High Voltage, Bidirectional Current Sense Amplifier

features

- Buffered Output with 3 Gain Options: 10V/V, 20V/V, 50V/V
- Gain Accuracy: 0.5\% Max
- Input Common Mode Voltage Range: -5 V to 80 V
- AC CMRR $>80 \mathrm{~dB}$ at 100 kHz
- Input Offset Voltage: 1.5mV Max
- -3 dB Bandwidth: 2 MHz
- Smooth, Continuous Operation Over Entire Common Mode Range
- 4kV HBM Tolerant and 1kV CDM Tolerant
- Low Power Shutdown <10 $\mu \mathrm{A}$
- $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Operating Temperature Range
- 8-Lead MSOP and 8-Lead S0 (Narrow) Packages

APPLICATIONS

- High Side or Low Side Current Sensing
- H-Bridge Motor Control
- Solenoid Current Sense
- High Voltage Data Acquisition
- PWM Control Loops
- Fuse/MOSFET Monitoring

DESCRIPTIOn

The LT®1999 is a high speed precision current sense amplifier, designed to monitor bidirectional currents over a wide common mode range. The LT1999 is offered in three gain options: $10 \mathrm{~V} / \mathrm{V}, 20 \mathrm{~V} / \mathrm{V}$, and $50 \mathrm{~V} / \mathrm{V}$.

The LT1999 senses current via an external resistive shunt and generates an output voltage, indicating both magnitude and direction of the sensed current. The output voltage is referenced halfway between the supply voltage and ground, or an external voltage can be used to set the reference level. With a 2 MHz bandwidth and a common mode input range of -5 V to 80 V , the LT1999 is suitable for monitoring currents in H-Bridge motor controls, switching power supplies, solenoid currents, and battery charge currents from full charge to depletion.

The LT1999 operates from an independent 5V supply and draws 1.55 mA . A shutdown mode is provided for minimizing power consumption.
The LT1999 is available in an 8-lead MSOP or SOP package.
$\boldsymbol{\Sigma}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

TYPICAL APPLICATION

Full Bridge Armature Current Monitor

LT1999-10/LT1999-20/

LT1999-50

ABSOLUTE MAXIMUM RATINGS (Nole 1)

Differential Input Voltage
+IN to -IN (Notes 1, 3) \qquad $\pm 60 \mathrm{~V}, 10 \mathrm{~ms}$
+IN to GND, -IN to GND (Note 2) -5.25 V to 88 V
Total Supply Voltage (${ }^{+}$to GND)...............................6V
Input Voltage Pins 6 and 8 $\mathrm{V}^{+}+0.3 \mathrm{~V},-0.3 \mathrm{~V}$
Output Short-Circuit Duration (Note 4) Indefinite
Operating Ambient Temperature (Note 5)

Specified Temperature Range (Note 6)
LT1999C \qquad $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT1999| . $.40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT1999H $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1999MP $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Junction Temperature

\qquad
$0^{\circ} \mathrm{C}$..... $150^{\circ} \mathrm{C}$

pIn CONFIGURATION

TOP VIEW	TOP VIEW	
	$\mathrm{V}^{+} 1$	8 SHDN
$\mathrm{V}^{+} 15$ $+1 \mathrm{~N} 2 \square$	+IN 2	7 OUT
	-IN 3	6 REF
MS8 PACKAGE 8-LEAD PLASTIC MSOP	$\mathrm{V}^{+} 4$	5 GND
$\mathrm{T}_{\text {JMAX }}=150^{\circ} \mathrm{C}, \Theta_{\mathrm{JA}}=300^{\circ} \mathrm{C} / \mathrm{W}$	S8 PACKAGE 8-LEAD PLASTIC SO	
	$\mathrm{T}_{\text {JMA }}$	$190^{\circ} \mathrm{C} / \mathrm{W}$

