APPLICATION MANUAL

LDO Regulator IC TK705xxS/TK707xxS,TK706xxH/TK708xxH

CONTENTS	
1 . DESCRIPTION	2
2. FEATURES	2
3 . APPLICATIONS	2
4 . PIN CONFIGURATION	2
5 . PACKAGE OUTLINE	3
6 . BLOCK DIAGRAM	5
7 . ABSOLUTE MAXIMUM RATINGS	5
8 . ELECTRICAL CHARACTERISTICS	6
9 . TEST CIRCUIT	9
10. TYPICAL CHARACTERISTICS	10
11 . PIN DESCRIPTION	20
12 . APPLICATIONS INFORMATION	21
13 . NOTES	25
14. OFFICES	25

RITOKO

TK705xxS/TK707xxS,TK706xxH/TK708xxH

1. DESCRIPTION

TK705xxS/TK707xxS and TK706xxH/TK708xxH is a low dropout linear regulator with ON/OFF control, which can supply 100mA load current.

The IC is an integrated circuit with a silicon monolithic bipolar structure.

The output voltage, trimmed with high accuracy, is available from 1.5 to 5.0V in 0.1V steps.

The packages are the small and thin SON2017-6, and the extremely versatile SOT23-5. The IC is designed for portable applications with space requirements, battery powered system and any electronic equipment.

Two kinds of pin configuration can be selected for each package.

The over current, over heat sensor and reverse bias over current protection circuits are built-in.

ESD is also high, so it won't break easily. It is possible to use at ease.

2. FEATURES

- Output current: 100mA, Peak 200mA
- Active high on/off control
- Excellent Ripple rejection ratio: 80dB (f=1kHz)
- 70dB (f=10kHz)
- Output capacitance: Cout $\ge 0.47\mu$ F(Ceramic)
- Output voltage accuracy: $\pm 1.5\%$ or ± 50 mV
- Short circuit protection (Over current protection)
- Internal thermal shutdown (Over heat protection)
- Reverse bias protection

3. APPLICATIONS

- Any Electronic Equipment
- Battery Powered Systems
- Mobile Communication

4. PIN CONFIGURATION

· SON2017-6

ര

6. ORDERING INFORMATION

<u>Marking</u>

Part Number	Mark	Part Number	Mark	Part Number	Mark	Part Number	Mark
TK70513SC	۸13	TK70523SC	٨.23	TK70533SC	٨33	TK70543SC	۸/13
TK70613HC	AIS	TK70623HC	A23	TK70633HC	AJJ	TK70643HC	A45
TK70514SC	A 14	TK70524SC	A 24	TK70534SC	131	TK70544SC	A 4 4
TK70614HC	A14	TK70624HC	A24	TK70634HC	AJ4	TK70644HC	A44
TK70515SC	A 15	TK70525SC	A 25	TK70535SC	۸35	TK70545SC	A 45
TK70615HC	AIJ	TK70625HC	A23	TK70635HC	AJJ	TK70645HC	A43
TK70516SC	A16	TK70526SC	A26	TK70536SC	A36	TK70546SC	A46
TK70616HC	AIU	TK70626HC	A20	TK70636HC	AJU	TK70646HC	A40
TK70517SC	A 17	TK70527SC	Δ27	A 27 TK70537SC		TK70547SC	A 47
TK70617HC	AI7	TK70627HC	A27	TK70637HC	AST	TK70647HC	747
TK70518SC	A 18	TK70528SC	A 28	TK70538SC	A 38	TK70548SC	A48
TK70618HC	Alo	TK70628HC	A20	TK70638HC	A30	TK70648HC	
TK70519SC	A 10	TK70529SC	A 20	TK70539SC	۸30	TK70549SC	A 40
TK70619HC	Aly	TK70629HC	A23	TK70639HC	AJJ	TK70649HC	A49
TK70520SC	A 20	TK70530SC	A 30	TK70540SC	A40	TK70550SC	A 50
TK70620HC	A20	TK70630HC	AJU	TK70640HC	A40	TK70650HC	A30
TK70521SC	A 21	TK70531SC	٨31	TK70541SC	Δ.4.1		
TK70621HC	A21	TK70631HC	AJI	TK70641HC	A41		
TK70522SC	A 22	TK70532SC	A 32	TK70542SC	A 42		
TK70622HC	RZZ	TK70632HC	AJ2	TK70642HC	A42		

