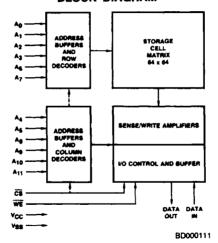
DISTINCTIVE CHARACTERISTICS

- · Fully static storage and interface circuitry
- Automatic power-down when deselected
- Low power dissipation
- Am21L41; 220 mW active, 27.5 mW power down
- High output drive
- TTL compatible interface levels
- No power-on current surge

GENERAL DESCRIPTION

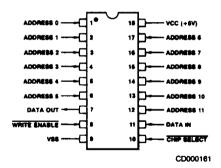

The Am21L41 is a high-performance, 4096-bit, static, read/write, random-access memory. It is organized as 4096 words by one bit per word. All interface signal levels are identical to TTL specifications, providing good noise immunity and simplified system design. All inputs are purely capacitive MOS loads. The outputs will drive up to seven standard Schottky TTL loads or up to six standard TTL

Only a single +5-volt power supply is required. When deselected $(\overline{CS} > V_{IH})$, the Am21L41 automatically enters

a power-down mode which reduces power dissipation by as much as 85%. When selected, the chip powers up again with no access time penalty.

Data In and Data Out use separate pins on the standard 18pin package. Data Out is the same polarity as Data In. Data Out is a three-state signal allowing wired-OR operation of several chips. Data In and Data Out may be connected together for operation in a common data bus environment.

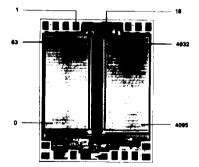
BLOCK DIAGRAM



PRODUCT SELECTOR GUIDE

Part Number	Am21L41-12	Am21L41-15	Am21L41-20	Am21L41-25
Maximum Access Time (ns)	120	150	200	250
Maximum Active Current (mA)	55	40	40	40
Maximum Standby Current (mA)	10	5	5	5

4

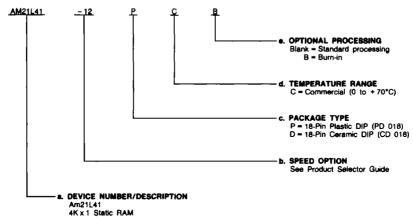

CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation.

METALLIZATION AND PAD LAYOUT

Address Designators						
External	Internal					
Ao	A ₂					
A ₁	A ₅					
A ₂	A4					
A ₃	A ₃					
A4	A ₈					
A ₅	A ₇					
A ₆	A ₁					
A ₇	A ₀					
Ag	A ₁₁					
Ag	Ag					
A ₁₀	A ₁₀					
A ₁₁	A ₆					

Die Size: 0.130" x 0.106"


4-12 Am27L41

ORDERING INFORMATION

Standard Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of: a. Device Number

- b. Speed Option (if applicable)
- c. Package Type
- d. Temperature Range
- e. Optional Processing

Valid Combinations AM21L41-12 PC, PCB, DC, DCB AM21L41-15 AM21L41-20 AM21L41-25

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, to check on newly released combinations, and to obtain additional data on AMD's standard military grade products.

PIN DESCRIPTION

An-An Address (Inputs)

The address input lines select memory location from which to read or write.

CS Chip Select (Input, Active LOW)

The Chip Select line selects the memory device for active operation.

WE Write Enable (Input, Active LOW)
When both CS and WE are LOW, data on the input lines is written to the location presented on the address input lines.

DIN Data In (Input)

This pin is used to enter data during write operations.

DOUT Data Out (Output, Three-State)

The content of the selected memory location is presented on the Data Output line during read operations (CS LOW, WE HIGH). The line goes three-state during write operations.