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE
LT1999CMS8-10\#PBF	LT1999CMS8-10\#TRPBF	LTFPB	8 -Lead Plastic MSOP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT1999IMS8-10\#PBF	LT1999IMS8-10\#TRPBF	LTFPB	8 -Lead Plastic MSOP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT1999HMS8-10\#PBF	LT1999HMS8-10\#TRPBF	LTFPB	8 -Lead Plastic MSOP	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1999MPMS8-10\#PBF	LT1999MPMS8-10\#TRPBF	LTFQP	8 -Lead Plastic MSOP	$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
LT1999CS8-10\#PBF	LT1999CS8-10\#TRPBF	199910	8 -Lead Plastic S0	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT1999IS8-10\#PBF	LT1999IS8-10\#TRPBF	199910	8 -Lead Plastic S0	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT1999HS8-10\#PBF	LT1999HS8-10\#TRPBF	199910	8 -Lead Plastic S0	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1999MPS8-10\#PBF	LT1999MPS8-10\#TRPBF	$99 M P 10$	8 -Lead Plastic SO	$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
LT1999CMS8-20\#PBF	LT1999CMS8-20\#TRPBF	LTFNZ	8 -Lead Plastic MSOP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT1999IMS8-20\#PBF	LT1999IMS8-20\#TRPBF	LTFNZ	8 -Lead Plastic MSOP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT1999HMS8-20\#PBF	LT1999HMS8-20\#TRPBF	LTFNZ	8 -Lead Plastic MSOP	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1999MPMS8-20\#PBF	LT1999MPMS8-20\#TRPBF	LTFQQ	8 -Lead Plastic MSOP	$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE
LT1999CS8-20\#PBF	LT1999CS8-20\#TRPBF	199920	8 -Lead Plastic SO	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT1999IS8-20\#PBF	LT1999IS8-20\#TRPBF	199920	8 -Lead Plastic S0	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT1999HS8-20\#PBF	LT1999HS8-20\#TRPBF	199920	8 -Lead Plastic S0	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1999MPS8-20\#PBF	LT1999MPS8-20\#TRPBF	$99 M P 20$	8 -Lead Plastic S0	$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
LT1999CMS8-50\#PBF	LT1999CMS8-50\#TRPBF	LTFPC	8 -Lead Plastic MSOP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT1999IMS8-50\#PBF	LT1999IMS8-50\#TRPBF	LTFPC	8 -Lead Plastic MSOP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT1999HMS8-50\#PBF	LT1999HMS8-50\#TRPBF	LTFPC	8 -Lead Plastic MSOP	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1999MPMS8-50\#PBF	LT1999MPMS8-50\#TRPBF	LTFQR	8 -Lead Plastic MSOP	$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
LT1999CS8-50\#PBF	LT1999CS8-50\#TRPBF	199950	8 -Lead Plastic S0	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT1999IS8-50\#PBF	LT1999IS8-50\#TRPBF	199950	8 -Lead Plastic S0	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT1999HS8-50\#PBF	LT1999HS8-50\#TRPBF	199950	8 -Lead Plastic S0	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1999MPS8-50\#PBF	LT1999MPS8-50\#TRPBF	$99 M P 50$	8 -Lead Plastic S0	$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for information on non-standard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECRICACHARACTERSTGS The o denotes the specifications which apply over the full operating temperature range, $0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$ for C -grade parts, $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$ for I-grade parts, and $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<125^{\circ} \mathrm{C}$ for H -grade parts, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=$ floating, $\mathrm{V}_{\overline{S H D N}}=$ floating, unless otherwise specified. See Figure 2.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {SENSE }}$	Full-Scale Input Sense Voltage (Note 7) $V_{\text {SENSE }}=V_{+ \text {IN }}-V_{\text {-IN }}$	$\begin{aligned} & \text { LT1999-10 } \\ & \text { LT1999-20 } \\ & \text { LT1999-50 } \end{aligned}$	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \end{aligned}$	$\begin{gathered} \hline-0.35 \\ -0.2 \\ -0.08 \end{gathered}$		$\begin{gathered} \hline 0.35 \\ 0.2 \\ 0.08 \end{gathered}$	V V V
$\mathrm{V}_{\text {CM }}$	CM Input Voltage Range		\bullet	-5		80	V
RIN(DIFF)	Differential Input Impedance	$\Delta \mathrm{V}_{\text {INDIFF }}= \pm 2 \mathrm{~V} /$ Gain	\bullet	6.4	8	9.6	k Ω
RINCM	CM Input Impedance	$\begin{aligned} & \Delta V_{C M}=5.5 \mathrm{~V} \text { to } 80 \mathrm{~V} \\ & \Delta V_{C M}=-5 \mathrm{~V} \text { to } 4.5 \mathrm{~V} \end{aligned}$	\bullet	$\begin{gathered} 5 \\ 3.6 \end{gathered}$	$\begin{aligned} & 20 \\ & 4.8 \end{aligned}$	6	$\begin{gathered} \mathrm{M} \Omega \\ \mathrm{k} \Omega \end{gathered}$
$\mathrm{V}_{\text {OSI }}$	Input Referred Voltage Offset		\bullet	$\begin{gathered} \hline-750 \\ -1500 \end{gathered}$	± 500	$\begin{aligned} & \hline 750 \\ & 1500 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
$\Delta \mathrm{V}_{\text {OSI }} / \Delta \mathrm{T}$	Input Referred Voltage Offset Drift				5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
A_{V}	Gain	$\begin{aligned} & \text { LT1999-10 } \\ & \text { LT1999-20 } \\ & \text { LT1999-50 } \end{aligned}$	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \end{aligned}$	$\begin{aligned} & 9.95 \\ & 19.9 \\ & 48.75 \end{aligned}$	$\begin{aligned} & 10 \\ & 20 \\ & 50 \end{aligned}$	$\begin{gathered} 10.05 \\ 20.1 \\ 50.25 \end{gathered}$	V/N V/N V/N
Av Error	Gain Error	$\Delta V_{\text {OUT }}= \pm 2 \mathrm{~V}$	\bullet	-0.5	± 0.2	0.5	\%
I_{B}	Input Bias Current $I(+I N)=I(-I N)$ (Note 8)	$\begin{aligned} & V_{C M}>5.5 \mathrm{~V} \\ & V_{C M}=-5 \mathrm{~V} \\ & V_{\overline{S H D N}}=0.5 \mathrm{~V}, 0 \mathrm{~V}<V_{\mathrm{CM}}<80 \mathrm{~V} \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{gathered} 100 \\ -2.35 \end{gathered}$	$\begin{aligned} & \hline 137.5 \\ & -1.95 \\ & 0.001 \end{aligned}$	$\begin{gathered} \hline 175 \\ -1.5 \\ 2.5 \end{gathered}$	μA $m A$ μA
10 S	Input Offset Current $\mathrm{I}_{\mathrm{OS}}=\mathrm{I}(+\mathrm{IN})-\mathrm{I}(-\mathrm{IN})$ (Note 8)	$\begin{aligned} & V_{C M}>5.5 \mathrm{~V} \\ & V_{C M}=-5 \mathrm{~V} \\ & V_{\overline{S H D N}}=0.5 \mathrm{~V}, 0 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<80 \mathrm{~V} \\ & \hline \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{gathered} \hline-1 \\ -10 \\ -2.5 \end{gathered}$		$\begin{gathered} 1 \\ 10 \\ 2.5 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
PSRR	Supply Rejection Ratio	$\mathrm{V}^{+}=4.5 \mathrm{~V}$ to 5.5 V	\bullet	68	77		dB

