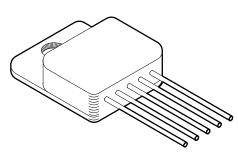
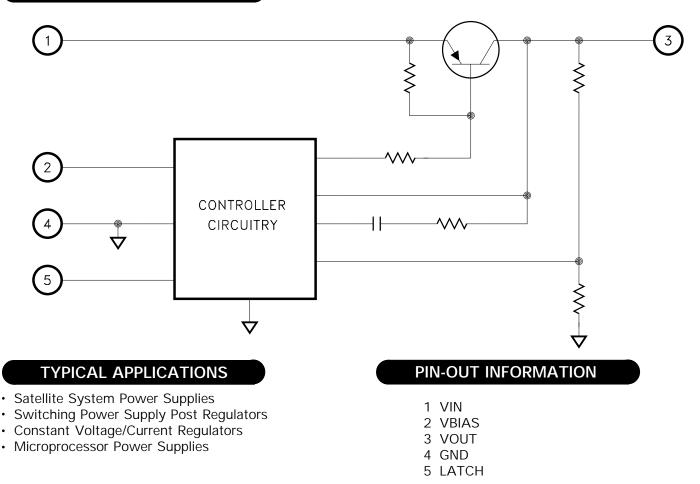
# MIL-PRF-38534 CERTIFIED




# RAD HARD ULTRA LOW DROPOUT POSITIVE LINEAR REGULATOR

4707 Dey Road Liverpool, N.Y. 13088

# FEATURES:


- Total Dose Tested to 300K RAD (Method 1019.7 Condition A)
- Low Dropout for Reduced Power Consumption
- Latching Overload Protection
- Available in 1.5V,1.9V,2.5V,2.8V,3.3V and 5.0V Output Voltages
- Alternate Output Voltages Available
- Output Current Limit
- Available in 3 Lead Form Options: Straight, Up and Down
- · Seperate Bias/Vin Pins for Improved Efficiency
- Initial Output Tolerance of 0.5%
- Contact MSK for MIL-PRF-38534 Qualification Status

# **DESCRIPTION:**



The MSK 5922RH is a rad hard fixed linear regulator capable of delivering 5.0 amps of output current. Typical dropout is only 0.22 volts with a 2.5 amp load. Separated power and bias simplifies supply tracking. This device also has latching overload protection. The MSK 5922RH is radiation hardened and specifically designed for space/satellite applications. The device is packaged in a hermetically sealed space efficient 5 pin SIP that is electrically isolated from the internal circuitry allowing for direct heat sinking.

# EQUIVALENT SCHEMATIC



1

(315) 701-6751

# **ABSOLUTE MAXIMUM RATINGS**

| + VBIAS Bias Supply Voltage + 10V |                                  |  |  |  |  |  |
|-----------------------------------|----------------------------------|--|--|--|--|--|
|                                   | Supply Voltage + 10V             |  |  |  |  |  |
| ООТ                               | Output Current ⑦5A               |  |  |  |  |  |
|                                   | Case Operating Temperature Range |  |  |  |  |  |
|                                   | MSK5922K/H/E RH55°C to + 125°C   |  |  |  |  |  |
|                                   | MSK5922RH                        |  |  |  |  |  |

8

# **ELECTRICAL SPECIFICATIONS**

- Storage Temperature Range -65°C to + 150°C Тsт
- TLD (10 Seconds)
- $\mathsf{P}_\mathsf{D}$ Power Dissipation. . . . . . . . . See SOA Curve
- Tc