V_{CC} Power Supply

V_{SS} Ground

ABSOLUTE MAXIMUM RATINGS (Note 1)

Storage Temperature	65 to +150°C
Ambient Temperature with	
Power Applied	0 to +70°C
Supply Voltage	0.5 V to +7.0 V
All Signal Voltage with	
Respect to Ground	1.5 V to +7.0 V
Power Dissipation	1.2 W
DC Output Current	

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or shove these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

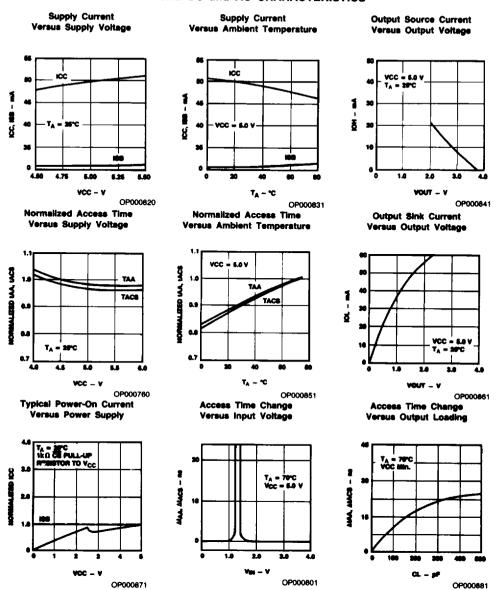
OPERATING RANGES (Note 2)

Commercial (C) Devices				
Temperature (T _A)) to	+ 70	°C
Supply Voltage (VCC)+	4.5 V	to	+5.5	٧

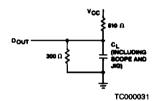
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating ranges unless otherwise specified

Parameter Symbol					Am21L41-12		Am21L41-15, Am21L41-20, Am21L41-25	
	Parameter Description	Test Cond	Min.	Max.	Min.	Max.	Units	
Юн	Output HIGH Current	V _{OH} = 2.4 V	V _{CC} = 4.5 V	-4		-4		mA
lOL	Output LOW Current	V _{OL} = 0.4 V	T _A = 70°C	8		8		mA
V _{IH}	Input HIGH Voltage		•	2.0	6.0	2.0	6.0	٧
VIL	Input LOW Voltage						8.0	٧
lix	Input Load Current	V _{SS} < V _I < V _{CC}		10		10	μΑ	
loz	Output Leakage Current	V _{SS} ≤ V _O ≤ V _{CC} Output Disabled	T _A = 70°C	-10	10	-10	10	μΑ
los	Output Short-Circuit Current	V _{SS} ≤ V _O ≤ V _{CC} (Note 3)	0 to +70°C	-120	120	-120	120	mA
icc	V _{CC} Operating Supply Current	Max. V _{CC} , ČŠ < V _{IL}	TA = 0°C		55		40	mA
ISB	Automatic CS Power Down Current	Max. V _{CC} , (CS > V _{IH}) (Note 5)			10		5.0	mA
Ci	Input Capacitance (Note 13)	Test Frequency = 1.0 MHz			5.0		5.0	ρF
co	Output Capacitance (Note 13)	T _A = 25°C, All pins at (6.0		6.0	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	


1. Absolute Maximum Ratings are intended for user guidelines and are not tested.

- 2. For test and correlation purpose, operating temperature is defined as the "instant-ON" case temperature.
- 3. Short-circuit test duration should not exceed 30 seconds. Actual testing is performed for only 5 ms.
- 4. Test conditions assume signal transition times of 10 ns or less, timing reference levels of 1.5 V, input pulse levels of 0 to 3.5 V and output loading of the specified IOL/IOH and CL = 30 pF load capacitance (reference A. under Switching Test Circuit.).
- 5. The internal write time of the memory is defined by the overlap of CS LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should
- be referenced to the rising edge of the signal that terminates the write.

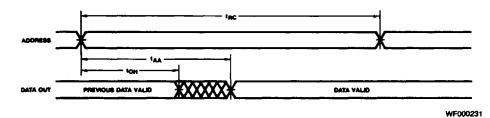

 6. A pull-up resistor to V_{CC} on the CS input is required to keep the device deselected during V_{CC} power up, otherwise ISB will exceed values given.
- 7. Chip deselected greater than 55 ns prior to selection.
- 8. Chip deselected less than 55 ns prior to selection.
- 9. Transtion is measured at V_{OH} -500 mV and V_{OL} +500 mV levels on the output from 1.5 V level on the input with load shown in Figure A using C_L = 5 pF (under switching test circuit).
- 10. WE is HIGH for read cycle.
- Device is continuously selected, CS = V_{IL}.
 Address valid prior to or coincident with CS transition LOW.
- 13. These parameters are not 100% tested, but are evaluated at initial characterization and at anytime the design is modified where capacitance may be affected.

