## 16-bit Proprietary Microcontroller

## CMOS

## F$^{2}$ MC-16LX MB90360 Series

## MB90F362/T/S/TS, MB90362/T/S/TS, MB90F367/T/S/TS, MB90367/T/S/TS, MB90V340A-101, MB90V340A-102, MB90V340A-103, MB90V340A-104

## ■ DESCRIPTION

The MB90360-series with 1 channel FULL-CAN* interface and FLASH ROM is especially designed for automotive and other industrial applications. Its main feature is the on-board CAN Interfaces, which conform to Ver 2.0 Part A and Part B, while supporting a very flexible message buffer scheme and so offering more functions than a normal full CAN approach. With the new $0.35 \mu \mathrm{~m}$ CMOS technology, Fujitsu now offers on-chip FLASH-ROM program memory up to 64 Kbytes.

The power supply ( 3 V ) is supplied to the internal MCU core from an internal regulator circuit. This creates a major advantage in terms of EMI and power consumption.

The internal PLL clock frequency multiplier provides an internal 42 ns instruction execution time from an external 4 MHz clock. Also, main and sub-clock can be monitored independently using the clock monitor function.
The unit features a 4 channel input capture unit 1 channel 16 -bit free running timer, 2 -channel LIN-UART, and 16 -channel $8 / 10$-bit A/D converter as the peripheral resource.

* : Controller Area Network (CAN) - License of Robert Bosch GmbH

Note : F²MC stands for FUJITSU Flexible Microcontroller, a registered trademark of FUJITSU LIMITED.

## PACKAGE

48-pin Plastic LQFP
(FPT-48P-M26)

## MB90360 Series

## - FEATURES

- Clock
- Built-in PLL clock frequency multiplication circuit
- Selection of machine clocks (PLL clocks) is allowed among frequency division by 2 on oscillation clock and multiplication of 1 to 6 times of oscillation clock (for 4 MHz oscillation clock, 4 MHz to 24 MHz ).
- Operation by sub-clock (up to $50 \mathrm{kHz}: 100 \mathrm{kHz}$ oscillation clock divided two) is allowed (devices without Ssuffix only).
- Minimum execution time of instruction : 42 ns (when operating with $4-\mathrm{MHz}$ oscillation clock and 6-time multiplied PLL clock) .
- Clock monitor function (MB90x367x only)
- Main clock or sub-clock is monitored independently
- Internal CR oscillation clock ( 100 kHz typical) can be used as sub-clock
- Instruction system best suited to controller
- 16 Mbytes CPU memory space
- 24-bit internal addressing
- Wide choice of data types (bit, byte, word, and long word)
- Wide choice of addressing modes (23 types)
- Enhanced multiply-divide instructions with sign and RETI instructions
- Enhanced high-precision computing with 32-bit accumulator
- Instruction system compatible with high-level language (C language) and multitask
- Employing system stack pointer
- Enhanced various pointer indirect instructions
- Barrel shift instructions
- Increased processing speed
- 4-byte instruction queue
- Powerful interrupt function
- Powerful 8-level, 34-condition interrupt feature
- Up to 8 channel external interrupts are supported


## - Automatic data transfer function independent of CPU

- Expanded intelligent I/O service function (EI2OS) : up to 16 channels


## - Low-power consumption (standby) mode

- Sleep mode (a mode that halts CPU operating clock)
- Main timer mode (timebase timer mode that is transferred from main clock mode)
- PLL timer mode (timebase timer mode that is transferred from PLL clock mode)
- Watch mode (a mode that operates sub-clock and watch timer only, devices without S-suffix)
- Stop mode (a mode that stops oscillation clock and sub-clock)
- CPU blocking operation mode
- Process
- CMOS technology
- I/O port
- General-purpose input/output port (CMOS output)
- 34 ports (devices without S-suffix)
- 36 ports (devices with S-suffix)


## - Sub-clock pin (X0A and X1A)

- Provided (used for external oscillation), devices without S-suffix
- Not provided (used with internal CR oscillation in sub-clock mode), devices with S-suffix


## MB90360 Series

## (Continued)

- Timer
- Timebase timer, watch timer (device without S-suffix), watchdog timer : 1 channel
- 8/16-bit PPG timer : 8-bit $\times 2$ channels or 16 -bit $\times 2$ channels
- 16-bit reload timer : 2 channels
- 16- bit input/output timer
- 16-bit free run timer : 1 channel (FRT0 : ICU 0/1/2/3)
- 16- bit input capture : (ICU) : 4 channels
- Full-CAN interface : up to 1 channel
- Compliant with Ver 2.0A and Ver 2.0B CAN specifications
- Flexible message buffering (mailbox and FIFO buffering can be mixed)
- CAN wake-up function
- UART (LIN/SCI) : up to 2 channels
- Equipped with full-duplex double buffer
- Clock-asynchronous or clock-synchronous serial transmission is available
- DTP/External interrupt : up to 8 channels, CAN wakeup : up to 1 channel
- Module for activation of expanded intelligent I/O service (EI2OS) and generation of external interrupt by external input.
- Delay interrupt generator module
- Generates interrupt request for task switching.
- 8/10-bit A/D converter : 16 channels
- Resolution is selectable between 8-bit and 10-bit.
- Activation by external trigger input is allowed.
- Conversion time : $3 \mu \mathrm{~s}$ (at $24-\mathrm{MHz}$ machine clock, including sampling time)
- Program patch function
- Address matching detection for 6 address pointers.
- Low voltage/CPU operation detection reset (devices with T-suffix)
- Detects low voltage ( $4.0 \mathrm{~V} \pm 0.3 \mathrm{~V}$ ) and resets automatically
- Resets automatically when program is runaway and counter is not cleared within interval time (approx. 262 ms : external 4 MHz )
- Capable of changing input voltage for port
- Automotive/CMOS-Schmitt (initial level is Automotive in single-chip mode)


## - FLASH memory security function

- Protects the content of FLASH memory (FLASH memory device only)


## MB90360 Series

## PRODUCT LINEUP

| Features | MB90362 | MB90362T | MB90362S | MB90362TS | $\begin{gathered} \text { MB90V340 } \\ \text { A-101 } \end{gathered}$ | $\begin{gathered} \text { MB90V340 } \\ \text { A-102 } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CPU | $\mathrm{F}^{2} \mathrm{MC}$-16LX CPU |  |  |  |  |  |
| System clock | PLL clock multiplier ( $\times 1, \times 2, \times 3, \times 4, \times 6,1 / 2$ when PLL stops) Minimum instruction execution time : 42 ns ( 4 MHz oscillation clock, PLL $\times 6$ ) |  |  |  |  |  |
| Sub-clock pin (X0A, X1A) | Yes |  | No |  | No | Yes |
| Clock monitor function | No |  |  |  |  |  |
| ROM | MASK ROM, 64 Kbytes |  |  |  | External |  |
| RAM capacitance | 3 Kbytes |  |  |  | 30 Kbytes |  |
| $\begin{array}{\|l\|} \hline \text { CAN } \\ \text { interface } \end{array}$ | 1 channel |  |  |  | 3 channels |  |
| Low voltage/CPU operation detection reset | No | Yes | No | Yes |  |  |
| Package | LQFP-48P |  |  |  | PGA-299C |  |
| Emulator-specific power supply * | - |  |  |  | Yes |  |
| Corresponding EVA product | MB90V340A-102 |  | MB90V340A-101 |  | - |  |

*: It is setting of Jumper switch (TOOL Vcc) when emulator (MB2147-01) is used. Please refer to the Emulator hardware manual for the details.

| Features | MB90F362 | MB90F362T | MB90F362S | MB90F362TS |
| :---: | :---: | :---: | :---: | :---: |
| CPU | F²MC-16LX CPU |  |  |  |
| System clock | PLL clock multiplier $(\times 1, \times 2, \times 3, \times 4, \times 6,1 / 2$ when PLL stops) Minimum instruction execution time : 42 ns <br> ( 4 MHz oscillation clock, $\mathrm{PLL} \times 6$ ) |  |  |  |
| Sub-clock pin (X0A, X1A) | Yes |  | No |  |
| Clock monitor function | No |  |  |  |
| ROM | Flash memory, 64 Kbytes |  |  |  |
| RAM capacitance | 3 Kbytes |  |  |  |
| CAN interface | 1 channel |  |  |  |
| Low voltage/CPU operation detection reset | No | Yes | No | Yes |
| Package | LQFP-48P |  |  |  |
| Corresponding EVA product | MB90V340A-102 |  | MB90V340A-101 |  |

## MB90360 Series

| Features | MB90367 | MB90367T | MB90367S | MB90367TS | $\begin{gathered} \text { MB90V340 } \\ \text { A-103 } \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { MB90V340 } \\ \text { A-104 } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CPU | F²MC-16LX CPU |  |  |  |  |  |
| System clock | PLL clock multiplier ( $\times 1, \times 2, \times 3, \times 4, \times 6,1 / 2$ when PLL stops) <br> Minimum instruction execution time : 42 ns ( 4 MHz oscillation clock, PLL $\times 6$ ) |  |  |  |  |  |
| Sub-clock pin (X0A, X1A) | Yes |  | No(internal CR oscillation can be used as sub-clock) |  |  | Yes |
| Clock monitor function | Yes |  |  |  |  |  |
| ROM | MASK ROM, 64 Kbytes |  |  |  | External |  |
| RAM capacitance | 3 Kbytes |  |  |  | 30 Kbytes |  |
| CAN interface | 1 channel |  |  |  | 3 channels |  |
| Low voltage/CPU operation detection reset | No | Yes | No | Yes | N |  |
| Package | LQFP-48P |  |  |  | PGA-299C |  |
| Emulator-specific power supply * | - |  |  |  | Yes |  |
| Corresponding EVA product | MB90V340A-104 |  | MB90V340A-103 |  | - |  |

* : It is setting of Jumper switch (TOOL V $c c$ ) when emulator (MB2147-01) is used. Please refer to the Emulator hardware manual for the details.

| Features | MB90F367 | MB90F367T | MB90F367S | MB90F367TS |
| :---: | :---: | :---: | :---: | :---: |
| CPU | F²MC-16LX CPU |  |  |  |
| System clock | PLL clock multiplier $(\times 1, \times 2, \times 3, \times 4, \times 6,1 / 2$ when PLL stops) Minimum instruction execution time : 42 ns <br> ( 4 MHz oscillation clock, PLL $\times 6$ ) |  |  |  |
| Sub-clock pin (X0A, X1A) | Yes |  | No (internal CR oscillation can be used as sub-clock) |  |
| Clock monitor function | Yes |  |  |  |
| ROM | Flash memory, 64 Kbytes |  |  |  |
| RAM capacitance | 3 Kbytes |  |  |  |
| CAN <br> interface | 1 channel |  |  |  |
| Low voltage/CPU operation detection reset | No | Yes | No | Yes |
| Package | LQFP-48P |  |  |  |
| Corresponding EVA product | MB90V340A-104 |  | MB90V340A-103 |  |