| Parameter                                                                               | Test Conditions ① ⑨ ①                |                | Group A  | MSK5922K/H/E RH |        |        | MSK5922RH |       |        | Units |
|-----------------------------------------------------------------------------------------|--------------------------------------|----------------|----------|-----------------|--------|--------|-----------|-------|--------|-------|
| Faidilietei                                                                             |                                      |                | Subgroup | Min.            | Тур.   | Max.   | Min.      | Тур.  | Max.   | Units |
| Input Voltage Range ②                                                                   | : Voltage Range ② 10mA ≤ lou⊤ ≤ 1.0A |                | 1,2,3    | Note 10         | -      | 6.5    | Note 10   | -     | 6.5    | V     |
| Input Bias Voltage ②                                                                    | VBIAS ≥ VIN                          |                | 1,2,3    | 2.9             | 5.0    | 6.5    | 2.9       | 5.0   | 6.5    | V     |
| Quiescent Current $I_{IN} + I_{BIAS}$ , $V_{BIAS} = V_{IN} = 6.5V$ , Not including IOUT |                                      |                | 1,2,3    | -               | 14     | 20     | -         | 14    | 20     | mA    |
| Bias Current                                                                            | VBIAS = 6.5V                         |                | 1,2,3    | -               | 2      | 4      | -         | 2     | 4      | mA    |
|                                                                                         | e VIN= VOUT + 1V                     |                | 1        | -               | ± 0.1  | ±0.5   | -         | ± 0.1 | ± 1.0  | %     |
| Output Voltage Tolerance                                                                |                                      |                | 2,3      | -               | -      | ± 2.5  | -         | -     | -      | %     |
|                                                                                         | Iout=1A                              | Post Radiation | 1        | -               | -      | ± 4.0  | -         | -     | ± 4.5  | %     |
| Line Regulation (9)                                                                     | Iout=50mA                            |                | 1        | -               | ± 0.1  | ±0.50  | -         | 0.01  | ± 0.60 | %     |
|                                                                                         | $VOUT + 0.4V \le VIN \le 6.5V$       |                | 2,3      | -               | -      | ± 2.5  | -         | -     | -      | %     |
| Load Regulation (9)                                                                     | 50mA ≤ IOUT ≤ 3.0A                   |                | 1        | -               | ± 0.06 | ± 0.80 | -         | 0.06  | ± 1.0  | %     |
|                                                                                         | VIN = VOUT + 1V                      |                | 2,3      | -               | -      | ± 2.5  | -         | -     | -      | %     |
|                                                                                         | Delta Vou⊤= 1%<br>Pin 5(Latch)= GND  | IOUT = 2.5A    | 1        | -               | 0.22   | 0.40   | -         | 0.22  | 0.45   | V     |
| Dropout Voltage (11)                                                                    |                                      |                | 2,3      | -               | 0.26   | 0.40   | -         | -     | -      | V     |
| Diopour voltage ()                                                                      |                                      |                | 1        | -               | 0.11   | 0.30   | -         | 0.11  | 0.30   | V     |
|                                                                                         |                                      |                | 2,3      | -               | 0.12   | 0.30   | -         | -     | -      | V     |
| Output Current Limit ⑦ ⑨                                                                | VIN = VOUT + 1V Overcurrent          | t Latch Up     | 1        | 3.0             | -      | 5      | 3.0       | -     | 5      | А     |
|                                                                                         |                                      |                | 2,3      | 3.0             | -      | 5      | -         | -     | -      | А     |
| Ripple Rejection ②                                                                      | f= 120Hz                             |                |          | 65              | -      | -      | 65        | -     | -      | dB    |
|                                                                                         | IOUT = 50mA                          |                | 5,6      | 65              | -      | -      | -         | -     | -      | dB    |
| Thermal Resistance ②                                                                    | -                                    | -              | 2.2      | 3.0             | -      | 2.2    | 3.5       | ° C/W |        |       |

| PART NUMBER | OUTPUT VOLTAGE |  |  |  |  |
|-------------|----------------|--|--|--|--|
| MSK5922-1.5 | + 1.5V         |  |  |  |  |
| MSK5922-1.9 | + 1.9V         |  |  |  |  |
| MSK5922-2.5 | + 2.5V         |  |  |  |  |
| MSK5922-2.8 | + 2.8V         |  |  |  |  |
| MSK5922-3.3 | + 3.3V         |  |  |  |  |
| MSK5922-5.0 | + 5.0V         |  |  |  |  |

#### NOTES:

① Unless otherwise specified, VIN= VOUT+ 1V, VBIAS= 5V and IOUT= 10mA. See figure 2 for typical test circuit.

Guaranteed by design but not tested. Typical parameters are representative of actual device performance but are for reference only.

