TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74VHCT367AF,TC74VHCT367AFN,TC74VHCT367AFT

Hex Bus Buffer

TC74VHCT367AF/AFN/AFT

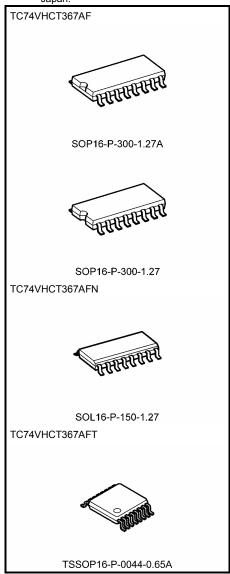
Non-Inverted, 3-State Outputs

The TC74VHCT367A is advanced high speed CMOS HEX BUS BUFFERs fabricated with silicon gate C²MOS technology.

They achieve the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation.

They contain six buffers ;four buffers are controlled by an enable input ($\overline{G}1$), and the other two buffers are controlled by another enable input ($\overline{G}2$). The outputs of each buffer group are enabled when $\overline{G}1$ and/or $\overline{G}2$ inputs are held low; if held high, these outputs are in a high impedance state.

The TC74VHCT367A is a non-inverting output type.


Input protection and output circuit ensure that 0 to 5.5 V can be applied to the input and output $^{\rm (Note)}$ pins without regard to the supply voltage. These structure prevents device destruction due to mismatched supply and input/output voltages such as battery back up, hot board insertion, etc.

Note: Output in off-state

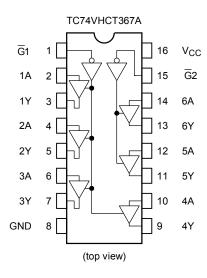
Features

- High speed: $t_{pd} = 4.7$ ns (typ.) at $V_{CC} = 5$ V
- Low power dissipation: $ICC = 4 \mu A$ (max) at Ta = 25°C
- Compatible with TTL outputs: V_{IL} = 0.8 V (max)
 V_{IH} = 2.0 V (min)
- Power down protection is provided on all inputs and outputs.
- Balanced propagation delays: $t_pLH \simeq t_pHL$
- Low noise: VOLP = 0.8 V (max)
- Pin and function compatible with the 74ALS367.

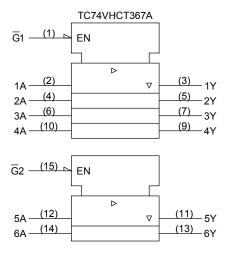
Note: xxxFN (JEDEC SOP) is not available in Japan.

Weight

 SOP16-P-300-1.27A
 : 0.18 g (typ.)


 SOP16-P-300-1.27
 : 0.18 g (typ.)

 SOL16-P-150-1.27
 : 0.13 g (typ.)


 TSSOP16-P-0044-0.65A
 : 0.06 g (typ.)

Pin Assignment

IEC Logic Symbol

Truth Table

Inputs		Output
G	Α	Υ
L	L	L
L	Н	Н
Н	Х	Z

X: Don't care

Z: High impedance

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Symbol Rating		
Supply voltage range	V _{CC}	-0.5 to 7.0	V	
DC input voltage	V _{IN}	-0.5 to 7.0	V	
DOttt	\/a=	-0.5 to 7.0 (Note 2)	V	
DC output voltage	V _{OUT}	-0.5 to V _{CC} + 0.5 (Note 3)	V	
Input diode current	I _{IK}	-20	mA	
Output diode current	lok	±20 (Note 4)	mA	
DC output current	I _{OUT}	±25	mA	
DC V _{CC} /ground current	Icc	±50	mA	
Power dissipation	PD	180	mW	
Storage temperature	T _{stg}	-65 to 150	°C	

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

2

Note 2: Output in Off-State

Note 3: High or low state. IOUT absolute maximum rating must be observed.

Note 4: $V_{OUT} < GND$, $V_{OUT} > V_{CC}$

Recommended Operating Conditions (Note 1)

Characteristics	Symbol	Rating	Unit	
Supply voltage	V _{CC}	4.5 to 5.5	V	
Input voltage	V _{IN}	0 to 5.5	V	
Output voltage	V	0 to 5.5 (Note 2)	V	
Output voltage	V _{OUT}	0 to V _{CC} (Note 3)	V	
Operating temperature	T _{opr}	-40 to 85	°C	
Input rise and fall time	dt/dV	0 to 20	ns/V	

Note 1: The recommended operating conditions are required to ensure the normal operation of the device.

