ENGINEERING DATA SHEET

LEACH CORP. CALIR BALANCED - FORCE RELAY COLI 28 VDC	All welded construction Contact arrangement Qualified at 10 Amps to	
COL CARPCI, CARPC, 28 VDC CONTACTS: 4 POT, 12 CAMP, 28 VDC OF HIS/200 VAC, 400 Hz DP1-9X2 92 93 BP-49	Contacts rated at Weight Dimensions Special models available	AL CHARACTERISTICS 28 Vdc; 115 Vac, 400 Hz, 1Ø and 115/200 Vac, 400 Hz 3Ø 0.156lb max 1.01in x 1.01in x 1.00in upon request. osion resistant metal can.

CONTACT ELECTRICAL CHARACTERISTICS

Contact rating		Load current in Amps						
per pole and load type [1]	@28 Vdc	@115 Vac 400 Hz	@115/200 Vac, 400 Hz, 3Ø	@115/200 Vac, 60 Hz, 3Ø [2]				
Resistive	12	12	12	2.5				
Inductive [3]	8	8	8	2.5				
Motor	4	4	4	2				
Lamp	2	2	2	1				
Overload	40	60	60	N/A				
Rupture	50	80	80	N/A				

Esterline Power Systems	AMERICAS	EUROPE	ASIA
	6900 Orangethorpe Ave.	2 Rue Goethe	Units 602-603 6/F Lakeside 1
	P.O. Box 5032	57430 Sarralbe	No.8 Science Park West Avenue
Featuring LEACH[©] power and control solutions www.esterline.com	Buena Park, CA 90622	France	Phase Two, Hong Kong Science Park Pak Shek Kok, Tai Po, N.T. Hong Kong
	Tel: (01) 714-736-7599	Tel: (33) 3 87 97 31 01	Tel: (852) 2 191 3830
	Fax: (01) 714-670-1145	Fax: (33) 3 87 97 96 86	Fax: (852) 2 389 5803

Data sheets are for initial product selection and comparison. Contact Esterline Power Systems prior to choosing a component.

COIL CHARACTERISTICS (Vdc)

CODE	Α	В	С	М		N [4]	R [4]	V [4]
Nominal operating voltage	28	12	6	48		28	12	6
Maximum operating voltage	29	14.5	7.3	50		29	14.5	7.3
Maximum pickup voltage	,	,	1	1			,	,
- Cold coil at +125° C	18	9	4.5	36		18	9	4.5
- During high temp test at +125° C	19.8	9.9	5	38		19.8	9.9	5
- During continuous current test at +125° C	22.5	11.25	5.7	42		22.5	11.25	5.7
Maximum drop-out voltage	7	4.5	2.5	14		7	4.5	2.5
Coil resistance $\Omega \pm 10\% + 25^{\circ}$ C, except types "C" and "V" +20%, -10%	290	70	18	890)	290	70	18
GENERAL CHARACTERISTICS	,	,	1	,	,		*	,
Temperature range				-	70°C	to +125	5°C	
Minimum operating cycles (life) at rated load				·	100,00	00		
Minimum operating cycles (life) at 25% rated loa	ad			4	400,00	00		
Dielectric strength at sea level - All circuits to gr	ound and	circuit to	circuit	·	1250 \	/rms		
Dielectric strength at sea level - Coil to ground				·	1000 Vrms			
Dielectric strength at altitude 80,000 ft				<u></u> !	500 Vrms [5]			
Insulation resistance - Initial (500 Vdc)					100 M Ω min			
Insulation resistance - After environmental tests (500 Vdc)					50 M Ω min			
Sinusoidal vibration (A and D mounting)				1	0.12DA / 10 to 70 Hz 30G / 70 to 3000 Hz			
Sinusoidal vibration (G and J mounting)					0.12DA / 10 to 57 Hz 20G /57 to 3000 Hz			
Random vibration								
- Applicable specification				1	MIL-STD-202			
- Method				2	214			
- Test condition - A and D mounting					1G (0.4G ² /Hz, 50 to 2000 Hz)			
- Test condition - G and J mounting					1E (0.2G ² /Hz, 50 to 2000 Hz)			
- Duration				·	15 minutes each plane			
Shock (A, D and W mounting)					200G /	/ 6 ms		
Shock (G and J mounting)				·	100G /	/ 6 ms		
Maximum contact opening time under vibration and shock					10 µs			
Operate time at nominal voltage@25°C					15 ms max			
Release time at nominal voltage@25°C					15 ms max			
Contact make bounce at nominal voltage@25°C					1 ms max			
Contact release break bounce at nominal voltage@25°C				(0.1 ms max [6]			
Weight maximum								

Unless otherwise noted, the specified temperature range applies to all relay characteristics.