- (2) Guaranteed by design but not tested. Typical parameters are representative of actual device
   (3) Industrial grade and "E" suffix devices shall be tested to subgroups 1 and 4 unless otherwise
   (4) Military grade devices ("H" and "K" suffix) shall be 100% tested to subgroups 1,2,3 and 4. Industrial grade and "E" suffix devices shall be tested to subgroups 1 and 4 unless otherwise requested.
- (5) Subgroup 5 and 6 testing available upon request.
  (6) Subgroup 1,4 TC = + 25°C
- Subgroup 1,4  $TC = +25^{\circ}C$ Subgroup 2,5  $TC = +125^{\circ}C$
- Subgroup 3,6  $TA = -55^{\circ}C$
- (7) Output current limit is dependent upon the values of VIN and VOUT. See Figure 1 and typical performance curves.
- B Continuous operation at or above absolute maximum ratings may adversely effect the device performance and/or life cycle.

- (a) Continuous operation at or above absolute maximum names may adversely effect the device performance and/of me cycle.
   (b) VIN shall be as specified or VIN min., whichever is greater.
   (c) With VBIAS (Pin 2) connected to a separate source, VIN MIN is VOUT + VDROPOUT; see dropout specifications and performance curves.
   (c) Saturation voltage varies with load. See typical performance curves. Latch Pin= GND to prevent latch off during testing, see latch pin des
   (c) Pre and post irradiation limits, at + 25° C, up to 100Krad TID, are identical unless otherwise specified. Saturation voltage varies with load. See typical performance curves. Latch Pin=GND to prevent latch off during testing, see latch pin description.

#### PIN FUNCTIONS

**VIN** - This pin provides the input power connection to the MSK 5922RH. This is the supply that will be regulated to the output. Input voltage range is VOUT + VDROPOUT to 6.5V.

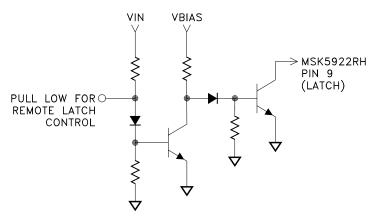
**VBIAS** - This pin provides power to all internal circuitry including bias, start-up, thermal limit and overcurrent latch. VBIAS voltage range is 2.9V to 6.5V. VBIAS should be kept greater than or equal to VIN.

LATCH - The MSK 5922RH LATCH pin is used for both current limit and thermal limit. A capacitor between the LATCH pin and ground sets a time out delay in the event of an over current or short circuit condition. In the event of an overcurrent condition, output short circuit or dropout condition, the pass transistor and drive circuit will saturate and initiate the latch timing circuit. The capacitor is charged to approximately 1.6V from a 7.2µA (nominal) current source. Exceeding the thermal limit charges the latch capacitor from a larger current source for a near instant shutdown. Once the latch capacitor is charged the device latches off until the latch is reset. Momentarily pull the LATCH pin low, or cycle the power to reset the latch. Cycling the bias power disables the device during the reset operation. Pulling the LATCH pin low immediately enables the device for as long as the LATCH pin is held low plus the time delay to re-charge the latch capacitor whether or not the fault has been corrected. Disable the latch feature by tying the LATCH pin low. With the LATCH pin held low the thermal limit feature is disabled and the current limit feature will force the output voltage to droop but remain active if excessive current is drawn.

**GND** - Internally connected to ground, this pin should be connected externally by the user to the circuit ground.

Vout - This is the output pin for the device.

# INPUT POWER SUPPLY BYPASSING


To maximize transient response and minimize power supply transients it is recommended that a 100 $\mu$ F tantalum capacitor is connected between V<sub>IN</sub> and ground. A 0.1 $\mu$ F ceramic capacitor should also be used for high frequency bypassing.

# OUTPUT CAPACITOR SELECTION

Output capacitors are required to maintain regulation and stability. A 220 $\mu$ F surface mount low ESR tantalum capacitor from the output to ground should suffice under most conditions. Ceramic output capacitors should be kept to a minimum (0.1 $\mu$ F typical) and placed directly across the load power connections as close to the load as possible. If the user finds that tighter voltage regulation is needed during output transients, more capacitance may be added. If more capacitance is added to the output, the bandwidth may suffer. See the typical gain and phase curves.

