

2M (128K x 16) Static RAM

Features

· Very high speed: 55 ns and 70 ns

Voltage range:

— CY62136CV30: 2.7V-3.3V — CY62136CV33: 3.0V-3.6V — CY62136CV: 2.7V-3.6V

Pin-compatible with the CY62136V

Ultra-low active power

Typical active current: 1.5 mA @ f = 1 MHz
 Typical active current: 5.5 mA @ f = f_{max} (70-ns speed)

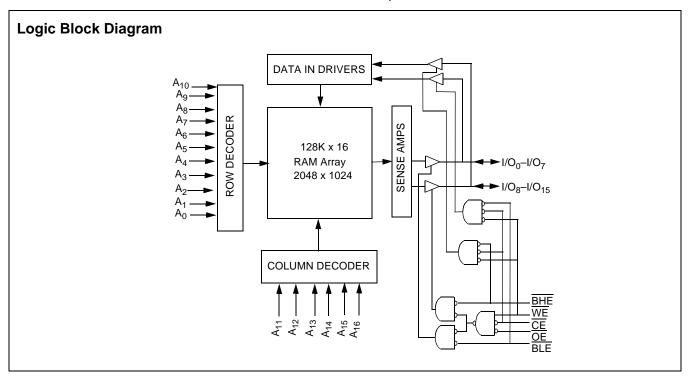
· Low standby power

• Easy memory expansion with $\overline{\text{CE}}$ and $\overline{\text{OE}}$ features

· Automatic power-down when deselected

· CMOS for optimum speed/power

• Packages offered in a 48-ball FBGA


Functional Description^[1]

The and CY62136CV are high-performance CMOS static RAM organized as 128K words by 16 bits. This device features advanced circuit design to provide ultra-low active current.

This is ideal for providing More Battery LifeTM (MoBL[®]) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 80% when addresses are not toggling. The device can also be put into standby mode reducing power consumption by more than 99% when deselected ($\overline{\text{CE}}$ HIGH). The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when: deselected ($\overline{\text{CE}}$ HIGH), outputs are disabled ($\overline{\text{OE}}$ HIGH), both Byte High Enable and Byte Low Enable are disabled ($\overline{\text{BHE}}$, BLE HIGH), or during a write operation ($\overline{\text{CE}}$ LOW, and $\overline{\text{WE}}$ LOW).

Writing to the device is accomplished by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O $_0$ through I/O $_7$), is written into the location specified on the address pins (A $_0$ through A $_{16}$). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O $_8$ through I/O $_{15}$) is written into the location specified on the address pins (A $_0$ through A $_{16}$).

Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable ($\overline{\text{WE}}$) HIGH. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from the memory location specified by the address pins will appear on I/O $_0$ to I/O $_7$. If Byte High Enable (BHE) is LOW, then data from memory will appear on I/O $_8$ to I/O $_{15}$. See the truth table at the back of this data sheet for a complete description of read and write modes.

Note:

1. For best practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.

Pin Configuration^[2, 3]

	F	BGA (1	Γορ Vi	ew)		
1	2	3	4	5	6	-
BLE	(OE)	$\left(A_{0}\right)$	$\left(A_{1}\right)$	\bigcirc A ₂	NC	А
[I/O ₈]	BHE	\bigcirc A ₃	$\left(A_{4}\right)$	CE	(I/O ₀)	В
I/Q ₉	(I/O ₁₀)	$\left(A_{5}\right)$	$\overline{A_6}$	(I/O ₁)	(I/O ₂)	С
V _{SS}	(I/O ₁₁)	NC	(A ₇)	(I/O ₃)	(V_{CC})	D
Vcc	(I/O ₁₂)	DNU	(A ₁₆)	(I/O ₄)	(V_{SS})	E
[/O ₁₄]	(I/O ₁₃)	(A ₁₄)	$\left(A_{15}\right)$	(I/O ₅)	(I/O ₆)	F
[I/O ₁₅]	NC	$\left(A_{12}\right)$	$\left(A_{13}\right)$	$\overline{\overline{\text{WE}}}$	(I/O ₇)	G
NC	$\left(A_{8}\right)$	(Ag)	$\left(A_{10}\right)$	$\left(A_{11}\right)$	NC	Н
L						1