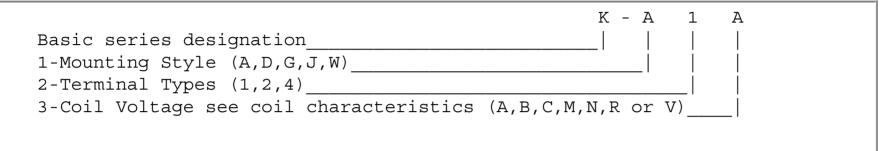
[1] Standard Intermediate current test applicable.

[2] 60 Hz load life, 10,000 cycles.

[3] Inductive load life, 20,000 cycles.

[4] "N, R & V" coils have back EMF suppression to - 42 volts maximum.

[5] 500 Vrms with silicone gasket compressed, 350 Vrms all other conditions.

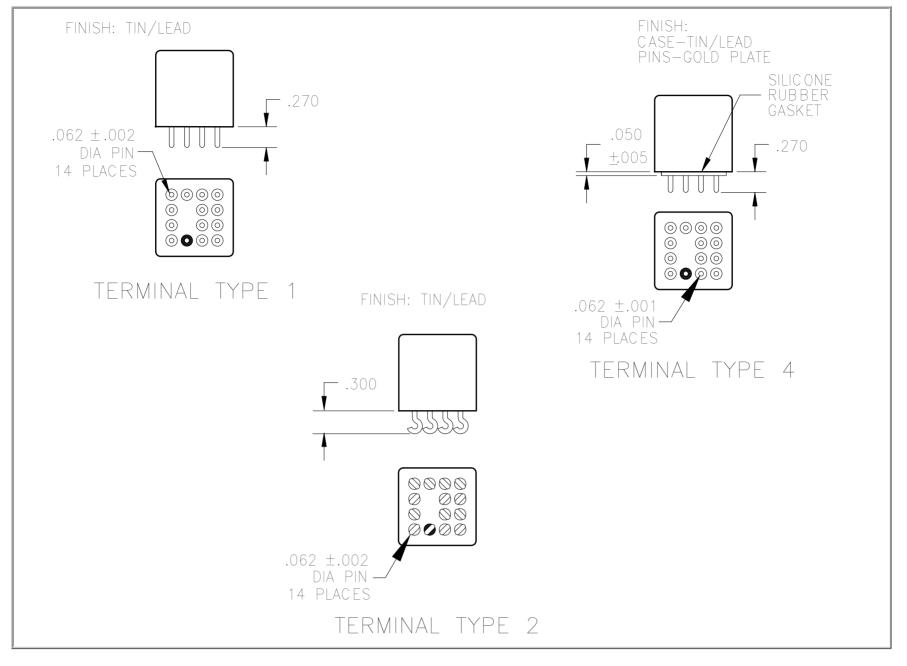

[6] Applicable to Type "N, R & V" coils only.

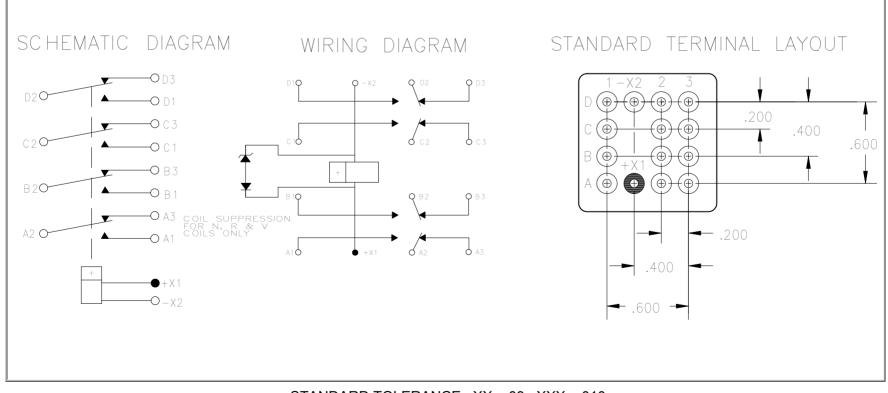
7. Applicable military specification: MIL-PRF-83536. 8. Special models available: dry circuit, established reliability testing, etc.


9. Time current relay characteristics per MIL-PRF-83536.

10. Relay will not operate, but will not be damaged by application of reverse polarity to coil.

NUMBERING SYSTEM




MOUNTING STYLES

TERMINAL TYPES

SERIES K

Application notes

DERATING OF CONTACTS FOR DC VOLTAGES ABOVE NOMINAL RATING

To establish a standard for the derating of relay contacts is, at best, a subjective practice. Limitations are governed by the type of relay, contact gap, maximum voltage capabilities of the relay contact system, and the contact material.

The most common method is to derate the contacts by use of the Power Formula, using the known current and voltage.

This method is valid only for **Resistive Loads**, and is an approximation only; keeping in mind the limitations mentioned above.

