancels the wait status when data is written to IIC0.

The master device can also cancel the wait status via either of the following methods.

• By setting bit 1 (STT0) of IICC0 to 1

*

• By setting bit 0 (SPT0) of IICC0 to 1

18.5.7 Interrupt request (INTIIC0) generation timing and wait control

The setting of bit 3 (WTIM0) of IIC control register 0 (IICC0) determines the timing by which INTIIC0 is generated and the corresponding wait control, as shown in Table 18-2.

WTIM0	During	g Slave Device Ope	ration	During	Master Device Ope	eration
	Address	Data Reception	Data Transmission	Address	Data Reception	Data Transmission
0	₉ Notes 1, 2	8Note 2	8Note 2	9	8	8
1	₉ Notes 1, 2	9Note 2	9Note 2	9	9	9

Notes 1. The slave device's INTIIC0 signal and wait period occurs at the falling edge of the ninth clock only when there is a match with the address set to slave address register 0 (SVA0). At this point, ACK is output regardless of the value set to IICC0's bit 2 (ACKE0). For a slave device that has received an extension code, INTIIC0 occurs at the falling edge of the eighth clock.

(1) During address transmission/reception

- Slave device operation: Interrupt and wait timing are determined depending on the conditions described in
 Notes 1 and 2 above, regardless of the WTIM0 bit.
- Master device operation: Interrupt and wait timing occur at the falling edge of the ninth clock regardless of the WTIM0 bit.

(2) During data reception

*

· Master/slave device operation: Interrupt and wait timing are determined according to the WTIM0 bit.

(3) During data transmission

Master/slave device operation: Interrupt and wait timing are determined according to the WTIM0 bit.

(4) Wait cancellation method

The four wait cancellation methods are as follows.

- By setting bit 5 (WREL0) of IIC control register 0 (IICC0) to 1
- By writing to the IIC shift register 0 (IIC0)
- By setting a start condition (setting bit 1 (STT0) of IICC0 to 1)Note
- By setting a stop condition (setting bit 0 (SPT0) of IICC0 to 1)^{Note}

Note Master only.

When an 8-clock wait has been selected (WTIM0 = 0), the output level of \overline{ACK} must be determined prior to wait cancellation.

However, if the address does not match after restart, INTIIC0 is generated at the falling of the 9th clock, but wait does not occur.

^{2.} If the received address does not match the contents of slave address register 0 (SVA0) and extension code is not received, neither INTIIC0 nor a wait occurs.

Remark The numbers in the table indicate the number of the serial clock's clock signals. Interrupt requests and wait control are both synchronized with the falling edge of these clock signals.

(5) Stop condition detection

INTIIC0 is generated when a stop condition is detected.

18.5.8 Address match detection method

In I²C bus mode, the master device can select a particular slave device by transmitting the corresponding slave address.

Address match can be detected automatically by hardware. An interrupt request (INTIIC0) occurs when a local address has been set to slave address register 0 (SVA0) and when the address set to SVA0 matches the slave address sent by the master device, or when an extension code has been received.

18.5.9 Error detection

In I²C bus mode, the status of the serial data bus (SDA0) during data transmission is captured by IIC shift register 0 (IIC0) of the transmitting device, so the IIC0 data prior to transmission can be compared with the transmitted IIC0 data to enable detection of transmission errors. A transmission error is judged as having occurred when the compared data values do not match.

18.5.10 Extension code

- (1) When the higher 4 bits of the receive address are either "0000" or "1111", the extension code flag (EXC0) is set for extension code reception and an interrupt request (INTIIC0) is issued at the falling edge of the eighth clock. The local address stored in slave address register 0 (SVA0) is not affected.
- (2) If "111110××" is set to SVA0 by a 10-bit address transfer and "111110××" is transferred from the master device, the results are as follows. Note that INTIIC0 occurs at the falling edge of the eighth clock.
 - Higher four bits of data match: EXC0 = 1^{Note}
 - Seven bits of data match: COI0 = 1^{Note}
- Note EXC0: Bit 5 of IIC status register 0 (IICS0) COI0: Bit 4 of IIC status register 0 (IICS0)
- (3) Since the processing after the interrupt request occurs differs according to the data that follows the extension code, such processing is performed by software.

For example, after the extension code is received, if you do not wish to operate the target device as a slave device, you can set bit 6 (LREL0) of IIC control register 0 (IICC0) to 1 to set the standby mode for the next communication operation.

Slave Address	R/W Bit	Description
0000 000	0	General call address
0000 000	1	Start byte
0000 001	×	CBUS address
0000 010	×	Address that is reserved for different bus format
1111 0××	×	10-bit slave address specification

Table 18-3. Extension Code Bit Definitions

18.5.11 Arbitration

When several master devices simultaneously output a start condition (when STT0 is set to 1 before STD0 is set to 1^{Note}), communication among the master devices is performed as the number of clocks are adjusted until the data differs. This kind of operation is called arbitration.

When one of the master devices loses in arbitration, an arbitration loss flag (ALD0) in IIC status register 0 (IICS0) is set (1) via the timing by which the arbitration loss occurred, and the SCL0 and SDA0 lines are both set to high impedance, which releases the bus.

The arbitration loss is detected based on the timing of the next interrupt request (the eighth or ninth clock, when a stop condition is detected, etc.) and the ALD0 = 1 setting that has been made by software.

For details of interrupt request timing, see 18.5.16 Timing of I²C interrupt request (INTIIC0) occurrence.

Note STD0: Bit 1 of IIC status register 0 (IICS0) STT0: Bit 1 of IIC control register 0 (IICC0)

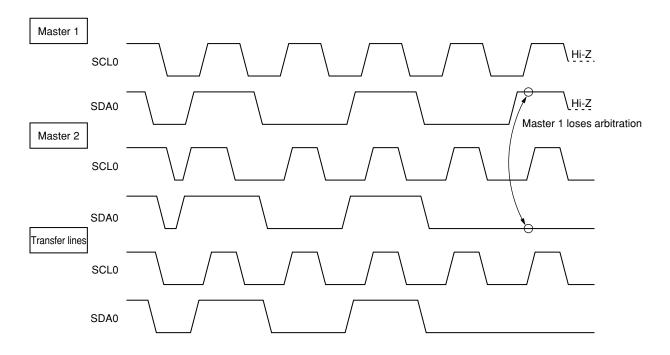


Figure 18-17. Arbitration Timing Example

Status During Arbitration	Interrupt Request Generation Timing
During address transmission	At falling edge of eighth or ninth clock following byte transfer $^{\mbox{Note 1}}$
Read/write data after address transmission	
During extension code transmission	
Read/write data after extension code transmission	
During data transmission	
During ACK signal transfer period after data transmission	
When restart condition is detected during data transfer	
When stop condition is detected during data transfer	When stop condition is output (when SPIE0 = 1) ^{Note 2}
When data is at low level while attempting to output a restart condition	At falling edge of eighth or ninth clock following byte transferNote 1
When stop condition is detected while attempting to output a restart condition	When stop condition is output (when SPIE0 = 1) ^{Note 2}
When data is at low level while attempting to output a stop condition	At falling edge of eighth or ninth clock following byte transferNote 1
When SCL0 is at low level while attempting to output a restart condition	

Table 18-4. Status During Arbitration and Interrupt Request Generation Timing

- **Notes 1.** When WTIM0 (bit 3 of IIC control register 0 (IICC0)) = 1, an interrupt request occurs at the falling edge of the ninth clock. When WTIM0 = 0 and the extension code's slave address is received, an interrupt request occurs at the falling edge of the eighth clock.
 - 2. When there is a chance that arbitration will occur, set SPIE0 = 1 for master device operation.

Remark SPIE0: Bit 4 of IIC control register 0 (IICC0)

18.5.12 Wake-up function

The I²C bus slave function is a function that generates an interrupt request (INTIIC0) when a local address and extension code have been received.

This function makes processing more efficient by preventing unnecessary interrupt requests from occurring when addresses do not match.

When a start condition is detected, wake-up standby mode is set. This wake-up standby mode is in effect while addresses are transmitted due to the possibility that an arbitration loss may change the master device (which has output a start condition) to a slave device.

However, when a stop condition is detected, bit 4 (SPIE0) of IIC control register 0 (IICC0) is set regardless of the wake-up function, and this determines whether interrupt requests are enabled or disabled.

18.5.13 Communication reservation

To start master device communications when not currently using a bus, a communication reservation can be made to enable transmission of a start condition when the bus is released. There are two modes under which the bus is not used.

- When arbitration results in neither master nor slave operation
- When an extension code is received and slave operation is disabled (ACK is not returned and the bus was released when bit 6 (LREL0) of IIC control register 0 (IICC0) was set to 1).

If bit 1 (STT0) of IICC0 is set (1) while the bus is not used (after a stop condition is detected), a start condition is automatically generated and wait status is set. When the bus release is detected (when a stop condition is detected), writing to IIC shift register 0 (IIC0) causes the master address transfer to start. At this point, bit 4 (SPIE0) of IICC0 should be set (1).

When STT0 has been set (1), the operation mode (as start condition or as communication reservation) is determined according to the bus status.

- If the bus has been released a start condition is generated
- · If the bus has not been released (standby mode) communication reservation

Check whether the communication reservation operates or not by using MSTS0 (bit 7 of IIC status register 0 (IICS0)) after SST0 is set and the wait time elapses.

The wait periods, which should be set via software, are listed in Table 18-5. These wait periods can be set via the settings for bits 3 and 0 (SMC0 and CL00) in IIC transfer clock select register 0 (IICCL0).

SMC0	CL00	Wait Period
0	0	26 clocks
0	1	46 clocks
1	0	16 clocks
1	1	

Table 18-5. Wait Periods

Figure 18-18 shows the communication reservation timing.

Figure 18-18. Communication Reservation Timing

	Program processing	STT0 = 1			Write IIC0	to	
	Hardware processing	Communication reservation			SPD0 INTIIC0	Set STE	
SCL0	1 2 3 4	5	6 7 8 9				
SDA0							
			Output by ma	aste	 er with b	ous n	mastership

 Remark
 IIC 0:
 IIC shift register 0

 STT0:
 Bit 1 of IIC control register 0 (IICC0)

 STD0:
 Bit 1 of IIC status register 0 (IICS0)

 SPD0:
 Bit 0 of IIC status register 0 (IICS0)

Communication reservations are accepted via the following timing. After bit 1 (STD0) of IIC status register 0 (IICS0) is set to 1, a communication reservation can be made by setting bit 1 (STT0) of IIC control register 0 (IICC0) to 1 before a stop condition is detected.

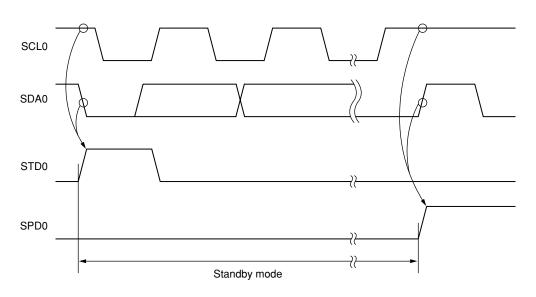
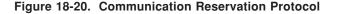
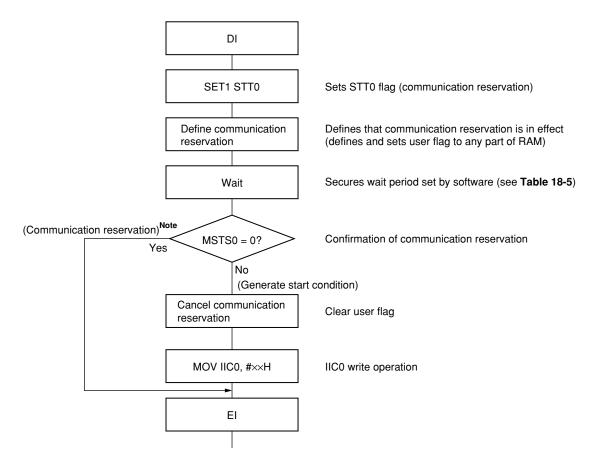




Figure 18-20 shows the communication reservation protocol.

Note The communication reservation operation executes a write to IIC shift register 0 (IIC0) when a stop condition interrupt request occurs.

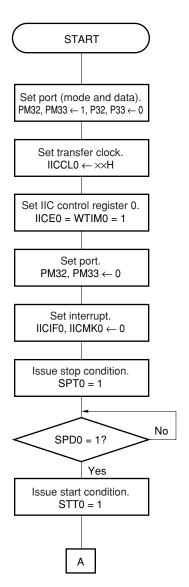
18.5.14 Other cautions

After a reset, when changing from a mode in which no stop condition has been detected (the bus has not been released) to a master device communication mode, first generate a stop condition to release the bus, then perform master device communication.

When using multiple masters, it is not possible to perform master device communication when the bus has not been released (when a stop condition has not been detected).

Use the following sequence for generating a stop condition.

- (a) Set IIC transfer clock select register 0 (IICCL0).
- (b) Set (1) bit 7 (IICE0) of IIC control register 0 (IICC0).
- (c) Set (1) bit 0 (SPT0) of IICC0.


Remark STT0: Bit 1 of IIC control register 0 (IICC0) MSTS0: Bit 7 of IIC status register 0 (IICS0) IIC0: IIC shift register 0

18.5.15 Communication operations

(1) Master operations

*

The procedure of controlling slave EEPROMTM using the μ PD780024AY and 780034AY Subseries as the master of the I²C bus is as follows.

Figure 18-21. Master Operation Flowchart (1/5)

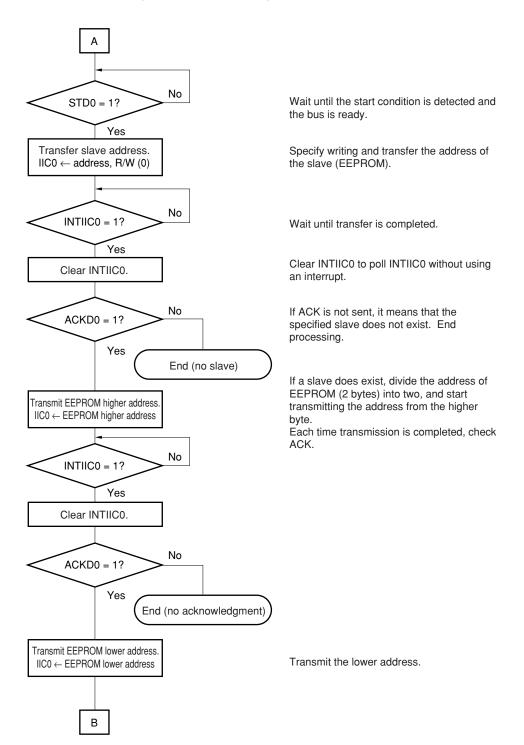
First perform initialization to use I²C.

Set the port that functions alternately as the pins to be used. First set the port in the input mode, and clear the output latch to 0.

Specify the operation mode, turn on/off the digital filter, and specify the transfer rate.

Set a 9-clock wait and enable operation.

Set the port in the output mode to enable output of l^2C .


Clear the interrupt request of I²C. Clear the mask to enable the interrupt when using the interrupt.

Issue the stop condition before starting operation, and release the bus.

Wait until the bus is released. If the stop condition is detected, the bus is released and can be used. Declare use of the bus by issuing the start condition. If the stop condition cannot be detected, the chances are the connected pin is driving the bus low.

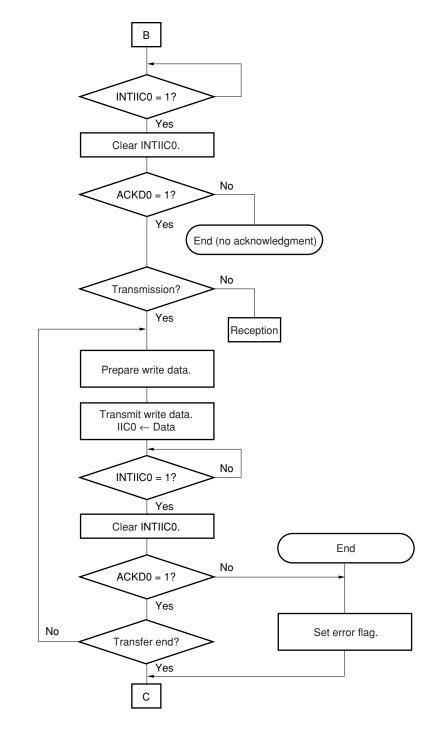

In this case, refer to Remark.

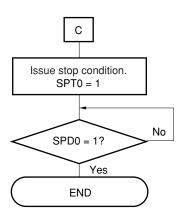
Figure 18-21. Master Operation Flowchart (2/5)

*

Figure 18-21. Master Operation Flowchart (3/5)

 \star

When writing data to EEPROM, continue writing data.


When reading data from EEPROM, start reception processing.

Prepare data to be written to EEPROM, and transmit it to EEPROM.

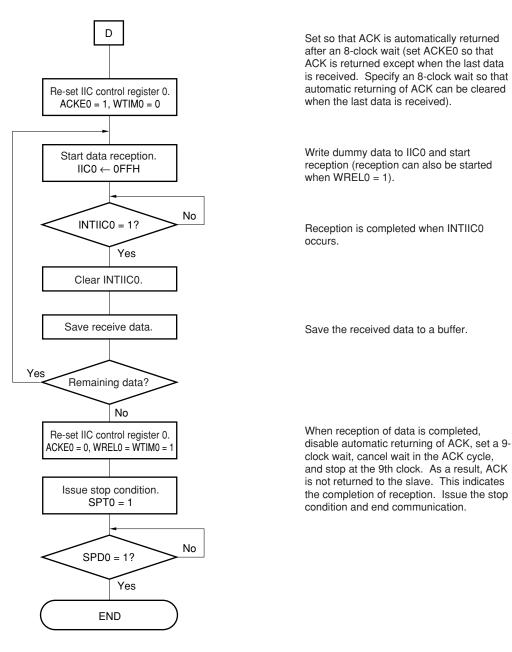
Each time data has been transmitted, the slave returns ACK. If any error occurs before transmission of the necessary data is completed, ACK may not be returned. In this case, end transfer.

In the case of an error, set the error flag as shown on the left, and release the bus.

Figure 18-21. Master Operation Flowchart (4/5)

*

When transmission is completed, issue the stop condition to notify the slave of completion of transmission.



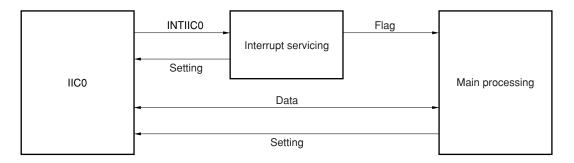
For reception, the data transfer direction must be changed. Issue the start condition again and redo (restart) communication.

Because the master receives data this time, set the R/W bit to 1 and transmit an address.

Figure 18-21. Master Operation Flowchart (5/5)

★

Remark While the slave is outputting a low level to the data line, the master cannot issue the stop condition. This happens if EEPROM is not reset, even though the microcontroller is reset, because of supply voltage fluctuation during communication (reading from EEPROM). In this case, the EEPROM continues sending data, and may output a low level to the data line. Because the structure of I²C does not allow the master to forcibly make the data line high, the master cannot issue the stop condition.


To avoid this phenomenon, it is possible to use a clock line as a port, output a dummy clock from the port, continue reading data from EEPROM by inputting the dummy clock, and complete reading with some EEPROMs (because the data line goes high when reading is completed, the master can issue the stop condition. After that, the status of EEPROM can be controlled). At this time, the port corresponding to the data line must always be in the high-impedance state (high-level output).

★ (2) Slave operation

The processing procedure of the slave operation is as follows.

Basically, the slave operation is event-driven. Therefore, processing by the INTIIC0 interrupt (processing that must substantially change the operation status such as detection of a stop condition during communication) is necessary.

In the following explanation, it is assumed that the extension code is not supported for data communication. It is also assumed that the INTIIC0 interrupt servicing only performs status transition processing, and that actual data communication is performed by the main processing.

Therefore, data communication processing is performed by preparing the following three flags and passing them to the main processing instead of INTIICO.

<1> Communication mode flag

This flag indicates the following two communication statuses.

- Clear mode: Status in which data communication is not performed
- Communication mode: Status in which data communication is performed (from valid address detection to stop condition detection, no detection of ACK from master, address mismatch)

<2> Ready flag

This flag indicates that data communication is enabled. Its function is the same as the INTIICO interrupt for ordinary data communication. This flag is set by interrupt servicing and cleared by the main processing. Clear this flag by interrupt servicing when communication is started. However, the ready flag is not set by interrupt servicing when the first data is transmitted. Therefore, the first data is transmitted without the flag being cleared (an address match is interpreted as a request for the next data).

<3> Communication direction flag

This flag indicates the direction of communication. Its value is the same as TRC0.

The main processing of the slave operation is explained next.

Start serial interface IIC0 and wait until communication is enabled. When communication is enabled, execute communication by using the communication mode flag and ready flag (processing of the stop condition and start condition is performed by an interrupt. Here, check the status by using the flags).

The transmission operation is repeated until the master no longer returns ACK. If ACK is not returned from the master, communication is completed.

For reception, the necessary amount of data is received. When communication is completed, ACK is not returned as the next data. After that, the master issues a stop condition or restart condition. Exit from the communication status occurs in this way.

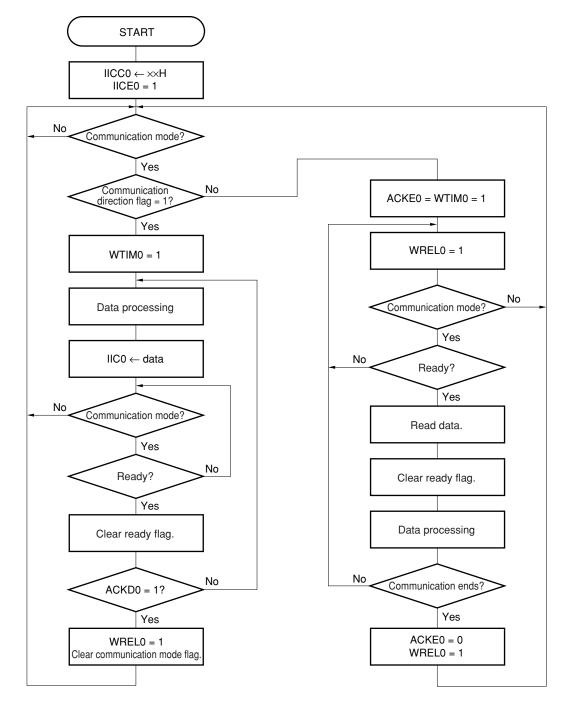


Figure 18-22. Slave Operation Flowchart (1/2)

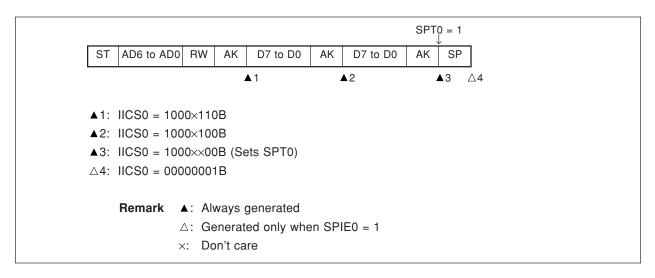
An example of the processing procedure of the slave with the INTIIC0 interrupt is explained below (processing is performed assuming that no extension code is used).

- The INTIIC0 interrupt checks the status, and the following operations are performed.
- <1> Communication is stopped if the stop condition is issued.
- <2> If the start condition is issued, the address is checked and communication is completed if the address does not match. If the address matches, the communication mode is set, wait is cancelled, and processing returns from the interrupt (the ready flag is cleared).
- <3> For data transmit/receive, only the ready flag is set. Processing returns from the interrupt with the IIC0 bus remaining in the wait status.

Remark <1> to <3> above correspond to <1> to <3> in Figure 18-22 Slave Operation Flowchart (2/2).



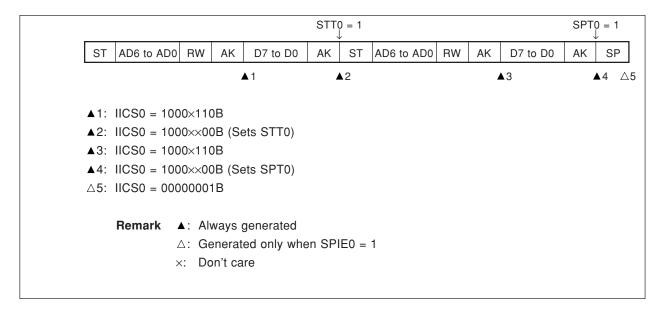
Figure 18-22. Slave Operation Flowchart (2/2)

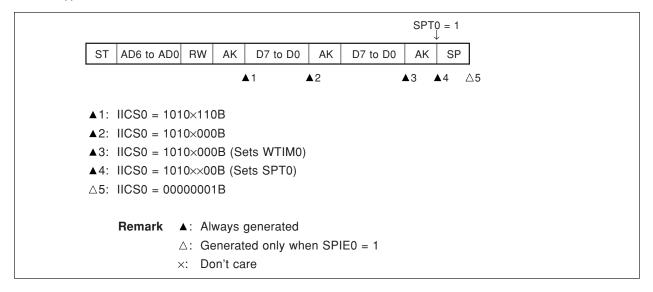

18.5.16 Timing of I²C interrupt request (INTIIC0) occurrence

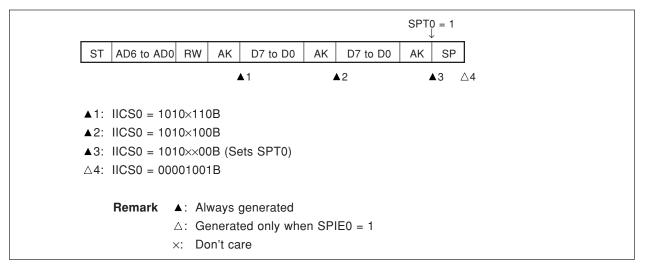
The INTIIC0 interrupt request timing and IIC status register 0 (IICS0) settings corresponding to that timing are described below.

(1) Master device operation

- (a) Start ~ Address ~ Data ~ Data ~ Stop (normal transmission/reception)
 - (i) When WTIM0 = 0

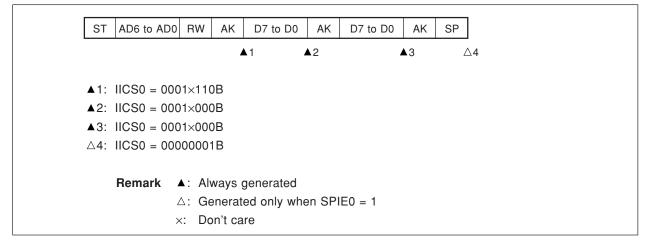

							SP	T0 = 1 ↓
ST	AD6 to AD0	RW	AK	D7 to D0	AK	D7 to D0	AK	SP
				1	2		▲ 3	▲4
▲1:	IICS0 = 100	0×110)B					
▲2:	IICS0 = 100	0×000)B					
▲3:	IICS0 = 100	0×000)B (Se	ets WTIM0)				
▲4:	IICS0 = 100	0××00)B (Se	ts SPT0)				
∆5:	IICS0 = 000	00001	B					
	Remark	: Alv	ways g	generated				
	L	: Ge	enerate	ed only whe	n SPI	E0 = 1		
	×	: Do	n't ca	re				

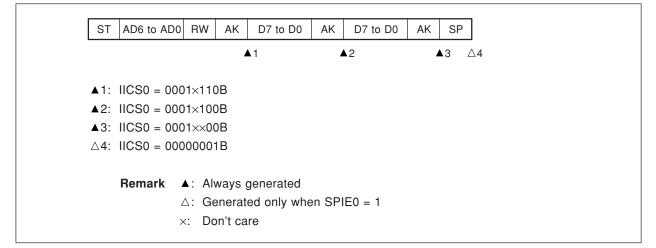

(b) Start ~ Address ~ Data ~ Start ~ Address ~ Data ~ Stop (restart)


(i) When WTIM0 = 0

				STT) = 1					SPI	Г0 = 1 ↓	
ST AD6 to	AD0 RW	AK	D7 to D0	AK	ST	AD6 to AD0	RW	AK	D7 to D0	AK	SP	
			1	2	3			4	▲4	▲ 5	▲ 6	∆7
▲1: IICS0 =	= 1000×110)B										
▲2: IICS0 =	= 1000×000	DB (Se	ets WTIM0)									
▲3: IICS0 =	= 1000××00	DB (CI	ears WTIM), sets	STT	D)						
▲4: IICS0 =	= 1000×110)B										
▲5: IICS0 =	= 1000×000	DB (Se	ets WTIM0)									
▲6: IICS0 =	= 1000××00)B (Se	ets SPT0)									
∆7: IICS0 =	= 00000001	1B										
Remar	k ▲: Alv	ways g	generated									
	∆: Ge	enerate	ed only whe	n SPI	E0 =	1						
	×: Do	on't ca	re									

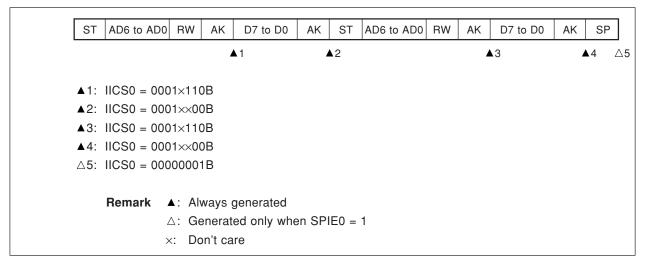
- (c) Start ~ Code ~ Data ~ Data ~ Stop (extension code transmission)
 - (i) When WTIM0 = 0





(2) Slave device operation (slave address data reception time (matches with SVA0))

(a) Start ~ Address ~ Data ~ Data ~ Stop


(i) When WTIM0 = 0

- (b) Start ~ Address ~ Data ~ Start ~ Address ~ Data ~ Stop
- AD6 to AD0 RW D7 to D0 AK ST AD6 to AD0 RW AK D7 to D0 AK SP ST AK ▲2 ▲3 ▲4 **▲**1 $\triangle 5$ ▲1: IICS0 = 0001×110B ▲2: IICS0 = 0001×000B ▲3: IICS0 = 0001×110B ▲4: IICS0 = 0001×000B △5: IICS0 = 00000001B **Remark** ▲: Always generated \triangle : Generated only when SPIE0 = 1 ×: Don't care
- (i) When WTIM0 = 0 (after restart, matches with SVA0)

(ii) When WTIM0 = 1 (after restart, matches with SVA0)

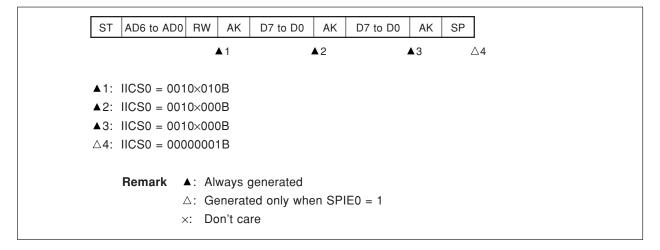
- (c) Start ~ Address ~ Data ~ Start ~ Code ~ Data ~ Stop
 - (i) When WTIM0 = 0 (after restart, extension code reception)

				AD6 to AD0	RW AK	D7 to D0	AK	S
		▲1	▲2		▲3		▲4	
▲1: IICS0 =	0001×110B							
▲2: IICS0 =	0001×000B							
▲3: IICS0 =	0010×010B							
▲4: IICS0 =	0010×000B							
\triangle 5: IICS0 =	0000001B							

(ii) When WTIM0 = 1 (after restart, extension code reception)

▲1 ▲1: IICS0 = 0001×110B ▲2: IICS0 = 0001××00B	▲2	▲3 ▲4	. ▲ 5 ⊿
▲2. IICSU = 0001××000			
▲3: IICS0 = 0010×010B			
▲4: IICS0 = 0010×110B			
▲5: IICS0 = 0010××00B			
△6: IICS0 = 00000001B			

- (d) Start ~ Address ~ Data ~ Start ~ Address ~ Data ~ Stop
- RW SP ST AD6 to AD0 RW D7 to D0 AK ST AD6 to AD0 AK D7 to D0 AK AK ▲2 ▲3 **▲**1 $\triangle 4$ ▲1: IICS0 = 0001×110B ▲2: IICS0 = 0001×000B ▲3: IICS0 = 00000×10B △4: IICS0 = 0000001B **Remark** A: Always generated \triangle : Generated only when SPIE0 = 1 ×: Don't care
- (i) When WTIM0 = 0 (after restart, does not match with address (= not extension code))


(ii) When WTIM0 = 1 (after restart, does not match with address (= not extension code))

ST AD6 to AD	0 RW	AK	D7 to D0	AK	ST	AD6 to AD0	RW	AK	D7 to D0	AK	SP
			1		2			1	3		∆4
▲1: IICS0 = 0)01×11()B									
▲2: IICS0 = 0)01××00	ЭB									
▲3: IICS0 = 0)000×10	ЭB									
$\triangle 4$: IICS0 = 0	00000	1B									
Remark			jenerated ed only whe	en SPI	E0 =	1					
		on't ca	-								

(3) Slave device operation (when receiving extension code)

(a) Start ~ Code ~ Data ~ Data ~ Stop

(i) When WTIM0 = 0

ST AD6 to AD	00 RW	AK	D7 to D0	AK	D7 to D0	AK	SP
		1	▲2		▲3		4
▲1: IICS0 = 0	010×010)B					
▲2: IICS0 = 0	010×110)B					
▲3: IICS0 = 0	010×100)B					
▲4: IICS0 = 0	010××00)B					
△5: IICS0 = 0	0000001	B					
Remark	▲: Alv	ways	generated				
	∆: Ge	enera	ted only whe	n SPI	E0 = 1		
	×: Do	n't c	are				

- (b) Start ~ Code ~ Data ~ Start ~ Address ~ Data ~ Stop
 - (i) When WTIM0 = 0 (after restart, matches with SVA0)

ST	AD6 to AD0	RW	AK	D7 to D0	AK	ST	AD6 to AD0	RW	AK	D7 to D0	AK	SP
			1		2					3	▲4	riangle 5
▲1:	IICS0 = 001	0×01)B									
▲2:	IICS0 = 001	0×00)B									
▲3:	IICS0 = 000	1×110)B									
▲4:	IICS0 = 000	1×000)B									
∆5:	IICS0 = 000	0000	1B									
	Remark	: Al	ways g	generated								
	2	∆: Ge	enerat	ed only whe	en SP	IE0 =	1					
	>	: Do	on't ca	re								

(ii) When WTIM0 = 1 (after restart, matches with SVA0)

ST	AD6 to AD0	RW	AK	D7 to D0	AK	ST	AD6 to AD0	RW	AK	D7 to D0	AK	SF
			▲ 1	2		▲3				▲4		▲5
▲1:	IICS0 = 001	10×01	0B									
▲2:	IICS0 = 001	0×11	0B									
▲3:	IICS0 = 001	0××0	0B									
▲4:	IICS0 = 000)1×11	0B									
▲5:	IICS0 = 000	01××0	0B									
∆6:	IICS0 = 000	00000	1B									
	Remark	▲· АI	wavs	generated								
			-	ed only whe	en SP	IE0 =	1					
			on't ca	-								

(c) Start ~ Code ~ Data ~ Start ~ Code ~ Data ~ Stop

(i) When WTIM0 = 0 (after restart, extension code reception)

ST AD6	to AD0	RW	AK	D7 to D0	AK	ST	AD6 to AD0	RW	AK	D7 to D0	AK	SP
			1		2				3		▲4	riangle 5
▲1: IICS	0 = 001	0×010)B									
▲2: IICS	0 = 001	0×000)B									
▲3: IICS	0 = 001	0×010)B									
▲4: IICS	0 = 001	0×000)B									
\triangle 5: IICS	0 = 000	0000	B									
Rem	nark 4	• • • •	wave (generated								
nen				ed only whe	n SPI	E0 =	1					
			n't ca		,	LU -	1					

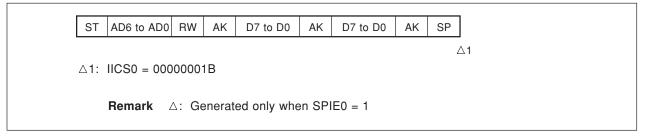
(ii) When WTIM0 = 1 (after restart, extension code reception)

ST AD6 to AD0 RW	AK D7 to D0	AK ST	AD6 to AD0	RW AK	D7 to D0	AK SP
	▲1 ▲2	▲3		▲4	▲5	▲6
▲1: IICS0 = 0010×0	10B					
▲2: IICS0 = 0010×1	10B					
▲3: IICS0 = 0010××	00B					
▲4: IICS0 = 0010×0	10B					
▲5: IICS0 = 0010×1	10B					
▲6: IICS0 = 0010××	00B					
△7: IICS0 = 000000	01B					
Remark ▲: A	Iways generated					
	Generated only whe	en SPIE0 =	1			
×: [Don't care					

Г

(d) Start ~ Code ~ Data ~ Start ~ Address ~ Data ~ Stop

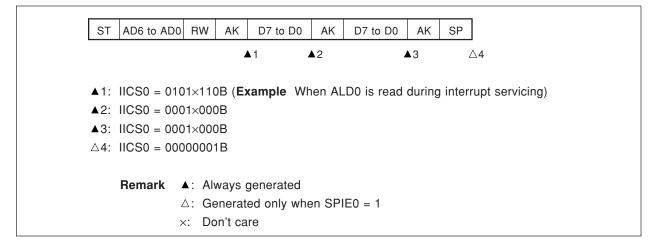
ST AD6 to AI	D0 RW AK	D7 to D0	AK ST	AD6 to AD0	RW	AK	D7 to D0	AK	S
	▲1		.2				▲3		
▲1: IICS0 = 0	010×010B								
▲2: IICS0 = 0	010×000B								
▲3: IICS0 = 0	00000×10B								
$\triangle 4$: IICS0 = 0	0000001B								

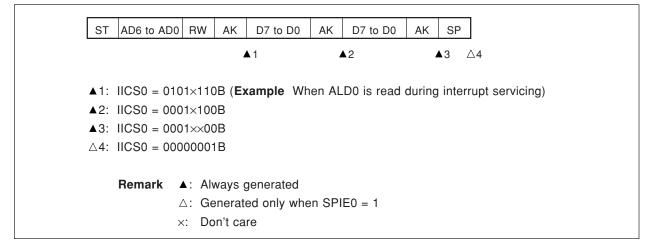

(i) When WTIM0 = 0 (after restart, does not match with address (= not extension code))

(ii) When WTIM0 = 1 (after restart, does not match with address (= not extension code))

▲1: IICS0 = 0010×	▲1 ▲2	▲3	▲4	4
▲1: IICS0 = 0010×	010B			
	CTOD .			
▲2: IICS0 = 0010×	:110B			
▲3: IICS0 = 0010×	×00B			
▲4: IICS0 = 00000)×10B			
△5: IICS0 = 00000	001B			

(4) Operation without communication


(a) Start ~ Code ~ Data ~ Data ~ Stop



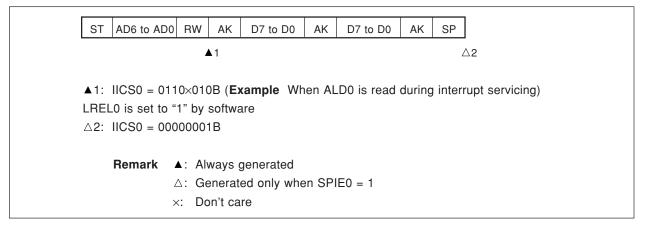
(5) Arbitration loss operation (operation as slave after arbitration loss)

(a) When arbitration loss occurs during transmission of slave address data

(i) When WTIM0 = 0

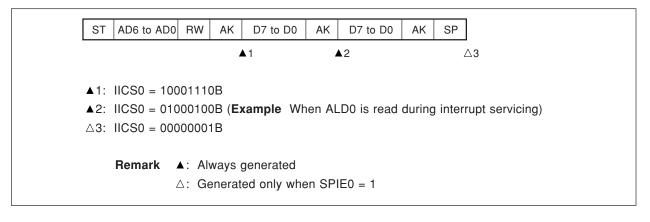
- (b) When arbitration loss occurs during transmission of extension code
 - (i) When WTIM0 = 0

 ▲1 ▲2 ▲3 △4 ▲1: IICS0 = 0110×010B (Example When ALD0 is read during interrupt servicing ▲2: IICS0 = 0010×000B 	ST	AD6 to AD0	RW	AK D7 t	o D0 🛛 AK	D7 to D0	AK	SP	
▲2: IICS0 = 0010×000B			▲1		▲2		▲3	riangle4	
▲2: IICS0 = 0010×000B	▲1:	IICS0 = 01	10×010E	(Examp	e When A	LD0 is read	l durino	a interrupt ser	vicina)
				•					0,
▲3: IICS0 = 0010×000B	▲3:	IICS0 = 00	10×000E						
△4: IICS0 = 00000001B	∆4:	IICS0 = 00	000001E	5					
		Remark	▲: Alwa	ays gener	ated				
Remark A: Always generated			∆: Gen	erated on	ly when SP	IE0 = 1			
Remark ▲: Always generated △: Generated only when SPIE0 = 1			×: Don	't care					


ST	AD6 to AD0	RW	AK	D7 to D0	AK	D7 to D0	AK	SP]	
	I		1	2		3		4	⊿5	
A. 4. 11	000 011	001					-l			
				kample wr	ien AL	DU IS read	auring	, inter	rupt servicin])
▲ 2: I	ICS0 = 001	0×110)B							
▲ 3: I	ICS0 = 001	0×100)B							
▲4: I	ICS0 = 001	0××00	ЭB							
∆5: II	ICS0 = 000	0000	1B							
F	Remark	: Alv	ways	generated						
	L	1: Ge	enerat	ed only whe	en SP	IE0 = 1				
			n't ca	-						

(6) Operation when arbitration loss occurs (no communication after arbitration loss)

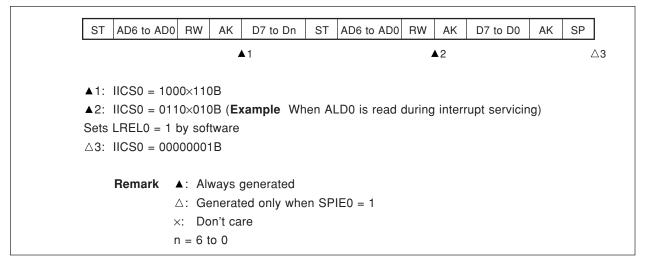
(a) When arbitration loss occurs during transmission of slave address data (when WTIM0 = 1)


ST AD6 to A	D0 RV	/ AK	D7 to D0	AK	D7 to D0	AK	SP
			▲1				Z
▲1: IICS0 = △2: IICS0 =			xample Wh	ien AL	.D0 is read	during	ı interi
Remark	▲ : /	Always Generat	generated				

(b) When arbitration loss occurs during transmission of extension code

- (c) When arbitration loss occurs during transmission of data
 - (i) When WTIM0 = 0

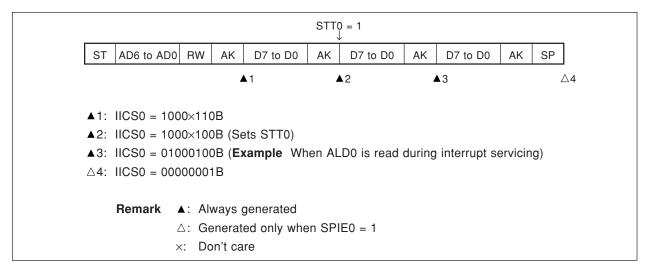
 ▲1 ▲2 △3 ▲1: IICS0 = 10001110B ▲2: IICS0 = 0100000B (Example When ALD0 is read during interrupt servicing) △3: IICS0 = 0000001B Remark ▲: Always generated 	ST	AD6 to AD0	RW	AK	D7 to D0	AK	D7 to D0	AK	SP	
 ▲2: IICS0 = 01000000B (Example When ALD0 is read during interrupt servicing) △3: IICS0 = 00000001B 					1	2			Z	3
	▲2:	IICS0 = 010	00000	в (Е х	ample Wh	en AL	.D0 is read	during	ı interr	upt servicing)
				_						

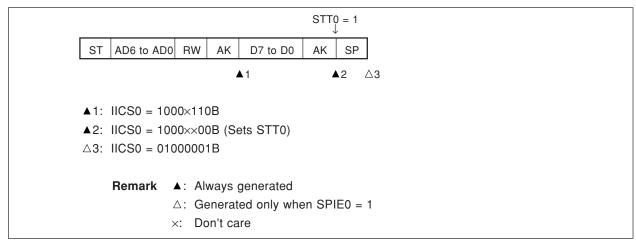


(d) When loss occurs due to restart condition during data transfer

(i) Not extension code (Example: unmatches with SVA0, WTIM0 = 1)

ST AD6 to AI	00 RW	AK	D7 to Dn	ST	AD6 to AD0	RW	AK	D7 to D0	AK	SP
		4	▲ 1				4	2		Δ
▲1: IICS0 = 1	000×11(0B								
▲ 2· IICS0 - 0	100011									
_ 2. 110000 = 0	1000110		xample wr	ien Al	_D0 is read	during	interi	upt servicir	ıg)	
$\triangle 3: IICS0 = 0$			xample wr	ien Al	_D0 is read	during	interi	upt servicir	ıg)	
∆3: IICS0 = 0	000000	1B		ien Al	_D0 is read	during	interi	upt servicir	ıg)	
	000000 ▲: Al ⁱ	1B ways	generated			during	interi	upt servicir	ıg)	
∆3: IICS0 = 0	000000 ▲: Al ⁱ	1B ways				during	interi	rupt servicir	ıg)	
∆3: IICS0 = 0	000000 ▲: Al ⁱ	1B ways enerat	generated ted only whe			during	interi	rupt servicir	ıg)	


(ii) Extension code


(e) When loss occurs due to stop condition during data transfer

(f) When arbitration loss occurs due to low-level data when attempting to generate a restart condition

(i) When WTIM0 = 1

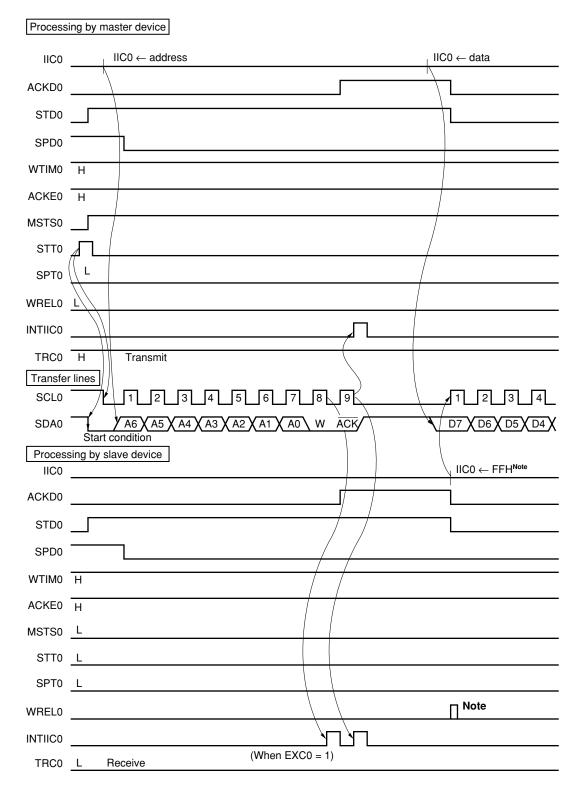
(g) When arbitration loss occurs due to a stop condition when attempting to generate a restart condition

(h) When arbitration loss occurs due to low-level data when attempting to generate a stop condition

				SPT(↓) = 1					
ST AD6 to A	D0 RW	AK	D7 to D0	AK	D7 to D0	AK	D7 to D0	AK	SP	
			▲1		▲2		▲3		\bigtriangleup^2	
▲1: IICS0 =	1000×1	10B								
▲2: IICS0 =	1000××	00B (Se	ets SPT0)							
▲3: IICS0 =	010000	00B (E)	kample Wh	ien AL	D0 is read	during	interrupt s	ervicir	ıg)	
∆4: IICS0 =	000000	01B								
Remark		Always g	generated							
	\triangle : Generated only when SPIE0 = 1									
	×: [)on't ca	re							

18.6 Timing Charts

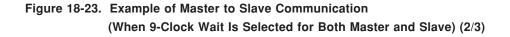
When using the I²C bus mode, the master device outputs an address via the serial bus to select one of several slave devices as its communication partner.


After outputting the slave address, the master device transmits the TRC0 bit (bit 3 of IIC status register 0 (IICS0)), which specifies the data transfer direction, and then starts serial communication with the slave device.

Figures 18-23 and 18-24 show timing charts of the data communication.

IIC shift register 0 (IIC0)'s shift operation is synchronized with the falling edge of the serial clock (SCL0). The transmit data is transferred to the SO0 latch and is output (MSB first) via the SDA0 pin.

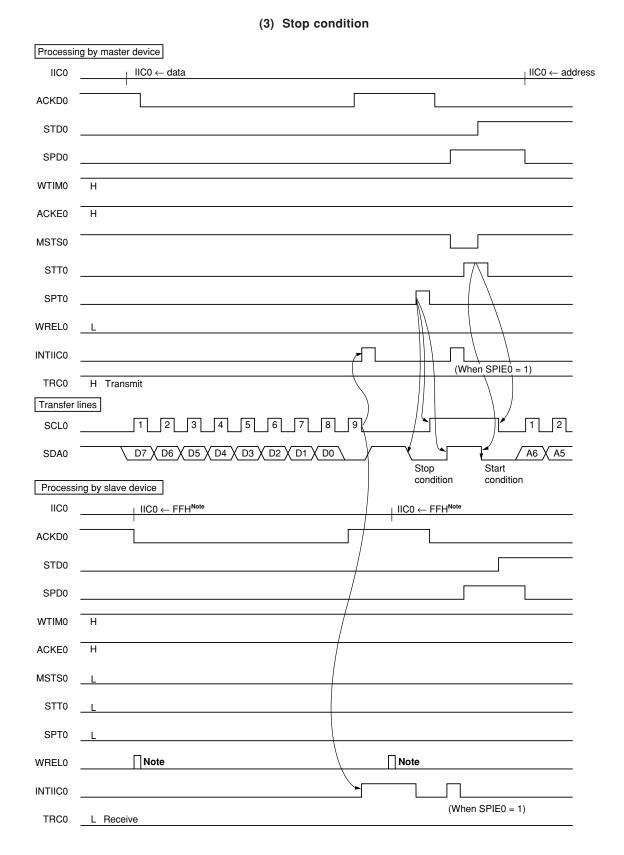
Data input via the SDA0 pin is captured into IIC0 at the rising edge of SCL0.