Maximum Ratings

lines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......-55°C to +125°C Supply Voltage to Ground Potential -0.5V to $V_{CCMAX} + 0.5V$

(Above which the useful life may be impaired. For user guide-

DC Voltage Applied to Outputs in High-Z State $^{[4]}$ -0.5V to V $_{\rm CC}$ + 0.3V DC Input Voltage^[4].....-0.5V to V_{CC} + 0.3V

Output Current into Outputs (LOW)20 mA

Static Discharge Voltage	> 2001V
(per MIL-STD-883, Method 3015)	
Latch-up Current	> 200 mA

Operating Range

Device	Range	Ambient Temperature	v _{cc}
CY62136CV30	Industrial	–40°C to +85°C	2.7V to 3.3V
CY62136CV33			3.0V to 3.6V
CY62136CV			2.7V to 3.6V

Product Portfolio

					Power Dissip				ation	
					0	perating	j, I _{CC} (m/	4)		
	V	_{CC} Range (\	/)	Speed	f = 1	MHz	f = f	max	Stand	by, I _{SB2} (μΑ)
Product	V _{CC(min.)}	V _{CC(typ.)} ^[5]	V _{CC(max.)}	(ns)	Typ. ^[5]	Max.	Typ. ^[5]	Max.	Typ. ^[5]	Max.
CY62136CV30LL	2.7	3.0	3.3	55	1.5	3	7	15	2	10
				70	1.5	3	5.5	12		
CY62136CV33LL	3.0	3.3	3.6	55	1.5	3	7	15	5	15
				70	1.5	3	5.5	12		
CY62136CVLL	2.7	3.3	3.6	70	1.5	3	5.5	12	5	15

- NC pins are not connected to the die.
 E3 (DNU) can be left as NC or V_{SS} to ensure proper application.
- V_{IL(min.)} = -2.0V for pulse durations less than 20 ns.
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C.

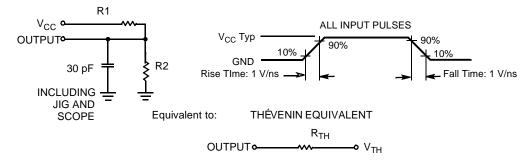
Electrical Characteristics Over the Operating Range

			CY6	2136CV3	30-55	CY62136CV30-70				
Parameter	Description	Test Conditions		Min.	Typ. ^[5]	Max.	Min.	Typ. ^[5]	Max.	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -1.0 \text{ mA}$	$V_{CC} = 2.7V$	2.4			2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 2.1 mA	$V_{CC} = 2.7V$			0.4			0.4	V
V _{IH}	Input HIGH Voltage			2.2		V _{CC} + 0.3V	2.2		V _{CC} + 0.3V	V
V _{IL}	Input LOW Voltage			-0.3		0.8	-0.3		0.8	V
I _{IX}	Input Leakage Current	$GND \le V_1 \le V_{CC}$	$GND \le V_1 \le V_{CC}$			+1	-1		+1	μΑ
I _{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC}$, C	Output Disabled	-1		+1	-1		+1	μА
I _{CC}	V _{CC} Operating Supply	$f = f_{MAX} = 1/t_{RC}$	$V_{CC} = 3.3V$		7	15		5.5	12	mA
	Current	f = 1 MHz	I _{OUT} = 0 mA CMOS Levels		1.5	3		1.5	3	
I _{SB1}	Automatic CE Power-down Current — CMOS Inputs	$\overline{\text{CE}} \ge \text{V}_{\text{CC}} - 0.2\text{V}$ $\text{V}_{\text{IN}} \ge \text{V}_{\text{CC}} - 0.2\text{V}$ or $\text{V}_{\text{IN}} \le 0.2\text{V}$, f = f _{max} (Address and Data Only), f = 0 (OE, WE, BHE, and BLE)			2	10		2	10	μΑ
I _{SB2}	Automatic CE Power-down Current — CMOS Inputs		or V _{IN} ≤ 0.2V,							