Power = IE (Current x Voltage)

$$I_2 E_2 = 2/3 I_1 E_1$$

Example:

A designer is working with a 55 volt DC system and has a relay rated at 10 amps resistive at 28 volts DC. What is the maximum current that can be switched at 55 Vdc.

$$I_1 = 10$$
 Amperes
 $E_1 = 28$ VDC
 $E_2 = 55$ VDC
 $I_2 = ?$ (Current ratings at 55 VDC Resistive)

$$I_2 E_2 = 2 I_1 E_1/3$$

 $I_2 = 2 I_1 E_1/E_2 3$
 $= 2 (10 \times 28)/55 \times 3$
 $= 560/165$

 $I_2 = 3.4$ Amperes at 55VDC

In addition, the user should always be concerned about the following:

1. Derating contacts that are rated for less than 10 Amperes at nominal voltage.

2. Derating contacts for use in system voltages above 130 Volts DC

Application notes

RELAYS AND TEMPERATURE VARIATIONS

Most relay parameters are specified as maximum values over the rated temperature range of the specific relay. Users often find that key parameters differ significantly at ambient temperature (20-25°C) and sometimes fall into the trap of specifying their system around these ambient parameters. Additionally the actual temperature experienced by the relay can be far in excess of existing ambient temperatures due to the heat generated by the coil current and the contact load. Figure 1 is the summary of temperature effects on relay electrical characteristics.

Temperature	Resistance	Current	Operating Voltage	Release Voltage	Operate Time	Release Time
Increase	UP	DOWN	UP	UP	UP	UP
Decrease	DOWN	UP	DOWN	DOWN	DOWN	DOWN

Fig. 1

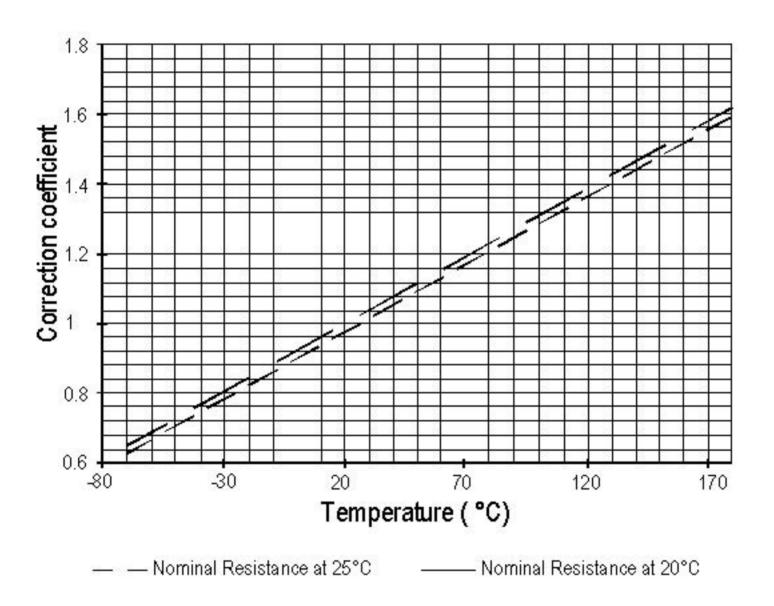
The following formulas are sometimes useful in calculating the effects shown above.

1. Change in coil resistance due to change of ambient temperature can be calculated by the following formula.

$$R = R_{20} [1 + .0039 (T-20)]$$

Where: R = Coil resistance at given temperature $R_{20} = Coil$ resistance at 20°C T = °C Ambient temperature

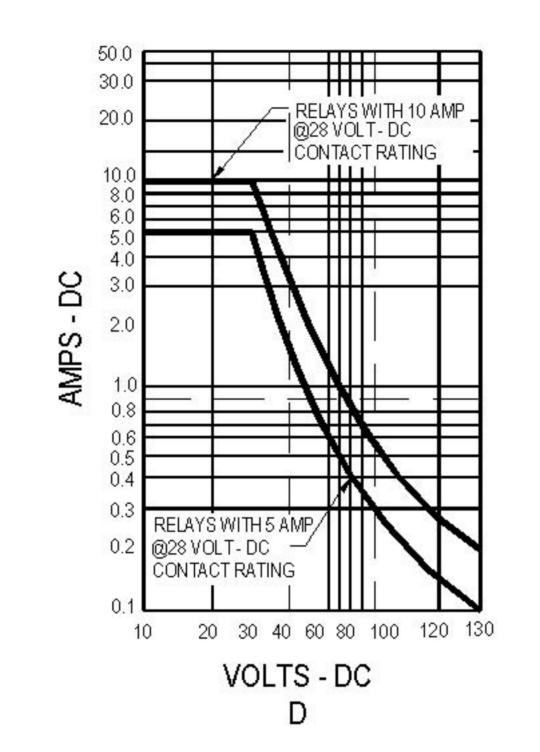
"Rule of Thumb" : For each 10°C change of temperature, coil resistance will change approximately 4%.