#### START UP OPTIONS

The MSK 5922RH starts up and begins regulating immediately when VBIAS and VIN are applied simultaneously. Applying VBIAS before VIN starts the MSK 5922RH up in a disabled or latched state. When starting in a latched state the device output can be enabled by pulling the latch pin low to drain the latch capacitor. Hold the latch pin low and release after VIN comes up to ensure automatic startup when applying VBIAS before VIN. The basic circuit below can be adapted to a variety of applications for automatic start up when VBIAS rises before VIN.



# OVERCURRENT LATCH-OFF/LATCH PIN CAPACITOR SELECTION

As previously mentioned, the LATCH pin provides over current/output short circuit protection with a timed latchoff circuit. Reference the LATCH pin description note. The latch off time out is determined with an external capacitor connected from the LATCH pin to ground. The time-out period is equal to the time it takes to charge this external capacitor from 0V to 1.6V. The latch charging current is provided by an internal current source. This current is a function of bias voltage and temperature (see latch charging current curve). For instance, at 25°C, the latch charging current is 7.2 $\mu$ A at VBIAS = 3V and 8 $\mu$ A at VBIAS = 6.5V.

In the latch-off mode, some additional current will be drawn from the bias supply. This additional latching current is also a function of bias voltage and temperature (see typical performance curves).

The MSK 5922RH current limit function is directly affected by the input and output voltages. Custom current limit is available; contact the factory for more information.

# **APPLICATION NOTES CONT.**

#### THERMAL LIMITING

The MSK 5922RH control circuitry has a thermal shutdown temperature of approximately 150°C. This thermal shutdown can be used as a protection feature, but for continuous operation, the junction temperature of the pass transistor must be maintained below 150°C. Proper heat sink selection is essential to maintain these conditions. Exceeding the thermal limit activates the latch feature of the MSK 5922RH. Momentarily pull the latch pin low or cycle the power to reset the latch.

#### HEAT SINK SELECTION

To select a heat sink for the MSK 5922RH, the following formula for convective heat flow may be used.

### Governing Equation:

 $T_J = P_D X (R_{\theta JC} + R_{\theta CS} + R_{\theta SA}) + T_A$ 

Where

TJ= Junction TemperaturePD= Total Power DissipationRθJC= Junction to Case Thermal ResistanceRθCS= Case to Heat Sink Thermal ResistanceRθSA= Heat Sink to Ambient Thermal ResistanceTA= Ambient Temperature

Power Dissipation = (VIN-VOUT) x lout

Next, the user must select a maximum junction temperature. The absolute maximum allowable junction temperature is  $150^{\circ}$  C. The equation may now be rearranged to solve for the required heat sink to ambient thermal resistance (ResA).

#### Example:

An MSK 5922-2.5RH is connected for  $V_{IN}$  = + 3.3V and  $V_{OUT}$  = + 2.5V. IOUT is a continuous 3A DC level. The ambient temperature is + 25°C. The maximum desired junction temperature is + 125°C.

 $R_{\theta JC}\!=\!3.0\,^{\circ}\,C/W$  and  $R_{\theta CS}\!=\!0.15\,^{\circ}\,C/W$  for most thermal greases

Power Dissipation= (3.3V-2.5V) x (3A) = 2.4 Watts

Solve for Resa:

$$R_{\theta SA} = \left[\frac{125^{\circ}C - 25^{\circ}C}{2.4W}\right] - 3.0^{\circ}C/W - 0.15^{\circ}C/W$$
$$= 38.5^{\circ}C/W$$

In this example, a heat sink with a thermal resistance of no more than 38°C/W must be used to maintain a junction temperature of no more than 125°C.

