SPECIAL DEVICES

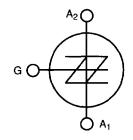
SILICON UNIJUNCTION TRANSISTOR (UJT)

	Case Style	Diagram Number		Maximun	n Ratings		,				
NTE Type Number			RMS Emitter Current (mA)	Interbase Voltage (Volts)	RMS Power Dissipation (mW)	Emitter Reverse Current (μA)	Intrinsic Stand Off Ratio		Interbase Resistance (kΩ)		Vailey Point Current (mA)
			ΙĘ								
							MiN	MAX	MIN	MAX	
6400	TO39	125	50	35	450	12	0.45	0.80	4	12	8 Min
6400A	TO39	125	50	55	450	1	0.54	0.67	4	12	8 Min
6401	TO18	126	50	35	300	12	0.56	0.75	4.7	9.1	4 Min
6409	TO18	126	50	35	300	0.2	0.68	0.82	4.7	9.1	8 Min
6410	TO92	9k	50	35	300	0.005 Typ	0.70	0.85	4	9.1	4 Min

PROGRAMMABLE UNIJUNCTION TRANSISTOR (PUT)

	Case Style	Diagram Number	Maximum Ratings								
NTE Type Number			Gate to Cathode Forward Voltage (Volts) Gate to Cathode Reverse Voltage (Volts)		Anode to Cathode Voltage (Volts)	Power Dissipation (mW)	Gate Current (mÅ)	Peak Current @ V _S = 10V (μ A)	Offset Voltage @ V _S = 10V (Volts)	Minimum Valley Voltage @ V _S = 10V (μA)	
l	L		BV _{GKF}	BVGKR	BVAK	PD	l _G	lp	V _T	lγ	
6402	TO98/TO92	127a/9g	+40	-5	±40	300	±20	$2 @ R_S = 1M\Omega$	$1.6 @ R_g = 1M\Omega$	$70 @ R_g = 1M\Omega$	
0402	1090/1092	127a/3g	7-70		± + 0	300	120	$5 @ R_S = 10k\Omega$	$0.6 @ R_g = 10k\Omega$	1.5mA @ $R_g = 10k\Omega$	

DESCRIPTION:


This device has been characterized as a Programmable Unijunction Transistor (PUT), offering many advantages over conventional unijunction transistors. The designer can select R_1 and R_2 to program unijunction characteristics such as η , R_{BB} , I_P , and I_V to meet particular needs. Applications of the PUT include timers, high gain phase control circuits, and relaxation oscillators.

SILICON BILATERAL SWITCH (SBS)

	Case Style	Diagram Number	Maximum Ratings								
NTE Type Number			Peak Recurrent Forward Current (Amps)	DC Forward Anode Current (mA)	Power Dissipation (mW)	Switching Voltage (Volts)	Switching Current (µA)	Holding Current (mA)	Off-State Current @ 5V (µA)	On–State Forward Voltage Drop I _F = 175mA (Volts)	
			I _{Fp}	lp	P _D	V _S	Is	l _{Hold}	l _B	V _F	
6403	TO92/TO98	9h/127b	1	175	300	6 Min 10 Max	500	1.5	1	1.7	

DESCRIPTION:

Silicon Bilateral Switches are specifically designed and characterized for applications where stability of switching voltage over a wide temperature range and well matched bilateral characteristics are an asset. They are ideally suited for half wave and full wave triggering in low voltage SCR and TRIAC phase control circuits.

SBS CIRCUIT SYMBOL