## MB90360 Series

## PIN ASSIGNMENT

- MB90F362/T/S/TS, MB90362/T/S/TS, MB90F367/T/S/TS, MB90367/T/S/TS


[^0]*2 : High current port

## MB90360 Series

## PIN DESCRIPTION

| Pin No. | Pin name | Circuit type | Function |
| :---: | :---: | :---: | :---: |
| LQFP-48P* |  |  |  |
| 1 | AVcc | I | Vcc power input pin for analog circuit. |
| 2 | AVR | - | Power (Vref+) input pin for A/D converter. It should be below Vcc. |
| 3 to 8 | P60 to P65 | H | General-purpose I/O port. |
|  | AN0 to AN5 |  | Analog input pin for A/D converter. |
| 9, 10 | P66, P67 | H | General-purpose I/O port. |
|  | AN6, AN7 |  | Analog input pin for A/D converter. |
|  | $\begin{aligned} & \hline \text { PPGC (D) } \\ & \text { PPGE (F) } \end{aligned}$ |  | Output pin for PPG. |
| 11 | P80 | F | General-purpose I/O port. |
|  | ADTG |  | Trigger input pin for A/D converter. |
|  | INT12R |  | External interrupt request input pin for INT12. |
| 12 to 14 | P50 to P52 | H | General-purpose I/O port. (P50 has different I/O circuit type from MB90V340A.) |
|  | AN8 to AN10 |  | Analog input pin for A/D converter. |
| 15 | P53 | H | General-purpose I/O port. |
|  | AN11 |  | Analog input pin for A/D converter. |
|  | TIN3 |  | Event input pin for reload timer 3. |
| 16 | P54 | H | General-purpose I/O port. |
|  | AN12 |  | Analog input pin for A/D converter. |
|  | TOT3 |  | Output pin for reload timer 3 |
|  | INT8 |  | External interrupt request input pin for INT8. |
| 17 to 19 | P55 to P57 | H | General-purpose I/O port. |
|  | AN13 to AN15 |  | Analog input pin for A/D converter. |
|  | INT10, INT11, INT13 |  | External interrupt request input pin for INT10, INT11, INT13. |
| 20 | MD2 | D | Input pin for operation mode specification. |
| 21, 22 | MD1, <br> MD0 | C | Input pin for operation mode specification. |
| 23 | $\overline{\text { RST }}$ | E | Reset input. |
| 24 | Vcc | - | Power input pin (3.5 V to 5.5 V). |
| 25 | Vss | - | Power input pin (0 V). |
| 26 | C | 1 | Power supply stabilization capacitor pin. It should be connected to a higher than or equal to $0.1 \mu \mathrm{~F}$ ceramic capacitor. |

[^1](Continued)

## MB90360 Series

| Pin No. | Pin name | Circuit type | Function |
| :---: | :---: | :---: | :---: |
| LQFP-48P* |  |  |  |
| 27 | X0 | A | Oscillation input pin. |
| 28 | X1 |  | Oscillation output pin. |
| 29 to 32 | P27 to P24 | G | General-purpose I/O port. <br> The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode. |
|  | IN3 to IN0 |  | Event input pin for input capture 0 to 3 . |
| 33, 34 | P23, P22 | J | General-purpose I/O port. <br> The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode. High current output port. |
|  | $\begin{aligned} & \text { PPGF (E) } \\ & \text { PPGD (C) } \end{aligned}$ |  | Output pin for PPG. |
| 35, 36 | P21, P20 | J | General-purpose I/O port. <br> The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode. High current output port. |
| 37 | P85 | K | General-purpose I/O port. |
|  | SIN1 |  | Serial data input pin for UART1. |
| 38 | P87 | F | General-purpose I/O port. |
|  | SCK1 |  | Clock I/O pin for UART1. |
| 39 | P86 | F | General-purpose I/O port. |
|  | SOT1 |  | Serial data output pin for UART1. |
| 40 | P43 | F | General-purpose I/O port. |
|  | TX1 |  | TX output pin for CAN1 interface. |
| 41 | P42 | F | General-purpose I/O port. |
|  | RX1 |  | RX input pin for CAN1 interface. |
|  | INT9R |  | External interrupt request input pin for INT9 (Sub) . |
| 42 | P83 | F | General-purpose I/O port. |
|  | SOT0 |  | Serial data output pin for UART0. |
|  | TOT2 |  | Output pin for reload timer 2 |
| 43 | P84 | F | General-purpose I/O port. |
|  | SCK0 |  | Clock I/O pin for UARTO. |
|  | INT15R |  | External interrupt request input pin for INT15. |

*: FPT-48P-M26
(Continued)

## MB90360 Series

(Continued)

| Pin No. | Pin name | Circuit type | Function |
| :---: | :---: | :---: | :---: |
| LQFP-48P* |  |  |  |
| 44 | P82 | K | General-purpose I/O port. |
|  | SIN0 |  | Serial data input pin for UART0. |
|  | INT14R |  | External interrupt request input pin for INT14. |
|  | TIN2 |  | Event input pin for reload timer 2. |
| 45 | P44 | F | General-purpose I/O port. (Different I/O circuit type from MB90V340A.) |
|  | FRCK0 |  | Free-run timer 0 clock pin. |
| 46, 47 | P40, P41 | F | General-purpose I/O port. (Devices with S-suffix and MB90V340A-101/103 only.) |
|  | X0A, X1A | B | Oscillation input pin for sub-clock. (Devices without S-suffix and MB90V340A-102/104 only.) |
| 48 | AVss | I | Vss power input pin for analog circuit. |

*: FPT-48P-M26

## MB90360 Series

I/O CIRCUIT TYPE

| Type | Circuit | Remarks |
| :---: | :---: | :---: |
| A |  | Oscillation circuit <br> - High-speed oscillation feedback resistor = approx. $1 \mathrm{M} \Omega$ |
| B |  | Oscillation circuit <br> - Low-speed oscillation feedback resistor $=$ approx. $10 \mathrm{M} \Omega$ |
| C |  | Mask ROM device : <br> - CMOS hysteresis input pin <br> Flash device : <br> - CMOS input pin |
| D |  | Mask ROM device : <br> - CMOS hysteresis input pin <br> - Pull-down resistor value : approx. $50 \mathrm{k} \Omega$ <br> Flash device : <br> - CMOS input pin <br> - No Pull-down |
| E |  | CMOS hysteresis input pin <br> - Pull-up resistor value : approx. $50 \mathrm{k} \Omega$ |

(Continued)

## MB90360 Series

| Type | Circuit | Remarks |
| :---: | :---: | :---: |
| F |  | - CMOS level output (los = 4 mA , Іон $=-4 \mathrm{~mA}$ ) <br> - CMOS hysteresis inputs (With the standby-time input shutdown function) <br> - Automotive input (With the standbytime input shutdown function) |
| G |  | - CMOS level output (los = 4 mA , Іон $=-4 \mathrm{~mA}$ ) <br> - CMOS hysteresis inputs (With the standby-time input shutdown function) <br> - Automotive input (With the standbytime input shutdown function) <br> - Settable pull-up resistor : approx. $50 \mathrm{k} \Omega$ |
| H |  | - CMOS level output (los = 4 mA , Іон $=-4 \mathrm{~mA}$ ) <br> - CMOS hysteresis inputs (With the standby-time input shutdown function) <br> - Automotive input (With the standbytime input shutdown function) <br> - A/D analog input |

(Continued)

## MB90360 Series

(Continued)

| Type |  | • Power supply input protection circuit |
| :--- | :--- | :--- | :--- |

## MB90360 Series

## HANDLING DEVICES

Special care is required for the following when handling the device :

- Preventing latch-up
- Treatment of unused pins
- Using external clock
- Precautions for when not using a sub-clock signal
- Notes on during operation of PLL clock mode
- Power supply pins (Vcc/Vss)
- Pull-up/down resistors
- Crystal oscillator circuit
- Turning-on sequence of power supply to A/D converter and analog inputs
- Connection of unused pins of $A / D$ converter
- Notes on energization
- Stabilization of power supply voltage
- Initialization
- Notes on using CAN Function
- Flash security function
- Correspondence with $+105^{\circ} \mathrm{C}$ or more


## 1. Preventing latch-up

CMOS IC chips may suffer latch-up under the following conditions:

- A voltage higher than $\mathrm{V}_{\mathrm{cc}}$ or lower than $\mathrm{V}_{\text {ss }}$ is applied to an input or output pin.
- A voltage higher than the rated voltage is applied between V cc and V ss.
- The AV cc power supply is applied before the Vcc voltage.

Latch-up may increase the power supply current drastically, causing thermal damage to the device.
Use meticulous care not to exceed the rating.
For the same reason, also be careful not to let the analog power-supply voltage (AVcc, AVR) exceed the digital power-supply voltage.

## 2. Treatment of unused pins

Leaving unused input pins open may result in misbehavior or latch up and possible permanent damage of the device. Therefore, they must be pulled up or pulled down through resistors. In this case, those resistors should be more than $2 \mathrm{k} \Omega$.
Unused bidirectional pins should be set to the output state and can be left open, or the input state with the above described connection.

## 3. Using external clock

To use external clock, drive the X 0 pin and leave X 1 pin open.


## MB90360 Series

## 4. Precautions for when not using a sub-clock signal

If you do not connect pins X0A and X1A to an oscillator, use pull-down handling on the X0A pin and leave the X 1 A pin open.

## 5. Notes on during operation of PLL clock mode

If the PLL clock mode is selected, the microcontroller attempts to be working with the self-oscillating circuit even when there is no external oscillator or external clock input is stopped. Performance of this operation, however, cannot be guaranteed.
6. Power supply pins ( $\mathrm{V}_{\mathrm{cc}} / \mathrm{V}_{\mathrm{ss}}$ )

- If there are multiple $\mathrm{V}_{\mathrm{cc}}$ and $\mathrm{V}_{\mathrm{ss}}$ pins, from the point of view of device design, pins to be of the same potential are connected the inside of the device to prevent such malfunctioning as latch up.
To reduce unnecessary radiation, prevent malfunctioning of the strobe signal due to the rise of ground level, and observe the standard for total output current, be sure to connect the $\mathrm{V}_{\mathrm{cc}}$ and $\mathrm{V}_{\mathrm{ss}}$ pins to the power supply and ground externally.
- Connect $\mathrm{V}_{\mathrm{cc}}$ and $\mathrm{V}_{\mathrm{ss}}$ to the device from the current supply source at a low impedance.
- As a measure against power supply noise, connect a capacitor of about $0.1 \mu \mathrm{~F}$ as a bypass capacitor between $V_{c c}$ and $V_{s s}$ in the vicinity of $V_{c c}$ and $V_{s s}$ pins of the device.



## 7. Pull-up/down resistors

The MB90360 Series does not support internal pull-up/down resistors (Port 2 : built-in pull-up resistors) . Use external components where needed.

## 8. Crystal oscillator circuit

Noises around X0 or X1 pin may be possible causes of abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure, to the utmost effort, that lines of oscillation circuit do not cross the lines of other circuits.
It is highly recommended to provide a printed circuit board artwork surrounding X0 and X1 pins with a ground area for stabilizing the operation.
9. Turning-on sequence of power supply to $A / D$ converter and analog inputs

Make sure to turn on the A/D converter power supply ( AV cc and AVR ) and analog inputs (ANO to AN15) after turning-on the digital power supply $\left(\mathrm{V}_{c c}\right)$.
Turn-off the digital power after turning off the A/D converter power supply and analog inputs. In this case, make sure that the voltage does not exceed AVRH or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

## MB90360 Series

## 10. Connection of unused pins of $A / D$ converter if $A / D$ converter is used

Connect unused pins of $A / D$ converter to $A V c c=V_{c c}, A V s s=A V R=V_{s s}$.

## 11. Notes on energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at $50 \mu \mathrm{~s}$ or more (0.2 V to 2.7 V )

## 12. Stabilization of power supply voltage

A sudden change in the power supply voltage may cause the device to malfunction even within the specified Vcc power supply voltage operating guarantee range. Therefore, the $\mathrm{V}_{\mathrm{cc}}$ power supply voltage should be stabilized.

For reference, the power supply voltage should be controlled so that Vcc ripple variations (peak-to-peak value) at commercial frequencies ( 50 Hz to 60 Hz ) fall below $10 \%$ of the standard Vcc power supply voltage and the coefficient of transient fluctuation does not exceed $0.1 \mathrm{~V} / \mathrm{ms}$ at instantaneous power switching.

## 13. Initialization

In the device, there are internal registers which are initialized only by a power-on reset. To initialize these registers, turn on the power again.

