

Dear customers,

About the change in the name such as "Oki Electric Industry Co. Ltd." and "OKI" in documents to OKI Semiconductor Co., Ltd.

The semiconductor business of Oki Electric Industry Co., Ltd. was succeeded to OKI Semiconductor Co., Ltd. on October 1, 2008. Therefore, please accept that although the terms and marks of "Oki Electric Industry Co., Ltd.", "Oki Electric", and "OKI" remain in the documents, they all have been changed to "OKI Semiconductor Co., Ltd.". It is a change of the company name, the company trademark, and the logo, etc., and NOT a content change in documents.

October 1, 2008 OKI Semiconductor Co., Ltd.

OKI SEMICONDUCTOR CO., LTD.

550-1 Higashiasakawa-cho, Hachioji-shi, Tokyo 193-8550, Japan http://www.okisemi.com/en/

FEDR27V3202E-01-01

OKI Semiconductor

MR27V3202E

2,097,152-Word × 16-Bit or 4,194,304-Word × 8-Bit One Time PROM

GENERAL DESCRIPTION

The MR27V3202E is a 32 Mbit electrically One Time Programmable Read-Only Memory that can be electrically switched between 2,097,152-word \times 16-bit and 4,194,304-word \times 8-bit by the state of the $\overline{\text{BYTE}}$ pin. The MR27V3202E supports high speed asynchronous read operation using a single 3.3V power supply.

FEATURES

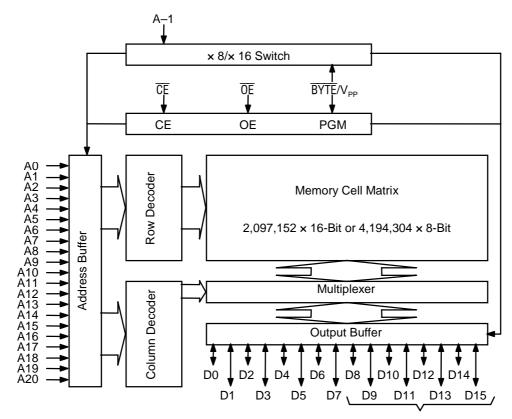
- \cdot 2097,152-word \times 16-bit/4,194,304-word \times 8-bit electrically switchable configuration
- · +3.3 V power supply
- Access time
 Operating current
 Standby current
 90 ns MAX
 50 mA MAX
 50 μA MAX
- · Input/Output TTL compatible
- · Tri-state output
- · Packages:

44-pin plastic SOP (SOP44-P-600-1.27-K) (Product Name : MR27V3202EMA) 44-pin plastic TSOP (TSOP II 44-P-400-0.80-K) (Product Name : MR27V3202ETP)

This version

Previous version: -----

: Jul. 2000


PIN CONFIGURATION (TOP VIEW)