Unused inputs must be tied to either VCC or GND.

Note 2: Output in Off-State

Note 3: High or low state.

Electrical Characteristics

DC Characteristics

Characteristics Symbol		Test Condition $V_{CC}\left(V\right)$		Ta = 25°C			Ta = -40 to 85°C		Unit	
				V _{CC} (V)	Min	Тур.	Max	Min	Max	
High-level input voltage	VIH		_	4.5 to 5.5	2.0	_	-	2.0	_	V
Low-level input voltage	V _{IL}		_		_	_	0.8	_	0.8	V
High-level output	V	V _{IN}	I _{OH} = -50 μA	4.5	4.40	4.50	_	4.40	_	V
voltage	V _{OH}	= V _{IH} or V _{IL}	I _{OH} = -8 mA	4.5	3.94	_		3.80	_	
Low-level output voltage		V _{IN}	I _{OL} = 50 μA	4.5	_	0.0	0.10	_	0.10	
	V _{OL}	= V _{IH} or V _{IL}	I _{OL} = 8 mA	4.5	_	_	0.36	_	0.44	_ V
3-state output off-state current	loz	V _{IN} = V _{IH} or V _{IL} V _{OUT} = V _{CC} or GND		5.5	_	_	±0.25	_	±2.50	μА
Input leakage current	I _{IN}	V _{IN} = 5.5 V or GND		0 to 5.5	_	_	±0.1	_	±1.0	μA
	Icc	V _{IN} = V _C	V _{IN} = V _{CC} or GND		_	_	4.0	_	40.0	μA
Quiescent supply current I _{CCT}	Ісст	Per input: V _{IN} = 3.4 V Other input: V _{CC} or GND		5.5	_	_	1.35	_	1.50	mA
Output leakage current	I _{OPD}	V _{OUT} = 5.5 V		0	_	_	+0.5	_	+5.0	μΑ

AC Characteristics (input: $t_r = t_f = 3 \text{ ns}$)

Characteristics Symb		Test Condition			Ta = 25°C			Ta = −40 to 85°C		Unit
1	-,	·	V _{CC} (V)	C _L (pF)	Min	Тур.	Max	Min	Max	
Propagation delay	t _{pLH}	_	5.0 ± 0.5	15	1	4.7	7.4	1.0	8.5	- ns
time	t_{pHL}			50		5.2	8.4	1.0	9.5	
3-state output enable	t_{pZL}	R _L = 1kΩ	5.0 ± 0.5	15	_	4.9	10.4	1.0	12.0	ns
time	t _{pZH}			50	_	5.4	11.4	1.0	13.0	
3-state output disable time	t_{pLZ}	R _L = 1kΩ	5.0 ± 0.5	50	_	6.3	11.4	1.0	13.0	ns
	t _{pHZ}									113
Output to output skew	t_{osLH}	(Note 1)	5.0 ± 0.5	50		_	1.0	_	1.0	ns
	t _{osHL}	(14010-1)	0.0 1 0.0	00			1.0		1.0	110
Input capacitance	C_{IN}		_		l	4	10	-	10	pF
Output capacitance	C _{OUT}		_			6	_	_	_	pF
Power dissipation capacitance	C _{PD}			(Note 2)		16			_	pF

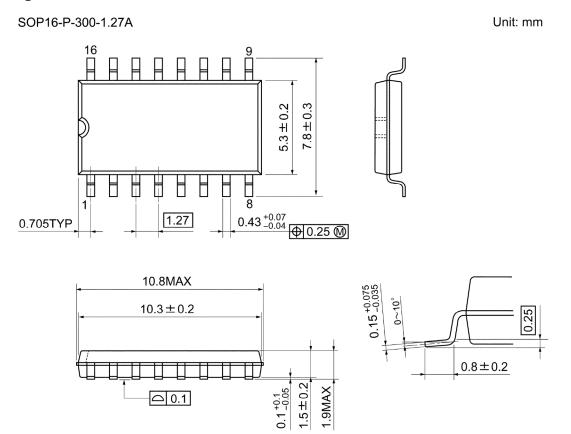
Note 1: Parameter guaranteed by design.