## 14. Notes on using CAN function

To use CAN function, please set '1' to DIRECT bit of CAN direct mode register (CDMR) . If DIRECT bit is set to '0' (initial value), wait states will be performed when accessing CAN registers.
Note : Please refer to Hardware Manual of MB90360 series for detail of CAN Direct Mode Register.

## 15. Flash security function

The security bit is located in the area of the flash memory.
If protection code 01 н is written in the security bit, the flash memory is in the protected state by security.
Therefore, please do not write 01 н in this address if you do not use the security function.
Please refer to following table for the address of the security bit.

|  | Flash memory size | Address for security bit |
| :---: | :---: | :---: |
| MB90F362 |  |  |
| MB90F362S |  |  |
| MB90F362T | Embedded 512 Kbit Flash Memory |  |
| MB90F362TS |  | FF0001H |
| MB90F367 |  |  |
| MB90F367S |  |  |
| MB90F367T |  |  |
| MB90F367TS |  |  |

16. Correspondence with $+105{ }^{\circ} \mathrm{C}$ or more

If used exceeding $T_{A}=+105^{\circ} \mathrm{C}$, please contact Fujitsu for reliability limitations.

## MB90360 Series

## BLOCK DIAGRAMS

- MB90V340A-101/102

* : Only for MB90V340A-102


## MB90360 Series

- MB90V340A-103/104



## MB90360 Series

- MB90F362/T/S/TS, MB90362/T/S/TS, MB90F367/T/S/TS, MB90367/T/S/TS



## MB90360 Series

MEMORY MAP
MB90V340A-101/102/103/104

MB90F362/T/S/TS
MB90362/T/S/TS
MB90F367/T/S/TS
MB90367/T/S/TS


No access

Note : The high-order portion of bank 00 gives the image of the FF bank ROM to make the small model of the C compiler effective. Since the low-order 16 bits are the same, the table in ROM can be referred without using the far specification in the pointer declaration.
For example, an attempt to access $00 \mathrm{COOO} \boldsymbol{н}$ accesses the value at FFCOOO H in ROM .
The ROM area in bank FF exceeds 32 Kbytes, and its entire image cannot be shown in bank 00.
The image between FF8000 ${ }_{\mathrm{H}}$ and FFFFFFH is visible in bank 00, while the image between FF0000 H and FF7FFFH is visible only in bank FF.

## MB90360 Series

## I/O MAP

(Address: 000000н-0000FFH)

| Address | Register | Abbreviation | Access | Resource name | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $000000_{\mathrm{H}},$ $000001 \text { H }$ | Reserved |  |  |  |  |
| 000002н | Port 2 Data Register | PDR2 | R/W | Port 2 | XXXXXXXX |
| 000003н | Reserved |  |  |  |  |
| 000004н | Port 4 Data Register | PDR4 | R/W | Port 4 | XXXXXXXX |
| 000005H | Port 5 Data Register | PDR5 | R/W | Port 5 | XXXXXXXX |
| 000006н | Port 6 Data Register | PDR6 | R/W | Port 6 | XXXXXXXX |
| 000007н | Reserved |  |  |  |  |
| 000008H | Port 8 Data Register | PDR8 | R/W | Port 8 | XXXXXXXX |
| $\begin{aligned} & 000009_{\mathrm{H}}, \\ & 00000 \mathrm{~A}_{\mathrm{H}} \end{aligned}$ | Reserved |  |  |  |  |
| 00000В ${ }^{\text {¢ }}$ | Port 5 Analog Input Enable Register | ADER5 | R/W | Port 5, A/D | 11111111B |
| 00000С ${ }_{\text {H }}$ | Port 6 Analog Input Enable Register | ADER6 | R/W | Port 6, A/D | 11111111в |
| 00000的 | Reserved |  |  |  |  |
| 00000Ен | Input Level Select Register | ILSR0 | R/W | Ports | XXXXOXXX |
| 00000FH | Input Level Select Register | ILSR1 | R/W | Ports | XXXXXXXX |
| 000010н, 000011н | Reserved |  |  |  |  |
| 000012н | Port 2 Direction Register | DDR2 | R/W | Port 2 | 00000000в |
| 000013H | Reserved |  |  |  |  |
| 000014 | Port 4 Direction Register | DDR4 | R/W | Port 4 | XXX00000в |
| 000015H | Port 5 Direction Register | DDR5 | R/W | Port 5 | 00000000в |
| 000016H | Port 6 Direction Register | DDR6 | R/W | Port 6 | 00000000в |
| 000017H | Reserved |  |  |  |  |
| 000018H | Port 8 Direction Register | DDR8 | R/W | Port 8 | 000000X0в |
| 000019н | Reserved |  |  |  |  |
| $00001 \mathrm{~A}_{\text {н }}$ | Port A Direction Register | DDRA | W | Port A | XXX00XXX |
| $\begin{aligned} & \text { 00001Вн } \\ & \text { to } \\ & 00001 \text { D } \end{aligned}$ | Reserved |  |  |  |  |
| 00001Eн | Port 2 Pull-up Control Register | PUCR2 | R/W | Port 2 | 00000000в |
| 00001 FH | Reserved |  |  |  |  |

(Continued)

## MB90360 Series

| Address | Register | Abbreviation | Access | Resource name | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 000020н | Serial Mode Register 0 | SMR0 | W, R/W | UARTO | 00000000в |
| 000021н | Serial Control Register 0 | SCR0 | W, R/W |  | 00000000в |
| 000022н | Reception/Transmission Data Register 0 | $\begin{aligned} & \hline \text { RDR0/ } \\ & \text { TDR0 } \end{aligned}$ | R/W |  | 00000000в |
| 000023 ${ }^{\text {H }}$ | Serial Status Register 0 | SSR0 | R, R/W |  | 00001000в |
| 000024н | Extended Communication Control Register 0 | ECCRO | $\begin{aligned} & \text { R, W, } \\ & \text { R/W } \end{aligned}$ |  | 000000ХХв |
| 000025н | Extended Status/Control Register 0 | ESCR0 | R/W |  | 00000100в |
| 000026н | Baud Rate Generator Register 00 | BGR00 | R/W, R |  | 00000000в |
| 000027н | Baud Rate Generator Register 01 | BGR01 | R/W, R |  | 00000000в |
| 000028н | Serial Mode Register 1 | SMR1 | W, R/W | UART1 | 00000000в |
| 000029н | Serial Control Register 1 | SCR1 | W, R/W |  | 00000000в |
| 00002Ан | Reception/Transmission Data Register 1 | RDR1/ TDR1 | R/W |  | 00000000в |
| 00002Вн | Serial Status Register 1 | SSR1 | R, R/W |  | 00001000в |
| 00002CH | Extended Communication Control Register 1 | ECCR1 | $\begin{aligned} & \hline R, W, W \\ & R / W \end{aligned}$ |  | 000000XX ${ }^{\text {¢ }}$ |
| 00002D ${ }_{\text {н }}$ | Extended Status/Control Register 1 | ESCR1 | R/W |  | 00000100в |
| 00002Ен | Baud Rate Generator Register 10 | BGR10 | R/W, R |  | 00000000в |
| 00002Fн | Baud Rate Generator Register 11 | BGR11 | R/W, R |  | 00000000в |
| $\begin{aligned} & 000030 \mathrm{H} \\ & \text { to } \\ & 00003 \mathrm{~A}_{\mathrm{H}} \end{aligned}$ | Reserved |  |  |  |  |
| 00003Bн | Address Detect Control Register 1 | PACSR1 | R/W | Address Match Detection 1 | 00000000в |
| $\begin{aligned} & 00003 \mathrm{CH} \\ & \text { to } \\ & 000047 \mathrm{H} \end{aligned}$ | Reserved |  |  |  |  |
| 000048н | PPG C Operation Mode Control Register | PPGCC | W, R/W | 16-bit PPG C/D | 0X000XX1в |
| 000049н | PPG D Operation Mode Control Register | PPGCD | W, R/W |  | 0X000001в |
| 00004Ан | PPG C/PPG D Count Clock Select Register | PPGCD | R/W |  | 000000X0в |
| 00004Вн | Reserved |  |  |  |  |
| 00004Сн | PPG E Operation Mode Control Register | PPGCE | W, R/W | 16-bit PPG E/F | 0X000XX1в |
| 00004Dн | PPG F Operation Mode Control Register | PPGCF | W, R/W |  | 0X000001в |
| 00004Ен | PPG E/PPG F Count Clock Select Register | PPGEF | R/W |  | 000000X0в |
| 00004FH | Reserved |  |  |  |  |

(Continued)

## MB90360 Series

| Address | Register | Abbreviation | Access | Resource name | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 000050н | Input Capture Control Status 0/1 | ICS01 | R/W | Input Capture 0/1 | 00000000в |
| 000051н | Input Capture Edge 0/1 | ICE01 | R/W, R |  | ХХХ0Х0ХХв |
| 000052н | Input Capture Control Status 2/3 | ICS23 | R/W | Input Capture 2/3 | 00000000в |
| 000053н | Input Capture Edge 2/3 | ICE23 | R |  | XXXXXXXX |
| $\begin{aligned} & 000054 \text { н } \\ & \text { to } \\ & 000063 \text { н } \end{aligned}$ | Reserved |  |  |  |  |
| 000064н | Timer Control Status 2 | TMCSR2 | R/W | 16-bit Reload Timer 2 | 00000000в |
| 000065н | Timer Control Status 2 | TMCSR2 | R/W |  | ХХХХ0000в |
| 000066н | Timer Control Status 3 | TMCSR3 | R/W | 16-bit Reload Timer 3 | 00000000в |
| 000067н | Timer Control Status 3 | TMCSR3 | R/W |  | XXXX0000в |
| 000068н | A/D Control Status 0 | ADCS0 | R/W | A/D Converter | 000XXXX0в |
| 000069н | A/D Control Status 1 | ADCS1 | R/W, W |  | 0000000Хв |
| 00006Ан | A/D Data 0 | ADCR0 | R |  | 00000000в |
| 00006Вн | A/D Data 1 | ADCR1 | R |  | XXXXXX00в |
| 00006С ${ }_{\text {н }}$ | ADC Setting 0 | ADSR0 | R/W |  | 00000000в |
| 00006D ${ }^{\text {н }}$ | ADC Setting 1 | ADSR1 | R/W |  | 00000000в |
| 00006Ен | Low Voltage/CPU Operation Detection Reset Control Register | LVRC | R/W, W | Low voltage/CPU operation detection reset | 00111000в |
| 00006Fн | ROM Mirror Function Select | ROMM | W | ROM Mirror | XXXXXXX1в |
| $\begin{aligned} & 00007 \mathrm{H}_{\mathrm{H}} \\ & \text { to } \\ & 00007 \mathrm{~F}_{\mathrm{H}} \end{aligned}$ | Reserved |  |  |  |  |
| $\begin{aligned} & 000080_{\mathrm{H}} \\ & \text { to } \\ & 00008 \mathrm{~F}_{\mathrm{H}} \end{aligned}$ | Reserved for CAN Interface 1. Refer to "■ CAN CONTROLLERS" |  |  |  |  |
| $\begin{aligned} & 00009 \mathrm{H}_{\mathrm{H}} \\ & \text { to } \\ & 00009 \mathrm{D}_{\mathrm{H}} \end{aligned}$ | Reserved |  |  |  |  |
| 00009Ен | Address Detect Control Register 0 | PACSR0 | R/W | Address Match Detection 0 | 00000000в |
| 00009F\% | Delayed Interrupt/Release Register | DIRR | R/W | Delayed Interrupt generation module | ХХХХХХХХ0в |
|  | Low-power Consumption Mode Control Register | LPMCR | W, R/W | Low-Power consumption Control Circuit | 00011000в |
| 0000A1н | Clock Selection Register | CKSCR | R, R/W | Low-Power consumption Control Circuit | 11111100в |