A18 2 A17 3 A19 A17 3 A2 A8 A7 4 A1 A9 A6 5 A0 A10 A5 6 39 A11 A4 7 38 A12 A3 8 A7 A13 A2 9 36 A14 A1 10 A5 A15 A0 11 A0 11 BY A16 CE 12 V _{SS} 13 OE 14 D0 15 D1 17 D8 16 D9 18 D1 17 D9 18 D1 17 D9 18 D1 20 D1 20 D3 21 D1 22 D3 21 D1 22 D3 21 D1 22 D3 21 D4 D1 172 D4 D1 122 D3 22 D4 D4	NC 1	0	44 A20
A7 4 A6 5 A6 5 A6 5 A9 A10 A5 6 39 A11 A4 7 38 A12 A3 8 37 A13 A2 9 36 A14 A1 10 35 A15 A0 11 CE 12 33 BYTE/V _{PP} V _{SS} 13 CE 14 D0 15 D1 17 D8 16 D9 18 D1 17 D9 18 D1 17 D1 17 D1 17 D1 17 D2 19 D1 20 D3 21 D3 21 D4 D4	A18 2		43 A19
A6 5 A5 6 A5 6 A5 6 A6 7 A7 38 A12 A3 8 A12 A3 8 A12 A3 8 A13 A2 9 A14 A1 10 A1 10 A1 10 A1 10 A1 11 A1 10 A1 11 A1 10 A1 11 A	A17 3		42 A8
A5 6 39 A11 A4 7 38 A12 A3 8 37 A13 A2 9 36 A14 A1 10 35 A15 A0 11 34 A16 Œ 12 33 BYTE/V _{PP} V _{SS} 13 32 V _{SS} Œ 14 31 D15/A-1 D0 15 30 D7 D8 16 29 D14 D1 17 28 D6 D9 18 27 D13 D2 19 26 D5 D10 20 25 D12 D3 21 24 D4	A7 4		41 A9
A4 7 A3 8 A12 A3 8 A2 9 36 A14 A1 10 35 A15 A0 11 GE 12 V _{SS} 13 GE 14 D0 15 D1 17 D8 16 D9 18 D2 19 D1 26 D5 D10 20 D3 21 38 A12 38 A12 38 A12 A13 A13 A13 A15 A15 A15 A16 GE 32 A16 A16 A16 A16 A16 A16 A17 A17 A18 A18 A18 A19	A6 5		40 A10
A3 8 37 A13 A2 9 36 A14 A1 10 35 A15 A0 11 34 A16 CE 12 33 BYTE/V _{PP} V _{SS} 13 32 V _{SS} OE 14 31 D15/A-1 D0 15 30 D7 D8 16 29 D14 D1 17 28 D6 D9 18 27 D13 D2 19 26 D5 D10 20 25 D12 D3 21 24 D4	A5 6		39 A11
A2 9 A1 10 A1 10 A1 10 A2 A1 5 A0 11 A1 A16 A2 A16 A3 BYTE/V _{PP} A5 BYTE	A4 7		38 A12
A1 10 A0 11 A0 11 B4 A16 B5 A15 A16 B7 B	A3 8		37 A13
A0 11 34 A16 \(\overline{CE}\) 12 33 \(\overline{BYTE}/V_{PP}\) \(V_{SS}\) 13 32 \(V_{SS}\) \(\overline{OE}\) 14 31 \(D15/A-1\) \(D0\) 15 30 \(D7\) \(D8\) 16 29 \(D14\) \(D1\) 17 28 \(D6\) \(D9\) 18 27 \(D13\) \(D2\) 19 26 \(D5\) \(D10\) 20 25 \(D12\) \(D3\) 21 24 \(D4\)	A2 9		36 A14
CE 12 33 BYTE/V _{PP} V _{SS} 13 32 V _{SS} OE 14 31 D15/A-1 D0 15 30 D7 D8 16 29 D14 D1 17 28 D6 D9 18 27 D13 D2 19 26 D5 D10 20 25 D12 D3 21 24 D4	A1 10		35 A15
V _{SS} 13 0E 14 D0 15 D8 16 D1 17 D9 18 D2 19 D10 20 D3 21	A0 11		34 A16
OE 14 DO 15 D8 16 D1 17 D9 18 D2 19 D10 20 D3 21 23 D1 31 D15/A-1 30 D7 29 D14 28 D6 27 D13 26 D5 D10 20 24 D4	<u>CE</u> 12		33 BYTE/V _{PP}
D0 15 30 D7 D8 16 29 D14 D1 17 28 D6 D9 18 27 D13 D2 19 26 D5 D10 20 25 D12 D3 21 24 D4	V _{SS} 13		32 V _{SS}
D8 16 29 D14 D1 17 28 D6 D9 18 27 D13 D2 19 26 D5 D10 20 25 D12 D3 21 24 D4	0E 14		31 D15/A-1
D1 17 28 D6 D9 18 27 D13 D2 19 26 D5 D10 20 25 D12 D3 21 24 D4	D0 15		30 D7
D9 18 27 D13 D2 19 26 D5 D10 20 25 D12 D3 21 24 D4	D8 16		29 D14
D2 19 26 D5 D10 20 25 D12 D3 21 24 D4	D1 17		28 D6
D10 20 25 D12 D3 21 24 D4	D9 18		27 D13
D3 21 24 D4	D2 19		26 D5
	D10 20		25 D12
D11 22 23 V _{cc}	D3 21		24 D4
1	D11 22		23 V _{CC}