 $t_{OSLH} = |t_{PLHm} - t_{PLHn}|, t_{OSHL} = |t_{PHLm} - t_{PHLn}|$

Note 2: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

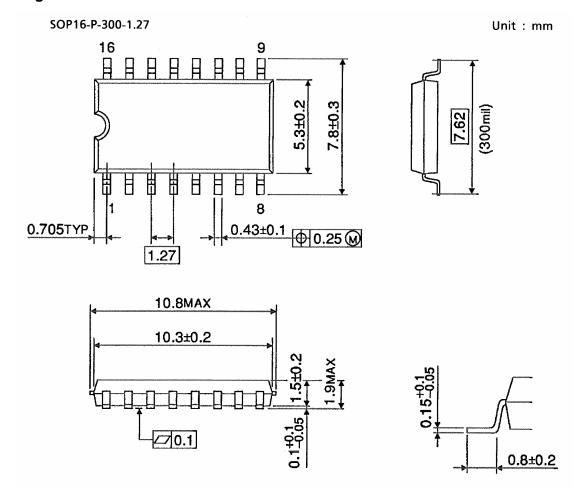
Average operating current can be obtained by the equation:

 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/6 (per bit)$

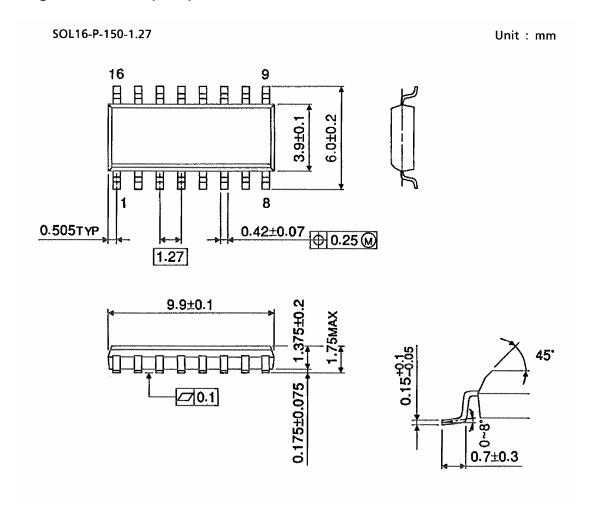

Noise Characteristics (input: $t_r = t_f = 3 \text{ ns}$)

Characteristics	Symbol	Test Condition	Ta =	Unit		
Gharacteristics	Symbol		V _{CC} (V)	Тур.	Max	Offic
Quiet output maximum dynamic V _{OL}	V _{OLP}	C _L = 50 pF	5.0	0.6	8.0	V
Quiet output minimum dynamic V _{OL}	V _{OLV}	C _L = 50 pF	5.0	-0.6	-0.8	V
Minimum high level dynamic input voltage	V _{IHD}	C _L = 50 pF	5.0	_	2.0	V
Maximum low level dynamic input voltage	V _{ILD}	C _L = 50 pF	5.0	_	0.8	V

4

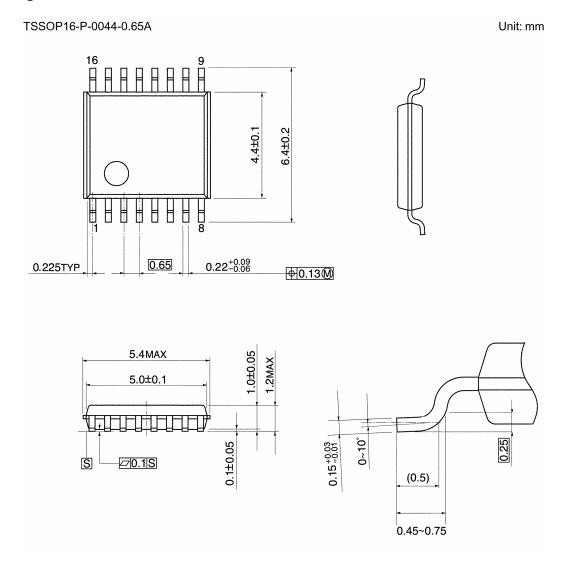

Package Dimensions

Weight: 0.18 g (typ.)


Package Dimensions

Weight: 0.18 g (typ.)

Package Dimensions (Note)


7

Note: This package is not available in Japan.

Weight: 0.13 g (typ.)

Package Dimensions

Weight: 0.06 g (typ.)

Note: Lead (Pb)-Free Packages

SOP16-P-300-1.27A SOL16-P-150-1.27 TSSOP16-P-0044-0.65A

RESTRICTIONS ON PRODUCT USE

060116EBA

- The information contained herein is subject to change without notice. 021023_D
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc. 021023_A
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. 021023 B
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. 021023_c

9

The products described in this document are subject to the foreign exchange and foreign trade laws. 021023_E