Figure 18-23. Example of Master to Slave Communication (When 9-Clock Wait Is Selected for Both Master and Slave) (1/3)

(1) Start condition ~ address

*

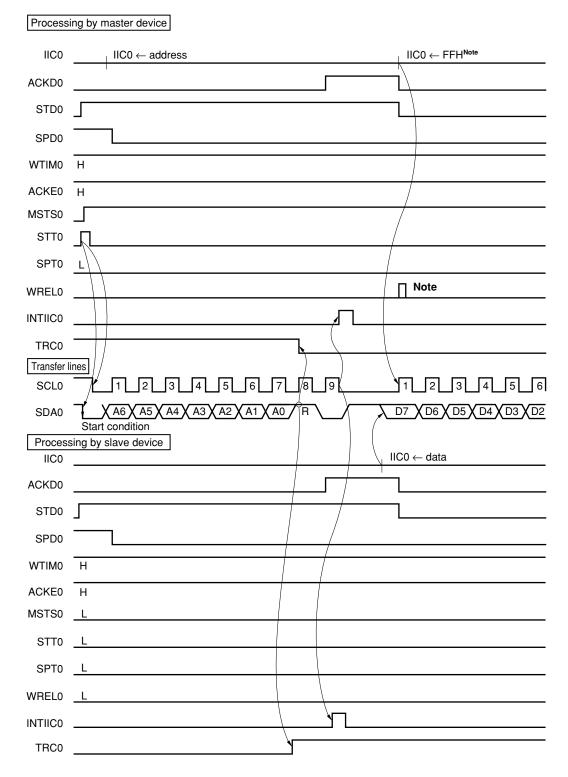
Note To cancel slave wait, write "FFH" to IIC0 or set WREL0.



(2) Data

Note To cancel slave wait, write "FFH" to IIC0 or set WREL0.

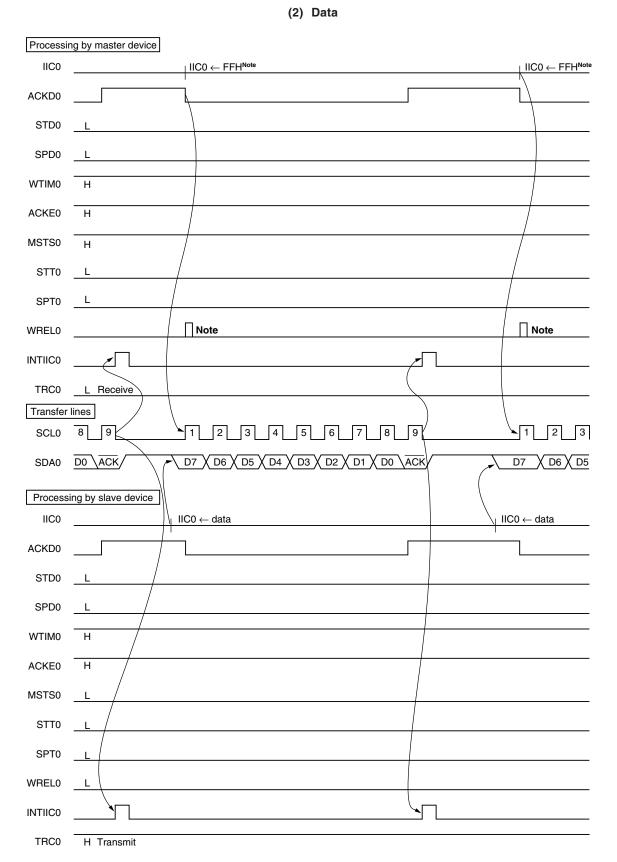
 \star



Note To cancel slave wait, write "FFH" to IIC0 or set WREL0.

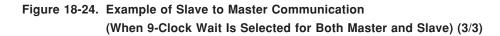
Figure 18-24. Example of Slave to Master Communication (When 9-Clock Wait Is Selected for Both Master and Slave) (1/3)

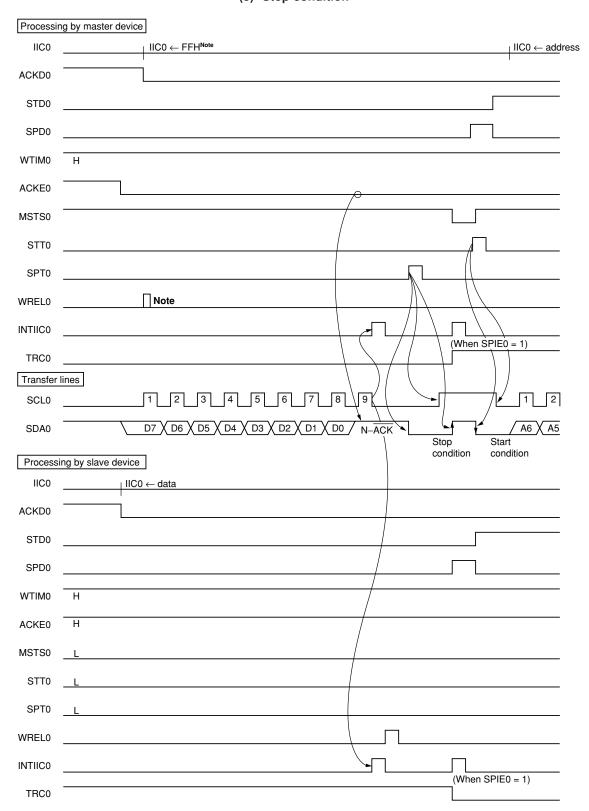
(1) Start condition ~ address



*

*


Note To cancel master wait, write "FFH" to IIC0 or set WREL0.


Figure 18-24. Example of Slave to Master Communication (When 9-Clock Wait Is Selected for Both Master and Slave) (2/3)

Note To cancel master wait, write "FFH" to IIC0 or set WREL0.
 400 User's Manual U14046EJ3V0UD

*

(3) Stop condition

 \star

Note To cancel master wait, write "FFH" to IIC0 or set WREL0.

CHAPTER 19 INTERRUPT FUNCTIONS

19.1 Interrupt Function Types

The following three types of interrupt functions are used.

(1) Non-maskable interrupt

This interrupt is acknowledged even in an interrupt disabled state. It does not undergo priority control and is given top priority over all other interrupt requests. The other interrupt requests are held pending while the non-maskable interrupt is serviced.

The non-maskable interrupt generates a standby release signal and releases the HALT mode during main system clock operation.

The non-maskable interrupt has only interrupt request from the watchdog timer.

(2) Maskable interrupts

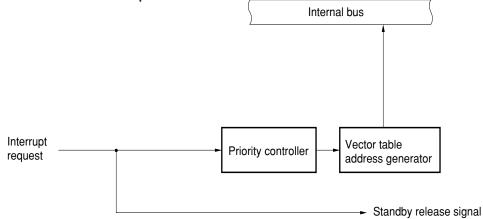
These interrupts undergo mask control. Maskable interrupts can be divided into a high interrupt priority group and a low interrupt priority group by setting the priority specification flag registers (PR0L, PR0H, PR1L). Multiple high priority interrupts can be applied to low priority interrupts. If two or more interrupts with the same priority are simultaneously generated, each interrupt has a predetermined priority (see **Table 19-1**). The maskable interrupt generates a standby release signal and releases the STOP and HALT modes. Five external interrupt requests and 13 internal interrupt requests are incorporated as maskable interrupts.

(3) Software interrupt

This is a vectored interrupt to be generated by executing the BRK instruction. It is acknowledged even in an interrupt disabled state. The software interrupt does not undergo interrupt priority control.

19.2 Interrupt Sources and Configuration

A total of 20 interrupt sources exist among non-maskable, maskable, and software interrupts (see Table 19-1).


Remark A non-maskable interrupt or a maskable interrupt (internal) can be selected as the watchdog timer interrupt (INTWDT).

Interrupt	Default		Interrupt Source		Vector	Basic
Туре	Priority ^{Note 1}	Name	Trigger	External	Table Address	Configuration Type ^{Note 2}
Non- maskable	_	INTWDT	Watchdog timer overflow (with watchdog timer mode 1 selected)	Internal	0004H	(A)
Maskable	0	INTWDT	Watchdog timer overflow (with interval timer mode selected)			(B)
	1	INTP0	Pin input edge detection	External	0006H	(C)
	2	INTP1			0008H	
	3	INTP2			000AH	
	4	INTP3			000CH	
	5	INTSER0	Serial interface UART0 reception error generation	Internal	000EH	(B)
	6	INTSR0	End of serial interface UART0 reception		0010H	
	7	INTST0	End of serial interface UART0 transmission		0012H	
	8	INTCSI30	End of serial interface SIO30 transfer		0014H	
	9	INTCSI31	End of serial interface SIO31 transfer [only for μPD780024A, 780034A Subseries]		0016H	
	10	INTIIC0	End of serial interface IIC0 transfer [only for μPD780024AY, 780034AY Subseries]		0018H	
	11	INTWTI	Reference time interval signal from watch timer		001AH	
	12	INTTM00	Match between TM0 and CR00 (when CR00 is specified as compare register) Detection of TI01 valid edge (when CR00 is specified as capture register)		001CH	
	13	INTTM01	Match between TM0 and CR01 (when CR01 is specified as compare register) Detection of TI00 valid edge (when CR01 is specified as capture register)		001EH	
	14	INTTM50	Match between TM50 and CR50		0020H	
	15	INTTM51	Match between TM51 and CR51		0022H	
	16	INTAD0	End of A/D converter conversion		0024H	
	17	INTWT	Watch timer overflow		0026H	
	18	INTKR	Port 4 falling edge detection	External	0028H	(D)
Software	_	BRK	BRK instruction execution	_	003EH	(E)

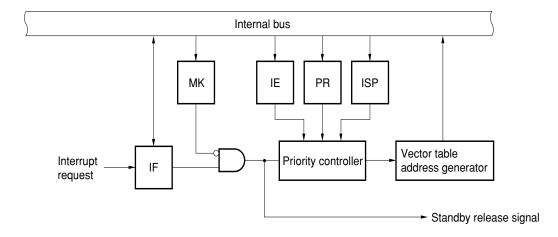
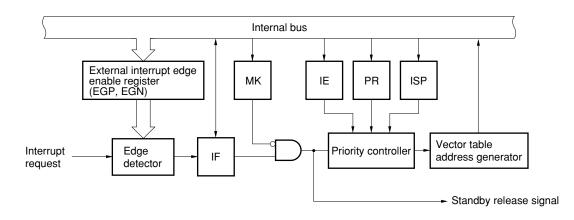
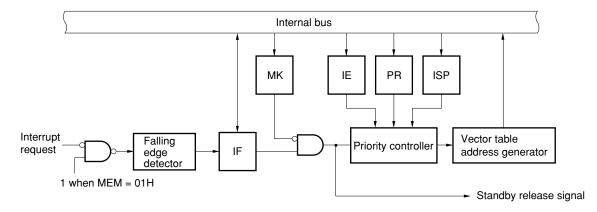

- **Notes 1.** The default priority is the priority applicable when two or more maskable interrupts are generated simultaneously. 0 is the highest priority, and 18 is the lowest.
 - 2. Basic configuration types (A) to (E) correspond to (A) to (E) in Figure 19-1.

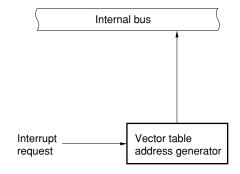
Figure 19-1. Basic Configuration of Interrupt Function (1/2)


(A) Internal non-maskable interrupt

(B) Internal maskable interrupt



(C) External maskable interrupt (INTP0 to INTP3)


Figure 19-1. Basic Configuration of Interrupt Function (2/2)

(D) External maskable interrupt (INTKR)

(E) Software interrupt

*

- IF: Interrupt request flag
- IE: Interrupt enable flag
- ISP: In-service priority flag
- MK: Interrupt mask flag
- PR: Priority specification flag
- MEM: Memory expansion mode register

19.3 Interrupt Function Control Registers

The following 6 types of registers are used to control the interrupt functions.

- Interrupt request flag registers (IF0L, IF0H, IF1L)
- Interrupt mask flag registers (MK0L, MK0H, MK1L)
- Priority specification flag registers (PR0L, PR0H, PR1L)
- External interrupt rising edge enable register (EGP)
- · External interrupt falling edge enable register (EGN)
- Program status word (PSW)

Table 19-2 gives a list of interrupt request flags, interrupt mask flags, and priority specification flags corresponding to interrupt request sources.

Table 19-2. Flags Corresponding to Interrupt Request Sources

Interrupt Source	Interrupt Requ	est Flag	Interrupt Mask Flag		Priority Specification Flag	
		Register		Register		Register
INTWDT	WDTIF ^{Note 1}	IFOL	WDTMK	MKOL	WDTPR	PR0L
INTP0	PIF0		PMK0		PPR0	
INTP1	PIF1		PMK1		PPR1	
INTP2	PIF2		PMK2		PPR2	
INTP3	PIF3		РМКЗ		PPR3	
INTSER0	SERIF0		SERMK0		SERPR0	
INTSR0	SRIF0		SRMK0		SRPR0	
INTST0	STIF0		STMK0		STPR0	
INTCSI30	CSIIF30	IF0H	CSIMK30	МКОН	CSIPR30	PR0H
INTCSI31 Note 2	CSIIF31Note 2		CSIMK31Note 2		CSIPR31 Note 2	
INTIIC0 ^{Note 3}	IICIF0Note 3		IICMK0 ^{Note 3}		IICPR0 ^{Note 3}	
INTWTI	WTIIF		WTIMK		WTIPR	
INTTM00	TMIF00		ТММК00		TMPR00	
INTTM01	TMIF01		TMMK01		TMPR01	
INTTM50	TMIF50		TMMK50		TMPR50	
INTTM51	TMIF51		TMMK51		TMPR51	
INTAD0	ADIF0	IF1L	ADMK0	MK1L	ADPR0	PR1L
INTWT	WTIF		WTMK		WTPR	
INTKR	KRIF		KRMK		KRPR	

Notes 1. Interrupt control flag when watchdog timer is used as interval timer

- 2. µPD780024A, 780034A Subseries only
- **3.** *µ*PD780024AY, 780034AY Subseries only

(1) Interrupt request flag registers (IF0L, IF0H, IF1L)

The interrupt request flags are set to 1 when the corresponding interrupt request is generated or an instruction is executed. They are cleared to 0 when an instruction is executed upon acknowledgment of an interrupt request or upon application of **RESET** input.

IF0L, IF0H, and IF1L are set by a 1-bit or 8-bit memory manipulation instruction. When IF0L and IF0H are combined to form 16-bit register IF0, they are set by a 16-bit memory manipulation instruction. RESET input clears these registers to 00H.

Figure 19-2. Format of Interrupt Request Flag Registers (IF0L, IF0H, IF1L	Figure 19-2.	Format of Interrupt	Request Flag	Registers	(IFOL, IFOH,	IF1L
---	--------------	---------------------	---------------------	-----------	--------------	------

Address: F	Address: FFEUH After reset: 00H R/W							
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
IF0L	STIF0	SRIF0	SERIF0	PIF3	PIF2	PIF1	PIF0	WDTIF
Address: F	FE1H After	reset: 00H F	R/W					
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
IF0H	TMIF51	TMIF50	TMIF01	TMIF00	WTIIF	IICIF0 ^{Note 1}	CSIIF31 ^{Note 2}	CSIIF30
	Address: FFE2H After reset: 00H R/W							
Symbol	7	6	5	4	3	<2>	<1>	<0>
IF1L	0	0	0	0	0	KRIF	WTIF	ADIF0

XXIFX	Interrupt request flag				
0	No interrupt request signal is generated				
1	Interrupt request signal is generated, interrupt request status				

- **Notes 1.** Incorporated only in the μPD780024AY, 780034AY Subseries. Be sure to clear 0 for the μPD780024A, 780034A Subseries.
 - Incorporated only in the μPD780024A, 780034A Subseries. Be sure to clear 0 for the μPD780024AY, 780034AY Subseries.
- Cautions 1. The WDTIF flag is R/W enabled only when the watchdog timer is used as the interval timer. If watchdog timer mode 1 is used, set the WDTIF flag to 0.
 - 2. Be sure to clear bits 3 to 7 of IF1L to 0.
 - 3. When operating a timer, serial interface, or A/D converter after standby release, run it once after clearing an interrupt request flag. An interrupt request flag may be set by noise.
 - 4. When an interrupt is acknowledged, the interrupt request flag is automatically cleared, and then processing of the interrupt routine is started.
 - 5. When the interrupt request flag register is being manipulated (including 1-bit memory manipulation), if an interrupt request corresponding to other flags in the same register is generated, the flag corresponding to the interrupt request may not be set (1).

(2) Interrupt mask flag registers (MK0L, MK0H, MK1L)

The interrupt mask flags are used to enable/disable the corresponding maskable interrupt service. MK0L, MK0H, and MK1L are set by a 1-bit or 8-bit memory manipulation instruction. When MK0L and MK0H are combined to form a 16-bit register MK0, they are set by a 16-bit memory manipulation instruction. RESET input sets these registers to FFH.

Figure 19-3. Format of Interrupt Mask Flag Registers (MK0L, MK0H, MK1L)

Address: F	FE4H After	reset: FFH I	R/W					
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
MKOL	STMK0	SRMK0	SERMK0	PMK3	PMK2	PMK1	PMK0	WDTMK
Address: F	Address: FFE5H After reset: FFH R/W							
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
МКОН	TMMK51	TMMK50	TMMK01	TMMK00	WTIMK	IICMK0 ^{Note 1}	CSIMK31 Note 2	CSIMK30
Address: F	Address: FFE6H After reset: FFH R/W							
Symbol	7	6	5	4	3	<2>	<1>	<0>
MK1L	1	1	1	1	1	KRMK	WTMK	ADMK0

ХХМКХ	Interrupt servicing control				
0	Interrupt servicing enabled				
1	Interrupt servicing disabled				

- **Notes 1.** Incorporated only in the μPD780024AY, 780034AY Subseries. Be sure to set 1 for the μPD780024A, 780034A Subseries.
 - Incorporated only in the μPD780024A, 780034A Subseries. Be sure to set 1 for the μPD780024AY, 780034AY Subseries.
- Cautions 1. If the watchdog timer is used in watchdog timer mode 1, the contents of the WDTMK flag become undefined when read.
 - 2. Because port 0 pins have an alternate function as external interrupt request input, when the output level is changed by specifying the output mode of the port function, an interrupt request flag is set. Therefore, 1 should be set in the interrupt mask flag before using the output mode.
 - 3. Be sure to set bits 3 to 7 of MK1L to 1.

(3) Priority specification flag registers (PR0L, PR0H, PR1L)

The priority specification flags are used to set the corresponding maskable interrupt priority orders. PROL, PROH, and PR1L are set by a 1-bit or 8-bit memory manipulation instruction. If PROL and PROH are combined to form 16-bit register PR0, they are set by a 16-bit memory manipulation instruction. RESET input sets these registers to FFH.

Figure 19-4. Format of Priority Specification Flag Registers (PR0L, PR0H, PR1L)

Address: F	FE8H After I	reset: FFH F	R/W					
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
PROL	STPR0	SRPR0	SERPR0	PPR3	PPR2	PPR1	PPR0	WDTPR
Address: F	FE9H After I	reset: FFH F	R/W					
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
PR0H	TMPR51	TMPR50	TMPR01	TMPR00	WTIPR	IICPR0 ^{Note 1}	CSIPR31 ^{Note 2}	CSIPR30
Address: F	FEAH After	reset: FFH I	R/W					
Symbol	7	6	5	4	3	<2>	<1>	<0>
PR1L	1	1	1	1	1	KRPR	WTPR	ADPR0

XXPRX	Priority level selection
0	High priority level
1	Low priority level

- **Notes 1.** Incorporated only in the μPD780024AY, 780034AY Subseries. Be sure to set 1 for the μPD780024A, 780034A Subseries.
 - Incorporated only in the μPD780024A, 780034A Subseries. Be sure to set 1 for the μPD780024AY, 780034AY Subseries.

Cautions 1. If the watchdog timer is used in watchdog timer mode 1, set the WDTPR flag to 1.

2. Be sure to set bits 3 to 7 of PR1L to 1.

(4) External interrupt rising edge enable register (EGP), external interrupt falling edge enable register (EGN) These registers specify the valid edge for INTP0 to INTP3.

EGP and EGN are set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears these registers to 00H.

Figure 19-5. Format of External Interrupt Rising Edge Enable Register (EGP), External Interrupt Falling Edge Enable Register (EGN)

Address: F	F48H After	reset: 00H F	R/W					
Symbol	7	6	5	4	3	2	1	0
EGP	0	0	0	0	EGP3	EGP2	EGP1	EGP0
Address: FF49H After reset: 00H R/W								
Symbol	7	6	5	4	3	2	1	0
EGN	0	0	0	0	EGN3	EGN2	EGN1	EGN0
			_					
	EGPn	EGNn		INTPn p	in valid edge	selection (n =	= 0 to 3)	
	0	0	Interrupt dis	sable				
	0	1	Falling edge					
	1	0	Rising edge					
	1	1	Both rising	and falling ed	dges			

★ Caution When the function is switched from external interrupt request to port, edge detection may be performed. Therefore, clear EGPn and EGNn to 0 before switching to the port mode.

(5) Program status word (PSW)

The program status word is a register to hold the instruction execution result and the current status for an interrupt request. The IE flag to set maskable interrupt enable/disable and the ISP flag to control nesting processing are mapped.

Besides 8-bit read/write, this register can carry out operations with a bit manipulation instruction and dedicated instructions (EI and DI). When a vectored interrupt request is acknowledged, if the BRK instruction is executed, the contents of PSW are automatically saved into a stack and the IE flag is reset to 0. If a maskable interrupt request is acknowledged, the contents of the priority specification flag of the acknowledged interrupt are transferred to the ISP flag. The PSW contents are also saved into the stack with the PUSH PSW instruction. They are restored from the stack with the RETI, RETB, and POP PSW instructions. RESET input sets PSW to 02H.

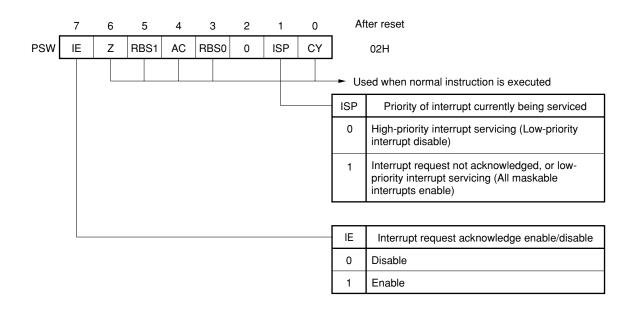
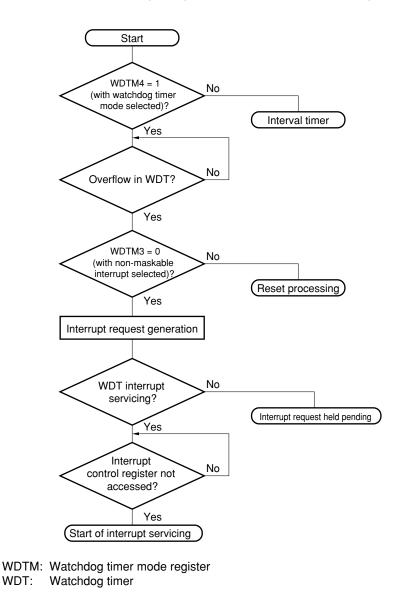
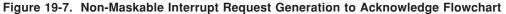
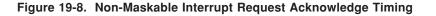


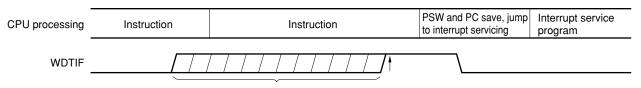
Figure 19-6. Program Status Word Format

19.4 Interrupt Servicing Operations

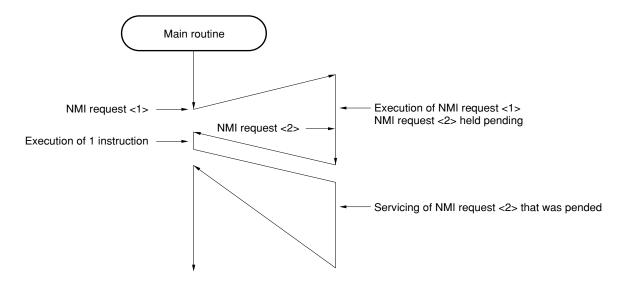

19.4.1 Non-maskable interrupt request acknowledgment operation


A non-maskable interrupt request is unconditionally acknowledged even in an interrupt acknowledgment disabled state. It does not undergo interrupt priority control and has the highest priority of all interrupts.


If a non-maskable interrupt request is acknowledged, the contents are saved into the stacks in the order of PSW, then PC, the IE flag and ISP flag are reset (0), and the contents of the vector table are loaded into the PC and branched. ★ At this time, the NMIS flag is set (1) to disable acknowledgment of multiple interrupts.


A new non-maskable interrupt request generated during execution of a non-maskable interrupt servicing program is acknowledged after the current non-maskable interrupt servicing program is terminated (following RETI instruction execution) and one main routine instruction has been executed. However, if a new non-maskable interrupt request is generated twice or more during non-maskable interrupt servicing program execution, only one non-maskable interrupt request is acknowledged after termination of the non-maskable interrupt servicing program. Figures 19-7, 19-8, and 19-9 show the flowchart of non-maskable interrupt request generation through acknowledgment, the acknowledgment timing of a non-maskable interrupt request, and the acknowledgment operation when multiple non-maskable interrupt requests are generated, respectively.

★ Remark When a non-maskable interrupt is acknowledged, the NMIS flag is set (1). It is cleared (0) by the RET or RETI instruction. When a non-maskable interrupt is generated, execute the RETI instruction to restore processing from the interrupt.



Interrupt request generated during this interval is acknowledged at 4.

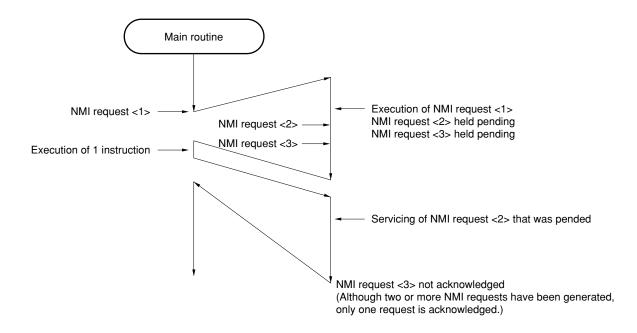

WDTIF: Watchdog timer interrupt request flag

Figure 19-9. Non-Maskable Interrupt Request Acknowledge Operation

(a) If a non-maskable interrupt request is generated during non-maskable interrupt servicing program execution

(b) If two non-maskable interrupt requests are generated during non-maskable interrupt servicing program execution

19.4.2 Maskable interrupt request acknowledgment operation

A maskable interrupt request becomes acknowledgeable when an interrupt request flag is set to 1 and the mask (MK) flag corresponding to that interrupt request is cleared to 0. A vectored interrupt request is acknowledged if interrupts are enabled (when the IE flag is set to 1). However, a low-priority interrupt request is not acknowledged during servicing of a higher priority interrupt request (when the ISP flag is reset to 0).

Moreover, even if the EI instruction is executed during execution of a non-maskable interrupt servicing program (NMIS = 1), neither non-maskable interrupt requests nor maskable interrupt requests are acknowledged.

The times from generation of a maskable interrupt request until interrupt servicing is performed are listed in Table 19-3 below.

For the interrupt request acknowledgment timing, see Figures 19-11 and 19-12.

	Minimum Time	Maximum Time ^{Note}
When ××PR = 0	7 clocks	32 clocks
When ××PR = 1	8 clocks	33 clocks

Table 19-3. Times from Generation of Maskable Interrupt Until Servicing

Note If an interrupt request is generated just before a divide instruction, the wait time becomes longer.

Remark 1 clock: 1/fcpu (fcpu: CPU clock)

If two or more interrupt requests are generated simultaneously, the request with a higher priority level specified by the priority specification flag is acknowledged first. If two or more interrupt requests have the same priority level, the request with the highest default priority is acknowledged first.

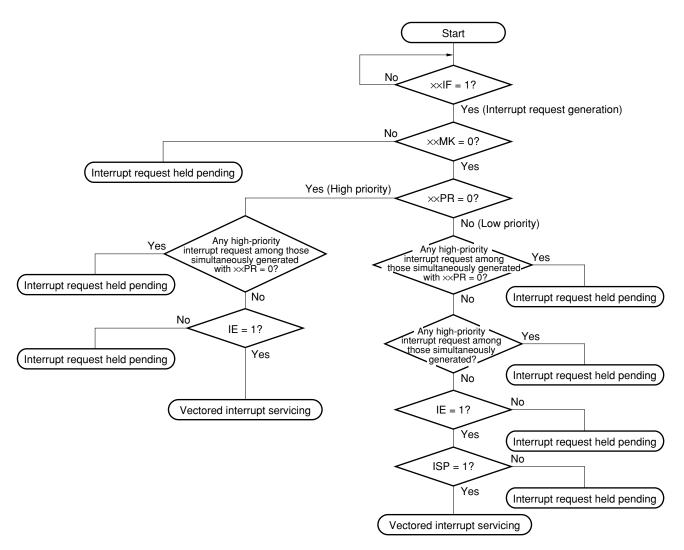
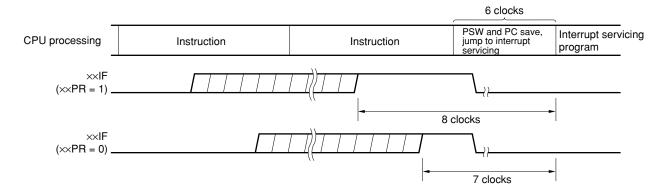

An interrupt request that is held pending is acknowledged when it becomes acknowledgeable.

Figure 19-10 shows the interrupt request acknowledgment algorithm.

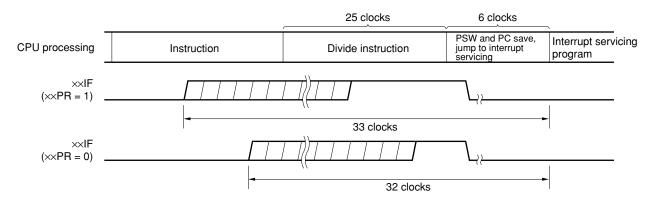
If a maskable interrupt request is acknowledged, the contents are saved into the stacks in the order of PSW, then PC, the IE flag is reset (0), and the contents of the priority specification flag corresponding to the acknowledged interrupt are transferred to the ISP flag. Further, the vector table data determined for each interrupt request is loaded into the PC and branched.

Return from an interrupt is possible using the RETI instruction.



××IF: Interrupt request flag

××MK: Interrupt mask flag


××PR: Priority specification flag

- IE: Flag that controls acknowledge of maskable interrupt request (1 = enable, 0 = disable)
- ISP: Flag that indicates the priority level of the interrupt currently being serviced (0 = high-priority interrupt servicing, 1 = no interrupt request acknowledged, or low-priority interrupt servicing)

Figure 19-11. Interrupt Request Acknowledge Timing (Minimum Time)

Remark 1 clock: 1/fcpu (fcpu: CPU clock)

19.4.3 Software interrupt request acknowledgment operation

A software interrupt request is acknowledged by BRK instruction execution. Software interrupts cannot be disabled. If a software interrupt request is acknowledged, the contents are saved into the stacks in the order of the program status word (PSW), then program counter (PC), the IE flag is reset (0), and the contents of the vector table (003EH, 003FH) are loaded into PC and branched.

Return from a software interrupt is possible with the RETB instruction.

Caution Do not use the RETI instruction for returning from the software interrupt.

19.4.4 Nesting interrupt servicing

Nesting occurs when another interrupt request is acknowledged during execution of an interrupt.

Nesting does not occur unless the interrupt request acknowledge enable state is selected (IE = 1) (except nonmaskable interrupts). Also, when an interrupt request is acknowledged, interrupt request acknowledge becomes disabled (IE = 0). Therefore, to enable nesting, it is necessary to set (1) the IE flag with the El instruction during interrupt servicing to enable interrupt acknowledge.

Moreover, even if interrupts are enabled, nesting may not be enabled, this being subject to interrupt priority control. Two types of priority control are available: default priority control and programmable priority control. Programmable priority control is used for nesting.

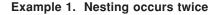
In the interrupt enable state, if an interrupt request with a priority equal to or higher than that of the interrupt currently being serviced is generated, it is acknowledged for nesting. If an interrupt with a priority lower than that of the interrupt currently being serviced is generated during interrupt servicing, it is not acknowledged for nesting.

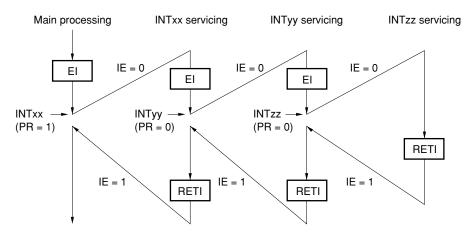
Interrupt requests that are not enabled because of the interrupt disable state or they have a lower priority are held pending. When servicing of the current interrupt ends, the pended interrupt request is acknowledged following execution of at least one main processing instruction execution.

Nesting is not possible during non-maskable interrupt servicing.

Table 19-4 shows interrupt requests enabled for nesting and Figure 19-13 shows nesting examples.

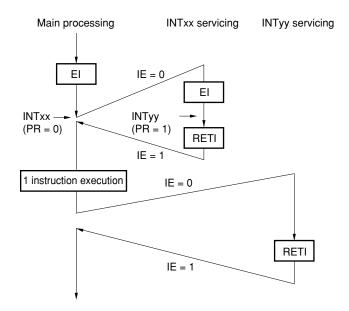
Table 19-4. Interrupt Requests Enabled for Nesting During Interrupt Servicing


Nestir	Nesting Request		Ma	Software			
		Interrupt Request	PR = 0		PR = 1		Interrupt
Interrupt Being Serviced			IE = 1	IE = 0	IE = 1	IE = 0	Request
Non-maskable interrupt		×	×	×	×	×	0
Maskable interrupt	ISP = 0	0	0	×	×	×	0
	ISP = 1	0	0	×	0	×	0
Software interrupt		0	0	×	0	×	0

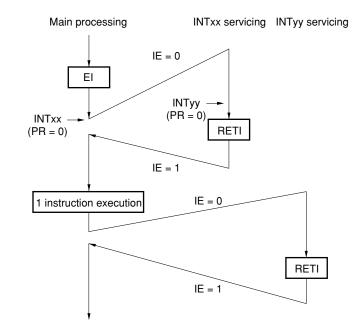

Remarks 1. O: Nesting enabled

- 2. X: Nesting disabled
- 3. ISP and IE are flags contained in the PSW.
 - ISP = 0: An interrupt with higher priority is being serviced.
 - ISP = 1: No interrupt request has been acknowledged, or an interrupt with a lower priority is being serviced.
 - IE = 0: Interrupt request acknowledgment is disabled.
 - IE = 1: Interrupt request acknowledgment is enabled.
- 4. PR is a flag contained in PR0L, PR0H, and PR1L.
 - PR = 0: Higher priority level
 - PR = 1: Lower priority level

★


Figure 19-13. Nesting Examples (1/2)

During servicing of interrupt INTxx, two interrupt requests, INTyy and INTzz, are acknowledged, and nesting takes place. Before each interrupt request is acknowledged, the EI instruction must always be issued to enable interrupt request acknowledgment.


Example 2. Nesting does not occur due to priority control

Interrupt request INTyy issued during servicing of interrupt INTxx is not acknowledged because its priority is lower than that of INTxx, and nesting does not take place. The INTyy interrupt request is held pending, and is acknowledged following execution of one main processing instruction.

- PR = 0: Higher priority level
- PR = 1: Lower priority level
- IE = 0: Interrupt request acknowledgment disabled

Figure 19-13. Nesting Examples (2/2)

Example 3. Nesting does not occur because interrupts are not enabled

Interrupts are not enabled during servicing of interrupt INTxx (El instruction is not issued), so interrupt request INTyy is not acknowledged and nesting does not take place. The INTyy interrupt request is held pending, and is acknowledged following execution of one main processing instruction.

- PR = 0: Higher priority level
- IE = 0: Interrupt request acknowledgment disabled

19.4.5 Interrupt request hold

There are instructions where, even if an interrupt request is issued for them while another instruction is executed, request acknowledge is held pending until the end of execution of the next instruction. These instructions (interrupt request hold instructions) are listed below.

- MOV PSW, #byte
- MOV A, PSW
- MOV PSW, A
- MOV1 PSW.bit, CY
- MOV1 CY, PSW.bit
- AND1 CY, PSW.bit
- OR1 CY, PSW.bit
- XOR1 CY, PSW.bit
- SET1 PSW.bit
- CLR1 PSW.bit
- RETB
- RETI
- PUSH PSW
- POP PSW
- BT PSW.bit, \$addr16
- BF PSW.bit, \$addr16
- BTCLR PSW.bit, \$addr16
- EI
- DI
- · Manipulate instructions for the IF0L, IF0H, IF1L, MK0L, MK0H, MK1L, PR0L, PR0H, and PR1L registers
- Caution The BRK instruction is not one of the above-listed interrupt request hold instructions. However, the software interrupt activated by executing the BRK instruction causes the IE flag to be cleared to 0. Therefore, even if a maskable interrupt request is generated during execution of the BRK instruction, the interrupt request is not acknowledged. However, a non-maskable interrupt request is acknowledged.

Figure 19-14 shows the timing with which interrupt requests are held pending.

Figure 19-14. Interrupt Request Hold

CPU processing	Instruction N	Instruction M	Save PSW and PC, Jump to interrupt servicing	Interrupt servicing program	
××IF					

Remarks 1. Instruction N: Interrupt request hold instruction

- 2. Instruction M: Instruction other than interrupt request hold instruction
- 3. The xxPR (priority level) values do not affect the operation of xxIF (interrupt request).

CHAPTER 20 EXTERNAL DEVICE EXPANSION FUNCTION

★ Use the expanded-specification products of the μPD780024A and 780034A Subseries, under the conventional-specification conditions (fx = 8.38 MHz: VDD = 4.0 to 5.5 V, fx = 5 MHz: VDD = 2.7 to 5.5 V, fx = 1.25 MHz: VDD = 1.8 to 5.5 V).

The external device expansion function cannot be used under the expanded-specification conditions (high-speed operation).

20.1 External Device Expansion Function

The external device expansion function connects external devices to areas other than the internal ROM, RAM, and SFR. Connection of external devices uses ports 4 to 6. Ports 4 to 6 control address/data, read/write strobe, wait, address strobe, etc.

Pin Fun	Alternate Function	
Name	Function	
AD0 to AD7	Multiplexed address/data bus	P40 to P47
A8 to A15	Address bus	P50 to P57
RD	Read strobe signal	P64
WR	Write strobe signal	P65
WAIT	Wait signal	P66
ASTB	Address strobe signal	P67

Table 20-1. Pin Functions in External Memory Expansion Mode

 Table 20-2.
 State of Port 4 to 6 Pins in External Memory Expansion Mode

Port	Port 4	Port 5	Port 6		
External Expansion Mode	0 to 7	0 1 2 3 4 5 6 7 4	5 6 7		
Single-chip mode	Port	Port Po	Port		
256-byte expansion mode	Address/data	Port RD	D, WR, WAIT, ASTB		
4 KB expansion mode	Address/data	Address Port RD	D, WR, WAIT, ASTB		
16 KB expansion mode	Address/data	Address Port RD	\overline{RD} , \overline{WR} , \overline{WAIT} , ASTB		
Full-address mode	Address/data	Address RD	RD, WR, WAIT, ASTB		

Caution When the external wait function is not used, the WAIT pin can be used as a port in all modes.

The memory maps when the external device expansion function is used are as follows.

Figure 20-1. Memory Map When Using External Device Expansion Function (1/2)

- (a) Memory map of μ PD780021A, 780031A, 780021AY, 780031AY and of μ PD78F0034A, 78F0034AY when internal ROM (flash memory) size is 8 KB
- (b) Memory map of μ PD780022A, 780032A, 780022AY, 780032AY and of μ PD78F0034A, 78F0034AY when internal ROM (flash memory) size is 16 KB

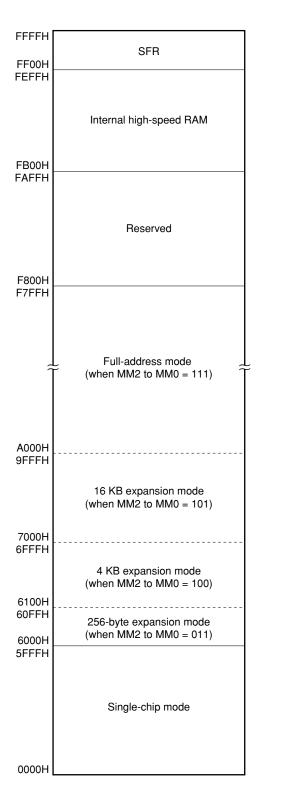



Figure 20-1. Memory Map When Using External Device Expansion Function (2/2)

- (c) Memory map of μ PD780023A, 780033A, 780023AY, 780033AY and of μ PD78F0034A, 78F0034AY when internal ROM (flash memory) size is 24 KB
- (d) Memory map of μ PD780024A, 780034A, 780024AY, 780034AY and of μ PD78F0034A, 78F0034AY when internal ROM (flash memory) size is 32 KB

20.2 External Device Expansion Function Control Registers

The external device expansion function is controlled by the following two registers.

- Memory expansion mode register (MEM)
- Memory expansion wait setting register (MM)

(1) Memory expansion mode register (MEM)

MEM sets the external expansion area. MEM is set by a 1-bit or 8-bit memory manipulation instruction. RESET input clears MEM to 00H.

Figure 20-2. Format of Memory Expansion Mode Register (MEM)

Address: FF47H After reset: 00H R/W

*

Symbol	7	6	5	4	3	2	1	0
MEM	0	0	0	0	0	MM2	MM1	MM0

MM2	MM1	MM0	Single-chip/memory		P40 t	o P47, P50	to P57, P6	4 to P67 pir	n state
			expansion m	ode selection	P40 to P47	P50 to P53	P54, P55	P56, P57	P64 to P67
0	0	0	Single-chip mode		Port mode				
0	0	1	Port 4 falling edge detection mode						
0	1	1	Memory 256-byte expansion mode mode ^{Note 1} 4 KB mode		AD0 to AD7	0 to AD7 Port mode			$P64 = \overline{RD}$ $P65 = \overline{WR}$
1	0	0				A8 to A11	Port mode		P66 =WAIT P67 = ASTB
1	0	1		16 KB mode			A12, A13	Port mode	
1	1	1		Full-address mode ^{Note 2}				A14, A15	
Oth	Other than above		Setting pro	Setting prohibited					

Notes 1. When the memory expansion mode is set, if an area other than the external expansion area is accessed, the read value is undefined.

2. The full-address mode allows external expansion to the entire 64 KB address space except for the internal ROM, RAM, and SFR areas, and the reserved areas.

Caution When using the falling edge detection function of port 4, be sure to set MEM to 01H.

(2) Memory expansion wait setting register (MM)

MM sets the number of waits.

 \mbox{MM} is set by a 1-bit or 8-bit memory manipulation instruction. \mbox{RESET} input sets MM to 10H.

Figure 20-3. Format of Memory Expansion Wait Setting Register (MM)

Address: FFF8H After reset: 10H R/W

Symbol	7	6	5	4	3	2	1	0
MM	0	0	PW1	PW0	0	0	0	0

PW1	PW0	Wait control
0	0	No wait
0	1	Wait (one wait state inserted)
1	0	Setting prohibited
1	1	Wait control by external wait pin

- Cautions 1. When wait is controlled by the external wait pin, be sure to set the WAIT/P66 pin to input mode (set bit 6 (PM66) of port mode register 6 (PM6) to 1).
 - 2. When wait is not controlled by the external wait pin, the WAIT/P66 pin can be used as an I/O port pin.

*

20.3 External Device Expansion Function Timing

Timing control signal output pins in the external memory expansion mode are as follows.

(1) **RD** pin (Alternate function: P64)

Read strobe signal output pin. The read strobe signal is output in data read and instruction fetch from external memory.

During internal memory read, the read strobe signal is not output (maintains high level).

(2) WR pin (Alternate function: P65)

Write strobe signal output pin. The write strobe signal is output in data write to external memory. During internal memory write, the write strobe signal is not output (maintains high level).

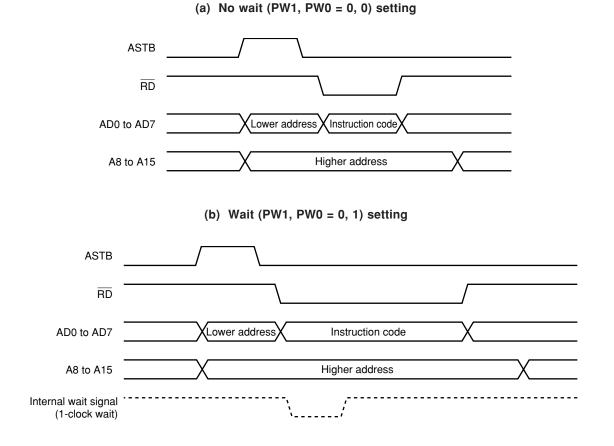
(3) WAIT pin (Alternate function: P66)

External wait signal input pin. When the external wait is not used, the \overline{WAIT} pin can be used as an I/O port. During internal memory access, the external wait signal is ignored.

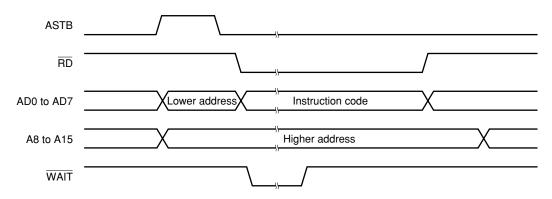
(4) ASTB pin (Alternate function: P67)

Address strobe signal output pin. The address strobe signal is output regardless of data access and instruction fetch from external memory.

During internal memory access, the address strobe signal is output.

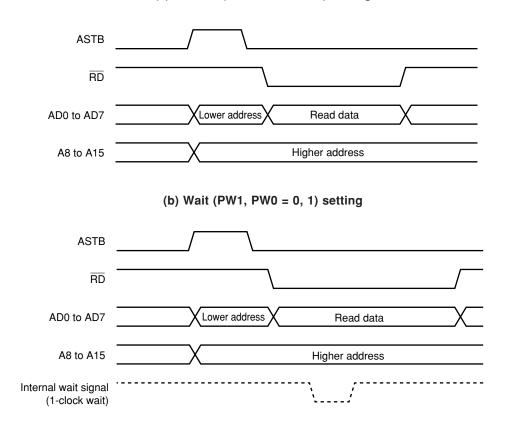

(5) AD0 to AD7, A8 to A15 pins (Alternate function: P40 to P47, P50 to P57)

Address/data signal output pins. Valid signal is output or input during data accesses and instruction fetches from external memory.


These signals change even during internal memory access (output values are undefined).

The timing charts are shown in Figures 20-4 to 20-7.

Figure 20-4. Instruction Fetch from External Memory



(c) External wait (PW1, PW0 = 1, 1) setting

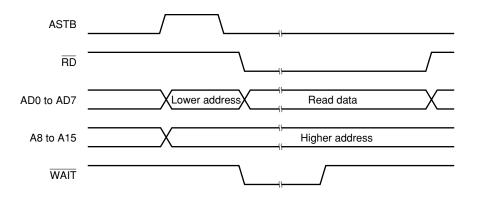
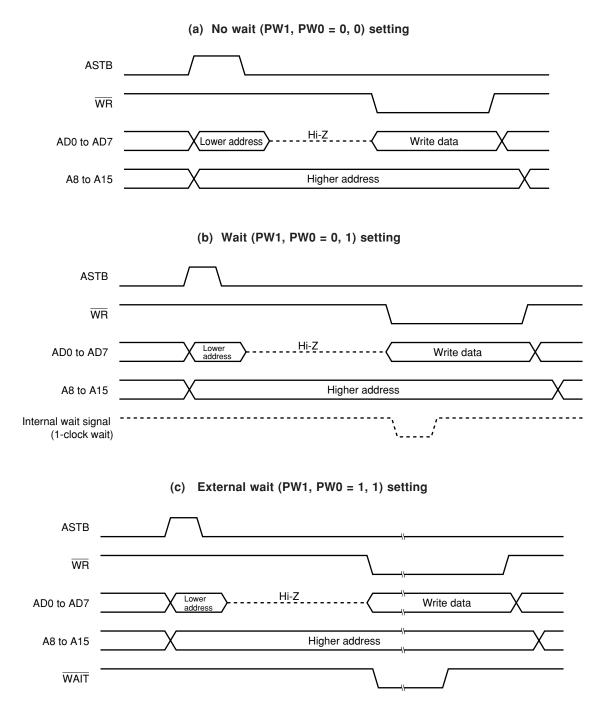
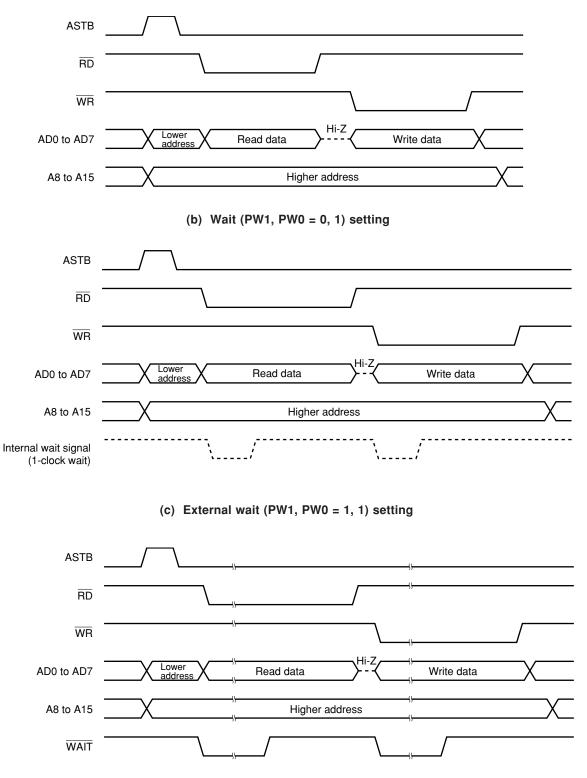


Figure 20-5. External Memory Read Timing


(a) No wait (PW1, PW0 = 0, 0) setting



(a) No wait (PW1, PW0 = 0, 0) setting

Remark The read-modify-write timing is that of an operation when a bit manipulation instruction is executed.