(Continued)

## MB90360 Series

| Address | Register | Abbreviation | Access | Resource name | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { 0000А2н } \\ & \text { to } \\ & 0000 \mathrm{~A} 7 \mathrm{H} \end{aligned}$ | Reserved |  |  |  |  |
| 0000А8н | Watchdog Control Register | WDTC | R, W | Watchdog Timer | XXXXX111в |
| 0000А9н | Timebase Timer Control Register | TBTC | W, R/W | Timebase Timer | 1XX00100в |
| 0000ААн | Watch Timer Control register | WTC | R, R/W | Watch Timer | 1X001000в |
| $\begin{aligned} & 0000 \mathrm{AB} \\ & \text { to } \\ & 0000 \mathrm{AD} \end{aligned}$ | Reserved |  |  |  |  |
| 0000AEн | Flash Control Status (Flash Devices only. Otherwise reserved) | FMCS | R, R/W | Flash Memory | 000X0000в |
| 0000AF ${ }^{\text {H }}$ | Reserved |  |  |  |  |
| 0000В边 | Interrupt Control Register 00 | ICR00 | W, R/W | Interrupt Control | 00000111в |
| 0000B1н | Interrupt Control Register 01 | ICR01 | W, R/W |  | 00000111в |
| 0000В2н | Interrupt Control Register 02 | ICR02 | W, R/W |  | 00000111в |
| 0000В3н | Interrupt Control Register 03 | ICR03 | W, R/W |  | 00000111в |
| 0000В44 | Interrupt Control Register 04 | ICR04 | W, R/W |  | 00000111в |
| 0000В5 | Interrupt Control Register 05 | ICR05 | W, R/W |  | 00000111в |
| 0000В6н | Interrupt Control Register 06 | ICR06 | W, R/W |  | 00000111в |
| 0000B7н | Interrupt Control Register 07 | ICR07 | W, R/W |  | 00000111в |
| 0000В8\% | Interrupt Control Register 08 | ICR08 | W, R/W |  | 00000111в |
| 0000В9н | Interrupt Control Register 09 | ICR09 | W, R/W |  | 00000111в |
| 0000ВАн | Interrupt Control Register 10 | ICR10 | W, R/W |  | 00000111в |
| 0000ВВн | Interrupt Control Register 11 | ICR11 | W, R/W |  | 00000111в |
| 0000ВСн | Interrupt Control Register 12 | ICR12 | W, R/W |  | 00000111в |
| 0000ВDн | Interrupt Control Register 13 | ICR13 | W, R/W |  | 00000111в |
| 0000ВЕн | Interrupt Control Register 14 | ICR14 | W, R/W |  | 00000111в |
| 0000BF | Interrupt Control Register 15 | ICR15 | W, R/W |  | 00000111в |
| $\begin{aligned} & 0000 \mathrm{COH} \\ & \text { to } \\ & 0000 \mathrm{C} 9 \mathrm{H} \end{aligned}$ | Reserved |  |  |  |  |
| 0000САн | External Interrupt Enable 1 | ENIR1 | R/W | External Interrupt 1 | 00000000в |
| 0000СВн | External Interrupt Source 1 | EIRR1 | R/W |  | ХХХХХХХХХв |
| 0000ССн | Detection Level Setting 1 | ELVR1 | R/W |  | 00000000в |
| 0000СDн |  |  |  |  | 00000000в |
| 0000СЕн | External Interrupt Source Select | EISSR | R/W |  | 00000000в |

(Continued)

## MB90360 Series

(Continued)

| Address | Register | Abbrevia- <br> tion | Access | Resource name | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0000CFH | PLL/Subclock Control Register | PSCCR | W | PLL | XXXX0000B |
| 0000D <br> to <br> to <br> $0000 \mathrm{FFH}_{H}$ | Reserved |  |  |  |  |

## MB90360 Series

(Address : 7900н-7FFFH)

| Address | Register | Abbreviation | Access | Resource name | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \hline 7900_{\mathrm{H}} \\ \text { to } \\ 7917 \mathrm{H} \end{gathered}$ | Reserved |  |  |  |  |
| 7918н | Reload Register LC | PRLLC | R/W | 16-bit PPG C/D | XXXXXXXX ${ }_{\text {в }}$ |
| 7919н | Reload Register HC | PRLHC | R/W |  | XXXXXXXX ${ }_{\text {в }}$ |
| 791Ан | Reload Register LD | PRLLD | R/W |  | XXXXXXXX ${ }_{\text {в }}$ |
| 791浐 | Reload Register HD | PRLHD | R/W |  | XXXXXXXX ${ }_{\text {в }}$ |
|  | Reload Register LE | PRLLE | R/W | 16-bit PPG E/F | XXXXXXXX ${ }_{\text {в }}$ |
| 791听 | Reload Register HE | PRLHE | R/W |  | ХХХХХХХХВ |
| 791Eн | Reload Register LF | PRLLF | R/W |  | ХХХХХХХХв |
| 791FH | Reload Register HF | PRLHF | R/W |  | ХХХХХХХХХв |
| 7920н | Input Capture 0 | IPCP0 | R | Input Capture 0/1 | XXXXXXXX ${ }_{\text {B }}$ |
| 7921н | Input Capture 0 | IPCP0 | R |  | XXXXXXXX ${ }_{\text {B }}$ |
| 7922н | Input Capture 1 | IPCP1 | R |  | ХХХХХХХХв |
| 7923н | Input Capture 1 | IPCP1 | R |  | XXXXXXXX ${ }_{\text {в }}$ |
| 7924 ${ }_{\text {н }}$ | Input Capture 2 | IPCP2 | R | Input Capture 2/3 | XXXXXXXX ${ }_{\text {в }}$ |
| 7925 ${ }_{\text {н }}$ | Input Capture 2 | IPCP2 | R |  | ХХХХХХХХв |
| 7926н | Input Capture 3 | IPCP3 | R |  | XXXXXXXX |
| 7927 ${ }_{\text {н }}$ | Input Capture 3 | IPCP3 | R |  |  |
| $\begin{aligned} & \text { 7928н } \\ & \text { to } \\ & 793 \mathrm{~F}_{\mathrm{H}} \end{aligned}$ | Reserved |  |  |  |  |
| 7940н | Timer Data 0 | TCDT0 | R/W | I/O Timer 0 | 00000000в |
| 7941н | Timer Data 0 | TCDT0 | R/W |  | 00000000в |
| 7942н | Timer Control Status 0 | TCCSL0 | R/W |  | 00000000в |
| 7943н | Timer Control Status 0 | TCCSH0 | R/W |  | 0XXXXXXX в $^{\text {¢ }}$ |
| $\begin{aligned} & \text { 7944н } \\ & \text { to } \\ & 794 \text { Вн } \end{aligned}$ | Reserved |  |  |  |  |
| 794CH | Timer 2/Reload 2 | TMR2/ TMRLR2 | R/W | 16-bit Reload Timer 2 | XXXXXXXX ${ }_{\text {в }}$ |
| 794Dн |  |  | R/W |  | XXXXXXXX ${ }_{\text {в }}$ |
| 794Eн | Timer 3/Reload 3 | TMR3/ TMRLR3 | R/W | 16-bit Reload Timer 3 | XXXXXXXX ${ }_{\text {B }}$ |
| 794F |  |  | R/W |  | ХХХХХХХХХв |
| $\begin{aligned} & 7950_{\mathrm{H}} \\ & \text { to } \\ & 795 \mathrm{~F}_{\mathrm{H}} \end{aligned}$ | Reserved |  |  |  |  |

(Continued)

## MB90360 Series

| Address | Register | Abbreviation | Access | Resource name | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7960н | Clock Monitor Function Control Register | CSVCR | R, R/W | Clock monitor | 00011100в |
| $\begin{aligned} & \text { 7961н } \\ & \text { to } \\ & 796 \mathrm{D}_{\mathrm{H}} \end{aligned}$ | Reserved |  |  |  |  |
| 796Eн | CAN Direct Mode Register (MB90V340 only) | CDMR | R/W | CAN clock sync | XXXXXXX0в |
| $\begin{aligned} & 796 \mathrm{FH}_{\mathrm{H}} \\ & \text { to } \\ & 79 \mathrm{DF} \end{aligned}$ | Reserved |  |  |  |  |
| 79E0н | Detect Address Setting 0 | PADR0 | R/W | Address Match Detection 0 | XXXXXXXX ${ }_{\text {в }}$ |
| 79E1н | Detect Address Setting 0 | PADR0 | R/W |  | ХХХХХХХХв |
| 79E2н | Detect Address Setting 0 | PADR0 | R/W |  | XXXXXXXX ${ }_{\text {в }}$ |
| 79E3н | Detect Address Setting 1 | PADR1 | R/W |  | XXXXXXXX ${ }_{\text {в }}$ |
| 79E4н | Detect Address Setting 1 | PADR1 | R/W |  | XXXXXXXX ${ }_{\text {B }}$ |
| 79E5н | Detect Address Setting 1 | PADR1 | R/W |  | XXXXXXXX ${ }_{\text {в }}$ |
| 79E6н | Detect Address Setting 2 | PADR2 | R/W |  | XXXXXXXX ${ }_{\text {в }}$ |
| 79E7н | Detect Address Setting 2 | PADR2 | R/W |  | XXXXXXXX ${ }_{\text {в }}$ |
| 79E8н | Detect Address Setting 2 | PADR2 | R/W |  | XXXXXXXX |
| $\begin{aligned} & \text { 79Е9н } \\ & \text { to } \\ & 79 \text { EF }_{\text {H }} \end{aligned}$ | Reserved |  |  |  |  |
| 79F0н | Detect Address Setting 3 | PADR3 | R/W | Address Match Detection 1 | XXXXXXXX ${ }_{\text {в }}$ |
| 79F1н | Detect Address Setting 3 | PADR3 | R/W |  | XXXXXXXX ${ }_{\text {в }}$ |
| 79F2н | Detect Address Setting 3 | PADR3 | R/W |  | XXXXXXXX ${ }_{\text {B }}$ |
| 79F3н | Detect Address Setting 4 | PADR4 | R/W |  | XXXXXXXX |
| 79F4H | Detect Address Setting 4 | PADR4 | R/W |  | XXXXXXXX ${ }_{\text {B }}$ |
| 79F5 ${ }_{\text {¢ }}$ | Detect Address Setting 4 | PADR4 | R/W |  | XXXXXXXX ${ }_{\text {в }}$ |
| 79F6н | Detect Address Setting 5 | PADR5 | R/W |  | ХХХХХХХХв |
| 79F7 ${ }_{\text {H }}$ | Detect Address Setting 5 | PADR5 | R/W |  | XXXXXXXX ${ }_{\text {B }}$ |
| 79F8н | Detect Address Setting 5 | PADR5 | R/W |  | XXXXXXXX |
| $\begin{aligned} & \text { 79F9н } \\ & \text { to } \\ & \text { 7BFF } \end{aligned}$ | Reserved |  |  |  |  |
| $\begin{aligned} & \text { 7С00н } \\ & \text { to } \\ & 7 \mathrm{CFF} \end{aligned}$ | Reserved for CAN Interface 1. Refer to "■ CAN CONTROLLERS" |  |  |  |  |

(Continued)

## MB90360 Series

(Continued)

| Address | Register | Abbreviation | Access | Resource name | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { 7D00н } \\ & \text { to } \\ & \text { 7DFF } \end{aligned}$ | Reserved for CAN Interface 1. Refer to "■ CAN CONTROLLERS" |  |  |  |  |
| $\begin{aligned} & \text { 7Е00н } \\ & \text { to } \\ & 7 \mathrm{FFF}_{\mathrm{H}} \end{aligned}$ | Reserved |  |  |  |  |

Notes: • Initial value of " $X$ " represents unknown value.

