
16YQ100C

MECHANICAL DATA Dimensions in mm

SINGLE SCHOTTKY BARRIER DIODE IN HERMETIC TO-257 METAL PACKAGE FOR HI-REL APPLICATIONS


FEATURES

- HERMETIC METAL PACKAGE
- SCREENING OPTIONS AVAILABLE
- OUTPUT CURRENT 16A
- LOW V_F
- LOW LEAKAGE

ABSOLUTE MAXIMUM RATINGS ($T_{case} = 25^{\circ}C$ unless otherwise stated)

V _{RRM}	DC Reverse Voltage	100V
V _{RSM}	Peak Non-Repetitive Reverse Voltage	100V
V _R	Continuous Reverse Voltage	100V
I _{F(AV)}	Maximum Average Forward Current	16A
I _{FSM}	Peak Non-Repetitive Surge Current at 60Hz (per leg)	250A
T _{STG}	Storage Temperature Range	-55°C to 150°C
TJ	Maximum Operating Junction Temperature	-55°C to 150°C

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

ELECTRICAL CHARACTERISTICS ($T_{CASE} = 25^{\circ}C$ unless otherwise stated)

Parameter		Test Conditions		Min.	Тур.	Max.	Unit
V _R	Max. DC Reverse Voltage					100	v
V _{RWM}	Max. Working Peak Reverse Voltage					100	1
I _{F(AV)}	Average Forward Current	50% Duty Cycle	T _C =132°C			16	
I _{FSM}	Peak Non-Repetitive Surge Current	T _P =8.3ms Half Sine				250	A
V _{FSM}	Forward Voltage Drop	I _F =15A	T _J =-55°C			0.76	- V
		I _F =7.5A	T _J =-55°C			0.64	
		I _F =15A	$T_J = 25^{\circ}C$			0.785	
		I _F =7.5A	$T_J = 25^{\circ}C$			0.60	
		I _F =15A	T _J = 125°C			0.71	
		I _F =7.5A	T _J = 125°C			0.54	
I _{RM}	Reverse Leakage Current	V _R = Rated V _R	$T_J = 25^{\circ}C$			0.04	mA
			$T_J = 100^{\circ}C$			7.1	
			T _J = 125°C			30	
CT	Junction Capacitance	$V_{R} = 5V_{DC}$	(1MHz, 25°C)			1400	pF
Ls	Typical Series Inductance	(Anode Lead to Cathode Lead)				9.8	nH
R_{thJC}	Thermal Resistance Junction to Case					1.15	°C/W

*Pulse test tp=300 μ s $\delta \leq 2\%$

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.