*

20.4 Example of Connection with Memory

This section provide an example of connecting the μ PD780024A with external memory (in this example, SRAM) in Figure 20-8. In addition, the external device expansion function is used in the full-address mode, and the addresses from 0000H to 7FFFH (32 KB) are allocated for internal ROM, and the addresses after 8000H for SRAM.

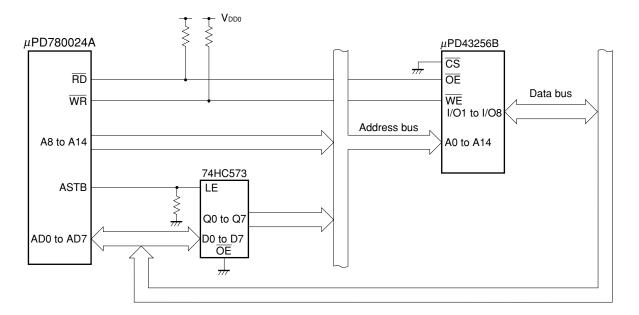


Figure 20-8. Connection Example of μ PD780024A and Memory

CHAPTER 21 STANDBY FUNCTION

21.1 Standby Function and Configuration

21.1.1 Standby function

The standby function is designed to decrease power consumption of the system. The following two modes are available.

(1) HALT mode

HALT instruction execution sets the HALT mode. The HALT mode stops the CPU operation clock. The system clock oscillator continues oscillating. In this mode, power consumption is not decreased as much as in the STOP mode. However, the HALT mode is effective to restart operation immediately upon an interrupt request and to carry out intermittent operations.

(2) STOP mode

STOP instruction execution sets the STOP mode. In the STOP mode, the main system clock oscillator stops, stopping the whole system, thereby considerably reducing the CPU power consumption.

Data memory low-voltage hold (down to $V_{DD} = 1.6 V$) is possible. Thus, the STOP mode is effective to hold data memory contents with ultra-low power consumption. Because this mode can be released upon an interrupt request, it enables intermittent operations to be carried out.

However, because a wait time is required to stabilize oscillation after the STOP mode is released, select the HALT mode if it is necessary to start processing immediately upon an interrupt request.

In either of these two modes, all the contents of registers, flags and data memory just before the standby mode is set are held. The I/O port output latches and output buffer statuses are also held.

- Cautions 1. The STOP mode can be used only when the system operates with the main system clock (subsystem clock oscillation cannot be stopped). The HALT mode can be used with either the main system clock or the subsystem clock.
 - 2. When operation is transferred to the STOP mode, be sure to stop operation of the peripheral hardware operating with the main system clock before executing the STOP instruction.
 - 3. The following sequence is recommended for reducing the power consumption of the A/D converter when the standby function is used: First clear bit 7 (ADCS0) of A/D converter mode register 0 (ADM0) to 0 to stop the A/D conversion operation, and then execute the HALT or STOP instruction.

21.1.2 Standby function control register

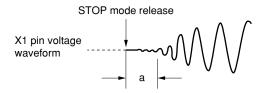
The wait time after the STOP mode is released upon an interrupt request is controlled by the oscillation stabilization time select register (OSTS).

OSTS is set by an 8-bit memory manipulation instruction.

RESET input sets OSTS to 04H. Therefore, when the STOP mode is released by inputting RESET, it takes 217/ fx until release.

Figure 21-1. Format of Oscillation Stabilization Time Select Register	(OSTS)	
---	--------	--

Address: FFFAH After reset: 04H R/W


*

Symbol	7	6	5	4	3	2	1	0
OSTS	0	0	0	0	0	OSTS2	OSTS1	OSTS0

OSTS2	OSTS1	OSTS0	Selection of oscillation stabilization time			
				fx = 8.38 MHz	fx = 12 MHz ^{Note}	
0	0	0	2 ¹² /fx	488 μs	341 μs	
0	0	1	2 ¹⁴ /fx	1.95 ms	1.36 ms	
0	1	0	2 ¹⁵ /fx	3.91 ms	2.73 ms	
0	1	1	2 ¹⁶ /fx	7.82 ms	5.46 ms	
1	0	0	2 ¹⁷ /fx	15.6 ms	10.9 ms	
Ot	ther than abo	ve	Setting prohibited			

Note Expanded-specification products of *µ*PD780024A, 780034A Subseries only.

Caution The wait time after the STOP mode is released does not include the time (see "a" in the illustration below) from STOP mode release to clock oscillation start. This applies regardless of whether STOP mode is released by RESET input or by interrupt request generation.

Remark fx: Main system clock oscillation frequency

21.2 Standby Function Operations

21.2.1 HALT mode

(1) HALT mode setting and operating statuses

The HALT mode is set by executing the HALT instruction. It can be set with the main system clock or the subsystem clock.

The operating statuses in the HALT mode are described below.

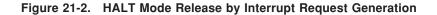
HALT Mode Setting		HALT Instruction Using Main S			n Execution When system Clock		
Item		Without Subsystem Clock ^{Note 1}	With Subsystem Clock ^{Note 2}	With Main System Clock Oscillation	With Main System Clock Oscillation Stopped		
Clock gen	erator	Both main system clock	and subsystem clock can	be oscillated. Clock sup			
CPU		Operation stops.	,		, ,		
Ports (outp	out latches)	Status before HALT mod	e setting is held.				
16-bit time counter 0	er/event	Operable			Stop		
8-bit timer/event Operab counters 50, 51		Operable		Operable when TI50, TI51 are selected as count clock.			
Watch time	er	Operable when fx/2 ⁷ is selected as count clock.	Operable		Operable when fxT is selected as count clock.		
Watchdog	timer	Operable					
Clock outp	out	Operable when fx to fx/2 ⁷ Operable is selected as output clock.			Operable when fxT is selected as output clock.		
Buzzer ou	tput	Operable	BUZ is at low level.				
A/D conve	rter	Stop					
Serial inte	rface	Operable	Operable				
External ir	nterrupt	Operable					
Bus line	AD0 to AD7	High impedance					
during A8 to A15		Status before HALT mode setting is held.					
external expansion	ASTB	Low level					
SAPANOION	$\overline{WR}, \overline{RD}$	High level					
	WAIT	High impedance					

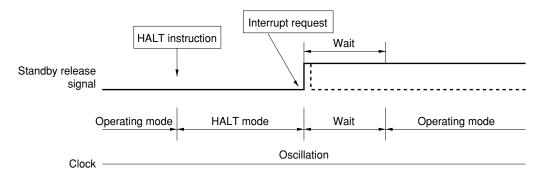
Table 21-1.	HALT	Mode	Operating	Statuses
-------------	------	------	-----------	----------

Notes 1. Including case when external clock is not supplied.

2. Including case when external clock is supplied.

*


*


(2) HALT mode release

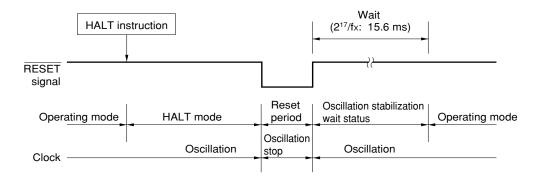
The HALT mode can be released with the following three types of sources.

(a) Release by unmasked interrupt request

When an unmasked interrupt request is generated, the HALT mode is released. If interrupt acknowledge is enabled, vectored interrupt service is carried out. If interrupt acknowledge is disabled, the next address instruction is executed.

- **Remarks 1.** The broken line indicates the case when the interrupt request which has released the standby mode is acknowledged.
 - 2. Wait times are as follows:
 - When vectored interrupt service is carried out: 8 or 9 clocks
 - · When vectored interrupt service is not carried out: 2 or 3 clocks

(b) Release by non-maskable interrupt request


When a non-maskable interrupt request is generated, the HALT mode is released and vectored interrupt service is carried out whether interrupt acknowledge is enabled or disabled.

However, a non-maskable interrupt request is not generated during subsystem clock operation.

(c) Release by RESET input

When RESET signal is input, HALT mode is released. And, as in the case with normal reset operation, a program is executed after branch to the reset vector address.

Remarks 1. fx: Main system clock oscillation frequency

2. Values in parentheses are for operation with fx = 8.38 MHz.

Release Source	MK××	PR××	IE	ISP	Operation
Maskable interrupt request	0	0	0	×	Next address instruction execution
	0	0	1	×	Interrupt service execution
	0	1	0	1	Next address instruction execution
	0	1	×	0	
	0	1	1	1	Interrupt service execution
	1	×	×	×	HALT mode hold
Non-maskable interrupt request	-	_	×	×	Interrupt service execution
RESET input	-	-	×	×	Reset processing

×: don't care

21.2.2 STOP mode

(1) STOP mode setting and operating statuses

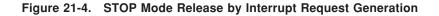
The STOP mode is set by executing the STOP instruction. It can be set only with the main system clock.

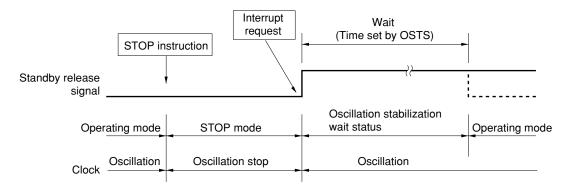
- Cautions 1. When the STOP mode is set, the X2 pin is internally connected to VDD1 via a pull-up resistor to minimize the leakage current at the crystal oscillator. Thus, do not use the STOP mode in a system where an external clock is used for the main system clock.
 - 2. Because the interrupt request signal is used to clear the standby mode, if there is an interrupt source with the interrupt request flag set and the interrupt mask flag reset, the standby mode is immediately cleared if set. Thus, the STOP mode is reset to the HALT mode immediately after execution of the STOP instruction. The operating mode is set after the wait set using the oscillation stabilization time select register (OSTS).

The operating statuses in the STOP mode are described below.

		S	STOP Mode Setting	With Subsystem Clock	Without Subsystem Clock			
	Item							
	Clock generator			Only main system clock oscillation is sto	Only main system clock oscillation is stopped.			
	CPU			Operation stops.				
	Ports (output late	che	s)	Status before STOP mode setting is held	ł.			
	16-bit timer/ever	nt co	ounter 0	Operation stops.				
	8-bit timer/event	οοι	unters 50, 51	Operable only when TI50, TI51 are selec	cted as count clock.			
	Watch timer			Operable only when fxr is selected as count clock.	Operation stops.			
	Watchdog timer			Operation stops.				
	Clock output			Operable when fxT is selected as output clock.	PCL is at low level.			
	Buzzer output			BUZ is at low level.				
	A/D converter			Operation stops.				
	Serial interface	0	ther than UART0	Operable only when externally supplied clock is specified as the serial clock.				
		U	ART0	Operation stops. (Transmit shift register 0 (TXS0), receive shift register 0 (RX0), and receive buffer register 0 (RXB0) hold the value just before the clock stopped.)				
	External interrup	t		Operable				
	Bus line during		AD0 to AD7	High impedance				
	external expansion A8 to A15 ASTB		A8 to A15	Status before STOP mode setting is held.				
			ASTB	Low level				
		[WR, RD	High level				
			WAIT	High impedance				

Table 21-3. STOP Mode Operating Statuses


*


(2) STOP mode release

The STOP mode can be released by the following two types of sources.

(a) Release by unmasked interrupt request

When an unmasked interrupt request is generated, the STOP mode is released. If interrupt acknowledge is enabled after the lapse of oscillation stabilization time, vectored interrupt service is carried out. If interrupt acknowledge is disabled, the next address instruction is executed.

Remark The broken line indicates the case when the interrupt request which has released the standby mode is acknowledged.

(b) Release by RESET input

The STOP mode is released when RESET signal is input, and after the lapse of oscillation stabilization time, reset operation is carried out.

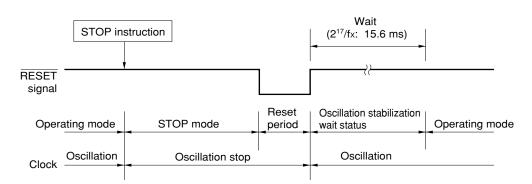


Figure 21-5. STOP Mode Release by RESET Input

Remarks 1. fx: Main system clock oscillation frequency

2. Values in parentheses are for operation with fx = 8.38 MHz.

Release Source	MK××	PR××	IE	ISP	Operation
Maskable interrupt request	0	0	0	×	Next address instruction execution
	0	0	1	×	Interrupt service execution
	0	1	0	1	Next address instruction execution
	0	1	×	0	
	0	1	1	1	Interrupt service execution
	1	×	×	×	STOP mode hold
RESET input	-	-	×	×	Reset processing

 Table 21-4.
 Operation After STOP Mode Release

×: don't care

CHAPTER 22 RESET FUNCTION

The following two operations are available to generate the reset signal.

- (1) External reset input via RESET pin
- (2) Internal reset by watchdog timer program loop time detection

External reset and internal reset have no functional differences. In both cases, program execution starts at the address at 0000H and 0001H by RESET input.

When a low level is input to the RESET pin or the watchdog timer overflows, a reset is applied and each hardware is set to the status shown in Table 22-1. Each pin has high impedance during reset input or during oscillation stabilization time just after reset release.

When a high level is input to the $\overline{\text{RESET}}$ pin, the reset is released and program execution starts after the lapse of oscillation stabilization time (2¹⁷/fx). The reset applied by watchdog timer overflow is automatically released after a reset and program execution starts after the lapse of oscillation stabilization time (2¹⁷/fx) (see **Figures 22-2** to **22-4**).

Cautions 1. For an external reset, input a low level for 10 μ s or more to the RESET pin.

- 2. During reset input, main system clock oscillation remains stopped but subsystem clock oscillation continues.
- 3. When the STOP mode is released by reset, the STOP mode contents are held during reset input. However, the port pin becomes high impedance.

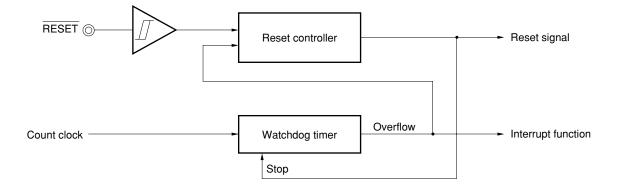
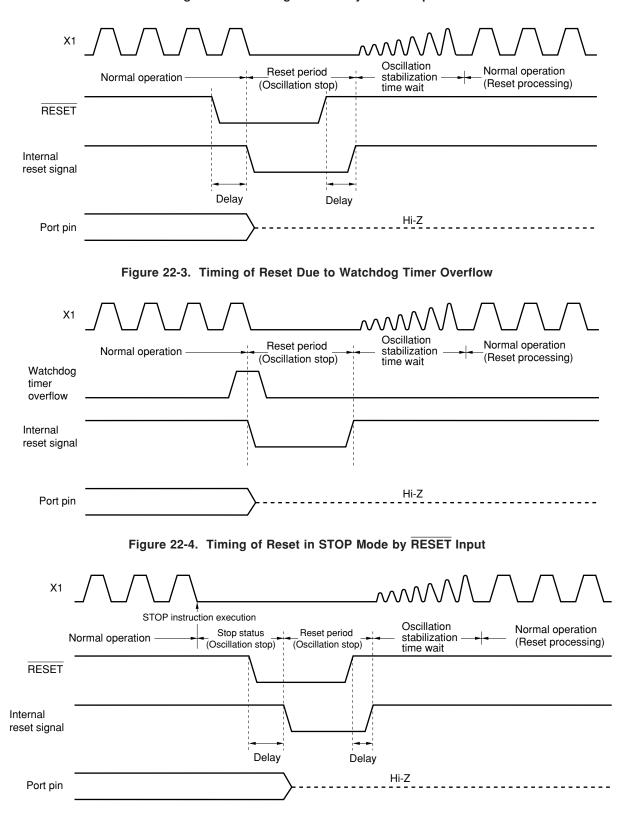



Figure 22-1. Reset Function Block Diagram

	Hardware	Status After Reset
Program counter (PC) ^{Note 1}	Contents of reset vector table (0000H, 0001H) are set.	
Stack pointer (SP)		Undefined
Program status word (PSW)		02H
RAM	Data memory	Undefined ^{Note 2}
	General-purpose register	Undefined ^{Note 2}
Port (output latch)		00H
Port mode registers 0, 2 to 7 (PM0	, PM2 to PM7)	FFH
Pull-up resistor option registers 0,	2 to 7 (PU0, PU2 to PU7)	00H
Processor clock control register (P	CC)	04H
Memory size switching register (IM	S)	CFHNote 3
Memory expansion mode register (MEM)	00H
Memory expansion wait setting reg	10H	
Oscillation stabilization time select	register (OSTS)	04H
16-bit timer/event counter 0	Timer counter 0 (TM0)	0000H
	Capture/compare registers 00, 01 (CR00, CR01)	Undefined
	Prescaler mode register 0 (PRM0)	00H
	Capture/compare control register 0 (CRC0)	00H
	Mode control register 0 (TMC0)	00H
	Output control register 0 (TOC0)	00H
8-bit timer/event counters 50, 51	Timer counters 50, 51 (TM50, TM51)	00H
	Compare registers 50, 51 (CR50, CR51)	Undefined
	Clock select registers 50, 51 (TCL50, TCL51)	00H
	Mode control registers 50, 51 (TMC50, TMC51)	00H
Watch timer	Operation mode register (WTM)	00H
Watchdog timer	Clock select register (WDCS)	00H
	Mode register (WDTM)	00H

Table 22-1. Hardware Statuses After Reset (1/2)

Notes 1. During reset input or oscillation stabilization time wait, only the PC contents among the hardware statuses become undefined. All other hardware statuses remain unchanged after reset.

- 2. When a reset is executed in the standby mode, the pre-reset status is held even after reset.
- 3. Although the initial value is CFH, use the following value to be set for each version.

μPD780021A, 780021AY, 780031A, 780031AY:	42H
μPD780022A, 780022AY, 780032A, 780032AY:	44H
μPD780023A, 780023AY, 780033A, 780033AY:	C6H
μPD780024A, 780024AY, 780034A, 780034AY:	C8H
μPD78F0034A, 78F0034B, 78F0034AY, 78F0034BY:	Value for mask ROM versions

	Hardware	Status After Reset
Clock output/buzzer output controller	Clock output select register (CKS)	00H
A/D converter	Conversion result register 0 (ADCR0)	00H
	Mode register 0 (ADM0)	00H
	Analog input channel specification register 0 (ADS0)	00H
Serial interface UART0	Asynchronous serial interface mode register 0 (ASIM0)	00H
	Asynchronous serial interface status register 0 (ASIS0)	00H
	Baud rate generator control register 0 (BRGC0)	00H
	Transmit shift register 0 (TXS0)	FFH
	Receive buffer register 0 (RXB0)	
Serial interfaces SIO30, SIO31 ^{Note 1}	Shift registers 30, 31 (SIO30, SIO31)	Undefined
	Operation mode registers 30, 31 (CSIM30, CSIM31)	00H
Serial interface IIC0Note 2	Transfer clock select register 0 (IICCL0)	00H
	Shift register 0 (IIC0)	00H
	Control register 0 (IICC0)	00H
	Status register 0 (IICS0)	00H
	Slave address register 0 (SVA0)	00H
Interrupt	Request flag registers 0L, 0H, 1L (IF0L, IF0H, IF1L)	00H
	Mask flag registers 0L, 0H, 1L (MK0L, MK0H, MK1L)	FFH
	Priority specification flag registers 0L, 0H, 1L (PR0L, PR0H, PR1L)	FFH
	External interrupt rising edge enable register (EGP)	00H
	External interrupt falling edge enable register (EGN)	00H

Table 22-1. Hardware Statuses After Reset (2/2)

Notes 1. Serial interface SIO31 is provided only in the μ PD780024A, 780034A Subseries.

2. Serial interface IIC0 is provided only in the μ PD780024AY, 780034AY Subseries.

The μ PD78F0034A, 78F0034B, 78F0034AY, and 78F0034BY are provided as the flash memory versions of the μ PD780024A, 780034A, 780024AY, 780034AY Subseries.

The μ PD78F0034A, 78F0034B, 78F0034AY, and 78F0034BY are products that incorporate flash memory in which the program can be written, erased, and rewritten while it is mounted on the board.

Writing to flash memory can be performed with the memory mounted on the target system (on board). A dedicated flash programmer is connected to the target system to perform writing.

The following can be considered as the development environment and the applications using flash memory.

- Software can be altered after the μPD78F0034A, 78F0034B, 78F0034AY, and 78F0034BY are soldermounted on the target system.
- Small scale production of various models is made easier by differentiating software.
- Data adjustment in starting mass production is made easier.

*

Table 23-1 shows the correspondence between μ PD78F0034A, 78F0034B, 78F0034AY, 78F0034BY and the mask ROM versions.

Mask ROM Version	μPD7800 23A/24A/ 33A/	31A/32A/	μPD780021A(A)/ 22A(A)/23A(A)/24A(A)/ 31A(A)/32A(A)/33A(A)/ 34A(A) Conventional Expanded-		μPD780021AY/ 22AY/23AY/24AY/ 31AY/32AY/33AY/ 34AY	μPD780021AY(A)/ 22AY(A)/23AY(A)/ 24AY(A)/31AY(A)/ 32AY(A)/33AY(A)/
	Conventional	Expanded-				34AY(A)
Flash Memory	Products	Specification	Products	Specification		
Version		Products		Products		
μPD78F0034A	\checkmark	—	-	_	_	_
μPD78F0034B	_	\checkmark	-	_	_	-
µPD78F0034B(A)	_	—	√Note	\checkmark	_	_
μPD78F0034AY	_	_	_	_	\checkmark	_
μPD78F0034BY	_	_	_	_	\checkmark	_
μPD78F0034BY(A)	_	_	_	-	_	\checkmark

Table 23-1. Correspondence Between μ PD78F0034A, 78F0034B, 78F0034AY, 78F0034BY, and Mask ROM Versions

Note The μPD78F0034B(A) and the conventional products of the μPD780021A(A), 780022A(A), 780023A(A), 780024A(A), 780031A(A), 780032A(A), 780033A(A), and 780034A(A) differ in the operating frequency. When replacing a flash memory version with a mask ROM version, note the supply voltage and operating frequency.

Remarks 1. $\sqrt{:}$ Supported, -: Not supported

- Expanded-specification products and conventional products of the μPD780024A and 780034A Subseries differ in operating frequency ratings. For details, refer to the description of electrical specifications.
- **3.** Expanded-specification products of the μ PD780024AY, 780034AY Subseries are not available. Only conventional products are available.
- A special grade product of the μPD78F0034A, 78F0034AY is not available. Only a standard grade product is available.

23.1 Differences Between μ PD78F0034A, 78F0034AY and μ PD78F0034B, 78F0034BY

Table 23-2 shows the differences between the μ PD78F0034A and μ PD78F0034B, and Table 23-3 shows differences between the μ PD78F0034AY and μ PD78F0034BY.

	Item		μPD78F0034A	μPD78F0034B
Guarant	Guaranteed operating speed 4.5 to 5.5 V operating frequency)		8.38 MHz (0.238 μs)	12 MHz (0.166 μs)
(operatir	ng frequency)	4.0 to 5.5 V	8.38 MHz (0.238 μs)	8.38 MHz (0.238 μs)
		3.0 to 5.5 V	5 MHz (0.4 μs)	8.38 MHz (0.238 μs)
		2.7 to 5.5 V	5 MHz (0.4 μs)	5 MHz (0.4 μs)
		1.8 to 5.5 V	1.25 MHz (1.6 μs)	1.25 MHz (1.6 μs)
Minimun	n instruction execution	time	Minimum instruction execution time va	ariable function incorporated
When main system clock is selected		0.238 μs/0.477 μs/0.954 μs/1.90 μs/3.81 μs (@ 8.38 MHz operation, V _{DD} = 4.0 to 5.5 V)	0.166 μs/0.333 μs/0.666 μs/1.33 μs/2.66 μs (@ 12 MHz operation, V _{DD} = 4.5 to 5.5 V)	
	When subsystem clock is selected 122 µs (32.768 kHz)			
Clock ou	ock output		 65.5 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.10 MHz, 4.19 MHz, 8.38 MHz (@ 8.38 MHz operation with main system clock) 32.768 kHz (@ 32.768 kHz operation with subsystem clock) 	 93.7 kHz, 187 kHz, 375 kHz, 750 kHz, 1.5 MHz, 3 MHz, 6 MHz, 12 MHz (@ 12 MHz operation with main system clock) 32.768 kHz (@ 32.768 kHz operation with subsystem clock)
Buzzer output		1.02 kHz, 2.05 kHz, 4.10 kHz, 8.19 kHz 1.46 kHz, 2.92 kHz, 5.85 kHz, (@ 8.38 MHz operation with main system clock) (@ 12 MHz operation with main clock)		
Commur program	nication mode of flash r ming	nemory	S-wire serial I/O: 2 channels ^{Note} UART: 1 channel Pseudo 3-wire serial I/O: 1 channel	 3-wire serial I/O: 2 channels^{Note} UART: 1 channel Pseudo 3-wire serial I/O: 1 channel
Electrical specifications, recommended soldering conditions			Refer to the description of electrical s soldering conditions.	pecifications and recommended

Table 23-2. Differences Between μ PD78F0034A and μ PD78F0034B

Note The μ PD78F0034A cannot use a handshake mode.

The μ PD78F0034B can use one channel (serial interface SIO30) as a handshake mode.

Remark The operating frequency ratings of the μ PD78F0034A and the conventional products of the mask ROM versions of the μ PD780024A, 780034A Subseries are the same. The operating frequency ratings of the μ PD78F0034B and the expanded-specification products of the mask ROM versions of the μ PD780024A, 780034A Subseries are the same.

	Item		μPD78F0034AY μPD78F0034BY			
Guarant	eed operating speed	4.5 to 5.5 V	8.38 MHz (0.238 μs)			
(operatir	(operating frequency) 4.0 to 5.5		8.38 MHz (0.238 μs)			
		3.0 to 5.5 V	5 MHz (0.4 μs)			
		2.7 to 5.5 V	5 MHz (0.4 μs)			
		1.8 to 5.5 V	1.25 MHz (1.6 μs)			
Minimun	n instruction execution t	ime	Minimum instruction execution time v	ariable function incorporated		
When main system clock is selected		0.238 μ s/0.477 μ s/0.954 μ s/1.90 μ s/3.81 μ s (@ 8.38 MHz operation, V _{DD} = 4.0 to 5.5 V)				
	When subsystem cloc	k is selected	122 μs (32.768 kHz)			
Clock ou	utput		 65.5 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.10 MHz, 4.19 MHz, 8.38 MHz (@ 8.38 MHz operation with main system clock) 32.768 kHz (@ 32.768 kHz operation with subsystem clock) 			
Buzzer o	output		1.02 kHz, 2.05 kHz, 4.10 kHz, 8.19 kHz (@ 8.38 MHz operation with main system clock)			
Communication mode of flash memory programming			S-wire serial I/O: 2 channels ^{Note} VART: 1 channel Pseudo 3-wire serial I/O: 1 channel Pseudo 3-wire serial I/O: 1 channel			
Electrical specifications, recommended soldering conditions			Refer to the description of electrical specifications and recommended soldering conditions.			

Note The μ PD78F0034AY cannot use a handshake mode.

The μ PD78F0034BY can use one channel (serial interface SIO30) as a handshake mode.

Remark The operating frequency ratings of the μ PD78F0034AY, 78F0034BY and the mask ROM versions of the μ PD780024AY, 780034AY Subseries are the same.

23.2 Differences Between μ PD78F0034B, 78F0034BY and μ PD78F0034B(A), 78F0034BY(A)

The μ PD78F0034B(A) and 78F0034BY(A) are products to which a quality assurance program more stringent than that used for the μ PD78F0034B and 78F0034BY (standard products) is applied (NEC Electronics classifies these products as "special" quality grade products).

The μ PD78F0034B, 78F0034BY and μ PD78F0034B(A), 78F0034BY(A) only differ in the quality grade; there are no differences in functions and electrical specifications.

Table 23-4	Differences Between	1/PD78F0034R	78F0034BV and	$\mu PD78F0034R(A)$	78F0034RV(A)
	Differences Detween	μ i broi 0004b,			, 101000401(A)

Item	μPD78F0034B, 78F0034BY	μPD78F0034B(A), 78F0034BY(A)
Quality grade	Standard	Special
Functions and electrical specifications	No differences.	

This chapter explains the μ PD78F0034B as the representative product of the μ PD78F0034B and 78F0034B(A), and the μ PD78F0034BY as the representative product of the μ PD78F0034BY and 78F0034BY(A).

23.3 Differences Between μ PD78F0034A, 78F0034B, 78F0034AY, 78F0034BY and Mask ROM Versions

Tables 23-5 and 23-6 show the differences between the μ PD78F0034A, 78F0034B, 78F0034AY, 78F0034BY and the mask ROM versions.

Item	μPD78F0034A, 78F0034B	Mask ROM Versions			
		µPD780034A Subseries	µPD780024A SubseriesNote		
Internal ROM structure	Flash memory	Mask ROM			
Internal ROM capacity	32 KB	μPD780031A: 8 KB μPD780032A: 16 KB μPD780033A: 24 KB μPD780034A: 32 KB	μPD780021A: 8 KB μPD780022A: 16 KB μPD780023A: 24 KB μPD780024A: 32 KB		
Internal high-speed RAM capacity	1,024 bytes	μPD780031A: 512 bytes μPD780032A: 512 bytes μPD780033A: 1,024 bytes μPD780034A: 1,024 bytes	μPD780021A: 512 bytes μPD780022A: 512 bytes μPD780023A: 1,024 bytes μPD780024A: 1,024 bytes		
Minimum instruction execution time	Minimum instruction execut	ion time variable function inco	orporated		
When main system clock is selected	 • 0.166 μs/0.333 μs/0.666 μs/1.33 μs/2.66 μs (@ 12 MHz operation, μPD78F0034 and expanded-specification products of the mask ROM versions only) • 0.238 μs/0.477 μs/0.954 μs/1.90 μs/3.81 μs (@ 8.38 MHz operation) 				
When subsystem clock is selected	1 122 μs (@32.768 kHz operation)				
Clock output	 (@ 12 MHz operation with specification products of the 65.5 kHz, 131 kHz, 262 kHz 	Hz, 375 kHz, 750 kHz, 1.5 MHz, 3 MHz, 6 MHz, 12 MHz ration with main system clock, μ PD78F0034B and expanded- ducts of the mask ROM versions only) Hz, 262 kHz, 524 kHz, 1.05 MHz, 2.10 MHz, 4.19 MHz, 8.38 MHz peration with main system clock)			
Buzzer output	clock, µPD78F0034B and versions only)	KHz, 11.7 kHz (@ 12 MHz op expanded-specification produ Hz, 8.19 kHz (@ 8.38 MHz ope	icts of the mask ROM		
A/D converter resolution	10 bits		8 bits		
Mask option specification of on-chip pull-up resistor for pins P30 to P33	Not available	Available			
IC pin	Not provided	Provided			
VPP pin	Provided	Not provided			
Electrical specifications, recommended soldering conditions	Refer to the description of e conditions.	electrical specifications and re	ecommended soldering		

Table 23-5. Differences Between µPD78F0034A, 78F0034B and Mask ROM Versions

Note The μ PD78F0034A and 78F0034B can be used as the flash memory version of the μ PD780024A Subseries.

Caution There are differences in noise immunity and noise radiation between the flash memory and mask ROM versions. When pre-producing an application set with the flash memory version and then mass producing it with the mask ROM version, be sure to conduct sufficient evaluations on the commercial samples (CS) (not engineering samples (ES)) of the mask ROM versions.

Item	μPD78F0034AY,	Mask ROM	M Versions		
	78F0034BY	µPD780034AY Subseries	µPD780024AY Subseries ^{Note}		
Internal ROM structure	Flash memory	Mask ROM			
Internal ROM capacity	32 KB	μPD780031AY: 8 KB μPD780032AY: 16 KB μPD780033AY: 24 KB μPD780034AY: 32 KB	μPD780021AY: 8 KB μPD780022AY: 16 KB μPD780023AY: 24 KB μPD780024AY: 32 KB		
Internal high-speed RAM capacity	1,024 bytes	μPD780031AY: 512 bytes μPD780032AY: 512 bytes μPD780033AY: 1,024 bytes μPD780034AY: 1,024 bytes			
Minimum instruction execution time	Minimum instruction execut	ion time variable function inco	prporated		
When main system clock is selected	0.238 μs/0.477 μs/0.954 μs/1.90 μs/3.81 μs (@8.38 MHz operation)				
When subsystem clock is selected	122 μs (@32.768 kHz opera	ation)			
Clock output	(@ 8.38 MHz operation w	Hz, 524 kHz, 1.05 MHz, 2.10 ith main system clock) z operation with subsystem c			
Buzzer output	1.02 kHz, 2.05 kHz, 4.10 kHz (@ 8.38 MHz operation with	,			
A/D converter resolution	10 bits		8 bits		
Mask option specification of on-chip pull-up resistor for pins P30 and P31	Not available	Available			
IC pin	Not provided	Provided			
VPP pin	Provided	Not provided			
Electrical specifications, recommended soldering conditions	Refer to the description of e conditions.	electrical specifications and re	commended soldering		

Table 23-6. Differences Between μ PD78F0034AY, 78F0034BY and Mask ROM Versions

Note The μ PD78F0034AY and 78F0034BY can be used as the flash memory version of the μ PD780024AY Subseries.

Caution There are differences in noise immunity and noise radiation between the flash memory and mask ROM versions. When pre-producing an application set with the flash memory version and then mass producing it with the mask ROM version, be sure to conduct sufficient evaluations on the commercial samples (CS) (not engineering samples (ES)) of the mask ROM versions.

23.4 Memory Size Switching Register

The μ PD78F0034A, 78F0034B, 78F0034AY, and 78F0034BY allow users to select the internal memory capacity using the memory size switching register (IMS) so that the same memory map as that of the mask ROM versions with a different size of internal memory capacity can be achieved.

IMS is set by an 8-bit memory manipulation instruction.

RESET input sets IMS to CFH.

Caution Be sure to set the value of the target mask ROM version to IMS as an initialization setting of the program. IMS is set to CFH by reset, so be sure to set the value of the target mask ROM version after reset.

Figure 23-1. Format of Memory Size Switching Register (IMS)

Address: FFF0H After reset: CFH R/W

Symbol	7	6	5	4	3	2	1	0	
IMS	RAM2	RAM1	RAM0	0	ROM3	ROM2	ROM1	ROM0	
	RAM2	RAM1	RAM0	In	ternal high-sp	beed RAM ca	pacity selecti	on	
	0	1	0	512 bytes					
	1	1	0	1024 bytes					
	Other than above Setting prohibited								
	ROM3	ROM2	ROM1	ROM0	Inte	ernal ROM ca	apacity select	ion	
	0	0	1	0	8 KB				
	0	1	0	0	16 KB				
	0	1	1	0	24 KB				
	1	0	0	0 32 KB					
	1	1	1	1 60 KB (setting prohibited)					
		Other than above				hibited			

The IMS settings to obtain the same memory map as mask ROM versions are shown in Table 23-7.

Table 23-7. Memory Size Switching Register Settings

Target Mask ROM Versions	IMS Setting
μPD780021A, 780031A, 780021AY, 780031AY	42H
μPD780022A, 780032A, 780022AY, 780032AY	44H
μPD780023A, 780033A, 780023AY, 780033AY	C6H
μPD780024A, 780034A, 780024AY, 780034AY	C8H

Caution When using the mask ROM versions, be sure to set the value indicated in Table 23-7 to IMS.

23.5 Flash Memory Characteristics

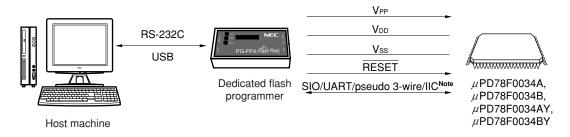
Flash memory programming is performed by connecting a dedicated flash programmer (Flashpro III (part no. FL-PR3, PG-FP3)/Flashpro IV (part no. FL-PR4, PG-FP4)) to the target system with the flash memory mounted on the target system (on-board). A flash memory writing adapter (program adapter), which is a target board used exclusively for programming, is also provided.

Remark FL-PR3, FL-PR4, and the program adapter are products made by Naito Densei Machida Mfg. Co., Ltd. (TEL +81-45-475-4191).

Programming using flash memory has the following advantages.

- Software can be modified after the microcontroller is solder-mounted on the target system.
- · Distinguishing software facilities low-quantity, varied model production
- · Easy data adjustment when starting mass production

23.5.1 Programming environment


The following shows the environment required for µPD78F0034A, 78F0034B, 78F0034AY, and 78F0034BY flash memory programming.

When Flashpro III or Flashpro IV is used as a dedicated flash programmer, a host machine is required to control the dedicated flash programmer. Communication between the host machine and flash programmer is performed via RS-232C/USB (Rev. 1.1).

For details, refer to the manuals of Flashpro III/Flashpro IV.

Remark USB is supported by Flashpro IV only.

Note IIC is supported by the μ PD78F0034AY, 78F0034BY only.

23.5.2 Communication mode

Use the communication mode shown in Table 23-8 to perform communication between the dedicated flash programmer and the μ PD78F0034A, 78F0034B, 78F0034AY, and 78F0034BY.

Table 23-8. Communication Mode List (1/2)

(1) µPD78F0034A, 78F0034B

Communication		Standard	d (TYPE) Sett	ing ^{Note 1}		Pins Used	Number
Mode	Port (COMM PORT)	Speed (SIO CLOCK)	On Target (CPU CLOCK)	Frequency (Flashpro Clock)	Multiply Rate (Multiple Rate)		of V _{PP} Pulses
3-wire serial I/O (SIO30)	SIO-ch0 (SIO ch-0)	2.4 kHz to 625 kHz ^{Note 2} (100 Hz to 1.25 MHz) ^{Note 2}	Optional	1 to 10 MHz ^{Note 2}	1.0	SI30/P20 SO30/P21 SCK30/P22	0
3-wire serial I/O (SIO31)	SIO-ch1 (SIO ch-1)					SI31/P34 SO31/P35 SCK31/P36	1
3-wire serial I/O (SIO30) with handshake Note 3	SIO-H/S (SIO ch-3 + handshake)					SI30/P20 SO30/P21 SCK30/P22 HS/P25	3
UART (UART0)	UART-ch0 (UART ch-0)	4800 to 76800 Baud ^{Notes 2, 4} (4800 to 76800 bps) ^{Notes 2, 4}				RxD0/P23 TxD0/P24	8
Pseudo 3-wire serial I/O	Port-ch0 (Port A)	100 Hz to 1500 Hz ^{Note 2} (100 Hz to 1.25 MHz) ^{Note 2}				P70/TI00/TO0 (serial data input) P71/TI01 (serial data output) P72/TI50/TO50 (serial clock input)	12

Notes 1. Selection items for Standard settings on Flashpro IV (TYPE settings on Flashpro III).

- **2.** The possible setting range differs depending on the voltage. For details, refer to the description of electrical specifications.
- **3.** *μ*PD78F0034B only
- 4. Because factors other than the baud rate error, such as the signal waveform slew, also affect UART communication, thoroughly evaluate the slew as well as the baud rate error.

Remark Items enclosed in parentheses in the setting item column are the set value and set item of Flashpro III when they differ from those of Flashpro IV.

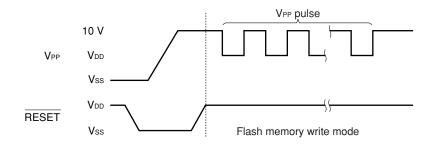
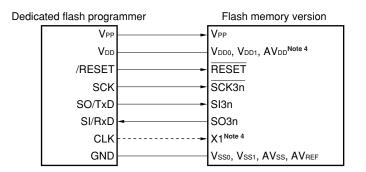
Table 23-8. Communication Mode List (2/2)

(2) µPD78F0034AY, 78F0034BY

Communication		Standard	d (TYPE) Sett	ing ^{Note 1}		Pins Used	Number
Mode	Port (COMM PORT)	Speed (SIO CLOCK)	On Target (CPU CLOCK)	Frequency (Flashpro Clock)	Multiply Rate (Multiple Rate)		of V _{PP} Pulses
3-wire serial I/O (SIO30)	SIO-ch0 (SIO ch-0)	2.4 kHz to 625 kHz ^{Note 2} (100 Hz to 1.25 MHz) ^{Note 2}		1 to 10 MHz ^{Note 2}	1.0	SI30/P20 SO30/P21 SCK30/P22	0
3-wire serial I/O (SIO30) with handshake Note 3	SIO-H/S (SIO ch-3 + handshake)					SI30/P20 SO30/P21 SCK30/P22 HS/P25	3
l ² C bus (IIC0)	IIC-ch0 (I ² C ch-0)	10 k to 100 k Band ^{Note 2} (50 kHz) ^{Note 2}	-			SDA0/P32 SCL0/P33	4
UART (UART0)	UART-ch0 (UART ch-0)	4800 to 76800 Baud ^{Notes 2, 4} (4800 to 76800 bps) ^{Notes 2, 4}				RxD0/P23 TxD0/P24	8
Pseudo 3-wire serial I/O	Port-ch0 (Port A)	100 Hz to 1500 Hz ^{Note 2} (100 Hz to 1.25 MHz) ^{Note 2}				P70/TI00/TO0 (serial data input) P71/TI01 (serial data output) P72/TI50/TO50 (serial clock input)	12

Notes 1. Selection items for Standard settings on Flashpro IV (TYPE settings on Flashpro III).

- 2. The possible setting range differs depending on the voltage. For details, refer to the description of electrical specifications.
- **3.** *μ*PD78F0034BY only
- 4. Because factors other than the baud rate error, such as the signal waveform slew, also affect UART communication, thoroughly evaluate the slew as well as the baud rate error.
- **Remark** Items enclosed in parentheses in the setting item column are the set value and set item of Flashpro III when they differ from those of Flashpro IV.

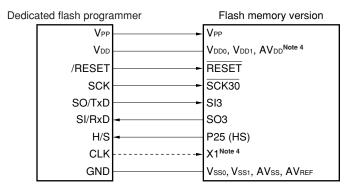
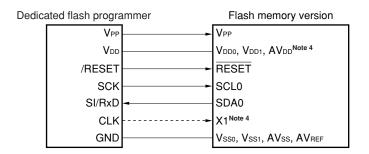
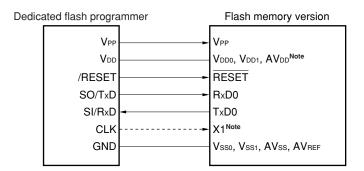

Figure 23-3. Communication Mode Selection Format

Figure 23-4. Example of Connection with Dedicated Flash Programmer (1/2)



(a) 3-wire serial I/O (SIO3n^{Note 1})

(b) 3-wire serial I/O (SIO30) with handshake^{Note 2}


(c) I²C bus (IIC0)Note 3

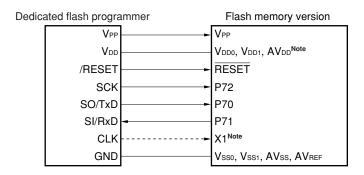

- **Notes 1.** n = 0, 1: µPD78F0034A, 78F0034B
 - n = 0: μPD78F0034AY, 78F0034BY
 - **2.** μPD78F0034B, 78F0034BY only
 - **3.** μPD78F0034AY, 78F0034BY only
 - 4. The VDD0, VDD1, AVDD, and X1 pins can be supplied on board. In this case, these pins do not need to be connected to the dedicated flash programmer, but VDD voltage must be supplied to these pins (except the X1 pin) before programming is started.

Figure 23-4. Example of Connection with Dedicated Flash Programmer (2/2)

(d) UART (UART0)

(e) Pseudo 3-wire serial I/O

Note The VDDD, VDD1, AVDD, and X1 pins can be supplied on board. In this case, these pins do not need to be connected to the dedicated flash programmer, but VDD voltage must be supplied to these pins (except the X1 pin) before programming is started.

If Flashpro III/Flashpro IV is used as the dedicated flash programmer, the following signals are generated for the μ PD78F0034A, 78F0034B, 78F0034AY, and 78F0034BY. For details, refer to the manual of Flashpro III/Flashpro IV.

Signal Name	I/O	Pin Function	Pin Name	SIO30	SIO31 Note 1	SIO30 (HS) Note 2	UART0	IIC0 Note 3	Pseudo 3-wire
Vpp	Output	Write voltage	Vpp	0	0		0	0	0
Vdd	I/O	VDD voltage generation/voltage monitoring	Vddo, Vdd1, AVdd	Note 4	Note 4	Note 4	Note 4	Note 4	Note 4
GND	_	Ground	VSS0, VSS1, AVSS, AVREF	0	0	0	0	0	0
CLK	Output	Clock output	X1	0	0	0	0	0	0
/RESET	Output	Reset signal	RESET	0	0	0	0	0	0
SI/RxD	Input	Reception signal	SO30/SO31 ^{Note 1} TxD0/SDA0 ^{Note 3} /P71	0	0	0	0	0	O
SO/TxD	Output	Transmission signal	SI30/SI31 ^{Note 1} /RxD0/ P70	0	0	0	0	×	0
SCK	Output	Transfer clock	SCK30/SCK31 Note 1/ SCL0 ^{Note 3} /P72	0	0	0	×	0	O
H/S	Input	Handshake signal	P25 (HS) ^{Note 2}	×	×	0	×	×	×

Table 23-9. Pin Connection List

Notes 1. *μ*PD78F0034A, 78F0034B only

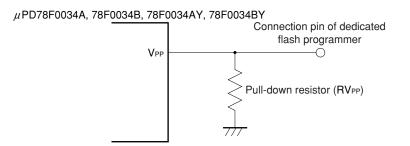
- **2.** μPD78F0034B, 78F0034BY only
- **3.** μPD78F0034AY, 78F0034BY only
- 4. VDD voltage must be supplied before programming is started.

Remark \bigcirc : Pin must be connected.

- \bigcirc : If the signal is supplied on the target board, pin does not need to be connected.
- \times : Pin does not need to be connected.

23.5.3 On-board pin processing

When performing programming on the target system, provide a connector on the target system to connect the dedicated flash programmer.


An on-board function that allows switching between normal operation mode and flash memory programming mode may be required in some cases.

<VPP pin>

In normal operation mode, input 0 V to the VPP pin. In flash memory programming mode, a write voltage of 10.0 V (TYP.) is supplied to the VPP pin, so perform the following.

- (1) Connect a pull-down resistor (RV_{PP} = 10 k Ω) to the V_{PP} pin.
- (2) Use the jumper on the board to switch the VPP pin input to either the programmer or directly to GND.

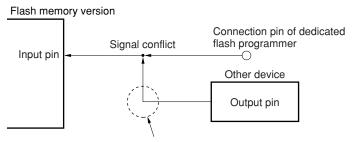
A VPP pin connection example is shown below.

<Serial interface pin>

The following shows the pins used by the serial interface.

Serial Interface	Pins Used				
3-wire serial I/O (SIO30)	SI30/P20, SO30/P21, SCK30/P22				
3-wire serial I/O (SIO31)Note 1	SI31/P34, SO31/P35, SCK31/P36				
3-wire serial I/O (SIO30) with handshake ^{Note 2}	SI30/P20, SO30/P21, SCK30/P22, HS/P25				
I ² C bus (IIC0) ^{Note 3}	SDA0/P32, SCL0/P33				
UART (UART0)	RxD0/P23, TxD0/P24				
Pseudo 3-wire serial I/O	P70/TI00/TO0 (serial data input), P71/TI01 (serial data output), P72/TI50/TO50 (serial clock input)				

Notes 1. *µ*PD78F0034A, 78F0034B only

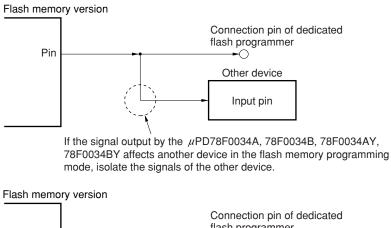

- 2. µPD78F0034B, 78F0034BY only
- **3.** *μ*PD78F0034AY, 78F0034BY only

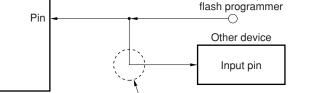
When connecting the dedicated flash programmer to a serial interface pin that is connected to another device on-board, signal conflict or abnormal operation of the other device may occur. Care must therefore be taken with such connections.

(1) Signal conflict

If the dedicated flash programmer (output) is connected to a serial interface pin (input) that is connected to another device (output), a signal conflict occurs. To prevent this, isolate the connection with the other device or set the other device to the output high impedance status.

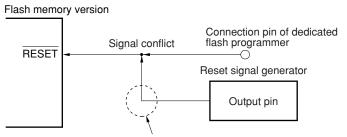
Figure 23-6. Signal Conflict (Input Pin of Serial Interface)




In the flash memory programming mode, the signal output by another device and the signal sent by the dedicated flash programmer conflict, therefore, isolate the signal of the other device.

(2) Abnormal operation of other device

If the dedicated flash programmer (output or input) is connected to a serial interface pin (input or output) that is connected to another device (input), a signal is output to the device, which may cause an abnormal operation. To prevent this abnormal operation, isolate the connection with the other device or set so that the input signals to the other device are ignored.


If the signal output by the dedicated flash programmer affects another device in the flash memory programming mode, isolate the signals of the other device.

<RESET pin>

If the reset signal of the dedicated flash programmer is connected to the RESET pin connected to the reset signal generator on-board, a signal conflict occurs. To prevent this, isolate the connection with the reset signal generator.

If the reset signal is input from the user system in the flash memory programming mode, a normal programming operation cannot be performed. Therefore, do not input reset signals from other than the dedicated flash programmer.

The signal output by the reset signal generator and the signal output from the dedicated flash programmer conflict in the flash memory programming mode, so isolate the signal of the reset signal generator.

<Port pins>

When the μ PD78F0034A, 78F0034B, 78F0034AY, and 78F0034BY enter the flash memory programming mode, all the pins other than those that communicate in flash memory programming are in the same status as immediately after reset.

If the external device does not recognize initial statuses such as the output high impedance status, therefore, connect the external device to V_{DD0} or V_{SS0} via a resistor.

<Oscillator>

When using the on-board clock, connect X1, X2, XT1, and XT2 as required in the normal operation mode. When using the clock output of the flash programmer, connect it directly to X1, disconnecting the main oscillator on-board, and leave the X2 pin open. The subsystem clock conforms to the normal operation mode.

<Power supply>

To use the power output from the flash programmer, connect the V_{DD0} and V_{DD1} pins to V_{DD} of the flash programmer, and the V_{SS0} and V_{SS1} pins to GND of the flash programmer.

To use the on-board power supply, make connections that accord with the normal operation mode. However, because the voltage is monitored by the flash programmer, be sure to connect VDD of the flash programmer. Supply the same power as in the normal operation mode to the other power supply pins (AVDD, AVREF, and AVss).