LT1999-10/LT1999-20/

LT1999-50

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating

 temperature range, $0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$ for C -grade parts, $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$ for I -grade parts, and $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<125^{\circ} \mathrm{C}$ for H -grade parts, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=12 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=$ floating, $\mathrm{V}_{\text {SHDN }}=$ floating, unless otherwise specified. See Figure 2.| SYMBOL | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CMRR | Sense Input Common Mode Rejection | $\begin{aligned} & V_{C M}=-5 \mathrm{~V} \text { to } 80 \mathrm{~V} \\ & V_{C M}=-5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & V_{C M}=12 \mathrm{~V}, 7 \mathrm{~V}-\mathrm{P}, \mathrm{f}=100 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, 7 \mathrm{~V}_{\mathrm{P}-\mathrm{P}, \mathrm{f}} \mathrm{f}=100 \mathrm{kHz} \\ & \hline \end{aligned}$ | $\stackrel{\bullet}{\bullet}$ | $\begin{aligned} & 96 \\ & 96 \\ & 75 \\ & 80 \\ & \hline \end{aligned}$ | $\begin{gathered} \hline 105 \\ 120 \\ 90 \\ 100 \\ \hline \end{gathered}$ | | $\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$ |
| e_{n} | Differential Input Referred Noise Voltage Density | $\begin{aligned} & \mathrm{f}=10 \mathrm{kHz} \\ & \mathrm{f}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \end{aligned}$ | | | $\begin{gathered} 97 \\ 8 \end{gathered}$ | | $\begin{gathered} \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ \mu V_{P-P} \end{gathered}$ |
| $\mathrm{REF}_{\text {RR }}$ | $\begin{aligned} & \text { REF Pin Rejection, } \mathrm{V}^{+}=5.5 \mathrm{~V} \\ & \Delta V_{\text {REF }}=3.0 \mathrm{~V} \\ & \Delta V_{\text {REF }}=3.25 \mathrm{~V} \\ & \Delta V_{\text {REF }}=3.25 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & \text { LT1999-10 } \\ & \text { LT1999-20 } \\ & \text { LT1999-50 } \end{aligned}$ | \bullet | $\begin{aligned} & 62 \\ & 62 \\ & 62 \end{aligned}$ | $\begin{aligned} & 70 \\ & 70 \\ & 70 \end{aligned}$ | | dB dB dB |
| $\mathrm{R}_{\text {REF }}$ | REF Pin Input Impedance | $\mathrm{V}_{\overline{\text { SHDN }}}=0.5 \mathrm{~V}$ | \bullet | $\begin{gathered} \hline 60 \\ 0.15 \end{gathered}$ | $\begin{aligned} & 80 \\ & 0.4 \end{aligned}$ | $\begin{aligned} & 100 \\ & 0.65 \end{aligned}$ | $\begin{gathered} \mathrm{k} \Omega \\ \mathrm{M} \Omega \end{gathered}$ |
| $V_{\text {REF }}$ | Open Circuit Voltage | $V_{\overline{S H D N}}=0.5 \mathrm{~V}$ | \bullet | 2.45 | $\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$ | $\begin{aligned} & 2.55 \\ & 2.75 \end{aligned}$ | V |
| $V_{\text {REFR }}$ | REF Pin Input Range (Note 9) | LT1999-10
 LT1999-20
 LT1999-50 | $\stackrel{\bullet}{\bullet}$ | $\begin{aligned} & 1.25 \\ & 1.125 \\ & 1.125 \end{aligned}$ | | $\begin{gathered} \hline V^{+}-1.25 \\ V^{+}-1.125 \\ V^{+}-1.125 \end{gathered}$ | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$ |
| ISHDN | Pin Pull-Up Current | $\mathrm{V}^{+}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {SHDN }}=0 \mathrm{~V}$ | \bullet | -6 | -2 | | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\text {IH }}$ | $\overline{\text { SHDN Pin Input High }}$ | | \bullet | $\mathrm{V}^{+}-0.5$ | | | V |
| $\mathrm{V}_{\text {IL }}$ | SHDN Pin Input Low | | \bullet | | | 0.5 | V |
| $\mathrm{f}_{3 \mathrm{~dB}}$ | Small Signal Bandwidth | LT1999-10
 LT1999-20
 LT1999-50 | | | $\begin{gathered} 2 \\ 2 \\ 1.2 \end{gathered}$ | | MHz
 MHz
 MHz |
| SR | Slew Rate | | | | 3 | | V/us |
| $\mathrm{t}_{\text {s }}$ | Settling Time due to Input Step, $\Delta \mathrm{V}_{\text {OUT }}= \pm 2 \mathrm{~V}$ | 0.5\% Settling | | | 2.5 | | $\mu \mathrm{S}$ |
| t_{r} | Common Mode Step Recovery Time $\Delta V_{C M}= \pm 50 \mathrm{~V}, 20 \mathrm{~ns}$
 (Note 10) | $\begin{aligned} & \text { LT1999-10 } \\ & \text { LT1999-20 } \\ & \text { LT1999-50 } \end{aligned}$ | | | $\begin{gathered} 0.8 \\ 1 \\ 1.3 \end{gathered}$ | | $\mu \mathrm{S}$ $\mu \mathrm{S}$ $\mu \mathrm{S}$ |
| V_{S} | Supply Voltage (Note 11) | | \bullet | 4.5 | 5 | 5.5 | V |
| Is | Supply Current | $\begin{aligned} & V_{C M}>5.5 \mathrm{~V} \\ & V_{C M}=-5 \mathrm{~V} \\ & \mathrm{~V}^{+}=5.5 \mathrm{~V}, \mathrm{~V}_{\overline{S H D N}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}>0 \mathrm{~V} \\ & \hline \end{aligned}$ | \bullet | | $\begin{gathered} 1.55 \\ 5.8 \\ 3 \\ \hline \end{gathered}$ | $\begin{aligned} & 1.9 \\ & 7.1 \\ & 10 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$ $\mu \mathrm{A}$ |
| R_{0} | Output Impedance | $\Delta l_{0}= \pm 2 \mathrm{~mA}$ | | | 0.15 | | Ω |
| $\mathrm{I}_{\text {SRC }}$ | Sourcing Output Current | $\mathrm{R}_{\text {LOAD }}=50 \Omega$ to GND | \bullet | 6 | 31 | 40 | mA |
| ISNK | Sinking Output Current | $\mathrm{R}_{\text {LOAD }}=50 \Omega$ to V^{+} | \bullet | 15 | 26 | 40 | mA |
| $V_{\text {OUT }}$ | Swing Output High (with Respect to V^{+}) | $\begin{aligned} & R_{\text {LOAD }}=1 \mathrm{k} \Omega \text { to Mid-Supply } \\ & \mathrm{R}_{\text {LOAD }}=\text { Open } \end{aligned}$ | \bullet | | $\begin{gathered} 125 \\ 5 \end{gathered}$ | $\begin{aligned} & 250 \\ & 125 \end{aligned}$ | $\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$ |
| | Swing Output Low (with Respect to V^{-}) | $\begin{aligned} & R_{\text {LOAD }}=1 \mathrm{k} \Omega \text { to Mid-Supply } \\ & R_{\text {LOAD }}=0 \text { pen } \end{aligned}$ | \bullet | | $\begin{aligned} & 175 \\ & 150 \end{aligned}$ | $\begin{aligned} & 250 \\ & 225 \end{aligned}$ | $\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$ |
| t_{ON} | Turn-On Time | $\mathrm{V}_{\text {SHDN }}=0 \mathrm{~V}$ to 5 V | | | 1 | | $\mu \mathrm{S}$ |
| $\mathrm{t}_{\text {OFF }}$ | Turn-Off Time | $\mathrm{V}_{\text {SHDN }}=5 \mathrm{~V}$ to 0 V | | | 1 | | $\mu \mathrm{S}$ |