				CY62136CV33-55			CY62136CV33-70 CY62136CV-70			
Parameter	Description	Test Conditions		Min.	Typ. ^[5]	Max.	Min.	Typ. ^[5]	Max.	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -1.0 \text{ mA}$	$V_{CC} = 3.0V$	2.4			2.4			V
			$V_{CC} = 2.7V$			•	2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 2.1 mA	$V_{CC} = 3.0V$			0.4			0.4	V
			$V_{CC} = 2.7V$			•			0.4	V
V _{IH}	Input HIGH Voltage			2.2		V _{CC} + 0.3V	2.2		V _{CC} + 0.3V	V
V _{IL}	Input LOW Voltage			-0.3		0.8	-0.3		0.8	V
I _{IX}	Input Leakage Current	$GND \leq V_I \leq V_CC$	-1		+1	-1		+1	μА	
I _{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC}$	Output Disabled	-1		+1	-1		+1	μА
I _{CC}	V _{CC} Operating	$f = f_{MAX} = 1/t_{RC}$	$V_{CC} = 3.6V$		7	15		5.5	12	mA
	Supply Current	f = 1 MHz	I _{OUT} = 0 mA CMOS Levels		1.5	3		1.5	3	
I _{SB1}	Automatic CE Power-down Current —CMOS Inputs	$\overline{\text{CE}} \ge \text{V}_{\text{CC}} - 0.2\text{V}$ $\text{V}_{\text{IN}} \ge \text{V}_{\text{CC}} - 0.2\text{V}$ of $\text{f} = \text{f}_{\text{max}}$ (Address at $\text{f} = 0$ (OE, WE, BH)	and Data Only),		5	15		5	15	μА
I _{SB2}	Automatic CE Power-down Current —CMOS Inputs	$\begin{array}{c} \text{CE} \geq \text{V}_{\text{CC}} - 0.2\text{V} \\ \text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.2\text{V} \\ \text{f} = 0, \text{V}_{\text{CC}} = 3.6\text{V} \end{array}$	or $V_{IN} \leq 0.2V$,							

Capacitance^[6]

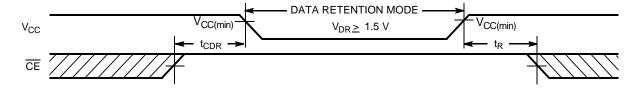
Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ.)}$	8	pF


Document #: 38-05199 Rev. *D Page 3 of 13

Thermal Resistance

Parameter	Description	Test Conditions	BGA	Unit
Θ_{JA}	l rei	Still Air, soldered on a 3 x 4.5 inch, two-layer printed circuit board	55	°C/W
$\Theta_{\sf JC}$	Thermal Resistance (Junction to Case) ^[6]		16	°C/W

AC Test Loads and Waveforms



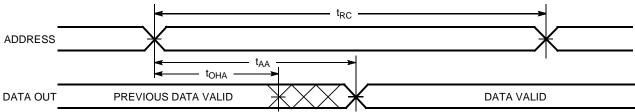
Parameters	3.0V	3.3V	Unit
R1	1105	1216	Ω
R2	1550	1374	Ω
R _{TH}	645	645	Ω
V _{TH}	1.75	1.75	V

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions	Min.	Typ. ^[5]	Max.	Unit
V_{DR}	V _{CC} for Data Retention		1.5		V _{ccmax}	V
I _{CCDR}	Data Retention Current	$V_{CC} = 1.5V \overline{CE} \ge V_{CC} - 0.2V,$ $V_{IN} \ge V_{CC} - 0.2V \text{ or } V_{IN} \le 0.2V$		1	6	μΑ
t _{CDR} ^[6]	Chip Deselect to Data Retention Time		0			ns
t _R ^[7]	Operation Recovery Time		t _{RC}			ns

Data Retention Waveform

- Tested initially and after any design or process changes that may affect these parameters. Full Device AC operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min.)} > 100 \,\mu s$ or stable at $V_{CC(min.)} > 100 \,\mu s$.