23.5.4 Connection on adapter for flash memory writing

Examples of the recommended connection when using the adapter for flash memory writing are shown below.

Figure 23-9. Example of Wiring Adapter for Flash Memory Writing in 3-Wire Serial I/O (SIO30) Mode (1/2)

(1) 64-pin plastic SDIP (19.05 mm (750))

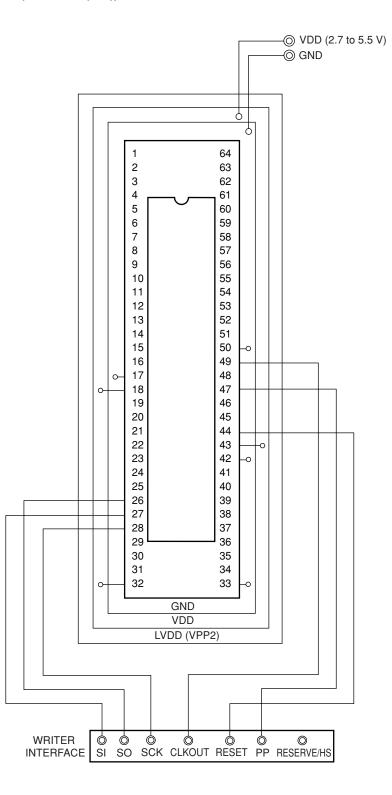
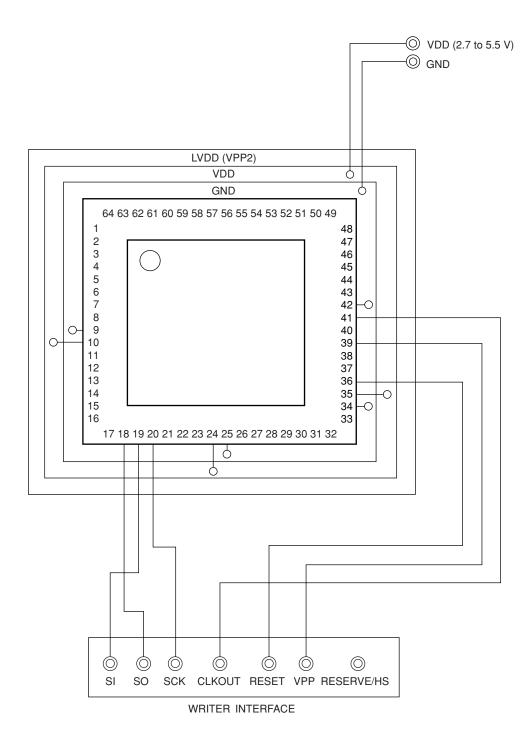



Figure 23-9. Example of Wiring Adapter for Flash Memory Writing in 3-Wire Serial I/O (SIO30) Mode (2/2)

(2) 64-pin plastic QFP (14 \times 14), 64-pin plastic LQFP (14 \times 14), 64-pin plastic TQFP (12 \times 12), 64-pin plastic LQFP (10 \times 10)

Figure 23-10. Example of Wiring Adapter for Flash Memory Writing in 3-Wire Serial I/O (SIO31) Mode (μPD78F0034A, 78F0034B only) (1/2)

(1) 64-pin plastic SDIP (19.05 mm (750))

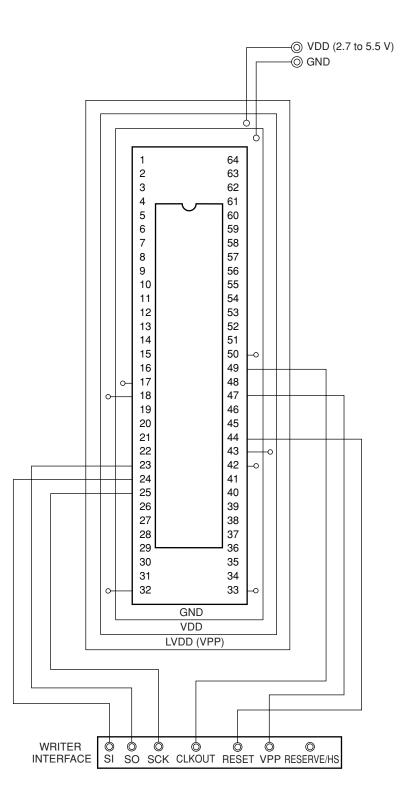
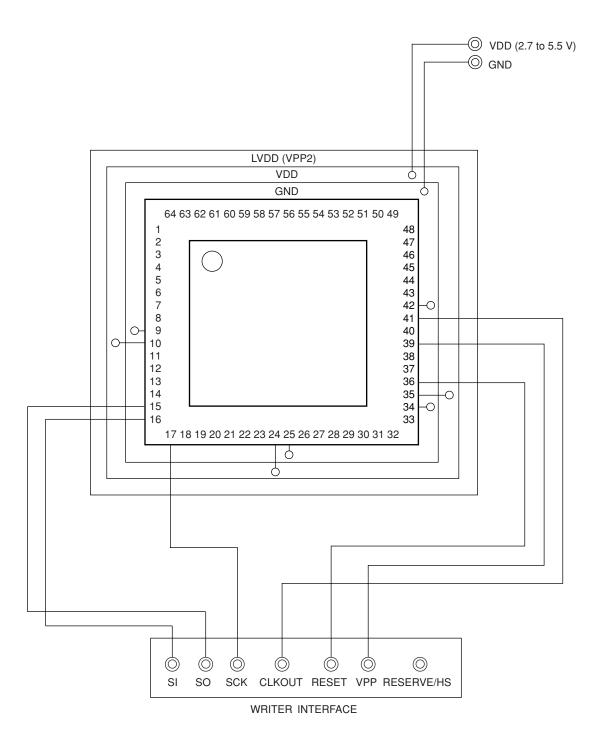



Figure 23-10. Example of Wiring Adapter for Flash Memory Writing in 3-Wire Serial I/O (SIO31) Mode (μPD78F0034A, 78F0034B only) (2/2)

(2) 64-pin plastic QFP (14 \times 14), 64-pin plastic LQFP (14 \times 14), 64-pin plastic TQFP (12 \times 12), 64-pin plastic LQFP (10 \times 10)

Figure 23-11. Example of Wiring Adapter for Flash Memory Writing in 3-Wire Serial I/O (SIO30 + HS) Mode (μPD78F0034B, 78F0034BY only) (1/2)

(1) 64-pin plastic SDIP (19.05 mm (750))

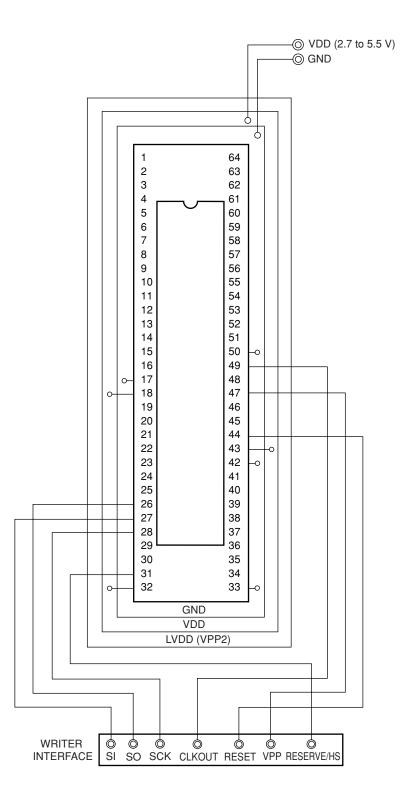
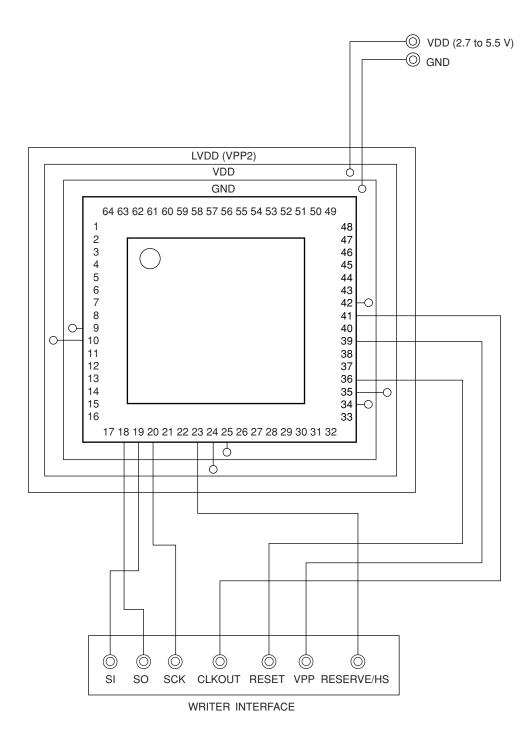



Figure 23-11. Example of Wiring Adapter for Flash Memory Writing in 3-Wire Serial I/O (SIO30 + HS) Mode (μPD78F0034B, 78F0034BY only) (2/2)

(2) 64-pin plastic QFP (14 \times 14), 64-pin plastic LQFP (14 \times 14), 64-pin plastic TQFP (12 \times 12), 64-pin plastic LQFP (10 \times 10)

Figure 23-12. Example of Wiring Adapter for Flash Memory Writing in I²C Bus (IIC0) Mode (µPD78F0034AY, 78F0034BY only) (1/2)

(1) 64-pin plastic SDIP (19.05 mm (750))

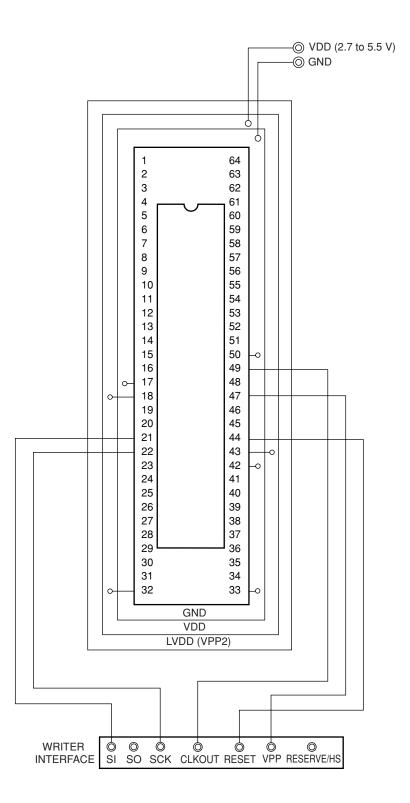


Figure 23-12. Example of Wiring Adapter for Flash Memory Writing in I²C Bus (IIC0) Mode (µPD78F0034AY, 78F0034BY only) (2/2)

(2) 64-pin plastic QFP (14 \times 14), 64-pin plastic LQFP (14 \times 14), 64-pin plastic TQFP (12 \times 12), 64-pin plastic LQFP (10 \times 10)

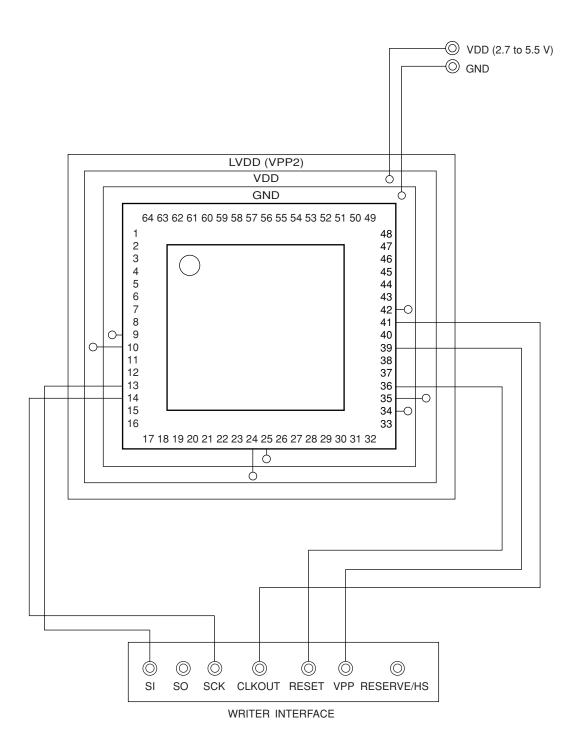


Figure 23-13. Example of Wiring Adapter for Flash Memory Writing in UART (UART0) Mode (1/2)

(1) 64-pin plastic SDIP (19.05 mm (750))

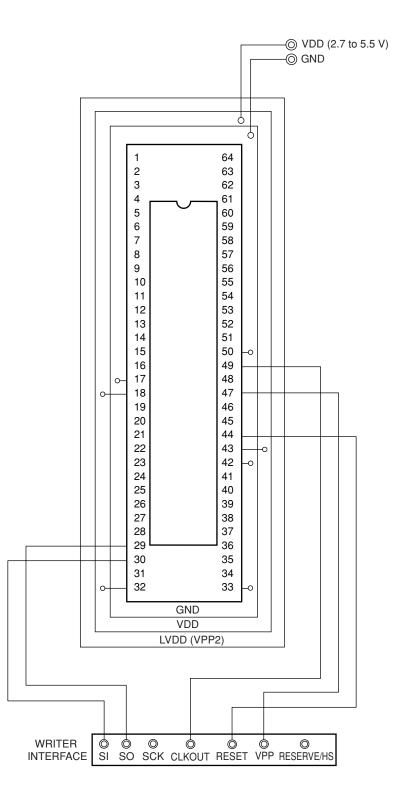
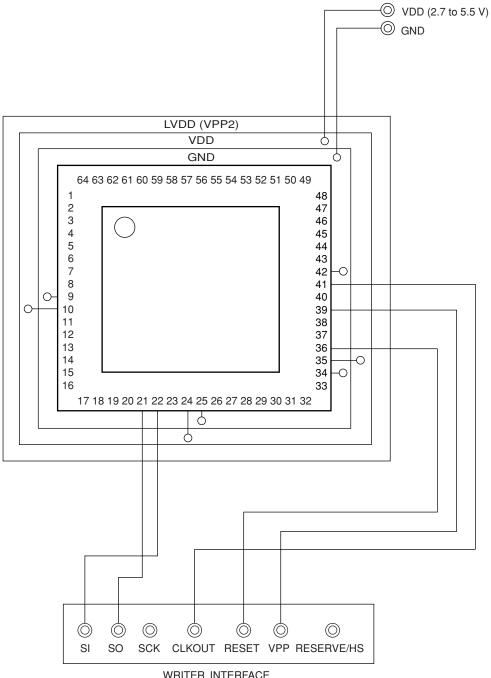



Figure 23-13. Example of Wiring Adapter for Flash Memory Writing in UART (UART0) Mode (2/2)

(2) 64-pin plastic QFP (14 \times 14), 64-pin plastic LQFP (14 \times 14), 64-pin plastic TQFP (12 \times 12), 64-pin plastic LQFP (10 \times 10)

Figure 23-14. Example of Wiring Adapter for Flash Memory Writing in Pseudo 3-Wire Serial I/O Mode (1/2)

(1) 64-pin plastic SDIP (19.05 mm (750))

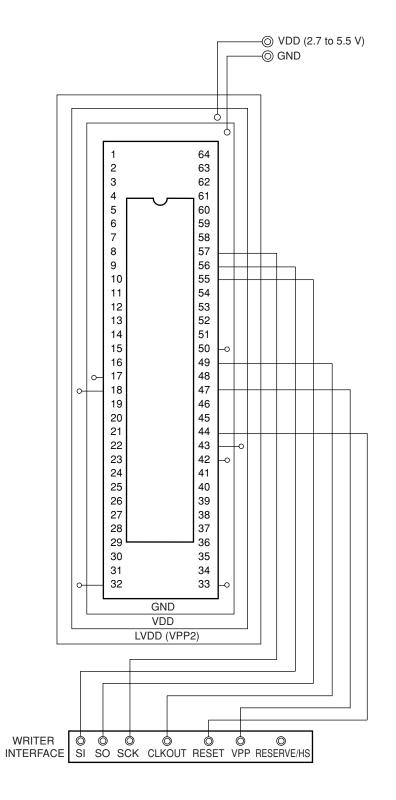
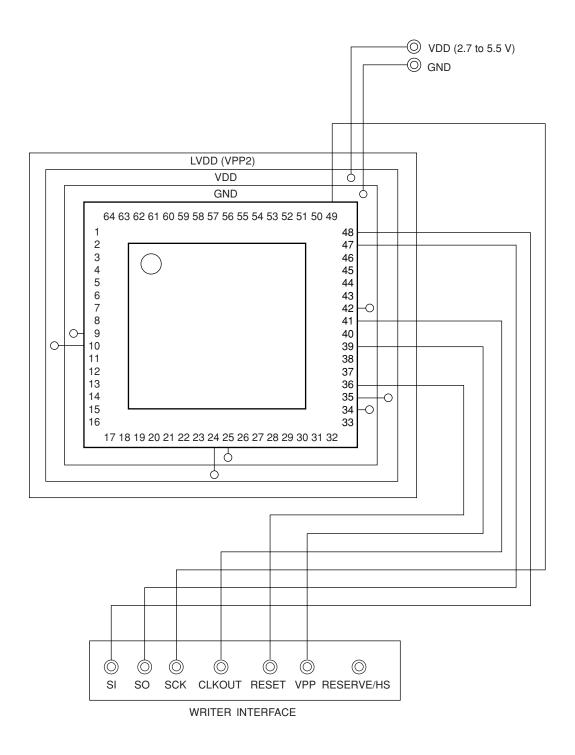



Figure 23-14. Example of Wiring Adapter for Flash Memory Writing in Pseudo 3-Wire Serial I/O Mode (2/2)

(2) 64-pin plastic QFP (14 \times 14), 64-pin plastic LQFP (14 \times 14), 64-pin plastic TQFP (12 \times 12), 64-pin plastic LQFP (10 \times 10)

CHAPTER 24 INSTRUCTION SET

This chapter lists each instruction set of the μ PD780024A, 780034A, 780024AY, 780034AY Subseries in table form. For details of its operation and operation code, refer to the separate document **78K/0 Series Instructions User's Manual (U12326E)**.

24.1 Conventions

24.1.1 Operand identifiers and specification methods

Operands are written in "Operand" column of each instruction in accordance with the specification method of the instruction operand identifier (refer to the assembler specifications for detail). When there are two or more methods, select one of them. Alphabetic letters in capitals and symbols, #, !, \$, and [] are key words and must be written as they are. Each symbol has the following meaning.

- #: Immediate data specification
- !: Absolute address specification
- \$: Relative address specification
- []: Indirect address specification

In the case of immediate data, describe an appropriate numeric value or a label. When using a label, be sure to write the #, !, \$, and [] symbols.

For operand register identifiers, r and rp, either function names (X, A, C, etc.) or absolute names (names in parentheses in the table below, R0, R1, R2, etc.) can be used for specification.

Identifier	Specification Method
r	X (R0), A (R1), C (R2), B (R3), E (R4), D (R5), L (R6), H (R7)
rp	AX (RP0), BC (RP1), DE (RP2), HL (RP3)
sfr	Special function register symbol ^{Note}
sfrp	Special function register symbol (16-bit manipulatable register even addresses only)Note
saddr	FE20H to FF1FH Immediate data or labels
saddrp	FE20H to FF1FH Immediate data or labels (even address only)
addr16	0000H to FFFFH Immediate data or labels
	(only even addresses for 16-bit data transfer instructions)
addr11	0800H to 0FFFH Immediate data or labels
addr5	0040H to 007FH Immediate data or labels (even address only)
word	16-bit immediate data or label
byte	8-bit immediate data or label
bit	3-bit immediate data or label
RBn	RB0 to RB3

Table 24-1. Operand Identifiers and Specification Methods

Note Addresses from FFD0H to FFDFH cannot be accessed with these operands.

Remark For special function register symbols, see Table 5-5 Special Function Register List.

24.1.2 Description of "operation" column

- A: A register; 8-bit accumulator
- X: X register
- B: B register
- C: C register
- D: D register
- E: E register
- H: H register
- L: L register
- AX: AX register pair; 16-bit accumulator
- BC: BC register pair
- DE: DE register pair
- HL: HL register pair
- PC: Program counter
- SP: Stack pointer
- PSW: Program status word
- CY: Carry flag
- AC: Auxiliary carry flag
- Z: Zero flag
- RBS: Register bank select flag
- IE: Interrupt request enable flag
- NMIS: Non-maskable interrupt servicing flag
- (): Memory contents indicated by address or register contents in parentheses
- XH, XL: Higher 8 bits and lower 8 bits of 16-bit register
- $_{\wedge}$: Logical product (AND)
- V: Logical sum (OR)
- \forall : Exclusive logical sum (exclusive OR)
- ----- : Inverted data
- addr16: 16-bit immediate data or label
- jdisp8: Signed 8-bit data (displacement value)

24.1.3 Description of "flag operation" column

- (Blank): Not affected
- 0: Cleared to 0
- 1: Set to 1
- ×: Set/cleared according to the result
- R: Previously saved value is restored

24.2 Operation List

Instruction	Mnemonic	Operands	Byte	С	lock	Operation		Fla	.g
Group				Note 1	Note 2		Z	AC	CY
8-bit data	MOV	r, #byte	2	4	_	r ← byte			
transfer		saddr, #byte	3	6	7	$(saddr) \leftarrow byte$			
		sfr, #byte	3	-	7	$sfr \leftarrow byte$			
		A, r Note 3	1	2	-	$A \leftarrow r$			
		r, A Note 3	1	2	-	$r \leftarrow A$			
		A, saddr	2	4	5	$A \leftarrow (saddr)$			
		saddr, A	2	4	5	$(saddr) \leftarrow A$			
		A, sfr	2	_	5	$A \leftarrow sfr$			
		sfr, A	2	_	5	$sfr \leftarrow A$			
		A, !addr16	3	8	9 + n	$A \leftarrow (addr16)$			
		!addr16, A	3	8	9 + m	$(addr16) \leftarrow A$			
		PSW, #byte	3	_	7	$PSW \leftarrow byte$	×	×	×
		A, PSW	2	_	5	$A \leftarrow PSW$			
		PSW, A	2	-	5	$PSW \gets A$	×	×	×
		A, [DE]	1	4	5 + n	$A \leftarrow (DE)$			
		[DE], A	1	4	5 + m	$(DE) \leftarrow A$			
		A, [HL]	1	4	5 + n	$A \leftarrow (HL)$			
		[HL], A	1	4	5 + m	$(HL) \leftarrow A$			
		A, [HL + byte]	2	8	9 + n	$A \leftarrow (HL + byte)$			
		[HL + byte], A	2	8	9 + m	(HL + byte) ← A			
		A, [HL + B]	1	6	7 + n	$A \leftarrow (HL + B)$			
		[HL + B], A	1	6	7 + m	$(HL + B) \leftarrow A$			
		A, [HL + C]	1	6	7 + n	$A \leftarrow (HL + C)$			
		[HL + C], A	1	6	7 + m	$(HL + C) \leftarrow A$			
	ХСН	A, r Note 3	1	2	-	$A \leftrightarrow r$			
		A, saddr	2	4	6	$A \leftrightarrow (saddr)$			
		A, sfr	2	_	6	$A \leftrightarrow (sfr)$			
		A, !addr16	3	8	10 + n + m	$A \leftrightarrow (addr16)$			
		A, [DE]	1	4	6 + n + m	$A \leftrightarrow (DE)$			
		A, [HL]	1	4	6 + n + m	$A \leftrightarrow (HL)$			
		A, [HL + byte]	2	8	10 + n + m	$A \leftrightarrow (HL + byte)$			
		A, [HL + B]	2	8	10 + n + m	$A \leftrightarrow (HL + B)$			
		A, [HL + C]	2	8	10 + n + m	$A \leftrightarrow (HL + C)$			

Notes 1. When the internal high-speed RAM area is accessed or instruction with no data access

- 2. When an area except the internal high-speed RAM area is accessed
- **3.** Except r = A
- **Remarks 1.** One instruction clock cycle is one cycle of the CPU clock (fcPU) selected by the processor clock control register (PCC).
 - 2. This clock cycle applies to internal ROM program.
 - 3. n is the number of waits when external memory expansion area is read from.
 - 4. m is the number of waits when external memory expansion area is written to.

Instruction	Mnemonic	Operands	Byte	C	lock	Operation		Fla	g
Group				Note 1	Note 2		Z	AC	CY
16-bit	MOVW	rp, #word	3	6	_	$rp \leftarrow word$			
data		saddrp, #word	4	8	10	$(saddrp) \leftarrow word$			
transfer		sfrp, #word	4	-	10	$sfrp \leftarrow word$			
		AX, saddrp	2	6	8	$AX \leftarrow (saddrp)$			
		saddrp, AX	2	6	8	$(saddrp) \leftarrow AX$			
		AX, sfrp	2	-	8	$AX \leftarrow sfrp$			
		sfrp, AX	2	-	8	$sfrp \leftarrow AX$			
		AX, rp Note 3	1	4	_	$AX \gets rp$			
		rp, AX Note 3	1	4	-	$rp \leftarrow AX$			
		AX, !addr16	3	10	12 + 2n	$AX \leftarrow (addr16)$			
		!addr16, AX	3	10	12 + 2m	$(addr16) \leftarrow AX$			
	XCHW	AX, rp Note 3	1	4	-	$AX \leftrightarrow rp$			
8-bit	ADD	A, #byte	2	4	-	A, CY \leftarrow A + byte	×	×	×
operation		saddr, #byte	3	6	8	(saddr), CY \leftarrow (saddr) + byte	×	×	×
		A, r Note 4	2	4	-	A, CY \leftarrow A + r	×	×	×
		r, A	2	4	-	$r,CY\leftarrowr+A$	×	×	×
		A, saddr	2	4	5	A, CY \leftarrow A + (saddr)	×	×	×
		A, !addr16	3	8	9 + n	A, CY \leftarrow A + (addr16)	×	×	×
		A, [HL]	1	4	5 + n	A, CY \leftarrow A + (HL)	×	×	×
		A, [HL + byte]	2	8	9 + n	A, CY \leftarrow A + (HL + byte)	×	×	×
		A, [HL + B]	2	8	9 + n	A, CY \leftarrow A + (HL + B)	×	×	×
		A, [HL + C]	2	8	9 + n	$A,CY \leftarrow A + (HL + C)$	×	×	×
	ADDC	A, #byte	2	4	-	A, $CY \leftarrow A + byte + CY$	×	×	×
		saddr, #byte	3	6	8	(saddr), $CY \leftarrow (saddr) + byte + CY$	×	×	×
		A, r Note 4	2	4	-	$A,CY \leftarrow A + r + CY$	×	Х	×
		r, A	2	4	-	$r,CY \gets r + A + CY$	×	×	×
		A, saddr	2	4	5	A, $CY \leftarrow A + (saddr) + CY$	×	×	×
		A, !addr16	3	8	9 + n	A, CY \leftarrow A + (addr16) + CY	×	×	×
		A, [HL]	1	4	5 + n	$A,CY\leftarrowA+(HL)+CY$	×	×	×
		A, [HL + byte]	2	8	9 + n	A, CY \leftarrow A + (HL + byte) + CY	×	×	×
		A, [HL + B]	2	8	9 + n	$A,CY \leftarrow A + (HL + B) + CY$	×	×	×
		A, [HL + C]	2	8	9 + n	A, $CY \leftarrow A + (HL + C) + CY$	×	×	×

2. When an area except the internal high-speed RAM area is accessed

3. Only when rp = BC, DE or HL

4. Except r = A

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the processor clock control register (PCC).

2. This clock cycle applies to internal ROM program.

3. n is the number of waits when external memory expansion area is read from.

4. m is the number of waits when external memory expansion area is written to.

Instruction	Mnemonic	Operands	Byte	C	lock	Operation		Flag	g
Group				Note 1	Note 2	-	Z	AC	CY
8-bit	SUB	A, #byte	2	4	-	A, CY \leftarrow A – byte	×	×	×
operation		saddr, #byte	3	6	8	(saddr), CY \leftarrow (saddr) – byte	×	×	×
		A, r No	te 3 2	4	-	A, $CY \leftarrow A - r$	×	×	×
		r, A	2	4	_	$r, CY \leftarrow r - A$	×	×	×
		A, saddr	2	4	5	A, CY \leftarrow A – (saddr)	×	×	×
		A, !addr16	3	8	9 + n	A, CY \leftarrow A – (addr16)	×	×	×
		A, [HL]	1	4	5 + n	A, CY \leftarrow A – (HL)	×	×	×
		A, [HL + byte]	2	8	9 + n	A, CY \leftarrow A – (HL + byte)	×	×	×
		A, [HL + B]	2	8	9 + n	$A,CY \leftarrow A - (HL + B)$	×	×	×
		A, [HL + C]	2	8	9 + n	$A,CY \leftarrow A - (HL + C)$	×	×	×
	SUBC	A, #byte	2	4	-	A, $CY \leftarrow A - byte - CY$	×	×	×
		saddr, #byte	3	6	8	(saddr), $CY \leftarrow (saddr) - byte - CY$	×	×	×
	A, r No	te 3 2	4	-	$A,CY\leftarrowA-r-CY$	×	×	×	
		r, A	2	4	-	$r,CY\leftarrowr-A-CY$	×	×	×
		A, saddr	2	4	5	A, $CY \leftarrow A - (saddr) - CY$	×	×	×
		A, !addr16	3	8	9 + n	A, $CY \leftarrow A - (addr16) - CY$	×	×	×
		A, [HL]	1	4	5 + n	$A,CY \leftarrow A - (HL) - CY$	×	×	×
		A, [HL + byte]	2	8	9 + n	A, $CY \leftarrow A - (HL + byte) - CY$	×	×	×
		A, [HL + B]	2	8	9 + n	$A,CY \leftarrow A - (HL + B) - CY$	×	×	×
		A, [HL + C]	2	8	9 + n	$A,CY \leftarrow A - (HL + C) - CY$	×	×	×
	AND	A, #byte	2	4	-	$A \leftarrow A \land byte$	×		
		saddr, #byte	3	6	8	$(saddr) \leftarrow (saddr) \land byte$	×		
		A, r No	te 3 2	4	-	$A \leftarrow A \wedge r$	×		
		r, A	2	4	—	$r \leftarrow r \land A$	×		
		A, saddr	2	4	5	$A \leftarrow A \land (saddr)$	×		
		A, !addr16	3	8	9 + n	$A \leftarrow A \land (addr16)$	×		
		A, [HL]	1	4	5 + n	$A \leftarrow A \land (HL)$	×		
		A, [HL + byte]	2	8	9 + n	$A \leftarrow A \land (HL + byte)$	×		
		A, [HL + B]	2	8	9 + n	$A \leftarrow A \land (HL + B)$	×		
		A, [HL + C]	2	8	9 + n	$A \leftarrow A \land (HL + C)$	×		

- 2. When an area except the internal high-speed RAM area is accessed
- **3.** Except r = A

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the processor clock control register (PCC).

- 2. This clock cycle applies to internal ROM program.
- 3. n is the number of waits when external memory expansion area is read from.

Instruction	Mnemonic	Operands	Byte	C	lock	Operation		Fla	ıg
Group				Note 1	Note 2		Z	AC	CCY
8-bit	OR	A, #byte	2	4	-	A ← A∨byte	×		
operation		saddr, #byte	3	6	8	$(saddr) \leftarrow (saddr) \lor byte$	×		
		A, r Note 3	2	4	-	$A \leftarrow A \lor r$	×		
		r, A	2	4	_	$r \leftarrow r \lor A$	×		
		A, saddr	2	4	5	$A \leftarrow A \lor (saddr)$	×		
		A, laddr16	3	8	9 + n	$A \leftarrow A \lor (addr16)$	×		
		A, [HL]	1	4	5 + n	$A \leftarrow A \lor (HL)$	×		
		A, [HL + byte]	2	8	9 + n	$A \leftarrow A \lor (HL + byte)$	×		
		A, [HL + B]	2	8	9 + n	$A \leftarrow A \lor (HL + B)$	×		
		A, [HL + C]	2	8	9 + n	$A \leftarrow A \lor (HL + C)$	×		
	XOR	A, #byte	2	4	-	$A \leftarrow A \forall$ byte	×		
		saddr, #byte	3	6	8	$(saddr) \leftarrow (saddr) \forall byte$	×		
	A, r Note 3	2	4	-	$A \leftarrow A \forall r$	×			
		r, A	2	4	-	$r \leftarrow r \forall A$	×		
		A, saddr	2	4	5	$A \leftarrow A \forall$ (saddr)	×		
		A, laddr16	3	8	9 + n	$A \leftarrow A \forall$ (addr16)	×		
		A, [HL]	1	4	5 + n	$A \leftarrow A \not \forall (HL)$	×		
		A, [HL + byte]	2	8	9 + n	$A \leftarrow A \forall (HL + byte)$	×		
		A, [HL + B]	2	8	9 + n	$A \leftarrow A \not \forall (HL + B)$	×		
		A, [HL + C]	2	8	9 + n	$A \leftarrow A \not\leftarrow (HL + C)$	×		
	СМР	A, #byte	2	4	-	A – byte	×	×	×
		saddr, #byte	3	6	8	(saddr) - byte	×	×	×
		A, r Note 3	2	4	-	A – r	×	×	×
		r, A	2	4	-	r – A	×	×	×
		A, saddr	2	4	5	A – (saddr)	×	×	×
		A, laddr16	3	8	9 + n	A – (addr16)	×	×	×
		A, [HL]	1	4	5 + n	A – (HL)	×	×	×
		A, [HL + byte]	2	8	9 + n	A – (HL + byte)	×	×	×
		A, [HL + B]	2	8	9 + n	A – (HL + B)	×	×	×
		A, [HL + C]	2	8	9 + n	A – (HL + C)	×	×	×

2. When an area except the internal high-speed RAM area is accessed

3. Except r = A

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the processor clock control register (PCC).

2. This clock cycle applies to internal ROM program.

3. n is the number of waits when external memory expansion area is read from.

Instruction	Mnemonic	Operands	Byte	C	lock	Operation		Flag	g
Group				Note 1	Note 2		Z	AC	CY
16-bit	ADDW	AX, #word	3	6	_	AX, CY \leftarrow AX + word	×	Х	×
operation	SUBW	AX, #word	3	6	_	AX, CY \leftarrow AX – word	×	×	×
	CMPW	AX, #word	3	6	_	AX – word	×	×	×
Multiply/	MULU	Х	2	16	_	$AX \leftarrow A \times X$			
divide	DIVUW	С	2	25	-	$- \qquad AX \text{ (Quotient), C (Remainder)} \leftarrow AX \div C$			
Increment/	INC	r	1	2	_	r ← r + 1	×	×	
decrement		saddr	2	4	6	$(saddr) \leftarrow (saddr) + 1$	×	×	
	DEC	r	1	2	_	$r \leftarrow r - 1$	×	×	
		saddr	2	4	6	$(saddr) \leftarrow (saddr) - 1$	×	×	
	INCW	rp	1	4	_	$rp \leftarrow rp + 1$			
	DECW	rp	1	4	_	$rp \leftarrow rp - 1$			
Rotate	ROR	A, 1	1	2	_	$(CY, A_7 \leftarrow A_0, A_{m-1} \leftarrow A_m) \times 1$ time			×
	ROL	A, 1	1	2	_	$(CY, A_0 \leftarrow A_7, A_{m+1} \leftarrow A_m) \times 1$ time			×
	RORC	A, 1	1	2	_	$(CY \leftarrow A_0, A_7 \leftarrow CY, A_{m-1} \leftarrow A_m) \times 1$ time			×
ROLC	ROLC	A, 1	1	2	_	$(CY \leftarrow A_7, A_0 \leftarrow CY, A_{m+1} \leftarrow A_m) \times 1 \text{ time}$			×
	ROR4	[HL]	2	10	12 + n + m	$A_{3-0} \leftarrow (HL)_{3-0}, (HL)_{7-4} \leftarrow A_{3-0}, \\ (HL)_{3-0} \leftarrow (HL)_{7-4}$			
	ROL4	[HL]	2	10	12 + n + m	$A_{3-0} \leftarrow (HL)_{7-4}, (HL)_{3-0} \leftarrow A_{3-0}, \\ (HL)_{7-4} \leftarrow (HL)_{3-0}$			
BCD adjust	ADJBA		2	4	-	Decimal Adjust Accumulator after Addition	×	×	×
	ADJBS		2	4	-	Decimal Adjust Accumulator after Subtract	×	×	×
Bit	MOV1	CY, saddr.bit	3	6	7	$CY \leftarrow (saddr.bit)$			×
manipu-		CY, sfr.bit	3	_	7	$CY \leftarrow sfr.bit$			×
late		CY, A.bit	2	4	_	$CY \leftarrow A.bit$			×
		CY, PSW.bit	3	-	7	$CY \leftarrow PSW.bit$			×
		CY, [HL].bit	2	6	7 + n	$CY \leftarrow (HL).bit$			×
		saddr.bit, CY	3	6	8	(saddr.bit) ← CY			
		sfr.bit, CY	3	_	8	$sfr.bit \leftarrow CY$			
		A.bit, CY	2	4	_	A.bit ← CY			
		PSW.bit, CY	3	_	8	PSW.bit ← CY	×	×	
		[HL].bit, CY	2	6	8 + n + m	(HL).bit ← CY			-

2. When an area except the internal high-speed RAM area is accessed

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the processor clock control register (PCC).

- 2. This clock cycle applies to internal ROM program.
- 3. n is the number of waits when external memory expansion area is read from.
- 4. m is the number of waits when external memory expansion area is written to.

Instruction	Mnemonic	Operands	Byte	C	lock	Operation		Flag	g
Group				Note 1	Note 2	-	Z	AC	CY
Bit	AND1	CY, saddr.bit	3	6	7	$CY \leftarrow CY \land (saddr.bit)$			×
manipu-		CY, sfr.bit	3	-	7	$CY \leftarrow CY \land sfr.bit$			×
late		CY, A.bit	2	4	-	$CY \leftarrow CY \land A.bit$			×
		CY, PSW.bit	3	-	7	$CY \leftarrow CY \land PSW.bit$			×
		CY, [HL].bit	2	6	7 + n	$CY \leftarrow CY \land (HL).bit$			×
	OR1	CY, saddr.bit	3	6	7	$CY \leftarrow CY \lor (saddr.bit)$			×
		CY, sfr.bit	3	-	7	$CY \leftarrow CY \lor sfr.bit$			×
		CY, A.bit	2	4	_	$CY \leftarrow CY \lor A.bit$			×
		CY, PSW.bit	3	-	7	$CY \leftarrow CY \lor PSW.bit$			Х
		CY, [HL].bit	2	6	7 + n	$CY \leftarrow CY \lor (HL).bit$			Х
	XOR1	CY, saddr.bit	3	6	7	$CY \leftarrow CY \forall$ (saddr.bit)			×
		CY, sfr.bit	3	-	7	$CY \leftarrow CY \forall sfr.bit$			×
		CY, A.bit	2	4	-	$CY \leftarrow CY \forall A.bit$			×
		CY, PSW.bit	3	-	7	$CY \leftarrow CY \forall PSW.bit$			×
		CY, [HL].bit	2	6	7 + n	$CY \leftarrow CY \forall (HL).bit$			×
	SET1	saddr.bit	2	4	6	$(saddr.bit) \leftarrow 1$			
		sfr.bit	3	-	8	sfr.bit \leftarrow 1			
		A.bit	2	4	-	A.bit \leftarrow 1			
		PSW.bit	2	-	6	PSW.bit ← 1	×	×	×
		[HL].bit	2	6	8 + n + m	(HL).bit ← 1			
	CLR1	saddr.bit	2	4	6	$(saddr.bit) \leftarrow 0$			
		sfr.bit	3	-	8	sfr.bit $\leftarrow 0$			
		A.bit	2	4	-	A.bit $\leftarrow 0$			
		PSW.bit	2	-	6	PSW.bit ← 0	×	×	×
		[HL].bit	2	6	8 + n + m	(HL).bit \leftarrow 0			
	SET1	CY	1	2	-	CY ← 1			1
	CLR1	CY	1	2	-	$CY \leftarrow 0$			0
	NOT1	СҮ	1	2	_	$CY \leftarrow \overline{CY}$			×

2. When an area except the internal high-speed RAM area is accessed

- **Remarks 1.** One instruction clock cycle is one cycle of the CPU clock (fcPU) selected by the processor clock control register (PCC).
 - 2. This clock cycle applies to internal ROM program.
 - 3. n is the number of waits when external memory expansion area is read from.
 - 4. m is the number of waits when external memory expansion area is written to.

Instruction	Mnemonic	Operands	Byte	C	lock	Operation		Flag	J
Group				Note 1	Note 2		Z	AC	CY
Call/return	CALL	!addr16	3	7	-	$\begin{array}{l} (SP-1) \leftarrow (PC+3)_{H}, (SP-2) \leftarrow (PC+3)_{L}, \\ PC \leftarrow addr16, SP \leftarrow SP-2 \end{array}$			
	CALLF	!addr11	2	5	-	$\begin{array}{l} (SP-1) \leftarrow (PC+2)_{H}, (SP-2) \leftarrow (PC+2)_{L}, \\ PC_{15-11} \leftarrow 00001, PC_{10-0} \leftarrow addr11, \\ SP \leftarrow SP-2 \end{array}$			
	CALLT	[addr5]	1	6	_	$\begin{array}{l} (SP-1) \leftarrow (PC+1)_{H}, (SP-2) \leftarrow (PC+1)_{L}, \\ PC_{H} \leftarrow (00000000, addr5+1), \\ PC_{L} \leftarrow (00000000, addr5), \\ SP \leftarrow SP-2 \end{array}$			
BRK			1	6	-	$\begin{array}{l} (SP-1) \leftarrow PSW, (SP-2) \leftarrow (PC+1)_{H}, \\ (SP-3) \leftarrow (PC+1)_{L}, PC_{H} \leftarrow (003FH), \\ PC_{L} \leftarrow (003EH), SP \leftarrow SP-3, IE \leftarrow 0 \end{array}$			
	RET		1	6	-	$PCH \leftarrow (SP + 1), PCL \leftarrow (SP),$ $SP \leftarrow SP + 2$			
RETI			1	6	-	$\begin{array}{l} PCH \leftarrow (SP+1), \ PCL \leftarrow (SP), \\ PSW \leftarrow (SP+2), \ SP \leftarrow SP+3, \\ NMIS \leftarrow 0 \end{array}$	R	R	R
	RETB		1	6	-	$\begin{array}{l} PC_{H} \leftarrow (SP+1), PC_{L} \leftarrow (SP), \\ PSW \leftarrow (SP+2), SP \leftarrow SP+3 \end{array}$	R	R	R
Stack	PUSH	PSW	1	2	-	$(SP - 1) \leftarrow PSW, SP \leftarrow SP - 1$			
manipu- late		rp	1	4	_	$(SP - 1) \leftarrow rp_H, (SP - 2) \leftarrow rp_L,$ $SP \leftarrow SP - 2$			
	POP	PSW	1	2	-	$PSW \leftarrow (SP), SP \leftarrow SP + 1$	R	R	R
		rp	1	4	-	$r_{PH} \leftarrow (SP + 1), r_{PL} \leftarrow (SP),$ $SP \leftarrow SP + 2$			
	MOVW	SP, #word	4	-	10	$SP \leftarrow word$			
		SP, AX	2	-	8	$SP \leftarrow AX$			
		AX, SP	2	-	8	$AX \leftarrow SP$			
Uncondi-	BR	!addr16	3	6	-	$PC \leftarrow addr16$			
tional		\$addr16	2	6	-	$PC \leftarrow PC + 2 + jdisp8$			
branch		AX	2	8	-	$PC_{H} \gets A, PC_{L} \gets X$			
Conditional	BC	\$addr16	2	6	-	$PC \leftarrow PC + 2 + jdisp8$ if $CY = 1$			
branch	BNC	\$addr16	2	6	-	$PC \leftarrow PC + 2 + jdisp8 \text{ if } CY = 0$			
	BZ	\$addr16	2	6	-	$PC \leftarrow PC + 2 + jdisp8$ if $Z = 1$			
	BNZ	\$addr16	2	6	_	$PC \leftarrow PC + 2 + jdisp8$ if $Z = 0$			

2. When an area except the internal high-speed RAM area is accessed

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the processor clock control register (PCC).

2. This clock cycle applies to internal ROM program.

Instruction	Mnemonic	Operands	Byte	C	lock	Operation		Flag
Group				Note 1	Note 2		Z	ACCY
Condi-	вт	saddr.bit, \$addr16	3	8	9	$PC \leftarrow PC + 3 + jdisp8 \text{ if } (saddr.bit) = 1$		
tional		sfr.bit, \$addr16	4	-	11	$PC \leftarrow PC + 4 + jdisp8 \text{ if sfr.bit} = 1$		
branch		A.bit, \$addr16	3	8	_	$PC \leftarrow PC + 3 + jdisp8 \text{ if A.bit} = 1$		
		PSW.bit, \$addr16	3	-	9	$PC \leftarrow PC + 3 + jdisp8$ if PSW.bit = 1		
		[HL].bit, \$addr16	3	10	11 + n	$PC \leftarrow PC + 3 + jdisp8 \text{ if (HL).bit} = 1$		
	BF	saddr.bit, \$addr16	4	10	11	$PC \leftarrow PC + 4 + jdisp8 \text{ if } (saddr.bit) = 0$		
		sfr.bit, \$addr16	4	-	11	$PC \leftarrow PC + 4 + jdisp8 \text{ if sfr.bit} = 0$		
		A.bit, \$addr16	3	8	-	$PC \leftarrow PC + 3 + jdisp8 \text{ if A.bit} = 0$		
		PSW.bit, \$addr16	4	-	11	$PC \leftarrow PC + 4 + jdisp8$ if PSW.bit = 0		
		[HL].bit, \$addr16	3	10	11 + n	$PC \leftarrow PC + 3 + jdisp8 \text{ if (HL).bit} = 0$		
	BTCLR	saddr.bit, \$addr16	4	10	12	$PC \leftarrow PC + 4 + jdisp8$ if (saddr.bit) = 1 then reset (saddr.bit)		
		sfr.bit, \$addr16	4	-	12	$PC \leftarrow PC + 4 + jdisp8$ if sfr.bit = 1 then reset sfr.bit		
		A.bit, \$addr16	3	8	-	$PC \leftarrow PC + 3 + jdisp8$ if A.bit = 1 then reset A.bit		
		PSW.bit, \$addr16	4	-	12	$PC \leftarrow PC + 4 + jdisp8$ if PSW.bit = 1 then reset PSW.bit	×	× ×
		[HL].bit, \$addr16	3	10	12 + n + m	$PC \leftarrow PC + 3 + jdisp8$ if (HL).bit = 1 then reset (HL).bit		
	DBNZ	B, \$addr16	2	6	-	B ← B − 1, then PC ← PC + 2 + jdisp8 if B ≠ 0		
		C, \$addr16	2	6	-	C ← C −1, then PC ← PC + 2 + jdisp8 if C ≠ 0		
		saddr, \$addr16	3	8	10	(saddr) ← (saddr) − 1, then PC ← PC + 3 + jdisp8 if(saddr) ≠ 0		
CPU	SEL	RBn	2	4	_	RBS1, 0 ← n		
control	NOP		1	2	_	No Operation	1	
	EI		2	-	6	$IE \leftarrow 1$ (Enable Interrupt)		
	DI		2	-	6	$IE \leftarrow 0$ (Disable Interrupt)		
	HALT		2	6	_	Set HALT Mode		
	STOP		2	6	_	Set STOP Mode		

2. When an area except the internal high-speed RAM area is accessed

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcPU) selected by the processor clock control register (PCC).

- 2. This clock cycle applies to internal ROM program.
- 3. n is the number of waits when external memory expansion area is read from.
- 4. m is the number of waits when external memory expansion area is written to.

24.3 Instructions Listed by Addressing Type

(1) 8-bit instructions

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ

Second Operand First Operand	#byte	A	_r Note	sfr	saddr	!addr16	PSW	[DE]	[HL]	[HL + byte] [HL + B] [HL + C]	\$addr16	1	None
A	ADD ADDC SUB SUBC AND OR XOR CMP		MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV XCH	MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV	MOV XCH	MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV XCH ADD SUB SUBC AND OR XOR CMP		ROR ROL RORC ROLC	
r	MOV	MOV ADD ADDC SUB SUBC AND OR XOR CMP											INC DEC
B, C											DBNZ		
sfr	MOV	MOV											
saddr	MOV ADD ADDC SUB SUBC AND OR XOR CMP	MOV									DBNZ		INC DEC
!addr16		MOV											
PSW	MOV	MOV											PUSH POP
[DE]		MOV											
[HL]		MOV											ROR4 ROL4
[HL + byte] [HL + B] [HL + C]		MOV											
х													MULU
С													DIVUW

Note Except r = A

(2) 16-bit instructions

MOVW, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW

Second Operand	#word	AX	rp ^{Note}	sfrp	saddrp	laddr16	SP	None
First Operand								
AX	ADDW SUBW CMPW		MOVW XCHW	MOVW	MOVW	MOVW	MOVW	
rp	MOVW	MOVWNote						INCW DECW PUSH POP
sfrp	MOVW	MOVW						
saddrp	MOVW	MOVW						
!addr16		MOVW						
SP	MOVW	MOVW						

Note Only when rp = BC, DE, HL

(3) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR

Second Operand	A.bit	sfr.bit	saddr.bit	PSW.bit	[HL].bit	CY	\$addr16	None
First Operand								
A.bit						MOV1	BT BF BTCLR	SET1 CLR1
sfr.bit						MOV1	BT BF BTCLR	SET1 CLR1
saddr.bit						MOV1	BT BF BTCLR	SET1 CLR1
PSW.bit						MOV1	BT BF BTCLR	SET1 CLR1
[HL].bit						MOV1	BT BF BTCLR	SET1 CLR1
СҮ	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1			SET1 CLR1 NOT1

(4) Call instructions/branch instructions

CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ

Second Operand	AX	!addr16	!addr11	[addr5]	\$addr16
First Operand					
Basic instruction	BR	CALL BR	CALLF	CALLT	BR BC BNC BZ BNZ
Compound instruction					BT BF BTCLR DBNZ

(5) Other instructions

ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP

CHAPTER 25 ELECTRICAL SPECIFICATIONS (EXPANDED-SPECIFICATION PRODUCTS: fx = 1.0 TO 12 MHz)

Target products

 \star

- μPD780021A, 780022A, 780023A, 780024A, 780031A, 780032A, 780033A, 780034A, 780021A(A), 780022A(A), 780023A(A), 780024A(A), 780031A(A), 780032A(A), 780033A(A), 780034A(A) for which orders were received after December 1, 2001 (Products with a rank^{Note} other than K, E, P, X)
- µPD78F0034B, 78F0034B(A)

Note The rank is indicated by the 5th digit from the left in the lot number marked on the package.

