Hitachi 4-Bit Single-Chip Microcomputers

HMCS43XX Family

HD404344R Series, HD404394 Series, HD404318 Series, HD404358 Series, HD404358R Series, HD404339 Series, HD404369 Series

Hardware Manual

HITACHI

ADE-602-081B Rev.3.0 8/4/00 Hitachi, Ltd.

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- Products and product specifications may be subject to change without notice. Confirm that you
 have received the latest product standards or specifications before final design, purchase or
 use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

List of Items Revised or Added for This Version

Page	Item	Description
_	Timer Function Overview	Prescaler W column amended
405	18.2.1 Timer Mode Register B1 (TMB1:\$009)	Note amended
418	18.4 Interrupts	Series name amended
560	Table 25-21Absolute Maximum Ratings(HD404358 and HD404358R Series)	Pin voltage HD404358 Series Rated Value amended
566	Table 25-25AC Characteristics (HD404358 andHD404358R Series)	Oscillator stabilization period (crystal oscillator) Notes added
633	B.2 I/O Registers (2) \$030—Data Control Register R0 DCR0	Series name amended
636	B.2 I/O Registers (2) \$038—Data Control Register R8 DCR8	Series name amended

Preface

Introduction

The HMCS43XX Family of 4-bit microcomputers are built around the HMCS400 CPU core, which has a powerful architecture designed for efficient programming. All of these microcomputers include standard on-chip peripheral functions, including a multiple input channel A/D converter, a serial interface, and multi-function timers.

The peripheral functions are developed individually as modules, and connected using a standard interface.

This manual describes six product series in the HMCS43XX Family: the HD404344R, HD404394, HD404318, HD404358, HD404358R, HD404339, and HD404369 series. The products in these series form a fine-grained product line in which products are differentiated by their memory capacities, medium and high voltage pins, high current pins, low power modes, normal vs. high-speed versions, and other aspects. This allows an appropriate microcomputer to be selected for a wide range of applications.

All members of the HMCS43XX Family are available in both ROM and PROM (ZTATTM) versions. PROM versions can be programmed freely by the user with a general purpose PROM writer.

Note: ZTATTM is a registered trademark of Hitachi, Ltd.

Manual Layout

The microcomputers in the HMCS43XX family differ in their memory capacities and peripheral functions. This table provides an overview of the differences between these products as they relate to the structure of this manual. Use this table to determine which sections are relevant to the product(s) of interest.

Organizati	on		HD404344R Series	HD404394 Series	HD404318 Series	HD404358/ HD404358R Series	HD404339 Series	HD404369 Series
Section 1:	Overview	Provides a brief overview of the features of the HMCS43XX Family.	•	•	•	•	•	•
Section 2:	Memory	These sections describe	•	•	•	•	•	•
Section 3:	CPU	the HMCS400 CPU and its internal states.	•	•	•	•	•	•
Section 4:	Exception Handling		•	•	•	•	•	•
Section 5:	Low Power Modes		•	•	•	•	_	_
Section 6:	Low Power Modes		_	_		_	•	•
Section 7:	I/O Ports	These sections describe	•	•	•	•	•	•
Section 8:	I/O Ports	the peripheral functions used in the HMCS43XX	_	•	_	_	_	_
Section 9:	I/O Ports	Family. Note that the	_	_	•	_	_	_
Section 10:	I/O Ports	peripheral functions actually present differ	_	_	_	•	_	_
Section 11:	I/O Ports	between product series.	_	_	_	_	•	_
Section 12:	I/O Ports		_	_	_	_	_	•
Section 13:	Oscillator Circuits		•	•	•	•	_	_
Section 14:	Oscillator Circuits		_			_	•	•
Section 15:	A/D converter		•	•	•	•	•	•
Section 16:	Prescaler		•	•	•	•	•	•
Section 17:	Timer A		_	_	•	•	•	•
Section 18:	Timer B		•	•	•	•	•	•
Section 19:	Timer C		•	•	•	•	•	•
Section 20:	Serial Interface		•	•	•	•	•	•
Section 21:	Alarm Output		_	_	•	•	•	•
Section 22:	ROM		•	•	•	•	•	•
Section 23:	RAM		•	•	•	•	•	•

Organization		HD404344R Series	HD404394 Series	HD404318 Series	HD404358/ HD404358R Series	HD404339 Series	HD404369 Series
Section 24: Application Examples	Describes the use of the A/D converter and timer B. Refer to this section when developing software for any of these products.	9	•	•	•	•	•
Section 25: Electrical Characteristics	•	•	•	•	•	•	
Appendices		•	•	•	•	•	•

Note on How to Use this Manual

Either <series name(s)> or <All Products> is printed at the top of each page in this manual to indicate that the page refers to one or more specific series or to all products, respectively. Since the peripheral functions actually present differ between products, care is required when reading this manual. Differences between products are specified in notes and by shading.

This manual describes seven product series, the HD404344R, HD404394, HD404318, HD404358, HD404358R, HD404339, and HD404369 series. To use this manual as the manual for a particular product be sure to read both the chapters that pertain to all products as well as the chapters that are related to the product being used.

ltem		HD404344R Series	HD404394 Series	HD404318 Series	HD404358 Series	HD404358R Series	HD404339 Series	HD404369 Series
ROM	Capacity (words)	Mask ROM 1/2/4 k ZTAT™ 4 k	Mask ROM 1/2/4 k ZTAT™ 4 k	Mask ROM 4/6/8 k ZTAT™ 8 k	Mask ROM 4/6/8 k ZTAT™ 16 k	Mask ROM 4/6/8 k ZTAT™ 16 k	Mask ROM 4/6/8/12/16 k ZTAT™ 16 k	Mask ROM 4/8/12/16 k ZTAT™ 16 k
RAM	Capacity (digits)	256	256	384	384 (Mask ROM)/ 512 (ZTAT™)	512	512	512
I/O	Pins	22	21	34	34	34	54	54
	Medium voltage pins	_	3	_	4	_	_	8
	High voltage pins	_	_	22 (of which one is input-only)	_		31 (of which one is input-only)	
		10	·		_	20	_	_
Interrupts	Priority High	\overline{INT}_0	\overline{INT}_0			\overline{INT}_0	\overline{INT}_0	
		_	_		ÎNT ₁	ĪNT ₁	INT ₁	
		_	_	Timer A	Timer A	Timer A	Timer A	Timer A
		Timer B	Timer B	Timer B	Timer B	Timer B	Timer B	Timer B
		Timer C	Timer C	Timer C	Timer C	Timer C	Timer C	Timer C
	V	A/D	A/D	A/D	A/D	A/D	A/D	A/D
	Low	Serial	Serial	Serial	Serial	Serial	Serial	Serial
Serial	Pins	1	1	1	1	1	1	1
interface	Clock selection	Prescaler output divided by 2 or 4	Prescaler output divided by 2 or 4	Prescaler doutput divided by 2 or 4	Prescaler l output dividec by 2 or 4	Prescaler l output divided by 2 or 4	Prescaler output divided by 2 or 4	Prescaler l output divided by 2 or 4
	Idle control	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	Start instruction	STS instruction	STS instruction	STS instruction	STS instruction	STS instruction	STS instruction	STS instruction
A/D	Channels	4	3	8	8	8	12	12
converter	I _{AD} off	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	V _{ref} pin	_	Built-in	_	_	_	_	_

Function Overview

Note: * Under development

Item		HD404344R Series	HD404394 Series	HD404318 Series	HD404358 Series	HD404358R Series	HD404339 Series	HD404369 Series	
Alarm output		_	_	On-chip	On-chip	On-chip	On-chip	On-chip	
System clock oscillator	Oscillator	Ceramic, external, CR	Ceramic, external	Crystal, ceramic, external	Crystal, ceramic, external	Crystal, ceramic, CR, external	Crystal, ceramic, external	Crystal, ceramic, external	
	Frequency	0.4 to 4.5 MHz 1.0 to 3.5 MHz (CR versions)	0.4 to 4.5 MHz	0.4 to 4.5 MHz	0.4 to 5.0 MHz (5 MHz versions) 0.4 to 8.5 MHz (8.5 MHz versions)	0.4 to 5.0 MHz (5 MHz versions) 0.4 to 8.5 MHz (8.5 MHz versions) 1.0 to 3.5 MHz (CR versions)	0.4 to 4.5 MHz	0.4 to 5.0 MHz (5 MHz versions) 0.4 to 8.5 MHz (8.5 MHz versions)	
	Divisor	4	4	4	4	4	4/8/16/32 (software selectable)	4/8/16/32 (software selectable)	
Sub-	Frequency	_	_	_	_	_	32 kHz	32 kHz	
system clock oscillator	Divisor	_	_	—	_	_	4/8 (software selectable)	4/8 (software selectable)	
	Stopping in stop mode		_		_	_	Yes	Yes	
Low power	Watch mode	_	_	_	_	_	Yes	Yes	
modes	Subactive mode	_	_	_	_	_	Yes	Yes	
	Standby mode	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
	Stop mode	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Direct return to active mode from subactive mode		—	-	—	_	_	Yes	Yes	

Timer Function Overview

		HD404344R/ HD404394 Series		HD404318/ HD404358/ HD404358R Series			HD404339/ HD404369 Series		
ltem		В	С	Α	В	С	Α	В	С
Timer	Prescaler S	0	0	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	0
	Prescaler W						0		
	External event input (falling edge, rising edge, or double edge)	0	_	_	0	_		0	
	Free-running timer	0	0	0	0	0	0	0	\bigcirc
	Time base	_		—	_		\bigcirc	_	
	Event counter	0		_	0			0	
	Reload	0	0	_	0	0	_	0	0
	Watchdog	_	\bigcirc	_	_	0	_	_	\bigcirc
	PWM	_	0	_	_	0	_	_	0
	Input capture		_		0			0	

Contents

Secti	on 1	Overview	1
1.1	Overvi	ew	1
1.2	Interna	l Block Diagrams	10
1.3	Pin Fui	nctions	17
	1.3.1	HD404344R and HD404394 Series Pin Functions	17
	1.3.2	HD404318/HD404358/HD404358R Series Pin Functions	23
	1.3.3	HD404339/HD404369 Series Pin Functions	31
Secti		Memory	39
2.1	Overvi	ew	39
2.2	ROM.		40
	2.2.1	Vector Address Area	40
	2.2.2	Zero Page Subroutine Area	40
	2.2.3	Pattern Area	40
	2.2.4	Program Area	41
2.3	RAM		43
	2.3.1	RAM Mapped Register Area	48
	2.3.2	Memory Register Area	57
	2.3.3	Data Area	58
	2.3.4	Stack Area	59
Secti	on 3	CPU	61
3.1	Overvi	ew	61
	3.1.1	Features	61
	3.1.2	Address Space	62
	3.1.3	Register Organization	63
3.2	CPU R	egisters	64
	3.2.1	Accumulator (A) and B Register (B)	64
	3.2.2	W Register (W), X Register (X), and Y Register (Y)	64
	3.2.3	SPX Register (SPX), SPY Register (SPY)	64
	3.2.4	Carry Flag (CA)	64
	3.2.5	Status Flag (ST)	64
	3.2.6	Program Counter (PC)	64
	3.2.7	Stack Pointer (SP)	65
3.3	Addres	sing Modes	65
	3.3.1	RAM Addressing Modes	65
	3.3.2	ROM Addressing Modes and the P Instruction	67
3.4	Process	sing States	70
	3.4.1	Overview	70

	3.4.2 F	Program Execution State	71
	3.4.3 E	Exception Handling State	72
	3.4.4 F	Program Stopped State	72
Secti	ion 4 Ex	xception Handling	73
4.1	Overview	V	73
4.2	Reset		74
	4.2.1 0	Dverview	74
	4.2.2 F	Reset Sequence	74
4.3	Stop Mod	de Clear	75
	4.3.1 0	Dverview	75
	4.3.2 S	Stop Mode Clear Sequence (RESET Pin Input)	75
	4.3.3 S	Stop Mode Clear Sequence (STOPC Pin Input)	75
4.4	Initial Va	alues of Registers and Flags on Reset and Stop Mode Clear	76
4.5	Interrupts	S	79
	4.5.1 0	Overview	79
	4.5.2 I	nterrupt Registers and Flags	80
	4.5.3 E	External Interrupts	88
	4.5.4 I	nternal Interrupts	88
	4.5.5 I	nterrupt Handling Sequence	89
Secti	ion 5 Lo	ow Power Modes (HD404344R/HD404394/HD404318	
	/	HD404358 /HD404358R Series)	95
5.1	Overview	v	95
	5.1.1 F	Features	95
	5.1.2 S	State Transition Diagram	97
	5.1.3 F	Pin Functions	97
	5.1.4 F	Registers and Flags	98
5.2	Register	and Flag Descriptions	99
	5.2.1 F	Port Mode Register B (PMRB: \$024)	99
	5.2.2 F	RAM Enable Flag (RAME: \$021, 3)	101
5.3	Standby 1	Mode	102
	5.3.1 E	Entering Standby Mode	102
	5.3.2	Clearing Standby Mode	102
5.4	Stop Mod	de	104
	5.4.1 E	Entering Stop Mode	104
	5.4.2 0	Clearing Stop Mode	104
	5.4.3 F	Post-Stop Mode Oscillator Stabilization Period	105
5.5	Low Pow	ver Mode Operating Sequence	105
Secti		ow Power Modes (HD404339 and HD404369 Series)	
6.1	Our	V	107
	Overview	v	107

	6.1.2	State Transition Diagram	109
	6.1.3	Pin Functions	110
	6.1.4	Registers and Flags	110
6.2	Registe	r and Flag Descriptions	111
	6.2.1	Miscellaneous Register (MIS: \$00C)	111
	6.2.2	System Clock Selection Register 1 (SSR1: \$027)	112
	6.2.3	Timer Mode Register A (TMA: \$008)	114
	6.2.4	Port Mode Register B (PMRB: \$024)	116
	6.2.5	Low Speed On Flag (LSON: \$020, 0)	117
	6.2.6	DTON Flag (DTON: \$020, 3)	119
	6.2.7	RAM Enable Flag (RAME: \$021, 3)	119
6.3	Standby	V Mode	120
	6.3.1	Entering Standby Mode	120
	6.3.2	Clearing Standby Mode	120
6.4	Stop M	ode	122
	6.4.1	Entering Stop Mode	122
	6.4.2	Clearing Stop Mode	122
	6.4.3	Post-Stop Mode Oscillator Stabilization Period	123
6.5	Watch	Mode	124
	6.5.1	Entering Watch Mode	124
	6.5.2	Clearing Watch Mode	124
	6.5.3	Post-Watch Mode Operating Timing	125
6.6	Subacti	ve Mode	126
	6.6.1	Entering Subactive Mode	126
	6.6.2	Clearing Subactive Mode	126
	6.6.3	System Timing when Switching Directly from Subactive Mode to Active Mode	127
6.7	Interrup	ot Frame	128
6.8	Low Po	wer Mode Operating Sequence	128
6.9	Usage l	Notes	130
Secti	on 7 l	/O Ports (HD404344R Series)	131
7.1	Overvie	2W	131
	7.1.1	Features	131
	7.1.2	I/O Control	133
	7.1.3	I/O Pin Circuit Structures	136
	7.1.4	Port States in Low Power Modes	139
	7.1.5	Handling Unused Pins	139
7.2	D Port.		140
	7.2.1	Overview	140
	7.2.2	Register Configuration and Descriptions	141
	7.2.3	Pin Functions	143
7.3	R Ports		144
	7.3.1	Overview	144

	7.3.2	Register Configuration and Descriptions	145
	7.3.3	Pin Functions	151
7.4	Usage	Notes	154
Secti	on 8	I/O Ports (HD404394 Series)	157
8.1	Overvi	ew	157
	8.1.1	Features	157
	8.1.2	I/O Control	159
	8.1.3	I/O Pin Circuit Structures	162
	8.1.4	Port States in Low Power Modes	166
	8.1.5	Handling Unused Pins	166
8.2	D Port.		167
	8.2.1	Overview	167
	8.2.2	Register Configuration and Descriptions	168
	8.2.3	Pin Functions	170
8.3	R Ports	5	171
	8.3.1	Overview	171
	8.3.2	Register Configuration and Descriptions	172
	8.3.3	Pin Functions	178
8.4	Usage	Notes	181
Secti	on 9	I/O Ports (HD404318 Series)	185
9.1	Overvi	ew	185
	9.1.1	Features	185
	9.1.2	I/O Control	188
	9.1.3	I/O Pin Circuit Structures	190
	9.1.4	Port States in Low Power Modes	195
	9.1.5	Handling Unused Pins	195
9.2	D Port.		196
	9.2.1	Overview	196
	9.2.2	Register Configuration and Descriptions	
	9.2.3	Pin Functions	201
9.3	R Ports	5	202
	9.3.1	Overview	202
	9.3.2	Register Configuration and Descriptions	204
	9.3.3	Pin Functions	211
9.4	Usage	Notes	214
Secti	on 10	I/O Ports (HD404358 and HD404358R Series)	217
10.1	Overvi	ew	217
	10.1.1	Features	217
	10.1.2	I/O Control	221
	10.1.3	I/O Pin Circuit Structures	223

	10.1.4	Port States in Low Power Modes	230
	10.1.5	Handling Unused Pins	230
10.2	D Port.		231
	10.2.1	Overview	231
	10.2.2	Register Configuration and Descriptions	232
	10.2.3	Pin Functions	237
10.3	R Ports		239
	10.3.1	Overview	239
	10.3.2	Register Configuration and Descriptions	241
		Pin Functions	
10.4	Usage 1	Notes	255
Secti	on 11	I/O Ports (HD404339 Series)	259
11.1		ew	
		Features	
		I/O Control	
		I/O Pin Circuit Structures	
		Port States in Low Power Modes	
		Handling Unused Pins	
11.2			
11.2		Overview	
		Register Configuration and Descriptions	
		Pin Functions	
11.3			
11.5		Overview	
		Register Configuration and Descriptions	
		Pin Functions	
114		Notes	
	U		
Secti	on 12	I/O Ports (HD404369 Series)	295
12.1	Overvi	ew	295
	12.1.1	Features	295
	12.1.2	I/O Control	298
	12.1.3	I/O Pin Circuit Structures	300
	12.1.4	Port States in Low Power Modes	304
	12.1.5	Handling Unused Pins	304
12.2	D Port.	-	305
	12.2.1	Overview	305
	12.2.2	Register Configuration and Descriptions	306
		Pin Functions	
12.3	R Ports		313
	12.3.1	Overview	313
	12.3.2	Register Configuration and Descriptions	315

	12.3.3	Pin Functions	323
12.4	Usage I	Notes	330
Secti	on 13	Oscillator Circuits (HD404344R/HD404394/HD404318	
		/HD404358/ HD404358R Series)	335
13.1	Overvie	ew	335
	13.1.1	Features	335
	13.1.2	Block Diagram	336
	13.1.3	Oscillator Circuit Pins	337
13.2	Oscilla	tor Connection and External Clock Input	338
13.3	Usage 1	Notes	340
Secti	on 14	Oscillator Circuits (HD404339 and HD404369 Series)	343
14.1		ew	
1		Features	
		Block Diagram	
		Oscillator Circuit Pins	
		Register and Flag Configuration	
14.2		r and Flag Descriptions	
17.2	-	System Clock Selection Register 1 (SSR1: \$027)	
		System Clock Selection Register 2 (SSR1: 4027)	
		Low Speed On Flag (LSON: \$020, 0)	
14.3		tor Connection and External Clock Input	
14.5		Notes	
14.4	Usage	NOIES	333
Secti	on 15	A/D Converter	355
15.1		ew	
13.1		Features	
		Block Diagram	
		-	
		Pin Configuration	
15.0		r and Flag Descriptions	
15.2	U		
		A/D Mode Register 1 (AMR1: \$019)	
		A/D Mode Register 2 (AMR2: \$01A)	
		A/D Data Register L, U (ADRL: \$017, ADRU: \$018)	
		A/D Channel Register (ACR: \$016)	
		A/D Start Flag (ADSF: \$020, 2)	
		IAD Off Flag (IAOF: \$021, 2)	
15.3		onverter Operation	
		A/D Conversion Operation	
		Low Power Mode Operation	
		A/D Converter Precision	
	15.3.4	Notes on the Analog Reference Power Supply	375

15.4	Interru	pts	375
15.5	Usage	Notes	376
15.6	Notes of	on Mounting Built-in A/D Converter Microcomputers	
	(HD40	4318 and HD404339 Series Only)	378
Secti	ion 16	Prescalers	
16.1		ew	
16.2		er S (PSS)	
16.3		er W (PSW) (HD404339 and HD404369 Series Only)	
Secti	ion 17	Timer A (HD404318/HD404358/HD404358R	
		/HD404339 /HD404369 Series)	389
17.1	Overvi	éw	
		Features	
	17.1.2	Block Diagram	390
		Register Configuration	
17.2		er Descriptions	
	-	Timer Mode Register A (TMA: \$008)	
		Timer Counter A (TCA)	
17.3		A Operation	
		Free-Running Timer Operation	
		Clock Time Base Operation	
17.4		pts	
17.5		Notes	
Secti	ion 18	Timer B	401
18.1	Overvi	ew	401
	18.1.1	Features	401
	18.1.2	Block Diagram	402
		Timer B Pins	
	18.1.4	Register Configuration	404
18.2	Registe	r Descriptions	405
	18.2.1	Timer Mode Register B1 (TMB1: \$009)	405
	18.2.2	Timer Mode Register B2 (TMB2: \$026)	409
	18.2.3	Timer Counter B (TCB)	410
	18.2.4	Timer Write Register TWBL/U (TWBL: \$00A, TWBU: \$00B)	411
	18.2.5	Timer Read Register TRBL/U (TRBL: \$00A, TRBU: \$00B)	412
	18.2.6	Port Mode Register B (PMRB: \$024)	413
	18.2.7	Input Capture Status Flag (ICSF: \$021, 0)	415
	18.2.8	Input Capture Error Flag (ICEF: \$021, 1)	415
18.3	Timer 1	B Operation	416
		Free-Running Timer	
	18.3.2	Reload Timer Operation	417

	18.3.3	External Event Counter Operation	417
	18.3.4	Input Capture Timer Operation	417
18.4	Interru	pts	418
18.5	Usage I	Notes	418
Secti	on 19	Timer C	419
19.1	Overvie	ew	419
	19.1.1	Features	419
	19.1.2	Block Diagram	420
	19.1.3	Timer C Pins	421
	19.1.4	Register Configuration	421
19.2	Registe	er Descriptions	422
	19.2.1	Timer Mode Register C (TMC: \$00D)	422
	19.2.2	Port Mode Register A (PMRA: \$004)	426
	19.2.3	Timer Counter C (TCC)	427
	19.2.4	Timer Write Register TWCL/U (TWCL: \$00E, TWCU: \$00F)	428
	19.2.5	Timer Read Register TRCL/U (TRCL: \$00E, TRCU: \$00F)	429
	19.2.6	Watchdog On Flag (WDON: \$020, 1)	430
19.3	Timer (C Operation	431
	19.3.1	Free-Running Timer Operation	431
	19.3.2	Reload Timer Operation	431
	19.3.3	PWM Output Operation	432
	19.3.4	Watchdog Timer Operation	432
19.4	Interrup	pts	433
19.5	Usage I	Notes	433
Secti	on 20	Serial Interface	435
20.1	Overvie	ew	435
	20.1.1	Features	435
	20.1.2	Block Diagram	436
	20.1.3	Serial Interface Pins	437
	20.1.4	Register Configuration	437
20.2	Registe	er Descriptions	438
		Serial Mode Register (SMR: \$005)	
	20.2.2	Serial Data Register SRL/U (SRL: \$006, SRU: \$007)	440
		Octal Counter (OC)	
	20.2.4	Port Mode Register A (PMRA: \$004)	442
	20.2.5	Port Mode Register C (PMRC: \$025)	443
		Miscellaneous Register (MIS: \$00C)	
20.3	Operati	ion	
	20.3.1	Operating Modes	
	20.3.2	Serial Data Format	
	20.3.3	Transfer Clock	448

	20.3.4	Operating States	448
	20.3.5	Transmission and Reception Operations	451
	20.3.6	High- or Low-Level Output Selection during Idle	468
	20.3.7	Transfer Clock Error Detection (External Clock Mode)	469
20.4	Interru	pts	471
20.5	Usage	Notes	471
Secti	ion 21	Alarm Output (HD404318/HD404358/HD404358R	
		/HD404339 /HD404369 Series)	473
21.1	Overvi	ew	473
	21.1.1	Features	473
		Block Diagram	
	21.1.3	Pin Functions	475
	21.1.4	Register Configuration	475
21.2	Registe	er Descriptions	476
		Port Mode Register A (PMRA: \$004)	
		Port Mode Register C (PMRC: \$025)	
21.3	Operat	ion	478
a .		2014	
		ROM	
22.1		ew	
22.2		Mode	
		PROM Mode	
		Socket Adapter Pin Correspondence and Memory Map	
22.3	-	mming	
		Write/Verify	
		PROM Programming Notes	
		Post-Programming Reliability	
22.4	Notes of	on Ordering ROM	500
C +			500
		RAM	
23.1		ew	
		Features	
22.2		RAM Memory Map	
		Enable Flag (RAME: \$021, 3)	
23.3	Usage	Notes	506
Secti	ion 24	Application Examples	507
24.1		he A/D Converter	
24.1	0	Fimer B	
2 7. 2	Using		517
Secti	ion 25	Electrical Characteristics	525
		344R Series	

	25.1.1	Absolute Maximum Ratings	525
	25.1.2	Electrical Characteristics	526
25.2	HD404	394 Series	536
	25.2.1	Absolute Maximum Ratings	536
	25.2.2	Electrical Characteristics	537
25.3	HD404	318 Series	548
	25.3.1	Absolute Maximum Ratings	548
	25.3.2	Electrical Characteristics	549
25.4	HD404	358/HD404358R Series	559
	25.4.1	Absolute Maximum Ratings	559
	25.4.2	Electrical Characteristics	561
25.5	HD404	339 Series	574
	25.5.1	Absolute Maximum Ratings	574
	25.5.2	Electrical Characteristics	575
25.6	HD404	369 Series	586
	25.6.1	Absolute Maximum Ratings	586
	25.6.2	Electrical Characteristics	587
Appe	endix A	Instruction Set	601
A.1	Instruct	ion Set Overview	601
A.2	Operati	on Code Map	609
Appe		Registers and Flags	
B .1	I/O Reg	gisters (1)	611
B.2	I/O Reg	gisters (2)	613
Appe	endix C	Option Lists	637
C.1	HD404	344R Series Option List	637
C.2	HD404	394 Series Option List	638
C.3	HD404	318 Series Option List	639
C.4	HD404	358 Series Option List	641
C.5	HD404	358R Series Option List	642
C.6	HD404	339 Series Option List	644
C.7	HD404	369 Series Option List	647
Appe	endix D	Package Dimensions	648

Section 1 Overview

1.1 Overview

The products in the HMCS43XX Family are 4-bit microcomputers that include an on-chip A/D converter with multiple input channels. The HMCS43XX Family encompasses an extensive product line of microcomputers that include an on-chip A/D converter in packages with from 28 to 64 pins. Figure 1-1 shows the structure of the HMCS43XX Family.

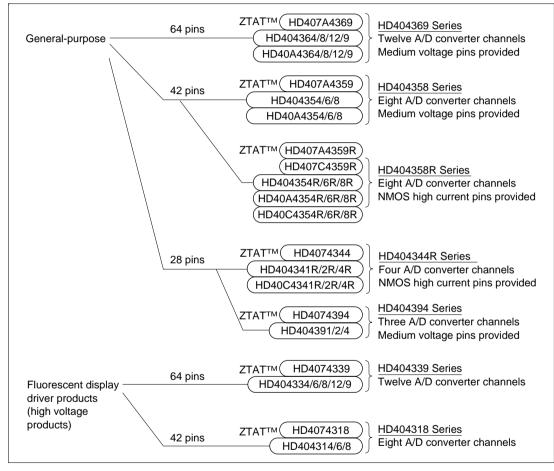
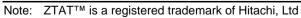


Figure 1-1 Structure of the HMCS43XX Family

Table 1-1 lists HMCS43XX Family product line, and table 1-2 lists the functions of those products.


Table 1-1Product Lineup

Series	ROM Ty	/pe	Product	Model	ROM (Words)	RAM (Digits)	Package
HD404344R	Mask	Standard	HD404341R	HD404341RS	1,024	256	DP-28S
Series	ROM	version		HD404341RFP			FP-28DA
				HD404341RFT	_		FP-30D
			HD404342R	HD404342RS	2,048	256	DP-28S
				HD404342RFP	_		FP-28DA
				HD404342RFT	_		FP-30D
			HD404344R	HD404344RS	4,096	256	DP-28S
				HD404344RFP			FP-28DA
				HD404344RFT	_		FP-30D
		CR version	HD40C4341R	HD40C4341RS	1,024	256	DP-28S
				HD40C4341RFP	_		FP-28DA
				HD40C4341RFT	_		FP-30D
			HD40C4342R	HD40C4342RS	2,048	256	DP-28S
				HD40C4342RFP	_		FP-28DA
				HD40C4342RFT	_		FP-30D
			HD40C4344R	HD40C4344RS	4,096	256	DP-28S
				HD40C4344RFP	_		FP-28DA
				HD40C4344RFT	_		FP-30D
	ZTAT™		HD4074344	HD4074344S	4,096	256	DP-28S
				HD4074344FP	-		FP-28DA
				HD4074344FT	_		FP-30D
HD404394	Mask R	ОМ	HD404391	HD404391S	1,024	256	DP-28S
Series				HD404391FP	_		FP-28DA
				HD404391FT			FP-30D
			HD404392	HD404392S	2,048	256	DP-28S
				HD404392FP	_		FP-28DA
				HD404392FT			FP-30D

Note: ZTAT[™] is a registered trademark of Hitachi, Ltd.