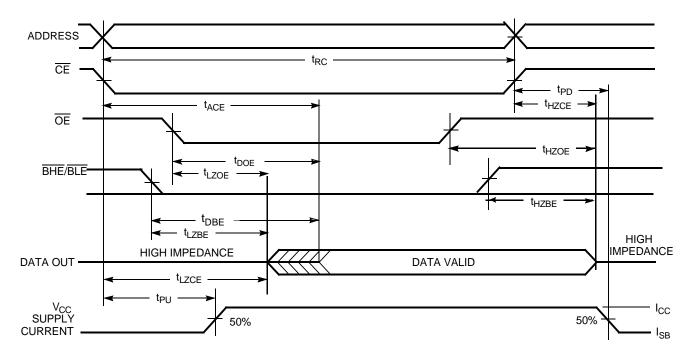


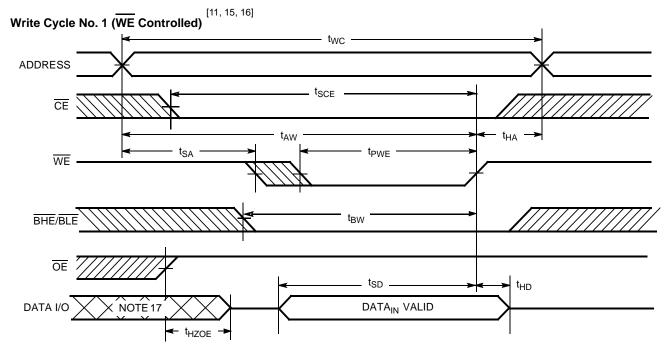
Switching Characteristics Over the Operating Range^[8]

		55	ns	70			
Parameter	Description	Min. Max.		Min. Max.		Unit	
Read Cycle		•		•		•	
t _{RC}	Read Cycle Time	55		70		ns	
t _{AA}	Address to Data Valid		55		70	ns	
t _{OHA}	Data Hold from Address Change	10		10		ns	
t _{ACE}	CE LOW to Data Valid		55		70	ns	
t _{DOE}	OE LOW to Data Valid		25		35	ns	
t _{LZOE}	OE LOW to Low-Z ^[9]	5		5		ns	
t _{HZOE}	OE HIGH to High-Z ^[9, 10]		20		25	ns	
t _{LZCE}	CE LOW to Low-Z ^[9]	10		10		ns	
t _{HZCE}	CE HIGH to High-Z ^[9, 10]		20		25	ns	
t _{PU}	CE LOW to Power-up	0		0		ns	
t _{PD}	CE HIGH to Power-down		55		70	ns	
t _{DBE}	BHE/BLE LOW to Data Valid		25		35	ns	
t _{LZBE}	BHE/BLE LOW to Low-Z ^[9]	5		5		ns	
t _{HZBE}	BHE/BLE HIGH to High-Z ^[9, 10]		20		25	ns	
Write Cycle ^[11]		4	·Ļ	!			
t _{WC}	Write Cycle Time	55		70		ns	
t _{SCE}	CE LOW to Write End	45		60		ns	
t _{AW}	Address Set-up to Write End	45		60		ns	
t _{HA}	Address Hold from Write End	0		0		ns	
t _{SA}	Address Set-up to Write Start	0		0		ns	
t _{PWE}	WE Pulse Width	40		45		ns	
t _{BW}	BHE/BLE Pulse Width	50		60		ns	
t _{SD}	Data Set-up to Write End	25		30		ns	
t _{HD}	Data Hold from Write End	0		0		ns	
t _{HZWE}	WE LOW to High-Z ^[9, 10]		20		25	ns	
t _{LZWE}	WE HIGH to Low-Z ^[9]	10		10		ns	