Lot number $\bigcirc \bigcirc \bigcirc \bigcirc \bigtriangleup \bigtriangleup \times \times \times \times$ Year Week code code Rank

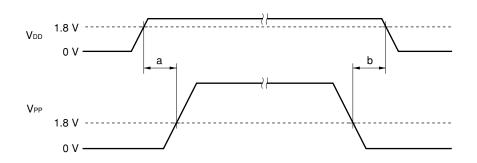
Parameter	Symbol		Conditions	Ratings	Unit
Supply voltage	Vdd			-0.3 to +6.5	V
	Vpp	Flash memory	version only, Note 2	-0.3 to +10.5	V
	AVdd			-0.3 to V _{DD} + 0.3 ^{Note 1}	V
	AVREF			-0.3 to V _{DD} + 0.3 ^{Note 1}	V
	AVss			-0.3 to +0.3	V
Input voltage	VI1		10 to P17, P20 to P25, P34 to P36, 50 to P57, P64 to P67, P70 to P75, XT2, RESET	-0.3 to V _{DD} + 0.3 ^{Note 1}	V
	VI2	P30 to P33	N-ch open drain	-0.3 to +6.5	V
			On-chip pull-up resistor	-0.3 to V _{DD} + 0.3 ^{Note 1}	V
Output voltage	Vo			-0.3 to V _{DD} + 0.3 ^{Note 1}	V
Analog input voltage	Van	P10 to P17	Analog input pin	$AV_{SS} - 0.3$ to $AV_{REF} + 0.3$ Note 1 and -0.3 to $V_{DD} + 0.3$ Note 1	V
Output current, high	Іон	Per pin	•	-10	mA
		Total for P00 P64 to P67, P	to P03, P40 to P47, P50 to P57, 70 to P75	-15	mA
		Total for P20	to P25, P30 to P36	-15	mA
Output current, low	Iol		0 to P03, P20 to P25, P34 to P36, 64 to P67, P70 to P75	20	mA
		Per pin for P3	0 to P33, P50 to P57	30	mA
		Total for P00 P70 to P75	to P03, P40 to P47, P64 to P67,	50	mA
		Total for P20	to P25	20	mA
		Total for P30	to P36	100	mA
		Total for P50 to P57		100	mA
Operating ambient	TA	During norma	loperation	-40 to +85	°C
temperature		During flash n	nemory programming	+10 to +80	°C
Storage	Tstg	Mask ROM ve	ersion	-65 to +150	°C
temperature		Flash memory	version	-40 to +125	°C

Absolute Maximum Ratings (T_A = 25°C)

Notes 1. 6.5 V or below

(Note 2 is explained on the following page.)

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.


Notes 2. Make sure that the following conditions of the VPP voltage application timing are satisfied when the flash memory is written.

· When supply voltage rises

VPP must exceed VDD 10 μ s or more after VDD has reached the lower-limit value (1.8 V) of the operating voltage range (see a in the figure below).

· When supply voltage drops

VDD must be lowered 10 μ s or more after VPP falls below the lower-limit value (1.8 V) of the operating voltage range of VDD (see b in the figure below).

Capacitance (TA = 25° C, VDD = Vss = 0 V)

Parameter	Symbol	Cor	Conditions			MAX.	Unit
Input capacitance	Cin	f = 1 MHz Unmeasured pins returned	f = 1 MHz Unmeasured pins returned to 0 V.			15	pF
I/O capacitance	Сю	f = 1 MHz Unmeasured pins returned to 0 V.	P00 to P03, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75			15	pF
			P30 to P33			20	pF

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit	
Ceramic		Oscillation	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		12.0	MHz	
resonator	X2 X1 Vss1	frequency (fx)Note 1	$3.0~V \leq V_{\text{DD}} < 4.5~V$	1.0		8.38		
	≷R1 ∳ Π ∳		$1.8~V \leq V_{\text{DD}} < 3.0~V$	1.0		5.0		
		Oscillation stabilization time ^{Note 2}	After V _{DD} reaches oscillation voltage range MIN.			4	ms	
Crystal		Oscillation	$4.5~V \le V_{\text{DD}} \le 5.5~V$	1.0		12.0	MHz	
resonator			$3.0~V \leq V_{\text{DD}} < 4.5~V$	1.0		8.38		
			∳-ID⊢ ∳	┊ ┊ ───┥ │┊ │	$1.8~V \leq V_{\text{DD}} < 3.0~V$	1.0		5.0
		Oscillation	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			10	ms	
	·	stabilization time ^{Note 2}	$1.8~V \leq V_{\text{DD}} < 4.0~V$			30		
External		X1 input	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		12.0	MHz	
clock	X2 X1	frequency (fx) ^{Note 1}	$3.0~V \leq V_{\text{DD}} < 4.5~V$	1.0		8.38		
			$1.8~V \leq V_{\text{DD}} < 3.0~V$	1.0		5.0		
		X1 input	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	38		500	ns	
	Д́ Д	high-/low-level width	$3.0~V \leq V_{\text{DD}} < 4.5~V$	50		500		
		(tхн, txL)	$1.8~V \leq V_{\text{DD}} < 3.0~V$	85		500		

- Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.2. Time required to stabilize oscillation after reset or STOP mode release.
- Cautions 1. When using the main system clock oscillator, wire as follows in the area enclosed by the broken
 - lines in the above figures to avoid an adverse effect from wiring capacitance.
 - Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - · Always make the ground point of the oscillator capacitor the same potential as Vss1.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
 - 2. When the main system clock is stopped and the system is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator		Oscillation frequency (f _{XT}) ^{Note 1}		32	32.768	35	kHz
		Oscillation	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		1.2	2	S
		stabilization timeNote 2	$1.8~V \leq V_{\text{DD}} < 4.0~V$			10	
External clock	XT2 XT1	XT1 input frequency (f _{XT}) ^{Note 1}		32		38.5	kHz
		XT1 input high-/low-level width (tхтн, txть)		12		15	μs

Subsystem Clock Oscillator Characteris	stics (TA = -40 to $+85^{\circ}$ C, VDD = 1.8 to 5.5 V)
--	---

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
 2. Time required to stabilize oscillation after V_{DD} reaches oscillation voltage range MIN.

Cautions 1. When using the subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in the above figure to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss1.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.
- 2. The subsystem clock oscillator is designed as a low-amplitude circuit for reducing power consumption, and is more prone to malfunction due to noise than the main system clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.
- **Remark** For the resonator selection and oscillator constant of the subsystem clock, customers are required to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Recommended Oscillator Constant

To use the μ PD78F0034B or 78F0034B(A), for the resonator selection and oscillator constant, customers are required to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Mask ROM versions of μPD780024A, 780034A Subseries (expanded-specification product) Main system clock: Ceramic resonator (T_A = -40 to +85°C)

Manufacturer	Part Number	Frequency	Recomme	ended Circuit	Constant	Oscillation Voltage Range		
		(MHz)	C1 (pF)	C2 (pF)	R1 (kΩ)	MIN. (V)	MAX. (V)	
Murata Mfg.	CSBFB1M00J58	1.00	100	100	2.2	1.8	5.5	
Co., Ltd.	CSBLA1M00J58	1.00	100	100	2.2	1.8	5.5	
	CSTCC2M00G56	2.00	On-chip	On-chip	0	1.8	5.5	
	CSTLS2M00G56	2.00	On-chip	On-chip	0	1.8	5.5	
	CSTCC3M58G53	3.58	On-chip	On-chip	0	1.8	5.5	
	CSTLS3M58G53	3.58	On-chip	On-chip	0	1.8	5.5	
	CSTCR4M00G53	4.00	On-chip	On-chip	0	1.8	5.5	
	CSTLS4M00G53	4.00	On-chip	On-chip	0	1.8	5.5	
	CSTCR4M19G53	4.19	On-chip	On-chip	0	1.8	5.5	
	CSTLS4M19G53	4.19	On-chip	On-chip	0	1.8	5.5	
	CSTCR4M91G53	4.91	On-chip	On-chip	0	1.8	5.5	
	CSTLS4M91G53	4.91	On-chip	On-chip	0	1.8	5.5	
	CSTCR5M00G53	5.00	On-chip	On-chip	0	1.8	5.5	
	CSTLS5M00G53	5.00	On-chip	On-chip	0	1.8	5.5	
	CSTCE8M00G52	8.00	On-chip	On-chip	0	2.7	5.5	
	CSTLS8M00G53	8.00	On-chip	On-chip	0	2.7	5.5	
	CSTCE8M38G52	8.38	On-chip	On-chip	0	3.0	5.5	
	CSTLS8M38G53	8.38	On-chip	On-chip	0	3.0	5.5	
	CSTCE10M0G52	10.00	On-chip	On-chip	0	3.0	5.5	
	CSTLS10M0G53	10.00	On-chip	On-chip	0	3.0	5.5	
	CSTCE12M0G52	12.00	On-chip	On-chip	0	4.5	5.5	
	CSTLA12M0T55	12.00	On-chip	On-chip	0	4.5	5.5	
TDK	CCR3.58MC3	3.58	On-chip	On-chip	0	1.8	5.5	
	CCR4.19MC3	4.19	On-chip	On-chip	0	1.8	5.5	
	CCR5.0MC3	5.00	On-chip	On-chip	0	1.8	5.5	
	CCR8.0MC5	8.00	On-chip	On-chip	0	2.7	5.5	
	CCR8.38MC5	8.38	On-chip	On-chip	0	3.0	5.5	

Caution The oscillator constant is a reference value based on evaluation in specific environments by the resonator manufacturer. If the oscillator characteristics need to be optimized in the actual application, request the resonator manufacturer for evaluation on the implementation circuit. Note that the oscillation voltage and oscillation frequency merely indicate the characteristics of the oscillator. Use the internal operation conditions of the μPD780024A, 780034A Subseries within the specifications of the DC and AC characteristics.

DC Characteristics (TA = -40 to $+85^{\circ}$ C, VDD = 1.8 to 5.5 V) (1/4)

Parameter	Symbol	Conditions	\$	MIN.	TYP.	MAX.	Unit
Output current,	Іон	Per pin				-1	mA
high		All pins				-15	mA
Output current, low	lol	Per pin for P00 to P03, P20 to P P40 to P47, P64 to P67, P70 to			10	mA	
		Per pin for P30 to P33, P50 to P	57			15	mA
		Total for P00 to P03, P40 to P47,	P64 to P67, P70 to P75			20	mA
		Total for P20 to P25				10	mA
		Total for P30 to P36				70	mA
		Total for P50 to P57				70	mA
Input voltage,	VIH1	P10 to P17, P21, P24, P35,	$2.7~V \le V_{\text{DD}} \le 5.5~V$	0.7Vdd		Vdd	V
high		P40 to P47, P50 to P57, P64 to P67, P74, P75	$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.8Vdd		Vdd	V
	V _{IH2}	P00 to P03, P20, P22, P23, P25,	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.8Vdd		Vdd	V
		P34, P36, P70 to P73, RESET	$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.85VDD		Vdd	V
	Vінз	P30 to P33	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.7Vdd		5.5	V
		(N-ch open-drain)	$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.8Vdd		5.5	V
	VIH4	X1, X2	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	VDD - 0.5		VDD	V
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	VDD-0.2		Vdd	V
	V _{IH5}	XT1, XT2	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0.8VDD		VDD	V
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	0.9VDD		Vdd	V
Input voltage,	VIL1	P10 to P17, P21, P24, P35,	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0		0.3VDD	V
low		P40 to P47, P50 to P57, P64 to P67, P74, P75	$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0		0.2VDD	V
	VIL2	P00 to P03, P20, P22, P23, P25,	$2.7~V \le V_{\text{DD}} \le 5.5~V$	0		0.2VDD	V
		P34, P36, P70 to P73, RESET	$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0		0.15VDD	V
	VIL3	P30 to P33	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	0		0.3VDD	V
			$2.7~V \leq V_{\text{DD}} < 4.0~V$	0		0.2VDD	V
			$1.8~V \leq V_{\text{DD}} < 2.7~V$	0		0.1VDD	V
	VIL4	X1, X2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0		0.4	V
			$1.8~V \leq V_{\text{DD}} < 2.7~V$	0		0.2	V
	VIL5	XT1, XT2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	0		0.2VDD	V
			$1.8~V \leq V_{\text{DD}} < 4.0~V$	0		0.1VDD	V
Output voltage,	V _{OH1}	4.0 V \leq V_DD \leq 5.5 V, IOH = -1 mA	l.	VDD - 1.0		Vdd	V
high		1.8 V \leq VDD $<$ 4.0 V, IOH = -100 /	иA	V _{DD} - 0.5		Vdd	V
Output voltage,	Vol1	P30 to P33	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$			2.0	V
low	Vol2	P50 to P57	lo∟ = 15 mA		0.4	2.0	V
	Vol3	P00 to P03, P20 to P25, P34 to P36, P40 to P47, P64 to P67, P70 to P75				0.4	V
	Vol4	Ιοι = 400 μΑ				0.5	V

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

Parameter	Symbol	Co	onditions	MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішні	Vin = Vdd	P00 to P03, P10 to P17, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75, RESET			3	μΑ
	Ilih2	-	X1, X2, XT1, XT2			20	μA
	Іцнз	VIN = 5.5 V	P30 to P33			3	μA
Input leakage ILL1 current, low	ILIL1	VIN = 0 V	P00 to P03, P10 to P17, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75, RESET			-3	μΑ
	Ilil2		X1, X2, XT1, XT2			-20	μA
	Ilil3	-	P30 to P33			-3	μA
Output leakage current, high	Ігон	Vout = Vdd				3	μA
Output leakage current, low	Ilol	Vout = 0 V				-3	μA
Mask option pull- up resistance (mask ROM version only)	Rı	V _{IN} = 0 V, P30, P31, P32, P33		15	30	90	kΩ
Software pull- up resistance	R₂	V _{IN} = 0 V, P00 to P03, P20 to P25 P50 to P57, P64 to P67	, P34 to P36, P40 to P47, , P70 to P75	15	30	90	kΩ

DC Characteristics (TA = -40 to +85°C, VDD = 1.8 to 5.5 V) (2/4)

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics (TA = -40 to $+85^{\circ}$ C, VDD = 1.8 to 5.5 V) (3/4)

(1) Mask ROM versions of μ PD780024A, 780034A Subseries (expanded-specification product)

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Power supply current ^{Note 1}	_{DD1} Note 2	12.0 MHz crystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When A/D converter is stopped		8.5	17	mA
		operating mode		When A/D converter is operating ^{Note 7}		9.5	19	mA
		8.38 MHz crystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When A/D converter is stopped		5.5	11	mA
		operating mode		When A/D converter is operating ^{Note 7}		6.5	13	mA
			$V_{DD} = 3.0 \text{ V} + 10\%^{\text{Notes 3, 6}}$	When A/D converter is stopped		3	6	mA
				When A/D converter is operating ^{Note 7}		4	8	mA
		5.00 MHz crystal oscillation	$V_{DD} = 3.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When A/D converter is stopped		2	4	mA
		operating mode		When A/D converter is operating ^{Note 7}		3	6	mA
1			$V_{DD} = 2.0 \text{ V} \pm 10\%^{\text{Note 4}}$	When A/D converter is stopped		0.4	1.5	mA
				When A/D converter is operating ^{Note 7}		1.4	4.2	mA
	IDD2	12.0 MHz crystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When peripheral functions are stopped		2	4	mA
		HALT mode		When peripheral functions are operating			10	mA
		8.38 MHz crystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When peripheral functions are stopped		1.1	2.2	mA
	HALT mode	HALT mode		When peripheral functions are operating			4.7	mA
			$V_{DD} = 3.0 \text{ V} + 10\%^{\text{Notes 3, 6}}$	When peripheral functions are stopped		0.5	1	mA
			-	When peripheral functions are operating			4	mA
		5.00 MHz crystal oscillation	$V_{DD} = 3.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When peripheral functions are stopped		0.35	0.7	mA
		HALT mode		When peripheral functions are operating			1.7	mA
			$V_{DD} = 2.0 \text{ V} \pm 10\%^{\text{Note 4}}$	When peripheral functions are stopped		0.15	0.4	mA
				When peripheral functions are operating			1.1	mA
	IDD3	32.768 kHz crysta	al oscillation	VDD = 5.0 V ±10%		40	80	μA
		operating mode ^{No}	ite 5	$V_{DD} = 3.0 \text{ V} \pm 10\%$		20	40	μA
				$V_{DD} = 2.0 \text{ V} \pm 10\%$		10	20	μA
	DD4	32.768 kHz crysta	al oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%$		30	60	μA
		HALT mode ^{Note 5}		$V_{DD} = 3.0 \text{ V} \pm 10\%$		6	18	μA
				$V_{DD} = 2.0 \text{ V} \pm 10\%$		2	10	μA
	IDD5	XT1 = VDD, STOP		$V_{DD} = 5.0 \text{ V} \pm 10\%$		0.1	30	μA
		When feedback re	esistor is not used	VDD = 3.0 V ±10%		0.05	10	μA
				VDD = 2.0 V ±10%		0.05	10	μA

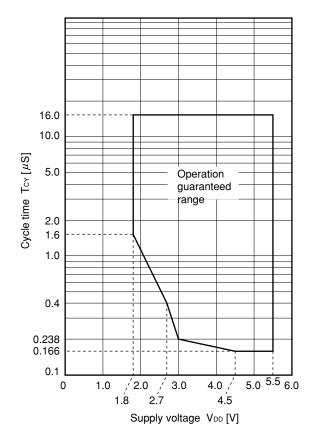
- **Notes 1.** Total current through the internal power supply (VDD0, VDD1) (except the current through pull-up resistors of ports).
 - 2. IDD1 includes the peripheral operation current.
 - 3. When the processor clock control register (PCC) is cleared to 00H.
 - 4. When PCC is set to 02H.
 - 5. When main system clock operation is stopped.
 - **6.** The values show the specifications when $V_{DD} = 3.0$ to 3.3 V. The value in the TYP. column show the specifications when $V_{DD} = 3.0$ V.
 - 7. Includes the current through the AVDD pin.

DC Characteristics (TA = -40 to $+85^{\circ}$ C, VDD = 1.8 to 5.5 V) (4/4)

(2) μPD78F0034B, 78F0034B(A)

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Power supply current ^{Note 1}	DD1 Note 2	12.0 MHz crystal oscillation	$V_{\text{DD}} = 5.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When A/D converter is stopped		16	32	mA
		operating mode		When A/D converter is operating ^{Note 7}		17	34	mA
		8.38 MHz crystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When A/D converter is stopped		10.5	21	mA
		operating mode		When A/D converter is operating ^{Note 7}		11.5	23	mA
			$V_{DD} = 3.0 \text{ V} + 10\%^{\text{Notes 3, 6}}$	When A/D converter is stopped		7	14	mA
				When A/D converter is operating ^{Note 7}		8	16	mA
		5.00 MHz crystal oscillation	$V_{DD} = 3.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When A/D converter is stopped		4.5	9	mA
		operating mode		When A/D converter is operating ^{Note 7}		5.5	11	mA
			$V_{DD} = 2.0 \text{ V} \pm 10\%^{\text{Note 4}}$	When A/D converter is stopped		1	2	mA
				When A/D converter is operating ^{Note 7}		2	6	mA
	IDD2	12.0 MHz crystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When peripheral functions are stopped		2	4	mA
		HALT mode		When peripheral functions are operating			8	mA
		8.38 MHz crystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When peripheral functions are stopped		1.2	2.4	mA
	ł	HALT mode		When peripheral functions are operating			5	mA
			$V_{DD} = 3.0 \text{ V} + 10\%^{\text{Notes 3, 6}}$	When peripheral functions are stopped		0.6	1.2	mA
				When peripheral functions are operating			2.4	mA
		5.00 MHz crystal oscillation	$V_{DD} = 3.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When peripheral functions are stopped		0.4	0.8	mA
		HALT mode		When peripheral functions are operating			1.7	mA
			$V_{DD} = 2.0 \text{ V} \pm 10\%^{\text{Note 4}}$	When peripheral functions are stopped		0.2	0.4	mA
				When peripheral functions are operating			1.1	mA
	IDD3	32.768 kHz crysta	al oscillation	V _{DD} = 5.0 V ±10%		115	230	μA
		operating mode ^{No}	ite 5	VDD = 3.0 V ±10%		95	190	2.4 mA 0.8 mA 1.7 mA 0.4 mA 1.1 mA 230 μA 190 μA 60 μA
				VDD = 2.0 V ±10%		75	150	μA
	IDD4	32.768 kHz crysta	al oscillation	VDD = 5.0 V ±10%		30	60	μA
		HALT mode ^{Note 5}		VDD = 3.0 V ±10%		6	18	μA
				VDD = 2.0 V ±10%		2	10	μA
	Idd5	XT1 = VDD, STOP		VDD = 5.0 V ±10%		0.1	30	μA
		When teedback re	esistor is not used	VDD = 3.0 V ±10%		0.05	10	μA
				VDD = 2.0 V ±10%		0.05	10	μA

- **Notes 1.** Total current through the internal power supply (VDD0, VDD1) (except the current through pull-up resistors of ports).
 - 2. IDD1 includes the peripheral operation current.
 - 3. When the processor clock control register (PCC) is cleared to 00H.
 - 4. When PCC is set to 02H.
 - 5. When main system clock operation is stopped.
 - **6.** The values show the specifications when $V_{DD} = 3.0$ to 3.3 V. The value in the TYP. column show the specifications when $V_{DD} = 3.0$ V.
 - 7. Includes the current through the AVDD pin.


AC Characteristics

Parameter	Symbol	Co	MIN.	TYP.	MAX.	Unit	
Cycle time (Min. instruction	Тсү	Operating with main system clock	$4.5~V \le V_{\text{DD}} \le 5.5~V$	0.166		16	μs
			$3.0~V \leq V_{\text{DD}} < 4.5~V$	0.238		16	μs
execution time)			$2.7~V \leq V_{\text{DD}} < 3.0~V$	0.4		16	μs
			$1.8~V \leq V_{\text{DD}} < 2.7~V$	1.6		16	μs
		Operating with subs	system clock	103.9 ^{Note 1}	122	125	μs
TI00, TI01 input	TI00, TI01 input tTIHO, tTILO		$3.0 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$				μs
high-/low-level		$2.7~V \leq V_{\text{DD}} < 3.0~V$		2/fsam + 0.2 ^{Note 2}			μs
width		$1.8 \text{ V} \leq V_{\text{DD}} < 2.7 \text{ V}$		2/fsam + 0.5 ^{Note 2}			μs
TI50, TI51 input	ft15	$2.7 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$		0		4	MHz
frequency		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$		0		275	kHz
TI50, TI51 input	ttiH5, ttiL5	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	100			ns	
high-/low-level width		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$				μs
Interrupt request	tinth, tintl	INTP0 to INTP3,	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1			μs
input high-/low- level width		P40 to P47	$1.8 \text{ V} \leq V_{\text{DD}} < 2.7 \text{ V}$	2			μs
RESET	trsl	$2.7 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$		10			μs
low-level width		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$		20			μs

(1) Basic operation (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 5.5 V)

Notes 1. Value when the external clock is used. When a crystal resonator is used, it is 114 μ s (MIN.).

Selection of fsam = fx, fx/4, fx/64 is possible using bits 0 and 1 (PRM00, PRM01) of prescaler mode register 0 (PRM0). However, if the TI00 valid edge is selected as the count clock, the value becomes fsam = fx/8.

TCY vs. VDD (main system clock operation)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	t asth		0.3tcy		ns
Address setup time	tads		20		ns
Address hold time	tadh		6		ns
Data input time from address	tadd1			(2 + 2n)tcy - 54	ns
	tadd2			(3 + 2n)tcy - 60	ns
Address output time from $\overline{\mathrm{RD}} \downarrow$	trdad		0	100	ns
Data input time from $\overline{\text{RD}} {\downarrow}$	trdd1			(2 + 2n)tcy - 87	ns
	trdd2			(3 + 2n)tcy - 93	ns
Read data hold time	t RDH		0		ns
RD low-level width	trdl1		(1.5 + 2n)tcy - 33		ns
	trdl2		(2.5 + 2n)tcy - 33		ns
Input time from $\overline{\mathrm{RD}} \downarrow$ to $\overline{\mathrm{WAIT}} \downarrow$	trdwt1			tcy - 43	ns
	trdwt2			tcy - 43	ns
Input time from $\overline{\text{WR}} {\downarrow}$ to $\overline{\text{WAIT}} {\downarrow}$	twrwт			tcy - 25	ns
WAIT low-level width	tw⊤∟		(0.5 + 2n)tcy + 10	(2 + 2n)tcr	ns
Write data setup time	twos		60		ns
Write data hold time	twdн		6		ns
WR low-level width	twRL1		(1.5 + 2n)tcy - 15		ns
Delay time from ASTB \downarrow to $\overline{\text{RD}}\downarrow$	tastrd		6		ns
Delay time from ASTB \downarrow to $\overline{\rm WR}\downarrow$	t astwr		2tcy - 15		ns
Delay time from $\overline{\text{RD}}\uparrow$ to ASTB \uparrow at external fetch	trdast		0.8tcy - 15	1.2tcy	ns
Address hold time from $\overline{\text{RD}}\uparrow$ at external fetch	trdadh		0.8tcy - 15	1.2tcy + 30	ns
Write data output time from $\overline{\rm RD} \uparrow$	trowd		40		ns
Write data output time from $\overline{\text{WR}} \downarrow$	twrwd		10	60	ns
Address hold time from $\overline{\rm WR} \uparrow$	twradh		0.8tcy - 15	1.2tcy + 30	ns
Delay time from $\overline{\text{WAIT}}\uparrow$ to $\overline{\text{RD}}\uparrow$	twrrd		0.8tcy	2.5tcy + 25	ns
Delay time from $\overline{\text{WAIT}}\uparrow$ to $\overline{\text{WR}}\uparrow$	twrwr		0.8tcy	2.5tcy + 25	ns

Caution Tcr can only be used when the MIN. value is 0.238 $\mu s.$

Remarks 1. tcy = Tcy/4

- 2. n indicates the number of waits.
- **3**. $C_{L} = 100 \text{ pF}$ (C_{L} indicates the load capacitance of the AD0 to AD7, A8 to A15, \overline{RD} , \overline{WR} , \overline{WAIT} , and ASTB pins.)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	t asth		0.3tcv		ns
Address setup time	tads		30		ns
Address hold time	tadh		10		ns
Input time from address to data	tadd1			(2 + 2n)tcy - 108	ns
	tadd2			(3 + 2n)tcy - 120	ns
Output time from $\overline{\text{RD}} \downarrow$ to address	trdad		0	200	ns
Input time from $\overline{RD} \downarrow$ to data	trdd1			(2 + 2n)tcy - 148	ns
	trdd2			(3 + 2n)tcy - 162	ns
Read data hold time	trdн		0		ns
RD low-level width	tRDL1		(1.5 + 2n)tcr - 40		ns
	trdl2		(2.5 + 2n)tcr - 40		ns
Input time from $\overline{RD} {\downarrow}$ to $\overline{WAIT} {\downarrow}$	trdwt1			tcy - 75	ns
	trdwt2			tcy - 60	ns
Input time from $\overline{WR}{\downarrow}$ to $\overline{WAIT}{\downarrow}$	twrwt			tcy - 50	ns
WAIT low-level width	tw⊤∟		(0.5 + 2n)tcr + 10	(2 + 2n)tcy	ns
Write data setup time	twos		60		ns
Write data hold time	twdн		10		ns
WR low-level width	twRL1		(1.5 + 2n)tcr - 30		ns
Delay time from ASTB \downarrow to $\overline{\text{RD}}\downarrow$	tastrd		10		ns
Delay time from ASTB \downarrow to $\overline{\rm WR}\downarrow$	tastwr		2tcy - 30		ns
Delay time from	trdast		0.8tcy - 30	1.2tcr	ns
$\overline{RD} {\uparrow}$ to $ASTB {\uparrow}$ at external fetch					
Hold time from	trdadh		0.8tcy - 30	1.2tcy + 60	ns
$\overline{RD} {\uparrow}$ to address at external fetch					
Write data output time from $\overline{\rm RD} \uparrow$	trdwd		40		ns
Write data output time from $\overline{\text{WR}} {\downarrow}$	twrwd		20	120	ns
Hold time from $\overline{WR}\uparrow$ to address	twradh		0.8tcy - 30	1.2tcy + 60	ns
Delay time from $\overline{\text{WAIT}}\uparrow$ to $\overline{\text{RD}}\uparrow$	twrrd		0.5tcy	2.5tcy + 50	ns
Delay time from \overline{WAIT} to \overline{WR}	twtwr		0.5tcy	2.5tcy + 50	ns

(2) Read/write operation (TA = -40 to $+85^{\circ}$ C, V_{DD} = 2.7 to 4.0 V) (2/3)

Caution Tcy can only be used when the MIN. value is 0.4 μ s.

Remarks 1. tcy = Tcy/4

- 2. n indicates the number of waits.
- **3.** $C_{L} = 100 \text{ pF}$ (C_{L} indicates the load capacitance of the AD0 to AD7, A8 to A15, \overline{RD} , \overline{WR} , \overline{WAIT} , and ASTB pins.)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	t asth		0.3tcy		ns
Address setup time	tads		120		ns
Address hold time	tadh		20		ns
Input time from address to data	tadd1			(2 + 2n)tcy - 233	ns
	tadd2			(3 + 2n)tcy - 240	ns
Output time from $\overline{RD} {\downarrow}$ to address	trdad		0	400	ns
Input time from $\overline{RD} \downarrow$ to data	trdd1			(2 + 2n)tcr - 325	ns
	trdd2			(3 + 2n)tcy - 332	ns
Read data hold time	t RDH		0		ns
RD low-level width	tRDL1		(1.5 + 2n)tcy - 92		ns
	trdl2		(2.5 + 2n)tcy - 92		ns
Input time from $\overline{\text{RD}}\downarrow$ to $\overline{\text{WAIT}}\downarrow$	trdwt1			tcy – 350	ns
	trdwt2			tcy – 132	ns
Input time from $\overline{WR}{\downarrow}$ to $\overline{WAIT}{\downarrow}$	twrwt			tcy - 100	ns
WAIT low-level width	tw⊤∟		(0.5 + 2n)tcr + 10	(2 + 2n)tcy	ns
Write data setup time	twos		60		ns
Write data hold time	twdн		20		ns
WR low-level width	twRL1		(1.5 + 2n)ter - 60		ns
Delay time from ASTB \downarrow to $\overline{\text{RD}}\downarrow$	t ASTRD		20		ns
Delay time from ASTB \downarrow to $\overline{WR}\downarrow$	t astwr		2tcy - 60		ns
Delay time from	trdast		0.8tcy - 60	1.2tcy	ns
$\overline{RD} {\uparrow}$ to $ASTB {\uparrow}$ at external fetch					
Hold time from	trdadh		0.8tcy - 60	1.2tcy + 120	ns
$\overline{RD} {\uparrow}$ to address at external fetch					
Write data output time from $\overline{\text{RD}} \! \uparrow$	trdwd		40		ns
Write data output time from $\overline{\text{WR}} {\downarrow}$	twrwd		40	240	ns
Hold time from $\overline{WR} {\uparrow}$ to address	twradh		0.8tcy - 60	1.2tcy + 120	ns
Delay time from $\overline{\mathrm{WAIT}}\uparrow$ to $\overline{\mathrm{RD}}\uparrow$	twtrd		0.5tcy	2.5tcy + 100	ns
Delay time from $\overline{WAIT}\uparrow$ to $\overline{WR}\uparrow$	twrwr		0.5tcy	2.5tcy + 100	ns

(2) Read/write operation (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 2.7 V) (3/3)

Caution Tcy can only be used when the MIN. value is 1.6 μ s.

Remarks 1. tcy = Tcy/4

- 2. n indicates the number of waits.
- **3.** $C_{L} = 100 \text{ pF}$ (C_{L} indicates the load capacitance of the AD0 to AD7, A8 to A15, \overline{RD} , \overline{WR} , \overline{WAIT} , and ASTB pins.)

(3) Serial interface (TA = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 5.5 V) (1/2)

Parameter	Symbol	Co	MIN.	TYP.	MAX.	Unit	
SCK3n	t ксү1	$4.5~V \le V_{\text{DD}} \le 5.5$	V	666			ns
cycle time		$3.0 \text{ V} \leq \text{V}_{\text{DD}} < 4.5$	V	954			ns
		$2.7 \text{ V} \leq V_{\text{DD}} < 3.0$	V	1600			ns
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7$	V	3200			ns
SCK3n high-/	tĸнı, tĸ∟ı	$3.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	V	tксү1/2 – 50			ns
low-level width		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 3.0 \text{ V}$		tксү1/2 – 100			ns
SI3n setup time	tsik1	$3.0~V \leq V_{\text{DD}} \leq 5.5~V$		100			ns
(to SCK3n↑)		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 3.0 \text{ V}$		150			ns
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$		300			ns
SI3n hold time	tksi1	$4.5~V \le V_{\text{DD}} \le 5.5~V$		300			ns
(from SCK3n↑)		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$		400			ns
Delay time from	tkso1	C = 100 pF ^{Note}	$4.5~V \le V_{\text{DD}} \le 5.5~V$			200	ns
SCK3n↓ to SO3n output			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$			300	ns

(a) 3-wire serial I/O mode (SCK3n... Internal clock output)

Note C is the load capacitance of the SCK3n and SO3n output lines.

Parameter	Symbol	Co	MIN.	TYP.	MAX.	Unit	
SCK3n	tксү2	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	666			ns	
cycle time		$3.0 \text{ V} \leq \text{V}_{\text{DD}} < 4.5$	800			ns	
		$2.7 \text{ V} \leq V_{\text{DD}} < 3.0$	V	1600			ns
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7$	V	3200			ns
SCK3n high-/	tkH2, tkL2	$4.5~V \le V_{\text{DD}} \le 5.5$	333			ns	
low-level width		$3.0~V \leq V_{\text{DD}} < 4.5~V$		400			ns
		$2.7 \text{ V} \leq V_{\text{DD}} < 3.0$	V	800			ns
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7$	V	1600			ns
Sl3n setup time (to SCK3 n↑)	tsik2			100			ns
SI3n hold time	tksi2	$4.5~V \le V_{\text{DD}} \le 5.5$	V	300			ns
(from SCK3n↑)		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 4.5$	V	400			ns
Delay time from	tkso2	C = 100 pF ^{Note}	$4.5~V \le V_{\text{DD}} \le 5.5~V$			200	ns
SCK3n↓ to SO3n output			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$			300	ns

(b) 3-wire serial I/O mode (SCK3n... External clock input)

Note C is the load capacitance of the SO3n output line.

Remark n = 0, 1

(3) Serial interface (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 5.5 V) (2/2)

(c) UART mode (dedicated baud-rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		$4.5~V \leq V_{\text{DD}} \leq 5.5~V$			187500	bps
		$3.0~V \leq V_{\text{DD}} < 4.5~V$			131031	bps
		$2.7~V \leq V_{\text{DD}} < 3.0~V$			78125	bps
		$1.8~V \leq V_{\text{DD}} < 2.7~V$			39063	bps

(d) UART mode (external clock input)

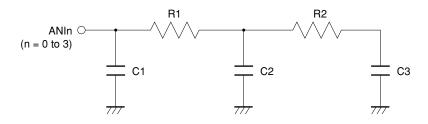
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK0 cycle time	tксүз	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	800			ns
		$2.7~V \leq V_{\text{DD}} < 4.0~V$	1600			ns
		$1.8~V \leq V_{\text{DD}} < 2.7~V$	3200			ns
ASCK0 high-/low-level width	tкнз,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	400			ns
	tкLз	$2.7~V \leq V_{\text{DD}} < 4.0~V$	800			ns
		$1.8~V \leq V_{\text{DD}} < 2.7~V$	1600			ns
Transfer rate		$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			39063	bps
		$2.7~V \leq V_{\text{DD}} < 4.0~V$			19531	bps
		$1.8~V \leq V_{\text{DD}} < 2.7~V$			9766	bps

(e) UART mode (infrared data transfer mode)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Transfer rate		$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		131031	bps
Allowable bit rate error		$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		±0.87	%
Output pulse width		$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	1.2	0.24/fbrNote	μs
Input pulse width		$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	4/fx		μs

Note fbr: Specified baud rate

A/D Converter Characteristics (TA = -40 to +85°C, VDD = AVDD = 1.8 to 5.5 V, AVss = Vss = 0 V) (1/2)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Overall error ^{Note}		$4.0~V \leq AV_{\text{REF}} \leq 5.5~V$			±0.4	%FSR
		$2.7 \text{ V} \leq \text{AV}_{\text{REF}} < 4.0 \text{ V}$			±0.6	%FSR
		$1.8 \text{ V} \leq AV_{\text{REF}} < 2.7 \text{ V}$			±1.2	%FSR
Conversion time	tCONV	$4.5 \text{ V} \leq \text{AV}_{\text{DD}} \leq 5.5 \text{ V}$	12		96	μs
		$4.0~V \leq AV_{\text{DD}} < 4.5~V$	14		96	μs
		$2.7~V \leq AV_{\text{DD}} < 4.0~V$	17		96	μs
		$1.8 \text{ V} \leq \text{AV}_{\text{DD}} < 2.7 \text{ V}$	28		96	μs
Analog input voltage	VAIN		0		AVREF	V
Reference voltage	AVREF		1.8		AVDD	V
Resistance between AVREF and AVss	RREF	During A/D converter operation	20	40		kΩ

(1) 8-bit A/D converter: µPD780024A Subseries

Note Excludes quantization error (±1/2 LSB). This value is indicated as a ratio (%FSR) to the full-scale value.

Remark The impedance of the analog input pins is shown below.

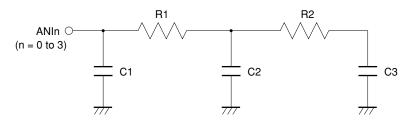
[Equivalent circuit]

[Parameter value]

					(TYP.)
AVDD	R1	R2	C1	C2	C3
2.7 V	12 kΩ	8.0 kΩ	3.0 pF	3.0 pF	2.0 pF
4.5 V	4 kΩ	2.7 kΩ	3.0 pF	1.4 pF	2.0 pF

A/D Converter Characteristics (TA = -40 to $+85^{\circ}$ C, VDD = AVDD = 1.8 to 5.5 V, AVss = Vss = 0 V) (2/2)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			10	10	10	bit
Overall error ^{Notes 1, 2}		$4.0 \ V \leq AV_{\text{REF}} \leq 5.5 \ V$		±0.2	±0.4	%FSR
		$2.7 \text{ V} \leq \text{AV}_{\text{REF}} < 4.0 \text{ V}$		±0.3	±0.6	%FSR
		$1.8 \text{ V} \leq AV_{\text{REF}} < 2.7 \text{ V}$		±0.6	±1.2	%FSR
Conversion time	tconv	$4.5~V \leq AV_{\text{DD}} \leq 5.5~V$	12		96	μs
		$4.0 \text{ V} \leq AV_{\text{DD}} < 4.5 \text{ V}$	14		96	μs
		$2.7 \text{ V} \leq \text{AV}_{\text{DD}} < 4.0 \text{ V}$	17		96	μs
		$1.8 \text{ V} \leq \text{AV}_{\text{DD}} < 2.7 \text{ V}$	28		96	μs
Zero-scale error ^{Notes 1, 2}		$4.0 \text{ V} \leq \text{AV}_{\text{REF}} \leq 5.5 \text{ V}$			±0.4	%FSR
		$2.7 \text{ V} \leq \text{AV}_{\text{REF}} < 4.0 \text{ V}$			±0.6	%FSR
		$1.8 \text{ V} \leq AV_{\text{REF}} < 2.7 \text{ V}$			±1.2	%FSR
Full-scale error ^{Notes 1, 2}		$4.0 \text{ V} \leq \text{AV}_{\text{REF}} \leq 5.5 \text{ V}$			±0.4	%FSR
		$2.7 \text{ V} \leq AV_{\text{REF}} < 4.0 \text{ V}$			±0.6	%FSR
		$1.8 \text{ V} \leq AV_{\text{REF}} < 2.7 \text{ V}$			±1.2	%FSR
Integral linearity error ^{Note 1}		$4.0 \text{ V} \leq \text{AV}_{\text{REF}} \leq 5.5 \text{ V}$			±2.5	LSB
		$2.7 \text{ V} \leq AV_{\text{REF}} < 4.0 \text{ V}$			±4.5	LSB
		$1.8 \text{ V} \leq AV_{\text{REF}} < 2.7 \text{ V}$			±8.5	LSB
Differential linearity error		$4.0 \text{ V} \leq \text{AV}_{\text{REF}} \leq 5.5 \text{ V}$			±1.5	LSB
		$2.7 \text{ V} \leq AV_{\text{REF}} < 4.0 \text{ V}$			±2.0	LSB
		$1.8 \text{ V} \leq \text{AV}_{\text{REF}} < 2.7 \text{ V}$			±3.5	LSB
Analog input voltage	VAIN		0		AVREF	V
Reference voltage	AVREF		1.8		AVDD	V
Resistance between AVREF and AVSS	RREF	During A/D converter operation	20	40		kΩ


(2) 10-bit A/D converter: μ PD780034A Subseries

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio to the full-scale value.

Remark The impedance of the analog input pins is shown below.

[Equivalent circuit]

[Parameter value]

					(TYP.)
AVDD	R1	R2	C1	C2	C3
2.7 V	12 kΩ	8.0 kΩ	3.0 pF	3.0 pF	2.0 pF
4.5 V	4 kΩ	2.7 kΩ	3.0 pF	1.4 pF	2.0 pF

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention power supply voltage	Vdddr		1.6		5.5	V
Data retention power supply current	Idddr	VDDDR = 1.6 V (Subsystem clock unused (XT1 = VDD) and feedback resistor disconnected)		0.1	30	μA
Release signal set time	tsrel		0			μs
Oscillation stabilization	twait	Release by RESET		2 ¹⁷ /fx		S
wait time		Release by interrupt request		Note		S

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (T_A = -40 to +85°C)

Note Selection of 2¹²/fx and 2¹⁴/fx to 2¹⁷/fx is possible using bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time select register (OSTS).

Flash Memory Programming Characteristics (1/2) (TA = +10 to +40°C, VDD = AVDD = 1.8 to 5.5 V, Vss = AVss = 0 V)

• µPD78F0034B, 78F0034B(A)

(a) Write erase characteristics

Parameter	Symbol		Conditions	6	MIN.	TYP.	MAX.	Unit
Operating frequency	fx	4.5 V ≤ V	DD $\leq 5.5 \text{ V}$		1.0		10.0	MHz
		$3.0 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$		1.0		8.38	MHz	
		2.7 V ≤ V	DD < 3.0 V		1.0		5.00	MHz
		1.8 V ≤ V	$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$		1.0		1.25	MHz
VPP supply voltage	V _{PP2}	During fla	sh memory p	rogramming	9.7	10.0	10.3	V
VDD supply current ^{Note 1}	lod	When VPP = VPP2	10 MHz crystal oscillation operating mode	VDD = 5.0 V±10%			30	mA
			8.38 MHz crystal	VDD = 5.0 V±10%			24	mA
			oscillation operating mode	VDD = 3.0 V±10%			17	mA
VPP supply current	Ірр	When VPF	e = Vpp2				100	mA
Step erase time ^{Note 2}	Ter				0.199	0.2	0.201	s
Overall erase time ^{Note 3}	Tera	When ste	p erase time	= 0.2 s			20	s/chip
Writeback time ^{Note 4}	Twb				49.4	50	50.6	ms
Number of writebacks per writeback command ^{Note 5}	Cwb	When writ	teback time =	50 ms			60	Times
Number of erases/writebacks	Cerwb						16	Times
Step write time ^{Note 6}	Twr				48	50	52	μs
Overall write time per word ^{Note 7}	Twrw	When step v	When step write time = 50 μ s (1 word = 1 byte)		48		520	μs
Number of rewrites per chip ^{Note 8}	Cerwr	1 erase + 1	1 write after era	ase = 1 rewrite			20	Times/area

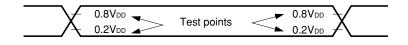
Notes 1. AVDD current and port current (current that flows through the internal pull-up resistor) are not included.

- 2. The recommended setting value of the step erase time is 0.2 s.
- 3. The prewrite time before erasure and the erase verify time (writeback time) are not included.
- 4. The recommended setting value of the writeback time is 50 ms.
- 5. Writeback is executed once by the issuance of the writeback command. Therefore, the number of retries must be the maximum value minus the number of commands issued.
- **6.** The recommended setting value of the step write time is 50 μ s.
- 7. The actual write time per word is 100 μ s longer. The internal verify time during or after a write is not included.
- When a product is first written after shipment, "erase → write" and "write only" are both taken as one rewrite.

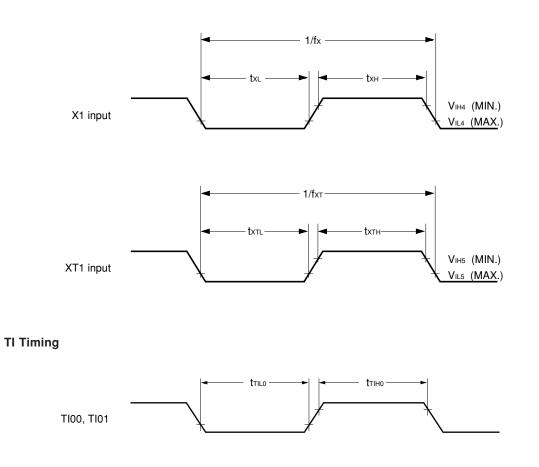
Example: P: Write, E: Erase

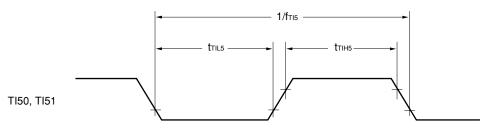
Shipped product $\rightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P$: 3 rewrites Shipped product $\rightarrow E \rightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P$: 3 rewrites

Flash Memory Programming Characteristics (2/2) (TA = +10 to +40°C, VDD = AVDD = 1.8 to 5.5 V, Vss = AVss = 0 V)

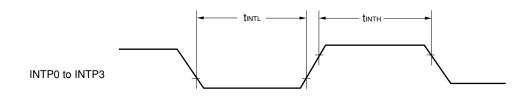

• µPD78F0034B, 78F0034B(A)

(b) Serial write operation characteristics

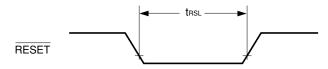

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Set time from V _{DD} ↑ to V _{PP} ↑	top		10			μs
Release time from V _{PP} ↑ to RESET↑	t PR		1.0			μs
VPP pulse input start time from RESET↑	trp		1.0			μs
VPP pulse high-/low-level width	tew		8.0			μs
$\frac{V_{\text{PP}} \text{ pulse input end time from}}{\text{RESET}} \uparrow$	t RPE				20	ms
VPP pulse low-level input voltage	Vppl		0.8Vdd		1.2VDD	V
VPP pulse high-level input voltage	Vpph		9.7	10.0	10.3	V


Timing Charts

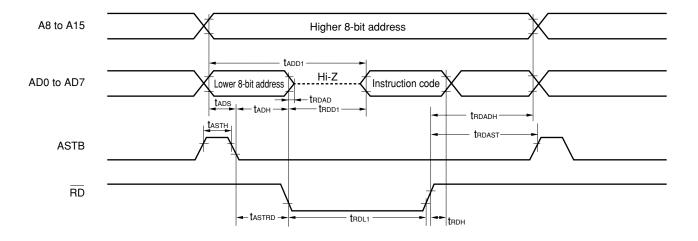
AC Timing Test Points (excluding X1, XT1 input)



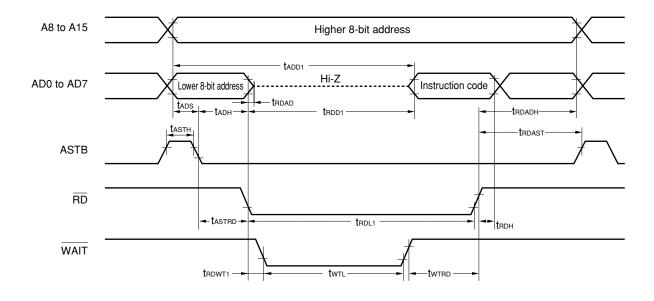
Clock Timing



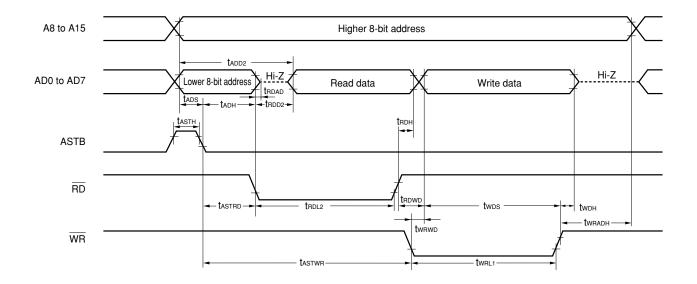
Interrupt Request Input Timing

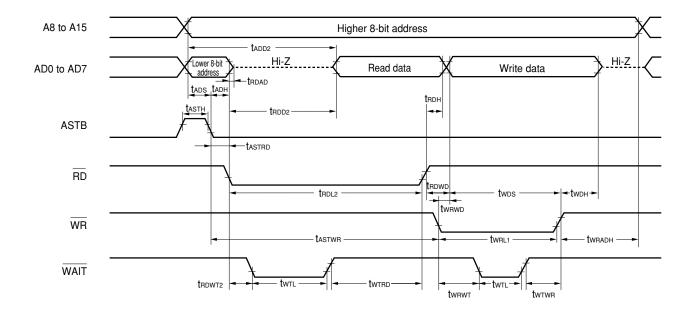


RESET Input Timing



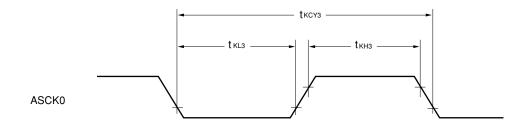
Read/Write Operation


External fetch (no wait):

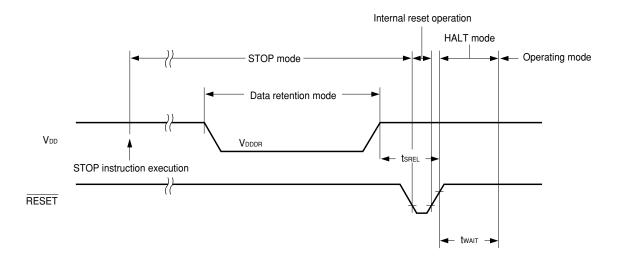

External fetch (wait insertion):

External data access (no wait):

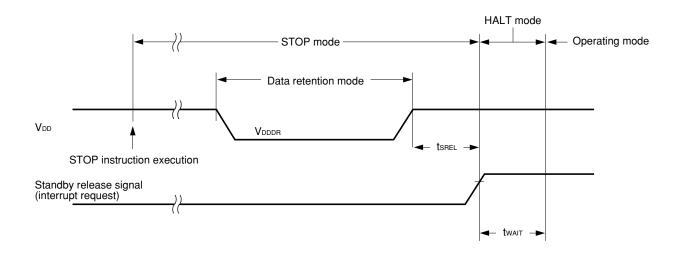
External data access (wait insertion):

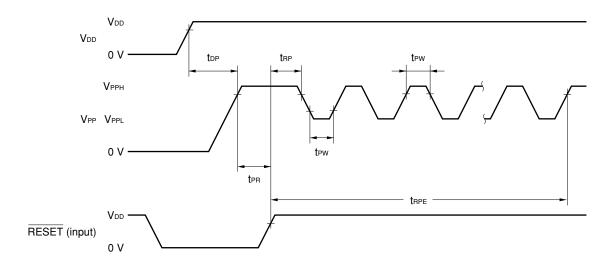

Serial Transfer Timing

3-wire serial I/O mode:



Remarks 1. m = 1, 2 **2.** n = 0, 1


UART mode (external clock input):


Data Retention Timing (STOP Mode Release by RESET)

Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Request Signal)

Flash Memory Write Mode Set Timing

CHAPTER 26 ELECTRICAL SPECIFICATIONS (CONVENTIONAL PRODUCTS: fx = 1.0 TO 8.38 MHz)

Target products

 \star

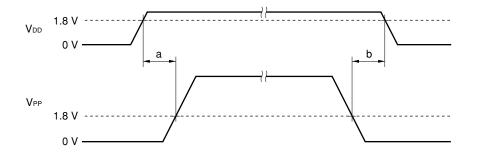
- μPD780021A, 780022A, 780023A, 780024A, 780031A, 780032A, 780033A, 780034A, 780021A(A), 780022A(A), 780023A(A), 780024A(A), 780031A(A), 780032A(A), 780033A(A), 780034A(A) for which orders were received before November 30, 2001 (Products with rank^{Note} K, E, P, X)
- μPD780021AY, 780022AY, 780023AY, 780024AY, 780031AY, 780032AY, 780033AY, 780034AY, 780021AY(A), 780022AY(A), 780023AY(A), 780024AY(A), 780031AY(A), 780032AY(A), 780033AY(A), 780034AY(A)
- μPD78F0034A, 78F0034AY, 78F0034BY, 78F0034BY(A)

Note The rank is indicated by the 5th digit from the left in the lot number marked on the package.