Series	ROM T	уре	Product	Model	ROM (Words)	RAM (Digits)	Package
HD404394	Mask F	ROM	HD404394	HD404394S	4,096	256	DP-28S
Series				HD404394FP			FP-28DA
				HD404394FT			FP-30D
	ZTAT™	и	HD4074394	HD4074394S	4,096	256	DP-28S
				HD4074394FP			FP-28DA
				HD4074394FT			FP-30D
HD404318	Mask F	ROM	HD404314	HD404314S	4,096	384	DP-42S
Series				HD404314H			FP-44A
			HD404316	HD404316S	6,144	384	DP-42S
				HD404316H			FP-44A
			HD404318	HD404318S	8,192	384	DP-42S
				HD404318H	_		FP-44A
	ZTAT™	и	HD4074318	HD4074318S	8,192	384	DP-42S
				HD4074318H			FP-44A
HD404358	Mask	5 MHz	HD404354	HD404354S	4,096	384	DP-42S
Series	ROM	version		HD404354H			FP-44A
			HD404356	HD404356S	6,144	384	DP-42S
				HD404356H			FP-44A
			HD404358	HD404358S	8,192	384	DP-42S
				HD404358H	_		FP-44A
		8.5 MHz	HD40A4354	HD40A4354S	4,096	384	DP-42S
		version		HD40A4354H			FP-44A
			HD40A4356	HD40A4356S	6,144	384	DP-42S
				HD40A4356H			FP-44A
			HD40A4358	HD40A4358S	8,192	384	DP-42S
				HD40A4358H			FP-44A
	ZTAT™	М	HD407A4359	HD407A4359S	16,384	512	DP-42S
				HD407A4359H			FP-44A

Table 1-1 Product Lineup (cont)

Series	ROM Ty	pe	Product	Model	ROM (Words)	RAM (Digits)	Package
HD404358R		5 MHz	HD404354R	HD404354RS	4,096	512	DP-42S
Series	ROM	version		HD404354RH			FP-44A
			HD404356R	HD404356RS	6,144	512	DP-42S
				HD404356RH	_		FP-44A
			HD404358R	HD404358RS	8,192	512	DP-42S
				HD404358RH	_		FP-44A
		8.5 MHz	HD40A4354R	HD40A4354RS	4,096	512	DP-42S
		version		HD40A4354RH			FP-44A
			HD40A4356R	HD40A4356RS	6,144	512	DP-42S
				HD40A4356RH	_		FP-44A
			HD40A4358R	HD40A4358RS	8,192	512	DP-42S
				HD40A4358RH	_		FP-44A
		CR version	HD40C4354R	HD40C4354RS	4,096	512	DP-42S
				HD40C4354RH	-		FP-44A
			HD40C4356R	HD40C4356RS	6,144	512	DP-42S
				HD40C4356RH	_		FP-44A
			HD40C4358R	HD40C4358RS	8,192	512	DP-42S
				HD40C4358RH	_		FP-44A
	ZTAT™	8.5 MHz	HD407A4359R	HD407A4359RS	16,384	512	DP-42S
		version		HD407A4359RH	_		FP-44A
		CR version	HD407C4359R	HD407C4359RS	16,384	512	DP-42S
		niotono d tro s		HD407C4359RH			FP-44A

Note: ZTAT[™] is a registered trademark of Hitachi, Ltd.

Table 1-1 Product Lineup (cont)

Series	ROM T	уре	Product	Model	ROM (Words)	RAM (Digits)	Package
HD404339	Mask R	ROM	HD404334	HD404334S	4,096	512	DP-64S
Series				HD404334FS			FP-64B
			HD404336	HD404336S	6,144	512	DP-64S
				HD404336FS			FP-64B
			HD404338	HD404338S	8,192	512	DP-64S
				HD404338FS			FP-64B
			HD4043312	HD4043312S	12,288	512	DP-64S
				HD4043312FS			FP-64B
			HD404339	HD404339S	16,384	512	DP-64S
				HD404339FS			FP-64B
	ZTAT™	И	HD4074339	HD4074339S	16,384	512	DP-64S
				HD4074339FS			FP-64B
HD404369	Mask	5 MHz	HD404364	HD404364S	4,096	512	DP-64S
Series	ROM	version		HD404364F			FP-64B
			HD404368	HD404368S	8,192	512	DP-64S
				HD404368F			FP-64B
			HD4043612	HD4043612S	12,288	512	DP-64S
				HD4043612F	_		FP-64B
			HD404369	HD404369S	16,384	512	DP-64S
				HD404369F			FP-64B
		8.5 MHz	HD40A4364	HD40A4364S	4,096	512	DP-64S
		version		HD40A4364F			FP-64B
			HD40A4368	HD40A4368S	8,192	512	DP-64S
				HD40A4368F			FP-64B
HD404369	Mask	8.5 MHz	HD40A43612	HD40A43612S	12,288	512	DP-64S
Series	ROM	version		HD40A43612F			FP-64B
			HD40A4369	HD40A4369S	16,384	512	DP-64S
				HD40A4369F			FP-64B
	ZTAT™	И	HD407A4369	HD407A4369S	16,384	512	DP-64S
				HD407A4369F			FP-64B

Note: ZTAT[™] is a registered trademark of Hitachi, Ltd.

				S	Specifications			
ltem		HD404344R Series	HD404394 Series	HD404318 Series	HD404358 Series	HD404358R Series	HD404339 Series	HD404369 Series
CPU		 Three RAM a Three RAM a Register Direct aa Four ROM a Four ROM a Direct aa Direct aa Zero pag Table da Finstruction All instruction 	ree RAM addressing modes Register indirect addressing Direct addressing Memory register addressing ur ROM addressing modes and the P instruction Direct addressing Current addressing Zero page addressing Table data addressing P instruction (ROM data reference instruction) nple and efficient instruction set instructions are executed in one or two cycles, except for the return instruction, which requires three cycles.	d the P instruction ence instruction) then or two cycles, exc	ept for the return ins	struction, which requi	res three cycles.	
ROM (words: 1 word =	16 k	I	I	I	HD407A4359	HD407A4359R HD407C4359R	HD404339 HD4074339 HD407A4369	HD404369 HD40A4369
10 bits)	12 k			1		1	HD4043312	HD4043612 HD40A43612
	8 ×	1	1	HD404318 HD4074318	HD404358 HD40A4358	HD404358R HD40A4358R HD40C4358R	HD404338	HD404368 HD40A4368
	0 ×	1		HD404316	HD404356 HD40A4356	HD404356R HD40A4356R HD40C4356R	HD404336	
	4 ×	HD404344R HD40C4344R HD4074344	HD404394 HD4074394	HD404314	HD404354 HD40A4354	HD404354R HD40A4354R HD40C4354R	HD404334	HD404364 HD40A4364
	2 k	HD404342R HD40C4342R	HD404392	I	I	I	I	I
	<u>۲</u>	HD404341R HD40C4341R	HD404391	1	1	1	1	

Table 1-2 HMCS43XX Family Functional Overview

HITACHI

6

				Specifications			
Item	HD404344R Series	HD404394 Series	HD404318 Series	HD404358 Series	HD404358R Series	HD404339 Series	HD404369 Series
RAM (digits: 1 digit = 4 bits)	256	256	384	384 (Mask ROM)/ 512 (ZTAT TM)	512	512	512
I/O ports	Total: 22 pins • Standard //O pins: 22 pins (NMOS high current pins: 10 pins)	Total: 21 pins • Standard I/O pins: 13 pins • Medium voltage NMOS open drain I/O pins: 3 pins • Standard voltage NMOS open drain high current I/O pins: 5 pins	Total: 34 pins • Standard I/O pins: 12 pin • High voltage I/O pins: 21 pins 1 pin 1 pin	Total: 34 pins • Standard I/O pins: 29 pins • Medium voltage I/O pins: 4 pins • Standard input pins: 1 pin	Total: 34 pins • Standard I/O pins: 33 pins (NMOS high current pins: 20 pins) • Standard input pins: 1 pin	Total: 54 pins • Standard I/O pins: 23 pins • High voltage I/O pins: 30 pins input pins: 1 pin	Total: 54 pins • Standard I/O pins: 45 pins • Medium voltage I/O pins: 8 pins • Standard input pins: 1 pin
A/D converter	Resistor ladder su Resolution: 8 bits Generates an intervalor Analog	er successive appro bits n interrupt at the end	Resistor ladder successive approximations A/D converter Resolution: 8 bits Generates an interrupt at the end of the A/D conversion period Anology Anology	erter on period		CL :strong	00000
	Analog inputs: 4 channels	Artalog inputs: 3 channels plus V _{ref} pin	Anarog inputs: o channels	1 and 1 and 1		Analog inputs. 12 channels	crames

Table 1-2 HMCS43XX Family Functional Overview (cont)

			S	Specifications			
ltem	HD404344R Series	HD404394 Series	HD404318 Series	HD404358 Series	HD404358R Series	HD404339 Series	HD404369 Series
Timer A	1	1	 Can be driven by any one of eight internal clocks generated by dividing the system clock. Generates an interrupt on overflow. 	, any one slocks iding the errupt on		 Can be driven by any one of eight internal clocks generated by dividing the system clock. Can be driven by any one of five internal clocks generated by dividing the 32.768 kHz oscillator. (clock time base) Generates an interrupt on overflow. 	any one locks ding the any one cks ding the ator.
Timer B	 Can be drive Event input d Generates ar 	Can be driven by any one of seven Event input detection on rising edge Generates an interrupt on overflow.		internal clocks generated by dividing th ss, falling edges, or falling/rising edge p Also supports input capture operation	e system clock or by airs	event input.	
Timer C	 Can be driven by any c Supports PVMM output. Can also function as a Generates an interrupt 	Can be driven by any one of eight interr Supports PWM output. Can also function as a watchdog timer. Generates an interrupt on overflow.	Can be driven by any one of eight internal clocks generated by dividing the system clock. Supports PVMM output. Can also function as a watchdog timer. Generates an interrupt on overflow.	srated by dividing the	system clock.		
Serial interface	••••	tel 8-bit clock synchr ternal clocks or an e the high/low level ou terrupts on transfer	Single channel 8-bit clock synchronization serial interface One of 13 internal clocks or an external clock can be used as the transfer clock. Can control the high/low level output state of the data transmission pin in idle mode. Generates interrupts on transfer complete and transfer interrupted.	ace lsed as the transfer o transmission pin in io r interrupted.	lock. Ile mode.		
Alarm output	1	I	 Outputs one of for system clock. 	 Outputs one of four frequencies generated by dividing the system clock. 	rated by dividing the		
Interrupts	External interrupt pins: 1 pin Internal interrupt sources: 4 sources Interrupt vectors: 5 locations	l interrupt pins: 1 pin interrupt sources: es t vectors: 5 locations	External interrupt pins: 2 pins Internal interrupt sources: 5 sources Interrupt vectors: 7 locations	ins: 2 pins ources: 5 sources locations			
Low power modes	 Standby mode Stop mode (ex 	tby mode mode (external stop mode clear input provided)	clear input provided)				
	1	1	1	1	1	Watch modeSubactive mode	

Table 1-2 HMCS43XX Family Functional Overview (cont)

8

				Specifications			
ltem	HD404344R Series	HD404394 Series	HD404318 Series	HD404358 Series	HD404358R Series	HD404339 Series	HD404369 Series
System clock	0.4 to 4.5 MHz 1.0 to 3.5 MHz	0.4 to 4.5 MHz 1.0 to 3.5 MHz	0.4 to 4.5 MHz	0.4 to 5.0 MHz, 0.4 to 8.5 MHz, 1.0 to	0.4 to 5.0 MHz, 0.4 to 8.5 MHz, 1.0 to	0.4 to 4.5 MHz	0.4 to 5.0 MHz, 0.4 to 8.5 MHz
Subsystem clock —	 	1		3.5 MHz 	3.5 MHz 	32.768 kHz	32.768 kHz

Table 1-2 HMCS43XX Family Functional Overview (cont)

1.2 Internal Block Diagrams

Figures 1-2 to 1-8 show the internal block diagrams for the HD404344R, HD404394, HD404318, HD404358, HD404358R, HD404339, and HD404369 series microcomputers.

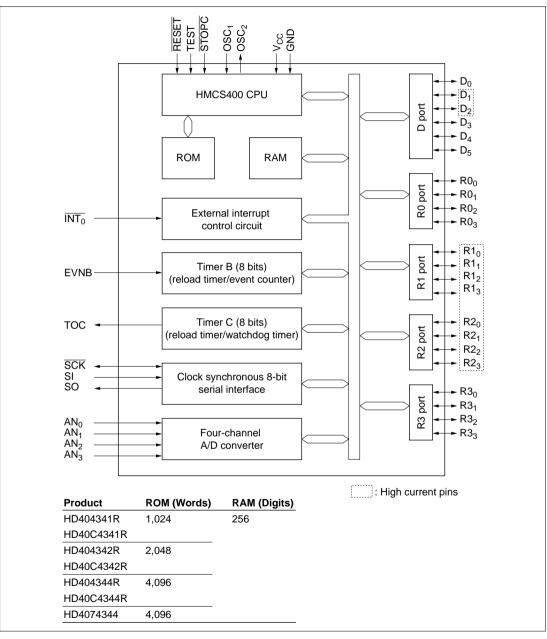


Figure 1-2 HD404344R Series Internal Block Diagram

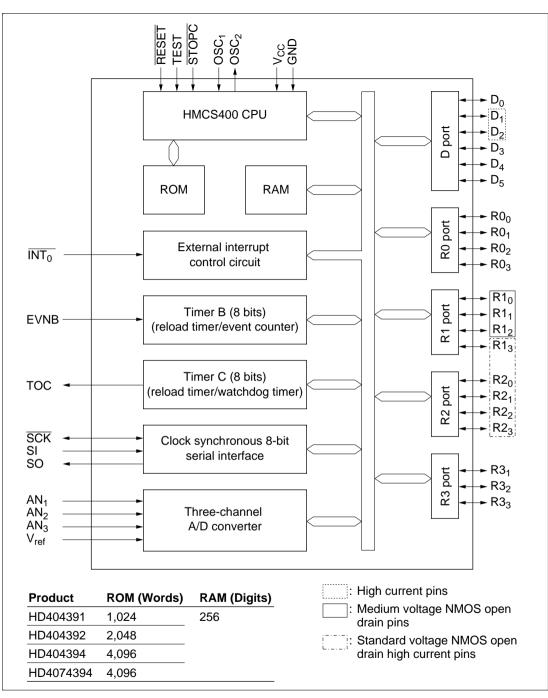


Figure 1-3 HD404394 Series Internal Block Diagram

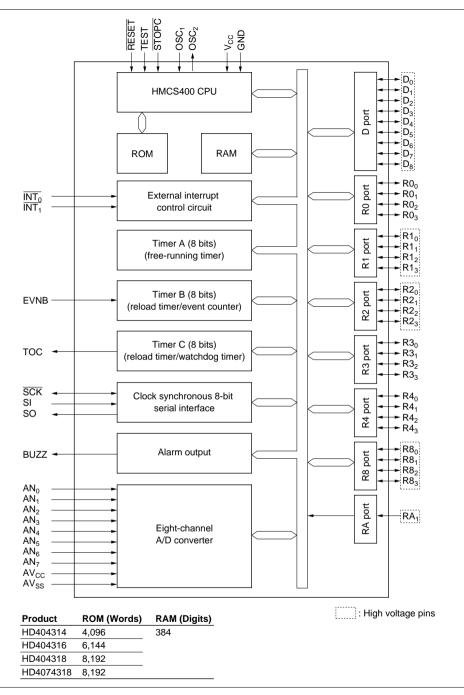


Figure 1-4 HD404318 Series Internal Block Diagram

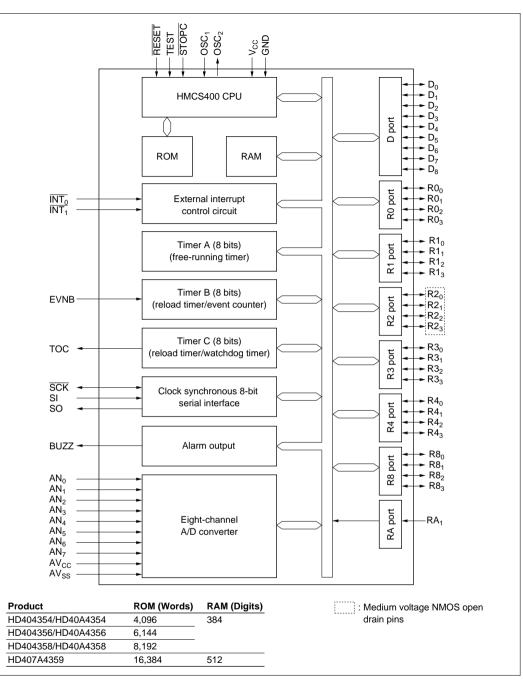


Figure 1-5 HD404358 Series Internal Block Diagram

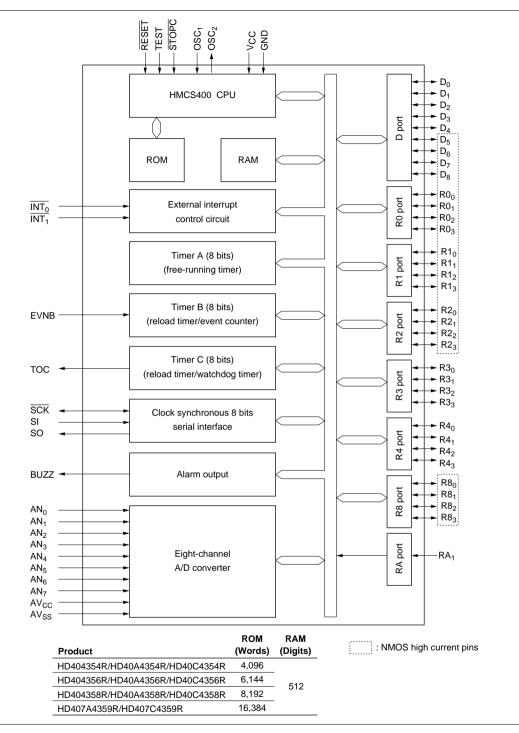


Figure 1-6 HD404358R Series Internal Block Diagram

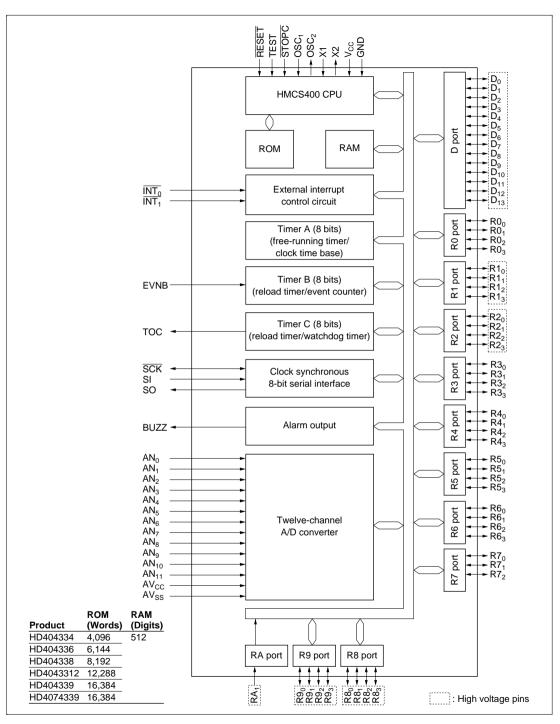


Figure 1-7 HD404339 Series Internal Block Diagram

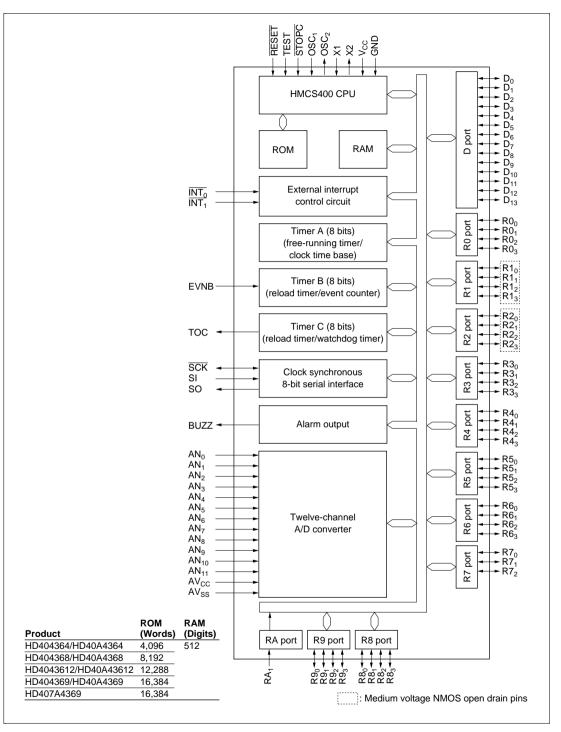


Figure 1-8 HD404369 Series Internal Block Diagram

1.3 Pin Functions

1.3.1 HD404344R and HD404394 Series Pin Functions

Figures 1-9 and 1-10 show the pin arrangements for the HD404344R and HD404394 Series products in the DP-28S, FP-28DA, and FP-30D packages.

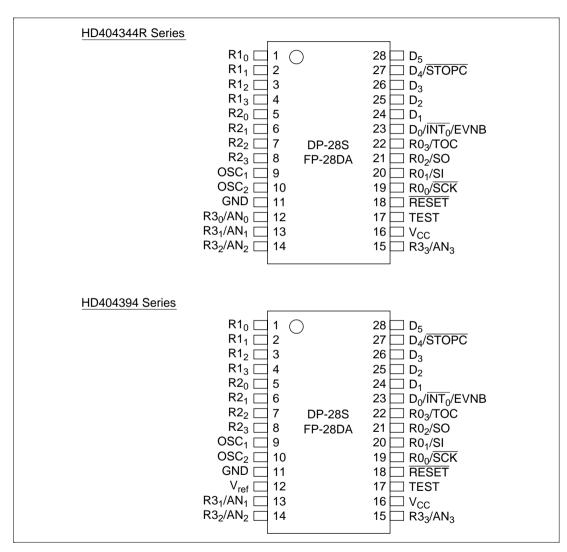
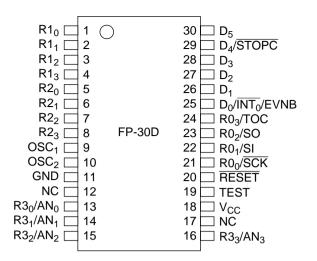



Figure 1-9 HD404344R and HD404394 Series Pin Arrangements (DP-28S and FP-28DA Packages: Top View)

HD404344R Series

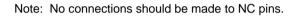


Figure 1-10 HD404344R and HD404394 Series Pin Arrangements (FP-30D Package: Top View)

Table 1-3 lists the pin assignments for the HD404344R and HD404394 Series microcomputers.

Pin No.		_	Pin Function		
DP-28S, FP-28DA	FP-30D	Pin	HD404344R Series	HD404394 Series	
1	1	$R1_0$	Standard voltage high current I/O port	Medium voltage I/O port	
2	2	R1 ₁	Standard voltage high current I/O port	Medium voltage I/O port	
3	3	R1 ₂	Standard voltage high current I/O port	Medium voltage I/O port	
4	4	R1 ₃	Standard voltage high current I/O port	Standard voltage high current I/O port	
5	5	R2 ₀	Standard voltage high current I/O port	Standard voltage high current I/O port	
6	6	R2 ₁	Standard voltage high current I/O port	Standard voltage high current I/O port	
7	7	R2 ₂	Standard voltage high current Standard voltage high c I/O port I/O port		
8	8	R2 ₃	Standard voltage high current I/O port	Standard voltage high current I/O port	
9	9	OSC ₁	System clock oscillator connect	ction: input	
10	10	OSC ₂	System clock oscillator connect	ction: output	
11	11	GND	Ground		
12	13	R3 ₀ /AN ₀ (V _{ref})*	Standard voltage I/O port/ analog input channel	Analog reference voltage	
13	14	R3 ₁ /AN ₁	Standard voltage I/O port/anal	og input channel	
14	15	R3 ₂ /AN ₂	Standard voltage I/O port/analog input channel		
15	16	R3 ₃ /AN ₃	Standard voltage I/O port/analog input channel		
16	18	V _{cc}	Power supply		
17	19	TEST	Test		
18	20	RESET	Reset		
19	21	R0₀/SCK	Standard voltage I/O port/seria	al transfer clock I/O	
20	22	R0 ₁ /SI	Standard voltage I/O port/seria	al reception data input	

 Table 1-3
 HD404344R and HD404394 Series Pin Assignments

Note: * Items without parentheses apply to the HD404344R Series and items in parentheses apply to the HD404394 Series.

Pin No.			Pin Function		
DP-28S, FP-28DA	FP-30D	– Pin	HD404344R Series	HD404394 Series	
21	23	R0 ₂ /SO	Standard voltage I/O po	rt/serial transmission data output	
22	24	R0 ₃ /TOC	Standard voltage I/O po	rt/timer C output	
23	25	D₀/ĪNT₀/ EVNB	Standard voltage I/O port/external interrupt input/timer B event input		
24	26	D ₁	Standard voltage high current I/O port		
25	27	D ₂	Standard voltage high c	urrent I/O port	
26	28	D ₃	Standard voltage I/O po	rt	
27	29	D₄/STOPC	Standard voltage I/O po	rt/stop mode clear	
28	30	D ₅	Standard voltage I/O port		
_	12	NC			
_	17	NC			

Table 1-3 HD404344R and HD404394 Series Pin Assignments (cont)

Note: No connections should be made to NC pins.

Table 1-4 lists the pin functions for the HD404344R and HD404394 Series microcomputers.

Туре	Symbol	I/O	Function
Power supply	V _{cc}	_	Power supply: Connect to the system power supply.
	GND		Ground: Connect to the system ground
	V _{ref}		Analog reference voltage (HD404394 Series): Connection for the A/D converter internal resistor ladder power supply.
Clock	OSC1	Input	System clock oscillator connection 1: Connect a ceramic oscillator or an oscillator circuit to this pin. Alternately, for CR oscillation a resistor should be connected. Use an oscillator with a clock frequency between 400 kHz and 4.5 MHz. See section 13, "Oscillator Circuits," for examples of the circuits used when connecting a ceramic oscillator or resistor, or when using an external clock input.
	OSC ₂	Output	System clock oscillator connection 2: Connect a ceramic oscillator to this pin. Use an oscillator with a frequency of between 400 kHz and 4.5 MHz. Alternately, for CR oscillation a resistor should be connected. Leave this pin open if an external clock is input to the OSC_1 pin.
Port	D_0 to D_5	I/O	D port: I/O pins (CMOS three state) that can be accessed in 1-bit units. Pins D_1 and D_2 are high current pins that can accept influx currents of up to 15 mA.
	$R0_0$ to $R0_3$	I/O	R0 port: Standard I/O pins (CMOS three state) that can be accessed as a 4-bit unit.
	$R1_0$ to $R1_3$	I/O	R1 port (HD404344R Series): I/O pins (CMOS three state) that can be accessed as a 4-bit unit. Pins $R1_0$ to $R1_3$ are high current pins that can accept influx currents of up to 15 mA.
			R1 port (HD404394 Series): I/O pins that can be accessed as a 4-bit unit. Pins $R1_0$ to $R1_2$ are medium voltage I/O pins (NMOS open drain). Also, pin $R1_3$ is a standard voltage high current pin that can accept influx currents of up to 15 mA.

Table 1-4HD404344R and HD404394 Series Pin Functions

Table 1-4 HD404344R and HD404394 Series Pin Functions (cont)

Туре	Symbol	I/O	Function
Port	$R2_0$ to $R2_3$	I/O	R2 port (HD404344R Series): I/O pins (CMOS three state) that can be accessed as a 4-bit unit. Pins $R2_0$ to $R2_3$ are high current pins that can accept influx currents of up to 15 mA.
			R2 port (HD404394 Series): I/O pins (NMOS open drain) that can be accessed as a 4-bit unit. Pins $R2_0$ to $R2_3$ are high current pins that can accept influx currents of up to 15 mA.
	$R3_{0}$ to $R3_{3}$, (R3_{1} to $R3_{3}$)*	I/O	R3 port: Standard I/O pins (CMOS three state) that can be accessed as a 4-bit (3-bit)* unit.
System control	TEST	Input	Test: Connect to ground.
	RESET	Input	Reset: The microcomputer goes to the reset state when a low level is applied to this pin.
	STOPC	Input	Stop mode clear: Input pin for clearing stop mode. The microcomputer switches from stop mode to active mode when a low level is applied to this pin.
Interrupt	ĪNT _o	Input	External interrupt input 0: Falling edge detection external interrupt input.
8-bit timers	TOC	Output	Timer C output: The timer C output. Generates a PWM output signal.
	EVNB	Input	Timer B event input: The timer B event input. External events can be counted on falling edges, rising edges, or falling/rising edge pairs in this input.
Serial interface	SCK	I/O	Serial transfer clock I/O: I/O pin for the serial interface clock.
	SI	Input	Serial reception data input: Data input pin for the serial interface.
	SO	Output	Serial transmission output: Data output pin for the serial interface.
A/D converter	AN_0 to AN_3 (AN_1 to AN_3)*	Input	Analog input channels 0 to 3 (HD404344R Series): Analog input channels for the A/D converter.
			Analog input channels 1 to 3 (HD404394 Series): Analog input channels for the A/D converter.

Note: * Items without parentheses apply to the HD404344R Series and items in parentheses apply to the HD404394 Series.

1.3.2 HD404318/HD404358/HD404358R Series Pin Functions

Figures 1-11 and 1-12 show the pin arrangements for the HD404318, HD404358 and HD404358R Series products in the DP-42S and FP-44A packages.

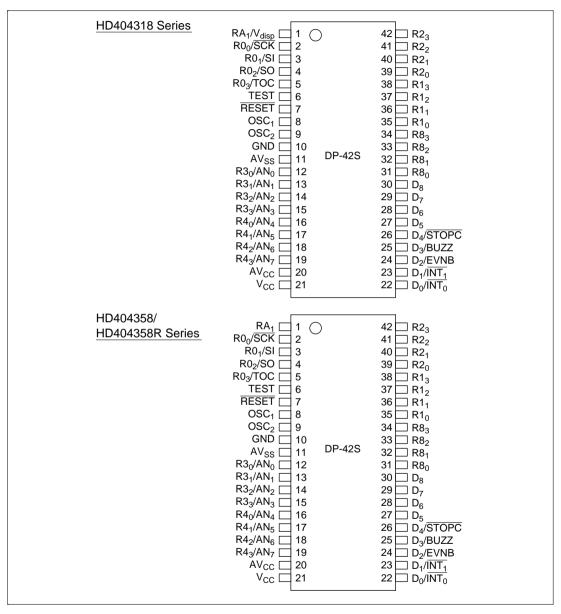


Figure 1-11 HD404318, HD404358 and HD404358R Series Pin Arrangements (DP-42S Package: Top View)

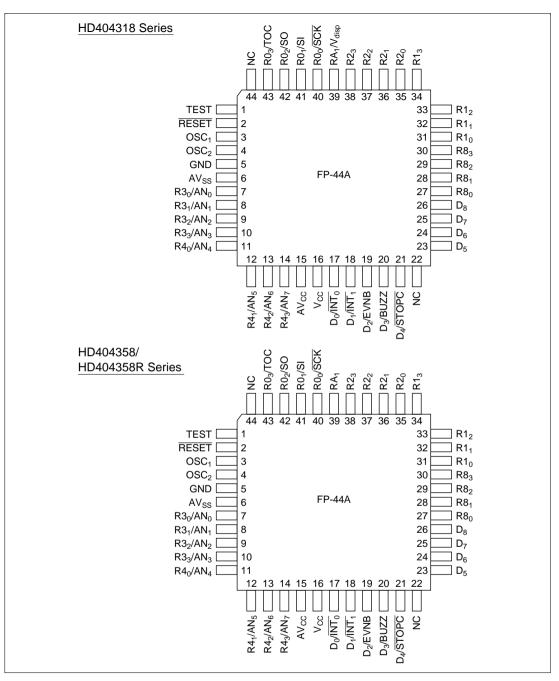


Figure 1-12 HD404318, HD404358 and HD404358R Series Pin Arrangements (FP-44A Package: Top View)

Table 1-5 lists the pin assignments for the HD404318, HD404358 and HD404358R Series microcomputers.