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, $-55^{\circ} \mathrm{C}<\mathrm{T}_{A}<150^{\circ} \mathrm{C}$ for MP-grade parts, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=12 \mathrm{~V}$, $V_{\text {REF }}=$ floating, $\boldsymbol{V}_{\text {SHDN }}=$ floating, unless otherwise specified. See Figure 2.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$V_{\text {SENSE }}$	Full-Scale Input Sense Voltage (Note 7) $V_{\text {SENSE }}=V_{+1 N}-V_{-I N}$	$\begin{array}{\|l} \hline \text { LT1999-10 } \\ \text { LT1999-20 } \\ \text { LT1999-50 } \end{array}$	$\stackrel{\bullet}{\bullet}$	$\begin{gathered} \hline-0.35 \\ -0.2 \\ -0.08 \end{gathered}$		$\begin{gathered} \hline 0.35 \\ 0.2 \\ 0.08 \end{gathered}$	V V V
$\mathrm{V}_{\text {CM }}$	CM Input Voltage Range		\bullet	-5		80	V
$\underline{\mathrm{R}_{\text {IN(DIFF) }}}$	Differential Input Impedance	$\Delta V_{\text {INDIFF }}= \pm 2 \mathrm{~V} / \mathrm{GAIN}$	\bullet	6.4	8	9.6	k Ω
RINCM	CM Input Impedance	$\begin{aligned} & \Delta V_{C M}=5.5 \mathrm{~V} \text { to } 80 \mathrm{~V} \\ & \Delta V_{C M}=-5 \mathrm{~V} \text { to } 4.5 \mathrm{~V} \end{aligned}$		$\begin{gathered} 5 \\ 3.6 \end{gathered}$	$\begin{aligned} & 20 \\ & 4.8 \end{aligned}$	6	$\begin{gathered} \mathrm{M} \Omega \\ \mathrm{k} \Omega \end{gathered}$
$\mathrm{V}_{\text {OSI }}$	Input Referred Voltage Offset		\bullet	$\begin{aligned} & -750 \\ & -2000 \end{aligned}$	± 500	$\begin{aligned} & 750 \\ & 2000 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
$\Delta \mathrm{V}_{\text {OSI }} / \Delta \mathrm{T}$	Input Referred Voltage Offset Drift				8		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
A_{V}	Gain	$\begin{array}{\|l\|} \hline \text { LT1999-10 } \\ \text { LT1999-20 } \\ \text { LT1999-50 } \end{array}$	\bullet	$\begin{aligned} & \hline 9.95 \\ & 19.9 \\ & 48.75 \end{aligned}$	$\begin{aligned} & 10 \\ & 20 \\ & 50 \end{aligned}$	$\begin{gathered} 10.05 \\ 20.1 \\ 50.25 \end{gathered}$	$\begin{aligned} & V / N \\ & V / N \\ & V / N \end{aligned}$
Av Error	Gain Error	$\Delta V_{\text {OUT }}= \pm 2 \mathrm{~V}$	\bullet	-0.5	± 0.2	0.5	\%
I_{B}	Input Bias Current $I(+I N)=I(-I N)$ (Note 8)	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}>5.5 \mathrm{~V} \\ & V_{\mathrm{CM}}=-5 \mathrm{~V} \\ & \mathrm{~V}_{\overline{\mathrm{SHDN}}}=0.5 \mathrm{~V}, 0 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<80 \mathrm{~V} \\ & \hline \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{gathered} 100 \\ -2.35 \end{gathered}$	$\begin{aligned} & \hline 137.5 \\ & -1.95 \\ & 0.001 \end{aligned}$	$\begin{gathered} \hline 180 \\ -1.5 \\ 10 \end{gathered}$	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{~mA} \\ \mu \mathrm{~A} \end{gathered}$
10 S	Input Offset Current $\mathrm{I}_{\mathrm{OS}}=\mathrm{I}(+\mathrm{IN})-\mathrm{I}(-\operatorname{IN})$ (Note 8)	$\begin{aligned} & V_{C M}>5.5 \mathrm{~V} \\ & V_{C M}=-5 \mathrm{~V} \\ & V_{\overline{S H D N}}=0.5 \mathrm{~V}, 0 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<80 \mathrm{~V} \\ & \hline \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{gathered} -1 \\ -10 \\ -10 \end{gathered}$		$\begin{gathered} \hline 1 \\ 10 \\ 10 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
PSRR	Supply Rejection Ratio	$\mathrm{V}^{+}=4.5 \mathrm{~V}$ to 5.5 V	\bullet	68	77		dB
CMRR	Sense Input Common Mode Rejection	$\begin{aligned} & V_{C M}=-5 \mathrm{~V} \text { to } 80 \mathrm{~V} \\ & V_{C M}=-5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & V_{C M}=12 \mathrm{~V}, 7 \mathrm{~V}_{\text {P-P }}, f=100 \mathrm{kHz}, \\ & V_{C M}=0 \mathrm{~V}, 7 \mathrm{~V}_{\text {P-P },} \mathrm{f}=100 \mathrm{kHz} \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{aligned} & 96 \\ & 96 \\ & 75 \\ & 80 \end{aligned}$	$\begin{gathered} 105 \\ 120 \\ 90 \\ 100 \end{gathered}$		$d B$ $d B$ $d B$ $d B$
e_{n}	Differential Input Referred Noise Voltage Density	$\begin{aligned} & \mathrm{f}=10 \mathrm{kHz} \\ & \mathrm{f}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \end{aligned}$			$\begin{gathered} 97 \\ 8 \end{gathered}$		$\begin{gathered} \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ \mu \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \end{gathered}$
$\overline{R E F}_{\text {RR }}$	REF Pin Rejection, $\mathrm{V}^{+}=5.5 \mathrm{~V}$ $\begin{aligned} & \Delta V_{\text {REF }}=2.75 \mathrm{~V} \\ & \Delta V_{\text {REF }}=3.25 \mathrm{~V} \\ & \Delta V_{\text {REF }}=3.25 \mathrm{~V} \end{aligned}$	$\begin{array}{\|l} \text { LT1999-10 } \\ \text { LT1999-20 } \\ \text { LT1999-50 } \end{array}$	$\stackrel{\bullet}{\bullet}$	$\begin{aligned} & 62 \\ & 62 \\ & 62 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \\ & 70 \end{aligned}$		dB dB dB
$\mathrm{R}_{\text {REF }}$	REF Pin Input Impedance	$V_{\overline{S H D N}}=0.5 \mathrm{~V}$	\bullet	$\begin{gathered} \hline 60 \\ 0.15 \end{gathered}$	$\begin{aligned} & 80 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 100 \\ & 0.65 \end{aligned}$	$\begin{gathered} \mathrm{k} \Omega \\ \mathrm{M} \Omega \end{gathered}$
$\mathrm{V}_{\text {REF }}$	Open Circuit Voltage	$V_{\text {SHDN }}=0.5 \mathrm{~V}$	\bullet	$\begin{aligned} & 2.45 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 2.55 \\ & 2.75 \end{aligned}$	V
$\overline{\text { VREFR }}$	REF Pin Input Range (Note 9)	$\begin{aligned} & \text { LT1999-10 } \\ & \text { LT1999-20 } \\ & \text { LT1999-50 } \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{gathered} 1.5 \\ 1.125 \\ 1.125 \end{gathered}$		$\begin{gathered} V^{+}-1.25 \\ V^{+}-1.125 \\ V^{+}-1.125 \end{gathered}$	V V V
ISHDN	Pin Pull-Up Current	$\mathrm{V}^{+}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {SHDN }}=0 \mathrm{~V}$	\bullet	-6	-2		$\mu \mathrm{A}$
$\mathrm{V}_{\text {IH }}$	$\overline{\text { SHDN }}$ Pin Input High		\bullet	$\mathrm{V}^{+}-0.5$			V
VIL	$\overline{\text { SHDN Pin Input Low }}$		\bullet			0.5	V
$\mathrm{f}_{3 \mathrm{~dB}}$	Small Signal Bandwidth	$\begin{array}{\|l} \text { LT1999-10 } \\ \text { LT1999-20 } \\ \text { LT1999-50 } \end{array}$			$\begin{gathered} 2 \\ 2 \\ 1.2 \end{gathered}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
SR	Slew Rate				3		V/ $/ \mathrm{s}$
ts	Settling Time Due to Input Step, $\Delta V_{\text {OUT }}= \pm 2 \mathrm{~V}$	0.5\% Settling			2.5		$\mu \mathrm{s}$