44-pin SOP, TSOP(II)

Pin name	Functions
D15/A-1	Data output/Address input
A0 to A20	Address input
D0 to D14	Data output
CE	Chip enable
ŌĒ	Output enable
BYTE/V _{PP}	Mode switch/Program power supply voltage
V _{cc}	Power supply voltage
V_{ss}	GND
NC	Non connection

BLOCK DIAGRAM

In 8-bit output mode, these pins are placed in a high-Z state and pin D15 functions as the A-1 address pin.

FUNCTION TABLE

Mode	CE	ŌĒ	BYTE/V _{PP}	V _{cc}	D0 to D7	D8 to D14	D15/A-1		
Read (16-Bit)	L	L	Н			D_OUT			
Read (8-Bit)	L	L	L		D _{OUT}	Hi–Z	L/H		
Output disable		Н	Н	3.3 V		Hi–Z			
	<u> </u>	П	L	3.3 V		П-Ζ	*		
Standby	Н	*	Н			Hi–Z			
Standby	П	•	L			П-Ζ	*		
Program	L	Н			D _{IN}				
Program inhibit	Н	Н	9.75 V	4.0 V		Hi–Z			
Program verify	Н	L				D_OUT			

^{*:} Don't Care (H or L)

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Value	Unit
Operating temperature under bias	Та		0 to 70	°C
Storage temperature	Tstg	_	-55 to 125	°C
Input voltage	V _I		-0.5 to V _{CC} +0.5	V
Output voltage	Vo	noloti to to M	-0.5 to V _{CC} +0.5	V
Power supply voltage	V _{cc}	relative to V _{ss}	-0.5 to 5	V
Program power supply voltage	V _{PP}		-0.5 to 11.5	V
Power dissipation per package	P _D	_	1.0	W

RECOMMENDED OPERATING CONDITIONS

 $(Ta = 0 \text{ to } 70^{\circ}C)$

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
V _{CC} power supply voltage	V _{cc}		3.0	_	3.6	V
V _{PP} power supply voltage	V_{PP}	V 204-20V	-0.5	_	V _{cc} +0.5	V
Input "H" level	V _{IH}	$V_{CC} = 3.0 \text{ to } 3.6 \text{ V}$	2.2	_	V _{cc} +0.5*	V
Input "L" level	V _{IL}		-0.5**	_	0.6	V

 $\label{eq:Voltage} \begin{tabular}{ll} Voltage is relative to V_{SS}. \\ * : Vcc+1.5V(Max.) when pulse width of overshoot is less than 10ns. \\ \end{tabular}$

^{**: -1.5}V(Min.) when pulse width of undershoot is less than 10ns.

ELECTRICAL CHARACTERISTICS

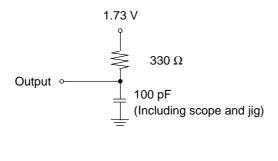
DC Characteristics

 $(V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{ Ta} = 0 \text{ to } 70^{\circ}\text{C})$

parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Input leakage current	I _{LI}	$V_I = 0$ to V_{CC}	1	_	10	μΑ
Output leakage current	I _{LO}	$V_{O} = 0$ to V_{CC}	ı	_	10	μΑ
V _{CC} power supply current	I _{ccsc}	$\overline{\text{CE}} = V_{\text{CC}}$	ı	_	50	μΑ
(Standby)	I _{CCST}	$\overline{CE} = V_{IH}$	1	_	1	mA
V _{cc} power supply current (Read)	I _{CCA}	$\overline{CE} = V_{IL}, \overline{OE} = V_{IH}$ $tc = 90 \text{ ns}$		_	50	mA
V _{PP} power supply current	I _{PP}	$V_{PP} = V_{CC}$	_	_	10	μΑ
Input "H" level	V _{IH}	_	2.2	_	V _{cc} +0.5*	V
Input "L" level	V_{IL}	_	-0.5**	_	0.6	V
Output "H" level	V _{OH}	$I_{OH} = -2 \text{ mA}$	2.4	_		V
Output "L" level	V_{OL}	$I_{OL} = 4 \text{ mA}$	_	_	0.4	V

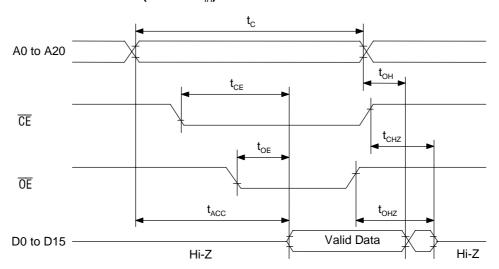
Voltage is relative to V_{SS}.

- * : Vcc+1.5V(Max.) when pulse width of overshoot is less than 10ns.
- **: -1.5V(Min.) when pulse width of undershoot is less than 10ns.

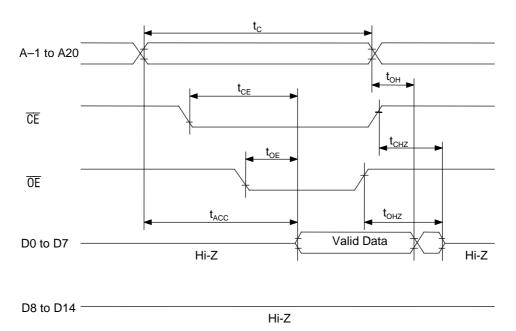

AC Characteristics

 $(V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{Ta} = 0 \text{ to } 70^{\circ}\text{C})$

			\ \ \	,	
Parameter	Symbol	Condition	Min.	Max.	Unit
Address cycle time	t _C		90		ns
Address access time	t _{ACC}	$\overline{CE} = \overline{OE} = V_{IL}$		90	ns
CE access time	t _{CE}	$\overline{OE} = V_{IL}$		90	ns
OE access time	t _{OE}	$\overline{CE} = V_{IL}$		45	ns
Output diaphle time	t _{CHZ}	$\overline{OE} = V_{IL}$	0	30	ns
Output disable time	t _{OHZ}	$\overline{CE} = V_{IL}$	0	25	ns
Output hold time	t _{OH}	$\overline{CE} = \overline{OE} = V_{IL}$	0		ns


Measurement conditions

Input signal level------ 0 V/3 V Input timing reference level ------ 0.8 V/2.0 V Output load ------ 100 pF Output timing reference level----- 0.8 V/2.0 V



Timing Chart (Read Cycle)

16-Bit Read Mode ($\overline{\text{BYTE}} = V_{\text{IH}}$)

8-Bit Read Mode ($\overline{\text{BYTE}} = V_{\text{IL}}$)

ELECTRICAL CHARACTERISTICS (PROGRAMMING OPERATION)