# TYPICAL APPLICATIONS CIRCUIT

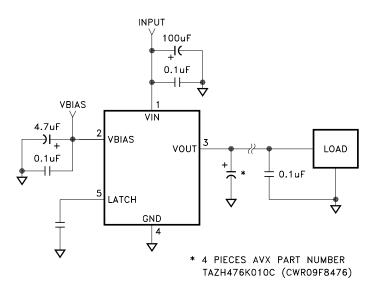



FIGURE 2

# TOTAL DOSE RADIATION TEST PERFORMANCE

The MSK 5922RH is nearly identical to the MSK 5920RH. It is manufactured with the same materials and component lots that are used in and have been TID tested in the MSK 5920RH. The MSK5920RH TID radiation report is used to provide TID characterization data fo the MSK 5922RH.

Radiation performance curves for TID testing have been generated for all radiation testing performed by MS Kennedy. These curves show performance trends throughout the TID test process and can be located in the MSK 5920RH radiation test report. The complete radiation test report is available in the RAD HARD PRODUCTS section on the MSK website.

#### http://www.mskennedy.com/store.asp?pid=9951&catid=19680

# TYPICAL PERFORMANCE CURVES

\*

-0.5

-1.0

-1.5

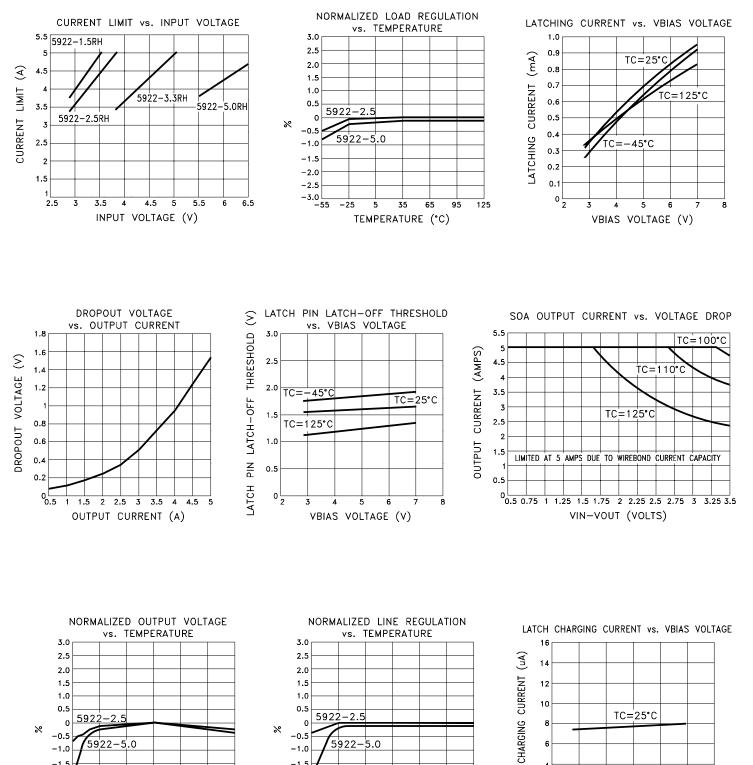
-2.0

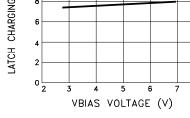
-2.5

-3.0

-55

5922-5.0


5


35

TEMPERATURE (°C)

65 95 125

-25





8

5922-5.0

5

35 65

TEMPERATURE (°C)