2. High and low temperature pick up voltage:

 $E_2 = E_1 K_{2,}$

Where: E_2 = Pick Up Voltage at T₂ temperature E_1 = Pick Up Voltage at 20°C K_2 = Coefficient of correction found on the graph in Fig. 2 at T₂ 3. Calculation of coil temperature rise when R initial and R final are known:

Delta T = $(234.5 + T_1) (R_2/R_1 - 1)$ Delta T = Temperature rise (°C) T₁ = Initial temperature (°C) R₁ = Initial resistance (Ohms) R₂ = Final resistance (Ohms) R₂ = K₂R₁


Temperature can also be found by making the R_2/R_1 ratio = the coefficient of correction graph in Fig. 2, and then finding the corresponding temperature.

TEMPERATURE CORRECTION CHART FOR RESISTANCE

Fig. 2

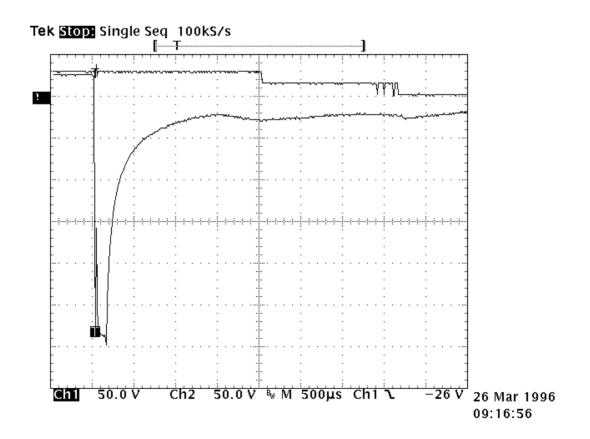
EXAMPLE: Catalog indicates coil resistance of 290 ohm at 25°C. What is the value at 125°C? From the chart: 290 x 1.39 = 403.31 Ohms.

CURVES FOR DC VOLTAGES ABOVE NORMAL RATING: <u>RESISTIVE LOAD ONLY</u> (without arc suppression)

SUPPRESSOR DEVICES FOR RELAY COILS

The inductive nature of relay coils allows them to create magnetic forces which are converted to mechanical movements to operate contact systems. When voltage is applied to a coil, the resulting current generates a magnetic flux, creating mechanical work. Upon deenergizing the coil, the collapasing magnetic field induces a reverse voltage (also known as back EMF) which tends to maintain current flow in the coil. The induced voltage level mainly depends on the duration of the deenergization. The faster the switch-off, the higher the induced voltage.

All coil suppression networks are based on a reduction of speed of current decay. This reduction may also slow down the opening of contacts, adversly effecting contact life and reliability. Therefore, it is very important to have a clear understanding of these phenomena when designing a coil suppression circuitry.


Typical coil characteristics

On the graph below, the upper record shows the contacts state. (High level NO contacts closed, low level NC contacts closed, intermediate state contact transfer). The lower record shows the voltage across the coil when the current is switched off by another relay contact.

The surge voltage is limited to -300V by the arc generated across contact poles. Discharge duration is about 200 mircoseconds after which the current change does not generate sufficient voltage. The voltage decreases to the point where the contacts start to move, at this time, the voltage increases due to the energy contained in the NO contact springs. The voltage decreases again during transfer, and increases once more when the magnetic circuit is closed on permanent magnet.

Operating times are as follows: Time to start the movement 1.5ms Total motion time 2.3ms Transfer time 1.4ms

Contact State

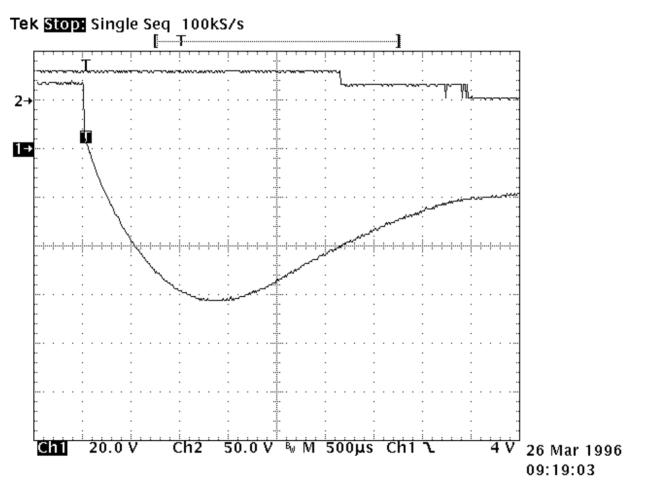
Types of suppressors:

Passive devices.

The resistor capacitor circuit

It eliminates the power dissipation problem, as well as fast voltage rises. With a proper match between coil and resistor, approximate capacitance value can be calculated from:

C = 0.02 x T/R, where


- T = operating time in milliseconds
- R = coil resistance in kiloOhms
- C = capacitance in microFarads

The series resistor must be between 0.5 and 1 times the coil resistance. Special consideration must be taken for the capacitor inrush current in the case of a low resistance coil.