TK705xxS/TK706xxH : AXX

TK707xxS/TK708xxH : **Bxx**

Part Number	Mark	Part Number	Mark	Part Number	Mark	Part Number	Mark	
TK70713SC	B13	TK70723SC	B23	TK70733SC	B33	TK70743SC	B43	
TK70813HC	D 15	TK70823HC	D 25	TK70833HC	133	TK70843HC	D 73	
TK70714SC	B 14	TK70724SC	B24	TK70734SC	B 34	TK70744SC	B 44	
TK70814HC	D14	TK70824HC	D24	TK70834HC	D34	TK70844HC	D44	
TK70715SC	D15	TK70725SC	D25	TK70735SC	D25	TK70745SC	D 45	
TK70815HC	В15	TK70825HC	B23	TK70835HC	вээ	TK70845HC	B43	
TK70716SC	D16	TK70726SC	D26	TK70736SC	D26	TK70746SC	D46	
TK70816HC	Б10	TK70826HC	B 20	TK70836HC	D 30	TK70846HC	D 40	
TK70717SC	D17	TK70727SC	D 27	TK70737SC	D27	TK70747SC	D47	
TK70817HC	D1/	TK70827HC	DZI	TK70837HC	D3/	TK70847HC	D4/	
TK70718SC	B 18	TK70728SC	B38	TK70738SC	B 38	TK70748SC	B /8	
TK70818HC	D 10	TK70828HC	D20	TK70838HC	D 30	TK70848HC	D40	
TK70719SC	P 10	TK70729SC	P20	TK70739SC	P 20	TK70749SC	P 40	
TK70819HC	D17	TK70829HC	D29	TK70839HC	D 39	TK70849HC	D49	
TK70720SC	P20	TK70730SC	P 20	TK70740SC	P40	TK70750SC	P5 0	
TK70820HC	D 20	TK70830HC	D 30	TK70840HC	D40	TK70850HC	B 30	
TK70721SC	D21	TK70731SC	D21	TK70741SC	D /1			
TK70821HC	D21	TK70831HC	D 51	TK70841HC	D41			
TK70722SC	BJJ	TK70732SC	B33	TK70742SC	B42			
TK70822HC	$\mathbf{D} \angle \angle$	TK70832HC	D32	TK70842HC	D42			

7. BLOCK DIAGRAM

8. ABSOLUTE MAXIMUM RATINGS

				Ta=25°C
Parameter	Symbol	Rating	Units	Conditions
Absolute Maximum Ratings				
Supply Voltage	Vcc _{MAX}	-0.4 ~ 16	V	
Devence Dies	Vrou	-0.4 ~ 6	V	Vout ≤ 2.0 V
Reverse Blas	v rev _{MAX}	-0.4 ~ 12	V	$2.1V \le Vout$
Np pin Voltage	Vnp _{MAX}	-0.4 ~ 5	V	
Control pin Voltage	Vcont _{MAX}	-0.4 ~ 16	V	
Storage Temperature Range	T _{stg}	-55 ~ 150	°C	
Power Dissinction	D	460 *1	mW	SOT23-5
Power Dissipation	r _D	400 *2	mW	SON2017-6
Operating Condition				
Operating Temperature Range	T _{OP}	-40 ~ 85	°C	
Operating Voltage Range	V _{OP}	2.1 ~ 14	V	
Short Circuit Current	Ishort	200	mA	Over Current Protection

*1 : Internal Limited Tj=140°C. P_D must be decreased at rate of 4.0 mW/°C for operation above 25°C.

*2 : Internal Limited Tj=140°C. P_D must be decreased at rate of 3.5 mW/°C for operation above 25°C.

The maximum ratings are the absolute limitation values with the possibility of the IC breakage.

When the operation exceeds this standard, quality cannot be guaranteed.

9. ELECTRICAL CHARACTERISTICS

The parameters with min. or max. values will be guaranteed at Ta=Tj=25°C with test when manufacturing or SQC(Statistical Quality Control) methods. The operation between -40 ~ 85°C is guaranteed when design.