DC Characteristics

 $(Ta = 25^{\circ}C \pm 5^{\circ}C)$

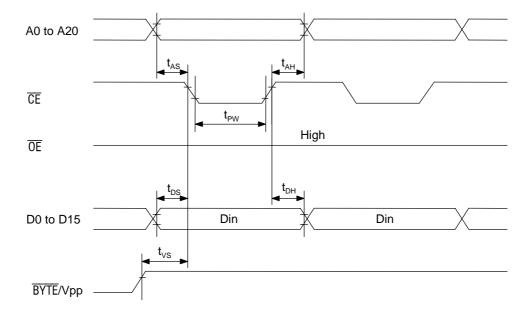
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Input leakage current	ILI	$V_{I} = V_{CC} + 0.5 \text{ V}$	_	_	10	μΑ
V _{PP} power supply current (Program)	I _{PP2}	$\overline{CE} = V_{IL}$	_	_	50	mA
V _{CC} power supply current	I _{cc}	_	_	_	50	mA
Input "H" level	V _{IH}	_	3.0	_	V _{cc} +0.5	V
Input "L" level	V _{IL}	_	-0.5	_	0.8	V
Output "H" level	V _{OH}	$I_{OH} = -400 \mu A$	2.4	_	_	V
Output "L" level	V _{OL}	I _{OL} = 2.1 mA	_	_	0.45	V
Program voltage	V_{PP}	_	9.5	9.75	10.0	V
V _{CC} power supply voltage	V _{cc}	_	3.9	4.0	4.1	V

Voltage is relative to V_{SS} .

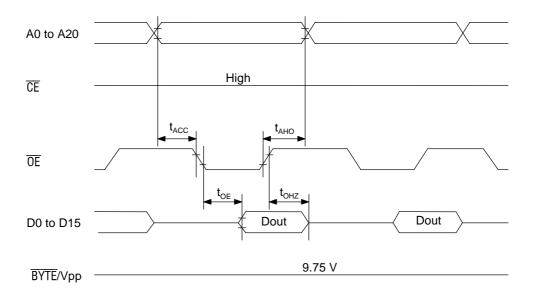
AC Characteristics

 $(V_{CC} = 4.0 \text{ V} \pm 0.1 \text{ V}, \overline{\text{BYTE}}/V_{PP} = 9.75 \text{ V} \pm 0.25 \text{ V}, \text{Ta} = 25^{\circ}\text{C} \pm 5^{\circ}\text{C})$

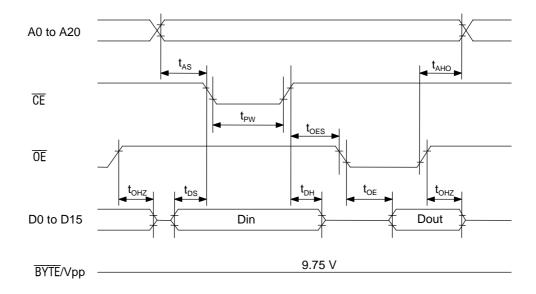
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Address set-up time	t _{AS}	_	100	_	_	ns
OE set-up time	t _{OES}	_	2	1	_	μs
Data set-up time	t _{DS}	_	100	ı	_	ns
Address hold time	t _{AH}	_	2	ı	_	μs
Data hold time	t _{DH}	_	100	1	_	ns
Output float delay time from $\overline{0E}$	t _{OHZ}	_	0	ı	100	ns
V _{pp} voltage set-up time	t _{VS}	_	2	_	_	μs
Program pulse width	t _{PW}	_	9	10	11	μs
Data valid from OE	t _{OE}	_	_	1	100	ns
Address hold from $\overline{0E}$ high	t _{AOH}	_	0	1	_	ns


Pin Check Function

Pin Check Function is to check contact between each device-pin and each socket-lead with EPROM programmer. Setting up address as following condition call the preprogrammed codes on device outputs.