Pin No.				Pin Function		
DP-42S	FP-44A	Pin	HD404318 Series	HD404358 Series	HD404358R Series	
1	39	RA ₁ / (V _{disp})*		Standard voltage nput port		
2	40	R0₀/SCK	Standard voltage I/O po I/O	ort/serial transfer clock	Standard voltage high current I/O port/serial transfer clock I/O	
3	41	R0₁/SI	Standard voltage I/O po data input	ort/serial reception	Standard voltage high current I/O port/serial reception data input	
4	42	R0 ₂ /SO	Standard voltage I/O po data output	ort/serial transmission	Standard voltage high current I/O port/ serial transmission data output	
5	43	R0₃/TOC	Standard voltage I/O port/timer C output Standard voltage hig current I/O port/ timer C output			
6	1	TEST	Test			
7	2	RESET	Reset			
8	3	OSC ₁	System clock oscillator	connection: input		
9	4	OSC ₂	System clock oscillator	connection: output		
10	5	GND	Ground			
11	6	$\mathrm{AV}_{\mathrm{ss}}$	Analog ground			
12	7	R3 ₀ /AN ₀	Standard voltage I/O po	ort/analog input channe	el	
13	8	R3 ₁ /AN ₁	Standard voltage I/O po	ort/analog input channe	el	
14	9	R3 ₂ /AN ₂	Standard voltage I/O po	ort/analog input channe	el	
15	10	R3 ₃ /AN ₃	Standard voltage I/O po	ort/analog input channe	el	
16	11	R4 ₀ /AN ₄	Standard voltage I/O po	ort/analog input channe	el	
17	12	$R4_1/AN_5$	Standard voltage I/O po	ort/analog input channe	el	
18	13	R4 ₂ /AN ₆	Standard voltage I/O po	ort/analog input channe	el	
19	14	R4 ₃ /AN ₇	Standard voltage I/O po	ort/analog input channe	el	
20	15	AV _{cc}	Analog power supply			

Table 1-5 HD404318, HD404358 and HD404358R Series Pin Assignments

Note: * Items in parentheses apply only to the HD404318 Series.

Pin No. Pin Function DP-42S FP-44A Pin HD404318 Series HD404358 Series HD404358R Series V_{cc} 21 16 Power supply 22 17 D_0/\overline{INT}_0 High voltage I/O port/ Standard voltage I/O port/external interrupt external interrupt input input 23 18 D_1/\overline{INT}_1 High voltage I/O port/ Standard voltage I/O port/external interrupt external interrupt input input 24 19 D₂/EVNB High voltage I/O port/ Standard voltage I/O port/timer B event input timer B event input 25 20 D₃/BUZZ High voltage I/O port/ Standard voltage I/O port/alarm output alarm output D₄/ 26 21 High voltage I/O port/ Standard voltage I/O port/stop mode clear STOPC stop mode clear 27 23 High voltage I/O port Standard voltage I/O Standard voltage high D_5 current I/O port port 28 24 D High voltage I/O port Standard voltage I/O Standard voltage high port current I/O port 29 25 D_7 High voltage I/O port Standard voltage I/O Standard voltage high port current I/O port 30 26 D_8 High voltage I/O port Standard voltage I/O Standard voltage high port current I/O port 31 27 High voltage I/O port Standard voltage I/O Standard voltage high R8₀ current I/O port port 32 28 High voltage I/O port Standard voltage I/O Standard voltage high R8₁ current I/O port port 33 29 R8₂ High voltage I/O port Standard voltage I/O Standard voltage high port current I/O port 34 30 R8₃ High voltage I/O port Standard voltage I/O Standard voltage high current I/O port port 35 31 High voltage I/O port Standard voltage I/O Standard voltage high R1₀ port current I/O port 36 32 R1₁ High voltage I/O port Standard voltage I/O Standard voltage high current I/O port port 37 33 $R1_2$ High voltage I/O port Standard voltage I/O Standard voltage high current I/O port port 38 34 R1₃ High voltage I/O port Standard voltage I/O Standard voltage high port current I/O port

Table 1-5 HD404318, HD404358 and HD404358R Series Pin Assignments (cont)

Note: No connections should be made to NC pins.

Pin	No.			Pin Function	
DP-42S	FP-44A	Pin	HD404318 Series	HD404358 Series	HD404358R Series
39	35	R2 ₀	High voltage I/O port	Medium voltage I/O port	Standard voltage high current I/O port
40	36	R2 ₁	High voltage I/O port	Medium voltage I/O port	Standard voltage high current I/O port
41	37	R2 ₂	High voltage I/O port	Medium voltage I/O port	Standard voltage high current I/O port
42	38	R2 ₃	High voltage I/O port	Medium voltage I/O port	Standard voltage high current I/O port
_	22	NC	_		_
_	44	NC	_	·	_

Table 1-5HD404318, HD404358 and HD404358R Series Pin Assignments (cont)

Note: No connections should be made to NC pins.

Table 1-6 lists the pin functions for the HD404318, HD404358 and HD404358R Series microcomputers.

Туре	Symbol	I/O	Function
Power supply	V _{cc}	—	Power supply: Connect to the system power supply.
	GND		Ground: Connect to the system ground
	AV _{cc}		Analog power supply: The A/D converter power supply connection. Connect to a potential identical to that of V _{cc} at a point as close as possible to the V _{cc} pin. Note that a bypass capacitor (about 0.1 µF) should be connected between the AV _{cc} pin and the AV _{ss} pin if a power supply separate from the V _{cc} power supply is used for the A/D converter power supply. This capacitor is not required if the AV _{cc} pin is connected directly to the V _{cc} pin.
	AV _{ss}	_	Analog ground: The A/D converter ground connection. Connect to a potential identical to that of GND at a point as close as possible to the GND pin.
	V_{disp}	_	High voltage pin output power supply (HD404318 Series): Used as the output power supply by the high voltage pins.
Clock	OSC1	Input	System clock oscillator connection 1: Connect a ceramic or crystal oscillator, or an external oscillator circuit. Use an oscillator or clock with a frequency of between 400 kHz and 4.5 MHz for the HD404318 and a frequency between 400 kHz and 8.5 MHz for the HD404358/HD404358R. Alternately, for CR oscillation* a resistor should be connected. See section 13, "Oscillator Circuits" for examples of the circuits used when a ceramic or crystal oscillator, a resistor, or an external clock is used.
	OSC ₂	Output	System clock oscillator connection 2: Connect a ceramic or crystal oscillator to this pin. Use an oscillator with a frequency of between 400 kHz and 4.5 MHz for the HD404318 and a frequency between 400 kHz and 8.5 MHz for the HD404358/HD404358R. Alternately, for CR oscillation* a resistor should be connected. Leave this pin open if an external clock is input to the OSC ₁ pin.

Table 1-6 HD404318, HD404358 and HD404358R Series Pin Functions

Table 1-6HD404318, HD404358 and HD404358R Series Pin Functions (cont)

Туре	Symbol	I/O	Function
Port	D_0 to D_8	I/O	High voltage D port (HD404318 Series): High voltage I/O pins (PMOS open drain) that can be accessed in 1-bit units.
			D port (HD404358 Series): Standard voltage I/O pins (CMOS three state) that can be accessed in 1-bit units.
			D port (HD404358R Series): Standard voltage I/O pins (CMOS three state) that can be accessed in 1-bit units. Pins D_5 to D_8 are high-current pins (CMOS three state) capable of handling current levels of up to 15 mA.
	$R0_0$ to $R0_3$	I/O	R0 port: Standard voltage I/O pins (CMOS three state) that can be accessed as a 4-bit unit.
			R0 port (HD404358R Series): Standard voltage high current I/O pins (CMOS three state) that can be accessed as a 4-bit unit. Pins $R0_0$ to $R0_3$ are high - current pins capable of handling current levels of up to 15 mA.
	$R1_0$ to $R1_3$	I/O	High voltage R1 port (HD404318 Series): High voltage I/O pins (PMOS open drain) that can be accessed as a 4-bit unit.
			R1 port (HD404358 Series): Standard voltage I/O pins (CMOS three state) that can be accessed as a 4-bit unit.
			R1 port (HD404358R Series): Standard voltage high current I/O pins that can be accessed as a 4-bit unit. Pins $R1_0$ to $R1_3$ are high-current pins (CMOS three state) capable of handling current levels of up to 15 mA.
	$R2_0$ to $R2_3$	I/O	High voltage R2 port (HD404318 Series): High voltage I/O pins (PMOS open drain) that can be accessed as a 4-bit unit.
			Medium voltage R2 port (HD404358 Series): Medium voltage I/O pins (NMOS open drain) that can be accessed as a 4-bit unit.
			R2 port (HD404358R Series): Standard voltage high current I/O pins that can be accessed as a 4-bit unit. Pins $R2_0$ to $R2_3$ are high-current pins (CMOS three state) capable of handling current levels of up to 15 mA.
	$R3_0$ to $R3_3$	I/O	R3 port: Standard voltage I/O pins (CMOS three state) that can be accessed as a 4-bit unit.
	$R4_0$ to $R4_3$	I/O	R4 port: Standard voltage I/O pins (CMOS three state) that can be accessed as a 4-bit unit.

Table 1-6 HD404318, HD404358 and HD404358R Series Pin Functions (cont)

Туре	Symbol	I/O	Function
Port	$R8_0$ to $R8_3$	I/O	High voltage R8 port (HD404318 Series): High voltage I/O pins (PMOS open drain) that can be accessed as a 4-bit unit.
			R8 port (HD404358 Series): Standard voltage I/O pins (CMOS three state) that can be accessed as a 4-bit unit.
			R8 port (HD404358R Series): Standard voltage large current I/O pins that can be accessed as a 4-bit unit. Pins $R8_0$ to $R8_3$ are high-current pins (CMOS three state) capable of handling current levels of up to 15 mA.
	RA ₁	Input	High voltage RA port (HD404318 Series): Single bit high voltage input pin.
			RA port (HD404358/HD404358R Series): Single bit standard input pin.
System control	TEST	Input	Test: Connect to ground.
	RESET	Input	Reset: The microcomputer goes to the reset state when a low level is applied to this pin.
	STOPC	Input	Stop mode clear: Input pin for clearing stop mode. The microcomputer switches from stop mode to active mode when a low level is applied to this pin.
Interrupt	\overline{INT}_{0} , \overline{INT}_{1}	Input	External interrupts 0 and 1: Falling edge detection external interrupt inputs.
Alarm	BUZZ	Output	Alarm output: Output pin for the alarm output.
8-bit timers	тос	Output	Timer C output: The timer C output.
	EVNB	Input	Timer B event input: The timer B event input. External events can be counted on falling edges, rising edges, or falling/rising edge pairs in this input. This pin can also be used as an input capture trigger.
Serial interface	SCK	I/O	Serial transfer clock I/O: I/O pin for the serial interface clock.
	SI	Input	Serial reception data input: Data input pin for the serial interface.
	SO	Output	Serial transmission output: Data output pin for the serial interface.
A/D converter	AN_0 to AN_7	Input	Analog input channels 0 to 7: Analog input channels for the A/D converter.

Note: * Apply to the HD404358R Series.

1.3.3 HD404339/HD404369 Series Pin Functions

Figures 1-13 and 1-14 show the pin arrangements for the HD404339 and HD404369 Series products in the DP-64S, and FP-64B packages.

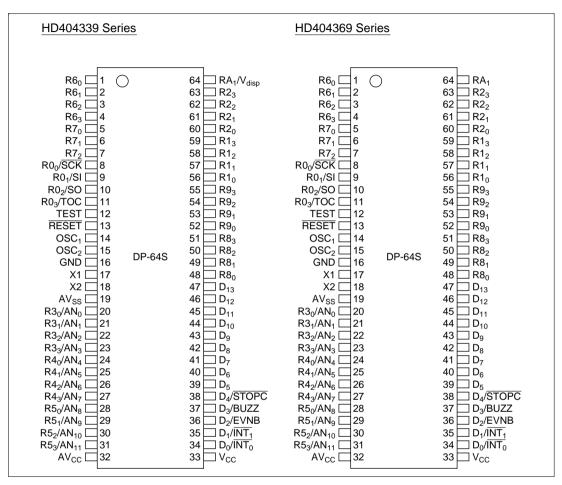


Figure 1-13 HD404339 and HD404369 Series Pin Arrangements (DP-64S Package: Top View)

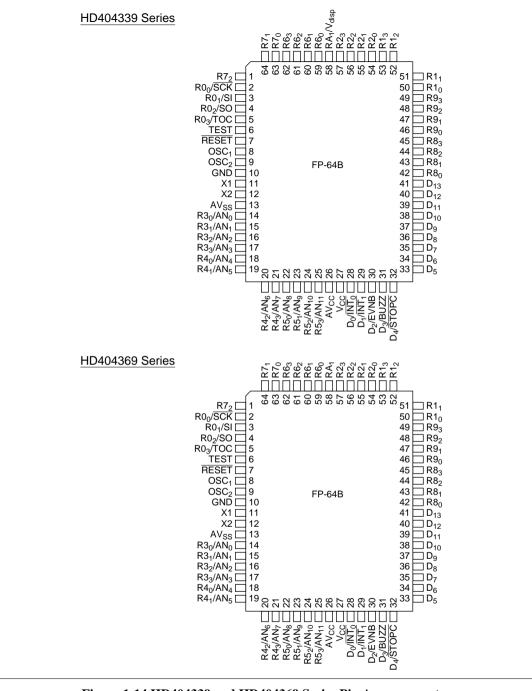


Figure 1-14 HD404339 and HD404369 Series Pin Arrangements (FP-64B Package: Top View)

Table 1-7 lists the pin assignments for the HD404339 and HD404369 Series microcomputers.

 Table 1-7
 HD404339 and HD404369 Series Pin Assignments

Pin No.			Pir	n Function	
DP-64S	FP-64B	Pin	HD404339 Series HD404369 Series		
1	59	R6 ₀	Standard voltage I/O port		
2	60	R6₁	Standard voltage I/O port		
3	61	R6 ₂	Standard voltage I/O port		
4	62	R6 ₃	Standard voltage I/O port		
5	63	R7 ₀	Standard voltage I/O port		
6	64	R7 ₁	Standard voltage I/O port		
7	1	R7 ₂	Standard voltage I/O port		
8	2	R0₀/SCK	Standard voltage I/O port/se	erial transfer clock I/O	
9	3	R0₁/SI	Standard voltage I/O port/se	erial reception data input	
10	4	R0 ₂ /SO	Standard voltage I/O port/se	erial transmission data output	
11	5	R0 ₃ /TOC	Standard voltage I/O port/tir	ner C output	
12	6	TEST	Test		
13	7	RESET	Reset		
14	8	OSC ₁	System clock oscillator conr	nection: input	
15	9	OSC ₂	System clock oscillator conr	nection: output	
16	10	GND	Ground		
17	11	X1	Subsystem clock oscillator of	connection: input	
18	12	X2	Subsystem clock oscillator of	connection: output	
19	13	AV _{ss}	Analog ground		
20	14	R3 ₀ /AN ₀	Standard voltage I/O port/ar	nalog input channel	
21	15	R3 ₁ /AN ₁	Standard voltage I/O port/ar	nalog input channel	
22	16	R3 ₂ /AN ₂	Standard voltage I/O port/ar	nalog input channel	
23	17	R3 ₃ /AN ₃	Standard voltage I/O port/analog input channel		
24	18	R4 ₀ /AN ₄	Standard voltage I/O port/analog input channel		
25	19	$R4_1/AN_5$	Standard voltage I/O port/analog input channel		
26	20	R4 ₂ /AN ₆	Standard voltage I/O port/analog input channel		
27	21	R4 ₃ /AN ₇	Standard voltage I/O port/ar	nalog input channel	
28	22	R5 ₀ /AN ₈	Standard voltage I/O port/ar	nalog input channel	

Pin No. **Pin Function** DP-64S FP-64B Pin HD404339 Series HD404369 Series 29 23 R5₁/AN_o Standard voltage I/O port/analog input channel 30 24 R5₂/AN₁₀ Standard voltage I/O port/analog input channel 31 25 R5₃/AN₁₁ Standard voltage I/O port/analog input channel AV_{cc} 32 26 Analog power supply 33 27 V_{cc} Power supply 34 D_0/\overline{INT}_0 High voltage I/O port/ Standard voltage I/O port/ 28 external interrupt input external interrupt input 35 29 D_1/\overline{INT}_1 High voltage I/O port/ Standard voltage I/O port/ external interrupt input external interrupt input 36 30 D₂/EVNB Standard voltage I/O port/ High voltage I/O port/ timer B event input timer B event input 37 31 D₃/BUZZ High voltage I/O port/ Standard voltage I/O port/ alarm output alarm output 38 32 D./STOPC High voltage I/O port/ Standard voltage I/O port/ stop mode clear stop mode clear 33 High voltage I/O port Standard voltage I/O port 39 D₅ 40 34 D_6 High voltage I/O port Standard voltage I/O port Standard voltage I/O port 41 35 D_7 High voltage I/O port High voltage I/O port Standard voltage I/O port 42 36 D_8 43 37 D。 High voltage I/O port Standard voltage I/O port 44 38 High voltage I/O port Standard voltage I/O port D_{10} 45 39 High voltage I/O port Standard voltage I/O port D₁₁ 46 40 D_{12} High voltage I/O port Standard voltage I/O port 47 41 D₁₃ High voltage I/O port Standard voltage I/O port 48 42 R8₀ High voltage I/O port Standard voltage I/O port 49 43 R8₁ High voltage I/O port Standard voltage I/O port $R8_2$ 50 44 High voltage I/O port Standard voltage I/O port 51 45 R8₃ High voltage I/O port Standard voltage I/O port R9₀ 52 High voltage I/O port 46 Standard voltage I/O port 47 R9₁ 53 High voltage I/O port Standard voltage I/O port R9₂ 54 48 High voltage I/O port Standard voltage I/O port

Table 1-7HD404339 and HD404369 Series Pin Assignments (cont)

Pin No.			Pin Function		
DP-64S	FP-64B	Pin	HD404339 Series	HD404369 Series	
55	49	R9 ₃	High voltage I/O port	Standard voltage I/O port	
56	50	R1 ₀	High voltage I/O port	Medium voltage I/O port	
57	51	R1₁	High voltage I/O port	Medium voltage I/O port	
58	52	R1 ₂	High voltage I/O port	Medium voltage I/O port	
59	53	R1 ₃	High voltage I/O port Medium voltage I/O port		
60	54	R2 ₀	High voltage I/O port Medium voltage I/O port		
61	55	R2 ₁	High voltage I/O port Medium voltage I/O port		
62	56	R2 ₂	High voltage I/O port	Medium voltage I/O port	
63	57	R2 ₃	High voltage I/O port	Medium voltage I/O port	
64	58	RA₁/ (Vdisp)*	High voltage input port/ high voltage pin output power supply	Standard voltage input port	

Table 1-7 HD404339 and HD404369 Series Pin Assignments (cont)

Note: * Items in parentheses apply only to the HD404339 Series.

Table 1-8 lists the pin functions for the HD404339 and HD404369 Series microcomputers.

Туре	Symbol	I/O	Function
Power supply	V _{cc}	_	Power supply: Connect to the system power supply.
	GND		Ground: Connect to the system ground
	AV _{cc}		Analog power supply: The A/D converter power supply connection. Connect to a potential identical to that of V _{cc} at a point as close as possible to the V _{cc} pin. Note that a bypass capacitor (about 0.1 μ F) should be connected between the AV _{cc} pin and the AV _{ss} pin if a power supply separate from the V _{cc} power supply is used for the A/D converter power supply. This capacitor is not required if the AV _{cc} pin is connected directly to the V _{cc} pin.
	AV _{ss}	—	Analog ground: The A/D converter ground connection. Connect to a potential identical to that of GND at a point as close as possible to the GND pin.
	V_{disp}	_	High voltage pin output power supply (HD404339 Series): Used as the output power supply by the high voltage pins.
Clock	OSC1	Input	System clock oscillator connection 1: Connect a ceramic or crystal oscillator to this pin. Alternatively, an external clock signal may be input to this pin. Use an oscillator or clock with a frequency of between 400 kHz and 4.5 MHz for the HD404339 and a frequency between 400 kHz and 8.5 MHz for the HD404369. See section 14, "Oscillator Circuits" for examples of the circuits used when a ceramic or crystal oscillator or an external clock is used.
	OSC ₂	Output	System clock oscillator connection 2: Connect a ceramic or crystal oscillator to this pin. Use an oscillator with a frequency of between 400 kHz and 4.5 MHz for the HD404339 and a frequency between 400 kHz and 8.5 MHz for the HD404369. Leave this pin open if an external clock is input to the OSC ₁ pin.
	X1	Input	Subsystem clock oscillator connection 1: Connect a 32.768 kHz crystal oscillator to this pin. Tie this pin to ground if the subsystem clock is not used.
	X2	Output	Subsystem clock oscillator connection 2: Connect a 32.768 kHz crystal oscillator to this pin. Leave this pin open if the subsystem clock is not used.

Table 1-8HD404339 and HD404369 Series Pin Functions

Table 1-8 HD404339 and HD404369 Series Pin Functions (cont)

Туре	Symbol	I/O	Function
Port	D_0 to D_{13}	I/O	High voltage D port (HD404339 Series): High voltage I/O pins (PMOS open drain) that can be accessed in 1-bit units.
			D port (HD404369 Series): Standard I/O pins (CMOS three state) that can be accessed in 1-bit units.
	$R0_0$ to $R0_3$	I/O	R0 port: Standard I/O pins (CMOS three state) that can be accessed as a 4-bit unit.
	$R1_0$ to $R1_3$	I/O	High voltage R1 port (HD404339 Series): High voltage I/O pins (PMOS open drain) that can be accessed as a 4-bit unit.
			Medium voltage R1 port (HD404369 Series): Medium voltage I/O pins (NMOS open drain) that can be accessed as a 4-bit unit.
	$R2_0$ to $R2_3$	I/O	High voltage R2 port (HD404339 Series): High voltage I/O pins (PMOS open drain) that can be accessed as a 4-bit unit.
			Medium voltage R2 port (HD404369 Series): Medium voltage I/O pins (NMOS open drain) that can be accessed as a 4-bit unit.
	$R3_0$ to $R3_3$	I/O	R3 port: Standard I/O pins (CMOS three state) that can be accessed as a 4-bit unit.
	$R4_0$ to $R4_3$	I/O	R4 port: Standard I/O pins (CMOS three state) that can be accessed as a 4-bit unit.
	$R5_0$ to $R5_3$	I/O	R5 port: Standard I/O pins (CMOS three state) that can be accessed as a 4-bit unit.
	$R6_0$ to $R6_3$	I/O	R6 port: Standard I/O pins (CMOS three state) that can be accessed as a 4-bit unit.
	$R7_0$ to $R7_2$	I/O	R7 port: Three-bit standard I/O pins (CMOS three state).
	$R8_0$ to $R8_3$	I/O	High voltage R8 port (HD404339 Series): High voltage I/O pins (PMOS open drain) that can be accessed as a 4-bit unit.
			R8 port (HD404369 Series): Standard I/O pins (CMOS three state) that can be accessed as a 4-bit unit.
	$R9_0$ to $R9_3$	I/O	High voltage R9 port (HD404339 Series): High voltage I/O pins (PMOS open drain) that can be accessed as a 4-bit unit.
			R9 port (HD404369 Series): Standard I/O pins (CMOS three state) that can be accessed as a 4-bit unit.

Туре	Symbol	I/O	Function
Port	RA_1	Input	High voltage RA port (HD404339 Series): Single bit high voltage input pin.
			RA port (HD404369 Series): Single bit standard input pin.
System control	TEST	Input	Test: Connect to ground.
	RESET	Input	Reset: The microcomputer goes to the reset state when a low level is applied to this pin.
	STOPC	Input	Stop mode clear: Input pin for clearing stop mode. The microcomputer switches from stop mode to active mode when a low level is applied to this pin.
Interrupt	\overline{INT}_0 , \overline{INT}_1	Input	External interrupts 0 and 1: Falling edge detection external interrupt inputs.
Alarm	BUZZ	Output	Alarm output: Output pin for the alarm output.
8-bit timers	TOC	Output	Timer C output: The timer C output.
	EVNB	Input	Timer B event input: The timer B event input. External events can be counted on falling edges, rising edges, or falling/rising edge pairs in this input. This pin can also be used as an input capture trigger.
Serial interface	SCK	I/O	Serial transfer clock I/O: I/O pin for the serial interface clock.
	SI	Input	Serial reception data input: Data input pin for the serial interface.
	SO	Output	Serial transmission output: Data output pin for the serial interface.
A/D converter	AN_0 to AN_{11}	Input	Analog input channels 0 to 11: Analog input channels for the A/D converter.

Table 1-8 HD404339 and HD404369 Series Pin Functions (cont)

Section 2 Memory

2.1 Overview

Table 2-1 lists ROM and RAM capacities of the products in the HMCS43XX Family.

Series	Product	ROM	RAM
HD404344R	HD404341R/HD40C4341R	1,024 words	256 digits
	HD404342R/HD40C4342R	2,048 words	
	HD404344R/HD40C4344R	4,096 words	
	HD4074344	4,096 words	
HD404394	HD404391	1,024 words	256 digits
	HD404392	2,048 words	
	HD404394	4,096 words	
	HD4074394	4,096 words	
HD404318	HD404314	4,096 words	384 digits
	HD404316	6,144 words	
	HD404318	8,192 words	
	HD4074318	8,192 words	
HD404358	HD404354/HD40A4354	4,096 words	384 digits
	HD404356/HD40A4356	6,144 words	
	HD404358/HD40A4358	8,192 words	
	HD407A4359	16,384 words	512 digits
HD404358R	HD404354R/HD40A4354R/HD40C4354R	4,096 words	512 digits
	HD404356R/HD40A4356R/HD40C4356R	6,144 words	
	HD404358R/HD40A4358R/HD40C4358R	8,192 words	
	HD407A4359R	16,384 words	
	HD407C4359R	16,384 words	

Table 2-1ROM and RAM Capacities

Note: 1 word: 10 bits

1 digit: 4 bits

Series	Product	ROM	RAM
HD404339	HD404334	4,096 words	512 digits
	HD404336	6,144 words	
	HD404338	8,192 words	
	HD4043312	12,288 words	
	HD404339	16,384 words	
	HD4074339	16,384 words	
HD404369	HD404364/HD40A4364	4,096 words	512 digits
	HD404368/HD40A4368	8,192 words	
	HD4043612/HD40A43612	12,288 words	
	HD404369/HD40A4369	16,384 words	
	HD407A4369	16,384 words	

Table 2-1 ROM and RAM Capacities (cont)

Note: 1 word: 10 bits

1 digit: 4 bits

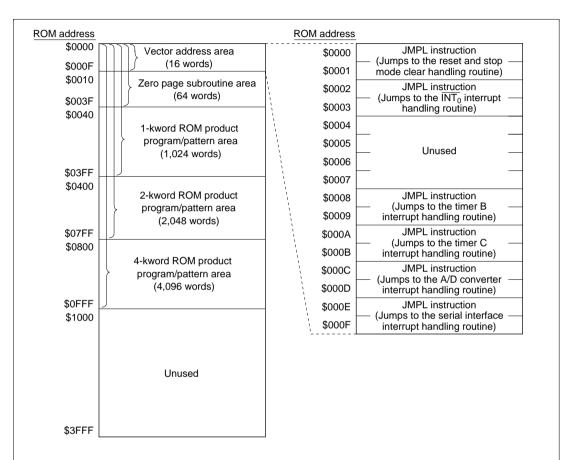
2.2 ROM

2.2.1 Vector Address Area

The vector address area is allocated to ROM addresses \$0000 to \$000F. On a reset, when stop mode is cleared, or when an interrupt is handled, the processor executes the instruction at one of eight fixed vector addresses depending on the particular exception handling factor involved. Therefore, user software should specify a JMPL instruction (the unconditional long jump instruction: two words) that branches to the start of the appropriate reset, stop mode clear, or interrupt handling routine at each of these vector addresses. (See figures 2-1 and 2-2.)

2.2.2 Zero Page Subroutine Area

The zero page subroutine area is allocated to ROM addresses \$0000 to \$003F. User programs can make conditional subroutine calls to arbitrary addresses in this area with the CAL instruction.


2.2.3 Pattern Area

The pattern area is allocated to ROM addresses \$0000 to \$0FFF. User programs can move ROM bit patterns (8 bits) in this area either to the R1 and R2 port data register pair or to the accumulator and B register pair with the P instruction.

2.2.4 Program Area

All of the ROM address space can be used as program area.

Figure 2-1 shows the ROM memory map for the microcomputers in the HD404344R and HD404394 Series.

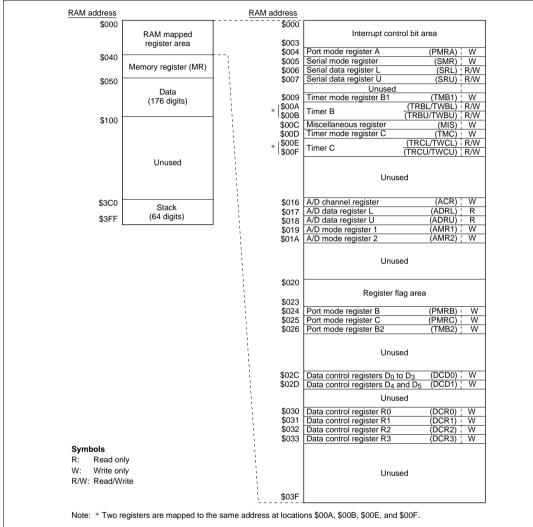
Note: The program/pattern area differs between different products in these series.

ROM	Prod	Product		n Area	Program Area	
Capacity	FIOU		Addresses	Capacity	Addresses	Capacity
1-kword	HD404341R HD40C4341R	HD404391	\$0000 to \$03FF	1,024 words	\$0000 to \$03FF	1,024 words
2-kword	HD404342R HD40C4342R	HD404392	\$0000 to \$07FF	2,048 words	\$0000 to \$07FF	2,048 words
4-kword	HD404344R HD40C4344R HD4074344	HD404394 HD4074394	\$0000 to \$0FFF	4,096 words	\$0000 to \$0FFF	4,096 words

Figure 2-1 HD404344R and HD404394 Series ROM Memory Map

ROM address ROM address \$0000 Vector address area JMPL instruction \$0000 (16 words) (Jumps to the reset and stop \$000F \$0001 mode clear handling routine) \$0010 Zero page subroutine JMPL instruction \$0002 area (64 words) (Jumps to the $\overline{INT_0}$ interrupt \$003F \$0003 handling routine) \$0040 JMPL instruction \$0004 4-kword ROM product (Jumps to the $\overline{INT_1}$ interrupt program/pattern area \$0005 handling routine) (4,096 words) JMPL instruction \$0006 (Jumps to the timer A \$0FFF \$0007 interrupt handling routine) \$1000 6-kword ROM product JMPL instruction \$0008 program area (Jumps to the timer B (6.144 words) \$0009 \$17FF interrupt handling routine) \$1800 JMPL instruction \$000A 8-kword ROM product (Jumps to the timer C program area (8,192 words) \$000B interrupt handling routine) \$1FFF JMPL instruction \$000C \$2000 (Jumps to the A/D converter \$000D interrupt handling routine) 12-kword ROM product JMPL instruction \$000E program area (Jumps to the serial interface (12,288 words) \$000F interrupt handling routine) \$2FFF \$3000 16-kword ROM product program area (16,384 words) \$3FFF

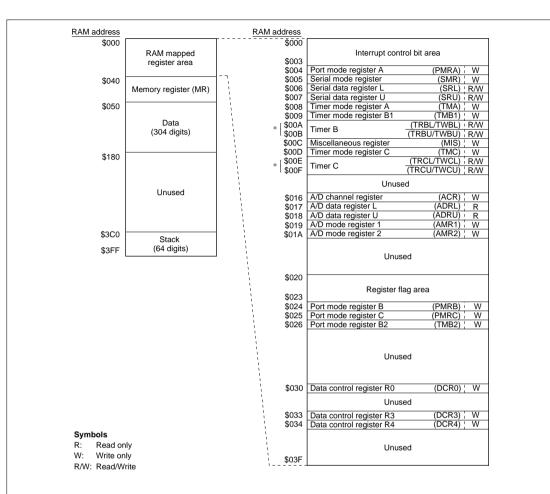
Figure 2-2 shows the memory map for the microcomputers in the HD404318, HD404358, HD404358R, HD404339, and HD404369 Series.