				V	vin=Vou	t _{TYP} +1V,Vcont=1.8V,Ta=Tj=25°C
Parameter	Symbol		Value		Units	Conditions
1 al anciel	Symbol	MIN	ТҮР	MAX	Omts	Conditions
Output Voltage	Vout	Ref	er to TAB	LE 1	V	Iout = 5mA
Line Regulation	LinReg		0.0	5.0	mV	$\Delta Vin = 5V$
Load Regulation	LoaReg	Ref	er to TAB	LE 1	mV	$Iout = 5mA \sim 50mA$
		Ref	er to TAB	LE 1	mV	Iout = 5 mA ~ 100 mA
Dropout Voltage *1	Vdrop		90	160	mV	Iout = 50mA
			160	280	mV	Iout = 100mA
Output Current *2	Iout			100	mA	
Peak Output Current *2	Iout _{PEAK}	150	200		mA	When (Vout _{TYP} $\times 0.9$)
Quiescent Current	Iq		75	120	μΑ	Iout = 0mA
Standby Current	Istandby		0.0	0.1	μA	Vcont = 0V
Ground Pin Current	Ignd		1.5	2.7	mA	Iout = 50mA
Control Terminal *3						
Control Current	Icont		5.0	15.0	μΑ	Vcont = 1.8V
Control Voltage	Vcont	1.8			V	Vout ON state
				0.35	V	Vout OFF state
Reference Value						
Np Terminal Voltage	Vnp		1.26		V	
Output Voltage / Temp	Vout/Ta		25		ppm	
Output voltage / Temp.	vout/1a		55		∕°C	
Output Noise Voltage	Vnoise		38		uVrme	Cout=1.0µF, Cnp=0.01µF
$(Vout_{TYP}=3.0V)$	viioise		50		μvmis	Iout=30mA
Ripple Rejection	DD		80		dD	Cout=1.0µF, Cnp=0.001µF
$(Vout_{TYP}=3.0V)$	K.K		80		ub	Iout=10mA, f=1kHz
			70		dB	f=10kHz
Rise Time						Cout=1.0µF, Cnp=0.001µF
$(V_{OUT}=3.0V)$	tr		35		μs	Vcont: Pulse Wave (100Hz)
(vouryp-5.0 v)						Vcont ON \rightarrow Vout×95% point

*1: For Vout ≤ 2.0 V , no regulations.

*2: The output current is limited by power dissipation.

*3: The input current decreases to pA level when control terminal is connected to GND (Off state).

General Note: Parameter with only typical value is for reference only.

