Monolithic Digital IC

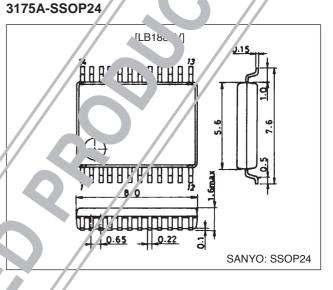
LB1886V

Three-Phase Brushless Motor Driver

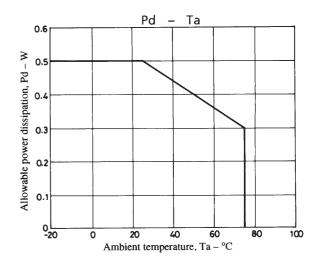
Overview

The LB1886V is a three-phase brushless motor driver IC that is optimal for capstan and drum motor drive in camcorders and other VCR products and for motor drive in digital audio products.

Features


- 120° voltage linear drive scheme
- Motor voltage control based speed control provides reduced power (and thus is optimal for use in portable equipment)
- Built-in torque ripple compensation filter
- Soft switching scheme requires a smaller external capacitance (thus chip capacitors can be used)
- Built-in thermal shutdown circuit
- Built-in FG amplifier

Specifications


Absolute Maximum Ratings at $Ta = 25^{\circ}$

Package Dimensions

unit: mm

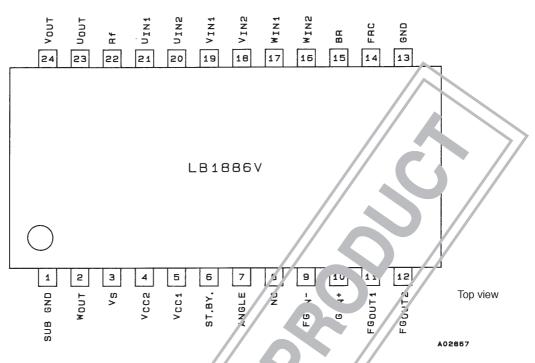
Parameter	S'/m'Jol	Conditions	Ratings	Unit
Maximum supply voltage 1	Y _{C/j} 1 max		7	V
Maximum supply voltage 2	^V _{CC} 2 max		12	V
Maximum supply voltage 3	V _S max		V _{CC} 2	V
Applied output voltage	Vr nav.		V _S + 2	V
Applied input voltage	nax r. input p	bir.s	V _{CC} 1	V
Output current	I _O ma	7	1.0	A
Allowable power dissipation	max	/	0.5	W
Operating temperature	I IUP.		-20 to +75	°C
Storage temperature	⊤stg		-55 to +150	°C

SANYO Electric Co.,Ltd. Semiconductor Bussiness Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

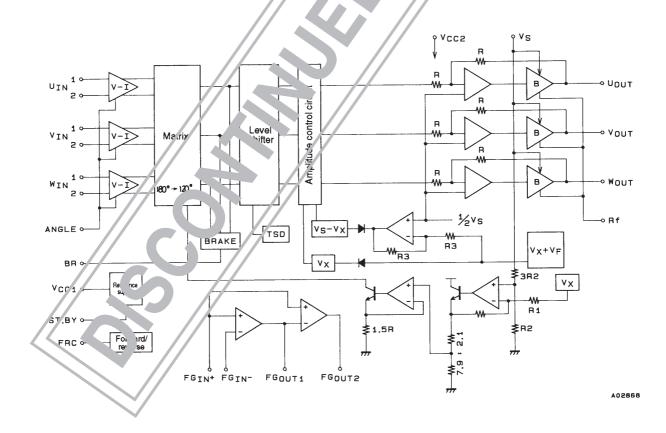
Allowable Operating Ranges at Ta = $25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage 1	V _{CC} 1	$V_{CC}1 \le V_{CC}2$	4.0 to 6.0	V
Supply voltage 2	V _{CC} 2		4 to 10	V
Supply voltage 3	V _S		up to V _{CC} 2	V

Electrical Characteristics at Ta = 25°C, $V_{CC}1 = 5 V$, $V_{CC}2 = 7 V$, $V_S = 3 V$


