

The series of fixed-voltage monolithic micropower voltage regulators is designed for a wide range of applications. Thes device excellent choice fo use in battery-power application. Furthermore, the quiescent current increases on slightly at dropout, which prolongs battery life.

This series of fixed-voltage regulators features very low quiescent current (100mA Typ.) and very low drop output

voltage (Typ. 60mV al light load and 600mV at 700mA). This includes a tight initial tolerance of 0.5% typ., extremely good load and line regulation of 0.05% typ., and very low output temperature coefficient.


This series is offered in 3-pin TO-263, TO-220, TO-252 & SOT-223 package, and in 5-pin TO-220 & TO-263 package with shutdown input.

FEATURES

- Output accuracy within 2% at over timperature
- Very low quiescent current
- Low dropout voltage (500mV Typ)
- Extremely tight load and line regulation
- Very low temperature coefficient
- Unregulated DC input can withstand -20V reverse battery and +60V positive transients

APPLICATIONS

- High-efficiency linear regulator
- Battery powered systems
- Portable instrumentation
- Portable consumer equipment
- Portable / Palm top / Notebook computers
- Automotive electronics
- SMPS Post-Regulator

ORDERING INFORMATION

Device	Operating	Package	
	Temperature		
PJ48XXCZ-5L		TO-220-5L	
PJ48XXCM-5L		TO-263-5L	
PJ48XXCZ	-20° C to $+85^{\circ}$ C	TO-220	
PJ48XXCM		TO-263	
PJ48XXCP		TO-252	
PJ48XXCW		SOT-223	

ABSOLUTE MAXIMUM RATINGS

Power Dissipation	Internally Limited		
Lead Temperature (Soldering, 5 seconds)	260°ℂ		
Storage Temperature Range	65 to+150°C		
Operating Junction Temperature Range	-55 to +150°C		
Input Supply Voltage	-20 to +35V		
Continuous total dissipation at 25°C free-air temperature	TO-220/TO-263	2W	
	TO-252	1W	
	SOT-223	0.8W	

1-6 2002/01.rev.A

ELECTRICAL CHARACTERISTICS at Vin = 14.4V, Ta = 25 °C, I_L = 5mA, C_o = 100 μ F, unless otherwise noted.

Parameter	Conditions	Min	Тур	Max	UNITS
Output Voltage	T _J =25°C	0.990 Vo	5.0 / 3.3	1.010 Vo	V
	Full Operating Temperature	0.980 Vo		1.020 Vo	
Output Voltage	$1 \text{ mA} \le I_I \le 700 \text{ mA}, T_I \le T_{IMAX}$	0.975 Vol		1.025 Vol	V
Input Supply Voltage				26	V
Output VoltageTemperature Coefficient	(Note 1)		50	150	ppm/°C
Line Regulation (Note 2)	13 V ≤V _{in} ≤26V (Note 3)		0.1	0.4	%
Load Regulation (Note 2)	1 mA≤I ₁ ≤700mA		0.1	0.3	%
Dropout Voltage (Note 4)	$I_L=100 \text{mA}$		200	300	mV
	I_L =400mA		400	600	mV
	$I_L=700 \text{mA}$		500	700	mV
Ground Current (Note 5)	I_L =100 μ A		100	200	μ A
	I_L =400mA		30	40	mA
	I_L =700mA		50	60	mA
Dropout Ground Current (Note 5)	V_{in} =Vout-05V, I_L =100 μ A		200	300	$\mu \mathbf{A}$
Current Limit	$V_{out}=0$		700	900	mA
Thermal Regulation (Note 6)			0.05	0.2	%W
Output Noise,	$C_L=2.2 \mu F$		500		μ Vrms
10 Hz to 100 KHz, I_L = 400 mA	$C_L=3.3 \mu F$		350		
_	C_L =33 μ F		120		
Adjust Model					
Reference Voltage		1.21	1.235	1.26	V
Reference Voltage	Over Temperature (Note 7)	1.185		1.285	V
Feedback Pin Bias Current			20	40	nA
Reference Voltage Temperature Coefficient	(Note 1)		50		ppm/°C
Feedback Pin Bias Current Temperature			0.1		nA/°C
Coefficient					
Shutdown Input					
Input Logic Voltage	Low (Regulator ON)		0.7		V
	High (Regulator OFF)	2			
Shutdown Pin Input Current	Vs = 2.4V		30	50	μΑ
	Vs = 26V		450	600	·
Regulator Output Current in Shutdown	(Note 8)			200	μΑ