Caution The μPD780021AY(A), 780023AY(A), 780024AY(A), 780031AY(A), 780032AY(A), 780033AY(A), and 780034AY(A) are under development.
 The electrical specifications of the above products are target values (reference values only); mass-produced products do not necessarily satisfy these ratings.

Parameter	Symbol		Conditions	Ratings	Unit
Supply voltage	Vdd			-0.3 to +6.5	V
	Vpp	Flash memory	version only, Note 2	-0.3 to +10.5	V
	AVdd			-0.3 to V _{DD} + 0.3 ^{Note 1}	V
	AVREF			-0.3 to V _{DD} + 0.3 ^{Note 1}	V
	AVss			-0.3 to +0.3	V
Input voltage	VI1	, í	10 to P17, P20 to P25, P34 to P36, 50 to P57, P64 to P67, P70 to P75, KT2, RESET	-0.3 to V_{DD} + 0.3Note 1	V
	VI2	P30 to P33	N-ch open drain	-0.3 to +6.5	V
			On-chip pull-up resistor	-0.3 to V _{DD} + 0.3 ^{Note 1}	V
Output voltage	Vo			-0.3 to V _{DD} + 0.3 ^{Note 1}	V
Analog input voltage	Van	P10 to P17	Analog input pin	$AV_{SS} - 0.3$ to $AV_{REF} + 0.3^{Note 1}$ and -0.3 to $V_{DD} + 0.3^{Note 1}$	V

Absolute Maximum Ratings (T_A = 25° C) (1/2)


Notes 1. 6.5 V or below

- 2. Make sure that the following conditions of the VPP voltage application timing are satisfied when the flash memory is written.
 - · When supply voltage rises

VPP must exceed VDD 10 μ s or more after VDD has reached the lower-limit value (1.8 V) of the operating voltage range (see a in the figure below).

When supply voltage drops

VDD must be lowered 10 μ s or more after VPP falls below the lower-limit value (1.8 V) of the operating voltage range of VDD (see b in the figure below).

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

Parameter	Symbol	Conditions	Ratings	Unit
Output current, high	Іон	Per pin	-10	mA
		Total for P00 to P03, P40 to P47, P50 to P57, P64 to P67, P70 to P75	-15	mA
		Total for P20 to P25, P30 to P36	-15	mA
Output current, low	lol	Per pin for P00 to P03, P20 to P25, P34 to P36, P40 to P47, P64 to P67, P70 to P75	20	mA
		Per pin for P30 to P33, P50 to P57	30	mA
		Total for P00 to P03, P40 to P47, P64 to P67, P70 to P75	50	mA
		Total for P20 to P25	20	mA
		Total for P30 to P36	100	mA
		Total for P50 to P57	100	mA
Operating ambient	Та	During normal operation	-40 to +85	°C
temperature		During flash memory programming	-10 to +80	°C
Storage	Tstg	Mask ROM version	-65 to +150	°C
temperature		Flash memory version	-40 to +125	°C

Absolute Maximum Ratings (T_A = 25° C) (2/2)

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

Parameter	Symbol	C	Conditions			MAX.	Unit
Input capacitance	Cin	f = 1 MHz Unmeasured pins return			15	pF	
I/O capacitance	Сю	f = 1 MHz Unmeasured pins returned to 0 V.	P00 to P03, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75			15	рF
			P30 to P33			20	pF

Capacitance (TA = 25° C, VDD = Vss = 0 V)

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

Main System Clock Oscillator Characteristics ($T_A = -40$ to $+85^{\circ}C$, $V_{DD} = 1.8$ to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic		Oscillation	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		8.38	MHz
resonator	X2 X1 Vss1	frequency (fx)Note 1	$1.8~V \leq V_{\text{DD}} < 4.0~V$	1.0		5.0	
		Oscillation stabilization time ^{Note 2}	After V _{DD} reaches oscillation voltage range MIN.			4	ms
Crystal	1 1	Oscillation	$4.0 V \le V_{DD} \le 5.5 V$	1.0		8.38	MHz
resonator	X2 X1 Vss1	frequency (fx) ^{Note 1}	$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	1.0		5.0	
		Oscillation	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			10	ms
	······································	stabilization time ^{Note 2}	$1.8~V \leq V_{\text{DD}} < 4.0~V$			30	
External		X1 input	$4.0~V \le V_{\text{DD}} \le 5.5~V$	1.0		8.38	MHz
clock	X2 X1	frequency (fx) ^{Note 1}	$1.8~V \leq V_{\text{DD}} < 4.0~V$	1.0		5.0	
	└≪ - ,	X1 input	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	50		500	ns
	\uparrow	high-/low-level width (tхн, tх∟)	$1.8~V \leq V_{\text{DD}} < 4.0~V$	85		500	

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

2. Time required to stabilize oscillation after reset or STOP mode release.

- · Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- · Always make the ground point of the oscillator capacitor the same potential as Vss1.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.
- 2. When the main system clock is stopped and the system is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.

Cautions 1. When using the main system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	XT2 XT1 Vsst	Oscillation frequency (fxt) ^{Note 1}		32	32.768	35	kHz
		Oscillation	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		1.2	2	s
	······································	stabilization time ^{Note 2}	$1.8~V \leq V_{\text{DD}} < 4.0~V$			10	
External clock	XT2 XT1	XT1 input frequency (f _{XT}) ^{Note 1}		32		38.5	kHz
		XT1 input high-/low-level width (txтн, txтL)		12		15	μs

Subsystem Clock Oscillator	Characteristics	$T_{A} = -40 \text{ to } +85^{\circ}\text{C}$, VDD = 1.8 to 5.5 V)
----------------------------	-----------------	---	-----------------------

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

- 2. Time required to stabilize oscillation after VDD reaches oscillation voltage range MIN.
- Cautions 1. When using the subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in the above figure to avoid an adverse effect from wiring capacitance.
 - · Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss1.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
 - The subsystem clock oscillator is designed as a low-amplitude circuit for reducing power consumption, and is more prone to malfunction due to noise than the main system clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.
 - **Remark** For the resonator selection and oscillator constant of the subsystem clock, customers are required to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Recommended Oscillator Constant (1/2)

To use the μ PD78F0034BY or 78F0034BY(A), for the resonator selection and oscillator constant, customers are required to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

(1) Mask ROM versions of μ PD780024A, 780034A Subseries (conventional product) and μ PD780024AY, 780034AY Subseries

Manufacturer	Part Number	Frequency	Recomme	ended Circuit	Constant	Oscillation V	oltage Range
		(MHz)	C1 (pF)	C2 (pF)	R1 (kΩ)	MIN. (V)	MAX. (V)
Murata Mfg.	CSBFB1M00J58	1.00	100	100	2.2	1.8	5.5
Co., Ltd.	CSBLA1M00J58	1.00	100	100	2.2	1.8	5.5
	CSTCC2M00G56	2.00	On-chip	On-chip	0	1.8	5.5
	CSTLS2M00G56	2.00	On-chip	On-chip	0	1.8	5.5
	CSTCC3M58G53	3.58	On-chip	On-chip	0	1.8	5.5
	CSTLS3M58G53	3.58	On-chip	On-chip	0	1.8	5.5
	CSTCR4M00G53	4.00	On-chip	On-chip	0	1.8	5.5
	CSTLS4M00G53	4.00	On-chip	On-chip	0	1.8	5.5
	CSTCR4M19G53	4.19	On-chip	On-chip	0	1.8	5.5
	CSTLS4M19G53	4.19	On-chip	On-chip	0	1.8	5.5
	CSTCR4M91G53	4.91	On-chip	On-chip	0	1.8	5.5
	CSTLS4M91G53	4.91	On-chip	On-chip	0	1.8	5.5
	CSTCR5M00G53	5.00	On-chip	On-chip	0	1.8	5.5
	CSTLS5M00G53	5.00	On-chip	On-chip	0	1.8	5.5
	CSTCE8M00G52	8.00	On-chip	On-chip	0	2.7	5.5
	CSTLS8M00G53	8.00	On-chip	On-chip	0	2.7	5.5
	CSTCE8M38G52	8.38	On-chip	On-chip	0	4.0	5.5
	CSTLS8M38G53	8.38	On-chip	On-chip	0	4.0	5.5
TDK	CCR3.58MC3	3.58	On-chip	On-chip	0	1.8	5.5
	CCR4.19MC3	4.19	On-chip	On-chip	0	1.8	5.5
	CCR5.0MC3	5.00	On-chip	On-chip	0	1.8	5.5
	CCR8.0MC5	8.00	On-chip	On-chip	0	2.7	5.5
	CCR8.38MC5	8.38	On-chip	On-chip	0	4.0	5.5

Main system clock: Ceramic resonator ($T_A = -40$ to $+85^{\circ}C$)

Caution The oscillator constant is a reference value based on evaluation in specific environments by the resonator manufacturer. If the oscillator characteristics need to be optimized in the actual application, request the resonator manufacturer for evaluation on the implementation circuit. Note that the oscillation voltage and oscillation frequency merely indicate the characteristics of the oscillator. Use the internal operation conditions of the µPD780024A, 780024AY, 780034A, 780034AY Subseries within the specifications of the DC and AC characteristics.

Recommended Oscillator Constant (2/2)

(2) µPD78F0034A, 78F0034AY

Main system clock: Ceramic resonator (T_A = -40 to $+85^{\circ}$ C)

Manufacturer	Part Number	Frequency	Recomme	ended Circuit	Constant	Oscillation Voltage Range		
		(MHz)	C1 (pF)	C2 (pF)	R1 (kΩ)	MIN. (V)	MAX. (V)	
Murata Mfg.	CSBFB1M00J58	1.00	100	100	2.2	1.9	5.5	
Co., Ltd.	CSBLA1M00J58	1.00	100	100	2.2	1.9	5.5	
	CSTCC2M00G56	2.00	On-chip	On-chip	0	1.8	5.5	
	CSTLS2M00G56	2.00	On-chip	On-chip	0	1.8	5.5	
	CSTCC3M58G53	3.58	On-chip	On-chip	0	1.8	5.5	
	CSTLS3M58G53	3.58	On-chip	On-chip	0	1.8	5.5	
	CSTCR4M00G53	4.00	On-chip	On-chip	0	1.8	5.5	
	CSTLS4M00G53	4.00	On-chip	On-chip	0	1.8	5.5	
	CSTCR4M19G53	4.19	On-chip	On-chip	0	1.8	5.5	
	CSTLS4M19G53	4.19	On-chip	On-chip	0	1.8	5.5	
	CSTCR4M91G53	4.91	On-chip	On-chip	0	1.8	5.5	
	CSTLS4M91G53	4.91	On-chip	On-chip	0	1.8	5.5	
	CSTCR5M00G53	5.00	On-chip	On-chip	0	1.8	5.5	
	CSTLS5M00G53	5.00	On-chip	On-chip	0	1.8	5.5	
	CSTCE8M00G52	8.00	On-chip	On-chip	0	2.7	5.5	
	CSTLS8M00G53	8.00	On-chip	On-chip	0	2.7	5.5	
	CSTLS8M00G53093	8.00	On-chip	On-chip	0	2.7	5.5	
	CSTCE8M38G52	8.38	On-chip	On-chip	0	4.0	5.5	
	CSTLS8M38G53	8.38	On-chip	On-chip	0	4.0	5.5	
	CSTLS8M38G53093	8.38	On-chip	On-chip	0	4.0	5.5	
TDK	CCR3.58MC3	3.58	On-chip	On-chip	0	1.8	5.5	
	CCR4.19MC3	4.19	On-chip	On-chip	0	1.8	5.5	
	CCR5.0MC3	5.00	On-chip	On-chip	0	1.8	5.5	
	CCR8.0MC5	8.00	On-chip	On-chip	0	2.7	5.5	
	CCR8.38MC5	8.38	On-chip	On-chip	0	4.0	5.5	

Caution The oscillator constant is a reference value based on evaluation in specific environments by the resonator manufacturer. If the oscillator characteristics need to be optimized in the actual application, request the resonator manufacturer for evaluation on the implementation circuit. Note that the oscillation voltage and oscillation frequency merely indicate the characteristics of the oscillator. Use the internal operation conditions of the μPD780024A, 780024AY, 780034A, 780034AY Subseries within the specifications of the DC and AC characteristics.

DC Characteristics (TA = -40 to $+85^{\circ}$ C, VDD = 1.8 to 5.5 V) (1/4)

Parameter	Symbol	Conditions	5	MIN.	TYP.	MAX.	Unit
Output current,	Іон	Per pin				-1	mA
high		All pins				-15	mA
Output current, low	Iol	Per pin for P00 to P03, P20 to P25, P34 to P36, P40 to P47, P64 to P67, P70 to P75				10	mA
		Per pin for P30 to P33, P50 to P				15	mA
		Total for P00 to P03, P40 to P47,	P64 to P67, P70 to P75			20	mA
		Total for P20 to P25				10	mA
		Total for P30 to P36				70	mA
		Total for P50 to P57			70	mA	
Input voltage,	VIH1	P10 to P17, P21, P24, P35,	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0.7Vdd		VDD	v
high		P40 to P47, P50 to P57, P64 to P67, P74, P75	$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.8VDD		VDD	V
	VIH2	P00 to P03, P20, P22, P23, P25,	$2.7 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$	0.8Vdd		Vdd	V
		P34, P36, P70 to P73, RESET	$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.85Vdd		VDD	V
	VIH3	P30 to P33	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0.7VDD		5.5	V
		(N-ch open-drain)	$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.8VDD		5.5	V
	VIH4	X1, X2	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	V _{DD} – 0.5		VDD	V
			$1.8 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	V _{DD} – 0.2		VDD	v
	VIH5	XT1, XT2	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	0.8Vpd		VDD	V
	• ***	,	$1.8 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}$	0.9VDD		VDD	v
Input voltage,		$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	0.0100		0.3VDD	v	
low	VIL I	P40 to P47, P50 to P57, P64 to P67, P74, P75	$1.8 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	0		0.2VDD	V
	VIL2 P00 to P03, P20, P22, P23, P25,		$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0		0.2VDD	V
		P34, P36, P70 to P73, RESET	$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0		0.15VDD	V
	VIL3	P30 to P33	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0		0.3VDD	V
			$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	0		0.2VDD	V
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0		0.1VDD	V
	VIL4	X1, X2	$2.7 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$	0		0.4	V
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0		0.2	V
	VIL5	XT1, XT2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	0		0.2VDD	V
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	0		0.1VDD	V
Output voltage,	VOH1	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ IOH} = -1 \text{ mA}$	· \	Vdd - 1.0		Vdd	V
high		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, \text{ Ioh} = -100 \text{ /}$	иA	Vdd - 0.5		Vdd	V
Output voltage,	Vol1	P30 to P33	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$			2.0	V
low	Vol2	P50 to P57	lo∟ = 15 mA		0.4	2.0	V
	Vol3	P00 to P03, P20 to P25, P34 to P36, P40 to P47, P64 to P67, P70 to P75	· · · · · · · · · · · · · · · · · · ·			0.4	V
	Vol4	Ιοι = 400 μΑ				0.5	V

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

Parameter	Symbol	Co	onditions	MIN.	TYP.	MAX.	Unit
Input leakage current, high	Цинт	Vin = Vdd	P00 to P03, P10 to P17, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75, RESET			3	μA
	ILIH2		X1, X2, XT1, XT2			20	μA
	Іцнз	Vin = 5.5 V	P30 to P33			3	μA
Input leakage current, low	ILIL1	$V_{iN} = 0 V$	P00 to P03, P10 to P17, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75, RESET			-3	μΑ
			X1, X2, XT1, XT2			-20	μA
	Ilil3		P30 to P33			-3	μA
Output leakage current, high	Ігон	Vout = Vdd				3	μΑ
Output leakage current, low	Ilol	Vout = 0 V				-3	μA
Mask option pull- up resistance (mask ROM version only)	Rı	V _{IN} = 0 V, P30, P31, P32 ^{Note} , P33 ^N	lote	15	30	90	kΩ
Software pull- up resistance	R₂	V _{IN} = 0 V, P00 to P03, P20 to P25 P50 to P57, P64 to P67	, P34 to P36, P40 to P47, , P70 to P75	15	30	90	kΩ

DC Characteristics (TA = -40 to +85°C, VDD = 1.8 to 5.5 V) (2/4)

Note µPD780024A, 780034A Subseries only

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics (TA = -40 to $+85^{\circ}$ C, VDD = 1.8 to 5.5 V) (3/4)

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Power supply current ^{Note 1}	DD1 Note 2	8.38 MHz crystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When A/D converter is stopped		5.5	11	mA
		operating mode		When A/D converter is operating ^{Note 6}		6.5	13	mA
		5.00 MHz crystal oscillation	$V_{DD} = 3.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When A/D converter is stopped		2	4	mA
		operating mode		When A/D converter is operating ^{Note 6}		3	6	mA
			$V_{DD} = 2.0 \text{ V} \pm 10\%^{\text{Note 4}}$	When A/D converter is stopped		0.4	1.5	mA
				When A/D converter is operating ^{Note 6}		1.4	4.2	mA
	IDD2	8.38 MHz crystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When peripheral functions are stopped		1.1	2.2	mA
		HALT mode		When peripheral functions are operating			4.7	mA
		5.00 MHz crystal oscillation	$V_{DD} = 3.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When peripheral functions are stopped		0.35	0.7	mA
		HALT mode		When peripheral functions are operating			1.7	mA
			$V_{DD} = 2.0 \text{ V} \pm 10\%^{\text{Note 4}}$	When peripheral functions are stopped		0.15	0.4	mA
				When peripheral functions are operating			1.1	mA
	Іддз	32.768 kHz crysta	al oscillation	VDD = 5.0 V ±10%		40	80	μA
		operating mode ^{No}	ite 5	VDD = 3.0 V ±10%		20	40	μA
				VDD = 2.0 V ±10%		10	20	μA
	IDD4	32.768 kHz crysta	al oscillation	VDD = 5.0 V ±10%		30	60	μA
		HALT mode ^{Note 5}		VDD = 3.0 V ±10%		6	18	μA
				Vdd = 2.0 V ±10%		2	10	μA
	Idd5	XT1 = VDD, STOP		VDD = 5.0 V ±10%		0.1	30	μA
		When feedback re	esistor is not used	Vdd = 3.0 V ±10%		0.05	10	μA
				VDD = 2.0 V ±10%		0.05	10	μA

(1) Mask ROM versions of μ PD780024A, 780034A Subseries (conventional product) and μ PD780024AY, 780034AY Subseries

Notes 1. Total current through the internal power supply (VDD0, VDD1) (except the current through pull-up resistors of ports).

- 2. IDD1 includes the peripheral operation current.
- 3. When the processor clock control register (PCC) is cleared to 00H.
- 4. When PCC is set to 02H.
- 5. When main system clock operation is stopped.
- 6. Includes the current through the AVDD pin.

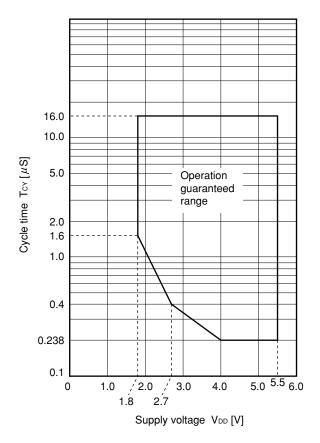
DC Characteristics (TA = -40 to $+85^{\circ}$ C, VDD = 1.8 to 5.5 V) (4/4)

(2) µPD78F0034A, 78F0034AY, 78F0034BY, 78F0034BY(A)

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Power supply current ^{Note 1}	_{DD1} Note 2	8.38 MHz crystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When A/D converter is stopped		10.5	21	mA
		operating mode		When A/D converter is operating ^{Note 6}		11.5	23	mA
		5.00 MHz crystal oscillation	$V_{DD} = 3.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When A/D converter is stopped		4.5	9	mA
		operating mode		When A/D converter is operating ^{Note 6}		5.5	11	mA
			$V_{DD} = 2.0 \text{ V} \pm 10\%^{\text{Note 4}}$	When A/D converter is stopped		1	2	mA
				When A/D converter is operating ^{Note 6}		2	6	mA
	IDD2	8.38 MHz crystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When peripheral functions are stopped		1.2	2.4	mA
		HALT mode		When peripheral functions are operating			5	mA
		5.00 MHz crystal oscillation	$V_{DD} = 3.0 V \pm 10\%^{Note 3}$	When peripheral functions are stopped		0.4	0.8	mA
		HALT mode		When peripheral functions are operating			1.7	mA
			$V_{DD} = 2.0 \text{ V} \pm 10\%^{\text{Note 4}}$	When peripheral functions are stopped		0.2	0.4	mA
				When peripheral functions are operating			1.1	mA
	Іддз	32.768 kHz crysta	al oscillation	$V_{\text{DD}} = 5.0 \text{ V} \pm 10\%^{\text{Note 2}}$		115	230	μA
		operating mode ^{No}	te 5	$V_{DD} = 3.0 \ V \pm 10\%^{Note 2}$		95	190	μA
				$V_{DD} = 2.0 \text{ V} \pm 10\%^{\text{Note 3}}$		75	150	μA
	IDD4	32.768 kHz crysta	al oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 2}}$		30	60	μA
		HALT mode ^{Note 5}		$V_{DD} = 3.0 \text{ V} \pm 10\%^{\text{Note 2}}$		6	18	μA
				$V_{DD} = 2.0 \text{ V} \pm 10\%^{\text{Note 3}}$		2	10	μA
	Idd5	XT1 = VDD, STOP		$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 2}}$		0.1	30	μA
		When feedback re	esistor is not used	$V_{\text{DD}} = 3.0 \text{ V} \pm 10\%^{\text{Note 2}}$		0.05	10	μA
				VDD = 2.0 V ±10% ^{Note 3}		0.05	10	μA

Notes 1. Total current through the internal power supply (VDD0, VDD1) (except the current through pull-up resistors of ports).

- 2. IDD1 includes the peripheral operation current.
- 3. When the processor clock control register (PCC) is cleared to 00H.
- 4. When PCC is set to 02H.
- 5. When main system clock operation is stopped.
- 6. Includes the current through the AVDD pin.


AC Characteristics

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
Cycle time	Тсү	Operating with	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	0.238		16	μs
(Min. instruction		main system clock	$2.7~V \leq V_{\text{DD}} < 4.0~V$	0.4		16	μs
execution time)			$1.8~V \leq V_{\text{DD}} < 2.7~V$	1.6		16	μs
		Operating with subs	system clock	103.9 ^{Note 1}	122	125	μs
TI00, TI01 input	ttiho, ttilo	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		2/fsam + 0.1Note 2			μs
high-/low-level		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}$		2/fsam + 0.2 ^{Note 2}			μs
width		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$		2/fsam + 0.5Note 2			μs
TI50, TI51 input	f т15	$2.7~V \le V_{\text{DD}} \le 5.5~V$		0		4	MHz
frequency		$1.8~V \leq V_{\text{DD}} < 2.7~V$		0		275	kHz
TI50, TI51 input	t⊤iH5, tTiL5	$2.7 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$		100			ns
high-/low-level width		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$		1.8			μs
Interrupt request	tinth, tintl	INTP0 to INTP3,	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1			μs
input high-/low- level width		P40 to P47	$1.8 \text{ V} \leq V_{\text{DD}} < 2.7 \text{ V}$	2			μs
RESET	tRSL	$2.7 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$	1	10			μs
low-level width		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$		20			μs

(1) Basic operation (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 5.5 V)

Notes 1. Value when the external clock is used. When a crystal resonator is used, it is 114 μ s (MIN.).

Selection of f_{sam} = fx, fx/4, fx/64 is possible using bits 0 and 1 (PRM00, PRM01) of prescaler mode register 0 (PRM0). However, if the TI00 valid edge is selected as the count clock, the value becomes f_{sam} = fx/8.

TCY vs. VDD (main system clock operation)

(2) Read/write operation (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 4.0 to 5.5 V) (1/3)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	t asth		0.3tcy		ns
Address setup time	tads		20		ns
Address hold time	tadh		6		ns
Data input time from address	tadd1			(2 + 2n)tcy - 54	ns
	tadd2			(3 + 2n)tcy - 60	ns
Address output time from $\overline{\mathrm{RD}} \downarrow$	trdad		0	100	ns
Data input time from $\overline{\text{RD}} {\downarrow}$	trdd1			(2 + 2n)tcy - 87	ns
	trdd2			(3 + 2n)tcy - 93	ns
Read data hold time	t RDH		0		ns
RD low-level width	trdL1		(1.5 + 2n)tcr - 33		ns
	tRDL2		(2.5 + 2n)tcr - 33		ns
Input time from $\overline{\text{RD}} \downarrow$ to $\overline{\text{WAIT}} \downarrow$	trdwt1			tcy - 43	ns
	trdwt2			tcy - 43	ns
Input time from $\overline{\text{WR}} {\downarrow}$ to $\overline{\text{WAIT}} {\downarrow}$	twrwt			tcy - 25	ns
WAIT low-level width	tw⊤∟		(0.5 + 2n)tcr + 10	(2 + 2n)tcr	ns
Write data setup time	twos		60		ns
Write data hold time	twdн		6		ns
WR low-level width	twRL1		(1.5 + 2n)tcr - 15		ns
Delay time from ASTB \downarrow to $\overline{\mathrm{RD}}\downarrow$	t ASTRD		6		ns
Delay time from ASTB \downarrow to $\overline{\text{WR}}\downarrow$	t astwr		2tcy - 15		ns
Delay time from $\overline{\text{RD}}\uparrow$ to ASTB \uparrow at external fetch	trdast		0.8tcy - 15	1.2tcy	ns
Address hold time from $\overline{\text{RD}}\uparrow$ at external fetch	trdadh		0.8tcy - 15	1.2tcy + 30	ns
Write data output time from $\overline{\text{RD}} \uparrow$	trowd		40		ns
Write data output time from $\overline{\text{WR}} \downarrow$	twrwd		10	60	ns
Address hold time from $\overline{\rm WR} \uparrow$	twradh		0.8tcy - 15	1.2tcy + 30	ns
Delay time from $\overline{\text{WAIT}}\uparrow$ to $\overline{\text{RD}}\uparrow$	twrrd		0.8tcy	2.5tcy + 25	ns
Delay time from $\overline{\text{WAIT}}\uparrow$ to $\overline{\text{WR}}\uparrow$	twrwn		0.8tcy	2.5tcy + 25	ns

Remarks 1. tcy = Tcy/4

- 2. n indicates the number of waits.
- **3**. $C_{L} = 100 \text{ pF}$ (C_{L} indicates the load capacitance of the AD0 to AD7, A8 to A15, \overline{RD} , \overline{WR} , \overline{WAIT} , and ASTB pins.)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	t asth		0.3tcv		ns
Address setup time	tads		30		ns
Address hold time	tadh		10		ns
Input time from address to data	tadd1			(2 + 2n)tcy - 108	ns
	tadd2			(3 + 2n)tcr - 120	ns
Output time from $\overline{RD} {\downarrow}$ to address	trdad		0	200	ns
Input time from $\overline{\text{RD}}\downarrow$ to data	trdd1			(2 + 2n)tcr - 148	ns
	trdd2			(3 + 2n)tcr - 162	ns
Read data hold time	trdн		0		ns
RD low-level width	trdl1		(1.5 + 2n)tcy - 40		ns
	trdl2		(2.5 + 2n)ter - 40		ns
Input time from $\overline{RD} \downarrow$ to $\overline{WAIT} \downarrow$	trdwt1			tcy - 75	ns
	trdwt2			tcy - 60	ns
Input time from $\overline{WR}{\downarrow}$ to $\overline{WAIT}{\downarrow}$	twrwt			tcy - 50	ns
WAIT low-level width	tw⊤∟		(0.5 + 2n)tcr + 10	(2 + 2n)tcr	ns
Write data setup time	twos		60		ns
Write data hold time	twdн		10		ns
WR low-level width	twRL1		(1.5 + 2n)ter - 30		ns
Delay time from ASTB \downarrow to $\overline{\text{RD}}\downarrow$	tastrd		10		ns
Delay time from ASTB \downarrow to $\overline{WR}\downarrow$	t astwr		2tcy - 30		ns
Delay time from $\overline{\text{RD}}\uparrow$ to ASTB \uparrow at external fetch	trdast		0.8tcy - 30	1.2tcv	ns
Hold time from $\overline{\text{RD}}\uparrow$ to address at external fetch	trdadh		0.8toy - 30	1.2tcy + 60	ns
Write data output time from $\overline{\text{RD}}$ 1	trowd		40		ns
Write data output time from $\overline{\text{WR}} \downarrow$	twrwd		20	120	ns
Hold time from \overline{WR}^{\uparrow} to address	twradh		0.8tcy - 30	1.2tcy + 60	ns
Delay time from $\overline{\text{WAIT}}$ to $\overline{\text{RD}}$	twtrd		0.5tcy	2.5tcr + 50	ns
Delay time from $\overline{\text{WAIT}}$ to $\overline{\text{WR}}$	twrwr		0.5tcy	2.5tcr + 50	ns

Remarks 1. tcy = Tcy/4

- 2. n indicates the number of waits.
- **3.** $C_{L} = 100 \text{ pF}$ (C_{L} indicates the load capacitance of the AD0 to AD7, A8 to A15, \overline{RD} , \overline{WR} , \overline{WAIT} , and ASTB pins.)

(2) Read/write operation (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 2.7 V) (3/3)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	t asth		0.3tcr		ns
Address setup time	tads		120		ns
Address hold time	tadh		20		ns
Input time from address to data	tadd1			(2 + 2n)tcy - 233	ns
	tadd2			(3 + 2n)tcy - 240	ns
Output time from $\overline{RD} \downarrow$ to address	trdad		0	400	ns
Input time from $\overline{\text{RD}} {\downarrow}$ to data	trdd1			(2 + 2n)tcy - 325	ns
	trdd2			(3 + 2n)tcy - 332	ns
Read data hold time	trdh		0		ns
RD low-level width	trdl1		(1.5 + 2n)tcy - 92		ns
	trdl2		(2.5 + 2n)tcy - 92		ns
Input time from $\overline{RD} {\downarrow}$ to $\overline{WAIT} {\downarrow}$	trdwt1			tcy - 350	ns
	trdwt2			tcy - 132	ns
Input time from $\overline{WR} {\downarrow}$ to $\overline{WAIT} {\downarrow}$	twrwt			tcy - 100	ns
WAIT low-level width	tw⊤∟		(0.5 + 2n)tcr + 10	(2 + 2n)tcr	ns
Write data setup time	twos		60		ns
Write data hold time	twdн		20		ns
WR low-level width	twRL1		(1.5 + 2n)ter - 60		ns
Delay time from ASTB \downarrow to $\overline{\text{RD}}\downarrow$	t ASTRD		20		ns
Delay time from ASTB \downarrow to $\overline{\rm WR}\downarrow$	t ASTWR		2tcy - 60		ns
Delay time from	t rdast		0.8tcy - 60	1.2tcr	ns
$\overline{RD} \!\!\uparrow to ASTB \!\!\uparrow at external$ fetch					
Hold time from	trdadh		0.8tcy - 60	1.2tcy + 120	ns
$\overline{RD} \!\!\uparrow$ to address at external fetch					
Write data output time from $\overline{\text{RD}} \! \uparrow$	trowd		40		ns
Write data output time from $\overline{\text{WR}} {\downarrow}$	twrwd		40	240	ns
Hold time from $\overline{WR} {\uparrow}$ to address	twradh		0.8tcy - 60	1.2tcy + 120	ns
Delay time from $\overline{\text{WAIT}}\uparrow$ to $\overline{\text{RD}}\uparrow$	twtrd		0.5tcy	2.5tcy + 100	ns
Delay time from $\overline{\text{WAIT}}{\uparrow}$ to $\overline{\text{WR}}{\uparrow}$	twrwr		0.5tcv	2.5tcr + 100	ns

Remarks 1. tcy = Tcy/4

- 2. n indicates the number of waits.
- **3.** $C_{L} = 100 \text{ pF}$ (C_{L} indicates the load capacitance of the AD0 to AD7, A8 to A15, \overline{RD} , \overline{WR} , \overline{WAIT} , and ASTB pins.)

(3) Serial interface (TA = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 5.5 V) (1/3)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK3n	tксү1	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	954			ns
cycle time		$2.7~V \leq V_{\text{DD}} < 4.0~V$	1600			ns
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	3200			ns
SCK3n high-/	tkh1, tkL1	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	tксү1/2 – 50			ns
low-level width		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	tксү1/2 – 100			ns
SI3n setup time	tsik1	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	100			ns
(to SCK3n↑)		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	150			ns
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	300			ns
Sl3n hold time (from SCK3n↑)	tksi1		400			ns
Delay time from SCK3n↓ to SO3n output	tkso1	C = 100 pFNote			300	ns

(a) 3-wire serial I/O mode (SCK3n In	nternal clock output)
--------------------------------------	-----------------------

Note C is the load capacitance of the $\overline{\text{SCK3n}}$ and SO3n output lines.

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK3n	tксү2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	800			ns
cycle time		$2.7~V \leq V_{\text{DD}} < 4.0~V$	1600			ns
		$1.8 \text{ V} \leq V_{\text{DD}} < 2.7 \text{ V}$	3200			ns
SCK3n high-/	tkH2, tkL2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	400			ns
low-level width		$2.7~V \leq V_{\text{DD}} < 4.0~V$	800			ns
		$1.8 \text{ V} \leq V_{\text{DD}} < 2.7 \text{ V}$	1600			ns
SI3n setup time (to SCK3n↑)	tsik2		100			ns
SI3n hold time (from SCK3n↑)	tksı2		400			ns
Delay time from SCK3n↓ to SO3n output	tĸso2	C = 100 pF ^{Note}			300	ns

(b) 3-wire serial I/O mode (SCK3n... External clock input)

Note C is the load capacitance of the SO3n output line.

Remark μ PD780024A, 780034A Subseries: n = 0, 1 μ PD780024AY, 780034AY Subseries: n = 0

(3) Serial interface (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 5.5 V) (2/3)

(c) UART mode (dedicated baud-rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			131031	bps
		$2.7~V \leq V_{\text{DD}} < 4.0~V$			78125	bps
		$1.8~V \leq V_{\text{DD}} < 2.7~V$			39063	bps

(d) UART mode (external clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK0 cycle time	tксүз	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	800			ns
		$2.7~V \leq V_{\text{DD}} < 4.0~V$	1600			ns
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	3200			ns
ASCK0 high-/low-level width	tкнз,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	400			ns
	tкLз	$2.7~V \leq V_{\text{DD}} < 4.0~V$	800			ns
		$1.8~V \leq V_{\text{DD}} < 2.7~V$	1600			ns
Transfer rate		$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			39063	bps
		$2.7~V \leq V_{\text{DD}} < 4.0~V$			19531	bps
		$1.8~V \leq V_{\text{DD}} < 2.7~V$			9766	bps

(e) UART mode (infrared data transfer mode)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Transfer rate		$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		131031	bps
Allowable bit rate error		$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		±0.87	%
Output pulse width		$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	1.2	0.24/fbr ^{Note}	μs
Input pulse width		$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	4/fx		μs

Note fbr: Specified baud rate

(3) Serial interface (TA = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 5.5 V) (3/3)

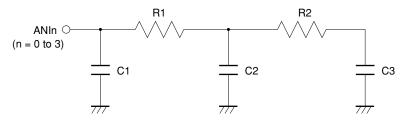
Р	Parameter		Standar	d Mode	High-Spe	ed Mode	Unit
			MIN.	MAX.	MIN.	MAX.	
SCL0 clock free	quency	fськ	0	100	0	400	kHz
Bus free time		t BUF	4.7	_	1.3	_	μs
(between stop a	and start conditions)						
Hold time ^{Note 1}		thd:sta	4.0	-	0.6	_	μs
SCL0 clock low	r-level width	tLOW	4.7	-	1.3	-	μs
SCL0 clock hig	h-level width	tніgн	4.0	-	0.6	-	μs
Start/restart co	ndition setup time	tsu:sta	4.7	-	0.6	-	μs
Data hold time	CBUS-compatible master	thd:dat	5.0	_	-	_	μs
	I ² C bus		O ^{Note 2}	-	ONote 2	0.9 ^{Note 3}	μs
Data setup time	e	tsu:dat	250	_	100 ^{Note 4}	_	ns
SDA0 and SCL	0 signal rise time	tĸ	_	1000	20 + 0.1Cb ^{Note 5}	300	ns
SDA0 and SCL	0 signal fall time	t⊧	-	300	20 + 0.1Cb ^{Note 5}	300	ns
Stop condition	setup time	tsu:sto	4.0	-	0.6	-	μs
Spike pulse wid	th controlled by input filter	tsp	_	-	0	50	ns
Capacitive load	l per bus line	Cb	_	400	-	400	pF

(f) I²C bus mode (µPD780024AY, 780034AY Subseries only)

Notes 1. In the start condition, the first clock pulse is generated after this hold time.

- 2. To fill in the undefined area of the SCL0 falling edge, it is necessary for the device to internally provide at least 300 ns of hold time for the SDA0 signal (which is VIHmin. of the SCL0 signal).
- If the device does not extend the SCL0 signal low hold time (tLow), only the maximum data hold time tHD:DAT needs to be fulfilled.
- **4.** The high-speed mode I²C bus is available in a standard mode I²C bus system. At this time, the conditions described below must be satisfied.
 - If the device does not extend the SCL0 signal low state hold time $t_{\text{SU:DAT}} \geq 250 \text{ ns}$
 - If the device extends the SCL0 signal low state hold time
 - Be sure to transmit the next data bit to the SDA0 line before the SCL0 line is released (tRmax. + tsu:DAT
 - = 1000 + 250 = 1250 ns by standard mode I²C bus specification).
- 5. Cb: Total capacitance per bus line (unit: pF)

A/D Converter Characteristics (TA = -40 to $+85^{\circ}$ C, VDD = AVDD = 1.8 to 5.5 V, AVss = Vss = 0 V) (1/2)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Overall error ^{Note}		$4.0~V \leq AV_{\text{REF}} \leq 5.5~V$			±0.4	%FSR
		$2.7 \text{ V} \leq \text{AV}_{\text{REF}} < 4.0 \text{ V}$			±0.6	%FSR
		$1.8 \text{ V} \leq \text{AV}_{\text{REF}} < 2.7 \text{ V}$			±1.2	%FSR
Conversion time	t CONV	$4.0~V \leq AV_{\text{DD}} \leq 5.5~V$	14		96	μs
		$2.7 \text{ V} \leq \text{AV}_{\text{DD}} < 4.0 \text{ V}$	19		96	μs
		$1.8 \text{ V} \leq \text{AV}_{\text{DD}} < 2.7 \text{ V}$	28		96	μs
Analog input voltage	VAIN		0		AVREF	V
Reference voltage	AVREF		1.8		AVDD	V
Resistance between AVREF and AVss	RREF	During A/D converter operation	20	40		kΩ

(1) 8-bit A/D converter: μ PD780024A, 780024AY Subseries

Note Excludes quantization error (±1/2 LSB). This value is indicated as a ratio (%FSR) to the full-scale value.

Remark The impedance of the analog input pins is shown below.

[Equivalent circuit]

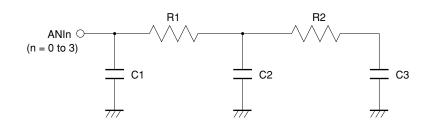
[Parameter value]

(TYP.)

AVdd	R1	R2	C1	C2	C3
2.7 V	12 kΩ	8.0 kΩ	3.0 pF	3.0 pF	2.0 pF
4.5 V	4 kΩ	2.7 kΩ	3.0 pF	1.4 pF	2.0 pF

A/D Converter Characteristics (TA = -40 to $+85^{\circ}$ C, VDD = AVDD = 1.8 to 5.5 V, AVss = Vss = 0 V) (2/2)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			10	10	10	bit
Overall error ^{Notes 1, 2}		$4.0 \text{ V} \leq \text{AV}_{\text{REF}} \leq 5.5 \text{ V}$		±0.2	±0.4	%FSR
		$2.7 \text{ V} \leq AV_{\text{REF}} < 4.0 \text{ V}$		±0.3	±0.6	%FSR
		$1.8 \text{ V} \leq AV_{\text{REF}} < 2.7 \text{ V}$		±0.6	±1.2	%FSR
Conversion time	tсолу	$4.0 \text{ V} \leq AV_{\text{DD}} \leq 5.5 \text{ V}$	14		96	μs
		$2.7 \text{ V} \leq AV_{\text{DD}} < 4.0 \text{ V}$	19		96	μs
		$1.8 \text{ V} \leq AV_{\text{DD}} < 2.7 \text{ V}$	28		96	μs
Zero-scale error ^{Notes 1, 2}		$4.0 \text{ V} \leq \text{AV}_{\text{REF}} \leq 5.5 \text{ V}$			±0.4	%FSR
		$2.7 \text{ V} \leq AV_{\text{REF}} < 4.0 \text{ V}$			±0.6	%FSR
		$1.8 \text{ V} \leq AV_{\text{REF}} < 2.7 \text{ V}$			±1.2	%FSR
Full-scale error ^{Notes 1, 2}		$4.0 \text{ V} \leq \text{AV}_{\text{REF}} \leq 5.5 \text{ V}$			±0.4	%FSR
		$2.7 \text{ V} \leq AV_{\text{REF}} < 4.0 \text{ V}$			±0.6	%FSR
		$1.8 \text{ V} \leq AV_{\text{REF}} < 2.7 \text{ V}$			±1.2	%FSR
Integral linearity error ^{Note 1}		$4.0 \text{ V} \leq \text{AV}_{\text{REF}} \leq 5.5 \text{ V}$			±2.5	LSB
		$2.7 \text{ V} \leq AV_{\text{REF}} < 4.0 \text{ V}$			±4.5	LSB
		$1.8 \text{ V} \leq \text{AV}_{\text{REF}} < 2.7 \text{ V}$			±8.5	LSB
Differential linearity error		$4.0 \text{ V} \leq \text{AV}_{\text{REF}} \leq 5.5 \text{ V}$			±1.5	LSB
		$2.7 \text{ V} \leq AV_{\text{REF}} < 4.0 \text{ V}$			±2.0	LSB
		$1.8 \text{ V} \leq \text{AV}_{\text{REF}} < 2.7 \text{ V}$			±3.5	LSB
Analog input voltage	VAIN		0		AVREF	V
Reference voltage	AVREF		1.8		AVDD	V
Resistance between AVREF and AVSS	RREF	During A/D converter operation	20	40		kΩ


(2) 10-bit A/D converter: μ PD780034A, 780034AY Subseries

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio to the full-scale value.

Remark The impedance of the analog input pins is shown below.

[Equivalent circuit]

[Parameter value]

(TYP.)

AVDD	R1	R2	C1	C2	C3
2.7 V	12 kΩ	8.0 kΩ	3.0 pF	3.0 pF	2.0 pF
4.5 V	4 kΩ	2.7 kΩ	3.0 pF	1.4 pF	2.0 pF

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (TA = -40 to +85°C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention power supply voltage	Vdddr		1.6		5.5	V
Data retention power supply current	Idddr	V _{DDDR} = 1.6 V (Subsystem clock unused (XT1 = V _{DD}) and feedback resistor disconnected)		0.1	30	μA
Release signal set time	t SREL		0			μs
Oscillation stabilization	twait	Release by RESET		2 ¹⁷ /fx		S
wait time		Release by interrupt request		Note		S

Note Selection of 2¹²/fx and 2¹⁴/fx to 2¹⁷/fx is possible using bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time select register (OSTS).

Flash Memory Programming Characteristics (1/3) (TA = +10 to +40°C, VDD = AVDD = 2.7 to 5.5 V, Vss = AVss = 0 V)

(1) µPD78F0034A, 78F0034AY

(a) Write erase characteristics

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Operating frequency	fx	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		1.0		8.38	MHz	
		2.7 V ≤ V	DD < 4.0 V		1.0		5.0	MHz
VPP supply voltage	Vpp2	During flash memory programming ^{Note 1}			9.7	10.0	10.3	V
VDD supply currentNote 2	loo	When VPP = VPP2	,	VDD = 5.0 V±10%			24	mA
			5.0 MHz crystal oscillation operating mode	VDD = 3.0 V±10%			12	mA
VPP supply current	Ірр	When VPF	e = Vpp2				100	mA
Step erase time ^{Note 3}	Ter				0.99	1.0	1.01	s
Overall erase time ^{Note 4}	Tera	When step erase time = 1 s					20	s/chip
Step write time ^{Note 5}	Twr				50		100	μs
Overall write time per word ^{Note 6}	Twrw	When step write time = 100 μ s (1 word = 1 byte)					1000	μs
Number of rewrites per chipNote 7	Cerwr	1 erase + 1 write after erase = 1 rewrite					20 ^{Note 8}	Times/area

Notes 1. Product rank "K, E, P" indicates 10.2 V (MIN.), 10.3 V (TYP.), and 10.4 V (MAX.).

- 2. AVDD current and port current (current that flows through the internal pull-up resistor) are not included.
- **3.** The recommended setting value of the step erase time is 1 s.
- 4. The prewrite time before erasure and the erase verify time are not included.
- 5. The recommended setting value of the step write time is 50 μ s.
- 6. The actual write time per word is 100 μ s longer. The internal verify time during or after a write is not included.
- When a product is first written after shipment, "erase → write" and "write only" are both taken as one rewrite.
 - Example: P: Write, E: Erase
 - Shipped product $\rightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P$: 3 rewrites
 - Shipped product $\rightarrow E \rightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P$: 3 rewrites
- 8. Product rank "K, E" indicates one time (MAX.).

(b) Serial write operation characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Set time from V _{DD} ↑ to V _{PP} ↑	top		10			μs
Release time from V _{PP} ↑ to RESET↑	t PR		1.0			μs
V _{PP} pulse input start time from RESET↑	trp		1.0			μs
VPP pulse high-/low-level width	tew		8.0			μs
V _{PP} pulse input end time from RESET↑	t RPE				20	ms
VPP pulse low-level input voltage	Vppl		0.8Vdd	Vdd	1.2VDD	V
VPP pulse high-level input voltage	Vpph		9.7	10.0	10.3	V

Flash Memory Programming Characteristics (2/3) (TA = +10 to +40°C, VDD = AVDD = 1.8 to 5.5 V, Vss = AVss = 0 V)

(2) µPD78F0034BY, 78F0034BY(A)

(a) Write erase characteristics

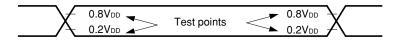
Parameter	Symbol		Conditions	;	MIN.	TYP.	MAX.	Unit
Operating frequency	fx	$4.0 V \leq V_{I}$	$00 \leq 5.5 \text{ V}$		1.0		8.38	MHz
		2.7 V ≤ V	op < 4.0 V		1.0		5.0	MHz
		1.8 V ≤ V	od < 2.7 V		1.0		1.25	MHz
VPP supply voltage	VPP2	During fla	sh memory p	rogramming	9.7	10.0	10.3	V
VDD supply current ^{Note 1}	IDD	When	8.38 MHz crystal	VDD = 5.0 V±10%			24	mA
		VPP = VPP2	oscillation operating mode	VDD = 3.0 V±10%			17	mA
VPP supply current	Ірр	When VPP	= Vpp2				100	mA
Step erase time ^{Note 2}	Ter				0.199	0.2	0.201	s
Overall erase time ^{Note 3}	Tera	When ste	p erase time	= 0.2 s			20	s/chip
Writeback time ^{Note 4}	Twb				49.4	50	50.6	ms
Number of writebacks per writeback command ^{Note 5}	Cwb	When writ	teback time =	50 ms			60	Times
Number of erases/writebacks	Cerwb						16	Times
Step write time ^{Note 6}	Twr				48	50	52	μs
Overall write time per word Note 7	Twrw	When step w	vrite time = 50 μ s	(1 word = 1 byte)	48		520	μs
Number of rewrites per chip ^{Note 8}	Cerwr	1 erase + 1	I write after era	ase = 1 rewrite			20	Times/area

Notes 1. AVDD current and port current (current that flows through the internal pull-up resistor) are not included.