Note: The program area differs between different products in these series.

ROM			Desident			Progra	m Area
Capacity			Product			Addresses	Capacity
4-kword	HD404314	HD404354 HD40A4354	HD404354R HD40A4354R HD40C4354R	HD404334	HD404364 HD40A4364	\$0000 to \$0FFF	4,096 words
6-kword	HD404316	HD404356 HD40A4356	HD404356R HD40A4356R HD40C4356R	HD404336	—	\$0000 to \$17FF	6,144 words
8-kword	HD404318 HD4074318	HD404358 HD40A4358	HD404358R HD40A4358R HD40C4358R	HD404338	HD404368 HD40A4368	\$0000 to \$1FFF	8,192 words
12-kword	_	_	_	HD4043312	HD4043612 HD40A43612	\$0000 to \$2FFF	12,288 words
16-kword	_	HD407A4359	HD407A4359R HD407C4359R	HD404339 HD4074339	HD404369 HD40A4369 HD407A4369	\$0000 to \$3FFF	16,384 words

Figure 2-2 HD404318, HD404358, HD404358R, HD404339, and HD404369 Series ROM Memory Map

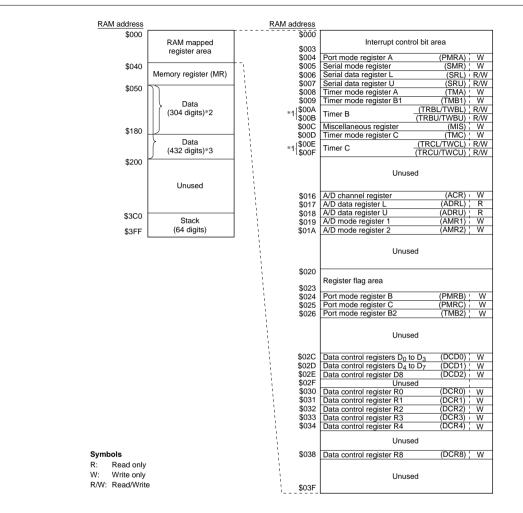
2.3 RAM


Figure 2-3 shows the RAM memory map for the microcomputers in the HD404344R and HD404394 Series.

\$00A	Timer read register BL	(TRBL)	R	Timer write register BL	(TWBL)	W
\$00B	Timer read register BU	(TRBU)	R	Timer write register BU	(TWBU)	W
\$00E	Timer read register CL	(TRCL)	R	Timer write register CL	(TWCL)	W
\$00F	Timer read register CU	(TRCU)	R	Timer write register CU	(TWCU)	W

Figure 2-3 HD404344R and HD404394 Series RAM Memory Map

Figure 2-4 shows the RAM memory map for the microcomputers in the HD404318 Series.



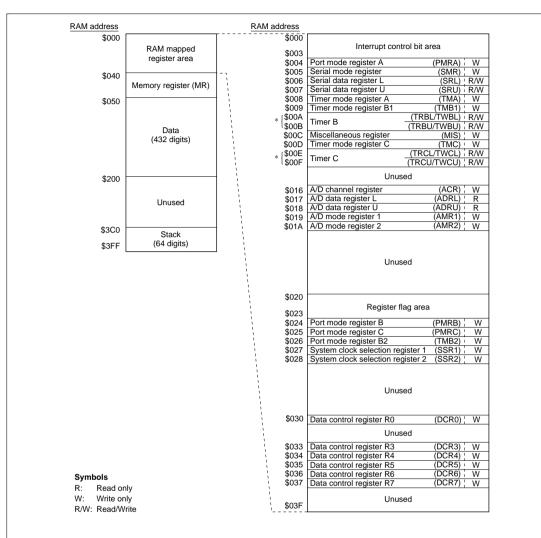
Note: * Two registers are mapped to the same address at locations \$00A, \$00B, \$00E, and \$00F.

\$00A	Timer read register BL	(TRBL)	R	Timer write register BL	(TWBL)	W
\$00B	Timer read register BU	(TRBU)	R	Timer write register BU	(TWBU)	W
\$00E	Timer read register CL	(TRCL)	R	Timer write register CL	(TWCL)	W
\$00F	Timer read register CU	(TRCU)	R	Timer write register CU	(TWCU)	W

Figure 2-4 HD404318 Series RAM Memory Map

Figure 2-5 shows the RAM memory map for the microcomputers in the HD404358/HD404358R Series.

Notes: 1. Two registers are mapped to the same address at locations \$00A, \$00B, \$00E, and \$00F.


\$00A	Timer read register BL	(TRBL)	R	Timer write register BL	(TWBL)	W
\$00B	Timer read register BU	(TRBU)	R	Timer write register BU	(TWBU)	W
\$00E	Timer read register CL	(TRCL)	R	Timer write register CL	(TWCL)	W
\$00F	Timer read register CU	(TRCU)	R	Timer write register CU	(TWCU)	W

2. Applies to the HD404354, HD404356, HD404358, HD40A4354, HD40A4356, and HD40A4358.

 Applies to the HD404354R, HD404356R, HD404358R, HD40A4354R, HD40A4356R, HD40A4358R, HD40C4354R, HD40C4356R, HD40C4358R, HD407A4359R, HD407C4359R, HD407A4359.

Figure 2-5 HD404358/HD404358R Series RAM Memory Map

Figure 2-6 shows the RAM memory map for the microcomputers in the HD404339 Series.

Note: * Two registers are mapped to the same address at locations \$00A, \$00B, \$00E, and \$00F.

\$00A	Timer read register BL	(TRBL)	R	Timer write register BL	(TWBL)	W
\$00B	Timer read register BU	(TRBU)	R	Timer write register BU	(TWBU)	W
\$00E	Timer read register CL	(TRCL)	R	Timer write register CL	(TWCL)	W
\$00F	Timer read register CU	(TRCU)	R	Timer write register CU	(TWCU)	W

Figure 2-6 HD404339 Series RAM Memory Map

Figure 2-7 shows the RAM memory map for the microcomputers in the HD404369 Series.

Note: * Two registers are mapped to the same address at locations \$00A, \$00B, \$00E, and \$00F.

\$00A	Timer read register BL	(TRBL)	R	Timer write register BL	(TWBL)	W
\$00B	Timer read register BU	(TRBU)	R	Timer write register BU	(TWBU)	W
\$00E	Timer read register CL	(TRCL)	R	Timer write register CL	(TWCL)	W
\$00F	Timer read register CU	(TRCU)	R	Timer write register CU	(TWCU)	W

Figure 2-7 HD404369 Series RAM Memory Map

2.3.1 RAM Mapped Register Area

The RAM mapped register area is allocated to RAM addresses \$000 to \$03F. It consists of three sub-areas: the interrupt control bit area (\$000 to \$003), the special register area (\$004 to \$01F, and \$024 to \$03F), and the register flag area (\$020 to \$023).

(1) Interrupt Control Bit Area (\$000 to \$003): The interrupt control bit area consists of the bits used for interrupt control. These bits can only be accessed by using the RAM bit manipulation instructions SEM, SEMD, REM, REMD, TM, and TMD. Figures 2-8 and 2-9 show the configurations of the interrupt control bit areas in each series in the HMCS43XX Family.

The bits in the interrupt control bit area can be set to 1 with a SEM or SEMD instruction and can be cleared to 0 with a REM or REMD instruction. The TM and TMD instructions can be used to test these bits. However, there are restrictions on the instructions that can be used with certain bits. Table 2-2 lists the instruction restrictions on the interrupt control bit area.

RAM address	Bit 3	Bit 2	Bit 1	Bit 0
\$000	IM0 (INT ₀ interrupt mask)	$\begin{array}{c} \text{IF0} \\ (\overline{\text{INT}_0} \text{ interrupt} \\ \text{request flag}) \end{array}$	RSP (Stack pointer reset)	IE (Interrupt enable flag)
\$002	IMTC (Timer C interrupt mask)	IFTC (Timer C interrupt request flag)	IMTB (Timer B interrupt mask)	IFTB (Timer B interrupt request flag)
\$003	IMS (Serial interrupt mask)	IFS (Serial interrupt request flag)	IMAD (A/D converter interrupt mask)	IFAD (A/D converter interrupt request flag)

Figure 2-8 HD404344R and HD404394 Series Interrupt Control Bit Area Configuration

RAM address	Bit 3	Bit 2	Bit 1	Bit 0
\$000	IM0 (INT ₀ interrupt mask)		RSP (Stack pointer reset)	IE (Interrupt enable flag)
\$001	IMTA (Timer A interrupt mask)	IFTA (Timer A interrupt request flag)	IM1 (INT ₁ interrupt mask)	$\begin{array}{c} \text{IF1} \\ (\overline{\text{INT}_{1}} \text{ interrupt} \\ \text{request flag}) \end{array}$
\$002	IMTC (Timer C interrupt mask)	IFTC (Timer C interrupt request flag)	IMTB (Timer B interrupt mask)	IFTB (Timer B interrupt request flag)
\$003	IMS (Serial interrupt mask)	IFS (Serial interrupt request flag)	IMAD (A/D converter interrupt mask)	IFAD (A/D converter interrupt request flag)

Figure 2-9 HD404318, HD404358, HD404358R, HD404339, and HD404369 Series Interrupt Control Bit Area Configuration

Table 2-2 Interrupt Control Bit Area Instruction Limitations

	Instruction			
Bit	SEM/SEMD Instruction	REM/REMD Instruction	TM/TMD Instruction*	
IE	0	0	0	
IM	0	0	0	
IF	\triangle	0	0	
RSP	\bigtriangleup	0	X	

Symbols

- \bigcirc : Allowed
- \triangle : The instruction will not be executed.
- X : Unused
- IF : Interrupt request flag
- IM : Interrupt mask
- IE : Interrupt enable flag
- RSP: Reset stack pointer
- Note: * The microcomputer status is undefined if a TM or TMD instruction is executed for a nonexistent bit or for an unused bit.

(2) Special Register Area (\$004 to \$01F, and \$024 to \$03F): The special register area consists of mode registers for external interrupts and peripheral functions, I/O port data control registers, and other registers. There are three types of registers allocated to the special register area: read-only registers, write-only registers, and read/write registers. These registers can be referenced by immediate instructions, RAM register instructions, arithmetic instructions, and comparison instructions.

Figures 2-10 to 2-12 show the structures of the special register areas.

RAM add	,	Bit 3	Bit 2	Bit 1	Bit 0	
\$	000	,		1		
		Interrupt control bit area				
	003					
PMRA \$	- F	D.0. (0.0)/	R0 ₃ /TOC	R0 ₁ /SI	R0 ₂ /SO	
SMR \$		R0 ₀ /SCK	0.111	Transfer clock selection	1	
SRL \$	- F			egister (lower)		
SRU \$	007	Serial data register (upper)				
TMB1 \$	009	Auto-reload on/off	С	lock source setting (time	r B)	
TRBL/TWBL \$	00A		Timer B re	gister (lower)		
TRBU/TWBU \$	00B		Timer B re	gister (upper)		
MIS \$0	00C	Pull-up MOS control	SO PMOS control			
TMC \$0	00D	Reload on/off Clock source setting (timer C)				
TRCL/TWCL \$	00E [Timer C re	gister (lower)		
TRCU/TWCU \$	00F			gister (upper)		
ACR \$	016	A/D execution char	nnel selection (AN $_0$ to λ	AN ₃ (HD404344R)/AN ₁ t	o AN ₃ (HD404394))	
ADRL \$	017		A/D data re	egister (lower)		
ADRU \$	018		A/D data re	egister (upper)		
AMR1 \$	019	R3 ₃ /AN ₃	R3 ₂ /AN ₂	R3 ₁ /AN ₁	R30/AN0*	
AMR2 \$0	01A				A/D conversion time	
\$	020	Register flag area				
¢	023		Registe	er hag area		
ہ PMRB\$		D₄/STOPC			D ₀ /ĪNT ₀ /EVNB	
PMRC \$		D ₄ /STOPC		SO idle H/L setting	Transfer clock selectio	
TMB2 \$					ge selection	
	.020					
DCD0 \$0	02C	Port D ₃ DCR	Port D ₂ DCR	Port D ₁ DCR	Port D ₀ DCR	
DCD1 \$0			<u>د</u> -	Port D ₅ DCR	Port D ₄ DCR	
					· · · ·	
DCR0 \$	030	Port R0 ₃ DCR	Port R0 ₂ DCR	Port R01 DCR	Port R0 ₀ DCR	
DCR0 \$		Port R1 ₃ DCR	Port R1 ₂ DCR	Port R11 DCR	Port R1 ₀ DCR	
DCR2 \$		Port R2 ₃ DCR	Port R2 ₂ DCR	Port R21 DCR	Port R2 ₀ DCR	
DCR3 \$	- F	Port R3 ₃ DCR	Port R3 ₂ DCR	Port R31 DCR	Port R3 ₀ DCR	
	1000	T OIL NO3 DOIN	Torrigg Dorr	T OIT NOT DOIN	T OIT NO ₀ DOIN	
\$	03F					
					: Unuse	
N 1 1 1 1						
	·	e HD404344R Series. U	nused in the HD40439	14 Series.		

Figure 2-10 HD404344R and HD404394 Series Special Register Area Structure

RAM address	Bit 3	Bit 2	Bit 1	Bit 0	
\$000					
		Interrupt cor			
\$003					
PMRA \$004	D ₃ /BUZZ	R0 ₃ /TOC	R0 ₁ /SI	R0 ₂ /SO	
SMR \$005	R0 ₀ /SCK		Transfer clock selection	-	
SRL \$006		Serial data re	egister (lower)		
SRU \$007		Serial data re	gister (upper)		
TMA \$008			ock source setting (time	/	
TMB1 \$009	Auto-reload on/off		ock source setting (time	r B)	
TRBL/TWBL \$00A		Timer B regi			
TRBU/TWBU \$00B		Timer B regi	ster (upper)		
MIS \$00C	Pull-up MOS control	SO PMOS control			
TMC \$00D	Reload on/off	Reload on/off Clock source setting (timer C)			
TRCL/TWCL \$00E		Timer C register (lower)			
TRCU/TWCU \$00F		Timer C regi	ister (upper)		
ACR \$016			tion channel selection (A		
ADRL \$017		A/D execut A/D data reg		$\operatorname{AIN}_0 (O \operatorname{AIN}_7)$	
ADRU \$018		A/D data reg			
AMR1 \$019	R3 ₃ /AN ₃	R3 ₂ /AN ₂	R3 ₁ /AN ₁	R3 ₀ /AN ₀	
AMR2 \$01A	103/113	102/1112	R4/AN ₄ to AN ₇	A/D conversion time	
			111,7 114,10 7 117		
\$020					
		Register	flag area		
\$023					
PMRB \$024	D ₄ /STOPC	D ₂ /EVNB	D_1/\overline{INT}_1	$D_0/\overline{INT_0}$	
PMRC \$025	Alarm fr	equency	SO idle H/L setting	Transfer clock selection	
TMB2 \$026		Input capture setting	EVNB edg	ge selection	
		1		1	
DCD0 \$02C	Port D ₃ DCR*	Port D ₂ DCR*	Port D ₁ DCR*	Port D ₀ DCR*	
DCD1 \$02D	Port D ₇ DCR*	Port D ₆ DCR*	Port D ₅ DCR*	Port D ₄ DCR*	
DCD2 \$02E				Port D ₈ DCR*	
DCR0 \$030	Dort DO DOD	Dort PO DOD	Dort PO DOD	Dort PO DOD	
DCR0 \$030 DCR1 \$031	Port R0 ₃ DCR Port R1 ₃ DCR*	Port R0 ₂ DCR Port R1 ₂ DCR*	Port R0 ₁ DCR Port R1 ₁ DCR*	Port R0 ₀ DCR	
DCR2 \$032	Port R1 ₃ DCR*	Port R12 DCR* Port R22 DCR*	Port R1 ₁ DCR*	Port R1 ₀ DCR* Port R2 ₀ DCR*	
DCR2 \$032 DCR3 \$033	Port R3 ₃ DCR*	Port R3 ₂ DCR*	Port R31 DCR*	Port R2 ₀ DCR*	
DCR4 \$034	Port R4 ₃ DCR	Port R4 ₂ DCR	Port R4 ₁ DCR	Port R4 ₀ DCR	
DCR8 \$038	Port R8 ₃ DCR*	Port R8 ₂ DCR*	Port R81 DCR*	Port R80 DCR*	
_ 5.13 \$500	T OIL TO 3 DOIL				
¢oor					
\$03F					
				: Unused	

Note: * Applies to the HD404358/HD404358R Series. Unused in the HD404318 Series.

Figure 2-11 HD404318, HD404358 and HD404358R Series Special Register Area Structure

RAM address		Bit 2	Bit 1	Bit 0
\$00			1	
		Interrupt con	ntrol bit area	
\$00	3			
PMRA \$00	4 D ₃ /BUZZ	R0 ₃ /TOC	R0 ₁ /SI	R0 ₂ /SO
SMR \$00	5 R0 ₀ /SCK		Transfer clock selection	I
SRL \$00	6	Serial data re	egister (lower)	
SRU \$00	7	Serial data re	egister (upper)	
TMA \$00	3 Timer A/time base	Clo	ock source setting (time	r A)
TMB1 \$00		Clo	ock source setting (time	r B)
TRBL/TWBL \$00		Timer B reg	ister (lower)	
TRBU/TWBU \$00E			ister (upper)	
MIS \$000		SO PMOS control	Interrupt frame	e period control
TMC \$000		Clo	ock source setting (time	- C)
TRCL/TWCL \$008			ister (lower)	
TRCU/TWCU \$001	=	Timer C reg	ister (upper)	
ACR \$01		A/D execution channel s	selection (AN0 to AN11)	
ADRL \$01		A/D data reg		
ADRU \$01	3	A/D data reg	ister (upper)	
AMR1 \$01	0 0	R3 ₂ /AN ₂	R3 ₁ /AN ₁	R3 ₀ /AN ₀
AMR2 \$01/	۹	R5/AN ₈ to AN ₁₁	R4/AN ₄ to AN ₇	A/D conversion time
\$02	0			
		Register	flag area	
\$02				
PMRB \$02 PMRC \$02		D ₂ /EVNB	$D_1/\overline{INT_1}$	$D_0/\overline{INT_0}$
TMB2 \$02		equency Input capture setting	SO idle H/L setting	Transfer clock selection
SSR1 \$02		32 kHz/divisor selection		
SSR2 \$02		32 KHZ/UNISOI SELECTION		isor selection
00112 002			O Scillator div	
DCD0 \$020	Port D ₃ DCR*	Port D ₂ DCR*	Port D ₁ DCR*	Port D ₀ DCR*
DCD1 \$020	9	Port D ₆ DCR*	Port D ₅ DCR*	Port D₄ DCR*
DCD2 \$02		Port D ₁₀ DCR*	Port D ₉ DCR*	Port D ₈ DCR*
DCD3 \$021		10-211	Port D ₁₃ DCR*	Port D ₁₂ DCR*
DCR0 \$03		Port R0 ₂ DCR	Port R01 DCR	Port R0 ₀ DCR
DCR1 \$03	v	Port R1 ₂ DCR*	Port R1 ₁ DCR*	Port R1 ₀ DCR*
DCR2 \$03		Port R2 ₂ DCR*	Port R2 ₁ DCR*	Port R2 ₀ DCR*
DCR3 \$03		Port R3 ₂ DCR	Port R31 DCR	Port R3 ₀ DCR
DCR4 \$03	*	Port R4 ₂ DCR	Port R41 DCR	Port R40 DCR
DCR5 \$03	5 Port R5 ₃ DCR	Port R5 ₂ DCR	Port R51 DCR	Port R50 DCR
DCR6 \$03	6 Port R6 ₃ DCR	Port R6 ₂ DCR	Port R61 DCR	Port R60 DCR
DCR7 \$03		Port R7 ₂ DCR	Port R71 DCR	Port R70 DCR
DCR8 \$03	B Port R83 DCR*	Port R8 ₂ DCR*	Port R81 DCR*	Port R80 DCR*
DCR9 \$03		Port R9 ₂ DCR*	Port R91 DCR*	Port R90 DCR*
\$031	=			

Figure 2-12 HD404339 and HD404369 Series Special Register Area Structure

(3) **Register Flag Area (\$020 to \$023):** The register flag area consists of the ADSF and WDON flags, interrupt control bits, and other bits. These bits can only be accessed by using the RAM bit manipulation instructions SEM, SEMD, REM, REMD, TM, and TMD. Figures 2-13 to 2-15 show the configurations of the register flag areas in each series in the HMCS43XX Family.

The bits in the register flag area can be set to 1 with a SEM or SEMD instruction and can be cleared to 0 with a REM or REMD instruction. The TM and TMD instructions can be used to test these bits. However, there are restrictions on the instructions that can be used with certain bits. Table 2-3 lists the instruction restrictions on the register flag area.

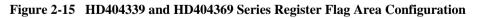

RAM address	Bit 3	Bit 2	Bit 1	Bit 0
\$020		ADSF (A/D start flag)	WDON (Watchdog on flag)	
\$021	RAME (RAM enable flag)	IAOF (I _{AD} off flag)		
\$022				
\$023				
				: Unused

Figure 2-13 HD404344R and HD404394 Series Register Flag Area Configuration

RAM address	Bit 3	Bit 2	Bit 1	Bit 0
\$020		ADSF (A/D start flag)	WDON (Watchdog on flag)	
\$021	RAME (RAM enable flag)	IAOF (I _{AD} off flag)	ICEF (Input capture error flag)	ICSF (Input capture status flag)
\$022				
\$023				
				: Unused

Figure 2-14 HD404318, HD404358 and HD404358R Series Register Flag Area Configuration

RAM address	Bit 3	Bit 2	Bit 1	Bit 0
\$020	DTON (DTON flag)	ADSF (A/D start flag)	WDON (Watchdog on flag)	LSON (LSON flag)
\$021	RAME (RAM enable flag)	IAOF (I _{AD} off flag)	ICEF (Input capture error flag)	ICSF (Input capture status flag)
\$022				
\$023				
			1	: Unused

Table 2-3 Register Flag Area Instruction Limitations

	Instruction					
Bit	SEM/SEMD Instruction	REM/REMD Instruction	TM/TMD Instruction*			
IM	0	0	0			
LSON						
IAOF						
IF	\bigtriangleup	0	0			
ICSF						
ICEF						
RAME						
RSP	\bigtriangleup	0	X			
WDON	0		X			
ADSF	0	Х	0			
DTON	\triangle (active mode)	0	0			
	○(subactive mode)					
Unused	\bigtriangleup	\bigtriangleup	Х			

Symbols

- \bigcirc : Allowed
- \triangle : The instruction will not be executed.
- X : Unused

DTON: Direct transfer on flag

IF : Interrupt request flag

IM : Interrupt mask

Note: * The microcomputer status is undefined if a TM or TMD instruction is executed for a nonexistent bit or for an unused bit.

2.3.2 Memory Register Area

The memory register (MR) area is allocated to RAM addresses \$040 to \$04F. Figure 2-16 shows the structure of the MR area. This area consists of 16 memory registers, and is a data area that can be accessed by the LAMR and XMRA register to register instructions in addition to the usual RAM access instructions.

RAM address	
\$040	MR (0)
\$041	MR (1)
\$042	MR (2)
\$043	MR (3)
\$044	MR (4)
\$045	MR (5)
\$046	MR (6)
\$047	MR (7)
\$048	MR (8)
\$049	MR (9)
\$04A	MR (10)
\$04B	MR (11)
\$04C	MR (12)
\$04D	MR (13)
\$04E	MR (14)
\$04F	MR (15)

Figure 2-16 Memory Register Area Structure

2.3.3 Data Area

The data area is allocated to the whole of RAM. Note that the size differs between products. Table 2-4 shows the structure of the data areas in the different products in the HMCS43XX Family.

Series	Product	RAM Addresses	Capacity (Digits)
HD404344R	All products	\$050 to \$0FF	176
HD404394			
HD404318	All products	\$050 to \$17F	304
HD404358	HD404354/HD40A4354 HD404356/HD40A4356 HD404358/HD40A4358	\$050 to \$17F	304
	HD407A4359	\$050 to \$1FF	432
HD404358R	All products	\$050 to \$1FF	432
HD404339	All products	\$050 to \$1FF	432
HD404369	All products	\$050 to \$1FF	432

Table 2-4Data Area Structure

2.3.4 Stack Area

The stack area is allocated to RAM addresses \$3C0 to \$3FF. Figure 2-17 shows the structure of the stack area. This area is used to save the program counter (PC), the status (ST), and the carry (CA) on a subroutine call (with the CAL or CALL instruction) or an interrupt. Since four digits are used for each level, up to 16 levels of subroutine calls can be used.

The saved value of the PC is restored by the RTN and RTNI instructions. The ST and CA are only restored by the RTNI instruction. That part of the stack area not used for subroutine calls or interrupts can be used as a data area.

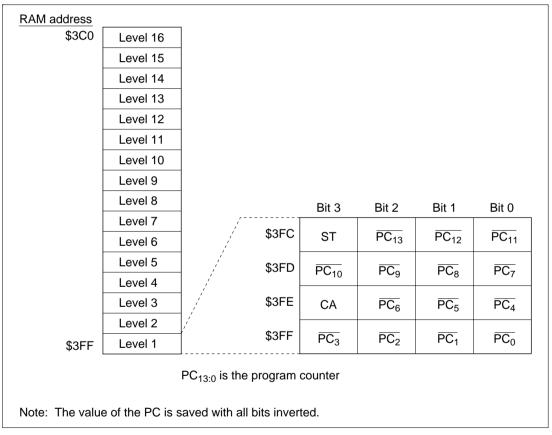


Figure 2-17 Stack Area Structure

Section 3 CPU

3.1 Overview

The HMCS400 CPU supports a concise and efficient instruction set in which all instructions are either one-word or two-word instructions, and all instructions are executed in one or two cycles, except for the return instruction, which requires 3 cycles.

3.1.1 Features

The HMCS400 CPU provides the following features.

- 101 instructions in ten classes
 - Immediate instructions: 4
 - Register to register instructions: 8
 - RAM addressing instructions: 13
 - RAM/register instructions: 10
 - Arithmetic instructions: 25
 - Comparison instructions: 12
 - RAM bit manipulation instructions: 6
 - ROM addressing instructions: 8
 - I/O instructions: 11 (including the P instruction*)
 - Control instructions: 4
- Three RAM addressing modes and four ROM addressing modes
 - RAM addressing modes
 - Register indirect addressing
 - Direct addressing
 - Memory register addressing
 - ROM addressing modes
 - Direct addressing
 - Current page addressing
 - Zero page addressing
 - Table data addressing*
- Note: * The P instruction is a special instruction that transfers the contents of ROM (8 bits) determined by the table data addressing mode to either the accumulator/B register pair or to the R1/R2 port data register pair.

- A 16,384 word ROM address space and a 1,024 digit RAM address space
- Instruction execution time: 1 μ s (when $f_{OSC} = 4 \text{ MHz}$)
- Low power modes The SBY and STOP instructions switch the HMCS400 CPU to a low power mode.

3.1.2 Address Space

The HMCS400 CPU address space consists of two independent address spaces: a ROM address space and a RAM address space. The ROM address space consists of word (10-bit) units with addresses in the range \$0000 to \$3FFF. The RAM address space consists of digit (4-bit) units with addresses in the range \$000 to \$3FF. See section 2, "Memory" for detailed information.

3.1.3 Register Organization

Figure 3-1 shows the organization of the HMCS400 CPU internal registers.

Accumulator	Initial value: undefined,	R/W allowe	эd	3	A	0
B register	Initial value: undefined,	R/W allowe	эd	3	В	0
W register	Initial value: undefined,	R/W allowe	эd		1 W	0
X register	Initial value: undefined,	R/W allowe	эd	3	Х	0
Y register	Initial value: undefined,	R/W allowe	эd	3	Y	0
SPX register	Initial value: undefined,	R/W allowe	эd	3	SPX	0
SPY register	Initial value: undefined,	R/W allowe	эd	3	SPY	0
Carry	Initial value: undefined,	R/W allowe	èd		C	0 CA
Status	Initial value: 1, R/W not	allowed			્ર	0 ST
Program counter	13					0
Initial value: 0, R/W not allowed	t		PC			
Stack pointer Initial value: \$3FF,	R/W not allowed	9	1 1	5	SP	0

Figure 3-1 HMCS400 CPU Internal Register Organization

3.2 CPU Registers

3.2.1 Accumulator (A) and B Register (B)

The A and B registers are 4-bit registers that hold the results of ALU (arithmetic and logic unit) operations and transfer data with memory, I/O ports, and other registers.

3.2.2 W Register (W), X Register (X), and Y Register (Y)

The W register is a 2-bit register and the X and Y registers are 4-bit registers that are used in the RAM register indirect addressing mode. The Y register is also used for D port addressing.

3.2.3 SPX Register (SPX), SPY Register (SPY)

The SPX and SPY registers are 4-bit registers that are used as auxiliary registers for the X and Y registers.

3.2.4 Carry Flag (CA)

The CA flag is a 1-bit flag that holds the ALU overflow state when an arithmetic instruction is executed. When an overflow occurs CA is set to 1, and when no overflow occurs, it is cleared to 0. The CA flag is influenced by the SEC and REC carry set and reset instructions and by the ROTL and ROTR rotate with carry instructions.

During interrupt handling, the carry state is saved on the stack and restored by the RTNI instruction.

3.2.5 Status Flag (ST)

The ST flag is a 1-bit flag that holds the result of arithmetic instructions, comparison instructions, and bit test instructions. It is used as the condition for the BR, BRL, CAL, and CALL conditional branch instructions. The ST flag retains its value until another arithmetic, comparison, or bit test instruction is executed. The ST flag is set to 1 after a conditional branch instruction is executed, regardless of whether the branch condition holds or not.

During interrupt handling, the ST flag state is saved on the stack and restored by the RTNI instruction.

3.2.6 Program Counter (PC)

The PC is a 14-bit counter that holds the address in ROM of the next instruction that the CPU will execute.

HITACHI

64

3.2.7 Stack Pointer (SP)

The SP is a 10-bit register that points to the RAM address of the next empty slot in the stack area. The SP is initialized to \$3FF by a reset. It is decremented by four each time data is saved when a subroutine is called or an interrupt is handled. It is incremented by four each time a return instruction is executed.