- Any write access to reserved addresses in I/O map should not be performed. A read access to reserved addresses results in reading " $X$ ".


## MB90360 Series

## CAN CONTROLLERS

The CAN controller has the following features :

- Conforms to CAN Specification Version 2.0 Part A and B
- Supports transmission/reception in standard frame and extended frame formats
- Supports transmitting of data frames by receiving remote frames
- 16 transmitting/receiving message buffers
- 29-bit ID and 8 -byte data
- Multi-level message buffer configuration
- Provides full-bit comparison, full-bit mask, acceptance register 0/acceptance register 1 for each message buffer as ID acceptance mask
- 2 acceptance mask registers in either standard frame format or extended frame formats
- Bit rate programmable from $10 \mathrm{Kbps} / \mathrm{s}$ to $2 \mathrm{Mbps} / \mathrm{s}$ (when input clock is at 16 MHz )

List of Control Registers (1)

| Address | Register | Abbreviation | Access | Initial Value |
| :---: | :---: | :---: | :---: | :---: |
| CAN1 |  |  |  |  |
| 000080н | Message buffer valid register | BVALR | R/W | $\begin{aligned} & 00000000_{\mathrm{B}} \\ & 0000000 \mathrm{~B}_{\mathrm{B}} \end{aligned}$ |
| 000081н |  |  |  |  |
| 000082н | Transmit request register | TREQR | R/W | $\begin{aligned} & 00000000_{\mathrm{B}} \\ & 00000000_{\mathrm{B}} \end{aligned}$ |
| 000083н |  |  |  |  |
| 000084н | Transmit cancel register | TCANR | W | $\begin{aligned} & 00000000_{\mathrm{B}} \\ & 00000000_{\mathrm{B}} \end{aligned}$ |
| 000085 |  |  |  |  |
| 000086н | Transmission complete register | TCR | R/W | $\begin{aligned} & 00000000_{\mathrm{B}} \\ & 00000000_{\mathrm{B}} \end{aligned}$ |
| 000087 |  |  |  |  |
| 000088н | Receive complete register | RCR | R/W | $\begin{aligned} & 00000000_{\mathrm{B}} \\ & 00000000_{\mathrm{B}} \end{aligned}$ |
| 000089н |  |  |  |  |
| 00008Ан | Remote request receiving register | RRTRR | R/W | $\begin{aligned} & 00000000_{\mathrm{B}} \\ & 00000000_{\mathrm{B}} \end{aligned}$ |
| 00008Вн |  |  |  |  |
| $00008 \mathrm{CH}_{\text {}}$ | Receive overrun register | ROVRR | R/W | $\begin{aligned} & 00000000_{\mathrm{B}} \\ & 00000000_{\mathrm{B}} \end{aligned}$ |
| 00008D |  |  |  |  |
| 00008Ен | Reception interrupt enable register | RIER | R/W | $\begin{aligned} & 00000000_{\mathrm{B}} \\ & 00000000_{\mathrm{B}} \end{aligned}$ |
| 00008Fн |  |  |  |  |

## MB90360 Series

List of Control Registers (2)

| Address | Register | Abbreviation | Access | Initial Value |
| :---: | :---: | :---: | :---: | :---: |
| CAN1 |  |  |  |  |
| 007D00н | Control status register | CSR | R/W, W R/W, R | $\begin{aligned} & \text { 0XXXX0X1в } \\ & \text { 00XXX000в } \end{aligned}$ |
| 007D01н |  |  |  |  |
| 007D02н | Last event indicator register | LEIR | R/W | $\begin{gathered} 000 \times 0000 \text { в } \\ \text { XXXXXXXX } \end{gathered}$ |
| 007D03н |  |  |  |  |
| 007D04H | Receive and transmit error counter | RTEC | R | $\begin{aligned} & 00000000_{\mathrm{B}} \\ & 00000000_{\mathrm{B}} \end{aligned}$ |
| 007D05 ${ }_{\text {- }}$ |  |  |  |  |
| 007D06н | Bit timing register | BTR | R/W | $\begin{aligned} & 11111111_{\mathrm{B}} \\ & \mathrm{X} 1111111_{\mathrm{B}} \end{aligned}$ |
| 007D07 ${ }^{\text {H }}$ |  |  |  |  |
| 007D08н | IDE register | IDER | R/W | $\begin{aligned} & \operatorname{XXXXXXXXB} \\ & \text { XXXXXXX } \end{aligned}$ |
| 007D09н |  |  |  |  |
| 007D0Aн | Transmit RTR register | TRTRR | R/W |  |
| 007D0Bн |  |  |  |  |
| 007D0CH | Remote frame receive waiting register | RFWTR | R/W | $\begin{aligned} & \underset{\text { XXXXXXXXXB }}{\text { XXX }} \end{aligned}$ |
| 007D0D |  |  |  |  |
| 007D0Eн | Transmit interrupt enable register | TIER | R/W | $\begin{aligned} & 00000000_{\text {B }} \\ & 00000000_{\text {B }} \end{aligned}$ |
| 007D0F\% |  |  |  |  |
| 007D10н | Acceptance mask select register | AMSR | R/W | $\begin{aligned} & \text { XXXXXXXXB } \\ & \text { XXXXXXXXB } \end{aligned}$ |
| 007D11н |  |  |  |  |
| 007D12н |  |  |  | xxxxxxxx |
| 007D13н |  |  |  | ХХХХХХХХХв |
| 007D14 | Acceptance mask register 0 | AMR0 | R/W | $\begin{aligned} & \text { XXXXXXXXB } \\ & \text { XXXXXXXXB } \end{aligned}$ |
| 007D15H |  |  |  |  |
| 007D16н |  |  |  |  |
| 007D17 |  |  |  |  |
| 007D18н | Acceptance mask register 1 | AMR1 | R/W | $\begin{aligned} & \text { ХХХХХХХХв } \\ & \text { XXXXXXXB } \end{aligned}$ |
| 007D19н |  |  |  |  |
| 007D1Aн |  |  |  | xxxxxxxx |
| 007D1Bн |  |  |  | ХХХХХХХХв |

## MB90360 Series

List of Message Buffers (ID Registers) (1)

| Address | Register | Abbreviation | Access | Initial Value |
| :---: | :---: | :---: | :---: | :---: |
| CAN1 |  |  |  |  |
| $\begin{gathered} \hline 007 \mathrm{COOH} \\ \text { to } \\ 007 \mathrm{C} 1 \mathrm{FH} \end{gathered}$ | General-purpose RAM | - | R/W | $\begin{gathered} \hline \mathrm{XXXXXXXX} \\ \text { to } \\ \text { XXXXXXXB} \end{gathered}$ |
| 007C20н | ID register 0 | IDR0 | R/W | XXXXXXXXX |
| 007C21н |  |  |  | XXXXXXXX |
| 007C22н |  |  |  |  |
| 007C23н |  |  |  | XXXXXXXX |
| 007C24 | ID register 1 | IDR1 | R/W | XXXXXXXXX ${ }_{\text {B }}$ |
| 007C25 |  |  |  | XXXXXXXX |
| 007C26н |  |  |  | XXXXXXXX |
| 007C27 |  |  |  | ХХХХХХХХХв |
| 007C28н | ID register 2 | IDR2 | R/W | XXXXXXXX |
| 007C29н |  |  |  | ХХХХХХХХХв |
| 007С2Ан |  |  |  | XXXXXXXXX |
| 007С2Вн |  |  |  | XXXXXXXX |
| 007C2CH | ID register 3 | IDR3 | R/W | XXXXXXXXX |
| 007C2D |  |  |  | XXXXXXXX |
| 007С2Ен |  |  |  | XXXXXXXX |
| 007C2F |  |  |  | ХХХХХХХХХв |
| 007C30н | ID register 4 | IDR4 | R/W | XXXXXXXX |
| 007C31н |  |  |  | XXXXXXXX |
| 007С32н |  |  |  | XXXXXXXXX |
| 007С33н |  |  |  | XXXXXXXX |
| 007C34н | ID register 5 | IDR5 | R/W | xxxxxxxx |
| 007C35 |  |  |  | XXXXXXXX |
| 007С36н |  |  |  | Xxxxxxxx |
| 007C37 |  |  |  | XXXXXXXX |
| 007С38н | ID register 6 | IDR6 | R/W | XXXXXXXX |
| 007C39н |  |  |  | XXXXXXXX |
| 007С3Ан |  |  |  | XXXXXXXXX ${ }_{\text {B }}$ |
| 007С3Вн |  |  |  | XXXXXXXX |
| $007 \mathrm{C} 3 \mathrm{CH}_{\text {H }}$ | ID register 7 | IDR7 | R/W | XXXXXXXXX |
| 007C3D ${ }_{\text {н }}$ |  |  |  | XXXXXXXX |
| 007С3Ен |  |  |  | XXXXXXXX |
| 007C3Fн |  |  |  | XXXXXXXX |

## MB90360 Series

List of Message Buffers (ID Registers) (2)

| Address | Register | Abbreviation | Access | Initial Value |
| :---: | :---: | :---: | :---: | :---: |
| CAN1 |  |  |  |  |
| 007C40н | ID register 8 | IDR8 | R/W | XXXXXXXX |
| 007C41н |  |  |  |  |
| 007C42 |  |  |  | XXXXXXXX |
| 007C43н |  |  |  | XXXXXXXX |
| 007C44 | ID register 9 | IDR9 | R/W | XXXXXXXX ${ }_{\text {в }}$ |
| 007C45н |  |  |  | ХХХХХХХХв |
| 007C46 |  |  |  | XXXXXXXX |
| 007C47 |  |  |  | XXXXXXXX |
| 007C48н | ID register 10 | IDR10 | R/W | XXXXXXXX ${ }_{\text {B }}$ |
| 007C49н |  |  |  | XXXXXXXX |
| 007С4Ан |  |  |  | XXXXXXXX |
| 007C4Bн |  |  |  | XXXXXXXX |
| 007C4CH | ID register 11 | IDR11 | R/W | XXXXXXXX |
| 007C4D |  |  |  | XXXXXXXX |
| 007C4Eн |  |  |  | XXXXXXXX |
| 007C4F |  |  |  | XXXXXXXX |
| 007C50н | ID register 12 | IDR12 | R/W | XXXXXXXX |
| 007C51н |  |  |  | XXXXXXXX |
| 007C52н |  |  |  | XXXXXXXX |
| 007C53н |  |  |  | XXXXXXXX |
| 007C54н | ID register 13 | IDR13 | R/W | XXXXXXXX ${ }_{\text {¢ }}$ |
| 007C55 |  |  |  | XXXXXXXX |
| 007C56н |  |  |  | XXXXXXXX |
| 007C57 |  |  |  |  |
| 007C58н | ID register 14 | IDR14 | R/W | xxxxxxxx |
| 007C59н |  |  |  |  |
| 007С5Ан |  |  |  | XXXXXXXX ${ }_{\text {B }}$ |
| 007С5Вн |  |  |  | ХХХХХХХХХв |
| 007C5CH | ID register 15 | IDR15 | R/W | xxxxxxxx |
| 007C5D |  |  |  | XXXXXXXX |
| 007C5Eн |  |  |  | xxxxxxxx |
| 007C5FH |  |  |  | ХХХХХХХХв |