The record shown opposite is performed on the same relay as above. The operation time becomes:

- time to start the movement 2.3ms
- transfer time 1.2ms

The major difficulty comes from the capacitor volume. In our example of a relay with a 290 Ω coil and time delay of 8 ms, a capacitance value of C=0.5 uF is found. This non polarized capacitor, with a voltage of 63V minimum, has a volume of about 1cm³. For 150V, this volume becomes 1.5 cm³.

The bifilar coil

The principle is to wind on the magnetic circuit of the main coil a second coil shorted on itself. By a proper adaptation of the internal resistance of this second coil it is possible to find an acceptable equilibrium between surge voltage and reduction of the opening speed. To be efficient at fast voltage changes, the coupling of two coils must be perfect. This implies embedded windings. The volume occupied by the second coil reduces the efficiency of the main coil and results in higher coil power consumption. This method cannot be applied efficiently to products not specifically designed for this purpose.

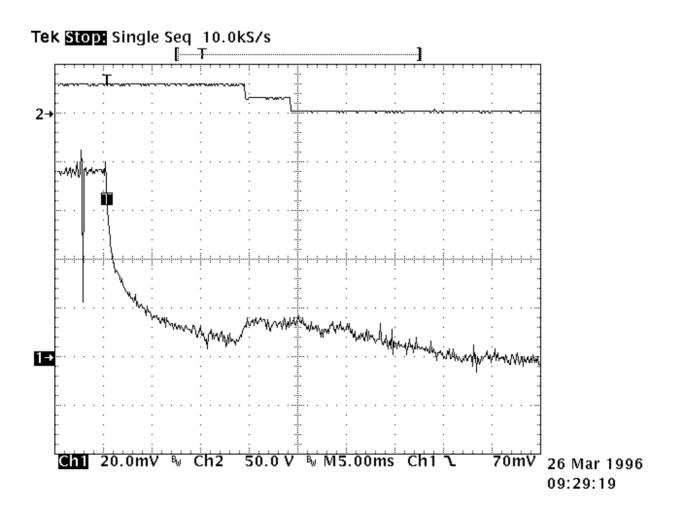
The resistor (parallel with the coil)

For efficient action, the resistor must be of the same order of magnitude as the coil resistance. A resistor 1.5 times the coil resistance will limit the surge to 1.5 times the supply voltage. Release time and opening speed are moderately affected. The major problem is the extra power dissipated.

Semi-conductor devices

The diode

It is the most simple method to totally suppress the surge voltage. It has the major disadvantage of the higher reduction of contact opening speed. This is due to the total recycling, through the diode, of the energy contained in the coil itself. The following measurement is performed once again on the same relay. Operation times are given by the upper curve:


- time to start the movement 14ms

- transfer time 5ms

These times are multiplied by a coefficient from 4 to 8.

The lower curve shows the coil current. The increase prior to NO contact opening indicates that the contact spring dissipates its energy. At the opening time the current becomes constant as a result of practically zero opening speed.

Due to this kind of behavior, this type of suppression must be avoided for power relays. For small relays which have to switch low currents of less than 0.2 A, degradation of life is not that significant and the method may be acceptable.

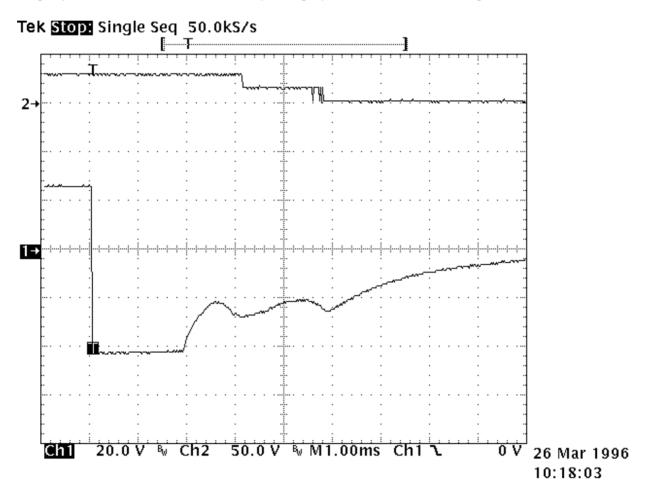
The diode + resistor network

It eliminates the inconvenience of the resistor alone, explained above, and it limits the action of a single diode. It is now preferred to used the diode + zener network.

The diode + zener network

Like the resistor, the zener allows a faster decurrent decay. In addition it introduces a threshold level for current conduction which avoids the recycling of energy released during contact movement.

The lower curve on the opposite record demonstrates those characteristics. Voltage limitation occurs at 42V. The two voltages spikes generated by internal movement are at lower levels than zener conduction. As a result, no current is recycled in the coil.