The top four bits of the SP are always 1111. Therefore, 16 levels is the maximum amount of stack that can be used.

In addition to the reset method described above, the stack pointer can also be reset to \$3FF by clearing to 0 the reset stack pointer (RSP) bit in the interrupt control bit area with a RAM bit manipulation instruction (REM or REMD).

3.3 Addressing Modes

The HMCS400 CPU supports a total of seven addressing modes; three RAM addressing modes and four ROM addressing modes.

3.3.1 RAM Addressing Modes

The HMCS400 CPU supports the three RAM addressing modes shown in figure 3-2.

(1) **Register Indirect Addressing Mode:** Register indirect addressing mode instructions consist of one word, and use the W, X, and Y registers to form a 10-bit RAM address. (See figure 3-2 (1).)

(2) **Direct Addressing Mode:** Direct addressing mode instructions consist of two words. The first word is the opcode and the second word specifies a 10-bit RAM address. (See figure 3-2 (2).)

(3) Memory Register Addressing Mode: Memory register addressing mode instructions consist of one word, in which the upper 6 bits specify the opcode and the lower 4 bits specify one of the memory registers 0 to 15. (See figure 3-2 (3).)

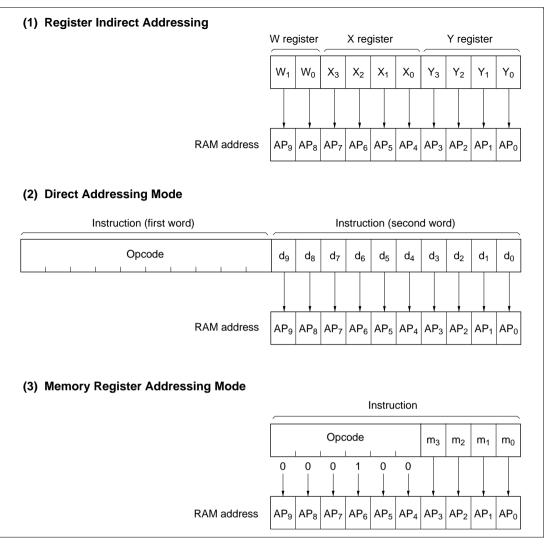
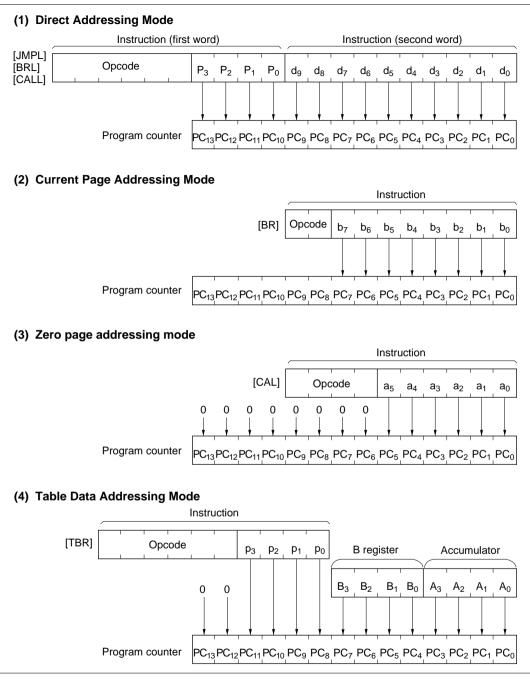


Figure 3-2 RAM Addressing Modes

3.3.2 ROM Addressing Modes and the P Instruction

The HMCS400 CPU supports the four ROM addressing modes shown in figure 3-3. The HMCS400 CPU also supports, as a special case, access to ROM data at addresses determined by table data addressing using the P instruction. (See figure 3-4.)

(1) **Direct Addressing Mode:** Direct addressing mode instructions consist of two words. The lower 4 bits of the first word and the 10 bits of the second word form a 14-bit ROM address. (See figure 3-3 (1).)


(2) Current Page Addressing Mode: The HMCS400 CPU ROM address space (\$0000 to \$3FFF) is divided into 256 word units, called pages. Thus the ROM address space is divided into 64 pages numbered page 0 to page 63.

Current page addressing mode instructions consist of one word. The lower 8 bits, which follow the 2-bit opcode, specify a ROM address in the same page as the instruction itself. (See figure 3-3 (2).)

(3) **Zero Page Addressing Mode:** Zero page addressing mode instructions consist of one word. The lower 6 bits, which follow the 4-bit opcode, specify an address from \$0000 to \$003F in page zero. (See figure 3-3 (3).)

(4) **Table Data Addressing Mode:** Table data addressing mode instructions consist of one word. The lower 4 bits, which follow the 6-bit opcode, in conjunction with the contents of the accumulator (A) and the B register (B), form a 12-bit ROM address.

(5) **P Instruction:** The P instruction is used to access ROM data at an address determined by table data addressing. The upper two bits of the referenced ROM data are used to determine where the lower 8 bits will be transferred. If bit 8 is 1, the data is transferred to the A/B pair, if bit 9 is 1 the data is transferred to the R1/R2 port data register (PDR) pair. (See figure 3-4.) If both bits 8 and 9 are 1, the data is transferred to both the A/B pair and the R1/R2 port PDR pair. The PC is not influenced by the execution of a P instruction.

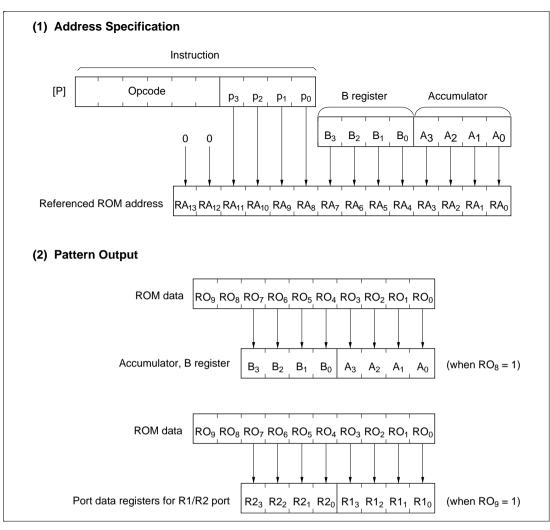


Figure 3-4 ROM Data Reference Using the P Instruction

3.4 Processing States

3.4.1 Overview

The HMCS400 CPU has three processing states: the program execution state, the exception handling state, and the program stopped state. Figure 3-5 shows a classification of the processing states and figure 3-6 shows the state transition diagram for these states.

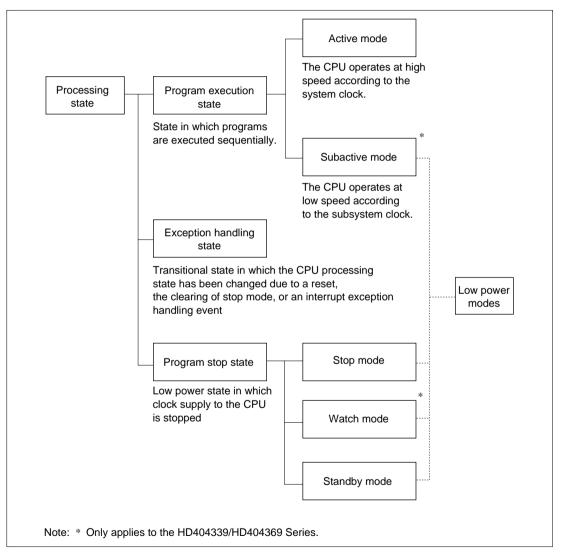


Figure 3-5 Processing State Classification

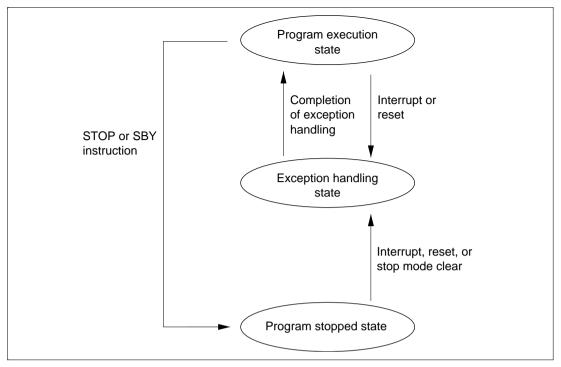


Figure 3-6 State Transition Diagram

3.4.2 Program Execution State

In the program execution state, the HMCS400 CPU executes programs sequentially. The program execution state has two modes: active mode and subactive mode.

(1) Active Mode: In active mode, the HMCS400 CPU operates at high speed on the system clock.

(2) Subactive Mode (HD404339/HD404369 Series Products Only): In subactive mode, the HMCS400 CPU operates at low speed from the subsystem clock. This provides low power operation.

The HMCS400 CPU switches to subactive mode when an $\overline{\text{INT}}_0$ or timer A interrupt occurs in watch mode when the LSON bit in the register flag area is 1.

Although the system clock oscillator stops, the CPU, built-in peripheral modules, and the I/O ports operate from the subsystem clock. However, A/D converter operation stops.

Refer to sections 5 and 6, "Low Power Modes", for details on the low power states.

3.4.3 Exception Handling State

The exception handling state is the transitional state in which the HMCS400 CPU normal processing flow has changed due to a reset, the clearing of stop mode, or an interrupt. In interrupt exception handling, the program counter (PC), carry (CA), and status (ST) are saved on the stack. Refer to section 4, "Exception Handling", for details on exception handling.

3.4.4 Program Stopped State

The program stopped state has three modes: stop mode, watch mode, and standby modes. These modes realize low power states.

(1) **Stop Mode:** Stop mode is entered when a STOP instruction is executed in active mode when the TMA3 bit in timer mode register A (TMA) is set to 0.

The system clock oscillator stops and the CPU, peripheral functions, and I/O ports go to the reset state. The contents of RAM will be maintained as long as the stipulated voltage is applied.

The transition to stop mode must be made from active mode.

(2) Watch Mode (HD404339/HD404369 Series Products Only): Watch mode is entered in the following two cases:

- A STOP instruction is executed in active mode with the TMA3 bit in timer mode register A (TMA) set to 1, or
- Either a STOP or SBY instruction is executed in subactive mode with either the LSON flag set to 1 (and the DTON flag either 0 or 1) or both the LSON flag set to 0 and the DTON flag set to 0.

The system clock oscillator stops but the subsystem clock oscillator continues to operate. Although the CPU and the built-in peripheral modules stop, the contents of RAM, the CPU registers, and the peripheral function registers are maintained as long as the stipulated voltage is applied. The I/O port states are also maintained. However, note that of the built-in peripheral modules, timer A continues to operate.

(3) Standby Mode: Standby mode is entered when an SBY instruction is executed. (active mode \rightarrow standby mode)

Although operating clock supply to the CPU is stopped and the CPU stops, the built-in peripheral functions continue to operate. The contents of the CPU registers and RAM and the I/O port states are maintained.

Section 4 Exception Handling

4.1 Overview

The HMCS400 CPU recognizes three types of exception factors: reset, stop mode clear, and interrupts. Table 4-1 lists the types of exception handling and their priorities.

Table 4-1	Exceptions Their Priorities
-----------	------------------------------------

Priority	Exception Factor	Exception Handling Initiation Timing
High	Reset	There are two reset exception factors:
▲		RESET pin input
		When the $\overline{\text{RESET}}$ pin goes low the system enters the reset state and exception handling starts immediately.
		Watchdog timer overflow
		When the watchdog timer overflows the system enters the reset state and exception handling starts immediately.
	Stop mode clear	There are two stop mode clear exception factors:
		RESET pin input
		Stop mode is cleared when the \overrightarrow{RESET} pin goes low. The system enters the reset state and exception handling starts immediately.
		STOPC pin input
		Stop mode is cleared when the STOPC pin goes low. The system enters the reset state and exception handling starts immediately.
▼ Low	Interrupts	When an interrupt request occurs exception handling starts at the completion of the current instruction or at the completion of the current exception handling.

4.2 Reset

4.2.1 Overview

Reset is the highest priority exception. There are two factors that initiate reset exception handling as follows.

(1) **RESET Pin Input:** When the RESET pin goes low all processing is discontinued and the system goes to the reset state. A reset causes the CPU internal registers and the built-in peripheral module registers to be initialized, and then reset exception handling starts immediately.

(2) Watchdog Timer Overflow: When timer C is used as a watchdog timer, the system enters the reset state when timer C overflows. After performing the same operations as performed in response to a $\overline{\text{RESET}}$ pin input, reset exception handling starts immediately.

4.2.2 Reset Sequence

When a reset exception factor occurs the system enters the reset state.

To reliably reset the system when the system clock oscillator is stopped (including the state immediately following power on), the $\overrightarrow{\text{RESET}}$ pin must be held low for at least the duration of the oscillator stabilization period, i.e., tRC. Similarly, when stop mode is cleared by a $\overrightarrow{\text{STOPC}}$ pin input, the $\overrightarrow{\text{STOPC}}$ pin must be held low for at least tRC.

Also, when resetting during normal operation, the $\overline{\text{RESET}}$ pin must be held low for at least two instruction cycles.

When a reset exception factor occurs, the system operates as follows.

Note: Refer to section 25, "Electrical Characteristics", for detailed information on tRC.

- 1. When reset exception handling starts due to either a RESET pin input or a watchdog timer overflow, the RAM enable flag (RAME) in the register flag area is cleared to 0.
- 2. The CPU internal states and the built-in peripheral module registers are initialized. The interrupt enable flag (IE) is cleared to 0 disabling all interrupts. Refer to section 4.4, "Initial Values of Registers and Flags at Reset and Stop Mode Clear", for the initial values of the registers.
- 3. The vector address \$0000 is loaded into the PC. Therefore, the CPU will branch to the reset handling routine if a JMPL instruction to that routine is stored in locations \$0000 and \$0001. The RESET pin input is an asynchronous input; that is, whatever state the system is in, it will always goes to the reset state when the RESET pin goes low.

4.3 Stop Mode Clear

4.3.1 Overview

The exception factors that clear stop mode are input to the $\overline{\text{STOPC}}$ pin and input to the $\overline{\text{RESET}}$ pin when the system is in stop mode. This exception factor causes stop mode to be cleared and the system to be reset.

4.3.2 Stop Mode Clear Sequence (RESET Pin Input)

When the $\overline{\text{RESET}}$ pin goes low with the system in stop mode, stop mode is cleared and the system enters the reset state. To reliably clear stop mode, the $\overline{\text{RESET}}$ pin must be held low for at least tRC.

4.3.3 Stop Mode Clear Sequence (STOPC Pin Input)

When the $\overline{\text{STOPC}}$ pin goes low with the system in stop mode, stop mode is cleared and the system enters the reset state. To reliably clear stop mode, the $\overline{\text{STOPC}}$ pin must be held low for at least tRC.

Except for setting the RAM enable flag to 1 and retaining the values of the PMRB3 bit in port mode register B (PMRB) and the SSR13 bit in system clock selection register 1 (SSR1)*, operation is identical to reset exception handling.

Note: * Applies only to the HD404339 and HD404369 Series.

4.4 Initial Values of Registers and Flags on Reset and Stop Mode Clear

Table 4-2 lists the values of registers and flags on reset and when stop mode is cleared.

Table 4-2 (1) Initial Values of Registers and Flags on Reset and Stop Mode Clear

				Initial Value)
ltem			HD404344R and HD404394 Series	HD404318, HD404358 and HD404358R Series	HD404339 and HD404369 Series
Program co	unter	(PC)	\$0000	\$0000	\$0000
Status		(ST)	1	1	1
Stack pointe	er	(SP)	\$3FF	\$3FF	\$3FF
Interrupt	Interrupt enable flag	(IE)	0	0	0
flags and masks	Interrupt request flag	(IF)	0	0	0
11102122	Interrupt mask	(IM)	1	1	1
I/O	High voltage pin port data register	(PDR)	All bits 0	All bits 0	All bits 0
	Medium/standard voltage port data register	(PDR)	All bits 1	All bits 1	All bits 1
	Data control register	(DCR)	All bits 0	All bits 0	All bits 0
	Port mode register A	(PMRA)	-000	0000	0000
	Port mode register B	(PMRB)	00	0000	0000
	Port mode register C	(RMRC)	00	0000	0000
Timer and	Timer mode register A	(TMA)		-000	0000
serial interface	Timer mode register B1	(TMB1)	0000	0000	0000
Interface	Timer mode register B2	(TMB2)	00	-000	-000
	Timer mode register C	(TMC)	0000	0000	0000
	Serial mode register	(SMR)	0000	0000	0000
	Prescaler S	(PSS)	\$000	\$000	\$000
	Prescaler W	(PSW)			\$00
	Timer counter A	(TCA)		\$00	\$00
	Timer counter B	(TCB)	\$00	\$00	\$00
	Timer counter C	(TCC)	\$00	\$00	\$00

Note: "X" indicates undefined bits, and "-" indicates nonexistent bits. Shaded areas indicate that the corresponding register does not exist.

			Initial Value		
ltem			HD404344R and HD404394 Series	HD404318, HD404358 and HD404358R Series	HD404339 and HD404369 Series
Timer and	Timer write register B	(TWBU, L)	\$X0	\$X0	\$X0
serial interface	Timer write register C	(TWCU, L)	\$X0	\$X0	\$X0
Interface	Octal counter	(OC)	000	000	000
A/D	A/D mode register 1	(AMR1)	0000/000-	0000	0000
converter	A/D mode register 2	(AMR2)	0	00	-000
	A/D channel register	(ACR)	0000	0000	0000
	A/D data register	(ADRU, L)	\$80	\$80	\$80
Bit registers	Low speed on flag	(LSON)			0
	Direct transfer on flag	(DTON)			0
	Watchdog timer on flag	(WDON)	0	0	0
	A/D start flag	(ADSF)	0	0	0
	Input capture status flag	(ICSF)		0	0
	Input capture error flag	(ICEF)		0	0
	IAD off flag	(IAOF)	0	0	0
Others	Miscellaneous register	(MIS)	00	00	0000
	System clock selection register 1, bits 2 to 0	(SSR1)			000
	System clock selection register 2	(SSR2)			00

Table 4-2 (1) Initial Values of Registers and Flags on Reset and Stop Mode Clear (cont)

Note: "X" indicates undefined bits, and "-" indicates nonexistent bits. Shaded areas indicate that the corresponding register does not exist.

Table 4-2 (2) lists the states of the registers and flags not listed in table 4-2 (1).

		Stop Mode Cleared by STOPC Pin Input	After Other System Resets
Carry	(CA)	The values directly preceding	The values directly preceding
Accumulator	(A)	the system reset are not retained. These must be	the system reset are not retained. These must be
B register	(B)	initialized by the user	initialized by the user program.
W register	(W)	program.	
X/SPX registers	(X/SPX)		
Y/SPY registers	(Y/SPY)	_	
Serial data register	(SRU, L)	_	
RAM		The values immediately prior to the point stop mode was entered are retained.	
Port mode register B, bit 3	(PMRB3)	The values immediately prior to the point stop mode was	_
System clock selection register 1, bit 3	(SSR13)	entered are retained.	
RAM enable flag	(RAME)	1	0

 Table 4-2 (2)
 Initial Values of Registers and Flags on Reset and Stop Mode Clear

4.5 Interrupts

4.5.1 Overview

There are two classes of sources that can initiate interrupt handling: external interrupts (\overline{INT}_0 and \overline{INT}_1) and requests from built-in peripheral modules. Independent vector addresses are allocated to each of these interrupts. Table 4-3 lists the interrupts, their priorities, and their vector addresses. When multiple interrupts occur at the same time, the interrupt with the highest priority is processed.

\overline{INT}_0 \overline{INT}_0 \$00		
	ctor Address	Priority
	002	High
$-*$ \overline{INT}_1 \$00	004	_ ▲
* Timer A \$00	006	_
Timer B Timer B \$00	008	_
Timer C Timer C \$00	00A	_
A/D converter A/D converter \$00	00C	_
Serial interface Serial interface \$00		— ,

Table 4-3 Interrupts

Note: * Vector addresses \$0004 to \$0007 are not used in the HD404344R and HD404394 Series.

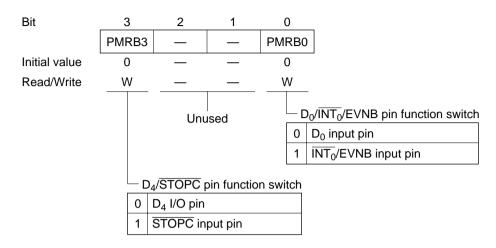
These interrupts have the following features.

- All external and internal interrupts are controlled by the interrupt enable flag (IE). That is, no interrupts are accepted when the IE bit is cleared to 0.
- The \overline{INT}_0 and \overline{INT}_1 pin input interrupts are falling edge detection external interrupts.

4.5.2 Interrupt Registers and Flags

Table 4-4 lists the registers and flags that control interrupts. Note that the control bits in the interrupt control bit area can only be manipulated with the RAM bit manipulation instructions.

Address	Register		Abbreviation	R/W	Initial Value
\$024	Port mode register B		PMRB	W	\$0
\$000, 0	Interrupt enable flag		IE	R/W	0
\$000, 1	Reset SP bit	Interrupt	RSP	(W)	Undefined
\$000, 2	External interrupt 0 request flag	control bit	IF0	R/(W)	0
\$000, 3	External interrupt mask		IMO	R/W	1
\$001, 0	External interrupt 1 request flag*		IF1	R/(W)	0
\$001, 1	External interrupt 1 mask*		IM1	R/W	1
\$001, 2	Timer A interrupt request flag*		IFTA	R/(W)	0
\$001, 3	Timer A interrupt mask*		IMTA	R/W	1
\$002, 0	Timer B interrupt request flag		IFTB	R/(W)	0
\$002, 1	Timer B interrupt mask		IMTB	R/W	1
\$002, 2	Timer C interrupt request flag		IFTC	R/(W)	0
\$002, 3	Timer C interrupt mask		IMTC	R/W	1
\$003, 0	A/D interrupt request flag		IFAD	R/(W)	0
\$003, 1	A/D interrupt mask		IMAD	R/W	1
\$003, 2	Serial interrupt request flag		IFS	R/(W)	0
\$003, 3	Serial interrupt mask		IMS	R/W	1


 Table 4-4
 Interrupt Control Registers

"(W)" indicates that only a write of 0 to clear the flag is possible.

Note: * Applies to the HD404318, HD404358, HD404358R, HD404339, and HD404369 Series. These flags cannot be used in the HD404344R and HD404394 Series.

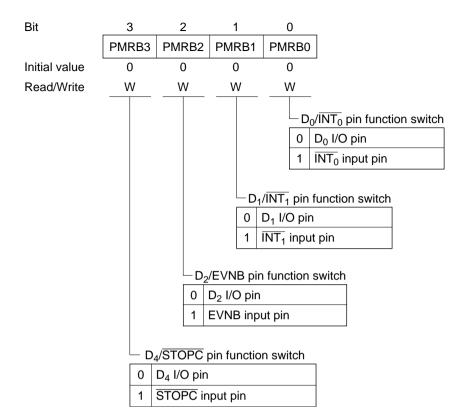
(1) **Port Mode Register B** (**PMRB: \$024**): PMRB is a 4-bit write-only register that switches the D port I/O pin shared functions.

HD404344R and HD404394 Series

Bit 3—D_4/\overline{\text{STOPC}} Pin Function Switch (PMRB3): Selects whether the $D_4/\overline{\text{STOPC}}$ pin is used as the D_4 I/O pin or as the STOPC input pin.

The PMRB3 bit is cleared to 0 on reset. In stop mode, the value of the PMRB3 bit immediately prior to entering stop mode is retained.

PMRB3	Description	
0	The D_4 /STOPC pin functions as the D_4 I/O pin.	(initial value)
1	The D_4 /STOPC pin functions as the STOPC input pin.	


Bit 0—D_0/\overline{INT}_0/EVNB Pin Function Switch (PMRB0): Selects whether the $D_0/\overline{INT}_0/EVNB$ pin is used as the D_0 I/O pin or as the $\overline{INT}_0/EVNB$ input pin.

Refer to section 18.2.2, "Timer Mode Register B2 (TMB2)", for details on switching between the \overline{INT}_0 and EVNB functions.

The PMRB0 bit is cleared to 0 on reset and in stop mode.

PMRB0	Description	
0	The $D_0/\overline{INT}_0/EVNB$ pin functions as the D_0 I/O pin.	(initial value)
1	The $D_0/\overline{INT}_0/EVNB$ pin functions as the $\overline{INT}_0/EVNB$ input pin.	

HD404318, HD404358, HD404358R, HD404339, and HD404369 Series

Bit 3—D_4/\overline{\text{STOPC}} Pin Function Switch (PMRB3): Selects whether the $D_4/\overline{\text{STOPC}}$ pin is used as the D_4 I/O pin or as the STOPC input pin.

The PMRB3 bit is cleared to 0 on reset. In stop mode, the value of the PMRB3 bit immediately prior to entering stop mode is retained.

PMRB3	Description	
0	The D ₄ /STOPC pin functions as the D ₄ I/O pin.	(initial value)
1	The D ₄ /STOPC pin functions as the STOPC input pin.	

Bit 2— D_2 /EVNB Pin Function Switch (PMRB2): Selects whether the D_2 /EVNB pin is used as the D_2 I/O pin or as the EVNB input pin.

The PMRB2 bit is cleared to 0 on reset.

PMRB2	Description	
0	The D_2 /EVNB pin functions as the D_2 I/O pin.	(initial value)
1	The D_2 /EVNB pin functions as the EVNB input pin.	

Bit 1—D_1/\overline{INT}_1 Pin Function Switch (PMRB1): Selects whether the D_1/\overline{INT}_1 pin is used as the D_1 I/O pin or as the \overline{INT}_1 input pin.

The PMRB1 bit is cleared to 0 on reset and in stop mode.

PMRB1	Description	
0	The D_1/\overline{INT}_1 pin functions as the D_1 I/O pin.	(initial value)
1	The D_1/\overline{INT}_1 pin functions as the \overline{INT}_1 input pin.	

Bit 0—D₀/\overline{INT}_0 Pin Function Switch (PMRB0): Selects whether the D₀/ \overline{INT}_0 pin is used as the D₀ I/O pin or as the \overline{INT}_0 input pin.

The PMRB0 bit is cleared to 0 on reset and in stop mode.

PMRB0	Description	
0	The D_0/\overline{INT}_0 pin functions as the D_0 I/O pin.	(initial value)
1	The D_0/\overline{INT}_0 pin functions as the \overline{INT}_0 input pin.	

(2) Interrupt Enable Flag (IE: \$000, 0): The IE flag controls whether the CPU will accept interrupts for all interrupt request types. The IE flag is cleared to 0 by the hardware when an interrupt is accepted and is set to 1 when an RTNI instruction is executed.

This flag can be read and written by the bit manipulation instructions.

This flag is cleared to 0 on reset and in stop mode.

IE	Description	
0	The CPU disables all interrupts.	(initial value)
1	The CPU accepts interrupts.	

(3) External Interrupt 0 and 1 Request Flags (IF0: \$000, 2, IF1: \$001, 0*): IF0 and IF1 are flags that reflect whether an interrupt request is outstanding on the corresponding \overline{INT}_0 and \overline{INT}_1 external interrupt pin. When the specified input edge is detected on an external interrupt pin, the corresponding external interrupt request flag is set to 1.

Only falling edges are detected on the \overline{INT}_0 and \overline{INT}_1 pins.

The IF0 and IF1 flags can be read and written only by the bit manipulation instructions. However, note that only a 0 may be written.

IF0 and IF1 are never cleared automatically, even when an interrupt is received. They must be cleared to 0 by the software.

These flags are cleared to 0 on reset and in stop mode.

IF0, IF1*	Description		
0	Indicates that no interrupt has been requested on the corresponding \overline{INT}_0 or \overline{INT}_1 .		
	(initial value)		
1	Indicates that an interrupt has been requested on the corresponding \overline{INT}_0 or \overline{INT}_1 .		
Note: * The external interrupt 1 request flag (IF1) applies to the HD404318, HD404358,			
HD4	04358R HD404339 and HD404369 Series Since there is no INT, pin in HD404344R		

HD404358R, HD404339, and HD404369 Series. Since there is no \overline{INT}_1 pin in HD404344R and HD404394 Series products, the IF1 flag cannot be used in those products.

(4) External Interrupt 0 and 1 Masks (IM0: \$000, 3, IM1: \$001, 1*): IM0 and IM1 are bits that mask the corresponding IF0 and IF1 flags. The CPU will accept an external interrupt when IF0 or IF1 is set to 1 only if the corresponding IM0 or IM1 is cleared to 0 and IE is 1.

The CPU will not receive an interrupt request from IF0 or IF1 if the corresponding IM0 or IM1 is set to 1. That is, the interrupt will be deferred.

IMO and IM1 can be read and written only by the bit manipulation instructions.

These masks are set to 1 on reset and in stop mode.

IMO, IM1*	Description
0	IF0 or IF1 is enabled.
1	IF0 or IF1 is masked. The interrupt will be deferred even if either IF0 or IF1 is set to 1. (initial value)
	external interrupt 1 mask (IM1) applies to the HD404318, HD404358, HD404358R,

HD404339, and HD404369 Series. Since there is no INT_1 pin in HD404344R and HD404394 Series products, the IM1 mask cannot be used in those products.

(5) Timer A to C Interrupt Request Flags (IFTA: \$001, 2*, IFTB: \$002, 0, IFTC: \$002, 2):

IFTA to IFTC are flags that reflect whether an interrupt request is outstanding from the corresponding timer A to C. When one of timers A to C overflows, the corresponding interrupt request flag (IFTA to IFTC) is set to 1.

IFTA to IFTC can be read and written only by the bit manipulation instructions.

However, note that only a 0 may be written.

IFTA to IFTC are never cleared automatically, even when an interrupt is received. They must be cleared to 0 by the software.

These flags are cleared to 0 on reset and in stop mode.

IFTA* to IFTC	Description
0	Indicates that no interrupt has been requested by the corresponding timer A to C. (initial value)
1	Indicates that an interrupt has been requested by the corresponding timer A to C.

Note: * The timer A interrupt request flag (IFTA) applies to the HD404318, HD404358, HD404358R, HD404339, and HD404369 Series. Since there is no timer A in HD404344R and HD404394 Series products, the IFTA flag cannot be used in those products.

(6) Timer A to C Interrupt Masks (IMTA: \$001, 3*, IMTB: \$002, 1, IMTC: 002, 3): IMTA to IMTC are bits that mask the corresponding IFTA to IFTC flags. The CPU will accept a timer interrupt when one of IFTA to IFTC is set to 1 only if the corresponding IMTA to IMTC is cleared to 0 and IE is 1.

if IMTA to IMTC is set to 1, even if the corresponding IFTA or IFTC is set to 1. That is, the interrupt will be deferred.

IMTA to IMTC can be read and written only by the bit manipulation instructions.

These masks are set to 1 on reset and in stop mode.

IMIA* to IMIC	Description	

0	IFTA to IFTC are enabled.
1	IFTA to IFTC are masked. The interrupt will be deferred even if any of IFTA to
	IFTC are set to 1. (initial value)

Note: * The timer A interrupt mask (IMTA) applies to the HD404318, HD404358, HD404358R, HD404339, and HD404369 Series. Since there is no timer A in HD404344R and HD404394 Series products, the IMTA mask cannot be used in those products.