Parameter	Symbol	Conditions	min	typ	max	Unit
Current drain 1	I _{CC} 1	V _{BR} = 5 V		3.0	5.0	mA
Current drain 2	I _{CC} 2	V _{BR} = 5 V		6	15.0	mA
Current drain 3	۱ _S	$V_{BR} = 5 V, R_{L} = \infty$			۶.0	mA
Quiescent current 1	ICCOQ	V _{STBY} = 0 V			100	μA
Quiescent current 2	I _{SOQ}	$V_{STBY} = 0 V, R_L = \infty$			150	μA
Output saturation voltage	V _{O (sat)}	I _{OUT} = 0.6 A, sink + source			1.7	V
Output transistor breakdown voltage	V _{O (sus)}	I _{OUT} = 20 mA, *2				V
Quiescent voltage	V _{OQ}	V _{BR} = 5 V	1.45	1.55	1.65	V
Hall amplifier input offset voltage	V _{H offset}	*2	-5		+5	mV
Hall amplifier common mode input voltage range	V _{HCOM}		14		2.8	V
Hall I/O voltage gain	G _{VHO}	Rangle = 8.2 k Ω	34.5	37.5	40.5	dB
Brake pin high level voltage	V _{BRH}		2.0			V
Brake pin low level voltage	V _{BRL}				0.8	V
Brake pin input current	I _{BRIN}				120	μΑ
Brake pin leakage current	I _{BR leak}				-30	μA
FRC pin high level voltage	V _{FRCH}		2.8			μA
FRC pin low level voltage	V _{FRCL}				1.2	μA
FRC pin input current	IFRCIN				100	μA
FRC pin leakage current	I _{FRC leak}				-30	μA
Upper side residual voltage	V _{XH}	$I_{CUT} = 100 \text{ mA}, \ \gamma_C 2 = t \ \gamma_S = 2^{1/2}$	0.285		0.455	V
Lower side residual voltage	V _{XL}	$V_{CJT} = 100 \text{ n.}$ V_{CC} $V, V_S = 2^{1/2}$	0.350		0.440	V
Residual voltage inflection point	ν _s Δν _χ	1 _{OUT} = 1 1, 3 = 6 V, *2		0.9		V
Overlap	OL	V_{CC}^2 6 V, = 3 V, $R_L = 10^{\circ} \Omega (Y)$	69	79	89	%
Overlap vertical delta	∆ JL	V_{f} 2 = 6 V_{S} = 3 V, R_{I} = 100 Ω (Y)	-10	0	+10	%
Standby on voltage	VSIBYL		-0.2		+0.8	V
Standby off voltage	STBYH		2		5	V
Standby pin bias current	I _{STBY}				100	μA
Thermal protection circuit operating temperature	T		150	180	210	°C
Thermal protection circuit hysteresis	. Trsd	2		15		°C
[FG Amplifier]						
FG amplifier input of set voltage	V _{FG} set		-8		+8	mV
Open loop voltrage gain	-vFG	. = 10 kHz		43		dB
Source output saturation	V _{FG OU}	/ _O = −2 mA	3.7			V
Sink output naturation . inge	V _{FG} رى	I _O = 2 mA			1.3	V
Common node sir iacu. ratio	C.HF.	*2		80		dB
FG amplitur commumor input voltage range	FG CH		0		+3.5	V
Phase margin	øM	*2		20		deg
Schmitt amplifier threshold vollar,e	V _{FGS SH}	VFGin ⁺ = 2.5 V, when VFGout2 goes from high to low	2.45	2.50	2.55	V
Schmitt amplifier hysteresis	V _{FGS HIS}	VFGin ⁺ = 2.5 V	20	40	60	mV

Note: 1. The IC goes to the standby state when the standby pin is open.


2. These are design target values and are not measured.

The overlap standard is taken as the test standard without change.

Pin Assignment

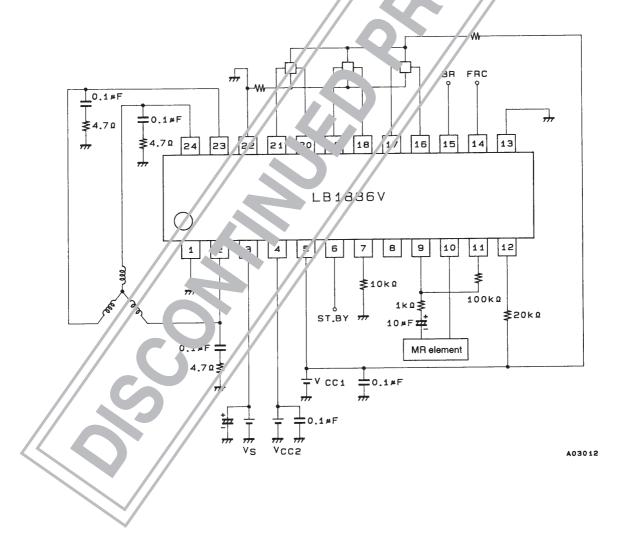
Internal Equivalent Circuit Block Diagram