ELECTRICAL CHARACTERISTICS The denotes ste speaifications which apply vere the tull openating

 temperature range, $-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<150^{\circ} \mathrm{C}$ for MP-grade parts, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=12 \mathrm{~V}$, $V_{\text {REF }}=$ floating, $\mathbf{V}_{\text {SHDN }}=$ floating, unless otherwise specified. See Figure 2.| SYMBOL | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| t_{r} | Common Mode Step Recovery Time $\Delta V_{C M}= \pm 50 \mathrm{~V}, 20 \mathrm{~ns}$
 (Note 10) | LT1999-10 LT1999-20 LT1999-50 | | | $\begin{gathered} \hline 0.8 \\ 1 \\ 1.3 \end{gathered}$ | | $\mu \mathrm{S}$ $\mu \mathrm{S}$ $\mu \mathrm{S}$ |
| $\mathrm{V}_{\text {S }}$ | Supply Voltage (Note 11) | | \bullet | 4.5 | 5 | 5.5 | V |
| Is | Supply Current | $\begin{aligned} & V_{C M}>5.5 \mathrm{~V} \\ & V_{C M}=-5 \mathrm{~V} \\ & \mathrm{~V}^{+}=5.5 \mathrm{~V}, \mathrm{~V}_{\overline{S H D N}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}>0 \mathrm{~V} \end{aligned}$ | $\stackrel{\bullet}{\bullet}$ | | $\begin{gathered} 1.55 \\ 5.8 \\ 3 \end{gathered}$ | $\begin{aligned} & 1.9 \\ & 7.1 \\ & 25 \end{aligned}$ | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$ $\mu \mathrm{A}$ |
| R_{0} | Output Impedance | $\Delta l_{0}= \pm 2 \mathrm{~mA}$ | | | 0.15 | | Ω |
| $\mathrm{I}_{\text {SRC }}$ | Sourcing Output Current | $\mathrm{R}_{\text {LOAD }}=50 \Omega$ to GND | \bullet | 3 | 31 | 40 | mA |
| $\mathrm{I}_{\text {SNK }}$ | Sinking Output Current | $\mathrm{R}_{\text {LOAD }}=50 \Omega$ to V^{+} | \bullet | 10 | 26 | 40 | mA |
| Vout | Swing Output High (with Respect to V^{+}) | $\begin{aligned} & \mathrm{R}_{\mathrm{LOAD}}=1 \mathrm{k} \Omega \text { to Mid-Supply } \\ & \mathrm{R}_{\mathrm{LOAD}}=\text { Open } \end{aligned}$ | \bullet | | $\begin{gathered} 125 \\ 5 \end{gathered}$ | $\begin{aligned} & 250 \\ & 125 \end{aligned}$ | $\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$ |
| | Swing Output Low (with Respect to V^{-}) | $\begin{aligned} & \mathrm{R}_{\text {LOAD }}=1 \mathrm{k} \Omega \text { to Mid-Supply } \\ & \mathrm{R}_{\text {LOAD }}=\text { Open } \end{aligned}$ | \bullet | | $\begin{aligned} & 175 \\ & 150 \end{aligned}$ | $\begin{aligned} & 250 \\ & 225 \end{aligned}$ | $\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$ |
| t_{ON} | Turn-On Time | $V_{\text {SHDN }}=0 \mathrm{~V}$ to 5V | | | 1 | | $\mu \mathrm{S}$ |
| $\mathrm{t}_{\text {OFF }}$ | Turn-Off Time | $V_{\text {SHDN }}=5 \mathrm{~V}$ to 0 V | | | 1 | | $\mu \mathrm{S}$ |

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: Pin 2 (+IN) and Pin 3 (-IN) are protected by ESD voltage clamps which have asymmetric bidirectional breakdown characteristics with respect to the GND pin (Pin 5). These pins can safely support common mode voltages which vary from -5.25 V to 88 V without triggering an ESD clamp.
Note 3: Exposure to differential sense voltages exceeding the normal operating range for extended periods of time may degrade part performance. A heat sink may be required to keep the junction temperature below the Absolute Maximum Rating when the inputs are stressed differentially. The amount of power dissipated in the LT1999 due to input overdrive can be approximated by:

$$
P_{\mathrm{DISS}}=\frac{\left(\mathrm{V}_{+\mid \mathbb{N}}-\mathrm{V}_{- \text {IN }}\right)^{2}}{8 \mathrm{k} \Omega}
$$

Note 4: A heat sink may be required to keep the junction temperature below the absolute maximum rating.
Note 5: The LT1999C/LT1999I are guaranteed functional over the operating temperature range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The LT1999H is guaranteed functional over the operating temperature range $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The LT1999MP is guaranteed functional over the operating temperature range $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$. Junction temperatures greater than $125^{\circ} \mathrm{C}$ will promote accelerated aging. The LT1999 has a demonstrated typical life beyond 1000 hours at $150^{\circ} \mathrm{C}$.
Note 6: The LT1999C is guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The LT1999C is designed, characterized, and expected to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ but is not tested or QA sampled at these temperatures. The LT1999I is guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The LT1999H is guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The LT1999MP is guaranteed to meet specified performance from $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$.

Note 7: Full-scale sense (VENSE) gives indication of the maximum differential input that can be applied with better than 0.5% gain accuracy. Gain accuracy is degraded when the output saturates against either power supply rail. $\mathrm{V}_{\text {SENSE }}$ is verified with $\mathrm{V}^{+}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=12 \mathrm{~V}$, with the REF pin set to it's voltage range limits. The maximum $V_{\text {SENSE }}$ is verified with the REF pin set to it's minimum specified limit, verifying the gain error is less than 0.5% at the output. The minimum $V_{\text {SENSE }}$ is verified with the REF pin set to its maximum specified limit, verifying the gain error at the output is less than 0.5%. See Note 9 for more information.
Note 8: I_{B} is defined as the average of the input bias currents to the +IN and $-\operatorname{IN}$ pins (Pins 2 and 3). A positive current indicates current flowing into the pin. I 0 is defined as the difference of the input bias currents. $I_{\text {OS }}=I(+I N)-I(-I N)$
Note 9: The REF pin voltage range is the minimum and maximum limits that ensures the input referred voltage offset does not exceed $\pm 3 \mathrm{mV}$ over the I, C, and H temperature ranges, and $\pm 3.5 \mathrm{mV}$ over the MP temperature range.
Note 10: Common mode recovery time is defined as the time it takes the output of the LT1999 to recover from a 50V, 20ns input common mode voltage transition, and settle to within the DC amplifier specifications.
Note 11: Operating the LT1999 with $\mathrm{V}^{+}<4.5 \mathrm{~V}$ is possible, although the LT1999 is not tested or specified in this condition. See the Applications Information section.

TYPICAL PERFORMANCE CHARACTERISTICS

Shutdown Supply Current

 vs Temperature

Supply Current vs Supply Voltage

Shutdown Input Bias Current vs Input Common Mode

Input Impedance
vs Input Common Mode Voltage

TYPICAL PERFORMANCE CHARACTERISTICS

LT1999-10 Small Signal
Frequency Response

Input Referred Voltage Offset vs Input Common Mode Voltage

LT1999-20 Small Signal Frequency Response

LT1999-50 Small Signal Frequency Response

Gain Error vs Temperature

Gain Error
vs Input Common Mode Voltage

TYPICAL PERFORMANCE CHARACTERISTICS

LT1999-50 2V Step Response

Settling Time

1999 G23

CMRR vs Frequency

LT 1999-10/LT1999-20/

TYPICAL PERFORMANCE CHARACTERISTICS

LT1999-10 Common Mode Rising Edge Step Response

LT1999-20 Common Mode Rising
Edge Step Response

LT1999-50 Common Mode Rising Edge Step Response

LT1999-10 Common Mode Falling Edge Step Response

LT1999-20 Common Mode Falling Edge Step Response

LT1999-50 Common Mode Falling Edge Step Response

TYPICAL PERFORMANCE CHARACTERISTICS

$\overline{\text { SHDN }}$ Pin Current vs SHDN Pin Voltage and Temperature

Turn-On/Turn-Off Time vs SHDN Voltage
$V_{\text {OUT }}$ vs $V_{\text {SENSE }}$ Over the Sense ABSMAX Range

LT 1999-10/LT1999-20/

PIn fUnCTIOnS

\mathbf{V}^{+}(Pins 1, 4): Power Supply Voltage. Pins 1 and 4 are tied internally together. The specified range of operation is 4.5 V to 5.5 V , but lower supply voltages (down to approximately 4 V) is possible although the LT1999 is not tested or characterized below 4.5V. See the Applications Information section.
+IN (Pin 2): Positive Sense Input Pin.
-IN (Pin 3): Negative Sense Input Pin.
GND (Pin 5): Ground Pin.
REF (Pin 6): Reference Pin Input. The REF pin sets the output common mode level and is set halfway between V^{+}and GND using a divider made of two 160k resistors. The default open circuit potential of the REF pin is mid-supply. It can be overdriven by an external voltage source cable of driving 80k to a mid-supply potential (see the Electrical Characteristics table for its specified input voltage range).