(7) Serial Interrupt Request Flag (IFS: \$003, 2): IFS is a bit that reflects whether an interrupt is outstanding from the serial interface. IFS is set to 1 when the serial interface completes a transfer, including forced termination.

The IFS flag can be read and written only by the bit manipulation instructions. However, note that only a 0 may be written.

IFS is never cleared automatically, even when an interrupt is received. It must be cleared to 0 by the software.

This flag is cleared to 0 on reset and in stop mode.

IFS	Description	
0	Indicates that no interrupt has been requested by the serial interface.	(initial value)
1	Indicates that an interrupt has been requested by the serial interface.	

(8) Serial Interrupt Mask (IMS: \$003, 3): IMS is a bit that masks the IFS flag. The CPU will accept a serial interrupt when IFS is set to 1 only if IMS is cleared to 0 and IE is 1.

The CPU will not receive an interrupt request from IFS if IMS is set to 1. That is, the interrupt will be deferred.

IMS can be read and written only by the bit manipulation instructions.

This mask is set to 1 on reset and in stop mode.

IMS	Description	
0	IFS is enabled.	
1	IFS is masked. The interrupt will be deferred even if IFS is set to 1.	(initial value)

(9) A/D Interrupt Request Flag (IFAD: \$003, 0): IFAD is a bit that reflects whether an A/D interrupt request is outstanding. This bit is set to 1 when the A/D converter completes a conversion.

The IFAD flag can be read and written only by the bit manipulation instructions. However, note that only a 0 may be written.

IFAD is never cleared automatically, even when an interrupt is received. It must be cleared to 0 by the software.

This flag is cleared to 0 on reset and in stop mode.

IFAD	Description	
0	Indicates that no interrupt has been requested by the A/D converter.	(initial value)
1	Indicates that an interrupt has been requested by the A/D converter.	

(10) A/D Interrupt Mask (IMAD: \$003, 1): IMAD is a bit that masks the IFAD flag. The CPU will accept an A/D interrupt when IFAD is set to 1 only if IMAD is cleared to 0 and IE is 1.

The CPU will not receive an interrupt request from IFAD if IMAD is set to 1. That is, the interrupt will be deferred.

IMAD can be read and written only by the bit manipulation instructions.

This mask is set to 1 on reset and in stop mode.

IMAD	Description
0	IFAD is enabled.
1	IFAD is masked. The interrupt will be deferred even if IFAD is set to 1. (initial value)

4.5.3 External Interrupts

There is one external interrupt source, the $\overline{INT_0}$ pin, in HD404344R and HD404394 Series products, and there are two external interrupt sources, the $\overline{INT_0}$ and $\overline{INT_1}$ pins, in HD404318, HD404358, HD404358R, HD404339, and HD404369 Series products. These external interrupts are generated by falling edges on the corresponding $\overline{INT_0}$ and $\overline{INT_1}$ pins.

When an external interrupt occurs, the corresponding external interrupt request flag (IF0 or IF1) is set to 1. These interrupts can be masked or enabled independently by the external interrupt masks IM0 and IM1. Note that all interrupts are masked or enabled by the interrupt enable flag IE.

When an external interrupt is accepted, the IE flag is cleared to 0 by the hardware during interrupt handling to disable the acceptance of other interrupts.

The \overline{INT}_0 interrupt has higher priority than the \overline{INT}_1 interrupt. Refer to table 4-3 for details.

4.5.4 Internal Interrupts

There are four internal interrupt sources from the built-in peripheral modules in the HD404344R and HD404394 Series products: timer B, timer C, the A/D converter, and the serial interface. There are five internal interrupt sources from the built-in peripheral modules in the HD404318, HD404358, HD404358R, HD404339, and HD404369 Series products: timer A, timer B, timer C, the A/D converter, and the serial interface.

When an internal interrupt occurs, the corresponding interrupt request flag (IF) is set to 1. These interrupts can be masked or enabled independently by the interrupt masks (IM). Note that all interrupts are masked or enabled by the interrupt enable flag IE.

When an internal interrupt is accepted, the IE flag is cleared to 0 by the hardware during interrupt handling to disable the acceptance of other interrupts.

Refer to table 4-3 for details on the priority of internal interrupts.

4.5.5 Interrupt Handling Sequence

Interrupts are controlled by the interrupt controller. Figure 4-1 shows the block diagram of the interrupt controller, and tables 4-5 (a) and 4-5 (b) list the activation conditions for interrupt handling. Figures 4-2 and 4-3 show the flowcharts for the sequences up to the point where an interrupt is accepted. The interrupt handling sequence is described below.

- 1. When an interrupt occurs and the interrupt request flag (IF) is set to 1 in the state where the corresponding interrupt mask (IM) is cleared to 0, an interrupt signal is sent to the priority controller.
- 2. The priority controller selects the interrupt with the highest priority and defers the other interrupts.
- 3. Next the interrupt controller checks the interrupt enable flag (IE). If IE is 1, the highest priority interrupt is accepted, but if IE is 0, all interrupts are deferred.
- 4. When an interrupt is accepted, the interrupt controller waits for the execution of the current instruction to complete. At that point, the values of the program counter (PC), the carry (CA), and the status (ST) are saved on the stack and the stack pointer is decremented by 4.
- 5. IE is cleared to 0. This disables all interrupts.
- 6. The interrupt controller generates the vector address corresponding to the accepted interrupt and loads that value into the PC. Execution of the interrupt handler starts at the branch destination of the JMPL instruction stored at the vector address. (The user must code a JMPL instruction to the start of the corresponding interrupt handler at each vector address.)

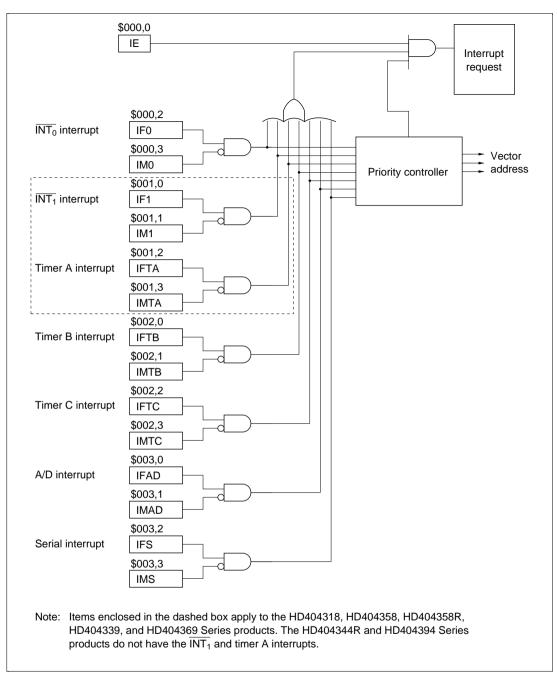


Figure 4-1 Interrupt Controller Block Diagram

	Interrupt Control Bit					
Interrupt Source	INT ₀	Timer B	Timer C	A/D Converter	Serial Interface	
IE	1	1	1	1	1	
IF0 · ĪMO	1	0	0	0	0	
IFTB · IMTB	*	1	0	0	0	
IFTC · IMTC	*	*	1	0	0	
IFAD · IMAD	*	*	*	1	0	
IFS · IMS	*	*	*	*	1	

Table 4-5 (a) Interrupt Handling Activation Conditions (HD404344R and HD404394 Series)

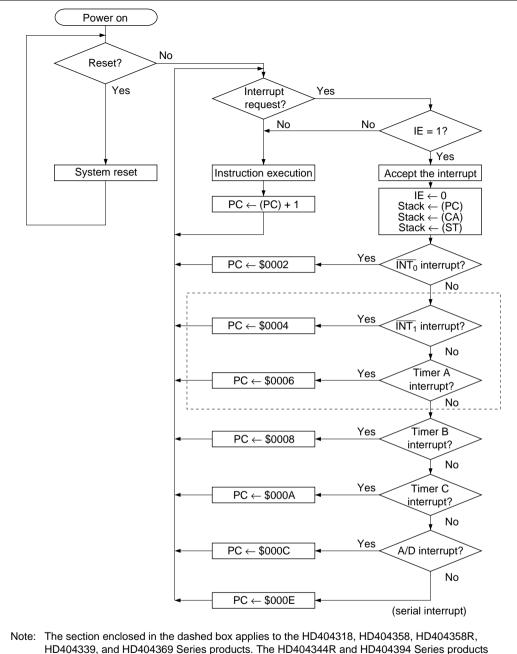

Note: * Operation is not influenced by this value, be it 0 or 1.

Table 4-5 (b)Interrupt Handling Activation Conditions (HD404318, HD404358,
HD404358R, HD404339, and HD404369 Series)

interrupt Control Bit					L		
Interrupt Source	ĪNT₀	INT ₁	Timer A	Timer B	Timer B	A/D Converter	Serial Interface
IE	1	1	1	1	1	1	1
IF0 · IMO	1	0	0	0	0	0	0
IF1 · ĪM1	*	1	0	0	0	0	0
IFTA · ĪMTA	*	*	1	0	0	0	0
IFTB · IMTB	*	*	*	1	0	0	0
IFTC · IMTC	*	*	*	*	1	0	0
IFAD · IMAD	*	*	*	*	*	1	0
IFS · IMS	*	*	*	*	*	*	1

Interrupt Control Bit

Note: * Operation is not influenced by this value, be it 0 or 1.

do not have the $\overline{INT_1}$ and timer A interrupts.

Figure 4-2 Interrupt Acceptance Flowchart

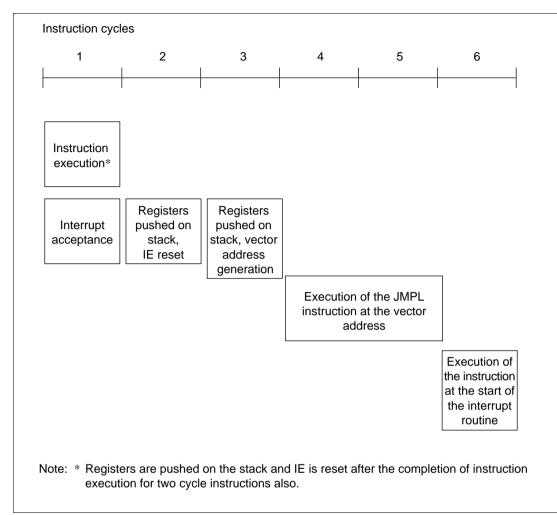


Figure 4-3 Interrupt Handling Sequence

Section 5 Low Power Modes (HD404344R/HD404394/HD404318/HD404358 /HD404358R Series)

5.1 Overview

5.1.1 Features

The HD404344R, HD404394, HD404318, HD404358, and HD404358R Series support the following two low power modes.

- Standby mode
- Stop mode

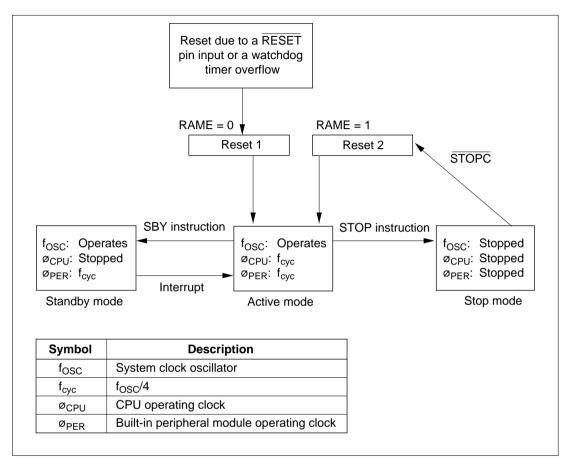
Table 5-1 lists the methods for switching to and clearing these modes and the clock states. Table 5-2 lists the internal states of the CPU and the built-in peripheral modules.

Table 5-1 Operating Modes and Clock States

Mode	Entering Procedure	System Clock Oscillator	Clearing Procedure
Standby mode	SBY instruction	Operating	RESET pin input
			Interrupt request
Stop mode	STOP instruction	Stopped	RESET pin input
			STOPC pin input in stop mode

Table 5-2 Operation in Low Power Modes

	Mode			
Function	Stop Mode	Standby Mode		
CPU	Reset	Maintained		
RAM	Maintained	Maintained		
Timer A*	Reset			
Timer B	Reset			
Timer C	Reset			
Serial interface	Reset			
A/D converter	Reset			
I/O ports	Reset (high impedance)	Maintained		


Notes: Shaded items operate normally.

* Applies to the HD404318, HD404358 and HD404358R Series.

There is no timer A in the HD404344R and HD404394 Series.

5.1.2 State Transition Diagram

Figure 5-1 shows the state transition diagram for the low power modes.

5.1.3 Pin Functions

Table 5-3 lists the functions of the pins used to control the low power operating modes.

Table 5-3Pin Functions

Pin	Symbol	I/O	Function
Stop mode clear	STOPC	Input	Stop mode clear

5.1.4 Registers and Flags

Table 5-4 lists the registers and flags that control the low power operating modes.

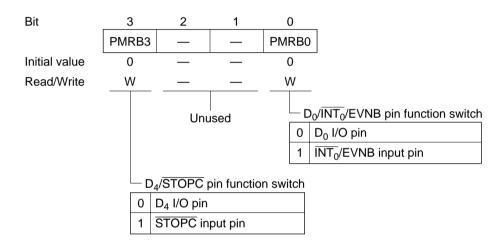
Table 5-4	Registers	and Flags
-----------	-----------	-----------

Address	Item	Abbreviation	R/W	Initial value
\$024	Port mode register B	PMRB	W	\$0
\$021, 3	RAM enable flag	RAME	R/(W)	0

(W): Indicates that only a write of 0 to clear the flag is possible.

Note: The RAME flag is allocated in the register flag area and can only be manipulated with the bit manipulation instructions. Refer to section 2, "Memory", for details.

5.2 Register and Flag Descriptions


5.2.1 Port Mode Register B (PMRB: \$024)

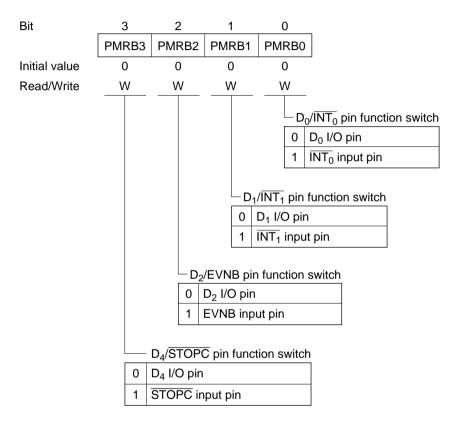
HD404344R and HD404394 Series

PMRB is a 2-bit write-only register that switches the functions of the D port pins.

The PMRB0 bit is cleared to 0 on reset and in stop mode. The PMRB3 bit is cleared to 0 only on reset.

This section describes the PMRB3 bit. Refer to the sections titled "Port Mode Register B" in sections 7 and 8, "I/O Ports", for details on the PMRB0 bit.

Bit 3—D_4/\overline{\text{STOPC}} Pin Function Switch (PMRB3): Selects whether the $D_4/\overline{\text{STOPC}}$ pin is used as the D_4 I/O pin or as the STOPC input pin.


PMRB3	Description	
0	The $D_4/\overline{\text{STOPC}}$ pin functions as the D_4 I/O pin.	(initial value)
1	The D_4 /STOPC pin functions as the STOPC input pin.	

HD404318, HD404358 and HD404358R Series

PMRB is a 4-bit write-only register that switches the functions of the D port pins.

The PMRB2 to PMRB0 bits are cleared to 0 on reset and in stop mode. The PMRB3 bit is cleared to 0 only on reset.

This section describes the PMRB3 bit. Refer to the sections titled "Port Mode Register B" in sections 9 and 10, "I/O Ports", for details on the PMRB0 to PMRB2 bits.

Bit 3—D_4/\overline{\text{STOPC}} Pin Function Switch (PMRB3): Selects whether the $D_4/\overline{\text{STOPC}}$ pin is used as the D_4 I/O pin or as the STOPC input pin. The PMRB3 bit is cleared to 0 only on reset.

PMRB3	Description	
0	The $D_4/\overline{\text{STOPC}}$ pin functions as the D_4 I/O pin.	(initial value)
1	The D_4 /STOPC pin functions as the STOPC input pin.	

5.2.2 RAM Enable Flag (RAME: \$021, 3)

RAME reflects whether stop mode was cleared by a RESET pin input or by a STOPC pin input.

In stop mode, the contents of RAM directly prior to entering stop mode are maintained, and the contents of RAM are maintained both when stop mode is cleared by a $\overline{\text{STOPC}}$ pin input and when it is cleared by a $\overline{\text{RESET}}$ pin input. However, the contents of RAM are maintained only by resets meant to clear stop mode. Therefore, to use the previous contents of RAM after stop mode is cleared, applications must clear stop mode with a $\overline{\text{STOPC}}$ pin input and test the value of the RAME flag after switching to active mode. If RAME is 1, the contents of RAM are guaranteed to have been maintained.

Although 0 can be written to clear this flag, it cannot be set to 1.

This flag is cleared to 0 on reset.

RAME	Description	
0	Indicates the stop mode was not cleared by a STOPC pin input.	(initial value)
1	Indicates the stop mode was cleared by a $\overline{\text{STOPC}}$ pin input.	

5.3 Standby Mode

5.3.1 Entering Standby Mode

Standby mode is entered by executing an SBY instruction from active mode.

In standby mode, the oscillators continue to operate but the clocks related to instruction execution stop. CPU operation stops and the states of registers, RAM, and D ports and R ports set to output maintain the values they had prior to standby mode. Timers, the serial interface, and other built-in peripheral modules continue to operate.

Power consumption is lower than in active mode due to the CPU being stopped.

5.3.2 Clearing Standby Mode

Standby mode can be cleared either by a RESET pin input or by an interrupt.

(1) Clearing with a $\overline{\text{RESET}}$ Pin Input: When the $\overline{\text{RESET}}$ pin goes low the system enters the reset state and standby mode is cleared.

(2) Clearing with an Interrupt: Standby mode is cleared and the system enters active mode when an interrupt occurs with its corresponding interrupt flag (IF) set to 1 and its interrupt mask (IM) cleared to 0. After the transition the instruction following the SBY instruction is executed. If the interrupt enable flag (IE) is 1, the corresponding interrupt handler will be executed. If IE is 0, the interrupt is deferred and the execution of the immediately preceding instruction sequence continues. Figure 5-2 shows the flowchart for the sequence that occurs when low power modes are cleared.

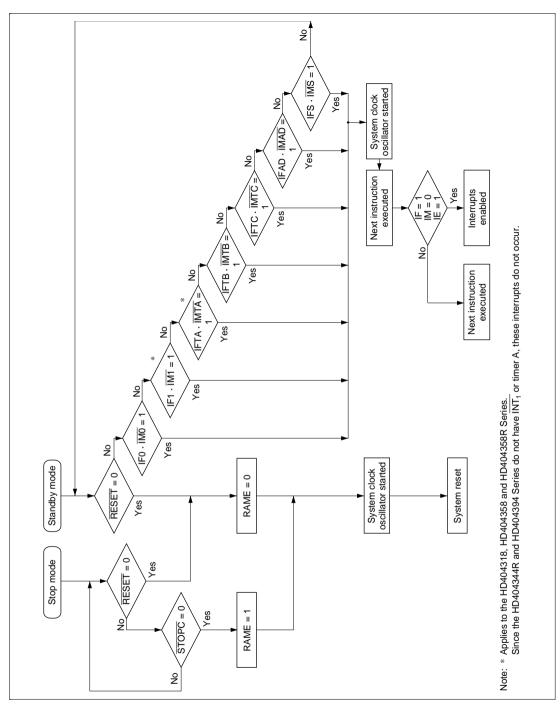


Figure 5-2 Flowchart for Exiting Low Power Modes

5.4 Stop Mode

5.4.1 Entering Stop Mode

The system switches to stop mode when a STOP instruction is executed in active mode. In stop mode, the contents of RAM are maintained and the CPU and all functions of the peripheral modules stop. Accordingly, stop mode is the mode with the lowest power consumption of all operating modes.

Note that the system clock oscillator stops in stop mode.

5.4.2 Clearing Stop Mode

Stop mode is cleared by an input to either the $\overline{\text{RESET}}$ pin or the $\overline{\text{STOPC}}$ pin.

(1) Clearing with a $\overline{\text{RESET}}$ Pin Input: When the $\overline{\text{RESET}}$ pin goes low the system enters the reset state and stop mode is cleared. Although RAME will be cleared during interrupt handling, the contents of RAM are maintained after stop mode is cleared.

(2) Clearing with a **STOPC** Pin Input: When the **STOPC** pin goes low the system enters the reset state and stop mode is cleared. Unlike the case for a **RESET** pin input, RAME is set to 1 during reset exception handling. The contents of RAM are maintained after stop mode is cleared.

After stop mode is cleared by a **STOPC** pin input and the system has entered active mode, the software can determine that the contents of RAM prior to entering stop mode were maintained by testing the state of the RAME flag.

Although $\overline{\text{RESET}}$ pin input is valid in all operating modes, $\overline{\text{STOPC}}$ pin input is only valid in stop mode and is ignored in other operating modes.

5.4.3 Post-Stop Mode Oscillator Stabilization Period

Figure 5-3 shows the timing chart for clearing stop mode. Be sure to hold the $\overline{\text{RESET}}$ or $\overline{\text{STOPC}}$ pin low for at least the oscillator stabilization period (t_{RC}). See "AC Characteristics" in section 25, "Electrical Characteristics", for details.

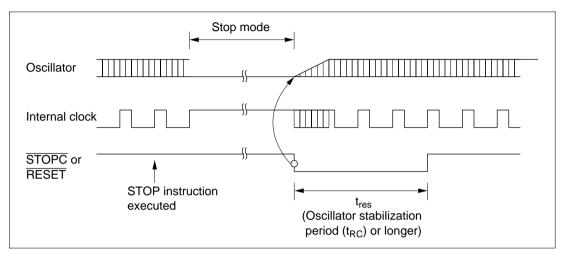


Figure 5-3 Stop Mode Clear Timing

5.5 Low Power Mode Operating Sequence

Figure 5-4 shows the low power mode operating sequence. If a STOP or SBY instruction is executed in the state where the IE flag is cleared, an interrupt flag is set, and the corresponding interrupt mask is cleared, then the STOP or SBY instruction will be cancelled (treated as a NOP) and execution will continue from the next instruction. Therefore, before executing a STOP or SBY instruction, either clear all interrupt flags or mask interrupts.

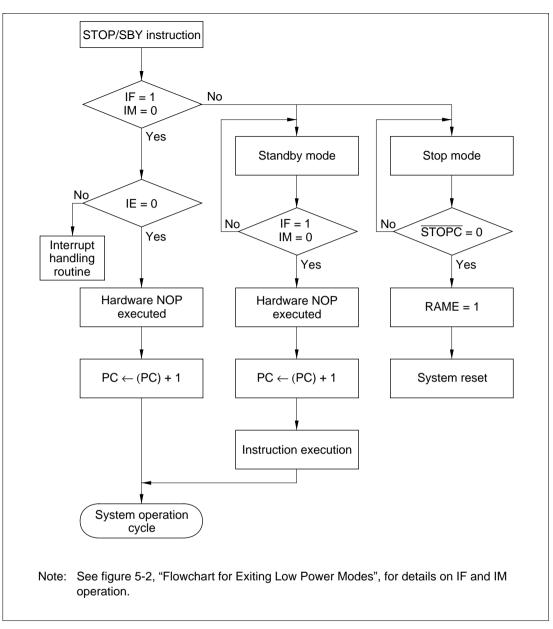


Figure 5-4 Low Power Mode Operating Sequence

Section 6 Low Power Modes (HD404339 and HD404369 Series)

6.1 Overview

6.1.1 Features

The HD404339 and HD404369 Series support the following four low power modes.

- Standby mode
- Stop mode
- Watch mode
- Subactive mode

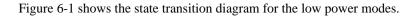
Table 6-1 lists the methods for switching to and clearing these modes and the clock states in these modes. Table 6-2 lists the internal states of the CPU and the built-in peripheral modules.

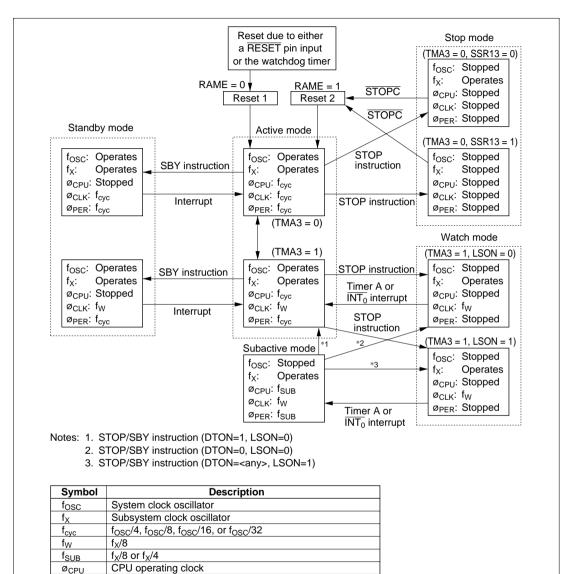
Table 6-1 Operating Modes and Clock States

		S	tate	
Mode	Entering Procedure	System Clock Oscillator	Subsystem Clock Oscillator	Clearing Procedure
Standby mode	SBY instruction from active mode			 RESET pin input Interrupt request
Stop mode	STOP instruction when TMA3 = 0	Stopped	*	 RESET pin input STOPC pin input in stop mode
Watch mode	STOP instruction when TMA3 = 1 or SBY instruction from subactive mode (when either LSON is 1 or LSON is 0 and DTON is 0)	Stopped		 RESET pin input Timer A or INT_o interrupt request
mode	e A timer A or \overline{INT}_0 interrupt request from watch mode when LSON is 1.			 RESET pin input STOP or SBY instruction

Notes: Shaded items indicate normal operation.

* This oscillator either operates or stops in this mode depending on the setting of SSR13 in the system clock selection register 1 (SSR1).


Table 6-2 Operation in Low Power Modes


	Mode					
Function	Stop Mode	Watch Mode	Standby Mode	Subactive Mode		
CPU	Reset	Maintained	Maintained			
RAM	Maintained	Maintained	Maintained			
Timer A	Reset					
Timer B	Reset	Stopped				
Timer C	Reset	Stopped				
Serial interface	Reset	Stopped*				
A/D converter	Reset	Stopped		Stopped		
I/O ports	Reset (high impedance)	Maintained	Maintained			

Notes: Shaded items operate normally.

* In external clock mode data transmission and reception are performed if a clock signal is supplied. However, interrupts are stopped.

6.1.2 State Transition Diagram

Figure 6-1	State	Transition	Diagram
------------	-------	------------	---------

Built-in peripheral module operating clock (except timer A)

Timer A operating clock

Low speed on flag DTON flag

ØCLK

Ø_{PER} LSON

DTON

6.1.3 Pin Functions

Table 6-3 lists the functions of the pins used to control the low power operating modes.

Table 6-3	Pin Functions
-----------	----------------------

Pin	Symbol	I/O	Function
Stop mode clear	STOPC	Input	Stop mode clear

6.1.4 Registers and Flags

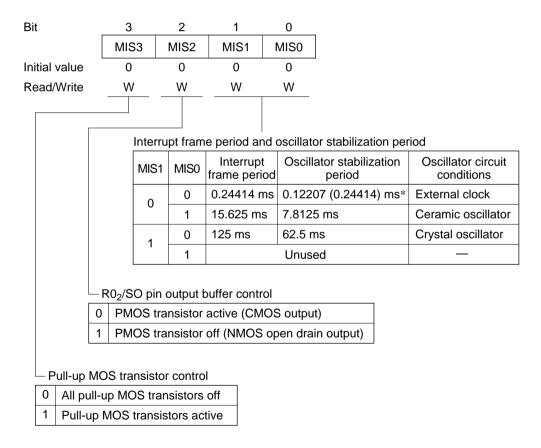
Table 6-4 lists the registers and flags that control the low power operating modes.

Table 6-4Registers and Flags

Address	ltem	Abbreviation	R/W	Initial value
\$00C	Miscellaneous register	MIS	W	\$0
\$027	System clock selection register 1	SSR1	W	\$0
\$008	Timer mode register A	ТМА	W	\$0
\$024	Port mode register B	PMRB	W	\$0
\$020, 0	Low speed on flag	LSON	R/W	0
\$020, 3	DTON flag	DTON	R/W	0
\$021, 3	RAM enable flag	RAME	R/(W)	0

(W): Indicates that only a write of 0 to clear the flag is possible.

Note: Control bits in the register flag area can only be manipulated with the bit manipulation instructions. Refer to section 2, "Memory", for details.


6.2 Register and Flag Descriptions

6.2.1 Miscellaneous Register (MIS: \$00C)

MIS is a 4-bit write-only register that turns the port pull-up MOS transistors on or off, turns the R port SO pin output buffer PMOS transistor on or off, and sets both the oscillator stabilization period time when clearing a low power mode as well as the interrupt frame period for watch and subactive modes.

MIS is initialized to \$0 on reset and in stop mode.

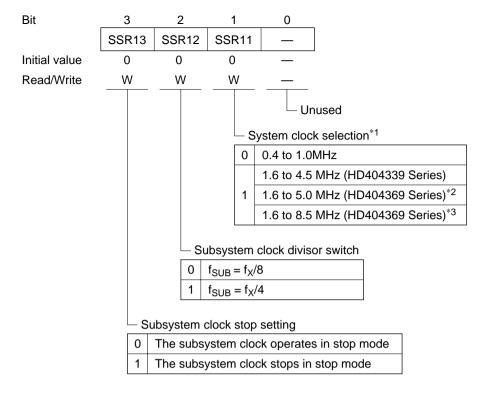
This section describes the MIS0 and MIS1 bits. The MIS2 and MIS3 bits are described in the "Miscellaneous Register" items in section 11 and 12, "I/O Ports".

Note: * Values in parentheses are direct transition time values.

Bits 1, 0—Interrupt Frame Period and Oscillator Stabilization Period (MIS1, MIS0): These bits set the interrupt frame period (in watch mode and subactive mode) and the oscillator stabilization period when clearing low power modes. The oscillator stabilization period set by the MIS1 and MIS0 bits must be longer than the oscillator stabilization period (t_{RC}) for the system clock stipulated in the AC characteristics.

MIS1	MISO	Interrupt Frame Period (T)* ¹	Oscillator Stabilization Period (tRC)* ¹	Oscillator Circuit Conditions
0	0	0.24414 ms	0.12207 ms (0.24414 ms)*2	External clock input
	1	15.625 ms	7.8125 ms	Ceramic oscillator
1	0	125 ms	62.5 ms	Crystal oscillator
	1	Unused	Unused	—

Notes: 1. These values for T and tRC assume a 32.768 kHz crystal oscillator connected to pins X1 and X2.


2. Values in parentheses are for direct transition from subactive mode to active mode.

6.2.2 System Clock Selection Register 1 (SSR1: \$027)

SSR1 is a 3-bit write-only register that specifies the system clock oscillator frequency (f_{OSC}) used, sets the divisor for the subsystem clock frequency (f_{SUB}), and sets subsystem clock operation in stop mode.

The SSR12 and SSR11 bits are initialized to 0 on reset and in stop mode. The SSR13 bit is initialized to 0 only on reset.

