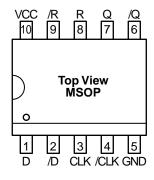


D FLIP-FLOP

FEATURES

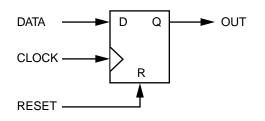
- 2.5GHz min. f_{MAX}
- 2.3V to 5.7V power supply
- Single bit register memory
- Synchronizes 1 bit of data to a clock
- Optimized to work with SuperLite[™] family
- Fully differential
- Accepts CML, PECL, LVPECL input logic levels
- Source terminated CML outputs for fast edge rates
- Available in a tiny 10-pin MSOP


DESCRIPTION

The SY55852U is a flip-flop used to synchronize data to a clock. Its differential output will reproduce and remember the value on its input at the rising edge of the clock. In addition, an asynchronous, level sensitive reset is provided. For a synchonous reset, the SY55851U AnyGate[™] can be used.

SY55852U inputs can be terminated with a single resistor between the true and complement pins of a given input.

The SY55852U is a member of Micrel's SuperLite[™] family of high-speed CML logic. This family features very small packaging and 2.3V to 5.7V operation.


PIN CONFIGURATION

APPLICATIONS

- High-speed logic
- OC-48 communication systems

FUNCTIONAL BLOCK DIAGRAM

PIN NAMES

Pin	Function			
D, /D	CML/PECL/LVPECL Data Input			
CLK, /CLK	CML/PECL/LVPECL Clock Input			
R, /R	CML/PECL/LVPECL Reset Input			
Q, /Q	CML Data Output			
GND	Ground			
V _{CC}	V _{cc}			

PIN DESCRIPTIONS

D, /D – CML/PECL/LVPECL Input (Differential)

This is the single bit of data that gets clocked in and remembered.

CLK, /CLK – CML/PECL/LVPECL Input (Differential)

The rising edge of this signal is the clock signal that determines when the Boolean value at the data input gets stored.

R, /R – CML/PECL/LVPECL Input (Differential)

This is an asynchronous active high level reset, that forces the flip-flop into a known state, namely zero.

Q, /Q – CML Output (Differential)

This is the output of the flip-flop.

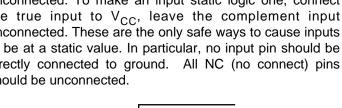
FUNCTIONAL DESCRIPTION

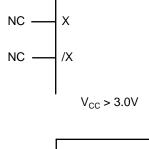
V_{cc} — X NC — /X

1. X is either D, CLK, R input. /X is either /D, /CLK, /R input.

Establishing Static Logic Inputs

The true pin of an input pair is internally biased to ground through a 75k Ω resistor. The complement pin of an input pair is internally biased halfway between V_{CC} and ground by a voltage divider consisting of two $75k\Omega$ resistors. To keep an input at static logic zero at V_{CC} > 3.0V, leave both


Figure 1. Hard Wiring a Logic "1" (1)


inputs unconnected. For V_{CC} \leq 3.0V, connect the complement inputs to V_{CC} and leave the true inputs unconnected. To make an input static logic one, connect the true input to V_{CC}, leave the complement input unconnected. These are the only safe ways to cause inputs to be at a static value. In particular, no input pin should be directly connected to ground. All NC (no connect) pins should be unconnected.

TRUTH TABLE

NOTE:

D	CLK	R	Q	/Q
Х	Х	1	0	1
Х	0	0	Q _{N-1}	/Q _{N-1}
Х	1	0	Q _{N-1} Q _{N-1}	/Q _{N-1} /Q _{N-1}
0	Ŀ	0	0	1
1	Ţ	0	1	0

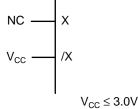
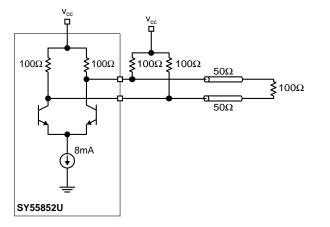
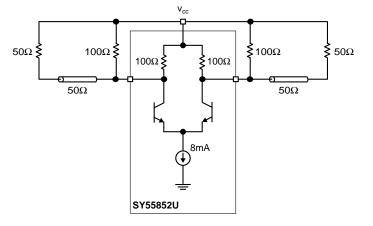


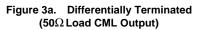
Figure 2. Hard Wiring a Logic "0" (1)

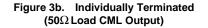
ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Rating	Value	Unit
V _{CC}	Power Supply Voltage	-0.5 to +6.0	V
VI	Input Voltage	–0.5 to V _{CC} +0.5	V
Vo	CML Output Voltage	V_{CC} –1.0 to V_{CC} +0.5	V
Т _А	Operating Temperature Range	-40 to +85	°C
T _{store}	Storage Temperature Range	-65 to +150	°C


NOTE:


1. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to ABSOLUTE MAXIMUM RATING conditions for extended periods may affect device reliability.


CML TERMINATION


All inputs accept the output from any other member of this family. All outputs are source terminated 100Ω CML differential drivers as shown in Figures 3 and 4. SY55852U expects the inputs to be terminated, and that good high

speed design practices be adhered to. SY55852U inputs are designed to accept a termination resistor between the true and complement inputs of a differential pair. 0402 form factor chip resistors will fit with some trace fanout.