Switching Waveforms

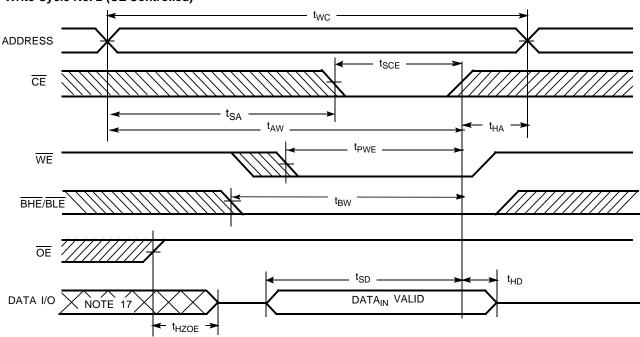
Read Cycle No. 1 (Address Transition Controlled) $^{[12,\ 13]}$



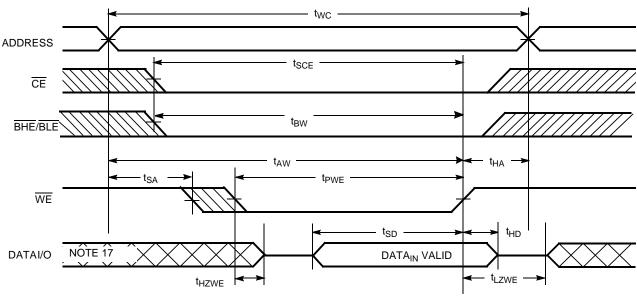

- Test conditions assume signal transition time of 5 ns or less, timing reference levels of V_{CC(typ.)}/2, input pulse levels of 0 to V_{CC(typ.)}, and output loading of the specified $I_{\rm OL}/I_{\rm OH}$ and 30-pF load capacitance.
- At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZBE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZOE} .
- given device. It_{HZOE}, t_{HZDE}, and t_{HZWE} transitions are measured when the outputs enter <u>a high-impedance</u> state. The internal write time of the memory is defined by the overlap of WE, CE = V_{IL}, BHE and/or BLE = V_{IL}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates
- Device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$, \overline{BHE} , $\overline{BLE} = V_{IL}$.
- 13. WE is HIGH for read cycle.

Switching Waveforms (continued)

Read Cycle No. 2 (OE Controlled) [13, 14]

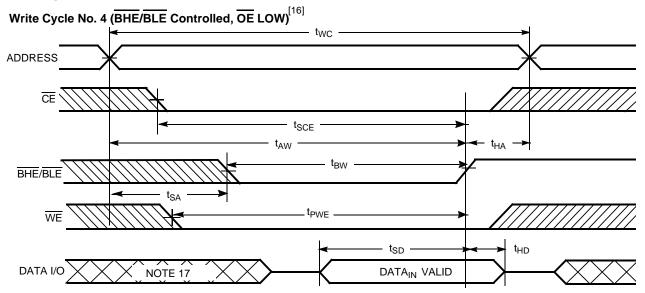


- 14. Address valid prior to or coincident with CE, BHE, BLE transition LOW.
 15. Data I/O is high-impedance if OE = V_{IH}.
 16. If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
 17. During this period, the I/Os are in output state and input signals should not be applied.