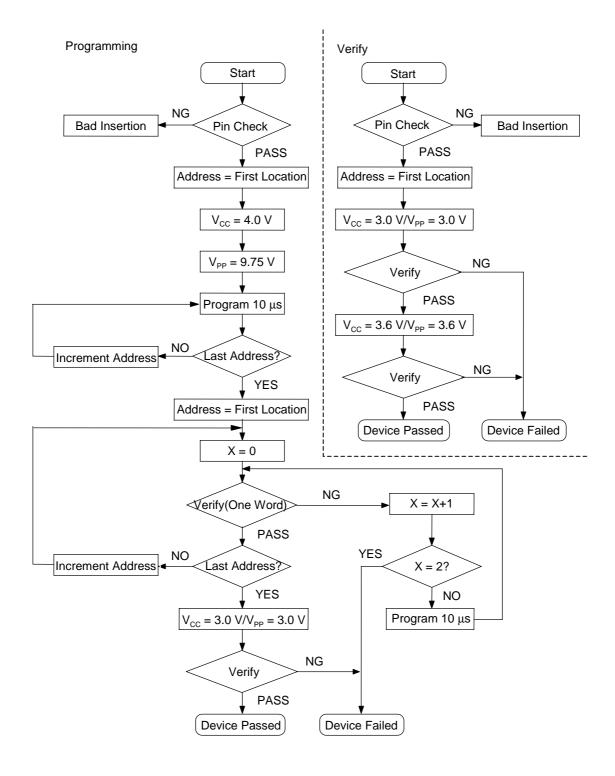

$(V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}, \overline{CE} = V_{IL}, \overline{OE} = V_{IL}, \overline{BYTE}/V_{PP} = V_{IH}, Ta = 25^{\circ}C \pm 0.00$										C ± 5°C)											
Α0	A1	A2	АЗ	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15	A16	A17	A18	A19	A20	DATA
0	1	0	1	0	1	0	1	0	VH*	0	1	0	1	0	1	0	0	1	1	0	FF00
1	0	1	0	1	0	1	0	1	VH*	1	0	1	0	1	0	1	1	0	0	1	00FF
	Other conditions									FFFF											

*: $VH = 8 V \pm 0.25 V$


Consecutive Programming Waveforms

Consecutive Program Verify Waveforms

Program and Program Verify Cycle Waveforms



Pin Capacitance

 $(V_{CC} = 3.3 \text{ V}, \text{ Ta} = 25^{\circ}\text{C}, \text{ f} = 1 \text{ MHz})$

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Input	C _{IN1}	V, = 0 V	_	_	8	
BYTE/V _{PP}	C _{IN2}	$V_1 = U V$	_	_	120	pF
Output	C _{OUT}	$V_O = 0 V$		_	10	

Programming/Verify Flow Chart

NOTICE

- 1. The information contained herein can change without notice owing to product and/or technical improvements. Before using the product, please make sure that the information being referred to is up-to-date.
- 2. The outline of action and examples for application circuits described herein have been chosen as an explanation for the standard action and performance of the product. When planning to use the product, please ensure that the external conditions are reflected in the actual circuit, assembly, and program designs.
- 3. When designing your product, please use our product below the specified maximum ratings and within the specified operating ranges including, but not limited to, operating voltage, power dissipation, and operating temperature.
- 4. Oki assumes no responsibility or liability whatsoever for any failure or unusual or unexpected operation resulting from misuse, neglect, improper installation, repair, alteration or accident, improper handling, or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified operating range.
- 5. Neither indemnity against nor license of a third party's industrial and intellectual property right, etc. is granted by us in connection with the use of the product and/or the information and drawings contained herein. No responsibility is assumed by us for any infringement of a third party's right which may result from the use thereof.
- 6. The products listed in this document are intended for use in general electronics equipment for commercial applications (e.g., office automation, communication equipment, measurement equipment, consumer electronics, etc.). These products are not authorized for use in any system or application that requires special or enhanced quality and reliability characteristics nor in any system or application where the failure of such system or application may result in the loss or damage of property, or death or injury to humans. Such applications include, but are not limited to, traffic and automotive equipment, safety devices, aerospace equipment, nuclear power control, medical equipment, and life-support systems.
- 7. Certain products in this document may need government approval before they can be exported to particular countries. The purchaser assumes the responsibility of determining the legality of export of these products and will take appropriate and necessary steps at their own expense for these.
- 8. No part of the contents contained herein may be reprinted or reproduced without our prior permission.

Copyright 2000 Oki Electric Industry Co., Ltd.