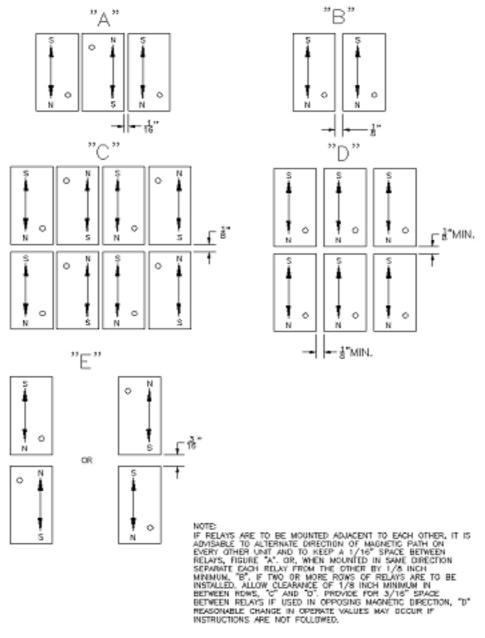

The opening time phases are as follows:

- time to start the movement 2.6ms

- total motion time 2.4ms

- transfer time 1.4ms

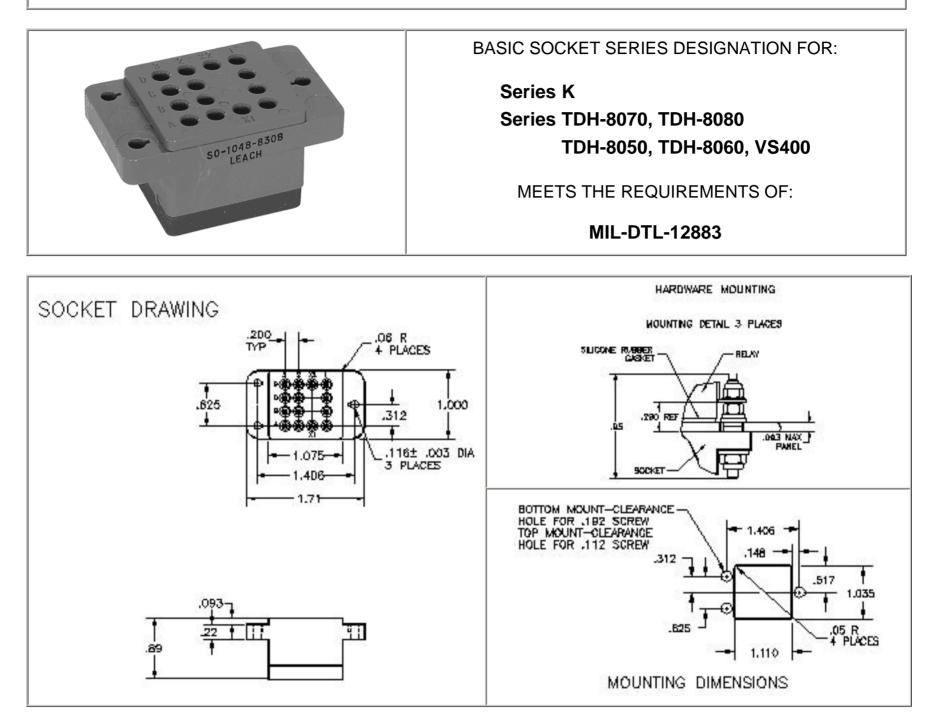
The release time is slightly increased. The contacts' opening speed remains unchanged.


MOUNTING DISTANCE BETWEEN RELAYS Applicable to XL, X, XA, XCL, XC, YL, Y, YA, YCL, YC, YCA, JS/JSA, JA, JL, J, KA, KL, K

Definition and applicability

This application note defines the minimum distance between relays to insure relay performance as specified in our data sheets.

Phenomenon analysis


Each relay generates a magnetic field either when the relay is de-energized because of the permanent magnet or in the energized position because of permanent magnet and coil. The magnetic field generated by one relay could affect the performance of another relay when the below minimum distance between relays is not respected. If the relays are mounted adjacent to each other, it is advisable to alternate direction of magnetic path on every other unit and to keep a 1/16-inch space between relays (figure "A"). Or when mounted in the same direction, separate each relay from the other by 1/8 inch (figure "B"). If two or more rows of relays are installed, allow clearance of 1/8 inch between rows, (figures "C" and "D"). Provide 3/16-inch space between relays if used in opposition (figure "E").