TABLE 1. Output Voltage, Load Regulation

		Output Voltago			Load Regulation				
Dout N	ho	Ou	tput von	age	Iout =	50mA	Iout =	100mA	
rari n	umper	MIN	ТҮР	MAX	ТҮР	MAX	ТҮР	MAX	
		V	V	V	mV	mV	mV	mV	
$Vout_{TYP}=1.3V \sim 2.0V$									
TK70513/ 70713SC	TK70613/ 70813HC	1.250	1.300	1.350	5.0	10.0	10.0	22.0	
TK70514/ 70714SC	TK70614/ 70814HC	1.350	1.400	1.450	5.0	10.0	10.0	23.0	
TK70515/ 70715SC	TK70615/ 70815HC	1.450	1.500	1.550	5.0	11.0	10.0	24.0	
TK70516/ 70716SC	TK70616/ 70816HC	1.550	1.600	1.650	5.0	11.0	11.0	25.0	
TK70517/ 70717SC	TK70617/ 70817HC	1.650	1.700	1.750	5.0	11.0	11.0	25.0	
TK70518/ 70718SC	TK70618/ 70818HC	1.750	1.800	1.850	5.0	12.0	11.0	26.0	
TK70519/ 70719SC	TK70619/ 70819HC	1.850	1.900	1.950	5.0	12.0	11.0	27.0	
TK70520/ 70720SC	TK70620/ 70820HC	1.950	2.000	2.050	5.0	12.0	12.0	28.0	
$Vout_{TYP}=2.1V \sim 3.0V$									
TK70521/ 70721SC	TK70621/70821HC	2.050	2.100	2.150	5.0	12.0	12.0	28.0	
TK70522/ 70722SC	TK70622/ 70822HC	2.150	2.200	2.250	6.0	13.0	12.0	29.0	
TK70523/ 70723SC	TK70623/70823HC	2.250	2.300	2.350	6.0	13.0	13.0	30.0	
TK70524/ 70724SC	TK70624/ 70824HC	2.350	2.400	2.450	6.0	13.0	13.0	31.0	
TK70525/ 70725SC	TK70625/70825HC	2.450	2.500	2.550	6.0	14.0	13.0	31.0	
TK70526/ 70726SC	TK70626/ 70826HC	2.550	2.600	2.650	6.0	14.0	14.0	32.0	
TK70527/ 70727SC	TK70627/ 70827HC	2.650	2.700	2.750	6.0	14.0	14.0	33.0	
TK70528/ 70728SC	TK70628/ 70828HC	2.750	2.800	2.850	6.0	14.0	14.0	34.0	
TK70529/ 70729SC	TK70629/ 70829HC	2.850	2.900	2.950	6.0	15.0	15.0	34.0	
TK70530/ 70730SC	TK70630/ 70830HC	2.950	3.000	3.050	6.0	15.0	15.0	35.0	
$Vout_{TYP} = 3.1V \sim 4.0V$								•	
TK70531/ 70731SC	TK70631/70831HC	3.050	3.100	3.150	7.0	15.0	15.0	36.0	
TK70532/ 70732SC	TK70632/ 70832HC	3.150	3.200	3.250	7.0	15.0	16.0	37.0	
TK70533/ 70733SC	TK70633/ 70833HC	3.250	3.300	3.350	7.0	16.0	16.0	37.0	
TK70534/ 70734SC	TK70634/ 70834HC	3.349	3.400	3.451	7.0	16.0	16.0	38.0	
TK70535/ 70735SC	TK70635/70835HC	3.447	3.500	3.553	7.0	16.0	16.0	39.0	
TK70536/ 70736SC	TK70636/ 70836HC	3.546	3.600	3.654	7.0	17.0	17.0	40.0	
TK70537/ 70737SC	TK70637/ 70837HC	3.644	3.700	3.756	7.0	17.0	17.0	40.0	
TK70538/ 70738SC	TK70638/ 70838HC	3.743	3.800	3.857	7.0	17.0	17.0	41.0	
TK70539/ 70739SC	TK70639/ 70839HC	3.841	3.900	3.959	8.0	17.0	18.0	42.0	
TK70540/ 70740SC	TK70640/ 70840HC	3.940	4.000	4.060	8.0	18.0	18.0	43.0	

Port Number		0	44 \$714		Load Regulation				
		Ou	tput voit	age	Iout = 50mA		Iout = 100mA		
Part N	umber	MIN	ТҮР	MAX	ТҮР	MAX	ТҮР	MAX	
		V	V	V	mV	mV	mV	mV	
$Vout_{TYP} = 4.1V \sim 5.0V$									
TK70541/ 70741SC	TK70641/ 70841HC	4.038	4.100	4.162	8.0	18.0	18.0	43.0	
TK70542/ 70742SC	TK70642/ 70842HC	4.137	4.200	4.263	8.0	18.0	19.0	44.0	
TK70543/ 70743SC	TK70643/ 70843HC	4.235	4.300	4.365	8.0	18.0	19.0	45.0	
TK70544/ 70744SC	TK70644/ 70844HC	4.334	4.400	4.466	8.0	19.0	19.0	46.0	
TK70545/ 70745SC	TK70645/70845HC	4.432	4.500	4.568	8.0	19.0	20.0	46.0	
TK70546/ 70746SC	TK70646/ 70846HC	4.531	4.600	4.669	8.0	19.0	20.0	47.0	
TK70547/ 70747SC	TK70647/ 70847HC	4.629	4.700	4.771	8.0	20.0	20.0	48.0	
TK70548/ 70748SC	TK70648/ 70848HC	4.728	4.800	4.872	9.0	20.0	21.0	49.0	
TK70549/ 70749SC	TK70649/ 70849HC	4.826	4.900	4.974	9.0	20.0	21.0	49.0	
TK70550/ 70750SC	TK70650/ 70850HC	4.925	5.000	5.075	9.0	20.0	21.0	50.0	

TABLE 1. Output Voltage, Load Regulation (continue)

10. TEST CIRCUIT

10-1. TK705xxS/TK706xxH

*2pin and 5pin are connected in the IC.