Pin Functions

Pin No.	Symbol	Pin voltage	Equivalent circuit	Function
3	V _S	< V _{CC} 2		Supply pin that determines the output amplitude. This pin must be set lower than the V_{CC}^2 voltage.
4	V _{CC} 2	4 to 10 V		Power amplifier system power supply for transistors other than those that drive the motor. Power supply volage for introl blocks other than those provided by V_{CC}
5	V _{CC} 1	4 to 6 V		Power supply vol ge for the Hall amplifier for vard/reverse, heamplifier, and the mal shutdown circuits
6	ST. BY	H: 2.0 V min L: 0.8 V max (when V _{CC} 1 is 5 V.)	50KQ 100XQ 10X	The current drain is about 0 μ A in this mode. Approx -0 V or higher for motor drive operation.
7	ANGLE			Connect a resistor between this pin and ground. The Hall input/output gain can be changed by changing the value of this resistor.
9 10	FGin [–] FGin+	min 0 V max 3.5 V (when V _{CC} 1 3,5 V.)	V C1 V C1 V C1 V C1 V CC1 V CC1 V CC1 V CC1 V CC1 V CC1 V CC1 V CC1	FG signal input
11	FCoutt			FG amplifier output

Continued on next page.

Continued from preceding page.


Pin No.	Symbol	Pin voltage	Equivalent circuit	Function
12	FGout2		VCC1	FG Schmitt amplifier output
14	FRC	H: 2.8 V min L: 1.2 V max (when V _{CC} 1 is 5 V.)		Motor forward, there control Low 'vel., there (1.1 for lower when $V_{CC}(1 = 5 V)$ High let there use (2.5 for history in the V _{CC} 1 = 5 V)
15	BR	H: 2.0 V min L: 0.8 V max	VCC2 VCC1 15 5'jku 15 5'jku 5'j	Mc tor stop control 1 ow level: motor drive (0.8 V or lower) High level: Motor stop (2.0 V or higher)
16 17 18 19 20 21	Win2 Win1 Vin2 Vin1 Uin2 Uin1	min 1.4 max 2.3 V (when V_{CC} 1 is 5 V.,	VCC1 2000 2000 2000 2000 2000 2000 2000 2000 2000 18 16 17 403010	W phase Hall element input pin logic High refers to the state where $W_{IN}1 > W_{IN}2$ V phase Hall element input pin logic High refers to the state where $V_{IN}1 > V_{IN}2$ U phase Hall element input pin logic High refers to the state where $U_{IN}1 > U_{IN}2$
22	F.f		//	Ground for the output transistors
23 24 2	Uout Voet Weut		C VS C 23 C 24 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2	Outputs
1 13	SUB GND GND			Ground for all circuits other than the output transistor

Truth Table

	O aurora a sinda	Input			Forward/reverse control
	Source → sink	U	V	W	F/RC
1	W phase \rightarrow V phase V phase \rightarrow W phase	Н	Н	L	L
					Н
2	W phase \rightarrow U phase	Н	L	L	L
2	U phase \rightarrow W phase				Н
3	V phase \rightarrow W phase	L	L	Н	L
3	W phase \rightarrow V phase				Н
4	U phase \rightarrow V phase	L	Н	L	L
4	V phase \rightarrow U phase				Н
5	V phase \rightarrow U phase	Н	L	Н	L
5	U phase \rightarrow V phase				Н
6	U phase \rightarrow W phase	L	Н	Н	L
6	W phase \rightarrow U phase				Н

Input high: Indicates that the phase 1 input is at least 0.2 V higher than the phase 2 input for cach phase Input low: Indicates that the phase 1 input is at least 0.2 V lower than the phase 2 input for cach phase. Forward/reverse control: High: 2.8 V to V_{CC} 1 Low: 0 V to 1.2 V

Sample Application Circuit

- No products escribed or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, the support systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which ma, the time of which ma, the support of the support systems injury, death or property loss.
- Anyor put has g any products described or contained herein for an above-mentioned use shall:
 - ① / sept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distr. to and all their officers and employees, jointly and severally, against any and all claims and litigation and all damage, cost and expenses associated with such use:
 - In the provided any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELF_CTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or cevarally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of April, 1998. Specifications and information herein are subject to change without notice.