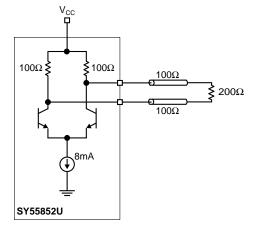


Figure 4. 100 Ω Load CML Output

DC ELECTRICAL CHARACTERISTICS

 V_{CC} = 2.3V to 5.7V; GND = 0V

		T _A = −40°C		$-40^{\circ}C \qquad T_{A} = 0^{\circ}C \qquad T_{A}$		T _A = -	T _A = +25°C		T _A = +85°C	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{CC}	Power Supply Voltage	2.3	5.7	2.3	5.7	2.3	5.7	2.3	5.7	V
I _{CC}	Power Supply Current		36		36	—	36	_	36	mA

CML DC ELECTRICAL CHARACTERISTICS

 V_{CC} = 2.3V to 5.7V; GND = 0V; T_A = -40°C to +85°C⁽¹⁾

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
V _{ID}	Differential Input Voltage	100	—	—	mV	
V _{IH}	Input HIGH Voltage ⁽⁵⁾	1.6	—	V _{CC}	V	
V _{IL}	Input LOW Voltage ⁽⁵⁾	1.5	—	V _{CC} – 0.1	V	
V _{OH}	Output HIGH Voltage	V _{CC} – 0.020	V _{CC} – 0.010	V _{CC}	V	No Load
V _{OL}	Output LOW Voltage	V _{CC} – 0.97	V _{CC} – 0.825	V _{CC} – 0.660	V	No Load
V _{OS}	Output Voltage Swing ⁽²⁾	0.660	0.800 0.400 0.200	0.950	V	No Load 100 Ω Environment ⁽⁴⁾ 50 Ω Environment ⁽³⁾
R _{DRIVE}	Output Source Impedance	80	100	120	Ω	

NOTES:

1. Equilibrium temperature.

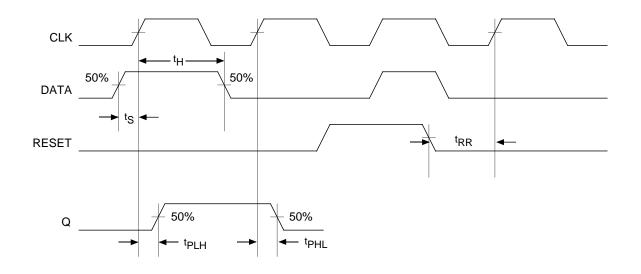
2. Actual voltage levels and differential swing will depend on customer termination scheme. Typically, a 400mV swing is available in the 100Ω environment and a 200mV swing in the 50Ω environment. Refer to the "CML Termination" diagram for more details.

3. See Figure 3a and 3b.

4. See Figure 4.

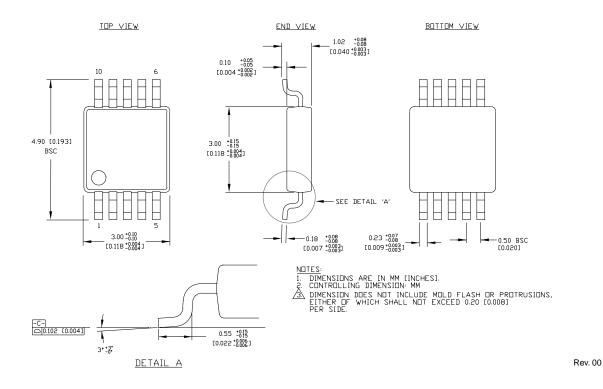
5. Inputs must be biased to logic LOW or HIGH when $\rm V_{\rm cc}$ is less than 3.0V.

AC ELECTRICAL CHARACTERISTICS


 V_{CC} = 2.3V to 5.7V; GND = 0V; T_A = -40°C to +85°C

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition ⁽¹⁾
f _{MAX}	Max. Operating Frequency	2.5	—		GHz	
t _{PLH} t _{PHL}	Propagation Delay, CLK to Q R to Q			400 500	ps	
t _S	Set-Up Time	40	—	—	ps	
t _H	Hold Time	40	—	—	ps	
t _{RR}	Reset Recovery	400	—	—	ps	
t _{PW}	$\begin{array}{ll} \mbox{Minimum Pulse Width} & & \\ \mbox{CLK to Q} & & \mbox{V}_{CC} < 3V \\ & & \mbox{V}_{CC} \geq 3V \\ \mbox{R to Q} & & \end{array}$	160 140 250			ps	
t _r t _f	CML Output Rise/Fall Times (20% to 80%)	35	—	150	ps	

NOTE:


1. Tested using environment of Figure 3b, 50Ω load CML output.

TIMING DIAGRAMS

PRODUCT ORDERING CODE					
Ordering Code	Package Type	Operating Range			
SY55852UKC	K10-1	Commercial			

10 LEAD MSOP (K10-1)

MICREL-SYNERGY 3250 SCOTT BOULEVARD SANTA CLARA CA 95054 USA

TEL + 1 (408) 980-9191 FAX + 1 (408) 914-7878 WEB http://www.synergysemi.com http://www.micrel.com

This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.
© 2001 Micrel Incorporated