OUT (Pin 7): Voltage Output. $\mathrm{V}_{\text {OUT }}=\mathrm{A}_{\mathrm{V}} \bullet\left(\mathrm{V}_{\text {SENSE }} \pm \mathrm{V}_{\text {OSI }}\right)$, where A_{V} is the gain, and $V_{0 S I}$ is the input referred offset voltage. The output amplifier has a low impedance output and is designed to drive up to 200pF capacitive loads directly. Capacitive loads exceeding 200pF should be decoupled with an external resistor of at least 100Ω.
$\overline{\text { SHDN }}$ (Pin 8): Shutdown Pin. When pulled to within 0.5 V of GND (Pin 5), will place the LT1999 into low power shutdown. If the pin is left floating, an internal $2 \mu \mathrm{~A}$ pullup current source will place the LT1999 into the active (amplifying) state.

BLOCK DIAGRAM

Figure 1. Simplified Block Diagram

TEST CIRCUIT

Figure 2. Test Circuit

LT 1999-10/LT1999-20/ LT 1999-50

APPLICATIONS INFORMATION

The LT1999 current sense amplifier provides accurate bidirectional monitoring of current through a user-selected sense resistor. The voltage generated by the currentflowing in the sense resistor is amplified by a fixed gain of $10 \mathrm{~V} / \mathrm{V}$, 20V/V or 50V/V (LT1999-10, LT1999-20, or LT1999-50 respectively) and is level shifted to the OUT pin. The voltage difference and polarity of the OUT pin with respect to REF (Pin 6) indicates magnitude and direction of the current in the sense resistor.

THEORY OF OPERATION

Refer to the Block Diagram (Figure 1).

Case 1: $\mathrm{V}^{+}<\mathrm{V}_{\mathrm{CM}}<80 \mathrm{~V}$

For input common mode voltages exceeding the power supply, one can assume D1 of Figure 1 is completely off. The sensed voltage (VSENSE) is applied across Pin 2 (+IN) and Pin 3 (-IN) to matched resistors $\mathrm{R}_{+\mathrm{IN}}$ and $\mathrm{R}_{-\mathrm{IN}}$ (nominally $4 k$ each). The opposite ends of $R_{+I N}$ and $R_{-I n}$ are forced to equal potentials by transconductor $G_{I N}$, which convert the differentially sensed voltage into a sensed current. The sensed current in $\mathrm{R}_{+1 N}$ and $\mathrm{R}_{-I N}$ is combined, level-shifted, and converted back into a voltage by transresistance amplifier A_{0} and resistor R_{G}. Amplifier A_{0} provides high open loop gain to accurately convert the sensed current back into a voltage and to drive external loads. The theoretical output voltage is determined by the sensed voltage ($V_{\text {SENSE }}$), and the ratio of two on-chip resistors:

$$
V_{\text {OUT }}-V_{\text {REF }}=V_{\text {SENSE }} \cdot \frac{R_{G}}{R_{\text {IN }}}
$$

where

$$
\mathrm{R}_{\mathrm{IN}}=\frac{\mathrm{R}_{+I N}+\mathrm{R}_{-I N}}{2} \text { nominally } 4 \mathrm{k}
$$

For the LT1999-10, R_{G} is nominally 40k. For the LT1999-20, R_{G} is nominally 80 k , and for the LT1999-50, R_{G} is nominally 200 k .

The voltage difference between the OUT pin and the REF pin represent both polarity and magnitude of the sensed voltage. The noninverting input of amplifier A_{0} is biased by a resistive 160 k to 160 k divider tied between V^{+}and GND to set the default REF pin bias to mid-supply.

Case 2: $-5 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<\mathrm{V}^{+}$

For common mode inputs which transition or are set below the supply voltage, diode D1 will turn on and will provide a source of current through R_{+S} and R_{-S} to bias the inputs of transconductance amplifier $G_{\mid N}$ at least 2.25 V above GND. The transition is smooth and continuous; there are negligible changes to either gain or amplifier voltage offset. The only difference in amplifier operation is the bias currents provided by D1 through R_{+S} and R_{-S} are steered through the input pins, otherwise amplifier operation is identical. The inputs to transconductance amplifier $G_{\mid N}$ are still forced to equal potentials forcing any differential voltages appearing at the +IN and -IN pins into a differential current. This differential current is combined, level-shifted, and converted back into a voltage by transresistance amplifier A_{0} and Resistor R_{G}. Resistors R_{+S} and R_{-S} are trimmed to match $R_{+I N}$ and $R_{-I N}$ respectively, to prevent common mode to differential conversion from occurring (to the extent of the matched trim) when the input common mode transitions below V^{+}.
As described in case 1, the output is determined by the sense voltage and the ratio of two on-chip resistors:

$$
V_{\text {OUT }}-V_{\text {REF }}=V_{\text {SENSE }} \cdot \frac{R_{G}}{R_{I N}}
$$

where

$$
R_{I N}=\frac{R_{+I N}+R_{-I N}}{2}
$$

APPLICATIONS InFORMATION

Input Common Mode Range

The LT1999 was optimized for high common mode rejection. Its input stage is balanced and fully differential, designed to amplify differential signals and reject common mode signals. There is negligible crossover distortion due to sense voltage reversals. The amplifier is most linear in the zero-sense region.

With the V^{+}supply configured within the specified and tested range ($4.5 \mathrm{~V}<\mathrm{V}^{+}<5.5 \mathrm{~V}$), the LT1999's common mode range extends from -5 V to 80 V . Pushing +IN and -IN beyond the limits specified in the Absolute Maximum table can turn on the voltage clamps designed to protect the +IN and -IN pins during ESD events.