Note 1: Output or reference voltage temperature coefficients defined as the worst case voltage change divided by the tatal temperature range.

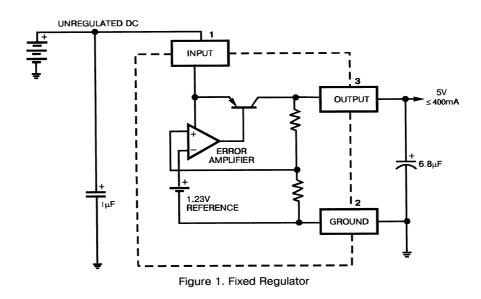
Note 2: Regulations is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specification for thermal regulation.

Note 3: Line regulation is tested at 125°C for I_L = 5mA. For I_L = 100 μ A and T_J = 125°C, line regulation is guaranteed by desigh to 0.2%. for 13V \leq V_{in} \leq 26V.

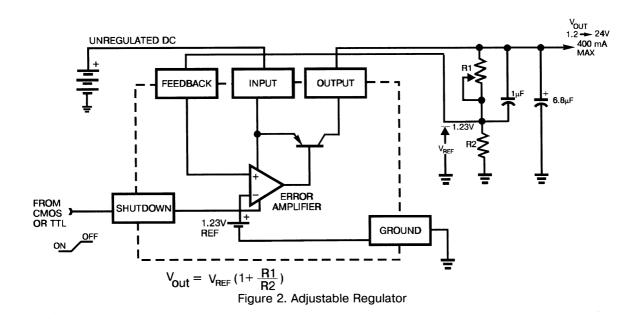
Note 4: Dropout voltage is defined as the input to output differential at which the output voltage drops2% below its nominal value measured at 1V differential.

Note 5: Ground pin current is the regulator quiescent current. The total current drawn from the source is the sum of the ground pin current and output load current.

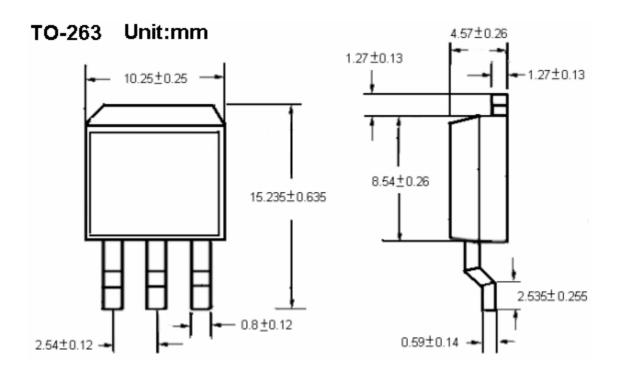
Note 6: Thermal regulation is the change in output voltage at a time T after a change in power dissipation, excluding load or line regulation effects. Specifications are for a 200 mA load pulse(3 W pulse) for T = 10 ms.


Note 7: Vref \leq Vou t \leq (Vin-1V), 2.3V \leq Vin \leq 26V, 100 μ A \leq I_L \leq 400mA, T_J \leq T_{JMAX} .

Note 8: $2V \le V$ shutdown, Vin $\le 26V$, Vout = 0V



BLOCK DIAGRAM AND TYPICAL APPLICATIONS


Fixed Regulator for 3 Pin



Adj / Fixed Regulator for 5 Pin