## MB90360 Series

List of Message Buffers (DLC Registers and Data Registers) (1)

| Address | Register | Abbreviation | Access | Initial Value |
| :---: | :---: | :---: | :---: | :---: |
| CAN1 |  |  |  |  |
| 007C60н | DLC register 0 | DLCR0 | R/W | XXXXXXXХв |
| 007C61н |  |  |  |  |
| 007С62н | DLC register 1 | DLCR1 | R/W |  |
| 007С63н |  |  |  |  |
| 007C64н | DLC register 2 | DLCR2 | R/W | XXXXXXXХв |
| 007C65 |  |  |  |  |
| 007С66н | DLC register 3 | DLCR3 | R/W |  |
| 007C67 |  |  |  |  |
| 007C68н | DLC register 4 | DLCR4 | R/W |  |
| 007C69н |  |  |  |  |
| 007С6Ан | DLC register 5 | DLCR5 | R/W | XXXXXXXХв |
| 007С6Вн |  |  |  |  |
| 007C6Сн | DLC register 6 | DLCR6 | R/W | XXXXXXXX |
| 007C6D |  |  |  |  |
| 007C6Eн | DLC register 7 | DLCR7 | R/W | Х XXXXXXХв $^{\text {¢ }}$ |
| 007C6F |  |  |  |  |
| 007С70н | DLC register 8 | DLCR8 | R/W | XXXXXXXX в $^{\text {¢ }}$ |
| 007C71н |  |  |  |  |
| 007С72н | DLC register 9 | DLCR9 | R/W |  |
| 007С73н |  |  |  |  |
| 007C74н | DLC register 10 | DLCR10 | R/W | X $\times X X X X X$ Х |
| 007C75 |  |  |  |  |
| 007С76н | DLC register 11 | DLCR11 | R/W | XXXXXXXX в |
| 007C77 ${ }_{\text {н }}$ |  |  |  |  |
| 007С78н | DLC register 12 | DLCR12 | R/W | Х XXXXXXХв $^{\text {¢ }}$ |
| 007С79н |  |  |  |  |
| 007С7Ан | DLC register 13 | DLCR13 | R/W |  |
| 007С7Вн |  |  |  |  |
| 007C7CH | DLC register 14 | DLCR14 | R/W |  |
| 007C7D |  |  |  |  |
| 007C7Eн | DLC register 15 | DLCR15 | R/W |  |
| 007C7F |  |  |  |  |

## MB90360 Series

List of Message Buffers (DLC Registers and Data Registers) (2)

| Address | Abbreviation | Access | Initial Value |  |
| :---: | :---: | :---: | :---: | :---: |
| CAN1 | Register | DTR0 | R/W | XXXXXXXXB <br> to |
| 007C80 <br> to <br> 007C87н | Data register 0 <br> (8 bytes) | DTR1 | R/W | XXXXXXXX |

## MB90360 Series

List of Message Buffers (DLC Registers and Data Registers) (3)

| Address | Register | Abbreviation | Access | Initial Value |
| :---: | :---: | :---: | :---: | :---: |
| CAN1 |  |  |  |  |
| $\begin{aligned} & \text { 007CF0н } \\ & \text { to } \\ & 007 \mathrm{CF} 7 \mathrm{H} \end{aligned}$ | Data register 14 (8 bytes) | DTR14 | R/W | $\begin{gathered} \text { XXXXXXXXв } \\ \text { to } \\ X X X X X X \text { в }_{\text {в }} \end{gathered}$ |
| $\begin{aligned} & \text { 007CF8н } \\ & \text { to } \\ & 007 \text { CFF }_{H} \end{aligned}$ | Data register 15 <br> (8 bytes) | DTR15 | R/W | $\begin{gathered} \text { XXXXXXXXв } \\ \text { to } \\ X X X X X X X \end{gathered}$ |

## MB90360 Series

## INTERRUPT FACTORS, INTERRUPT VECTORS, INTERRUPT CONTROL REGISTER

| Interrupt cause | $\mathrm{El}^{2} \mathrm{OS}$ corresponding | Interrupt vector |  | Interrupt control register |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Number | Address | Number | Address |
| Reset | N | \#08 | FFFFDCH | - | - |
| INT9 instruction | N | \#09 | FFFFD8н | - | - |
| Exception | N | \#10 | FFFFD4 ${ }_{\text {н }}$ | - | - |
| Reserved | N | \#11 | FFFFD0н | ICR00 | 0000B0H |
| Reserved | N | \#12 | FFFFCCH |  |  |
| CAN 1 reception | N | \#13 | FFFFC8 ${ }_{\text {¢ }}$ | ICR01 | 0000B1н |
| CAN 1 transmission/node status | N | \#14 | FFFFC4 ${ }_{\text {¢ }}$ |  |  |
| Reserved | N | \#15 | FFFFC0н | ICR02 | 0000B2н |
| Reserved | N | \#16 | FFFFBCH |  |  |
| Reserved | N | \#17 | FFFFB84 | ICR03 | 0000B3н |
| Reserved | N | \#18 | FFFFB4 ${ }_{\text {н }}$ |  |  |
| 16-bit reload timer 2 | Y1 | \#19 | FFFFB0н | ICR04 | 0000B4 ${ }_{\text {H }}$ |
| 16-bit reload timer 3 | Y1 | \#20 | FFFFACH |  |  |
| Reserved | N | \#21 | FFFFA8н | ICR05 | 0000B5 |
| Reserved | N | \#22 | FFFFA4 ${ }_{\text {¢ }}$ |  |  |
| PPG C/D | N | \#23 | FFFFA0н | ICR06 | 0000B6н |
| PPG E/F | N | \#24 | FFFF9CH |  |  |
| Timebase timer | N | \#25 | FFFF98н | ICR07 | 0000B7H |
| External interrupt 8 to 11 | Y1 | \#26 | FFFF94 |  |  |
| Watch timer | N | \#27 | FFFF90н | ICR08 | 0000B8н |
| External interrupt 12 to 15 | Y1 | \#28 | FFFF8C |  |  |
| A/D converter | Y1 | \#29 | FFFF88н | ICR09 | 0000B9н |
| I/O timer 0 | N | \#30 | FFFF84 |  |  |
| Reserved | N | \#31 | FFFF80н | ICR10 | 0000ВАн |
| Reserved | N | \#32 | FFFF7C ${ }_{\text {H }}$ |  |  |
| Input capture 0 to 3 | Y1 | \#33 | FFFF78н | ICR11 | 0000ВВн |
| Reserved | N | \#34 | FFFF74 ${ }_{\text {¢ }}$ |  |  |
| UART 0 reception | Y2 | \#35 | FFFF70н | ICR12 | 0000 BCH |
| UART 0 transmission | Y1 | \#36 | FFFF6C |  |  |
| UART 1 reception | Y2 | \#37 | FFFF68 ${ }_{\text {н }}$ | ICR13 | 0000BD |
| UART 1 transmission | Y1 | \#38 | FFFF64 |  |  |

(Continued)

## MB90360 Series

(Continued)

| Interrupt cause | $\mathrm{El}^{2} \mathrm{OS}$ corresponding | Interrupt vector |  | Interrupt control register |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Number | Address | Number | Address |
| Reserved | N | \#39 | FFFF60н | ICR14 | 0000ВВн |
| Reserved | N | \#40 | FFFF5CH |  |  |
| Flash memory | N | \#41 | FFFF58н | ICR15 | 0000BFн |
| Delayed interrupt generation module | N | \#42 | FFFF54 |  |  |

Y1 : Usable
Y2 : Usable, with $\mathrm{El}^{2} \mathrm{OS}$ stop function
N : Unusable
Notes: - The peripheral resources sharing the ICR register have the same interrupt level.

- When 2 peripheral resources share the ICR register, only one can use extended intelligent I/O service at a time.
- When either of the 2 peripheral resources sharing the ICR register specifies extended intelligent I/O service, the other one cannot use interrupts.


## MB90360 Series

## ELECTRICAL CHARACTERISTICS

## 1. Absolute Maximum Ratings

| Parameter | Symbol | Rating |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| Power supply voltage*1 | Vcc | Vss - 0.3 | Vss +6.0 | V |  |
|  | AVcc | Vss - 0.3 | Vss +6.0 | V | $V_{c c}=A V c^{*} 2$ |
|  | AVR | Vss - 0.3 | Vss +6.0 | V | AVcc $\geq$ AVR*2 |
| Input voltage*1 | V | Vss - 0.3 | Vss +6.0 | V | *3 |
| Output voltage*1 | Vo | Vss - 0.3 | Vss +6.0 | V | *3 |
| Maximum clamp current | Iclamp | -2.0 | +2.0 | mA | *6 |
| Total Maximum clamp current | $\Sigma \mid$ Iclamp \| | - | 40 | mA | * 6 |
| "L" level maximum output current | lol1 | - | 15 | mA | * 4 |
|  | lol2 | - | 40 | mA | *5 |
| "L" level average output current | lolav1 | - | 4 | mA | * 4 |
|  | lolav2 | - | 30 | mA | *5 |
| "L" level maximum overall output current | SloL1 | - | 125 | mA | * 4 |
|  | Eloc2 | - | 160 | mA | *5 |
| "L" level average overall output current | Elolav1 | - | 40 | mA | ${ }^{*} 4+105^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ |
|  | $\Sigma$ lolav2 |  |  |  | ${ }^{*} 5+105^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ |
|  | Slolav1 | - | 40 | mA | * $4-40{ }^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+10{ }^{\circ} \mathrm{C}$ |
|  | Elolav2 |  |  |  | ${ }^{*} 5-40{ }^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+105^{\circ} \mathrm{C}$ |
| "H" level maximum output current | Іон1 | - | -15 | mA | *4 |
|  | Іон2 | - | -40 | mA | *5 |
| "H" level average output current | Іоhav1 | - | -4 | mA | * 4 |
|  | Іоhav2 | - | -30 | mA | *5 |
| "H" level maximum overall output current | Eloh1 | - | -125 | mA | * 4 |
|  | $\Sigma$ loh2 | - | -160 | mA | *5 |
| "H" level average overall output current | Elohav1 | - | -40 | mA | ${ }^{*} 4+105{ }^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ |
|  | Elohav2 |  |  |  | ${ }^{*} 5+105^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ |
|  | $\Sigma$ lohav1 | - | -40 | mA | * $4-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+105^{\circ} \mathrm{C}$ |
|  | Elohav2 |  |  |  | ${ }^{*} 5-40{ }^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+10{ }^{\circ} \mathrm{C}$ |
| Power consumption | Pd | - | 300 | mW | MB90F362/T/S/TS, MB90F367/T/S/TS |
| Operating temperature | $\mathrm{T}_{\mathrm{A}}$ | -40 | +105 | ${ }^{\circ} \mathrm{C}$ |  |
|  |  | -40 | +125 | ${ }^{\circ} \mathrm{C}$ | *7 |
| Storage temperature | Tstg | -55 | +150 | ${ }^{\circ} \mathrm{C}$ |  |

(Continued)

## MB90360 Series

## (Continued)

*1: This parameter is based on $\mathrm{Vss}=A V \mathrm{ss}=0 \mathrm{~V}$.
*2 : Set $A V c c$ and $V_{c c}$ to the same voltage. Make sure that $A V c c$ does not exceed $V_{c c}$ and that the voltage at the analog inputs does not exceed $A V c c$ when the power is switched on.
*3 : $\mathrm{V}_{1}$ and V o should not exceed $\mathrm{V} c \mathrm{c}+0.3 \mathrm{~V}$. $\mathrm{V}_{\text {I }}$ should not exceed the specified ratings. However, if the maximun current to/from an input is limited by some means with external components, the Iclamp rating supersedes the $V_{1}$ rating.
*4 : Applicable to pins : P24 to P27, P40 to P44, P50 to P57, P60 to P67, P80, P82 to P87
*5: Applicable to pins: P20 to P23
*6 : Applicable to pins : P20 to P27, P40 to P44, P50 to P57, P60 to P67, P80, P82 to P87

- Use within recommended operating conditions.
- Use at DC voltage (current) .
- The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
- The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the V cc pin , and this may affect other devices.
- Note that if a +B signal is inputted when the microcontroller power supply is off (not fixed at 0 V ), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting power supply voltage may not be sufficient to operate the power-on reset.
- Care must be taken not to leave the +B input pin open.
- Sample recommended circuits :
- Input/output equivalent circuits

*7 : If used exceeding $T_{A}=+105^{\circ} \mathrm{C}$, please contact Fujitsu for reliability limitations.
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.