It is possible to operate the LT1999 on power supplies as low as 4 V (although it is not tested or specified below 4.5 V). Operating the LT1999 on supplies below 4 V will produce erratic behavior. When operating the LT1999 with supplies as low as 4 V , the common mode range for inputs which extend below GND is reduced. Refer to the Block Diagram (Figure 1). For inputs driven below V^{+}, diode D1 conducts. For proper operation, the input to the transconductor $\mathrm{V}\left(\mathrm{G}_{+\mathrm{IN}}\right)$ must be biased at approximately 2.25 V above the $G N D$ pin. $V\left(G_{+I N}\right)$ sits on the centertap of a voltage divider comprised of R_{+S} and $\mathrm{R}_{+\mathrm{IN}} \mathrm{V}\left(\mathrm{G}_{-\boldsymbol{I N}}\right)$ likewise sits in the middle of the voltage divider comprised of R_{-S}, and $\left.R_{-\mid N}\right)$. The voltage on $V\left(G_{+I N}\right)$ input is given by the following equation:
$V\left(G_{+I N}\right)=V_{+I N} \bullet \frac{R_{+S}}{R_{+S}+R_{+I N}}+\left(V^{+}-V_{D 1}\right) \cdot \frac{R_{+I N}}{R_{+S}+R_{+I N}}$
Setting $V\left(G_{+I N}\right)=2.25 \mathrm{~V}$, the ratio $\left(R_{+\mid N} / R_{+S}\right)$ to 5 , and $V_{D 1}$ equal to 0.8 V (cold temperatures), a plot of the lower input common mode range plotted against supply is shown in Figure 3.

Figure 3. Lower Input Common Mode vs Supply Voltage

Output Common Mode Range

The LT1999's output common mode level is set by the voltage on the REF pin. The REF pin sits in the middle of a 160 k to 160 k voltage divider connected between V^{+}and GND which sets the default open circuit potential of the REF pin to mid-supply. It can be overdriven by an external voltage source capable of driving 80k tied to a mid-supply potential. See the Electrical Characteristics table for the REF pin's specified input voltage range.

Differential sampling of the OUT pin with respect the REF pin provides the best noise immunity. Measurements of the output voltage made differentially with respect to the REF pin will provide the highest power supply and common mode rejection. Otherwise, power supply or GND pin disturbances are divided by the REF pin’s voltage divider and appear directly at the noninverting input of the transresistance amplifier A_{0} and are not rejected.

If not driven by a low impedance ($<100 \Omega$), the REF pin should be filtered with at least 1nF of capacitance to a low impedance, low noise ground plane. This external capacitance will also provide a charge reservoir during high frequency sampling of the REF pin by ADC inputs attached to this pin.

LT 1999-10/LT1999-20/ LT 1999-50

APPLICATIONS INFORMATION

Shutdown Capability

If $\overline{\text { SHDN }}$ (Pin 8) is drivento within 0.5V of GND, the LT1999 is placed into a low power shutdown state in which the part will draw about $3 \mu \mathrm{~A}$ from the V^{+}supply. The input pins (+|N and $-\mathbb{I N}$) will draw approximately 1 nA if biased within the range of 0 V to 80 V (with no differential voltage applied). If the input pins are pulled below the GND pin, each input appears as a diode tied to GND in series with approximately 4 k of resistance. The REF pin appears as approximately $0.4 \mathrm{M} \Omega$ tied to a mid-supply potential. The output appears as reverse biased diodes tied between the output to either V^{+}or GND pins.

EMI Filtering and Layout Practices

An internal 1st order differential lowpass noise/EMI suppression filter with a -3 dB bandwidth of 10 MHz (approximately $5 \times$ the LT1999's -3 dB bandwidth) is included to help improve the LT1999's EMI susceptibility and to assist with the rejection of high frequency signals beyond the
bandwidth of the LT1999 that may introduce errors. The pole is set by the following equation:

$$
\mathrm{f}_{\text {filt }}=1 /\left(\pi \cdot\left(\mathrm{R}_{+\mid \mathrm{N}}+\mathrm{R}_{-\mathrm{IN}}\right) \cdot \mathrm{C}_{\mathrm{F}}\right) \approx 10 \mathrm{MHz}
$$

Both the resistors and capacitors have a $\pm 15 \%$ variation so the pole can vary by approximately $\pm 30 \%$ over manufacturing process and temperature variations.
The layout for lowest EMI/noise susceptibility is achieved by keeping short direct connections and minimizing loop areas (see Figure 4). If the user-supplied sense resistor cannot be placed in close proximity to the LT1999, the surface area of the loop comprising connections of +IN to RSENSE and back to -IN should be minimized. This requires routing PCB traces connecting +IN to RSENSE and -IN to R ${ }_{\text {SENSE }}$ adjacent with one another with minimal separation. The metal traces connecting +IN to the sense resistor and -IN to the sense resistor should match and use the same trace width.

Bypassing the V^{+}pin to the GND pin with a $0.1 \mu \mathrm{~F}$ capacitor with short wiring connection is recommended.

Figure 4. Recommended Layout

APPLICATIONS INFORMATION

The REF pin should be either driven by a low source impedance ($<100 \Omega$) or should be bypassed with at least 1 nF to a low impedance, low noise, signal ground plane (see Figure 4). Larger bypass capacitors on both V^{+}pins, and the REF pin, will extend enhanced AC CMRR, and PSRR performance to lower frequencies. Bypassing the REF pin to a quiet ground plane filters the V^{+}pin or GND pin noise that is sensed by the REF pin voltage divider and applied to the noninverting input of output amplifier A_{0}. Any common $1 \cdot R$ drops generated by pulsating ground currents in common with the REF pin filter capacitor can compromise the filtering performance and should be avoided.
If the $\overline{\text { SHDN }}$ pin is not driven and is left floating, routing a PCB trace connecting Pins 1 and 8 under the part will act as a shield, and will help limit edge coupling from the inputs (Pins 2 and 3) to the SHDN pin. Periodic pulses on the inputs with fast edges may glitch the high impedance SHDN pin, periodically putting the part into low power shutdown. Additional precaution against this may be taken by adding an optional small ($\sim 10 \mathrm{pF}$) capacitor may be tied between V^{+}(Pin 1) and Pin 8.
Finally, when connecting the LT1999 inputs to the sense resistor, it is importantto use good Kelvin sensing practices (sensing the resistor in a way that excludes PCB trace $1 \cdot R$ voltage drops). For sense resistors less than 1Ω, one might consider using a 4 -wire sense resistor to sense the resistive element accurately.

Selection of the Current Sense Resistor

The external sense resistor selection presents a delicate trade-off between power dissipation in the resistor and current measurement accuracy.
In high current applications, the user may want to minimize the power dissipated in the sense resistor. The sense resistor current will create heat and voltage loss, degrading efficiency. As a result, the sense resistor should be as small as possible while still providing adequate dynamic range required by the measurement. The dynamic range is the ratio between the maximum accurately produced signal generated by the voltage across the sense resistor, and the minimum accurately reproduced signal. The minimum accurately reproduced signal is primarily dictated by the voltage offset of the LT1999. The maximum accurately reproduced signal is dictated by the output swing of the LT1999.

Thus the dynamic range for the LT1999 can be thought of the maximum sense voltage divided by the input referred voltage offset or:

$$
\text { Dynamic Range }=\frac{\Delta \mathrm{V}_{\text {OUT(MAX) }}}{\mathrm{GAIN} \cdot \mathrm{~V}_{\mathrm{OSI}}}
$$

The above equation tells us that the dynamic range is inversely proportional to the gain of the LT1999. Thus, if accuracy is of greater importance than efficiency or power loss, the LT1999-10 used with the highest valued sense resistor possible is recommended. If efficiency, heat generated, and power loss in the resistive shunt is the primary concern, the LT1999-50 and the lowest value sense resistor possible is recommended. The LT1999-20 is available for applications somewhere in between these two extremes.