10-2. TK707xxS/TK708xxH

TK707xxS (SOT23-5)

TK708xxH (SON2017-6)

*2pin and 5pin are connected in the IC.

11. TYPICAL CHARACTERISTICS

- 11-1-1. DC CHARACTERISTICS
- Line Regulation

■ Iin vs Vin Iout=0mA

Load Regulation

Test conditions

■ GND Pin Current

Control Current

Test conditions

■ Standby Current (Off state) Vcont=0V

■ Control Current, ON/OFF Point

■ Vout vs Vin Regulation Point $2.1V \le Vout_{TYP}$

■ Reverse Bias Current Vin=0V, Vcont=0V

Test conditions

■ Vout vs Vin Regulation Point Vout_{TYP}=2.0V

Test conditions

11-1-2. Temperature Characteristics

Test conditions

■ GND Pin Current

Test conditions

■ Line Regulation $\Delta Vin = 5V$

Control Current

Ta(℃)

■ ON/OFF Point

■ Load Regulation Vout_{TYP}=3.0V

11-2. AC CHARACTERISTICS (Vout_{TYP}=3.0V)

Ripple Rejection

■ Cout=0.22µF, 0.47µF, 1.0µF, 2.2µF

■ Cnp=0.001µF, 0.01µF, 0.1µF

■ Iout=10mA, 20mA, 50mA, 100mA

The ripple rejection (R.R) characteristic depends on the characteristic and the capacitance of the capacitor connected at the output side. Also it depends on the output voltage. The R.R characteristic at 50kHz or more varies greatly with the capacitor on the output side and PCB pattern. If necessary, please check stability during operation.

Test conditions

ON/OFF Transient

■ Cout=0.47µF, 1.0µF, 2.2µF

Vcont Off Off CL=1.0uF(C) Vout CL=0.47uF(C) CH1 2.00V CH2 1.00V M 100,05 RefA 1.00V 100,05 RefB 1.00V 100,05

■ Cnp=0.001µF, 0.01µF, 0.1µF

The rise time of the regulator depends on Cout and Cnp. The fall time depends on Cout.

LOAD Transient

Test conditions

■ Iout=100mA⇒0mA, 105mA⇒5mA

Increase the load side capacitor when the load change is fast or when there is a large current change. In addition, at no load, supplying small load current to ground can reduce the voltage change.

100mA,105mA

■ Iout=0 \Rightarrow 100mA, 5 \Rightarrow 105mA

■ Cout=0.47µF, 1.0µF, 2.2µF : Iout=0mA⇒100mA

LINE Transient

■ Cnp=0.001µF, 0.01µF, 0.1µF

■ Cout=0.1µF, 0.22µF, 0.47µF

Test conditions

RLTOKO

Iout=30mA

Cout

1.0µF

 $\frac{1}{1}$

Cnp 0.01µF

Output Noise Characteristics

■ Vout vs Noise

Test conditions

Increase Cnp to decrease the noise. The recommended Cnp capacitance is 0.01μ F ~ 0.1μ F. The amount of noise increases with the higher output voltages.

GC3-K028A

Rª TOKO

12. PIN DESCRIPTION

Pin No.	Pin Description	Internal Equivalent Circuit	Description
TK705xxS : 1 TK707xxS : 3 TK706xxH : 1 TK708xxH : 3	Vcont	Vcont $320k\Omega$ $500k\Omega$	On/Off Control Terminal $V_{CONT} > 1.8V : ON$ $V_{CONT} < 0.35V : OFF$ The pull-down resister (500k Ω) is built-in.
TK705xxS: 2 TK707xxS: 2 TK706xxH: 2,5 TK708xxH: 2,5	GND		GND Terminal
TK705xxS : 3 TK707xxS : 4 TK706xxH : 3 TK708xxH : 4	Np	Np	Noise Bypass Terminal Connect a bypass capacitor between GND.
TK705xxS : 4 TK707xxS : 5 TK706xxH : 4 TK708xxH : 6	Vout	Vin Vout Vin Vin Vout	Output Terminal
TK705xxS : 5 TK707xxS : 1 TK706xxH : 6 TK708xxH : 1	Vin		Input Terminal

13. APPLICATIONS INFORMATION

13-1. Definition of Technical Terms

Relating Characteristic

Note Each characteristics will be measured in a short period not to be influenced by joint temperature (Tj).