## MB90360 Series

## 2. Recommended Conditions

$(\mathrm{V} s \mathrm{~s}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V})$

| Parameter | Symbol | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Power supply voltage | Vcc, AVcc | 4.0 | 5.0 | 5.5 | V | Under normal operation |
|  |  | 3.5 | 5.0 | 5.5 | V | Under normal operation when not using the $A / D$ converter and not Flash programming. |
|  |  | 3.0 | - | 5.5 | V | Maintains RAM data in stop mode |
| Smooth capacitor | Cs | 0.1 | - | 1.0 | $\mu \mathrm{F}$ | Use a ceramic capacitor or capacitor of better AC characteristics. Bypass capacitor at the $V_{c c}$ pin should be greater than this capacitor. |
| Operating temperature | TA | -40 | - | +105 | ${ }^{\circ} \mathrm{C}$ |  |
|  |  | -40 | - | +125 | ${ }^{\circ} \mathrm{C}$ | * |

* : If used exceeding $\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$, please contact Fujitsu for reliability limitations.


## - C Pin Connection Diagram



WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

## MB90360 Series

3. DC Characteristics
$\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}, \mathrm{V} \mathrm{Vc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{fcp} \leq 24 \mathrm{MHz}, \mathrm{Vss}=\mathrm{AV}$ ss $=0 \mathrm{~V}$ )

| Parameter | $\begin{aligned} & \text { Sym- } \\ & \text { bol } \end{aligned}$ | Pin | Condition | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ | Max |  |  |
| Input " H " voltage | Vihs | - | - | 0.8 Vcc | - | $\mathrm{Vcc}+0.3$ | V | Pin inputs if CMOS hysteresis input levels are selected (except P82, P85) |
|  | Viha | - | - | 0.8 Vcc | - | $\mathrm{Vcc}+0.3$ | V | Pin inputs if Automotive input levels are selected |
|  | Vifs | - | - | 0.7 Vcc | - | $\mathrm{Vcc}+0.3$ | V | P82, P85 inputs if CMOS input levels are selected |
|  | Vihr | - | - | 0.8 Vcc | - | $\mathrm{Vcc}+0.3$ | V | RST input pin (CMOS hysteresis) |
|  | $\mathrm{V}_{\text {ним }}$ | - | - | Vcc-0.3 | - | Vcc +0.3 | V | MD input pin |
| Input "L" voltage | Vıs | - | - | Vss - 0.3 | - | 0.2 Vcc | V | Pin inputs if CMOS hysteresis input levels are selected (except P82, P85) |
|  | VILA | - | - | Vss - 0.3 | - | 0.5 Vcc | V | Pin inputs if Automotive input levels are selected |
|  | Viss | - | - | Vss - 0.3 | - | 0.3 Vcc | V | P82, P85 inputs if CMOS input levels are selected |
|  | VIlr | - | - | Vss - 0.3 | - | 0.2 Vcc | V | RST input pin (CMOS hysteresis) |
|  | VILM | - | - | Vss -0.3 | - | Vss +0.3 | V | MD input pin |
| Output "H" voltage | Vон | Other than P20 to P23 | $\begin{aligned} & \mathrm{V} \mathrm{cc}=4.5 \mathrm{~V}, \\ & \mathrm{loH}=-4.0 \mathrm{~mA} \end{aligned}$ | Vcc-0.5 | - | - | V |  |
| Output "H" voltage | Vони | P20 to P23 | $\begin{aligned} & \mathrm{V} \mathrm{cc}=4.5 \mathrm{~V}, \\ & \mathrm{loH}=-14.0 \mathrm{~mA} \end{aligned}$ | Vcc-0.5 | - | - | V |  |
| Output "L" voltage | VoL | Other than P20 to P23 | $\begin{aligned} & \mathrm{V} \mathrm{cc}=4.5 \mathrm{~V}, \\ & \mathrm{loL}=4.0 \mathrm{~mA} \end{aligned}$ | - | - | 0.4 | V |  |
| Output "L" voltage | Voll | P20 to P23 | $\begin{aligned} & \mathrm{V} \mathrm{cc}=4.5 \mathrm{~V}, \\ & \mathrm{loL}=20.0 \mathrm{~mA} \end{aligned}$ | - | - | 0.4 | V |  |
| Input leak current | IIL | - | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}} \\ & <\mathrm{V}_{1}<\mathrm{V}_{\mathrm{cc}} \end{aligned}$ | -1 | - | 1 | $\mu \mathrm{A}$ |  |
| Pull-up resistance | Rup | $\frac{\mathrm{P} 20 \text { to P27, }}{\mathrm{RST}}$ | - | 25 | 50 | 100 | k $\Omega$ |  |
| Pull-down resistance | Roown | MD2 | - | 25 | 50 | 100 | k $\Omega$ | Except Flash devices |

(Continued)

## MB90360 Series

$\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}, \mathrm{V} \mathrm{Cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{fcp} \leq 24 \mathrm{MHz}, \mathrm{Vss}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}\right)$

*: The power supply current is measured with an external clock.
(Continued)

## MB90360 Series

(Continued)

$$
\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{fcP} \leq 24 \mathrm{MHz}, \mathrm{~V} \mathrm{Ss}=\mathrm{AV} \mathrm{Ss}=0 \mathrm{~V}\right)
$$

| Parameter | Symbol | Pin | Condition | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ | Max |  |  |
| Input capacity | Cin | Other than $A V_{c c}, A V_{s s}$, AVR, Vcc, Vss, C | - | - | 5 | 15 | pF |  |

## MB90360 Series

## 4. AC Characteristics

(1) Clock Timing
$\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}, \mathrm{V} \mathrm{Cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{fcP} \leq 24 \mathrm{MHz}, \mathrm{V}_{\mathrm{Ss}}=\mathrm{AV}$ Ss $=0 \mathrm{~V}$ )

| Parameter | Symbol | Pin | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |  |
| Clock frequency | fc | $\mathrm{X0}, \mathrm{X} 1$ | 3 | - | 16 | MHz | 1/2 when PLL stops, When using an oscillation circuit |
|  |  |  | 4 | - | 16 | MHz | PLL $\times 1$, <br> When using an oscillation circuit |
|  |  |  | 4 | - | 12 | MHz | PLL $\times 2$, <br> When using an oscillation circuit |
|  |  |  | 4 | - | 8 | MHz | PLL $\times 3$, When using an oscillation circuit |
|  |  |  | 4 | - | 6 | MHz | PLL $\times 4$, <br> When using an oscillation circuit |
|  |  |  | 4 | - | 4 | MHz | PLL $\times 6$, When using an oscillation circuit |
|  |  | X0, X1 | 3 | - | 24 | MHz | $1 / 2$ when PLL stops, When using an external clock |
|  |  |  | 4 | - | 24 | MHz | PLL $\times 1$, When using an external clock |
|  |  |  | 4 | - | 12 | MHz | PLL $\times 2$, When using an external clock |
|  |  |  | 4 | - | 8 | MHz | PLL $\times 3$, When using an external clock |
|  |  |  | 4 | - | 6 | MHz | $\text { PLL } \times 4,$ <br> When using an external clock |
|  |  |  | 4 | - | 4 | MHz | PLL $\times 6$, When using an external clock |
|  | fct | X0A, X1A | - | 32.768 | 100 | kHz |  |
| Clock cycle time | toyı | $\mathrm{X0} 0 \mathrm{X1}$ | 62.5 | - | 333 | ns | When using an oscillation circuit |
|  |  | $\mathrm{X0} 0 \mathrm{X1}$ | 41.67 | - | 333 | ns | When using an external clock |
|  | toyll | X0A, X1A | 10 | 30.5 | - | $\mu \mathrm{s}$ |  |
| Input clock pulse width | Pwh, PwL | X0 | 10 | - | - | ns | Duty ratio is about $30 \%$ to $70 \%$. |
|  | Pwhl, PwlL | X0A | 5 | 15.2 | - | $\mu \mathrm{s}$ |  |
| Input clock rise and fall time | tcr, tcF | X0 | - | - | 5 | ns | When using external clock |
| Internal operating clock frequency (machine clock) | fcp | - | 1.5 | - | 24 | MHz | When using main clock |
|  | fcpl | - | - | 8.192 | 50 | kHz | When using sub clock |
| Internal operating clock cycle time (machine clock) | tcp | - | 41.67 | - | 666 | ns | When using main clock |
|  | tcpL | - | 20 | 122.1 | - | $\mu \mathrm{s}$ | When using sub clock |

## MB90360 Series

- Clock Timing



## MB90360 Series

- Guaranteed PLL Operation Range


Guaranteed operation range of MB90360 series


* : When using the oscillation circuit, the maximum oscillation clock frequency is 16 MHz .


## MB90360 Series

(2) Reset Standby Input
$\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}, \mathrm{V} \mathrm{Cc}=5.0 \mathrm{~V} \pm 10 \%$, $\left.\mathrm{fcP} \leq 24 \mathrm{MHz}, \mathrm{V} \mathrm{ss}=\mathrm{AV} \mathrm{Ss}=0 \mathrm{~V}\right)$

| Parameter | Symbol | Pin | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |
| Reset input time | trstı | $\overline{\mathrm{RST}}$ | 500 | - | ns | Under normal operation |
|  |  |  | Oscillation time of oscillator* $+100 \mu \mathrm{~s}$ | - | ns | In stop mode, sub clock mode, sub sleep mode and watch mode |
|  |  |  | 100 | - | $\mu \mathrm{s}$ | In timebase timer mode |

*: Oscillation time of oscillator is the time that the amplitude reaches $90 \%$.
In the crystal oscillator, the oscillation time is between several ms and tens of ms. In FAR / ceramic oscillators, the oscillation time is between hundreds of $\mu \mathrm{s}$ and several ms . With an external clock, the oscillation time is 0 ms .

## - Under normal operation :



- In stop mode, sub clock mode, sub sleep mode, watch mode :



## MB90360 Series

## (3) Power-on Reset

$\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}, \mathrm{V} \mathrm{Cc}=5.0 \mathrm{~V} \pm 10 \%$, $\mathrm{fcP} \leq 24 \mathrm{MHz}, \mathrm{V}$ ss $=\mathrm{AV}$ Ss $\left.=0 \mathrm{~V}\right)$

| Parameter | Symbol | Pin | Condition | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max |  |  |
| Power on rise time | tR | Vcc | - | 0.05 | 30 | ms |  |
| Power off time | toff | Vcc |  | 1 | - | ms | Due to repetitive operation |



If you change the power supply voltage too rapidly, a power-on reset may occur. We recommend that you start up smoothly by restraining voltages when changing the power supply voltage during operation, as shown in the figure below. Perform while not using the PLL clock. However, if voltage drops are within $1 \mathrm{~V} / \mathrm{s}$, you can operate while using the PLL clock.