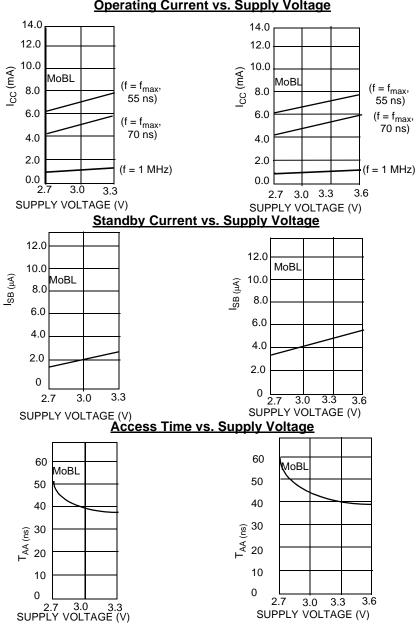
Switching Waveforms (continued)

Write Cycle No. 2 (CE Controlled) [11, 15, 16]



Write Cycle No. 3 (WE Controlled, OE LOW) [16]

Switching Waveforms (continued)



Typical DC and AC Parameters

(Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC(typ.)}$, $T_A = 25^{\circ}C$)

Operating Current vs. Supply Voltage

Truth Table

CE	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	High-Z	Deselect/Power-down	Standby (I _{SB})
L	Х	Х	Н	Н	High-Z	Output Disabled	Active (I _{CC})
L	Н	L	L	L	Data Out (I/O _O -I/O ₁₅)	Read	Active (I _{CC})
L	Н	L	Н	L	Data Out (I/O _O –I/O ₇); I/O ₈ –I/O ₁₅ in High-Z	Read	Active (I _{CC})
L	Н	L	L	Н	Data Out (I/O ₈ -I/O ₁₅); I/O ₀ -I/O ₇ in High-Z	Read	Active (I _{CC})
L	Н	Н	L	L	High-Z	Output Disabled	Active (I _{CC})

SUPPLY VOLTAGE (V)

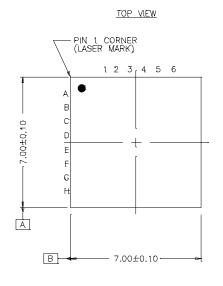
Document #: 38-05199 Rev. *D Page 9 of 13

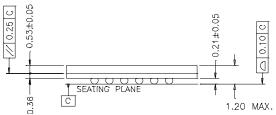
CY62136CV30/33 MoBL® CY62136CV MoBL®

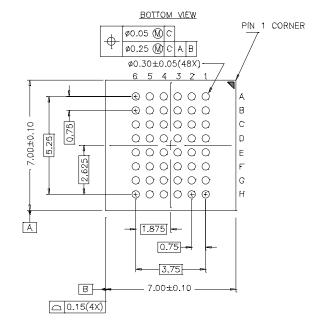
Truth Table (continued)

CE	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
L	Η	Н	Н	L	High-Z	Output Disabled	Active (I _{CC})
L	Η	Н	L	Н	High-Z	Output Disabled	Active (I _{CC})
L	L	Х	L	L	Data In (I/O _O -I/O ₁₅)	Write	Active (I _{CC})
L	L	Х	Н	L	Data In (I/O _O –I/O ₇); I/O ₈ –I/O ₁₅ in High-Z	Write	Active (I _{CC})
L	L	X	L	Н	Data In (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High-Z	Write	Active (I _{CC})