♦ Output voltage (Vout)

The output voltage is specified with Vin= Vout_{TYP}+1V and Iout=5mA

♦ Output current (Iout)

Output current, which can be used continuously (It is the range where overheating protection of the IC does not operate.)

♦ Peak maximum output current (Iout_{PEAK})

The rated output current is specified under the condition where the output voltage drops 90% by increasing the output current, compared to the value specified at $Vin=Vout_{TYP}+1V$.

Dropout voltage (Vdrop)

It is an I/O voltage difference when the circuit stops the stable operation by decreasing the input voltage.

It is measured when the output voltage drops 100mV from its nominal value by decreasing the input voltage gradually.

♦ Line Regulation (LinReg)

It is the fluctuations of the output voltage value when the input voltage is changed.

♦Load Regulation (LoaReg)

It is the fluctuations of the output voltage value when the input voltage is assumed to be $Vout_{TYP} + 1V$, and the load current is changed.

♦ Ripple Rejection (R.R)

Ripple rejection is the ability of the regulator to attenuate the ripple content of the input voltage at the output. It is measured with the condition of Vin=Vout+1.5V. Ripple rejection is the ratio of the ripple content between the output vs. input and is expressed in dB.

♦ Standby current (Istandby)

It is an input current, which flows to the control terminal, when the IC is turned off.

Relating Protection Circuit

♦ Over Current Protection

It is a function to protect the IC by limiting the output current when excessive current flows to IC, such as the output is connected to GND, etc.

Thermal Protection

It protects the IC not to exceed the permissible power consumption of the package in case of large power loss inside the regulator.

The output is turned off when the chip reaches around 140° C, but it turns on again when the temperature of the chip decreases.

♦ Reverse Voltage Protection

Reverse voltage protection prevents damage due to the output voltage being higher than the input voltage. This fault condition can occur when the output capacitor remains charged and the input is reduced to zero, or when an external voltage higher than the input voltage is applied to the output side

Generally, a LDO regulator has a diode in the input direction from an output. If an input falls from an output in an input-GND short circuit etc. and this diode turns on, current will flow for an input terminal from an output terminal. In the case of excessive current, IC may break.

In order to prevent this, it is necessary to connect an Schottky Diode etc. outside.

This product is equipped with reverse bias over-current prevention, and excessive current does not flow in to IC. Therefore, no need to connect diode outside.

♦ ESD

It is tested by connecting charged capacitor to GND pin and Vin pin.

MM 200pF 0Ω 200Vmin HBM 100pF 1.5kΩ 2000Vmin

RĽ TOKO

13-2. ESR Stability

Linear regulators require input and output capacitors in order to maintain the regulator's loop stability. If 0.22μ F or larger capacitor is connected to the output side, the IC provides stable operation at any voltage $(1.3V \le Vout_{TYP} \le 5.0V)$. (The capacitor must be larger then 0.22μ F at all temperature and voltage range) If the capacitor with high Equivalent Series Resistance (ESR) (several ohms) is used, such as tantalum capacitor etc., the regulator may oscillate. Please select parts with low ESR.

Due to the parts are uneven, please enlarge the capacitance as much as possible. With larger capacity, the output noise decreases more. In addition, the response to the load change, etc. can be improved. The IC won't be damaged by enlarging the capacity.

A recommended value of the application is as follows.

Cin=Cout≥0.47µF Ceramic Capacitance

Fig.13-2 Output Voltage, Output Current vs.Stable Operation Area

 $1.5V \le Vout_{TYP} \le 5.0V$

Fig.13-2 shows stable operation with a ceramic capacitor of 0.22μ F. Since it may oscillate if ESR is large, we recommend using ceramic capacitor.

The stability of the regulator improves with larger output capacitor (the stable operation area extends.) Please use the capacitor with larger capacitance as possible.