This section describes SSR13 and SSR12. The SSR11 bit is described in section 14.2.1, "System Clock Selection Register 1 (SSR1)".

- Notes: 1. When the subsystem clock (32.768 kHz crystal oscillator) is used, use the ranges 0.4 MHz $\leq f_{OSC} \leq$ 1.0 MHz and 1.6 MHz $\leq f_{OSC} \leq$ 4.5 MHz (8.5 MHz: HD404369 Series).
 - 2. Applies to the HD404364, HD404368, HD4043612, and HD404369.
 - 3. Applies to the HD40A4364, HD40A4368, HD40A43612, HD40A4369, and HD407A4369.

Bit 3—Subsystem Clock Stop Setting (SSR13): This bit selects whether the subsystem clock (32.768 kHz oscillator) operates or stops in stop mode.

SSR13	Description	
0	The subsystem clock operates in stop mode	(initial value)
1	The subsystem clock stops in stop mode	

Bit 2—Subsystem Clock Divisor Switch (SSR12): This bit sets the divisor for the subsystem clock supplied to the CPU and the built-in peripheral modules in subactive mode. However, note that the divisor for the subsystem clock supplied to prescaler W (PSW) is fixed at 8, i.e., $f_w = f_x/8$.

SSR12	Description
0	f_{SUB} is 1/8 of the subsystem clock oscillator f_x , i.e., $f_{SUB} = f_x/8$ (initial value
	A single CPU instruction cycle takes 244.14 μ s (when f _x = 32.768 kHz)
1	f_{SUB} is 1/4 of the subsystem clock oscillator f_x , i.e., $f_{SUB} = f_x/4$
	A single CPU instruction cycle takes 122.07 μ s (when f _x = 32.768 kHz)

6.2.3 Timer Mode Register A (TMA: \$008)

TMA is a 4-bit write-only register that sets the timer counter A operating clock and specifies TCA clearing and prescaler W (PSW) when timer A is used in time base mode.

TMA is initialized to \$0 on reset and in stop mode.

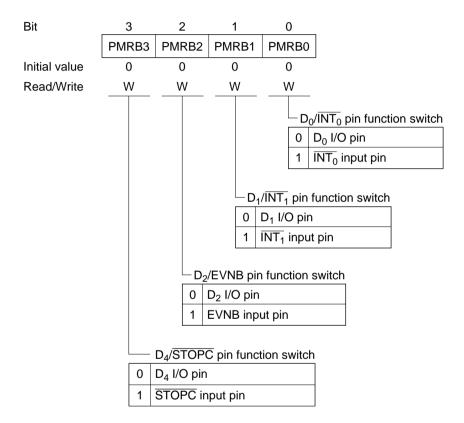
This section describes the TMA3 bit. The TMA2 to TMA0 bits are described in section 17.2.1, "Timer Mode Register A".

Bit	3	2	1	0
	TMA3	TMA2	TMA1	TMA0
Initial value	0	0	0	0
Read/Write	W	W	W	W

Timer A	clock se	election -				
TMA3	TMA2	TMA1	TMA0	Prescaler	Input clock period	Mode
		0	0	PSS	2048 t _{cyc}	
	0	0	1	PSS	1024 t _{cyc}	
	0	1	0	PSS	512 t _{cyc}	
0			1	PSS	128 t _{cyc}	Free-running
		0	0	PSS	32 t _{cyc}	timer
	4	0	1	PSS	8 t _{cyc}	
	1	1	0	PSS	4 t _{cyc}	
			1	PSS	2 t _{cyc}	
		0	0	PSW	32 t _{wcyc}	
	0	0	1	PSW	16 t _{wcyc}	
	0	1	0	PSW	8 t _{wcyc}	
1			1	PSW	2 t _{wcyc}	Clock time
		0	0	PSW	1/2 t _{wcyc}	base mode
	1		1	_	Unused]
		1	*	_	PSW, TCA clear	

Note: * Don't care

Bit 3—Prescaler Selection (TMA3): This bit sets the TCA clock source. When PSW is used as the clock source, timer A operates in time base mode and generates the interrupt frame timing in watch mode and subactive mode.


TMA3	Description
0	PSS is used as the TCA clock source. Timer A operates as a free-running timer. (initial value)
1	PSW is used as the TCA clock source. Timer A operates as a clock time base. (See section 17.3.2, "Clock Time Base Operation".)

6.2.4 Port Mode Register B (PMRB: \$024)

PMRB is a 4-bit write-only register that switches the functions of the D port pins.

The PMRB2 to PMRB0 bits are cleared to 0 on reset and in stop mode. The PMRB3 bit is cleared to 0 only on reset.

This section describes the PMRB3 bit. Refer to the sections titled "Port Mode Register B" in sections 11 and 12, "I/O Ports", for details on the PMRB2 to PMRB0 bits.

Bit 3—D_4/\overline{\text{STOPC}} Pin Function Switch (PMRB3): Selects whether the $D_4/\overline{\text{STOPC}}$ pin is used as the D_4 I/O pin or as the STOPC input pin.

PMRB3	Description	
0	The D ₄ /STOPC pin functions as the D ₄ I/O pin.	(initial value)
1	The D ₄ /STOPC pin functions as the STOPC input pin.	

6.2.5 Low Speed On Flag (LSON: \$020, 0)

This flag is cleared to 0 on reset and in stop mode.

LSON selects whether the system clock ($\phi_{CPU} = \phi_{PER} = f_{CYC}$) or the subsystem clock ($\phi_{CPU} = \phi_{PER} = f_{SUB}$) is taken as the operating clock for the CPU and the built-in peripheral modules other than timer A at operating mode transitions.

This bit is used for entering and exiting watch mode and subactive mode, and functions in combination with the DTON flag (DTON), the TMA3 bit, the STOP instruction, the SBY instruction, the $\overline{INT_0}$ interrupt during timer A clock time base operation, and the timer A interrupt. This bit has no influence on operations other than at times when a mode transition is caused by an instruction execution or an interrupt.

 LSON
 Description

 0
 The system clock is used as the operating clock for the CPU and peripheral modules other than timer A. (initial value)

 1
 The subsystem clock is used as the operating clock for the CPU and peripheral modules other than timer A.

Figure 6-2 shows the operating mode transitions that are influenced by LSON and DTON.

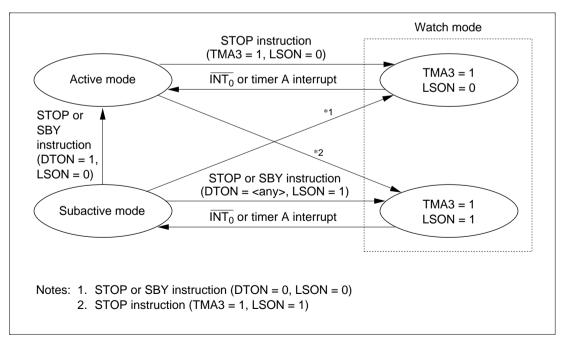
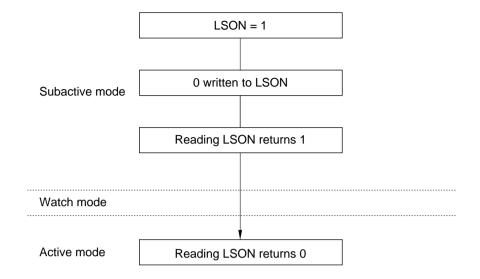



Figure 6-2 Mode Transitions and the LSON and DTON Flags

Although the LSON flag takes effect as soon as it is written, its read value only becomes valid after a state transition. The figure below gives an example.

6.2.6 DTON Flag (DTON: \$020, 3)

DTON controls the direct transition from subactive mode to active mode.

This flag can be set to 1 only in subactive mode.

This flag is cleared to 0 on reset, in stop mode, and in active mode.

DTON	Description
0	When a STOP or SBY instruction is executed in subactive mode the system switches to watch mode. (initial value
1	When a STOP or SBY instruction is executed in subactive mode with LSON set to 0 the system switches to active mode. (If LSON is 1, the system switches to watch mode.)

6.2.7 RAM Enable Flag (RAME: \$021, 3)

RAME reflects whether stop mode was cleared by a RESET pin input or by a STOPC pin input.

In stop mode, the contents of RAM directly prior to entering stop mode are maintained, and the contents of RAM are maintained both when stop mode is cleared by a **STOPC** pin input and when it is cleared by a **RESET** pin input. However, the contents of RAM are maintained only by resets meant to clear stop mode. Therefore, to use the previous contents of RAM after stop mode is cleared, applications must clear stop mode with a **STOPC** pin input and test the value of the RAME flag after switching to active mode. If RAME is 1, the contents of RAM are guaranteed to have been maintained.

Although 0 can be written to clear this flag, it cannot be set to 1.

This flag is cleared to 0 on reset.

RAME	Description	
0	Indicates the stop mode was not cleared by a STOPC pin input.	(initial value)
1	Indicates the stop mode was cleared by a $\overline{\text{STOPC}}$ pin input.	

6.3 Standby Mode

6.3.1 Entering Standby Mode

Standby mode is entered by executing an SBY instruction from active mode.

In standby mode, the oscillators continue to operate but the clocks related to instruction execution stop. CPU operation stops and the states of registers, RAM, and D ports and R ports set to output maintain the values they had prior to standby mode. Timers, the serial interface, and other built-in peripheral modules continue to operate.

Power consumption is lower than in active mode due to the CPU being stopped.

6.3.2 Clearing Standby Mode

Standby mode can be cleared either by a RESET pin input or by an interrupt.

(1) Clearing with a $\overline{\text{RESET}}$ Pin Input: When the $\overline{\text{RESET}}$ pin goes low the system enters the reset state and standby mode is cleared.

(2) Clearing with an Interrupt: Standby mode is cleared and the system enters active mode when an interrupt occurs with its corresponding interrupt flag (IF) set to 1 and its interrupt mask (IM) cleared to 0. After the transition the instruction following the SBY instruction is executed. If the interrupt enable flag (IE) is 1, the corresponding interrupt handler will be executed. If IE is 0, the interrupt is deferred and the execution of the immediately preceding instruction sequence continues. Figure 6-3 shows the flowchart for the sequence that occurs when low power modes are cleared.

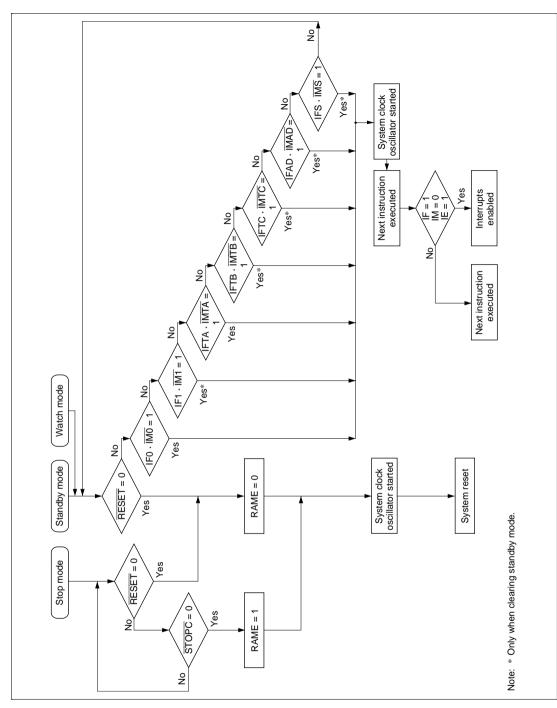


Figure 6-3 Flowchart for Exiting Low Power Modes

6.4 Stop Mode

6.4.1 Entering Stop Mode

The system switches to stop mode when a STOP instruction is executed when the TMA3 bit in TMA is cleared to 0. In stop mode, the contents of RAM are maintained and the CPU and all functions of the peripheral modules stop. Accordingly, stop mode is the mode with the lowest power consumption of all operating modes.

Note that the system clock oscillator stops in stop mode. Also, the SSR13 bit in SSR1 selects whether the subsystem clock operates or stops.

6.4.2 Clearing Stop Mode

Stop mode is cleared by an input to either the $\overline{\text{RESET}}$ pin or the $\overline{\text{STOPC}}$ pin.

(1) Clearing with a $\overline{\text{RESET}}$ Pin Input: When the $\overline{\text{RESET}}$ pin goes low the system enters the reset state and stop mode is cleared. Although RAME will be cleared during reset exception handling the contents of RAM are maintained after stop mode is cleared.

(2) Clearing with a STOPC Pin Input: When the STOPC pin goes low the system enters the reset state and stop mode is cleared. Unlike the case for a RESET pin input, RAME is set to 1 during reset exception handling. The contents of RAM are maintained after stop mode is cleared.

After stop mode is cleared by a **STOPC** pin input and the system has entered active mode, the software can determine that the contents of RAM prior to entering stop mode were maintained by testing the state of the RAME flag.

Although $\overline{\text{RESET}}$ pin input is valid in all operating modes, $\overline{\text{STOPC}}$ pin input is only valid in stop mode and is ignored in other operating modes.

6.4.3 Post-Stop Mode Oscillator Stabilization Period

Figure 6-4 shows the timing chart for clearing stop mode. Be sure to hold the $\overline{\text{RESET}}$ or $\overline{\text{STOPC}}$ pin low for at least the oscillator stabilization period (t_{RC}). See "AC Characteristics" in section 25, "Electrical Characteristics", for details.

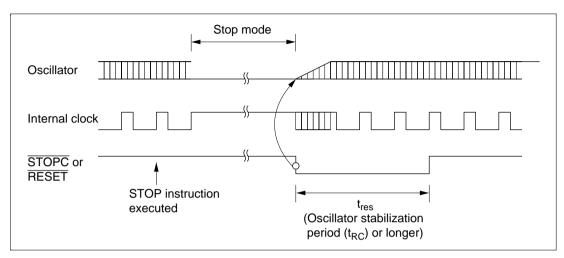


Figure 6-4 Stop Mode Clear Timing

6.5 Watch Mode

6.5.1 Entering Watch Mode

The system switches to watch mode from active when a STOP instruction is executed when the TMA3 bit in TMA is cleared to 1. The system also switches to watch mode from subactive mode when either a STOP or SBY instruction is executed either with LSON set to 1 or with DTON cleared to 0.

In watch mode the system clock stops but the subsystem clock continues to operate, and timer A operates (in clock time base mode) from the subsystem clock. All other built-in peripheral modules stop. RAM and the D and R ports set to output retain their values prior to entering watch mode. Power consumption in watch mode is the second lowest, exceeding only that in stop mode. Watch mode is convenient when only clock operation is required.

6.5.2 Clearing Watch Mode

Watch mode can be cleared either by a $\overline{\text{RESET}}$ pin input or an $\overline{\text{INT}}_0$ or timer A interrupt.

(1) Clearing with a $\overline{\text{RESET}}$ Pin Input: When the $\overline{\text{RESET}}$ pin goes low the system enters the reset state and watch mode is cleared.

(2) Clearing with an \overline{INT}_0 or Timer A Interrupt: Watch mode is cleared when an \overline{INT}_0 or timer A interrupt occurs and the corresponding IF is 1 and IM is 0. If LSON was 0 at that time the system switches to active mode, and if LSON was 1, the system switches to subactive mode.

After the transition the instruction following the STOP or SBY instruction is executed. If the interrupt enable flag (IE) is 1, the corresponding interrupt handler will be executed. If IE is 0, the interrupt is deferred and the execution of the immediately preceding instruction sequence continues. (See figure 6-3.)

6.5.3 Post-Watch Mode Operating Timing

Figure 6-5 shows the operation timing when the system switches to active mode after watch mode is cleared by an \overline{INT}_0 or timer A interrupt. The \overline{INT}_0 or timer A interrupt is detected in synchronization with the period T set by the MIS register MIS1 and MIS0 bits. Next, interrupt handling for the timer A interrupt starts after the period t_{RC} (also set by the MIS register MIS1 and MIS0 bits) with respect to the interrupt strobe has passed. Interrupt exception handling for the \overline{INT}_0 starts after the period T + t_{RC} with respect to the interrupt strobe has passed.

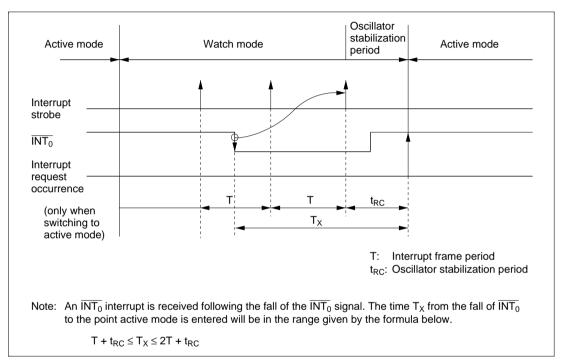


Figure 6-5 Watch Mode to Active Mode Transition Timing

6.6 Subactive Mode

6.6.1 Entering Subactive Mode

The system switches to subactive mode when a timer A or \overline{INT}_0 interrupt occurs in watch mode with the LSON flag set to 1.

In subactive mode, the system clock stops and the system operates from the subsystem clock.

Although the CPU and the built-in peripheral modules other than the A/D converter operate, since the operating clock is slower, power consumption is lower than all other modes except stop and watch mode.

The CPU instruction cycle time can be selected to be either 244.14 μ s ($f_{SUB} = f_x/8$) or 122.07 μ s ($f_{SUB} = f_x/4$) by the SSR1 register SSR12 bit. However, note that the SSR12 bit must be set in active mode. System operation is not guaranteed if the SSR12 bit is set in subactive mode.

6.6.2 Clearing Subactive Mode

Subactive mode is cleared by executing either a STOP or SBY instruction. The system will switch to either active mode or watch mode depending on the settings of the LSON and DTON flags as shown in figure 6-2.

6.6.3 System Timing when Switching Directly from Subactive Mode to Active Mode

The system can switch directly from subactive mode to active mode under control of the DTON and LSON flags. The procedure is as follows.

- 1. In subactive mode, set LSON to 0 and DTON to 1*.
- 2. Execute either a STOP or an SBY instruction.

This procedure will cause the system to switch directly from subactive mode to active mode after an internal processing time plus the time tRC specified by the MIS register MIS1 and MIS0 bits, as shown in figure 6-6.

Note: * DTON can be set to 1 only in subactive mode. This flag is always cleared to 0 on reset, in stop mode, and in active mode.

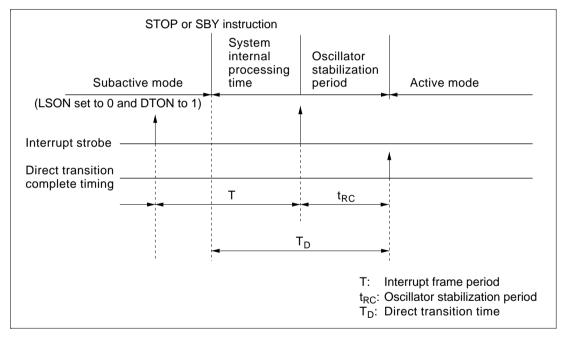


Figure 6-6 Direct Transition Timing

The time TD to switch from subactive mode to active mode is $t_{RC} < TD < T + t_{RC}$, as shown in figure 6-6.

6.7 Interrupt Frame

A clock generated by dividing the subsystem clock by 8 is supplied to the timer A and \overline{INT}_0 interrupt acceptance circuits in watch and subactive modes. PSW and timer A operate as clock time bases and generate the interrupt frame (T) timing. T can be set to one of three values with the MIS register MIS1 and MIS0 bits.

The \overline{INT}_0 and timer A interrupts are generated in synchronization with the interrupt frame in watch and subactive modes. Interrupt exception handling starts on the interrupt strobe in all cases other than the transition to active mode. (See figure 6-5 and 6-6.)

Although the \overline{INT}_0 pin input falling edge is input independently of the interrupt frame, it is handled as though it were synchronized with the second following interrupt frame.

6.8 Low Power Mode Operating Sequence

Figure 6-7 shows the low power mode operating sequence. If a STOP or SBY instruction is executed in the state where the IE flag is cleared, an interrupt flag is set, and the corresponding interrupt mask is cleared. The STOP or SBY instruction will then be cancelled (treated as a NOP) and execution will continue from the next instruction. Therefore, before executing a STOP or SBY instruction, either clear all interrupt flags or mask interrupts.

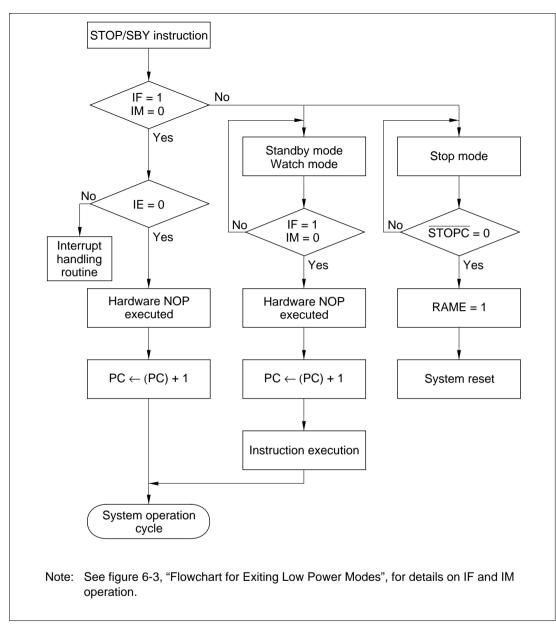


Figure 6-7 Low Power Mode Operating Sequence

6.9 Usage Notes

Interrupts will not be detected correctly if the high level or low level periods in the \overline{INT}_0 signal are shorter than the interrupt frame period in watch and subactive modes.

Figure 6-8 shows the system edge sensing technique. The system samples the \overline{INT}_0 signal at fixed periods and determines that a falling edge has occurred when the sampled value changes from high to low on consecutive samples.

Interrupt detection errors can occur since this sampling is performed with the interrupt frame period.

As shown in figure 6-9 (a), if the \overline{INT}_0 signal high level period falls between interrupt frames, both points A and B will be low and the falling edge will not be detected. Similarly, as shown in figure 6-9 (b), if the \overline{INT}_0 signal low level period falls between interrupt frames, both points A and B will be high and the falling edge will not be detected.

Therefore, the \overline{INT}_0 signal high and low level periods must be longer than the interrupt frame period in watch and subactive modes.

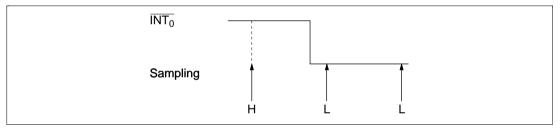


Figure 6-8 Edge Sensing Techniques

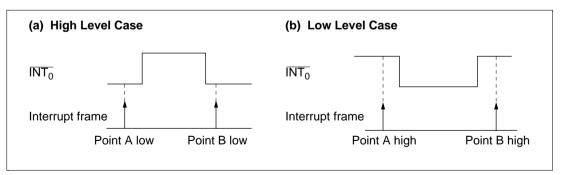


Figure 6-9 Sampling Examples

Section 7 I/O Ports (HD404344R Series)

7.1 Overview

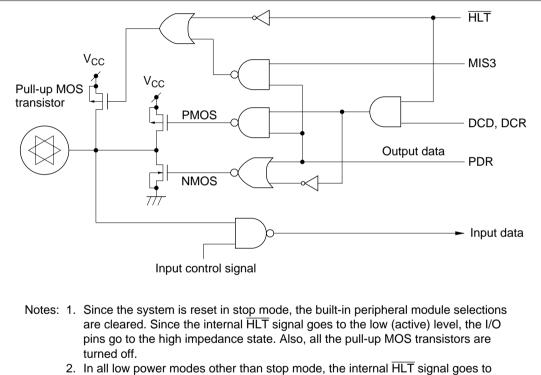
7.1.1 Features

The HD404344R Series I/O ports have the following features.

- The 22 pins in the D and R ports (D₀ to D₅ and the pins in the ports R0 to R3) are all three state CMOS I/O pins. Of these pins, the ten pins D₁, D₂, R1₀ to R1₃, and R2₀ to R2₃ are high current I/O pins that can each accept a current influx of up to 15 mA.
- Certain I/O pins (D₀, D₄, and the pins in the ports R₀ and R₃) are shared with the built-in peripheral modules, such as timers and the serial interface. Setting these pins for use with the built-in peripheral modules takes priority over their setting for use as D or R port pins.
- Register settings are used to select input or output for I/O pins and to select the I/O port or peripheral module usage for shared function pins.
- All peripheral module output pins are CMOS outputs. However, the R0₂/SO pin can be selected to be an NMOS open drain output by setting a register.
- Since the system is reset in stop mode, the built-in peripheral module selections are cleared and the I/O pins go to the high impedance state.
- The CMOS output pins have built-in programmable pull-up MOS transistors. The on/off state of these transistors can be controlled by register settings on an individual basis. Note that the pull-up MOS transistor on/off settings are independent of the pin settings for use as built-in peripheral module pins.

Table 7-1 provides an overview of the HD404344R Series port functions.

Table 7-1Port Functions


Port	Overview	Pin	Shared Function	Function Switching Register
D_0 to D_5	I/O portAccessed in bit units	D ₀ /INT ₀ /EVNB	External interrupt input 0/ timer B event input	PMRB
	 Accessed with the SED, 	D ₁	_	_
	SEDD, RED, REDD, TD, and	D ₂	_	
	TDD instructions.	D ₃	_	
	 Programmable pull-up MOS transistors 	D₄/STOPC	Stop mode clear	PMRB
	 D₁ and D₂ are high current pins (up to 15 mA) 	D ₅	_	_
R0	I/O ports	R0 ₀ /SCK	Transfer clock I/O	SMR
	Accessed in 4-bit units.	R0 ₁ /SI	Serial reception data input	PMRA
	• Accessed with the LAR, LBR, LRA, and LRB instructions.	R0 ₂ /SO	Serial transmission data output	-
	Programmable pull-up MOS	R0 ₃ /TOC	Timer C output	_
R1	transistors	R1 ₀	—	_
	nign current pins (up to 15 -	, R1₁	_	
		R1 ₂	_	
	,	R1 ₃	_	
R2	_	R2 ₀	—	_
		R2 ₁	-	
		R2 ₂	_	
		R2 ₃	_	
R3	_	R3 ₀ /AN ₀	Analog input channel 0	AMR1
		R3 ₁ /AN ₁	Analog input channel 1	
		R3 ₂ /AN ₂	Analog input channel 2	_
		R3 ₃ /AN ₃	Analog input channel 3	

7.1.2 I/O Control

All the D port and R port pins are CMOS three state I/O ports.

(1) **I/O Pin Circuits:** Input and output through the D port and R port pins is controlled by the port data registers (PDR) and the data control registers (DCD, DCR). When a bit in a DCD or DCR register is 1, the corresponding pin will function as an output pin and output the value in its PDR. Similarly, if a DCD or DCR bit is 0, the corresponding pin will function as an input pin.

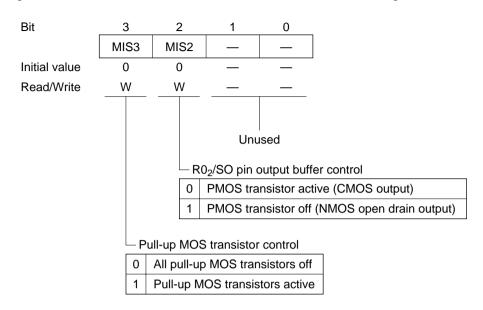
Figure 7-1 shows the I/O pin circuit structure.

the high level.

Figure 7-1 I/O Pin Circuit Structure

(2) **Pull-Up MOS Control:** Each I/O pin in the D and R ports has a built-in programmable pullup MOS transistor. When the miscellaneous register (MIS) MIS3 bit is set to 1 the pull-up MOS transistor for pins for which the corresponding PDR is set to 1 will be turned on. Thus the on/off state of each pin can be controlled independently by the PDRs. Note that the pull-up MOS transistor on/off settings are independent of the pin settings for use as built-in peripheral module pins.

Table 7-2 shows how register settings control the port I/O pins.


Table 7-2	Register Settings for I/O Pin Control
-----------	--

MIS3		0			0 1				
DCD, DCR		(0	1		0		1	
PDR		0	1	0	1	0 1		0	1
CMOS	PMOS			—	On	—		_	On
buffer	NMOS			On				On	—
Pull-up MOS transistor			-				On	_	On

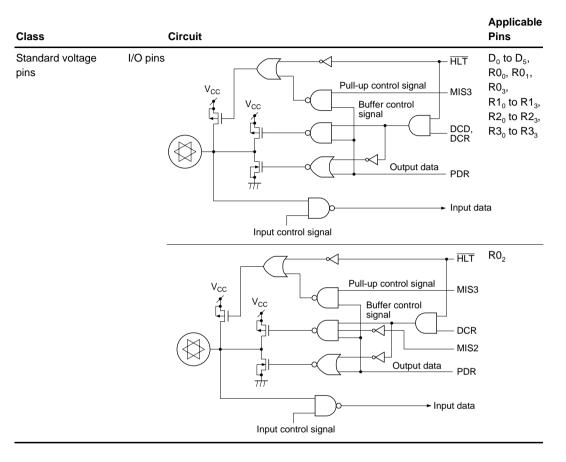
Notes: 1. -: Off

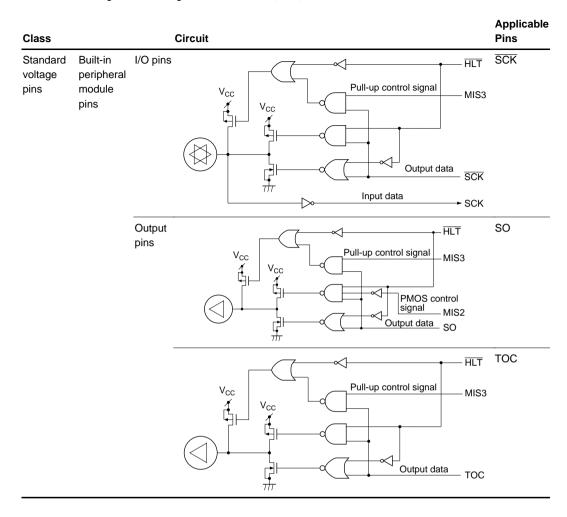
2. The PDR registers are not allocated addresses in RAM. The PDR registers are accessed by special-purpose I/O instructions.

(3) Miscellaneous Register (MIS: \$00C): MIS is a 2-bit write-only register that controls the on/off states of the D and R port pin pull-up MOS transistors and the on/off state of the $R0_2/SO$ pin output buffer PMOS transistor. MIS is initialized to \$0 on reset and in stop mode.

Bit 3—Pull-Up MOS Transistor Control (MIS3): Controls the on/off states of the pull-up MOS transistors built into the I/O port pins.

MIS3	Description	
0	All pull-up MOS transistors will be turned off.	(initial value)
1	Pull-up MOS transistors for which the corresponding PDR bit is 1 will b	be turned on.


Bit 2—R0₂/SO Pin Output Buffer Control (MIS2): Controls the on/off state of the R0₂/SO pin output buffer PMOS transistor.


MIS2	Description	
0	The $R0_2$ /SO pin output will be a CMOS output.	(initial value)
1	The $R0_2$ /SO pin output will be an NMOS open drain output.	

7.1.3 I/O Pin Circuit Structures

Table 7-3 shows the port and peripheral module pin circuits.