Ordering Information

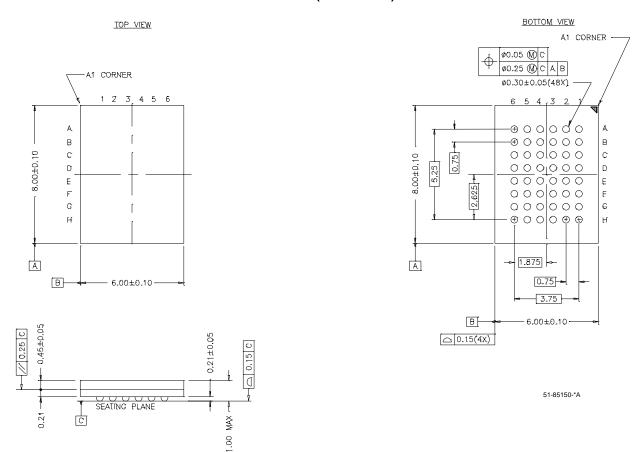

Speed (ns)	Ordering Code	Voltage Range (V)	Package Name	Package Type	Operating Range
70	CY62136CV30LL-70BAI	2.7–3.3	BA48A	48-ball Fine Pitch BGA (7 mm x 7 mm x 1.2 mm)	Industrial
	CY62136CV30LL-70BVI	2.7–3.3	BV48A	48-ball Fine Pitch BGA (6 mm x 8 mm x 1 mm)	
	CY62136CV33LL-70BAI	3.0-3.6	BA48A	48-ball Fine Pitch BGA (7 mm x 7 mm x 1.2 mm)	
	CY62136CV33LL-70BVI	3.0-3.6	BV48A	48-ball Fine Pitch BGA (6 mm x 8 mm x 1 mm)	
	CY62136CVLL-70BAI	2.7–3.6	BA48A	48-ball Fine Pitch BGA (7 mm x 7 mm x 1.2 mm)	
	CY62136CVLL-70BVI	2.7–3.6	BV48A	48-ball Fine Pitch BGA (6 mm x 8 mm x 1 mm)	
55	CY62136CV30LL-55BAI	2.7–3.3	BA48A	48-ball Fine Pitch BGA (7 mm x 7 mm x 1.2 mm)	
	CY62136CV30LL-55BVI	2.7–3.3	BV48A	48-ball Fine Pitch BGA (6 mm x 8 mm x 1 mm)	
	CY62136CV33LL-55BAI	3.0-3.6	BA48A	48-ball Fine Pitch BGA (7 mm x 7 mm x 1.2 mm)	
	CY62136CV33LL-55BVI	3.0-3.6	BV48A	48-ball Fine Pitch BGA (6 mm x 8 mm x 1 mm)	


Document #: 38-05199 Rev. *D Page 10 of 13



Package Diagrams

48-ball (7.00 mm x 7.00 mm x 1.2 mm) FBGA BA48A



51-85096-*E

Package Diagrams (continued)

48-ball VFBGA (6 x 8 x 1 mm) BV48A

MoBL is a registered trademark and More Battery Life is a trademark of Cypress Semiconductor Corporation. All product and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

REV.	ECN NO.	Issue Date	Orig. of	Description of Change	
	ECN NO.	Date	Change	Description of Change	
**	112379	02/19/02	GAV	New Data Sheet (advance information)	
*A	114023	04/25/02	JUI	Added BV package diagram Changed Advance Information to Preliminary	
*B	117063	07/12/02	MGN	Changed Preliminary to Final	
*C	118121	08/26/02	MGN	Added new part numbers: CY62136CV with wider voltage (2.7V $-$ 3.6V); CY62136CV33 narrower voltage range (3.0V $-$ 3.6V) For T _{AA} = 55 ns, improved t _{PWE} Min from 45 ns to 40 ns For T _{AA} = 70 ns, improved t _{PWE} Min from 50 ns to 45 ns For T _{AA} = 70 ns, improved t _{LZWE} Min from 5 ns to 10 ns	
*D	118622	10/3/02	MGN	Improved Typ. I_{CC} spec. to 7 mA (for 55 ns) and 5.5 mA (for 70 ns) Improved Max I_{CC} spec. to 15 mA (for 55 ns) and 12 mA (for 70 ns) For T_{AA} = 55 ns, improved t_{LZWE} min. from 5 ns to 10 ns Changed upper spec. for Supply Voltage to Ground Potential to V_{CCMAX} + 0.5V Changed upper spec. for DC Voltage Applied to Outputs in High-Z State and DC Input Voltage to V_{CC} + 0.3V	

Document #: 38-05199 Rev. *D Page 13 of 13