ENGINEERING DATA SHEET

SO-1048-8308/8518

RELAY SOCKET 12 AMP

GENERAL CHARACTERISTICS

1. Supplied with mounting hardware and No. 16 contacts, No. 16 crimp (SO-1048-8308); No. 16 contacts, No. 20 crimp (SO-1048-8518)					
2. Standard tolerances .xx ±.01; xxx ±.005					
3. Weight	.115 lb. max				
4. Temperature range -70° C to +125° C					

Esterline Power Systems	AMERICAS 6900 Orangethorpe Ave. P.O. Box 5032	EUROPE 2 Rue Goethe 57430 Sarralbe	ASIA Units 602-603 6/F Lakeside 1 No.8 Science Park West Avenue
<i>Featuring LEACH[©] power and control solutions</i> www.esterline.com	Buena Park CA 90622	France	Phase Two, Hong Kong Science Park Pak Shek Kok, Tai Po, N.T. Hong Kong
	Tel: (01) 714-736-7599	Tel: (33) 3 87 97 31 01	Tel: (852) 2 191 3830
	Fax: (01) 714-670-1145	Fax: (33) 3 87 97 96 86	Fax: (852) 2 389 5803

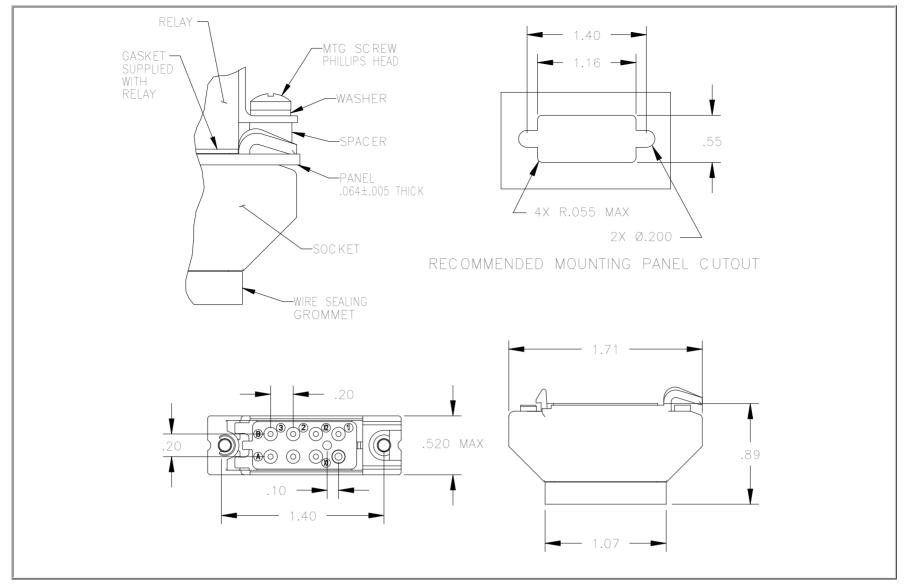
Data sheets are for initial product selection and comparison. Contact Esterline Power Systems prior to choosing a component.

ENGINEERING DATA SHEET

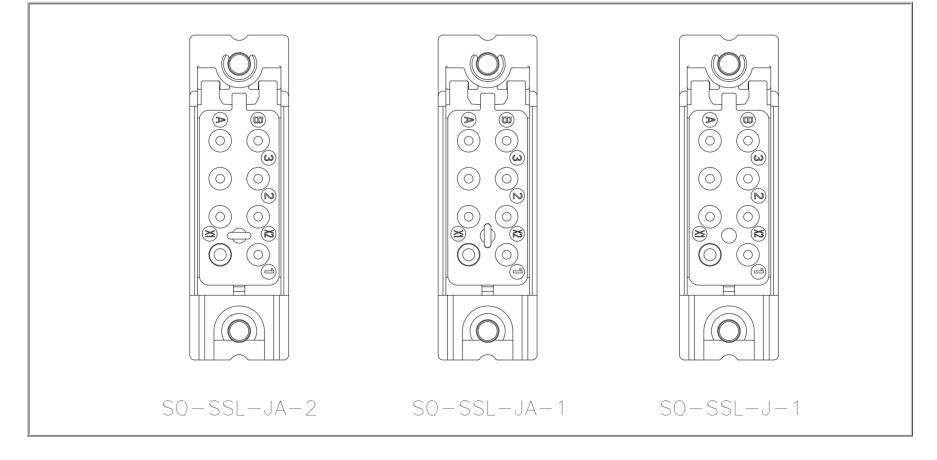
SO-SSL SOCKET FOR 2 OR 4 POLE 10 AMP

2 POLE	SNAP AND LOCK SOCKET SERIES DESIGNATION FOR: SERIES J, JA, K, KA, KL, TDX MEETS THE REQUIREMENTS OF: 2-pole, 10A relays MIL-PRF-12883/41 Mates with M83536, M83726 and MS27709
	4-pole, 10A relays MIL-PRF-12883/40 Mates with M83536 FEATURES Low profile Bottom panel mount Snaps into panel Other models available
4 POLE	MATERIALSSocket bodyPolyetherimide per MIL-P-46184GrommetSilicone rubber per ZZ-R-765HardwareStainless SteelContactsCopper alloy, hard gold plated per MIL-G-45204Contact retainersBeryllium copper