For evaluation

Kyocera:	CM05B104K10AB, CM05B224K10AB,
	CM105B104K16A, CM105B224K16A,
	CM21B225K10A
Murata:	GRM36B104K10, GRM42B104K10,
	GRM39B104K25, GRM39B224K10,
	GRM39B105K6.3

The input capacitor is necessary in case the battery voltage drops, the power supply impedance increases, or the distance to the power supply is far. 1 input capacitor might be necessary for each IC or for several ICs. It depends on circuit condition. Please confirm the stability by each circuit.

Generally, a ceramic capacitor has both temperature characteristic and voltage characteristic. Please consider both characteristics when selecting the part. The B curves are the recommend characteristics.

13-3. Operating Region and Power Dissipation

The power dissipation of the device depends on the junction temperature. Therefore, the package dissipation is assumed to be an internal limitation. The package itself does not have enough heat radiation characteristic due to the small size. Heat runs away by mounting IC on PCB. This value changes by the material, copper pattern etc. of PCB.

The overheating protection operates when there is a lot of loss inside the regulator (Ambient temperature high, heat radiation bad, etc.). The output current and the output voltage will drop when the protection circuit operates. When joint temperature (Tj) reaches the set temperature, IC stops the operation. However, operation begins at once when joint temperature (Tj) decreases.

The thermal resistance when mounted on PCB

The chip joint temperature during operation is shown by $Tj=\theta ja \times Pd+Ta$. Joint part temperature (Tj) of TK705xxS/TK707xxS/TK706xxH/TK708xxH is limited around 140°C with the overheating protection circuit. Pd is the value when the overheating protection circuit starts operation.

When you assume the ambient temperature to be 25°C,

140= θ ja × Pd(W)+25 θ ja × Pd=115 θ ja=115/Pd (°C /W)

Example of mounting substrate

PCB Material: Two layer glass epoxy substrate (x=30mm,y=30mm,t=1.0mm,Copper pattern thickness 35um)

TK705xxS/TK707xxS (SOT23-5)

Please do the derating with 5.9mW/°C at Pd=677mW and 25°C or higher. Thermal resistance (θ ja) is 170°C/W. **TK706xxH/TK708xxH (SON2017-6)**

Please do the derating with $4.9 \text{mW/}^{\circ}\text{C}$ at Pd=560mW and 25°C or higher. Thermal resistance (θ ja) is 205°C/W.

Method of obtaining Pd easily

Connect output terminal to GND(short circuited), and measure the input current by increasing the input voltage gradually up to 10V. The input current will reach the maximum output current, but will decrease soon according to the chip temperature rising, and will finally enter the state of thermal equilibrium (natural air cooling).

The input current and the input voltage of this state will be used to calculate the Pd.

$$Pd(mW) \cong Vin(V) \times Iin(mA)$$

When the device is mounted, mostly achieve TK705xxS/TK707xxS (SOT23-5): **580mW** or more TK706xxH/TK708xxH (SON2017-6): **500mW** or more

*In case that the power, Vin × Ishort(Short Circuit Current), becomes more than the maximum rating of its power dissipation, the IC may damaged before internal thermal protection works.

1.Find Pd (Vin×Iin when the output is short-circuited).

2. Plot Pd against 25°C.

3. Connect Pd to the point corresponding to the 140°C with a straight line.

4. Pull a vertical line from the maximum operating temperature in your design (e.g., 75° C).

5. Read the value of Pd against the point at which the vertical line intersects the derating curve(DPd).

6.DPd÷(Vinmax-Vout)=Iout (at 75°C)

The maximum output current at the highest operating temperature will be **Iout** \cong **DPd** \div (**Vinmax-Vout**).

Please use the device at low temperature with better radiation. The lower temperature provides better quality.

13-4. ON/OFF Control

It is recommended to turn the regulator off when the circuit following the regulator is not operating. A design with small electric power loss can be implemented.

Because the control current is small, it is possible to control it directly by CMOS logic.