## MB90360 Series

(4) UARTO/1
$\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}, \mathrm{V} \mathrm{CC}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{fcp} \leq 24 \mathrm{MHz}, \mathrm{V}$ ss $=0 \mathrm{~V}$ )

| Parameter | Symbol | Pin | Condition | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max |  |  |
| Serial clock cycle time | tscrc | SCK0, SCK1 | Internal shift clock mode output pins are$\mathrm{C}_{\llcorner }=80 \mathrm{pF}+1 \mathrm{TTL} .$ | 8 tcp | - | ns |  |
| SCK $\downarrow \rightarrow$ SOT delay time | tstov | $\begin{aligned} & \text { SCK0, SCK1, } \\ & \text { SOT0, SOT1 } \end{aligned}$ |  | -80 | +80 | ns |  |
| Valid SIN $\rightarrow$ SCK $\uparrow$ | tivs | $\begin{aligned} & \hline \text { SCK0, SCK1, } \\ & \text { SIN0, SIN1 } \end{aligned}$ |  | 100 | - | ns |  |
| SCK $\uparrow \rightarrow$ Valid SIN hold time | tshlx | $\begin{aligned} & \hline \text { SCK0, SCK1, } \\ & \text { SIN0, SIN1 } \end{aligned}$ |  | 60 | - | ns |  |
| Serial clock "H" pulse width | tshsL | SCK0, SCK1 | External shift clock mode output pins are$\mathrm{C}_{\mathrm{L}}=80 \mathrm{pF}+1 \mathrm{TTL} .$ | 4 tcp | - | ns |  |
| Serial clock "L" pulse width | tsısh | SCK0, SCK1 |  | 4 tcp | - | ns |  |
| SCK $\downarrow \rightarrow$ SOT delay time | tstov | $\begin{aligned} & \text { SCK0, SCK1, } \\ & \text { SOTO, SOT1 } \end{aligned}$ |  | - | 150 | ns |  |
| Valid SIN $\rightarrow$ SCK $\uparrow$ | tivs | $\begin{aligned} & \text { SCK0, SCK1, } \\ & \text { SIN0, SIN1 } \end{aligned}$ |  | 60 | - | ns |  |
| SCK $\uparrow \rightarrow$ Valid SIN hold time | tshix | $\begin{aligned} & \hline \text { SCKO, SCK1, } \\ & \text { SIN0, SIN1 } \end{aligned}$ |  | 60 | - | ns |  |

Notes: • AC characteristic in CLK synchronized mode.

- $\mathrm{C}_{\llcorner }$is load capacity value of pins when testing.
- tcp is internal operating clock cycle time (machine clock) . Refer to " (1) Clock Timing".


## - Internal Shift Clock Mode



## MB90360 Series

## - External Shift Clock Mode



## (5) Trigger Input Timing

| Parameter | Symbol | Pin | Condition | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max |  |  |
| Input pulse width | ttrgh ttrgl | INT8, INT9R INT10, INT11 INT12R, INT13 INT14R, INT15R ADTG | - | 5 tcp | - | ns |  |

Note : top is internal operating clock cycle time (machine clock) . Refer to " (1) Clock Timing".

INT8, INT9R INT10, INT11 INT12R, INT13 INT14R, INT15R
 ADTG

## MB90360 Series

(6) Timer Related Resource Input Timing

| Parameter | Symbol | Pin | Condition | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max |  |  |
| Input pulse width | tтiwh | TIN2, TIN3 IN0 to IN3 | - | 4 tcp | - | ns |  |
|  | ttiwl |  |  |  |  |  |  |

Note : tcp is internal operating clock cycle time (machine clock) . Refer to " (1) Clock Timing".

TIN2, TIN3
IN0 to IN3


## (7) Timer Related Resource Output Timing

| Parameter | Symbol | Pin | Condition | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max |  |  |
| CLK $\uparrow \rightarrow$ Tout change time | too | TOT2, TOT3 PPGC to PPGF | - | 30 | - | ns |  |



## MB90360 Series

## 5. A/D Converter

$\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}, 3.0 \mathrm{~V} \leq \mathrm{AVR}-\mathrm{AVss}, \mathrm{V} \mathrm{cc}=\mathrm{AVcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{fcp} \leq 24 \mathrm{MHz}, \mathrm{V} \mathrm{ss}=\mathrm{AV}$ ss $=0 \mathrm{~V}$ )

| Parameter | Symbol | Pin | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |  |
| Resolution | - | - | - | - | 10 | bit |  |
| Total error | - | - | - | - | $\pm 3.0$ | LSB |  |
| Nonlinearity error | - | - | - | - | $\pm 2.5$ | LSB |  |
| Differential nonlinearity error | - | - | - | - | $\pm 1.9$ | LSB |  |
| Zero reading voltage | Vот | AN0 to AN15 | AVss -1.5 | AVss +0.5 | AVss + 2.5 | LSB |  |
| Full scale reading voltage | $V_{\text {FST }}$ | AN0 to AN15 | AVR-3.5 | AVR - 1.5 | AVR + 0.5 | LSB |  |
| Compare time | - | - | 1.0 | - | 16,500 | $\mu \mathrm{s}$ | $4.5 \mathrm{~V} \leq \mathrm{AV} \mathrm{ccc}^{5} 5.5 \mathrm{~V}$ |
|  |  |  | 2.0 |  |  |  | $4.0 \mathrm{~V} \leq \mathrm{AV}$ cc $<4.5 \mathrm{~V}$ |
| Sampling time | - | - | 0.5 | - | $\infty$ | $\mu \mathrm{s}$ | $4.5 \mathrm{~V} \leq \mathrm{AV} \mathrm{cc} \leq 5.5 \mathrm{~V}$ |
|  |  |  | 1.2 |  |  |  | $4.0 \mathrm{~V} \leq \mathrm{AV}$ cc $<4.5 \mathrm{~V}$ |
| Analog port input current | Iain | AN0 to AN15 | -0.3 | - | +0.3 | $\mu \mathrm{A}$ |  |
| Analog input voltage range | Vain | AN0 to AN15 | $\mathrm{AV}_{\text {ss }}$ | - | AVR | V |  |
| Reference voltage range | - | AVR | AVss +2.7 | - | AVcc | V |  |
| Power supply current | IA | AV cc | - | 3.5 | 7.5 | mA |  |
|  | IAH | AV cc | - | - | 5 | $\mu \mathrm{A}$ | * |
| Reference voltage supply current | IR | AVR | - | 600 | 900 | $\mu \mathrm{A}$ |  |
|  | IRH | AVR | - | - | 5 | $\mu \mathrm{A}$ | * |
| Offset between input channels | - | AN0 to AN15 | - | - | 4 | LSB |  |

*: If $\mathrm{A} / \mathrm{D}$ converter is not operating, a current when CPU is stopped is applicable $\left(\mathrm{V}_{\mathrm{cc}}=\mathrm{AVcc}=\mathrm{AVR}=5.0 \mathrm{~V}\right)$.
(Continued)

## MB90360 Series

- About the external impedance of analog input and its sampling time
- A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage changed to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision.
- Analog input circuit model


MB90F362/T/S/TS, MB90F367/T/S/TS

|  | R | C |
| :---: | :---: | :---: |
| $4.5 \mathrm{~V} \leq \mathrm{AVcc} \leq 5.5 \mathrm{~V}$ | $2.0 \mathrm{k} \Omega(\operatorname{Max})$ | 16.0 pF (Max) |
| $4.0 \mathrm{~V} \leq \mathrm{AVcc}<4.5 \mathrm{~V}$ | $8.2 \mathrm{k} \Omega(\operatorname{Max})$ | 16.0 pF (Max) |

MB90362/T/S/TS, MB90367/T/S/TS, MB90V340A-101/102/103/104

## R

$4.5 \mathrm{~V} \leq \mathrm{AVcc} \leq 5.5 \mathrm{~V}$
$4.0 \mathrm{~V} \leq \mathrm{AVcc}<4.5 \mathrm{~V}$
$2.0 \mathrm{k} \Omega$ (Max)
14.4 pF (Max)
$8.2 \mathrm{k} \Omega$ (Max)
14.4 pF (Max)

Note : The values are reference values.
(Continued)

## MB90360 Series

## (Continued)

- To satisfy the $A / D$ conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the resistor value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value.
- The relationship between external impedance and minimum sampling time
- At $4.5 \mathrm{~V} \leq \mathrm{AVcc} \leq 5.5 \mathrm{~V}$
(External impedance $=0 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega)$
MB90362/T/S/TS,
MB90367/T/S/TS,

- At $4.0 \mathrm{~V} \leq \mathrm{AV} \mathrm{cc}<4.5 \mathrm{~V}$

$$
\text { (External impedance }=0 \mathrm{k} \Omega \text { to } 100 \mathrm{k} \Omega \text { ) }
$$


(External impedance $=0 \mathrm{k} \Omega$ to $20 \mathrm{k} \Omega$ )

(External impedance $=0 \mathrm{k} \Omega$ to $20 \mathrm{k} \Omega$ )


- If the sampling time cannot be sufficient, connect a capacitor of about $0.1 \mu \mathrm{~F}$ to the analog input pin.


## - About errors

As $|A V R-A V s s|$ becomes smaller, values of relative errors grow larger.

## MB90360 Series

## 6. Definition of A/D Converter Terms

Resolution : Analog variation that is recognized by an A/D converter.
Non linearity : Deviation between a line across zero-transition line ("00 0000 0000 ${ }_{\mathrm{B}}$ " $\leftarrow \rightarrow$ "00 0000 0001s") error and full-scale transition line ("1111111110в" $\leftarrow \rightarrow$ "1111111111s") and actual conversion characteristics.
Differential : Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal linearity error
Total error value.
: Difference between an actual value and an theoretical value. A total error includes zero transition error, full-scale transition error, and linear error.

(Continued)

## MB90360 Series

(Continued)


## MB90360 Series

## 7. Notes on A/D Converter Section

Use the device with external circuits of the following output impedance for analog inputs :

- Recommended output impedance of external circuits are : Approx. $1.5 \mathrm{k} \Omega$ or lower ( $4.0 \mathrm{~V} \leq \mathrm{AV} \mathrm{cc} \leq 5.5 \mathrm{~V}$, sampling period $=0.5 \mu \mathrm{~s}$ )
- If an external capacitor is used, in consideration of the effect by tap capacitance caused by external capacitors and on-chip capacitors, capacitance of the external one is recommended to be several thousand times as high as internal capacitor.
- If output impedance of an external circuit is too high, a sampling period for an analog voltage may be insufficient.


## - Analog input circuit model

Analog input R


Note : Use the values in the figure only as a guideline.

## 8. Flash Memory Program/Erase Characteristics

| Parameter | Conditions | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| Chip erase time | $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{cc}}=5.0 \mathrm{~V} \end{aligned}$ | - | 1 | 15 | s | Excludes programming prior to erasure |
| Word (16-bit width) programming time |  | - | 16 | 3,600 | $\mu \mathrm{s}$ | Except for the overhead time of the system level |
| Program/Erase cycle | - | 10,000 | - | - | cycle |  |
| Flash memory data retention time | Average $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$ | 20 | - | - | Year | * |

*: This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at $+85^{\circ} \mathrm{C}$ ).

## MB90360 Series

ORDERING INFORMATION

| Part number | Package | Remarks |
| :---: | :---: | :---: |
| MB90F362PMT | 48-pin Plastic LQFP (FPT-48P-M26) |  |
| MB90F362TPMT |  |  |
| MB90F362SPMT |  |  |
| MB90F362TSPMT |  |  |
| MB90F367PMT |  |  |
| MB90F367TPMT |  |  |
| MB90F367SPMT |  |  |
| MB90F367TSPMT |  |  |
| MB90362PMT |  |  |
| MB90362TPMT |  |  |
| MB90362SPMT |  |  |
| MB90362TSPMT |  |  |
| MB90367PMT |  |  |
| MB90367TPMT |  |  |
| MB90367SPMT |  |  |
| MB90367TSPMT |  |  |
| MB90V340A-101 |  |  |
| MB90V340A-102 | 299-pin Ceramic PGA | n |
| MB90V340A-103 | (PGA-299C-A01) | For evaluation |
| MB90V340A-104 |  |  |

## MB90360 Series

## PACKAGE DIMENSION



## MB90360 Series

## FUJITSU LIMITED

## All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.


[^0]:    *1 : MB90F362/T, MB90362/T, MB90F367/T, MB90367/T : X0A, X1A MB90F362S/TS, MB90362S/TS, MB90F367S/TS, MB90367S/TS : P40, P41

[^1]:    *: FPT-48P-M26