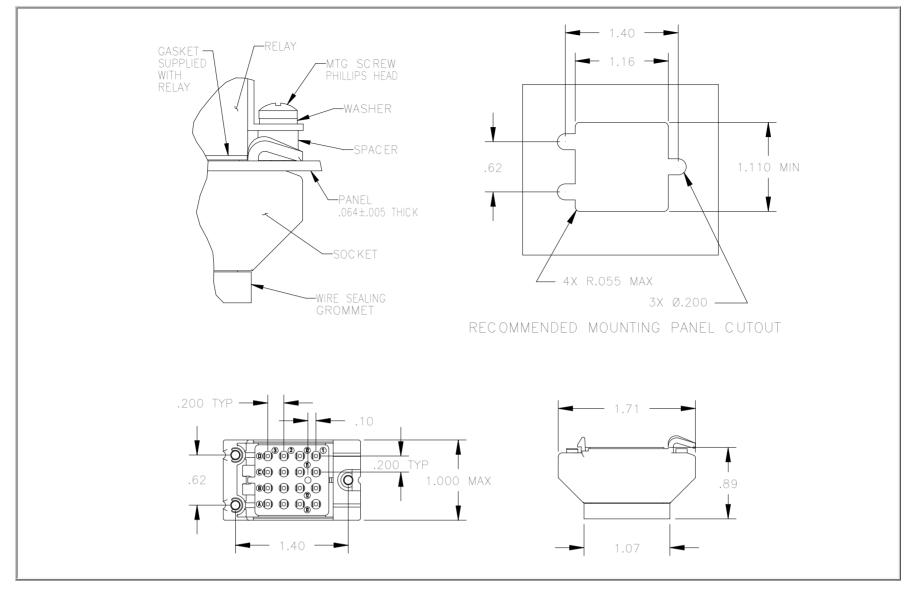
GENERAL CHARACTERISTICS

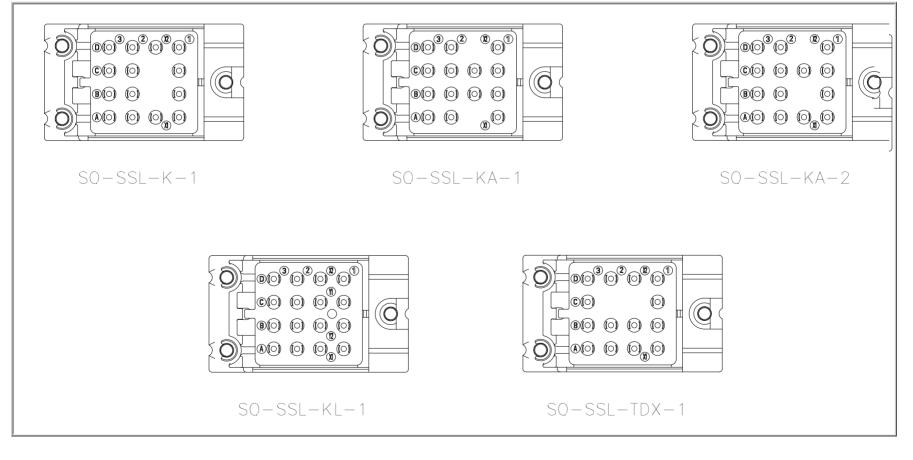

Insulation resistance	1000 M Ω min.
Dielectric withstanding voltage	1500 VRMS sea level; 500 VRMS at 80,000 ft
Weight	15.3g max.
Temperature range	-65°C to +125°C
Vibration	MIL-STD-202, Method 204, Test Condition G
Shock	MIL-STD-202, Method 213, Test Condition C

This socket is designed to snap and lock into a panel to reduce hardware requirement and mounting time. Contacts and hardware are provided disassembled in a plastic bag. Standard tolerances are $.xx=\pm.01$; $.xxx=\pm.005$ unless otherwise noted.


Esterline Power Systems	AMERICAS	EUROPE	ASIA
-starling (Power Systems	6900 Orangethorpe Ave.	2 Rue Goethe	Units 602-603 6/F Lakeside 1
LStertine	P.O. Box 5032	57430 Sarralbe	No.8 Science Park West Avenue
	Buena Park, CA 90622	France	Phase Two, Hong Kong Science Park
Featuring LEACH[©] power and control solutions			Pak Shek Kok, Tai Po, N.T.
www.esterline.com		()	Hong Kong
	Tel: (01) 714-736-7599	Tel: (33) 3 87 97 31 01	Tel: (852) 2 191 3830
	Fax: (01) 714-670-1145	Fax: (33) 3 87 97 96 86	Fax: (852) 2 389 5803

Data sheets are for initial product selection and comparison. Contact Esterline Power Systems prior to choosing a component.


SOCKET DIMENSIONS


TERMINAL LAYOUT

SOCKET DIMENSIONS

TERMINAL LAYOUT

	SO	SSL	KA	001
1-Basic socket designation				
2-Body style (short snap lock)				
3-Mating relay (J, JA, K, KA, KL, TDX)				
4-Polarization (see terminal layout)			-	_
5-Hardware (0=less hardware, 1=with hardware)				
6-Contacts (0=less contacts, 1=with contacts)				