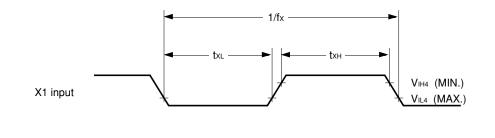
- 2. The recommended setting value of the step erase time is 0.2 s.
- 3. The prewrite time before erasure and the erase verify time (writeback time) are not included.
- 4. The recommended setting value of the writeback time is 50 ms.
- 5. Writeback is executed once by the issuance of the writeback command. Therefore, the number of retries must be the maximum value minus the number of commands issued.
- **6.** The recommended setting value of the step write time is 50 μ s.
- 7. The actual write time per word is 100 μ s longer. The internal verify time during or after a write is not included.
- When a product is first written after shipment, "erase → write" and "write only" are both taken as one rewrite.

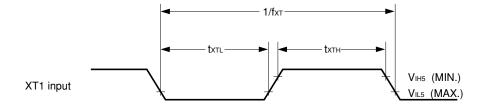
Example: P: Write, E: Erase

Shipped product $\rightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P$: 3 rewrites Shipped product $\rightarrow E \rightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P$: 3 rewrites

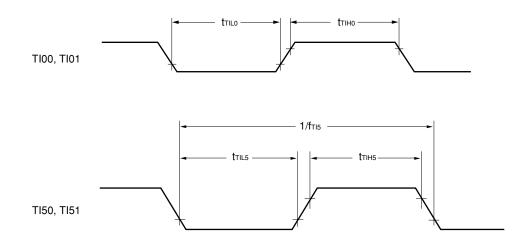

Flash Memory Programming Characteristics (3/3) (TA = +10 to +40°C, VDD = AVDD = 1.8 to 5.5 V, Vss = AVss = 0 V)

(b) Serial write operation characteristics

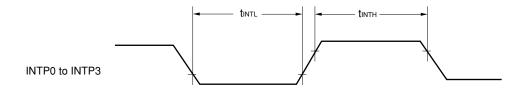

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Set time from $V_{DD}\uparrow$ to $V_{PP}\uparrow$	tdp		10			μs
Release time from VPP↑ to RESET↑	t _{PR}		1.0			μs
VPP pulse input start time from RESET↑	trp		1.0			μs
VPP pulse high-/low-level width	tew		8.0			μs
V _{PP} pulse input end time from RESET↑	t RPE				20	ms
VPP pulse low-level input voltage	Vppl		0.8Vdd		1.2VDD	V
VPP pulse high-level input voltage	VPPH		9.7	10.0	10.3	V

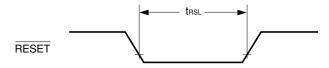

Timing Charts

AC Timing Test Points (excluding X1, XT1 input)

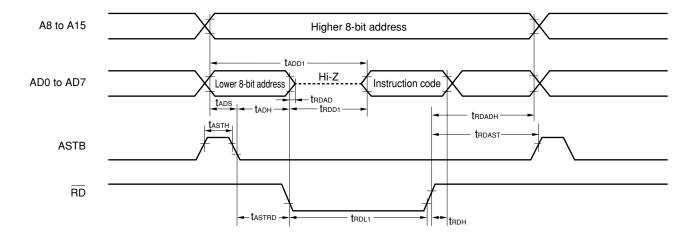


Clock Timing

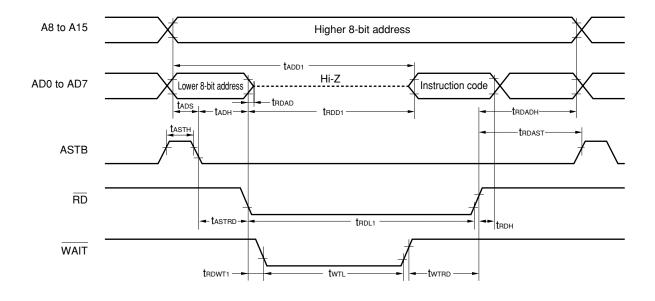



TI Timing

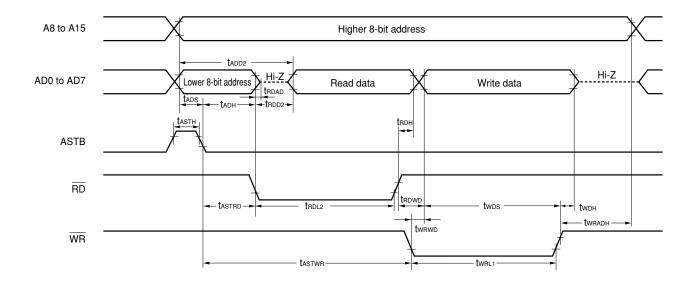
Interrupt Request Input Timing

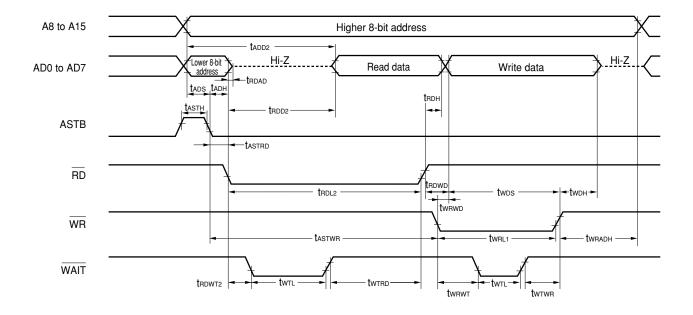


RESET Input Timing

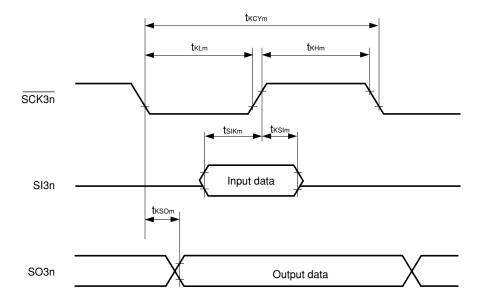


Read/Write Operation


External fetch (no wait):

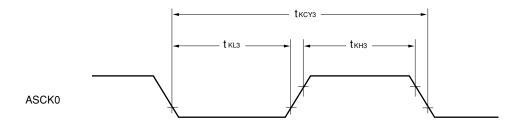

External fetch (wait insertion):

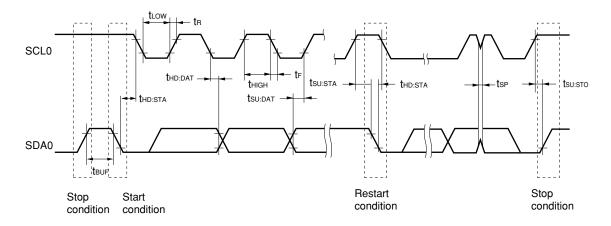
External data access (no wait):



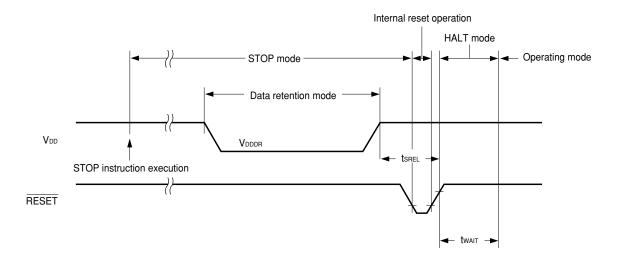
External data access (wait insertion):

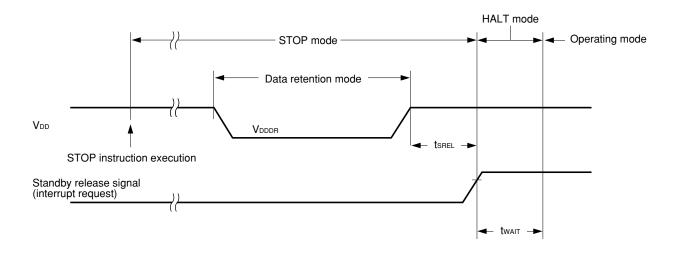
Serial Transfer Timing

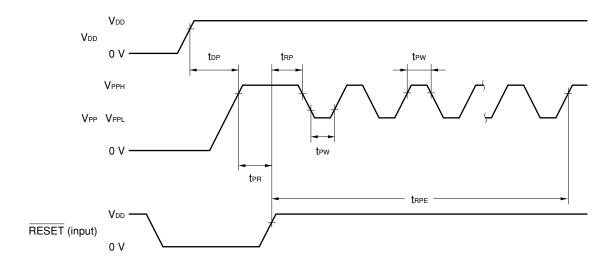

3-wire serial I/O mode:

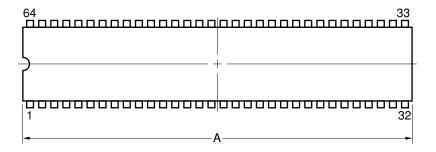

Remarks 1. m = 1, 2

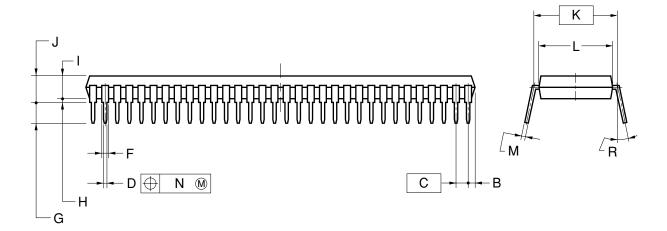
 μPD780024A, 780034A Subseries: n = 0, 1 μPD780024AY, 780034AY Subseries: n = 0


UART mode (external clock input):


I²C bus mode (µPD780024AY, 780034AY Subseries only):

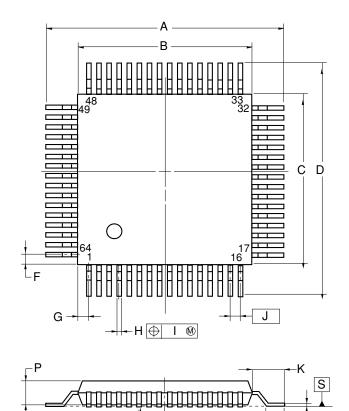

Data Retention Timing (STOP Mode Release by RESET)


Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Request Signal)

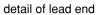


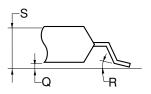
Flash Memory Write Mode Set Timing

64-PIN PLASTIC SDIP (19.05mm(750))


NOTES

- 1. Each lead centerline is located within 0.17 mm of its true position (T.P.) at maximum material condition.
- 2. Item "K" to center of leads when formed parallel.


ITEM	MILLIMETERS
А	58.0 ^{+0.68} -0.20
В	1.78 MAX.
С	1.778 (T.P.)
D	0.50±0.10
F	0.9 MIN.
G	3.2±0.3
Н	0.51 MIN.
I	4.05 ^{+0.26} -0.20
J	5.08 MAX.
К	19.05 (T.P.)
L	17.0±0.2
М	0.25 ^{+0.10} -0.05
Ν	0.17
R	0 ~ 15°
I	P64C-70-750A,C-4

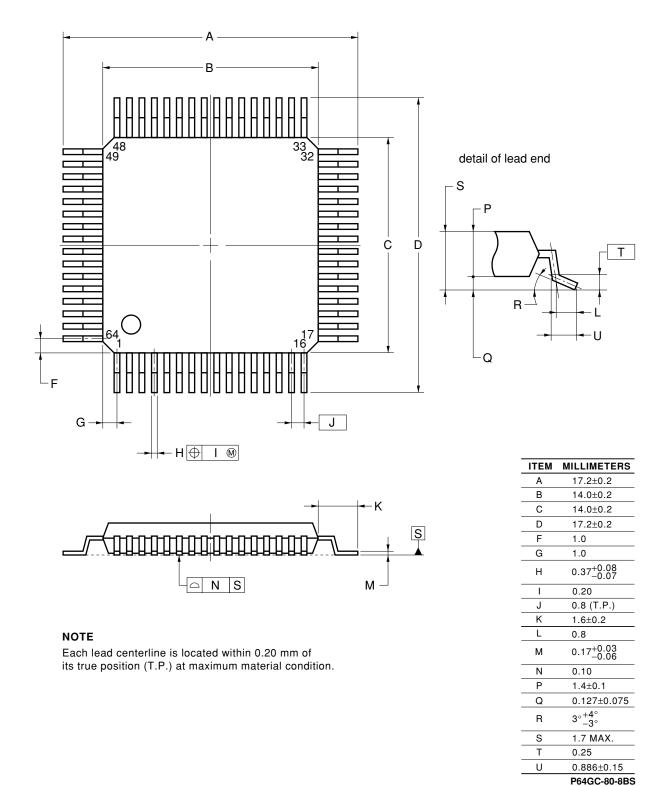

Remark The external dimensions and materials of the ES version are the same as those of the mass-produced version.

64-PIN PLASTIC QFP (14x14)

□ N S

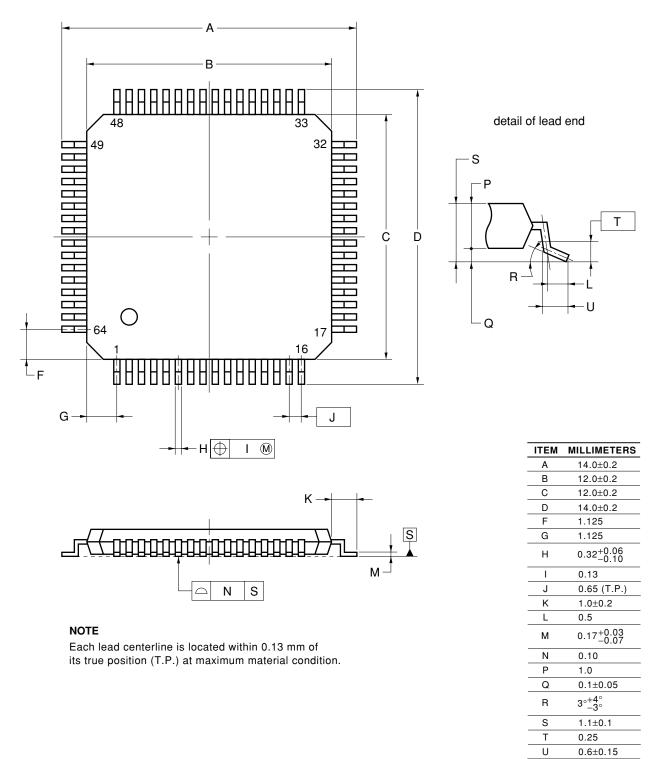
NOTE

Each lead centerline is located within 0.15 mm of its true position (T.P.) at maximum material condition.


ITEM	MILLIMETERS
A	17.6±0.4
В	14.0±0.2
С	14.0±0.2
D	17.6±0.4
F	1.0
G	1.0
н	0.37 ^{+0.08} -0.07
I	0.15
J	0.8 (T.P.)
K	1.8±0.2
L	0.8±0.2
М	0.17 ^{+0.08} -0.07
Ν	0.10
Р	2.55±0.1
Q	0.1±0.1
R	5°± 5°
S	2.85 MAX.
	P64GC-80-AB8-5

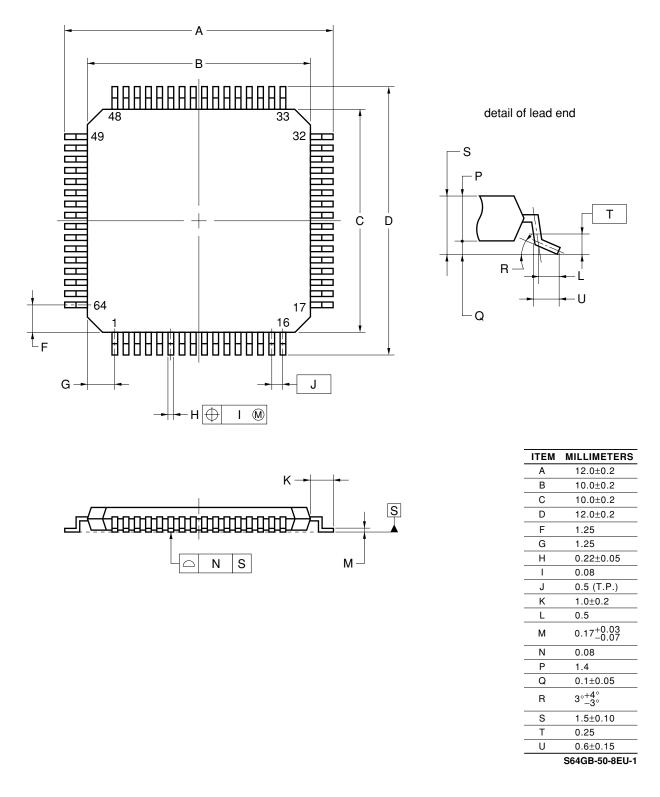
Remark The external dimensions and materials of the ES version are the same as those of the mass-produced version.

L

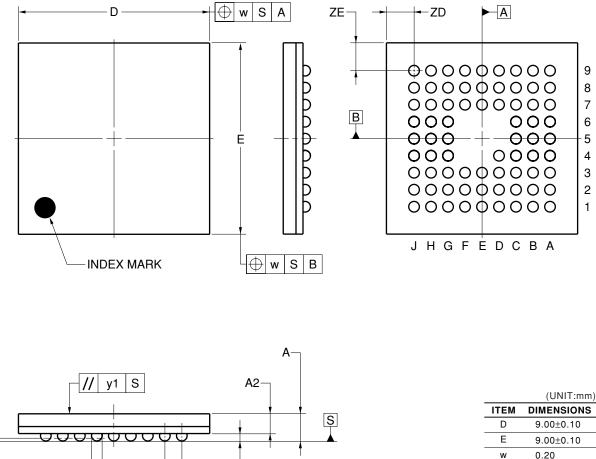

Μ

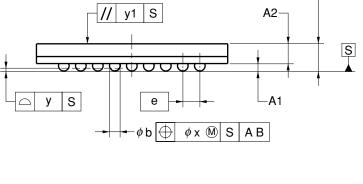
64-PIN PLASTIC LQFP (14x14)

Remark The external dimensions and materials of the ES version are the same as those of the mass-produced version.


64-PIN PLASTIC TQFP (12x12)

P64GK-65-9ET-3


Remark The external dimensions and materials of the ES version are the same as those of the mass-produced version.


64-PIN PLASTIC LQFP (10x10)

Remark The external dimensions and materials of the ES version are the same as those of the mass-produced version.

73-PIN PLASTIC FBGA (9x9)

DIMENSIONS 9.00±0.10 9.00±0.10 0.20 1.28±0.10
9.00±0.10 0.20 1.28±0.10
0.20 1.28±0.10
1.28±0.10
0.35±0.06
0.93
0.80
$0.50^{+0.05}_{-0.10}$
0.08
0.10
0.20
1.30
1.30
P73F1-80-CN3

Remark The external dimensions and materials of the ES version are the same as those of the mass-produced version.

CHAPTER 28 RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions.

For soldering methods and conditions other than those recommended below, contact an NEC Electronics sales representative.

For technical information, see the following website.

Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)

- Caution Evaluation of the soldering conditions for the following products is incomplete because these products are under development.
 - 64-pin plastic LQFP (GB-8EU type) of μPD780021A(A), 780022A(A), 780023A(A), 780024A(A), 780031A(A), 780032A(A), 780033A(A), 780034A(A)
 - μPD780021AY(A), 780022AY(A) (except 64-pin plastic QFP (GC-AB8 type)), 780023AY(A), 780024AY(A), 780031AY(A), 780032AY(A), 780033AY(A), 780034AY(A)

Table 28-1. Surface Mounting Type Soldering Conditions (1/5)

(1) 64-pin plastic QFP (14×14)

*

μPD780021AGC-×××-AB8, 780022AGC-×××-AB8, 780023AGC-×××-AB8, μPD780024AGC-×××-AB8, 780021AYGC-×××-AB8, 780022AYGC-×××-AB8, μPD780023AYGC-×××-AB8, 780024AYGC-×××-AB8, 780031AGC-×××-AB8, μPD780032AGC-×××-AB8, 780033AGC-×××-AB8, 780034AGC-×××-AB8, μPD780031AYGC-×××-AB8, 780022AYGC-×××-AB8, 780022AGC(A)-×××-AB8, μPD780023AGC(A)-×××-AB8, 780021AGC(A)-×××-AB8, 780022AGC(A)-×××-AB8, μPD780023AGC(A)-×××-AB8, 780024AGC(A)-×××-AB8, 780022AYGC(A)-×××-AB8, μPD780031AGC(A)-×××-AB8, 780032AGC(A)-×××-AB8, 780033AGC(A)-×××-AB8, μPD780031AGC(A)-×××-AB8, 780032AGC(A)-×××-AB8, 780033AGC(A)-×××-AB8, μPD780034AGC(A)-×××-AB8, 780032AGC(A)-×××-AB8, 780033AGC(A)-×××-AB8, μPD780034AGC(A)-×××-AB8, 780032AGC(A)-×××-AB8, 780033AGC(A)-×××-AB8,

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Three times or less	IR35-00-3
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Three times or less	VP15-00-3
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Once, Preheating temperature: 120°C max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	_

Table 28-1. Surface Mounting Type Soldering Conditions (2/5)

(2) 64-pin plastic LQFP (14 \times 14)

μPD780021AGC-×××-8BS, 780022AGC-×××-8BS, 780023AGC-×××-8BS, μPD780024AGC-×××-8BS, 780021AYGC-×××-8BS, 780022AYGC-×××-8BS, μPD780023AYGC-×××-8BS, 780024AYGC-×××-8BS, 780031AGC-×××-8BS, μPD780032AGC-×××-8BS, 780033AGC-×××-8BS, 780034AGC-×××-8BS, μPD780031AYGC-×××-8BS, 780021AGC(A)-×××-8BS, 780022AGC(A)-×××-8BS, μPD780034AYGC-×××-8BS, 780021AGC(A)-×××-8BS, 780022AGC(A)-×××-8BS, μPD780032AGC(A)-×××-8BS, 780024AGC(A)-××-8BS, 780031AGC(A)-××-8BS, μPD780032AGC(A)-×××-8BS, 780033AGC(A)-××-8BS, 780034AGC(A)-××-8BS, μPD780032AGC(A)-××-8BS, 780034AGC(A)-××-8BS, 780034AGC(A)-××-8BS, μPD78F0034AGC-8BS, 78F0034AYGC-8BS, 78F0034BGC(A)-8BS 64-pin plastic QFP (14 × 14) μPD78F0034AGC-AB8^{Note}, 78F0034AYGC-AB8

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Two times or less	IR35-00-2
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Two times or less	VP15-00-2
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Once, Preheating temperature: 120°C max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	_

Note Maintenance product

Table 28-1. Surface Mounting Type Soldering Conditions (3/5)

(3) 64-pin plastic TQFP (12×12)

 μPD780021AGK-xxx-9ET, 780022AGK-xxx-9ET, 780023AGK-xxx-9ET,

 μPD780024AGK-xxx-9ET, 780021AYGK-xxx-9ET, 780022AYGK-xxx-9ET,

 μPD780023AYGK-xxx-9ET, 780024AYGK-xxx-9ET, 780031AGK-xxx-9ET,

 μPD780032AGK-xxx-9ET, 780033AGK-xxx-9ET, 780034AGK-xxx-9ET,

 μPD780031AYGK-xxx-9ET, 780032AYGK-xxx-9ET, 780033AYGK-xxx-9ET,

 μPD780034AYGK-xxx-9ET, 780021AGK(A)-xxx-9ET, 780033AYGK-xxx-9ET,

 μPD780034AYGK-xxx-9ET, 780021AGK(A)-xxx-9ET, 780022AGK(A)-xxx-9ET,

 μPD780033AGK(A)-xxx-9ET, 780024AGK(A)-xxx-9ET, 780031AGK(A)-xxx-9ET,

 μPD780032AGK(A)-xxx-9ET, 780033AGK(A)-xxx-9ET, 780034AGK(A)-xxx-9ET,

 μPD780032AGK(A)-xxx-9ET, 780033AGK(A)-xxx-9ET, 780034AGK(A)-xxx-9ET,

 μPD780032AGK(A)-xxx-9ET, 780033AGK(A)-xxx-9ET, 780034AGK(A)-xxx-9ET,

 μPD78F0034AGK-9ET, 78F0034AYGK-9ET, 78F0034BGK-9ET, 78F0034BYGK-9ET,

 μPD78F0034BGK(A)-9ET, 78F0034BYGK(A)-9ET

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Two times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 hours)	IR35-107-2
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Two times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 hours)	VP15-107-2
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Once, Preheating temperature: 120°C max. (package surface temperature), Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 hours)	WS60-107-1
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	_

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Table 28-1. Surface Mounting Type Soldering Conditions (4/5)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Two times or less	IR35-00-2
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Two times or less	VP15-00-2
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	_

Caution Do not use different soldering methods together (except for partial heating).

(5) 64-pin plastic LQFP (10 \times 10)

μPD78F0034AGB-8EU, 78F0034AYGB-8EU, 78F0034BGB-8EU, 78F0034BYGB-8EU, μPD78F0034BGB(A)-8EU, 78F0034BYGB(A)-8EU

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Two times or less, Exposure limit: 7 days ^{Note} (after that prebake at 125°C for 10 hours)	IR35-107-2
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Two times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 hours)	VP15-107-2
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	_

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Table 28-1. Surface Mounting Type Soldering Conditions (5/5)

(6) 73-pin plastic FBGA (9×9)

μPD780021AF1-xx-CN3, 780022AF1-xx-CN3, 780023AF1-xx-CN3, μPD780024AF1-xx-CN3, 780021AYF1-xx-CN3, 780022AYF1-xx-CN3, μPD780023AYF1-xx-CN3, 780024AYF1-xx-CN3, 780031AF1-xx-CN3, μPD780032AF1-xx-CN3, 780033AF1-xx-CN3, 780034AF1-xx-CN3, μPD780031AYF1-xx-CN3, 780032AYF1-xx-CN3, 780033AYF1-xx-CN3, μPD780034AF1-xx-CN3, 78F0034BF1-CN3, 78F0034BYF1-CN3

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 260°C, Time: 60 seconds max. (at 220°C or higher), Count: Three times or less, Exposure limit: 3 days ^{Note} (after that, prebake at 125°C for 20 hours)	IR60-203-3
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Three times or less, Exposure limit: 3 days ^{Note} (after that, prebake at 125°C for 20 hours)	VP15-203-3

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together.

Table 28-2. Insertion Type Soldering Conditions

64-pin plastic SDIP (19.05 mm (750))

μPD780021ACW-xxx, 780022ACW-xxx, 780023ACW-xxx, 780024ACW-xxx, μPD780021AYCW-xxx, 780022AYCW-xxx, 780023AYCW-xxx, 780024AYCW-xxx, μPD780031ACW-xxx, 780032ACW-xxx, 780033ACW-xxx, 780034ACW-xxx, μPD780031AYCW-xxx, 780032AYCW-xxx, 780033AYCW-xxx, 780034AYCW-xxx, μPD780021ACW(A)-xxx, 780022ACW(A)-xxx, 780023ACW(A)-xxx, 780024ACW(A)-xxx, μPD780031ACW(A)-xxx, 780032ACW(A)-xxx, 780033ACW(A)-xxx, 780034ACW(A)-xxx, μPD780031ACW(A)-xxx, 780032ACW(A)-xxx, 780033ACW(A)-xxx, 780034ACW(A)-xxx, μPD780031ACW(A)-xxx, 780032ACW(A)-xxx, 780033ACW(A)-xxx, 780034ACW(A)-xxx, μPD780031ACW(A)-xxx, 780032ACW(A)-xxx, 780033ACW(A)-xxx, 780034ACW(A)-xxx,

Soldering Method	Soldering Conditions
Wave soldering (only for pins)	Solder bath temperature: 260°C max., Time: 10 seconds max.
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)

Caution Apply wave soldering only to the pins and be careful not to bring solder into direct contact with the package.

Tables A-1 and A-2 show the major differences between the μ PD78018F, 780024A, 780034A, and 780078 Subseries.

Name µPD78018F Subseries ^{Note}			μPD780024A, 780034A	µPD780078 Subseries
Item			Subseries	
EMI noise reduction		Not provided	Provided	
Internal I ² C bus version (Y subseries)		Provided	Provided (multi-task supported)	
Flash memory	v version	μPD78F018F	μPD78F0034A, 78F0034B	μPD78F0078
ROM		8 KB to 60 KB	8 KB to 32 KB	48 KB, 60 KB
Internal high-	speed RAM	512, 1024 bytes	512, 1024 bytes	1024 bytes
Internal expar	nsion RAM	512, 1024 bytes	Not provided	1024 bytes
Minimum insti time	ruction execution	0.4 μs (10 MHz)	0.24 μ s (8.38 MHz), 0.16 μ s (12 MHz, expanded-specificat	ion products only)
Number of I/C) ports	53	51	52
Timer		16 bits: 1, 8 bits: 2, Watch timer: 1, Watchdog timer: 1	16 bits: 1, 8 bits: 2, Watch timer: 1, Watchdog timer: 1	16 bits: 2, 8 bits: 2, Watch timer: 1, Watchdog timer: 1
A/D converter		8 bits × 8	 8 bits × 8 (μPD780024A Subseries) 10 bits × 8 (μPD780034A Subseries) 	10 bits × 8
Serial interface	Subseries without suffix Y	3-wire/2-wire/SBI: 1, 3-wire (automatic transmission/reception): 1	3-wire: 2, UART: 1	3-wire: 1, UART: 1, 3-wire/UART: 1
	Subseries with suffix Y	3-wire/2-wire/l ² C: 1, 3-wire (automatic transmission/reception): 1	3-wire: 2, UART: 1, Multi-master I ² C: 1	3-wire: 1, UART: 1, 3-wire/UART: 1, Multi-master I ² C: 1
Timer output	•	3 (14-bit PWM output possible: 2)	3 (8-bit PWM output possible: 2)	4 (8-bit PWM output possible: 2)
Package		 64-pin SDIP (19.05 mm (750)) 64-pin QFP (14 × 14) 64-pin LQFP (12 × 12) 	 64-pin SDIP (19.05 mm (750)) 64-pin QFP (14 × 14) 64-pin TQFP (12 × 12) 64-pin LQFP (14 × 14) 64-pin LQFP (10 × 10) 73-pin FBGA (9 × 9) 	 64-pin QFP (14 × 14) 64-pin TQFP (12 × 12) 64-pin LQFP (14 × 14)
Device file		DF78014	DF780034	DF780078
Emulation board		IE-78014-R-EM-A, IE-78018-NS-EM1	IE-780034-NS-EM1	IE-780078-NS-EM1
Electrical specifications Recommended soldering conditions		Refer to the data sheet or use	er's manual (with electrical spe	cifications) of each product.

Note Maintenance product

 \star

Table A-2. Major Differences Between μ PD78018F, 780024A, 780034A, and 780078 Subseries (Software) (1/2)

Name	µPD78018F Subseries ^{Note 1}	μPD780024A, 780034A	μPD78007	8 Subseries
Item		Subseries		
A/D converter	_	Take the appropriate measur conversion result immediately operation is started (ADCSO discarding it, because it may	y after the A/D o is set to 1), suc	conversion h as
			However, if a 14 μ s (MIN.) secured after set to 1 befor operation (AD 1), the first da used.	has been ADCE0 was e starting OCS0 is set to
16-bit timer/event counter	1 ch	1 ch	2 ch	
		TM0		
Interval timer PWM output PPG output Pulse width measurement External event counter Square wave output	イ イ イ イ イ	イ ー イ イ イ		V
Count clock	fx/2, fx/2 ² , fx/2 ³ , TI0	fx, fx/2 ² , fx/2 ⁶ , TI00		fx/2, fx/2 ³ fx/2 ⁹ , TI001
Control register Output control register Compare/capture register Prescaler mode register Capture/compare control register	TMC0 TOC0 CR00, CR01 (Capture only) TCL0 ^{Note 2} -	TMC0 TOC0 CR00, CR01 PRM0 CRC0	TMC00 TOC00 CR000, CR010 PRM00 CRC00	TMC01 TOC01 CR001, CR011 PRM01 CRC01
Interrupt	INTTMO	INTTM00, INTTM01	INTTM000, INTTM010	INTTM001, INTTM011

Notes 1. Maintenance product

2. TCL0: Timer clock select register 0

Name	μPD78018F S	ubseries ^{Note}	μPD780024A, 780034A	µPD780078 Subseries
Item			Subseries	
8-bit timer/event counter	2 ch		2 ch	
	TM1	TM2	TM50	тМ51
Unit mode Interval timer External event counter	1			
Square wave output PWM output	-	-	√ √	
Cascade connection mode Interval timer External event counter Square wave output		J J J	イ イ イ	イ イ イ
Count clock	fx/2 ² , fx/2 ³ , fx/2 ⁴ , fx/2 ⁵ , fx/2 ⁶ , fx/2 ⁷ , fx/2 ⁸ , fx/2 ⁹ , fx/2 ¹⁰ , fx2 ¹² , TI1	fx/2 ⁴ , fx/2 ⁵ , fx/2 ⁶ , fx/2 ⁷ , fx/2 ⁸ , fx/2 ⁹ ,	fx, fx/2 ² , fx/2 ⁴ , fx/2 ⁶ , fx/2 ⁸ , fx/2 ¹⁰ , TI50	fx/2, fx/2 ³ , fx/2 ⁵ , fx/2 ⁷ , fx/2 ⁹ , fx/2 ¹¹ , TI51
Control register Output control register Clock select register	TMC1 TOC1 TCL1		TMC50 TMC50 TCL50	TMC51 TMC51 TCL51
Interrupt	INTTM1	INTTM2	INTTM50	INTTM51

Table A-2.	Major Differences Be	etween µPD78018F, 780	024A, 780034A, and 780	0078 Subseries (Software) (2/2)

Note Maintenance product

APPENDIX B DEVELOPMENT TOOLS

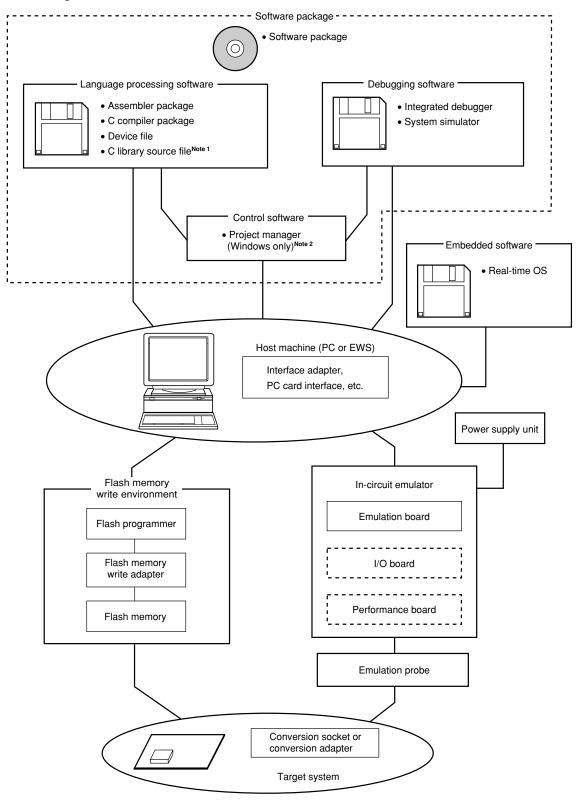
The following development tools are available for the development of systems that employ the μ PD780024A, 780034A, 780024AY, and 780034AY Subseries.

Figure B-1 shows the development tool configuration.

• Support for PC98-NX series

Unless otherwise specified, products compatible with IBM PC/ATTM computers are compatible with PC98-NX series computers. When using PC98-NX series computers, refer to the explanation for IBM PC/AT computers.

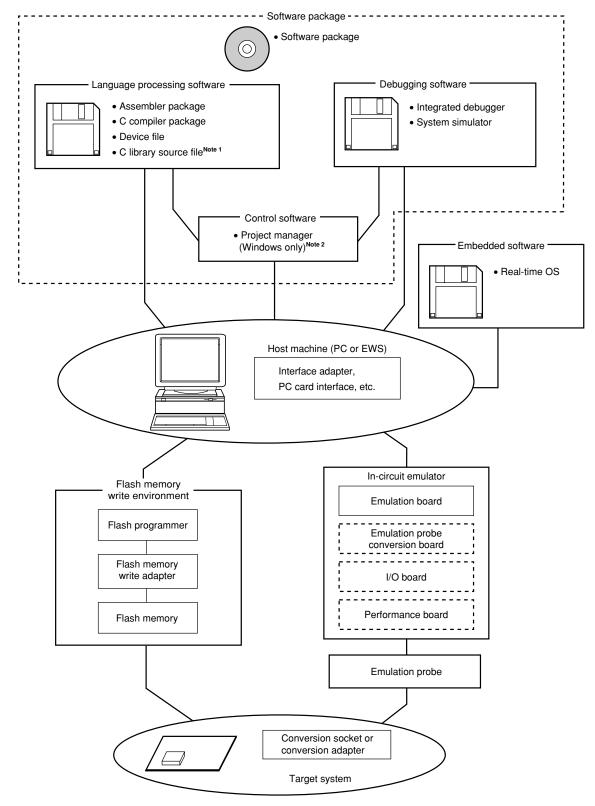
• Windows

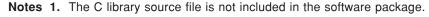

Unless otherwise specified, "Windows" means the following OSs.

- Windows 3.1
- Windows 95
- Windows 98
- Windows 2000
- Windows NTTM Ver 4.0

Figure B-1. Development Tool Configuration (1/2)

(1) When using the in-circuit emulator IE-78K0-NS, IE-78K0-NS-A


*



- Notes 1. The C library source file is not included in the software package.
 - The project manager is included in the assembler package. The project manager is only used for Windows.

Figure B-1. Development Tool Configuration (2/2)

2. The project manager is included in the assembler package. The project manager is only used for Windows.

* B.1 Software Package

SP78K0	This package contains various software tools for 78K/0 Series development.
Software package	The following tools are included.
	RA78K0, CC78K0, ID78K0-NS, SM78K0, and various device files
	Part Number: µSxxxxSP78K0

Remark ×××× in the part number differs depending on the OS used.

$\mu S \times \times \times S P78K0$

XXXX	Host Machine	OS	Supply Medium
AB17	PC-9800 series,	Windows (Japanese version)	CD-ROM
BB17	IBM PC/AT compatibles	Windows (English version)	

B.2 Language Processing Software

RA78K0 Assembler package	This assembler converts programs written in mnemonics into object codes executable with a microcontroller.Further, this assembler is provided with functions capable of automatically creating symbol tables and branch instruction optimization.This assembler should be used in combination with device file (DF780024 or DF780034) (sold separately). <precaution environment="" in="" pc="" ra78k0="" using="" when="">This assembler package is a DOS-based application. It can also be used in Windows, however, by using the project manager (included in the assembler package) on Windows.</br></precaution>
	Part Number: µS××××RA78K0
CC78K0 C compiler package	This compiler converts programs written in C language into object codes executable with a microcontroller. This compiler should be used in combination with an assembler package and device file (both sold separately). <precaution cc78k0="" environment="" in="" pc="" using="" when=""> This C compiler package is a DOS-based application. It can also be used in Windows, however, by using the project manager (included in the assembler package) on Windows.</precaution>
	Part Number: µSxxxxCC78K0
DF780024 ^{Note 1} DF780034 ^{Note 1} Device file	 This file contains information peculiar to the device. This device file should be used in combination with tool (RA78K0, CC78K0, SM78K0, ID78K0-NS, and RX78K0) (all sold separately). The corresponding OS and host machine differ depending on the tool used. DF780024: μPD780024A, 780024AY, 780024AS Subseries DF780034: μPD780034A, 780034AY, 780034AS Subseries
	Part Number: µSxxxxDF780024, µSxxxxDF780034
CC78K0-L ^{Note 2} C library source file	This is a source file of functions configuring the object library included in the C compiler package. This file is required to match the object library included in C compiler package to the user's specifications. It does not depend on the operating environment because it is a source file.
	Part Number: µS××××CC78K0-L

- Notes 1. The DF780024 and DF780034 can be used in common with the RA78K0, CC78K0, SM78K0, ID78K0-NS, and RX78K0.
 - 2. CC78K0-L is not included in the software package (SP78K0).
- *** Remark** ×××× in the part number differs depending on the host machine and OS used.

μ S××××RA78K0

$\mu S \times \times \times CC78K0$

— ××××	Host Machine	OS	Supply Medium
AB13	PC-9800 series,	Windows (Japanese version)	3.5-inch 2HD FD
BB13	IBM PC/AT compatibles	Windows (English version)	
AB17		Windows (Japanese version)	CD-ROM
BB17		Windows (English version)	
3P17	HP9000 series 700 TM	HP-UX TM (Rel. 10.10)	
3K17	SPARCstation TM	SunOS [™] (Rel. 4.1.4), Solaris [™] (Rel. 2.5.1)	

μS××××DF780024 μS××××DF780034

µS<u>××××</u>CC78K0-L

_	XXXX	Host Machine	OS	Supply Medium
	AB13	PC-9800 series,	Windows (Japanese version)	3.5-inch 2HD FD
	BB13	IBM PC/AT compatibles	Windows (English version)	
	3P16	HP9000 series 700	HP-UX (Rel. 10.10)	DAT
	3K13	SPARCstation	SunOS (Rel. 4.1.4),	3.5-inch 2HD FD
	3K15		Solaris (Rel. 2.5.1)	1/4-inch CGMT

B.3 Control Software

Project manager	This is control software designed to enable efficient user program development in the Windows environment. All operations used in development of a user program, such as starting the editor, building, and starting the debugger, can be performed from the project manager. Caution> The project manager is included in the assembler package (RA78K0).
	It can only be used in Windows.

B.4 Flash Memory Writing Tools

*

Flashpro III (part number: FL-PR3, PG-FP3) Flashpro IV (part number: FL-PR4, PG-FP4) Flash programmer	Flash programmer dedicated to microcontrollers with on-chip flash memory.
FA-64CW FA-64GC-8BS-A FA-64GC	Flash memory writing adapter used connected to the Flashpro III and Flashpro IV. • FA-64CW: 64-pin plastic SDIP (CW type) • FA 64CC 8PS A: 64 pin plastic JOEP (CC 8PS type)
FA-64GC FA-64GK-9ET FA-64GB-8EU-A	 FA-64GC-8BS-A: 64-pin plastic LQFP (GC-8BS type) FA-64GC: 64-pin plastic QFP (GC-AB8 type) FA-64GK-9ET: 64-pin plastic TQFP (GK-9ET type)
FA-73F1-CN3-A Flash memory writing adapter	 FA-64GB-8EU-A: 64-pin plastic LQFP (GB-8EU type) FA-73F1-CN3-A: 73-pin plastic FBGA (F1-CN3 type)

Remark FL-PR3, FL-PR4, FA-64CW, FA-64GC-8BS-A, FA-64GC, FA-64GK-9ET, FA-64GB-8EU-A, and FA-73F1-CN3-A are products of Naito Densei Machida Mfg. Co., Ltd. Contact: +81-45-475-4191 Naito Densei Machida Mfg. Co., Ltd.

B.5 Debugging Tools (Hardware)

B.5.1 When using the in-circuit emulator IE-78K0-NS, IE-78K0-NS-A

	(1/2
IE-78K0-NS In-circuit emulator	The in-circuit emulator serves to debug hardware and software when developing application systems using a 78K/0 Series product. It corresponds to the integrated debugger (ID78K0-NS). This emulator should be used in combination with a power supply unit, emulation probe, and interface adapter which is required to connect this emulator to the host machine.
IE-78K0-NS-PA Performance board	This board is connected to the IE-78K0-NS to expand its functions. Adding this board adds a coverage function and enhances debugging functions such as tracer and timer functions.
IE-78K0-NS-A In-circuit emulator	A combination of the IE-78K0-NS and IE-78K0-NS-PA.
IE-70000-MC-PS-B Power supply unit	This adapter is used for supplying power from a receptacle of 100 V to 240 V AC.
IE-70000-98-IF-C Interface adapter	This adapter is required when using a PC-9800 series computer (except notebook type) as the host machine (C bus compatible).
IE-70000-CD-IF-A PC card interface	This is PC card and interface cable required when using a notebook-type computer as the host machine (PCMCIA socket compatible).
IE-70000-PC-IF-C Interface adapter	This adapter is required when using an IBM PC/AT compatible computer as the host machine (ISA bus compatible).
IE-70000-PCI-IF-A Interface adapter	This adapter is required when using a computer with a PCI bus as the host machine.
IE-780034-NS-EM1 Emulation board	This board emulates the operations of the peripheral hardware peculiar to a device. It should be used in combination with an in-circuit emulator.
NP-64CW NP-H64CW Emulation probe	This probe is used to connect the in-circuit emulator to a target system and is designed for use with a 64-pin plastic SDIP (CW type).

	NP-64GC Emulation probe		This probe is used to connect the in-circuit emulator to a target system and is designed for use with a 64-pin plastic QFP (GC-AB8 type) and 64-pin plastic LQFP (GC-8BS type).	
		EV-9200GC-64 Conversion socket (see Figures B-2 and B-3)	This conversion socket connects the NP-64GC to a target system board designed for a 64-pin plastic QFP (GC-AB8 type) and 64-pin plastic LQFP (GC-8BS type).	
*	NP-64GC NP-H64C Emulatio	GC-TQ	This probe is used to connect the in-circuit emulator to a target system and is designed for use with a 64-pin plastic QFP (GC-AB8 type) and 64-pin plastic LQFP (GC-8BS type).	
		TGC-064SAP Conversion adapter (see Figure B-4)	This conversion adapter connects the NP-64GC-TQ or NP-H64GC-TQ to a target system board designed for a 64-pin plastic QFP (GC-AB8 type) and 64-pin plastic LQFP (GC-8BS type).	
*	NP-64GK NP-H64GK-TQ Emulation probe		This probe is used to connect the in-circuit emulator to a target system and is designed for use with a 64-pin plastic TQFP (GK-9ET type).	
*	TGK-064SBW Conversion adapter (see Figure B-5)		This conversion adapter connects the NP-64GK or NP-H64GK-TQ to a target system board designed for a 64-pin plastic TQFP (GK-9ET type).	
	NP-H640 Emulatio		This probe is used to connect the in-circuit emulator to a target system and is designed for use with a 64-pin plastic LQFP (GB-8EU type).	
	TGB-064SDP Conversion adapter (see Figure B-6)		This conversion adapter connects the NP-H64GB-TQ to a target system board designed for a 64-pin plastic LQFP (GB-8EU type).	
	NP-73F1-CN3 Emulation probe		This probe is used to connect the in-circuit emulator to a target system and is designed for use with a 73-pin plastic FBGA (F1-CN3 type).	
		CSICE73A0909N01, LSPACK73A0909N01, CSSOCKET73A0909N01 Conversion socket	This conversion socket connects the NP-73F1-CN3 to a target system board designed for a 73-pin plastic FBGA (F1-CN3 type). • CSICE73A0909N01: YQSOCKET/LSPACK conversion adapter • LSPACK73A0909N01: Socket for target connection • CSSOCKET73A0909N01: Socket for emulator connection	

Remarks 1. NP-64CW, NP-H64CW, NP-64GC, NP-64GC-TQ, NP-H64GC-TQ, NP-64GK, NP-H64GK-TQ, NP-H64GB-TQ, and NP-73F1-CN3 are products of Naito Densei Machida Mfg. Co., Ltd. Contact: +81-45-475-4191 Naito Densei Machida Mfg. Co., Ltd.

 TGC-064SAP, TGK-064SBW, TGB-064SDP, CSICE73A0909N01, LSPACK73A0909N01, and CSSOCKET73A0909N01 are products of TOKYO ELETECH CORPORATION. Contact: Daimaru Kogyo, Ltd. Phone: Tokyo +81-3-3820-7112 Electronics Dept.

Osaka +81-6-6244-6672 Electronics 2nd Dept.

(2/2)

- 3. EV-9200GC-64 is sold in five-unit sets.
- 4. TGK-064SBW and TGC-064SAP are sold in single units.
- **5.** The emulation probe (NP-73F1-CN3) is supplied with a conversion socket (CSICE73A0909N01, LSPACK73A0909N01, CSSOCKET73A0909N01).

B.5.2 When using the in-circuit emulator IE-78001-R-A

IE-78001-R-A In-circuit emulator		The in-circuit emulator serves to debug hardware and software when developing application systems using a 78K/0 Series product. It corresponds to the integrated debugger (ID78K0). This emulator should be used in combination with an emulation probe and interface adapter, which is required to connect this emulator to the host machine.	
	D-98-IF-C ∋ adapter	This adapter is required when using a PC-9800 series computer (except notebook type) as the host machine (C bus compatible).	
	D-PC-IF-C e adapter	This adapter is required when using an IBM PC/AT compatible computer as the host machine (ISA bus compatible).	
	D-PCI-IF-A e adapter	This adapter is required when using a computer with a PCI bus as the host machine.	
IE-780034-NS-EM1 Emulation board		This board emulates the operations of the peripheral hardware peculiar to a device. It should be used in combination with an in-circuit emulator and emulation probe conversion board.	
	IE-78K0-R-EX1 Emulation probe conversion board	This board is required when using the IE-780034-NS-EM1 on the IE-78001-R-A.	
EP-78240CW-R ^{Note} Emulation probe		This probe is used to connect the in-circuit emulator to a target system and is designed for use with a 64-pin plastic SDIP (CW type).	
EP-78240GC-R ^{Note} Emulation probe		This probe is used to connect the in-circuit emulator to a target system and is designed for use with a 64-pin plastic QFP (GC-AB8 type) and 64-pin plastic LQFP (GC-8BS type).	
	EV-9200GC-64 Conversion socket (see Figures B-2 and B-3)	This conversion socket connects the EP-78240GC-R to a target system board designed for a 64-pin plastic QFP (GC-AB8 type) and 64-pin plastic LQFP (GC-8BS type).	
EP-7801 Emulatic		This probe is used to connect the in-circuit emulator to a target system and is designed for use with a 64-pin plastic TQFP (GK-9ET type).	
	TGK-064SBW Conversion adapter (see Figure B-5)	This conversion adapter connects the EP-78012GK-R to a target system board designed for a 64-pin plastic TQFP (GK-9ET type).	

Note Maintenance product

*

Caution The IE-78001-R-A is not supported for the 64-pin plastic LQFP (GB-8EU type) and 73-pin plastic FBGA (F1-CN3 type).

Remarks 1. TGK-064SBW is a product of TOKYO ELETECH CORPORATION.

Contact: Daimaru Kogyo, Ltd. Phone: Tokyo +81-3-3820-7112 Electronics Dept.

Osaka +81-6-6244-6672 Electronics 2nd Dept.

- 2. EV-9200GC-64 is sold in five-unit sets.
- 3. TGK-064SBW is sold in single units.