LT 1999-10/LT1999-20/
 LT 1999-50

APPLICATIONS INFORMATION

Fuse Monitor

The inputs can be overdriven without fear of damaging the LT1999. This makes the LT1999 ideal for monitoring fuses if either +IN or -IN are shorted to ground while the other is at the full common mode supply voltage (see Figure 5). If the fuse in Figure 5 opens with the +IN tied to the positive supply, the load will pull -IN to GND. The output will be forced to the positive V^{+}supply rail. If it is desired that the output be near ground if the fuse opens, it is a simple matter of swapping the inputs. Precautions should be followed: First, when the inputs are stressed differentially due to the fuse blowing open, a large voltage drop will be placed across the +IN to -IN pins, dissipating
power in the precision on-chip input resistors. Precaution should be taken to prevent junction temperatures from exceeding the Absolute Maximum ratings (see Note 3in the Electrical Characteristics section). Secondly, if the load is inductive, and the fuse blows open without a clamp diode, energy stored in the inductive load will be dissipated in the LT1999, which could cause damage. A simple steering diode as shown in Figure 5 will prevent this from happening, and will protect the LT1999 from damage.
Finally, the user should be aware that in fuse monitoring applications with the sense voltage $\left(\mathrm{V}_{\text {SENSE }}=\mathrm{V}_{+ \text {IN }}-\mathrm{V}_{- \text {IN }}\right)$ being driven in excess of -25 V , the output of the LT1999 will undergo phase reversal (see Figure 6).

Figure 5. Using the LT1999 to Monitor a Fuse

Figure 6. A Plot of the LT1999's Output Voltage vs $V_{\text {SENSE }}\left(V_{\text {SENSE }}=V_{+ \text {IN }}-V_{-I N}\right)$. In Applications Where the Sense Voltage Is Driven in Excess of -25V, the Output of the LT1999 Will Undergo Phase Reversal

LT 1999-10/LT1999-20/
 LT1999-50

TYPICAL APPLICATIONS

Solenoid Current Monitor

The solenoid of Figure 7 consists of a coil of wire in an iron case with permeable plunger that acts as a movable element. When the MOSFET turns on, the diode is reversed biased off, and current flows through R RENSE to actuate the solenoid. If the MOSFET is turned off, the current in the MOSFET is interrupted, but the energy stored in the solenoid causes the diode to turn on and current to freewheel in the loop consisting of the diode, R RENSE and the solenoid.

Figure 7 shows the LT1999 monitoring currents in a ground referenced solenoid used when the coil is hard tied to the case, and is tied to ground. Figure 8 shows a supply referenced solenoid whose coil is insulated from the case. The LT1999 will interface equally well to either of these two configurations.

Bidirectional PWM Motor Monitor

Pulse width modulation is commonly used to efficiently vary the average voltage applied across a DC motor. The H-bridgetopology of Figure 9allows full4-quadrant control: clockwise control, counter-clockwise control, clockwise regeneration, and counter-clockwise regeneration. The LT1999 in conjunction with a non-inductive current shunt is used to monitor currents in the rotor. The LT1999 can be used to detect stuck rotors, provide detection of overcurrent conditions in general, or provide current mode feedback control.

Figure 10 shows a plot of the output voltage of the LT1999.

Figure 7. Solenoid Current Monitor for Ground Tied Solenoid. The Common Mode Inputs to the LT1999 Switch Between VS and One Diode Drop Below Ground

LT 1999-10/LT 1999-20/
LT1999-50

TYPICAL APPLICATIONS

Figure 8. Solenoid Current Monitor for Non-Grounded Solenoids. This Circuit Performs the Same Function as Figure 7 Except One End of the Solenoid Is Tied to V_{s}. The Common Mode Voltage of Inputs of the LT1999 Switch Between Ground and One Diode Drop Above V

TYPICAL APPLICATIONS

Figure 9. Armature Current Monitor for DC Motor Applications

Figure 10. LT1999 Output Waveforms for the Circuit of Figure 9

MS8 Package
8-Lead Plastic MSOP
(Reference LTC DWG \# 05-08-1660 Rev F)

S8 Package

8-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610)

revision history

REV	DATE	DESCRIPTION	PAGE NUMBER
A	$5 / 11$	Revised +IN and -IN pin descriptions in Pin Functions section	12

LT 1999-10/LT1999-20/

LT1999-50

TYPICAL APPLICATION

Battery Charge Current and Load Current Monitor
$V_{\text {OUT }}=0.25 \mathrm{~V} / \mathrm{A}$, Maximum Measured Current $\pm 9.5 \mathrm{~A}$

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1787/ LT1787HV	Precision, Bidirectional High Side Current Sense Amplifier	2.7 V to 60V Operation, $75 \mu \mathrm{~V}$ Offset, $60 \mu \mathrm{~A}$ Current Draw
LT6100	Gain-Selectable High Side Current Sense Amplifier	4.1V to 48V Operation, Pin-Selectable Gain: 10V/V, 12.5V/N, 20V/N, 25V/V, 40V/N, 50V/V
$\begin{aligned} & \text { LTC6101/ } \\ & \text { LTC6101HV } \end{aligned}$	High Voltage High Side Current Sense Amplifier	4V to 60V/5V to 100V Operation, External Resistor Set Gain, SOT23
$\begin{aligned} & \hline \text { LTC6102/ } \\ & \text { LTC6102HV } \end{aligned}$	Zero Drift High Side Current Sense Amplifier	4 V to $60 \mathrm{~V} / 5 \mathrm{~V}$ to 100 V Operation, $\pm 10 \mu \mathrm{~V}$ Offset, $1 \mu \mathrm{~s}$ Step Response, MSOP8/DFN Packages
LTC6103	Dual High Side Precision Current Sense Amplifier	4V to 60V, Gain Configurable, 8-Pin MSOP Package
LTC6104	Bidirectional, High Side Current Sense	4V to 60V, Gain Configurable, 8-Pin MSOP Package
LT6106	Low Cost, High Side Precision Current Sense Amplifier	2.7V to 36V, Gain Configurable, SOT23 Package
LT6105	Precision, Extended Input Range Current Sense Amplifier	-0.3 to 44V, Gain Configurable, 8-Pin MSOP Package
LTC4150	Coulomb Counter/Battery Gas Gauge	Indicates Charge Quantity and Polarity
LT1990	Precision, 100μ A Gain Selectable Amplifier	2.7 V to 36V Operation, CMRR $>70 \mathrm{~dB}$, Input Voltage $= \pm 250 \mathrm{~V}$
LT1991	$\pm 250 \mathrm{~V}$ Input Range Difference Amplifier	2.7 V to 36V Operation, $50 \mu \mathrm{~V}$ Offset, CMRR $>75 \mathrm{~B}$, Input Voltage $= \pm 60 \mathrm{~V}$
LT1637/LT1638	$1.1 / 1.2 \mathrm{MHz}, 0.4 \mathrm{~V} / \mu \mathrm{s}$ Over-The-Top, Rail-to-Rail Input and Output Amplifier	$0.4 \mathrm{~V} / \mu \mathrm{s}$ Slew Rate, $230 \mu \mathrm{~A}$ per Amplifier