95

125

Х -0.5

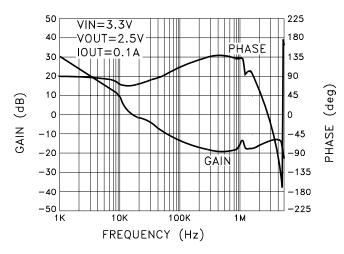
-1.0

-1.5

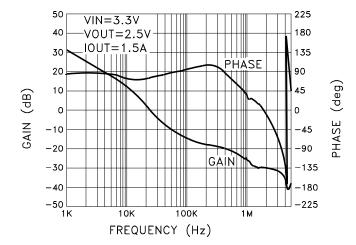
-2.0

-2.5

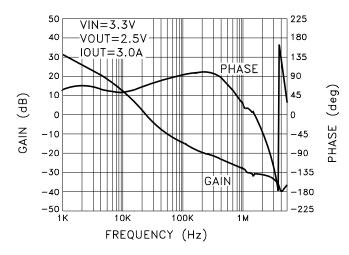
-3.0

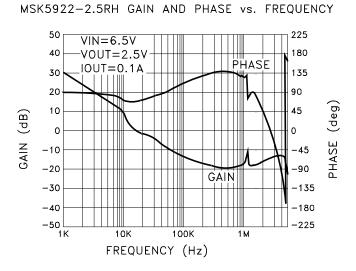

-55 -25

#### TYPICAL PERFORMANCE CURVES

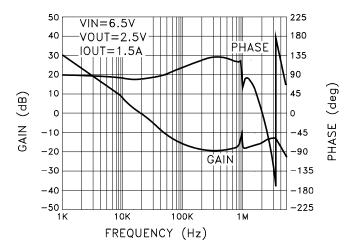

#### GAIN AND PHASE RESPONSE

The gain and phase response curves are for the MSK typical application circuit and are representative of typical device performance, but are for reference only. The performance should be analyzed for each application to insure individual program requirements are met. External factors such as temperature, input and output voltages, capacitors, etc. all can be major contributors. Please consult factory for additional details.

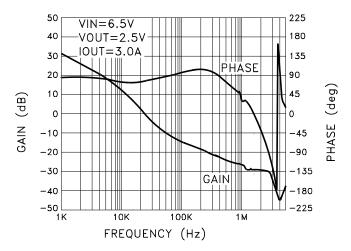


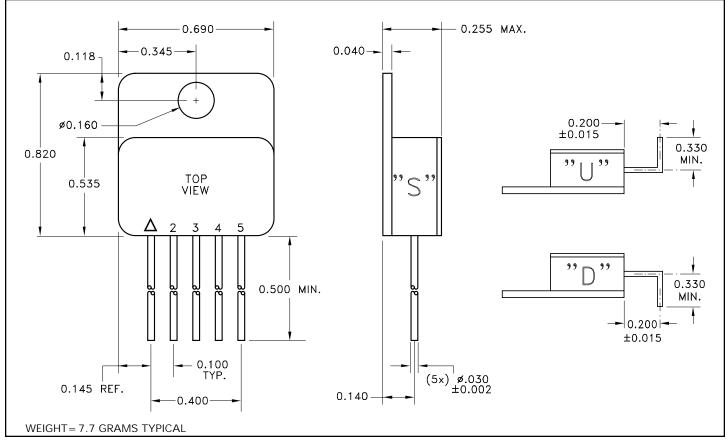

MSK5922-2.5RH GAIN AND PHASE vs. FREQUENCY




MSK5922-2.5RH GAIN AND PHASE vs. FREQUENCY

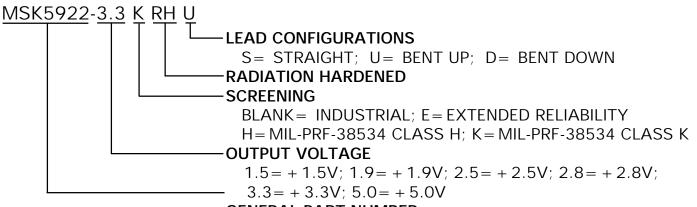






MSK5922-2.5RH GAIN AND PHASE vs. FREQUENCY



MSK5922-2.5RH GAIN AND PHASE vs. FREQUENCY




## MECHANICAL SPECIFICATIONS



ALL DIMENSIONS ARE  $\pm$  0.010 INCHES UNLESS OTHERWISE LABELED. ESD Triangle indicates pin 1.

# ORDERING INFORMATION



# **GENERAL PART NUMBER**

The above example is a + 3.3V, Class K regulator with leads bent up.

M.S. Kennedy Corp. 4707 Dey Road, Liverpool, New York 13088 Phone (315) 701-6751 FAX (315) 701-6752 www.mskennedy.com

The information contained herein is believed to be accurate at the time of printing. MSK reserves the right to make changes to its products or specifications without notice, however, and assumes no liability for the use of its products. Please visit our website for the most recent revision of this datasheet. Contact MSK for MIL-PRF-38534 Class H, Class K and Appendix G (radiation) status.