4

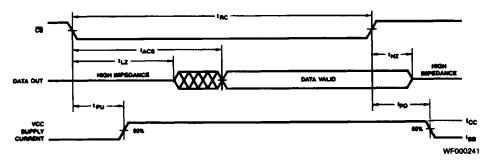
TYPICAL DC and AC CHARACTERISTICS

SWITCHING TEST CIRCUIT

A. Output Load

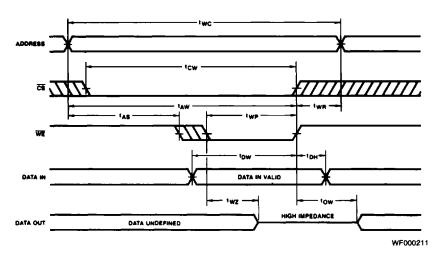

SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified (See Notes 4-12)

	Parameter	Parameter		Am21L41-12		Am21L41-15		Am21L41-20		Am21L41-25		
No.			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units	
Reed	Cycle											•
1	^t RC	Address Valid to Address Do Not Care Time (Read Cycle Time)		120		150		200		250		ns
2	taa	Address Valid to Data Out Valid Delay (Address Access Time)			120		150		200		250	ns
3	tASC1	Chip Select LOW to Data	(Note 7)		120		150		200		250	ns
4	tASC2	Out Valid	(Note 8)		130		160		200		250	ns
5	t _{LZ}	Chip Select LOW to Data Out On (Note 9, 13)		10		10		10		10		ns
6	Чнz	Chip Select HIGH to Data Out (Note 9, 13)	Chip Select HIGH to Data Out Off (Note 9, 13)		60	0	60	0	60	0	60	ns
7	ÐH	Output hold after address char	nge	10		10		10		10		ns
8	t _P O	Chip Select HIGH to Power LOW Delay (Note 13)			60		60		60		60	ns
9	t _{PU}	Chip Select LOW to Power HIGH Delay (Note 13)		0		0		0		0		ns
Write	Cycle											
10	twc	Address Valid to Address Do Nime (Write Cycle Time)	Not Care	120		150		200		250		ns
11	twp	Write Enable LOW to Write Enable HIGH Time (Note 5)		60		60		60		75		ns
12	twn	Write Enable HIGH to Address Do Not Care Time		10		15		20		20		ns
13	twz	Write Enable LOW to Data Out Off Delay (Notes 9, 13)		0	70	0	80	0	80	0	80	ns
14	^t DW	Data in Valid to Write Enable HIGH Time		50		60		60		75		ns
15	ФН	Write Enable HIGH to Data In Care Time	Do Not	10		10		10		10		ns
16	t _{AS}	Address Valid to Write Enable Time	LOW	0		0		0		0		ns
17	tcw	Chip Select LOW to Write Ena Time (Note 5)	ble HIGH	110		135		180		230		ns
18	tow	Write Enable HIGH to Output 1 (Notes 9, 13)	Turn On	0		0		0		0		ns
19	taw	Address Valid to End of Write		110		135		180		230		ns

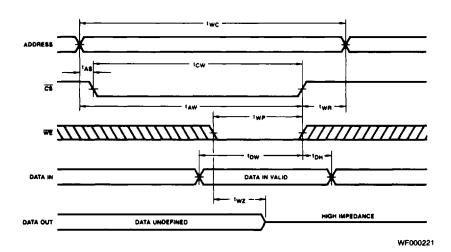

Notes: See notes following DC Characteristics table.

4-16 Am27C128

SWITCHING WAVEFORMS (Cont'd.)



Read Cycle No. 1 (Notes 10 & 11)



Read Cycle No. 2 (Notes 10 & 12)

SWITCHING WAVEFORMS

Write Cycle No. 1 (WE Controlled)