Control Terminal Voltage (Vcont)	ON/OFF State
Vcont > 1.8V	ON
Vcont < 0.35V	OFF

Parallel Connected ON/OFF Control

Fig.13-4 shows the multiple regulators being controlled by a single ON/OFF control signal. There is fear of overheating, because the power loss of the low voltage side (TK70520S) is large. The series resistor (R) is put in the input line of the low output voltage regulator in order to prevent over-dissipation. The voltage dropped across the resistor reduces the large input-to-output voltage across the regulator, reducing the power dissipation in the device. When the thermal sensor works, a decrease of the output voltage, oscillation, etc. may be observed.

13-5. Noise Bypass

The noise characteristics depend on the capacitance on the Np terminal.

A standard value is $Cnp=0.001\mu F$. Increase Cnp in a design with important output noise requirements. The IC will not be damaged even the capacitor value is increased.

The on/off switching speed changes depending on the Np terminal capacitance. The switching speed slows when the capacitance is large.

13-6. The notes of the evaluation when output terminal is short-circuit to GND

By the resonance phenomenon by Cout (C ingredient) and the short circuit line (L ingredient), which are attached to an output terminal, an output terminal changes with minus potential. In order that Parasitism Tr arises within Bip IC, and a latch rise phenomenon may occur within IC when the worst if it goes into an output terminal's minus side, it results in damage by fire (white smoke) and breakage of a package. ($f_0 = 1 / 2\pi \sqrt{(L C)}$)

The above-mentioned resonance phenomenon appears notably in a ceramic capacitor with the small ESR value, etc. A resonance phenomenon can be reduced by connecting resistance (around 20hms or more) in series with a short circuit line. Thereby, the latch rise phenomenon within IC can be prevented.

Generally, when using tantalum or large electrolysis capacitor, the influence of resonance phenomenon can be reduced due to the large ESR (20hms or more).

Rª TOKO

14. NOTES

■ Please be sure that you carefully discuss your planned purchase with our office if you intend to use the products in this application manual under conditions where particularly extreme standards of reliability are required, or if you intend to use products for applications other than those listed in this application manual.

• Power drive products for automobile, ship or aircraft transport systems; steering and navigation systems, emergency signal communications systems, and any system other than those mentioned above which include electronic sensors, measuring, or display devices, and which could cause major damage to life, limb or property if misused or failure to function.

• Medical devices for measuring blood pressure, pulse, etc., treatment units such as coronary pacemakers and heat treatment units, and devices such as artificial organs and artificial limb systems which augment physiological functions.

• Electrical instruments, equipment or systems used in disaster or crime prevention.

■ Semiconductors, by nature, may fail or malfunction in spite of our devotion to improve product quality and reliability. We urge you to take every possible precaution against physical injuries, fire or other damages which may cause failure of our semiconductor products by taking appropriate measures, including a reasonable safety margin, malfunction preventive practices and fire-proofing when designing your products.

■ This application manual is effective from Aug. 2005. Note that the contents are subject to change or discontinuation without notice. When placing orders, please confirm specifications and delivery condition in writing.

■ TOKO is not responsible for any problems nor for any infringement of third party patents or any other intellectual property rights that may arise from the use or method of use of the products listed in this application manual. Moreover, this application manual does not signify that TOKO agrees implicitly or explicitly to license any patent rights or other intellectual property rights which it holds.

■ None of the ozone depleting substances(ODS) under the Montreal Protocol are used in our manufacturing process.

15. OFFICES

If you need more information on this product and other TOKO products, please contact us.

■ TOKO Inc. Headquarters 1-17, Higashi-yukigaya 2-chome, Ohta-ku, Tokyo, 145-8585, Japan TEL: +81.3.3727.1161 FAX: +81.3.3727.1176 or +81.3.3727.1169 Web site: http://www.toko.co.jp/

■ TOKO America Web site: http://www.toko.com/

■ TOKO Europe Web site: http://www.tokoeurope.com/

■ TOKO Hong Kong Web site: http://www.toko.com.hk/

■ TOKO Taiwan Web site: http://www.tokohc.com.tw/

■ TOKO Singapore Web site: http://www.toko.com.sg/

■ TOKO Seoul Web site: http://www.toko.co.kr/

■ TOKO Manila Web site: http://www.toko.com.ph/

■ TOKO Brazil Web site: http://www.toko.com.br/

RHOKO

Semiconductor Division

YOUR DISTRIBUTOR