B.6 Debugging Tools (Software)

SM78K0	This is a system simulator for the 78K/0 Series. The SM78K0 is Windows-based
System simulator	software.
System simulator	It is used to perform debugging at the C source level or assembler level while simulating the operation of the target system on a host machine. Use of the SM78K0 allows the execution of application logical testing and performance testing on an independent basis from hardware development, thereby providing higher development efficiency and software quality. The SM78K0 should be used in combination with the device file (DF780024 or DF780034) (sold separately).
	Part Number: µS××××SM78K0
ID78K0-NS Integrated debugger (supporting in-circuit emulators IE-78K0-NS and IE-78K0-NS-A)	This debugger supports the in-circuit emulators for the 78K/0 Series. The ID78K0-NS is Windows-based software. It has improved C-compatible debugging functions and can display the results of tracing with the source program using an integrating window function that associates
ID78K0 Integrated debugger (supporting in-circuit emulator	the source program, disassemble display, and memory display with the trace result. It should be used in combination with the device file (sold separately).
IE-78001-R-A)	Part Number: µSxxxxID78K0-NS, µSxxxxID78K0

*** Remark** ×××× in the part number differs depending on the host machine and OS used.

 μ S××××SM78K0 μ S××××ID78K0-NS μ S××××ID78K0

 XXXX	Host Machine	OS	Supply Medium
AB13	IBM PC/AT compatibles	Windows (Japanese version)	3.5-inch 2HD FD
BB13		Windows (English version)	
AB17	-	Windows (Japanese version)	CD-ROM
BB17		Windows (English version)	

B.7 Embedded Software

RX78K0	RX78K0 is a real-time OS conforming to the μ ITRON specifications.	
Real-time OS	A tool (configurator) for generating the nucleus of RX78K0 and multiple information	
	tables is supplied.	
	It is used in combination with an assembler package (RA78K0) and device file	
	(DF780024 or DF780034) (both sold separately).	
	<precaution environment="" in="" pc="" rx78k0="" using="" when=""></precaution>	
	The real-time OS is a DOS-based application. It should be used from the DOS prompt	
	when using in Windows.	
	Part number: μS××××RX78013-ΔΔΔ	

Caution When purchasing the RX78K0, fill in the purchase application form in advance and sign the user agreement.

Remark xxxx and $\Delta\Delta\Delta\Delta$ in the part number differ depending on the host machine and OS used.

ΔΔΔΔ	Product Outline	Maximum Number for Use in Mass Production
001	Evaluation object	Do not use for mass-produced product.
100K	Mass-production object	0.1 million units
001M		1 million units
010M		10 million units
S01	Source program	Source program for mass-produced object

 ××××	Host Machine	OS	Supply Medium
AA13	PC-9800 series	Windows (Japanese version)	3.5-inch 2HD FD
AB13	IBM PC/AT compatibles	Windows (Japanese version)	
BB13		Windows (English version)	

$\mu S \times \times \times RX78013 - \Delta \Delta \Delta \Delta$

★

B.8 System Upgrade from Former In-Circuit Emulator for 78K/0 Series to IE-78001-R-A

If you already have a former in-circuit emulator for 78K/0 Series microcontrollers (IE-78000-R or IE-78000-R-A), that in-circuit emulator can operate as an equivalent to the IE-78001-R-A by replacing its internal break board with the IE-78001-R-BK.

Table B-1. System Upgrade Method from Former In-Circuit Emulator for 78K/0 Series to IE-78001-R-A

In-Circuit Emulator Owned	In-Circuit Emulator Cabinet Upgrade ^{Note}	Board to Be Purchased
IE-78000-R	Required	IE-78001-R-BK
IE-78000-R-A	Not required	

Note For upgrading of a cabinet, send your in-circuit emulator to NEC Electronics.

B.9 Package Drawings of Conversion Socket and Conversion Adapter

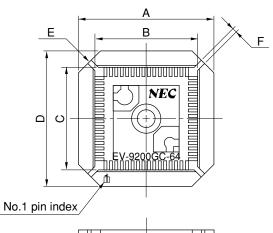
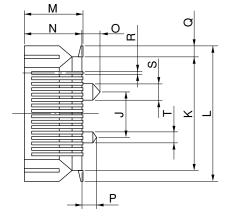
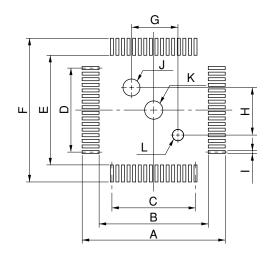



Figure B-2. EV-9200GC-64 Package Drawing (for Reference Only)

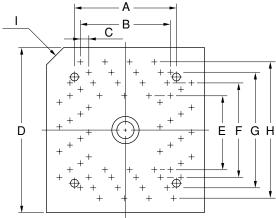


G H	

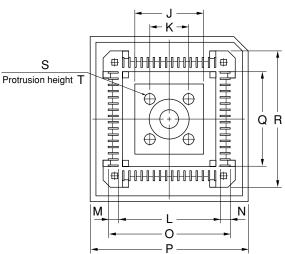
EV-9200GC-64-G0

		EV-9200GC-64-G0
ITEM	MILLIMETERS	INCHES
Α	18.8	0.74
В	14.1	0.555
С	14.1	0.555
D	18.8	0.74
E	4-C 3.0	4-C 0.118
F	0.8	0.031
G	6.0	0.236
Н	15.8	0.622
Ι	18.5	0.728
J	6.0	0.236
К	15.8	0.622
L	18.5	0.728
М	8.0	0.315
N	7.8	0.307
0	2.5	0.098
Р	2.0	0.079
Q	1.35	0.053
R	0.35±0.1	$0.014^{+0.004}_{-0.005}$
S	¢2.3	Ø0.091
Т	¢1.5	¢0.059

Figure B-3. EV-9200GC-64 Recommended Board Mounting Pattern (for Reference Only)



EV-9200GC-64-P1E


ITEM	MILLIMETERS	INCHES
A	19.5	0.768
В	14.8	0.583
С	0.8-0.02×15=12.0-0.05	$0.031^{+0.002}_{-0.001}\!\!\times 0.591\!=\!\!0.472^{+0.003}_{-0.002}$
D	0.8-0.02 × 15=12.0-0.05	$0.031^{+0.002}_{-0.001} \times 0.591 {=} 0.472^{+0.003}_{-0.002}$
E	14.8	0.583
F	19.5	0.768
G	6.00-0.08	0.236 ^{+0.004} _0.003
Н	6.00-0.08	$0.236\substack{+0.004\\-0.003}$
I	0.5-0.02	$0.197\substack{+0.001\\-0.002}$
J	¢2.36-0.03	ϕ 0.093 ^{+0.001} -0.002
К	¢2.2-0.1	ϕ 0.087 $^{+0.004}_{-0.005}$
L	¢1.57-0.03	$\phi_{0.062\substack{+0.001\\-0.002}}$

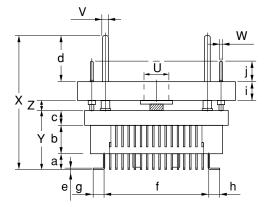
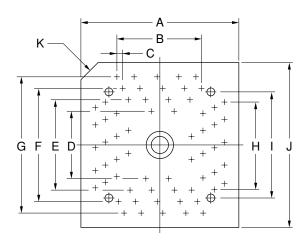

Caution Dimensions of mount pad for EV-9200 and that for target device (QFP) may be different in some parts. For the recommended mount pad dimensions for QFP, refer to "Semiconductor Device Mount Manual" website (http://www.necel.com/pkg/en/mount/index.html).

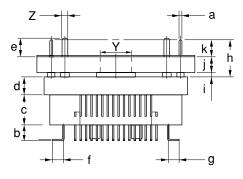
Figure B-4. TGC-064SAP Package Drawing (for Reference Only)

 \star

ITEM	MILLIMETERS	INCHES	ITEM	MILLIMETERS	INCHES
A	14.12	0.556	а	1.85	0.073
В	0.8x15=12.0	0.031x0.591=0.472	b	3.5	0.138
С	0.8	0.031	с	2.0	0.079
D	20.65	0.813	d	6.0	0.236
E	10.0	0.394	е	0.25	0.010
F	12.4	0.488	f	13.6	0.535
G	14.8	0.583	g	1.2	0.047
Н	17.2	0.677	h	1.2	0.047
1	C 2.0	C 0.079	i	2.4	0.094
J	9.05	0.356	j	2.7	0.106
К	5.0	0.197			TGC-064SAP-G0E
L	13.35	0.526			
М	1.325	0.052			
Ν	1.325	0.052			
0	16.0	0.630			
Р	20.65	0.813			
Q	12.5	0.492			
R	17.5	0.689			
S	4- <i>ф</i> 1.3	4-ø0.051			
т	1.8	0.071			
U	φ3.55	<i>ф</i> 0.140			
V	φ0.9	φ0.035			
W	φ0.3	<i>φ</i> 0.012			
Х	(19.65)	(0.667)			
Y	7.35	0.289			


0.047

note: Product by TOKYO ELETECH CORPORATION.


Ζ

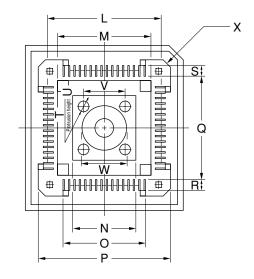
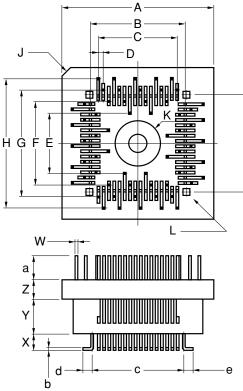
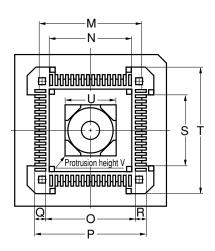

1.2

Figure B-5. TGK-064SBW Package Drawing (for Reference Only)

*

ITEM	MILLIMETERS	INCHES	ITEM	MILLIMETERS	6 INCHES
Α	18.4	0.724	а	<i>ф</i> 0.3	<i>ф</i> 0.012
В	0.65x15=9.75	0.026x0.591=0.384	b	1.85	0.073
С	0.65	0.026	с	3.5	0.138
D	7.75	0.305	d	2.0	0.079
Е	10.15	0.400	е	3.9	0.154
F	12.55	0.494	f	1.325	0.052
G	14.95	0.589	g	1.325	0.052
Н	0.65x15=9.75	0.026x0.591=0.384	h	5.9	0.232
1	11.85	0.467	i	0.8	0.031
J	18.4	0.724	j	2.4	0.094
К	C 2.0	C 0.079	k	2.7	0.106
L	12.45	0.490			TGK-064SBW-G1E
М	10.25	0.404			
Ν	7.7	0.303			
0	10.02	0.394			
Р	14.92	0.587			
Q	11.1	0.437			
R	1.45	0.057			
S	1.45	0.057			
Т	4- <i>ф</i> 1.3	4- <i>ф</i> 0.051			
U	1.8	0.071			
V	5.0	0.197			
W	<i>\$</i> 5.3	<i>ф</i> 0.209			
Х	4-C 1.0	4-C 0.039			
Y	<i>ф</i> 3.55	<i>ф</i> 0.140			

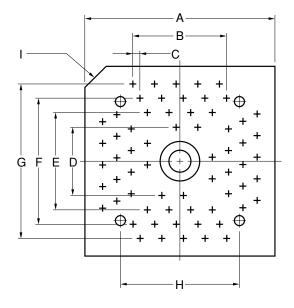

note: Product by TOKYO ELETECH CORPORATION.


Ζ

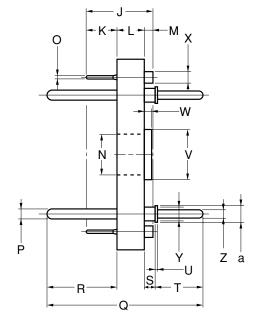
*ф*0.9

 $\phi_{0.035}$

Figure B-6. TGB-064SDP Package Drawing (for Reference Only) (1/2)



note : Product by TOKYO ELETECH CORPORATION


ITEM	MILLIMETERS	INCHES	ITEM	MILLIMETERS	INCHES
Α	14.0	0.551	а	2.6	0.102
В	9.24	0.364	b	0.25	0.010
С	0.5×15=7.5	0.020×0.591=0.295	С	9.24	0.364
D	0.5	0.020	d	1.38	0.054
Е	5.64	0.222	е	1.38	0.054
F	8.04	0.317			
G	10.44	0.411			
Н	12.84	0.506			
I	9.77	0.385			
J	C 1.0	C 0.039			
K	<i>\$</i> 4.3	<i>\$</i> 0.169			
L	4-0.7	4- 0.028			
М	10.1	0.398			
Ν	8.0	0.315			
0	8.99	0.354			
Р	12.0	0.472			
Q	1.505	0.059			
R	1.505	0.059			
S	6.75	0.266			
Т	12.9	0.508			
U	5.0	0.197			
V	1.8	0.071			
W	0.25	0.010			
Х	1.85	0.073			
Y	3.5	0.138			
Z	2.0	0.079			
	1	GB-064SDP-G1E-1			

TGB-064SDP-G1E-1

Figure B-6. TGB-064SDP Package Drawing (for Reference Only) (2/2)

 \star

note : Product by TOKYO ELETECH CORPORATION

ITEM	MILLIMETERS	INCHES	ITEM	MILLIMETERS	INCHES
А	16.0	0.630	а	<i>ф</i> 1.4	<i>\\$</i> 0.055
В	0.5×15=7.5	0.020×0.591=0.295			
С	0.5	0.020			
D	5.64	0.222			
Е	8.04	0.317			
F	10.44	0.411			
G	12.84	0.506			
Н	9.77	0.385			
I	C 2.0	C 0.079			
J	5.9	0.232			
К	2.7	0.106			
L	2.4	0.094			
М	0.8	0.031			
Ν	<i>¢</i> 3.5	<i>¢</i> 0.138			
0	<i>ф</i> 0.3	<i>¢</i> 0.012			
Р	<i>ф</i> 0.9	¢0.035			
Q	13.6	0.535			
R	6.0	0.236			
S	1.0	0.039			
Т	4.2	0.165			
U	0.2	0.008			
V	<i>ϕ</i> 4.0	¢0.157			
W	0.7	0.028			
Х	<i>¢</i> 1.03	¢0.041			
Y	<i>ф</i> 1.1	<i>\phi</i> 0.043			
Z	<i>φ</i> 0.7	<i>\$</i> 0.028			
	T	GB-064SDP-G1E-2			

APPENDIX C NOTES ON TARGET SYSTEM DESIGN

The following shows a diagram of the connection conditions between the emulation probe and conversion adapter. Design your system making allowances for conditions such as the shape of parts mounted on the target system, as shown below.

Of the products described in this chapter, all the emulation probes are products of Naito Densei Machida Mfg. Co., Ltd., and all the conversion adapters are products of TOKYO ELETECH CORPORATION.

Emulation Probe	Conversion Adapter	Distance Between IE System and Conversion Adapter
NP-64CW	_	170 mm
NP-H64CW		370 mm
NP-64GC-TQ	TGC-064SAP	155 mm
NP-H64GC-TQ		355 mm
NP-64GK	TGK-064SBW	155 mm
NP-H64GK-TQ		355 mm
NP-64GB-TQ	TGB-064SDP	155 mm
NP-H64GB-TQ		355 mm
NP-73F1-CN3	CSICE73A0909N01, LSPACK73A0909N01, CSSOCKET73A0909N01	213 mm

Table C-1. Distance Between IE System and Conversion Adapter

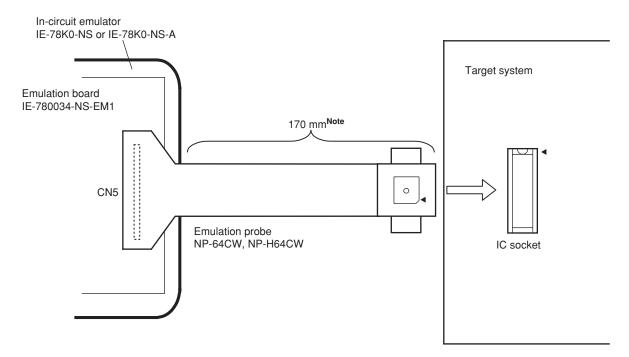
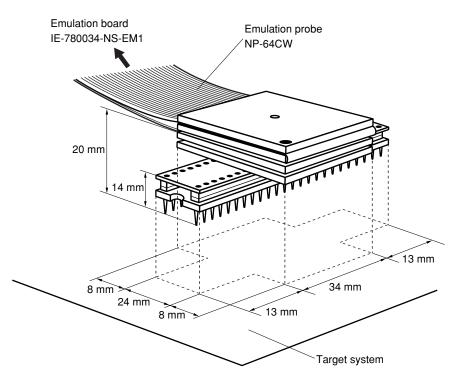



Figure C-1. Distance Between In-Circuit Emulator and Conversion Adapter (When Using 64CW)

Note Distance when using NP-64CW. This is 370 mm when using NP-H64CW.

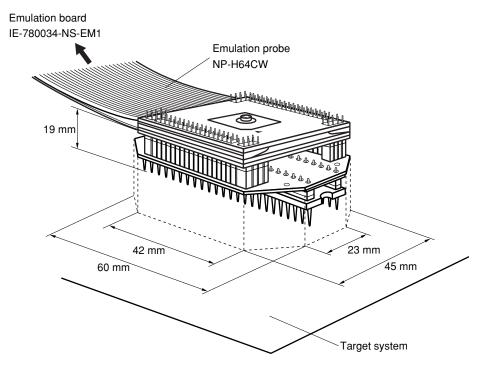


Figure C-3. Connection Conditions of Target System (When Using NP-H64CW)

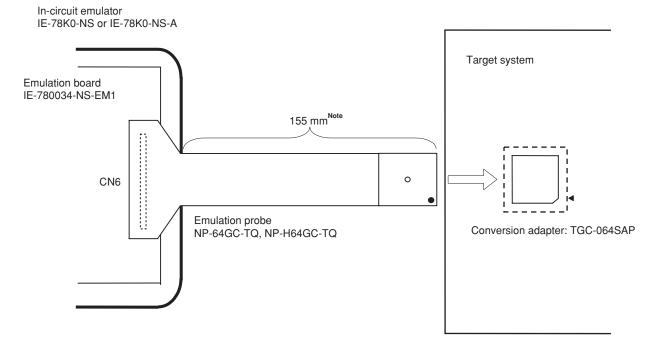


Figure C-4. Distance Between In-Circuit Emulator and Conversion Adapter (When Using 64GC)

Note Distance when using NP-64GC-TQ. This is 355 mm when using NP-H64GC-TQ.

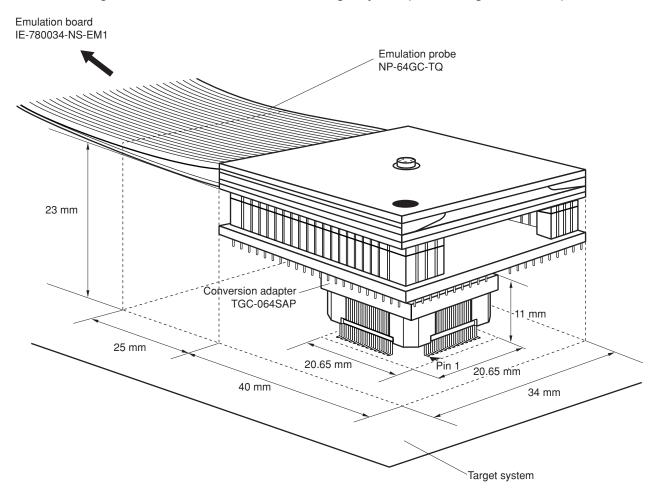


Figure C-5. Connection Conditions of Target System (When Using NP-64GC-TQ)

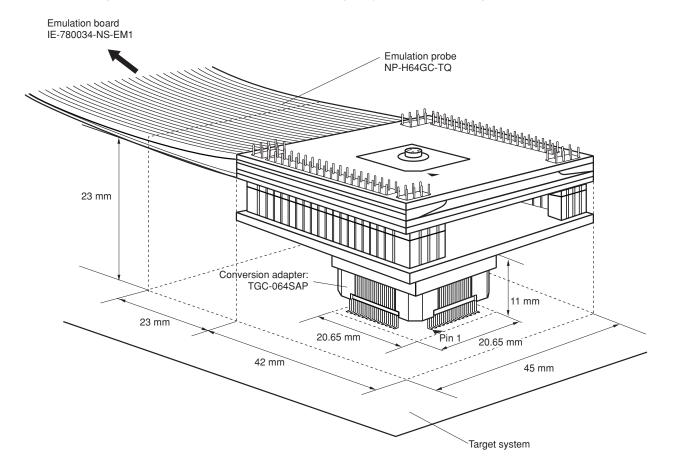


Figure C-6. Connection Conditions of Target System (When Using NP-H64GC-TQ)

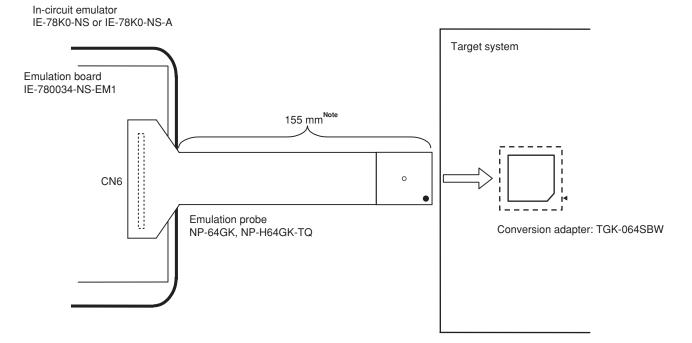


Figure C-7. Distance Between In-Circuit Emulator and Conversion Adapter (When Using 64GK)

Note Distance when using NP-64GK. This is 355 mm when using NP-H64GK-TQ.

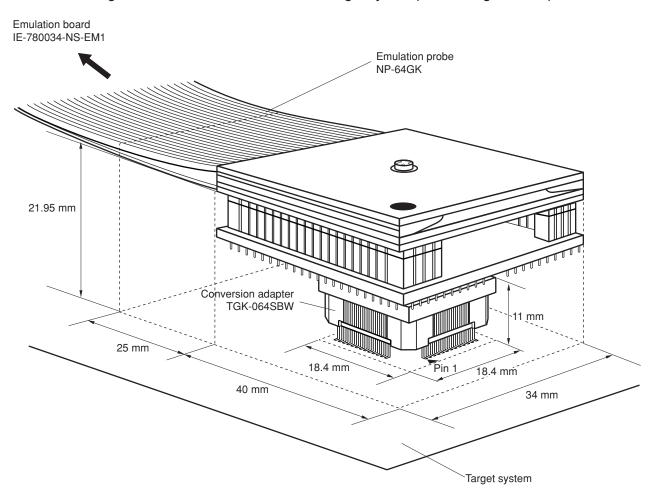


Figure C-8. Connection Conditions of Target System (When Using NP-64GK)

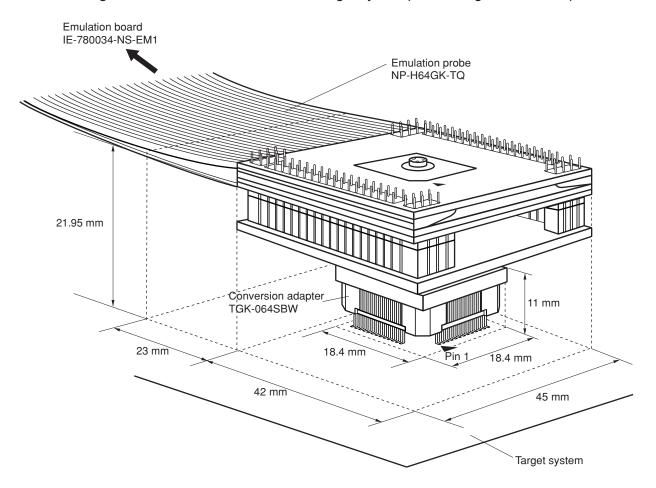


Figure C-9. Connection Conditions of Target System (When Using NP-H64GK-TQ)

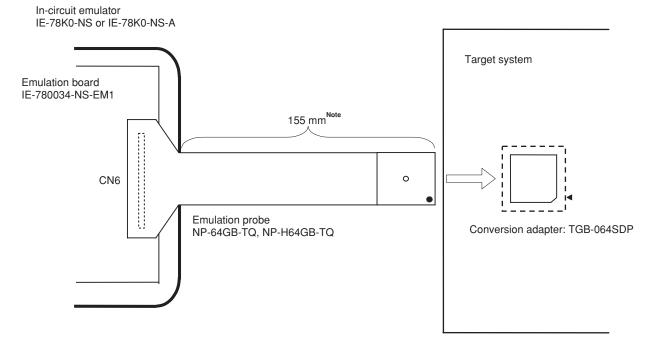
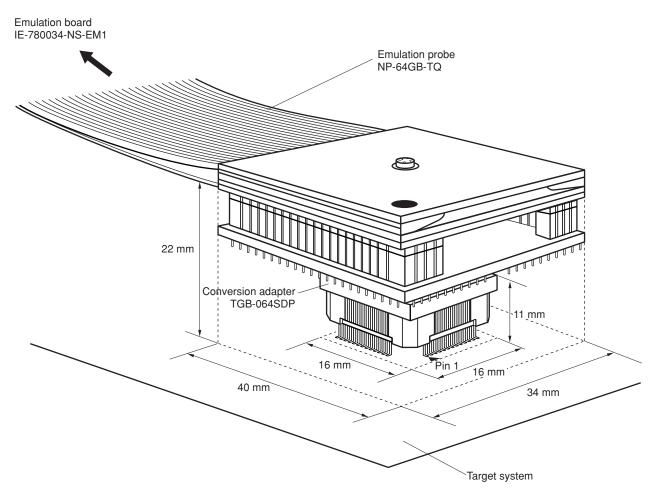



Figure C-10. Distance Between In-Circuit Emulator and Conversion Adapter (When Using 64GB)

Note Distance when using NP-64GB-TQ. This is 355 mm when using NP-H64GB-TQ.

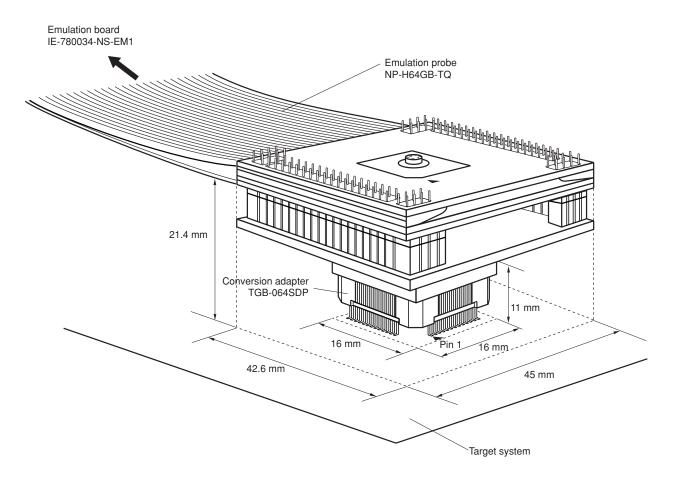
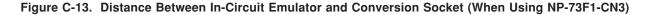
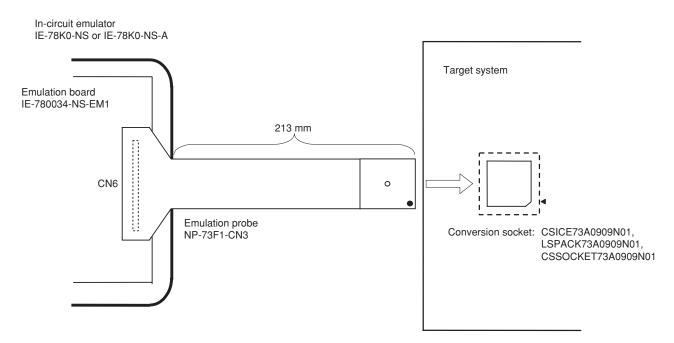
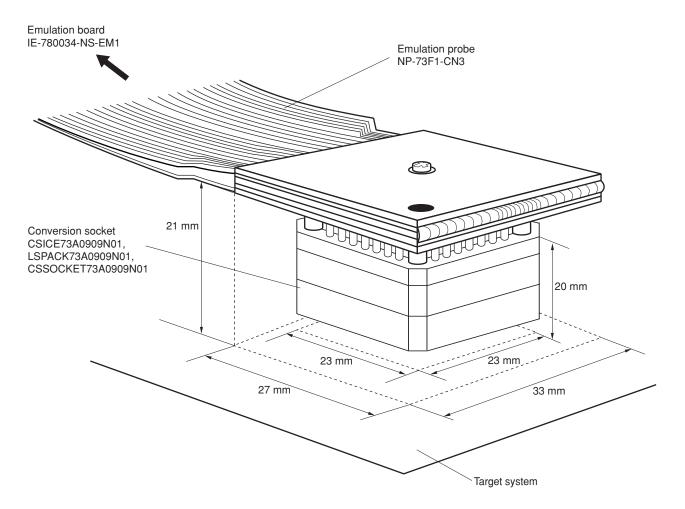





Figure C-12. Connection Conditions of Target System (When Using NP-H64GB-TQ)

APPENDIX D REGISTER INDEX

D.1 Register Name Index

[A]

A/D conversion result register 0 (ADCR0)	259,	281
A/D converter mode register 0 (ADM0)	261,	283
Analog input channel specification register 0 (ADS0)	263,	285
Asynchronous serial interface mode register 0 (ASIM0)		305
Asynchronous serial interface status register 0 (ASIS0)		304

[B]

Baud rate generator control register 0 (BRGC0)	
--	--

[C]

Capture/compare control register 0 (CRC0)	. 190
Clock output select register (CKS)	. 253

[E]

8-bit timer compare register 50 (CR50)	221
8-bit timer compare register 51 (CR51)	
8-bit timer counter 50 (TM50)	
8-bit timer counter 51 (TM51)	
8-bit timer mode control register 50 (TMC50)	223
8-bit timer mode control register 51 (TMC51)	223
External interrupt falling edge enable register (EGN)	410
External interrupt rising edge enable register (EGP)	410

[I]

IIC control register 0 (IICC0)	345
IIC shift register 0 (IIC0)	343
IIC status register 0 (IICS0)	350
IIC transfer clock select register 0 (IICCL0)	353
Interrupt mask flag register 0H (MK0H)	408
Interrupt mask flag register 0L (MK0L)	408
Interrupt mask flag register 1L (MK1L)	408
Interrupt request flag register 0H (IF0H)	407
Interrupt request flag register 0L (IF0L)	407
Interrupt request flag register 1L (IF1L)	407

[M]

Memory expansion mode register (MEM)4	125
Memory expansion wait setting register (MM) 4	126
Memory size switching register (IMS)	150

[0]

Oscillation stabilization time select register	r (OSTS)	. 174, 434
--	----------	------------

[P]	
Port 0 (P0)	. 139
Port 1 (P1)	. 141
Port 2 (P2)	. 142
Port 3 (P3) 145,	150
Port 4 (P4)	. 154
Port 5 (P5)	. 155
Port 6 (P6)	. 156
Port 7 (P7)	. 158
Port mode register 0 (PM0)	. 161
Port mode register 2 (PM2) 161, 309,	334
Port mode register 3 (PM3) 161, 334,	354
Port mode register 4 (PM4)	. 161
Port mode register 5 (PM5)	. 161
Port mode register 6 (PM6)	. 161
Port mode register 7 (PM7)161, 193, 226	, 255
Prescaler mode register 0 (PRM0)	. 192
Priority specification flag register 0H (PR0H)	. 409
Priority specification flag register 0L (PR0L)	. 409
Priority specification flag register 1L (PR1L)	. 409
Processor clock control register (PCC)	. 171
Program status word (PSW) 114,	411
Pull-up resistor option register 0 (PU0)	. 165
Pull-up resistor option register 2 (PU2)	. 165
Pull-up resistor option register 3 (PU3)	. 165
Pull-up resistor option register 4 (PU4)	. 165
Pull-up resistor option register 5 (PU5)	. 165
Pull-up resistor option register 6 (PU6)	. 165
Pull-up resistor option register 7 (PU7)	. 165

[R]

Receive buffer register 0 (RXB0)	1
Receive shift register 0 (RX0)	\$

[S]

Serial I/O shift register 30 (SIO30)	330
Serial I/O shift register 31 (SIO31)	330
Serial operation mode register 30 (CSIM30)	331
Serial operation mode register 31 (CSIM31)	331
16-bit timer capture/compare register 00 (CR00)	186
16-bit timer capture/compare register 01 (CR01)	187
16-bit timer counter 0 (TM0)	186
16-bit timer mode control register 0 (TMC0)	188
16-bit timer output control register 0 (TOC0)	191
Slave address register 0 (SVA0)	343

[T]

Timer clock select register 50 (TCL50)	222
Timer clock select register 51 (TCL51)	222
Transmit shift register 0 (TXS0)	303

[W]

Watch timer operation mode register (WTM)	243
Watchdog timer clock select register (WDCS)	248
Watchdog timer mode register (WDTM)	249

D.2 Register Symbol Index

[A]		
ADCR0:	A/D conversion result register 0	
ADM0:	A/D converter mode register 0	
ADS0:	Analog input channel specification register 0	
ASIM0:	Asynchronous serial interface mode register 0	
ASIS0:	Asynchronous serial interface status register 0	
[B]		
BRGC0:	Baud rate generator control register 0	
[C]		
CKS:	Clock output select register	
CR00:	16-bit timer capture/compare register 00	
CR01:	16-bit timer capture/compare register 01	
CR50:	8-bit timer compare register 50	
CR51:	8-bit timer compare register 51	
CRC0:	Capture/compare control register 0	
CSIM30:	Serial operation mode register 30	
CSIM31:	Serial operation mode register 31	
[E]		
EGN:	External interrupt falling edge enable register	
EGP:	External interrupt rising edge enable register	
[1]		
IF0H:	Interrupt request flag register 0H	
IF0L:	Interrupt request flag register 0L	
IF1L:	Interrupt request flag register 1L	
IIC0:	IIC shift register 0	
IICC0:	IIC control register 0	
IICCL0:	IIC transfer clock select register 0	
IICS0:	IIC status register 0	
IMS:	Memory size switching register	
[M]		
MEM:	Memory expansion mode register	
MK0H:	Interrupt mask flag register 0H	
MK0L:	Interrupt mask flag register 0L	
MK1L:	Interrupt mask flag register 1L	
MM:	Memory expansion wait setting register	
[0]		
OSTS:	Oscillation stabilization time select register	

[P]			
P0:	Port 0		. 139
P1:	Port 1		. 141
P2:	Port 2		. 142
P3:	Port 3	145,	150
P4:	Port 4		. 154
P5:	Port 5		. 155
P6:	Port 6		. 156
P7:	Port 7		. 158
PCC:	Processor clock control register		. 171
PM0:	Port mode register 0		. 161
PM2:	Port mode register 2 161	, 309,	334
PM3:	Port mode register 3 161	, 334,	354
PM4:	Port mode register 4		. 161
PM5:	Port mode register 5		. 161
PM6:	Port mode register 6		. 161
PM7:	Port mode register 7	3, 226	, 255
PR0H:	Priority specification flag register 0H		. 409
PR0L:	Priority specification flag register 0L		. 409
PR1L:	Priority specification flag register 1L		. 409
PRM0:	Prescaler mode register 0		. 192
PSW:	Program status word	114,	411
PU0:	Pull-up resistor option register 0		. 165
PU2:	Pull-up resistor option register 2		. 165
PU3:	Pull-up resistor option register 3		. 165
PU4:	Pull-up resistor option register 4		. 165
PU5:	Pull-up resistor option register 5		. 165
PU6:	Pull-up resistor option register 6		. 165
PU7:	Pull-up resistor option register 7		. 165
[R]			
RX0:	Receive shift register 0		. 303
RXB0:	Receive buffer register 0		. 303
[S]			
SIO30:	Serial I/O shift register 30		. 330
SIO31:	Serial I/O shift register 31		. 330
SVA0:	Slave address register 0		. 343
[T]			
TCL50:	Timer clock select register 50		. 222
TCL51:	Timer clock select register 51		. 222
TM0:	16-bit timer counter 0		. 186
TM50:	8-bit timer counter 50		
TM51:	8-bit timer counter 51		. 221
TMC0:	16-bit timer mode control register 0		. 188
TMC50:	8-bit timer mode control register 50		
TMC51:	8-bit timer mode control register 51		. 223

TOC0:	16-bit timer output control register 0	
TXS0:	Transmit shift register 0	
[W]		
WDCS:	Watchdog timer clock select register	
WDTM:	Watchdog timer mode register	
WTM:	Watch timer operation mode register	

APPENDIX E REVISION HISTORY

Edition	Revision from Previous Edition	Chapter	
Second edition	Deletion of the following products • μPD780021AY(A), 780022AY(A), 780023AY(A), 780024AY(A), 780031AY(A), 780032AY(A), 780033AY(A), 780034AY(A)	Throughout	
	Deletion of the following package • 64-pin plastic LQFP (GK-8A8 type)		
	Addition of the following packages • 64-pin plastic TQFP (GK-9ET type) • 64-pin plastic LQFP (GB-8EU type)		
	Modification of recommended connection of unused pins in Table 3-1 Pin I/O Circuit Types	CHAPTER 3 PIN FUNCTION (µPD780024A, 780034A SUBSERIES)	
	Modification of recommended connection of unused pins in Table 4-1 Pin I/O Circuit Types	CHAPTER 4 PIN FUNCTION (µPD780024AY, 780034AY SUBSERIES	
	Modification of Figure 6-2 P00 to P03 Block Diagram	CHAPTER 6 PORT FUNCTIONS	
	Modification of Figure 6-4 P20, P22, P23, P25 Block Diagram		
	Modification of Figure 6-7 P34 and P36 Block Diagram (μPD780024A, 780034A Subseries)		
	Modification of Figure 6-8 P35 Block Diagram (μ PD780024A, 780034A Subseries)		
	Modification of Figure 6-10 P32 and P33 Block Diagram (µPD780024AY, 780034AY Subseries)		
	Modification of Figure 6-12 P40 to P47 Block Diagram		
	Modification of Figure 6-14 P50 to P57 Block Diagram		
	Modification of Figure 6-15 P64 to P67 Block Diagram		
	Modification of Figure 6-16 P70 to P73 Block Diagram		
	Modification of Figure 6-17 P74 and P75 Block Diagram		
	Addition of note for feedback resistor in Figure 7-3 Processor Clock Control Register (PCC) Format	CHAPTER 7 CLOCK GENERATOR	
	Deletion of one-shot pulse output function	CHAPTER 8 16-BIT TIMER/EVENT COUNTER 0	
	Addition of caution for INTWT in Figure 10-3 Operation Timing of Watch Timer/Interval Timer	CHAPTER 10 WATCH TIMER	
	Addition of 13.5 How to Read A/D Converter Characteristics Table	CHAPTER 13 8-BIT A/D CONVERTER	
	 13.6 A/D Converter Cautions Addition of (10) Timing at which A/D conversion result is undefined Addition of (11) Notes on board design Addition of (13) AVREF pin Addition of (14) Internal equivalent circuit of ANI0 to ANI7 pins and permissible signal source impedance 	(μPD780024A, 780024AY SUBSERIES)	
	Addition of 14.5 How to Read A/D Converter Characteristics Table	CHAPTER 14 10-BIT A/D CONVERTED	
	 14.6 A/D Converter Cautions Addition of (10) Timing at which A/D conversion result is undefined Addition of (11) Notes on board design Addition of (13) AVREF pin Addition of (14) Internal equivalent circuit of ANI0 to ANI7 pins and 	(μPD780034A, 780034AY SUBSERIES)	

The revision history for this manual is detailed below. "Chapter" indicates the chapter of each edition. (1/5)

Edition	Revision from Previous Edition	Chapter	
Second edition	Modification of Figure 18-3 IIC Control Register 0 (IICC0) Format	CHAPTER 18 SERIAL INTERFACE (IIC0) (µPD780024AY, 780034AY SUBSERIES ONLY)	
	Deletion of Flashpro II	CHAPTER 23 μPD78F0034A, 78F0034AY	
	Revision of development tools	APPENDIX B DEVELOPMENT TOOLS	
Third edition	Addition of the following products μPD780021AY(A), 780022AY(A), 780023AY(A), 780024AY(A), μPD780031AY(A), 780032AY(A), 780033AY(A), 780034AY(A), μPD78F0034B, 78F0034B(A), 78F0034BY, 78F0034BY(A)	Throughout	
	Addition of the following packages • 64-pin plastic LQFP (GC-8BS type) • 73-pin plastic FBGA (F1-CN3 type)		
	Addition of expanded-specification products to μ PD780024A, 780034A Subseries		
	Addition of 1.1 Expanded-Specification Products and Conventional Products	CHAPTER 1 OUTLINE (μPD780024A, 780034A SUBSERIES)	
	Addition of 1.10 Correspondence Between Mask ROM Versions and Flash Memory Versions		
	Modification of 1.11 Differences Between Standard Grade Products and Special Grade Products		
	Addition of 1.12 Correspondence Between Products and Packages		
	Addition of 2.9 Correspondence Between Mask ROM Versions and Flash Memory Versions	CHAPTER 2 OUTLINE (µPD780024AY 780034AY SUBSERIES)	
	Modification of 2.10 Differences Between Standard Grade Products and Special Grade Products	-	
	Addition of 2.11 Correspondence Between Products and Packages		
	Addition of description of pin processing in 3.2.18 VPP (flash memory versions only)	CHAPTER 3 PIN FUNCTION (µPD780024A, 780034A SUBSERIES)	
	Modification of Table 3-1 Pin I/O Circuit Types		
	Addition of description of pin processing in 4.2.18 VPP (flash memory versions only)	CHAPTER 4 PIN FUNCTION (µPD780024AY, 780034AY SUBSERIES	
	Modification of Table 4-1 Pin I/O Circuit Types		
	Addition of description of program area in 5.1.2 Internal data memory space	CHAPTER 5 CPU ARCHITECTURE	
	Modification of Figure 5-14 Data to Be Saved to Stack Memory and Figure 5-15 Data to Be Restored from Stack Memory		
	Modification of [Description example] in 5.4.4 Short direct addressing		
	Addition of [Illustration] in 5.4.7 Based addressing, 5.4.8 Based indexed addressing, and 5.4.9 Stack addressing		
	Modification of port block diagram (Figures 6-2 Block Diagram of P00 to P03 to 6-23 Block Diagram of P74 and P75)	CHAPTER 6 PORT FUNCTIONS	
	Addition of Table 6-6 Port Mode Registers and Output Latch Settings When Alternate Function Is Used		

(3/5)

		(3/5
Edition	Revision from Previous Edition	Chapter
Third edition	Addition of description of internal feedback resistor and oscillation stabilization time select register (OSTS) in 7.3 Clock Generator Control Registers	CHAPTER 7 CLOCK GENERATOR
	Modification of Figure 8-1 Block Diagram of 16-Bit Timer/Event Counter 0	CHAPTER 8 16-BIT TIMER/EVENT COUNTER 0
	Modification of Tables 8-2 TI00/TO0/P70 Pin Valid Edge and CR00, CR01 Capture Trigger and 8-3 TI01/P71 Pin Valid Edge and CR00 Capture Trigger in 2nd edition to Table 8-2 CR00 Capture Trigger and Valid Edges of TI00 and TI01 Pins and Table 8-3 CR01 Capture Trigger and Valid Edge of TI00 Pin (CRC02 = 1)	
	Modification of description procedure of each function in 8.4 Operation of 16-Bit Timer/Event Counter 0	
	Addition of Figure 8-26 PPG Output Configuration Diagram and Figure 8-27 PPG Output Operation Timing	
	Addition of 8.5 Program List	
	Modification of 8.6 (3) Capture register data retention timing and addition of (11) STOP mode or main system clock stop mode setting	
	Modification of Figures 9-1 Block Diagram of 8-Bit Timer/Event Counter 50 and 9-2 Block Diagram of 8-Bit Timer/Event Counter 51	CHAPTER 9 8-BIT TIMER/EVENT COUNTERS 50, 51
	Deletion of Caution in Figures 9-5 Format of 8-Bit Timer Mode Control Register 50 (TMC50) and 9-6 Format of 8-Bit Timer Mode Control Register 51 (TMC51)	
	Addition of [Setting] in 9.4.2 External event counter operation	
	Addition of description of frequency to [Setting] in 9.4.3 Square- wave output (8-bit resolution) operation	
	Addition of description of cycle and duty ratio to [Setting] in 9.4.4 8-bit PWM output operation	
	Addition of 9.5 Program List	
	Deletion of 9.5 (2) Operation after compare register change	
	during timer count operation in 2nd edition	
	Deletion of oscillation stabilization time select register (OSTS) from 11.3 Registers to Control Watchdog Timer in 2nd edition	CHAPTER 11 WATCHDOG TIMER
	Modification of Figure 12-1 Block Diagram of Clock Output/Buzzer Output Controller	CHAPTER 12 CLOCK OUTPUT/ BUZZER OUTPUT CONTROLLER
	Modification of description in 13.2 (3) Sample & hold circuit, (4) Voltage comparator, and addition of (10) ADTRG pin	CHAPTER 13 8-BIT A/D CONVERTER (µPD780024A, 780024AY SUBSERIES)
	Addition of Table 13-2 Sampling Time and A/D Conversion Start Delay Time of A/D Converter	
	Deletion of 13.6 (4) Noise countermeasures (contents of deletion are added to Figure 13-18 Example of Connecting Capacitor to AV_{REF} Pin and Figure 13-20 Example of Connection If Signal Source Impedance Is High), and addition of (14) Input impedance	
	of ANI0 to ANI7 pins Modification of Table 13-3 Resistances and Capacitances of	
	Equivalent Circuit (Reference Values)	

(7/0)	(4/	5)
-------	---	----	---	---

Edition	Revision from Previous Edition	Chapter
Third edition	Addition of Figure 14-2 Format of A/D Conversion Result Register 0 (ADCR0)	CHAPTER 14 10-BIT A/D CONVERTER (µPD780034A, 780034AY SUBSERIES)
	Modification of description in 14.2 (3) Sample & hold circuit, (4) Voltage comparator, and addition of (10) ADTRG pin	
	Addition of Table 14-2 Sampling Time and A/D Conversion Start Delay Time of A/D Converter	
	Deletion of 14.6 (4) Noise countermeasures (contents of deletion are added to Figure 14-19 Example of Connecting Capacitor to AVREF Pin and Figure 14-21 Example of Connection If Signal Source Impedance Is High), and addition of (14) Input impedance of ANI0 to ANI7 pins	
	Modification of Table 14-3 Resistances and Capacitances of Equivalent Circuit (Reference Values)	
	Modification of Figure 16-1 Block Diagram of Serial Interface UART0	CHAPTER 16 SERIAL INTERFACE UARTO
	Move of description of asynchronous serial interface status register 0 (ASIS0) in 16.3 Registers to Control Serial Interface UART0 to 16.2 Configuration of Serial Interface UART0	
	Addition of Caution in Figure 16-7 Error Tolerance (When $k = 0$), Including Sampling Errors	
	Modification of Caution in Figure 16-10 Timing of Asynchronous Serial Interface Receive Completion Interrupt Request	
	Addition of (1) Registers to be used and (3) Relationship between main system clock and baud rate in 16.4.3 Infrared data transfer mode	
	Addition of Table 16-6 Register Settings	
	Modification of Figure 17-1 Block Diagram of Serial Interface SIO3n	CHAPTER 17 SERIAL INTERFACES SIO30 AND SIO31
	Addition of Note 3 and Caution in Figures 17-2 Format of Serial Operation Mode Register 30 (CSIM30) and 17-3 Format of Serial Operation Mode Register 31 (CSIM31)	
	Addition of Table 17-2 Register Settings	
	Modification of Figure 18-1 Block Diagram of Serial Interface IIC0	CHAPTER 18 SERIAL INTERFACE IIC0 (µPD780024AY, 780034AY SUBSERIES ONLY)
	Unification of 18.2 (1) IIC shift register 0 (IIC0) and (4) IIC shift register 0 (IIC0) in 2nd edition, and (2) Slave address register 0 (SVA0) and (3) Slave address register 0 (SVA0) in 2nd edition	
	Addition of description to "Transfer lines" in Figure 18-16 Wait Signal	
	Addition of description to Notes 1 and 2 in Table 18-2 INTIIC0 Timing and Wait Control	
	Modification of Figure 18-21 Master Operation Flowchart	
	Modification of 18.5.15 (2) Slave operation	
	Modification of (1) Start condition ~ address and (2) Data in Figure 18-23 Example of Master to Slave Communication (When 9-Clock Wait Is Selected for Both Master and Slave)	
	Modification of Figure 18-24 Example of Slave to Master Communication (When 9-Clock Wait Is Selected for Both Master and Slave)	

Edition	Revision from Previous Edition	Chapter
Third edition	Modification of (E) Software interrupt in Figure 19-1 Basic Configuration of Interrupt Function	CHAPTER 19 INTERRUPT FUNCTIONS
	Addition of Caution 5 in Figure 19-2 Format of Interrupt Request Flag Registers (IF0L, IF0H, IF1L)	
	Addition of Caution in Figure 19-5 Format of External Interrupt Rising Edge Enable Register (EGP), External Interrupt Falling Edge Enable Register (EGN)	
	Addition of description and Remark in 19.4.1 Non-maskable interrupt request acknowledgment operation	
	Addition of description in 19.4.2 Maskable interrupt request acknowledgment operation	
	Addition of an item in Table 19-4 Interrupt Requests Enabled for Nesting During Interrupt Servicing	
	Addition of description of using expanded-specification products	CHAPTER 20 EXTERNAL DEVICE EXPANSION FUNCTION
	Addition of clock output and buzzer output in Table 21-1 HALT Mode Operating Statuses	CHAPTER 21 STANDBY FUNCTION
	Modification of clock output in Table 21-3 STOP Mode Operating Statuses	
	Revision of description	CHAPTER 23 μPD78F0034A, 78F0034B, 78F0034AY, 78F0034BY
	Addition of description	CHAPTER 25 ELECTRICAL SPECIFICATIONS (EXPANDED- SPECIFICATION PRODUCTS: fx = 1.0 TO 12 MHz)
		CHAPTER 26 ELECTRICAL SPECIFICATIONS (CONVENTIONAL PRODUCTS: fx = 1.0 TO 8.38 MHz)
		CHAPTER 27 PACKAGE DRAWINGS
		CHAPTER 28 RECOMMENDED SOLDERING CONDITIONS
	Revision of description	APPENDIX A DIFFERENCES BETWEEN μPD78018F, 780024A, 780034A, AND 780078 SUBSERIES
	Revision of description	APPENDIX B DEVELOPMENT TOOLS
	Addition of description	APPENDIX C NOTES ON TARGET SYSTEM DESIGN

(5/5)