Table 7-3 Input and Output Pin Circuits

Table 7-3 Input and Output Pin Circuits (cont)

Applicable Circuit Class Pins Standard Built-in Input SI, ~ HLT INT₀/EVNB, voltage peripheral pins V_{CC} MIS3 STOPC module pins í. PDR pins SI, Input data ► INT₀/EVNB, STOPC AN₀ to AN₃ HLT \sim V_{CC} MIS3 í. PDR A/D input Input control

Table 7-3 Input and Output Pin Circuits (cont)

7.1.4 Port States in Low Power Modes

The D_0 and D_4 pins and the R0 and R3 port pins have shared functions as input or output pins for built-in peripheral modules. In standby mode, since the CPU stops, the pins selected as output ports maintain their immediately prior output values. Also, pins selected for use by built-in peripheral modules that operate in standby mode continue to operate. (Output pins used by modules that stop in standby mode maintain their immediately prior output values.) See section 5, "Low Power Modes", for details on which built-in peripheral modules can operate in each mode.

Table 7-4 lists the port states in the low power modes.

Low Power Mode	Port States		
Standby mode	Pins maintain their values immediately prior to entering standby mode.		
Stop mode	Built-in peripheral function selections are cleared, and the port and peripheral function I/O pins go to the high impedance state.		

 Table 7-4
 Port States in Low Power Modes

7.1.5 Handling Unused Pins

I/O pins that are unused in user systems must be tied to a fixed potential, since floating I/O pins can cause noise that can interfere with LSI operation.

The built-in pull-up MOS transistors can be used to pull up unused pins to VCC. Alternatively, unused pins can be pulled up to V_{CC} with external resistors of about 100 k Ω .

Application programs should maintain the PDR and DCR contents for unused pins at their reset state values. Also note that unused pins must not be selected for use as peripheral function I/O pins.

7.2 D Port

7.2.1 Overview

The D port is a 6-pin I/O port (D_0 to D_5 , where D_1 and D_2 are high current pins that can each accept a current influx of up to 15 mA) that can be accessed in 1-bit units.

The output levels on the pins D_0 to D_5 can be set to low or high by accessing the port in one-bit units with the SED, SEDD, RED, and REDD output instructions. The output data is stored in the PDR for each pin. The level on each of the pins D0 to D5 can be tested in one-bit units with the TD and TDD input instructions.

The DCD registers are used to turn the D port output buffers on or off. When the DCD bit corresponding to a given pin is 1, the data in the corresponding PDR will be output from that pin. The on/off states of the output buffers can be controlled individually for each D port pin. The DCD registers are allocated in the RAM address space.

The pins D_0 and D_4 have shared functions as built-in peripheral module pins. PMRB is used to switch these functions.

Figure 7-2 shows the structure of the D port.

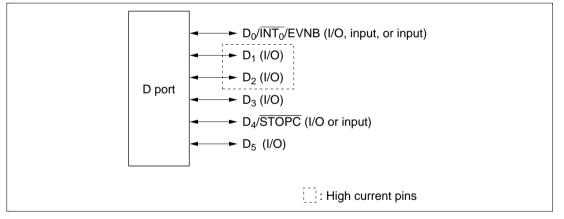


Figure 7-2 D Port Structure

7.2.2 **Register Configuration and Descriptions**

Table 7-5 shows the configuration of the D port registers.

Table 7-5 **D** Port Register Configuration

Address	Register	Symbol	R/W	Initial Value
_	Port data registers	PDR	W*	1
\$02C	Data control registers	DCD0	W	\$0
\$02D		DCD1	W	00
\$024	Port mode register B	PMRB	W	00

Note: * The SED, SEDD, RED, and REDD instructions can be used to write to the PDRs.

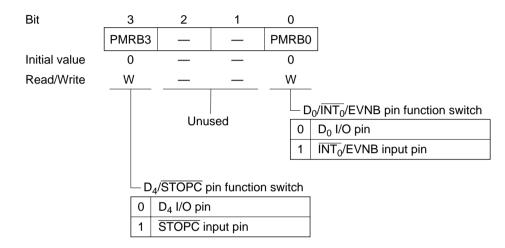
(1) Port Data Registers (PDR): Each of the I/O pins D_0 to D_5 includes a built-in PDR. When a SED or SEDD instruction is executed for one of the pins D_0 to D_5 the corresponding PDR is set to 1, and when a RED or REDD instruction is executed, the corresponding PDR is cleared to 0. When a bit corresponding to a D port pin in DCD0 or DCD1 is 1, the corresponding output buffer is turned on and the value of the corresponding PDR will be output from that pin.

The PDR registers are set to 1 on reset and in stop mode.

Bits and 0

1

(2) Data Control Registers (DCD0, DCD1: \$02C, \$02D)


		Bit	3	2	1	0	
DCD0:	\$02C		DCD03	DCD02	DCD01	DCD00	
		Initial value	0	0	0	0	
		Read/Write	W	W	W	W	
		Bit	3	2	1	0	
DCD1: \$02D					DCD11	DCD10	
		Initial value		_	0	0	
		Read/Write	_	_	W	W	
s in DCD0 DCD1	Description						
	The CMOS of impedance s	output buffer is t state.	urned off a	and the ou	tput goes	-	nitial value)
	The output b	ouffer is turned o	n and the	value in th	e corresp	onding PD	R is output.

HITACHI

The bits in DCD0 and DCD1 correspond to the D port pins as shown in the table.

			Bit		
Register	Bit 3	Bit 2	Bit 1	Bit 0	
DCD0	D ₃	D_2	D ₁	Do	
DCD1			D_{5}	D_4	

(3) **Port Mode Register B (PMRB: \$024):** PMRB is a 2-bit write-only register that switches the D port I/O pin shared functions.

Bit 3—D_4/\overline{\text{STOPC}} Pin Function Switch (PMRB3): Selects whether the $D_4/\overline{\text{STOPC}}$ pin is used as the D_4 I/O pin or as the stop mode clear pin (STOPC).

PMRB3	Description	
0	The $D_4/\overline{\text{STOPC}}$ pin functions as the D_4 I/O pin.	(initial value)
1	The $D_4/\overline{\text{STOPC}}$ pin functions as the $\overline{\text{STOPC}}$ input pin.	

Bit 0—D_0/\overline{INT}_0/EVNB Pin Function Switch (PMRB0): Selects whether the $D_0/\overline{INT}_0/EVNB$ pin is used as the D_0 I/O pin or as the $\overline{INT}_0/EVNB$ input pin.

PMRB0	Description	
0	The $D_0/\overline{INT}_0/EVNB$ pin functions as the D_0 I/O pin.	(initial value)
1	The $D_0/\overline{INT}_0/EVNB$ pin functions as the $\overline{INT}_0/EVNB$ input pin.	

Refer to section 18.2.2, "Timer Mode Register B2 (TMB2)", for details on switching between the \overline{INT}_0 and EVNB functions.

7.2.3 Pin Functions

The functions of the pins D_0 to D_5 are switched by register settings as shown in table 7-6.

Table 7-6D Port Pin Functions

Pin	Pin Functions and Selection Methods							
D ₀ /INT ₀ /EVNB	The pin function DCD0 DCD00 b	is switched as shown it.	below by tl	ne PMRB I	PMRB0 bit and the			
	PMRB0	()		1			
	DCD00	0			—			
	Pin function	D₀ input pin	D ₀ out	out pin	INT ₀ /EVNB input pin*			
		his pin as the EVNB pi rrupt mask (IM0: \$000		e INT₀ inter	rrupt by setting the			
D ₁	The pin function	is switched as shown	below by tl	ne DCD0 [DCD01 bit.			
	DCD01	0			1			
	Pin function	D₁ input pin			D₁ output pin			
D ₂	The pin function is switched as shown below by the DCD0 DCD02 bit.							
-	DCD02	0		1				
	Pin function	D ₂ input pin			D ₂ output pin			
D ₃	The pin function is switched as shown below by the DCD0 DCD03 bit.							
	DCD03	0			1			
	Pin function	D_3 input pin		$D_{_3}$ output pin				
D₄/STOPC	The pin function is switched as shown below by the PMRB PMRB3 bit and the DCD1 DCD10 bit.							
	PMRB3	0			1			
	DCD10	0			_			
	Pin function	D₄ input pin	D₄ output pin		STOPC input pin			
D ₅	The nin function	is switched as shown	below by t					
$\boldsymbol{\nu}_5$	DCD11				1			
					•			
	Pin function	D₅ input pin			D₅ output pin			

7.3 R Ports

7.3.1 Overview

The R port consists of the four 4-bit I/O ports R0 to R3. These ports are accessed in 4-bit units.

The individual ports R0 to R3 are accessed in 4-bit units with the LRA and LRB output instructions to control the output levels (high or low) on each pin. Output data is stored in the PDR built into each pin. Similarly, the LAR and LBR input instructions can be used to access the R ports in 4-bit units to read the input levels on the port pins.

DCR registers are used to control the port R0 to R3 output buffer on/off states. When the DCR bit corresponding to a pin in one of the ports R0 to R3 is set to 1, the data in the corresponding PDR is output from that pin. Thus the output buffer on/off states can be controlled on an individual pin basis for the R port pins. The DCR registers are allocated in the RAM address space.

The pins in ports R1 and R2 are high current pins that can accept current influxes of up to 15 mA.

The R0 and R3 port pins have shared functions as built-in peripheral module pins. Register settings are used to switch these functions. (See table 7-7.)

Figure 7-3 shows the R port pin structure.

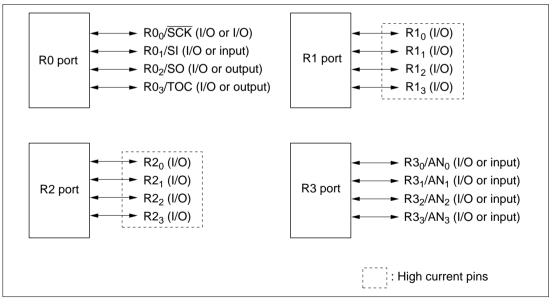


Figure 7-3 R Port Circuit

7.3.2 Register Configuration and Descriptions

Table 7-7 shows the configuration of the R port related registers.

Table 7-7 R Port Register Configuration

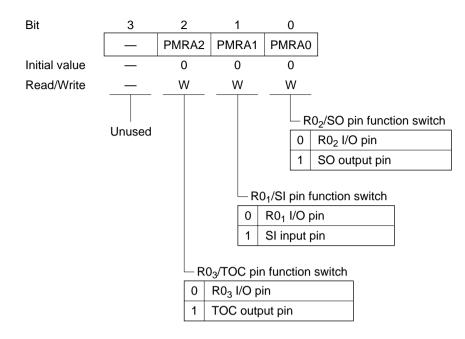
Address	Register	Symbol	R/W	Initial Value
	Port data registers	PDR	W*	1
\$030	Data control registers	DCR0	W	\$0
\$031		DCR1	W	\$0
\$032		DCR2	W	\$0
\$033		DCR3	W	\$0
\$004	Port mode register A	PMRA	W	\$0
\$005	Serial mode register	SMR	W	\$0
\$019	A/D mode register 1	AMR1	W	\$0

Note: * The LRA and LRB instructions are used to write to the PDR registers.

(1) **Port Data Registers (PDR):** All the I/O pins in ports R0 to R3 include a PDR that holds the output data. When an LRA or an LRB instruction is executed for one of ports R0 to R3, the contents of the accumulator (A) or the B register (B) are transferred to the specified R port PDRs. When the corresponding bit in DCR0 to DCR3 for the specified port is 1, the output buffers for the corresponding pins will be turned on and the values in the PDRs will be output from the pins.

The PDR registers are set to 1 on reset and in stop mode.

(2) Data Control Registers (DCR0 to DCR3: \$030, \$031, \$032, \$033)


	Bit	3	2	1	0
DCR0: \$030		DCR03	DCR02	DCR01	DCR00
	Initial value	0	0	0	0
	Read/Write	W	W	W	W
	Bit	3	2	1	0
DCR1: \$031		DCR13	DCR12	DCR11	DCR10
	Initial value	0	0	0	0
	Read/Write	W	W	W	W
	Dit	2	0	4	0
	Bit	3	2	1	0
DCR2: \$032		DCR23	DCR22	DCR21	DCR20
	Initial value	0	0	0	0
	Read/Write	W	W	W	W
		-	_		_
	Bit	3	2	1	0
					DODOO
DCR3: \$033		DCR33	DCR32	DCR31	DCR30
DCR3: \$033	Initial value	DCR33 0	DCR32 0	DCR31 0	0 0

Bits in DCR0 to DCR3	Description
0	The output buffer (CMOS buffer) is turned off and the output goes to the high impedance state. (initial value)
1	The output buffer is turned on and the corresponding PDR value is output.

The table below lists the correspondence between the bits in DCR0 to DCR3 and the port R0 to R3 pins.

			Bit		
Register	Bit 3	Bit 2	Bit 1	Bit 0	
DCR0	R0 ₃	R0 ₂	R0 ₁	R0 ₀	
DCR1	R1 ₃	R1 ₂	R1 ₁	R1 ₀	
DCR2	R2 ₃	R2 ₂	R2 ₁	R2 ₀	
DCR3	R3 ₃	R3 ₂	R3 ₁	R3 ₀	

(3) **Port Mode Register A (PMRA: \$004):** PMRA is a 3-bit write-only register whose bits PMRA2 to PMRA0 switch the functions of the port R0 shared function pins.

Bit 2—R0₃/TOC Pin Function Switch (PMRA2): Selects whether the $R0_3$ /TOC pin functions as the R0₃ I/O pin or as the timer C output pin (TOC).

PMRA2	Description	
0	The $R0_3$ /TOC pin functions as the $R0_3$ I/O pin.	(initial value)
1	The $R0_3$ /TOC pin functions as the TOC output pin.	

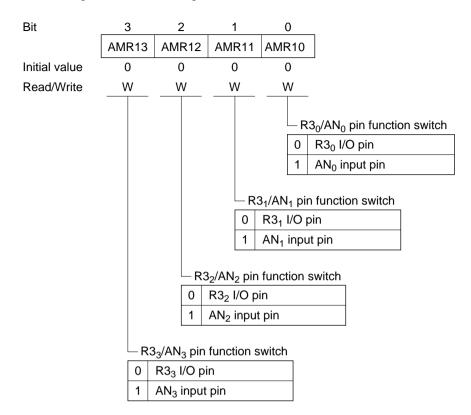
Bit 1—R0₁/SI Pin Function Switch (PMRA1): Selects whether the R0₁/SI pin functions as the R0₁ I/O pin or as the serial reception data input pin (SI).

PMRA1	Description	
0	The R0 ₁ /SI pin functions as the R0 ₁ I/O pin.	(initial value)
1	The $R0_1/SI$ pin functions as the SI input pin.	

Bit 0—R0₂/SO Pin Function Switch (PMRA0): Selects whether the $R0_2/SO$ pin functions as the $R0_2$ I/O pin or as the serial transmission data output pin (SO).

PMRA0	Description	
0	The $R0_2/SO$ pin functions as the $R0_2$ I/O pin.	(initial value)
1	The $R0_2/SO$ pin functions as the SO output pin.	

(4) Serial Mode Register (SMR: \$005): SMR is a 4-bit write-only register whose SMR3 bit switches the R_{0_0}/\overline{SCK} pin function.


This section only describes the SMR3 bit. See section 20.2.1, "Serial Mode Register (SMR)" for details on bits SMR2 to SMR0.

Bit	3	2	1	0
	SMR3	SMR2	SMR1	SMR0
Initial value	0	0	0	0
Read/Write	W	W	W	W
		Transf	er clock se	election
	⊢R	0 ₀ /SCK pin	function s	switch
	0	R0 ₀ I/O pi	n	
	1	SCK I/O p	oin	

Bit 3—R0₀/SCK Pin Function Switch (SMR3): Selects whether the R0₀/SCK pin functions as the R0₀ I/O pin or as the serial interface transfer clock I/O pin.

SMR3	Description	
0	The $R0_0/\overline{SCK}$ pin functions as the $R0_0$ I/O pin.	(initial value)
1	The $R0_0/\overline{SCK}$ pin functions as the \overline{SCK} I/O pin.	

(5) A/D Mode Register 1 (AMR1: \$019): AMR1 is a 4-bit write-only register that switches the functions of the R3 port shared function pins.

Bit 3—R3₃/AN₃ Pin Function Switch (AMR13): Selects whether the R3₃/AN₃ pin functions as the R3₃ I/O pin or as the A/D converter channel 3 input pin AN₃.

AMR13	Description	
0	The $R3_3/AN_3$ pin functions as the $R3_3$ I/O pin.	(initial value)
1	The $R3_3/AN_3$ pin functions as the AN_3 input pin.	

Bit 2—R3₂/AN₂ **Pin Function Switch (AMR12):** Selects whether the R3₂/AN₂ pin functions as the R3₂ I/O pin or as the A/D converter channel 2 input pin AN₂.

AMR12	Description	
0	The $R3_2/AN_2$ pin functions as the $R3_2$ I/O pin.	(initial value)
1	The $R3_2/AN_2$ pin functions as the AN_2 input pin.	

Bit 1—R3₁/AN₁ **Pin Function Switch (AMR11):** Selects whether the R3₁/AN₁ pin functions as the R3₁ I/O pin or as the A/D converter channel 1 input pin AN₁.

AMR11	Description	
0	The $R3_1/AN_1$ pin functions as the $R3_1$ I/O pin.	(initial value)
1	The $R3_1/AN_1$ pin functions as the AN_1 input pin.	

Bit 0—R3₀/AN₀ Pin Function Switch (AMR10): Selects whether the R3₀/AN₀ pin functions as the R3₀ I/O pin or as the A/D converter channel 0 input pin AN₀.

AMR10	Description	
0	The $R3_0/AN_0$ pin functions as the $R3_0$ I/O pin.	(initial value)
1	The $R3_0/AN_0$ pin functions as the AN_0 input pin.	

7.3.3 Pin Functions

The pin functions of the R port pins are switched by register settings as shown in table 7-8.

Table 7-8R Port Pin Functions

Pin	Pin Functions a	and Selection Method	ds							
R0₀/SCK	The pin function is switched by the SMR SMR3 bit and the DCR0 DCR00 bit as shown below.									
	SMR3	(1							
	DCR00	0	1	_						
	Pin function	$R0_0$ input pin	$R0_0$ output pin	SCK I/O pin						
R0 ₁ /SI	The pin function shown below.	The pin function is switched by the PMRA PMRA1 bit and the DCR0 DCR01 bit as shown below.								
	PMRA1	C	1							
	DCR01	0	1	—						
	Pin function	R0₁ input pin	R01 output pin	SI input pin						
R0 ₂ /SO	The pin function shown below.	The pin function is switched by the PMRA PMRA0 bit and the DCR0 DCR02 bit as shown below.								
	PMRA0	(1							
	DCR02	0	1							
	Pin function	R0 ₂ input pin	R0 ₂ output pin	SO output pin						
R0₃/TOC	The pin function shown below.	The pin function is switched by the PMRA PMRA2 bit and the DCR0 DCR03 bit shown below.								
	PMRA2	()	1						
	DCR03	0	1	—						
	Pin function	R0₃ input pin	R0 ₃ output pin	TOC output pin						

Table 7-8 R Port Pin Functions (cont)

Pin	Pin Functions and	Pin Functions and Selection Methods								
۲1 ₀	The pin function is s	The pin function is switched by the DCR1 DCR10 bit as shown below.								
	DCR10	0	1							
	Pin function	$R1_{o}$ input pin	R1 ₀ output pin							
	LL									
R11	The pin function is s	The pin function is switched by the DCR1 DCR11 bit as shown below.								
	DCR11	0	1							
	Pin function	R1 ₁ input pin	R1₁ output pin							
	u									
R1 ₂	The pin function is s	witched by the DCR1 DCR12	2 bit as shown below.							
	DCR12	0	1							
	Pin function	R1 ₂ input pin	R1 ₂ output pin							
	u									
R1 ₃	The pin function is switched by the DCR1 DCR13 bit as shown below.									
	DCR13	0	1							
	Pin function	R1 ₃ input pin	R1 ₃ output pin							
R2 ₀	The pin function is switched by the DCR2 DCR20 bit as shown below.									
	DCR20	0	1							
	Pin function	$R2_0$ input pin	R2 ₀ output pin							
R2 ₁	The pin function is s	The pin function is switched by the DCR2 DCR21 bit as shown below.								
	DCR21	0	1							
	Pin function	R2 ₁ input pin	R2 ₁ output pin							
R2 ₂	The pin function is s	witched by the DCR2 DCR22	2 bit as shown below.							
	DCR22	0	1							
	Pin function	R2 ₂ input pin	R2 ₂ output pin							
R2 ₃	The pin function is s	witched by the DCR2 DCR2	3 bit as shown below.							
	DCR23	0	1							
	Pin function	R2 ₃ input pin	R2 ₃ output pin							

Table 7-8 R Port Pin Functions (cont)

Pin	Pin Functions a	nd Selection Metho	ds							
R3 ₀ /AN ₀	The pin function is switched by the AMR1 AMR10 bit and the DCR3 DCR30 bit as shown below.									
	AMR10	(1							
	DCR30	0	1							
	Pin function	$R3_0$ input pin	$R3_0$ output pin	AN_0 input pin						
R3 ₁ /AN ₁	The pin function shown below.	The pin function is switched by the AMR1 AMR11 bit and the DCR3 DCR31 bit as shown below.								
	AMR11	(1							
	DCR31	0	1							
	Pin function	R31 input pin	R3₁ output pin	AN ₁ input pin						
R3 ₂ /AN ₂	The pin function is switched by the AMR1 AMR12 bit and the DCR3 DCR32 bit as shown below.									
	AMR12	(1							
	DCR32	0	1							
	Pin function	$R3_2$ input pin	R3 ₂ output pin	AN_2 input pin						
R3 ₃ /AN ₃	The pin function shown below.	The pin function is switched by the AMR1 AMR13 bit and the shown below.								
	AMR13	()	1						
	DCR33	0	1							
	Pin function	R3 ₃ input pin	R3 ₃ output pin	AN ₃ input pin						

7.4 Usage Notes

Keep the following points in mind when using the I/O ports.

- When the MIS MIS2 bit is set to 1, the R0₂/SO pin will be an NMOS open drain output regardless of whether it is selected for use as the R0₂ pin or as the SO pin by the PMRA PMRA0 bit.
- I/O pins that are unused in user systems must be tied to a fixed potential, since floating I/O pins can cause noise that can interfere with LSI operation.

The built-in pull-up MOS transistors can be used to pull up unused pins to V_{cc} . Alternatively, unused pins can be pulled up to V_{cc} with external resistors of about 100 k Ω .

Application programs should maintain the PDR and DCR contents for unused pins at their reset state values. Also note that unused pins must not be selected for use as peripheral function I/O pins.

• When the MIS MIS3 bit is set to 1 (pull-up MOS transistors active) and the PDR for an R port/analog input shared function pin has the value 1, the MOS transistor for the corresponding pin will not be turned off by selecting the analog input function with the AMR1 register.

To use an R port/analog input shared function pin as an analog input when the pull-up MOS transistors are active, always clear the PDR for the corresponding pin to 0 first and then turn off the pull-up MOS transistor. (Note that the PDR registers are set to 1 immediately following a reset.)

Figure 7-4 shows the circuit for the R port/analog input shared function pins.

AMR1 is used to set the port outputs to high impedance. ACR is used to switch the analog input channel.

The states of the R port/analog input shared function pins are set, as shown in table 7-9, by the combination of the AMR1 register, the MIS3 bit, the DCR, and the PDR settings.

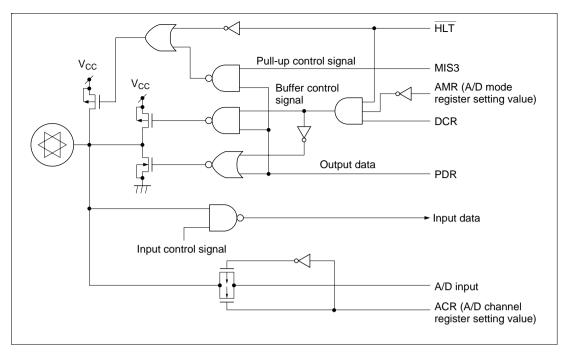


Figure 7-4 R Port/Analog Input Shared Function Pin Circuit Structure

Table 7-9 Program Control of the R Port/Analog Input Shared Function Pins

Corresponding bit in AMR1 0 (R por				selected	l)					
MIS3 bit			0				1			
DCR	DCR			0 1			0		1	
PDR	PDR		1	0	1	0	1	0	1	
CMOS buffer	PMOS	-			On	_		—	On	
	NMOS			On	_			On	_	
Pull-up MOS trar		<u> </u>				On	_	On		

Note: —: off

Corresponding b	it in AMR1	1 (analog input selected)							
MIS3 bit	0				1				
DCR		0 1				D		1	
PDR	PDR		1	0	1	0	1	0	1
CMOS buffer	PMOS	-		_	_			_	
	NMOS			—	_			—	
Pull-up MOS trar		— — Oi			On	_	On		

Note: -: off

Section 8 I/O Ports (HD404394 Series)

8.1 Overview

8.1.1 Features

The HD404394 Series I/O ports have the following features.

- The HD404394 Series microcomputers have a total of 21 I/O pins, of which the three pins R1₀ to R1₂ are medium voltage NMOS open drain I/O pins. The five pins R1₃ and R2₀ to R2₃ are standard voltage NMOS open drain I/O pins. The remaining 13 pins, D₀ to D₅, R0₀ to R0₃, and R3₁ to R3₃, are three state CMOS I/O pins. Of these pins, the pins D₁, D₂, and the R₁ and R₂ port pins are high current I/O pins that can each accept a current influx of up to 15 mA.
- Certain I/O pins (D₀, D₄, and the pins in the ports R0 and R3) are shared with the built-in peripheral modules, such as timers and the serial interface. Setting these pins for use with the built-in peripheral modules takes priority over their setting for use as D or R port pins.
- Register settings are used to select input or output for I/O pins and to select the I/O port or peripheral module usage for shared function pins.
- All peripheral module output pins are CMOS outputs. However, the R0₂/SO pin can be selected to be an NMOS open drain output by setting a register.
- Since the system is reset in stop mode, the built-in peripheral module selections are cleared and the I/O pins go to the high impedance state.
- The CMOS output pins have built-in programmable pull-up MOS transistors. The on/off state of these transistors can be controlled by register settings on an individual basis. Note that the pull-up MOS transistor on/off settings are independent of the pin settings for use as built-in peripheral module pins.

Table 8-1 provides an overview of the HD404394 Series port functions.

Table 8-1Port Functions

Port	Overview	Pin	Shared Function	Function Switching Register
D_0 to D_5	I/O portAccessed in bit units	D ₀ /INT ₀ /EVNB	External interrupt input 0/ timer B event input	PMRB
	 Accessed with the SED, 	D ₁	_	
	SEDD, RED, REDD, TD, and	D ₂		
	TDD instructions.	D ₃	_	
	 Programmable pull-up MOS transistors D₁ and D₂ are high current pins (up to 15 mA) 	D₄/STOPC	Stop mode clear	PMRB
		D ₅		_
R0	I/O ports	R0 ₀ /SCK	Transfer clock I/O	SMR
	Accessed in 4-bit units	R0 ₁ /SI	Serial reception data input	PMRA
	• Accessed with the LAR, LBR, LRA, and LRB instructions.	R0 ₂ /SO	Serial transmission data output	_
	• The standard I/O pins ($R0_0$ to	R0 ₃ /TOC	Timer C output	_
R1	- R0 ₃ and R3 ₁ to R3 ₃) have	R1 ₀	—	_
	programmable pull-up MOS transistors.	R1 ₁	_	
	 R1₀ to R1₂ are medium 	R1 ₂		
	voltage NMOS open drain I/O	R1 ₃	_	
R2	pins.	R2 ₀	—	_
	• $R1_3$ and $R2_0$ to $R2_3$ are	R2 ₁		
	standard voltage NMOS open	R2 ₂	_	
	 drain I/O pins. R1₀ to R1₃ and R2₀ to R2₃ are 	R2 ₃	_	
R3	high current pins (up to 15	R3 ₁ /AN ₁	Analog input channel 1	AMR1
	mA).	R3 ₂ /AN ₂	Analog input channel 2	_
		R3 ₃ /AN ₃	Analog input channel 3	_

8.1.2 I/O Control

 $R1_0$ to $R1_2$ are medium voltage NMOS open drain I/O ports, $R1_3$ and the R_2 port are standard voltage NMOS open drain I/O ports, and the D port and the R0 and R3 port pins are CMOS three state I/O ports. The different port types have different circuit structures as follows.

(1) Medium Voltage NMOS Open Drain I/O Pin Circuit: $R1_0$ to $R1_2$ are medium voltage NMOS open drain I/O ports. I/O through these ports is controlled by the port data registers (PDR) and the data control registers (DCR). When the DCR bit corresponding to a given pin is 1, that pin functions as an output pin and when the value in the PDR is 0, the NMOS transistor will turn on and the pin will output a low level voltage. When the PDR is 1, the pin will go to the high impedance state.

When a given DCR bit is 0, the corresponding pin will function as an input pin.

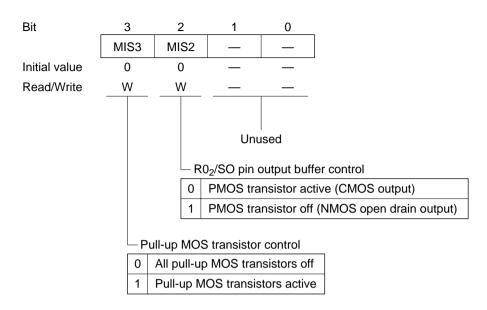
(2) Standard Voltage NMOS Open Drain I/O Pin Circuit: $R1_3$ and $R2_0$ to $R2_3$ are standard voltage NMOS open drain I/O ports. I/O through these ports is controlled by the PDR and DCR registers. When the DCR bit corresponding to a given pin is 1, that pin functions as an output pin and when the value in the PDR is 0, the NMOS transistor will turn on and the pin will output a low level voltage. When the PDR is 1, the pin will go to the high impedance state.

When a given DCR bit is 0, the corresponding pin will function as an input pin.

(3) Standard Voltage CMOS Three State I/O Pin Circuit: The D, R0 and R3 ports are standard voltage CMOS three state I/O ports. I/O is controlled by the PDR registers and the data control registers (DCD, DCR). When a bit in a DCD or DCR register is 1, the corresponding pin will function as an output pin and output the value in its PDR. Similarly, if a DCD or DCR bit is 0, the corresponding pin will function as an input pin.

(4) **Pull-Up MOS Control:** Each I/O pin in the D, R0, and R3 ports has a built-in programmable pull-up MOS transistor. When the miscellaneous register (MIS) MIS3 bit is set to 1 the pull-up MOS transistor for pins for which the corresponding PDR is set to 1 will be turned on. Thus the on/off state of each pin can be controlled independently by the PDRs. Note that the pull-up MOS transistor on/off settings are independent of the pin settings for use as built-in peripheral module pins.

Table 8-2 shows how register settings control the port I/O pins.


Table 8-2	Register Settings for I/O Pin Control
-----------	--

MIS3	0				1				
DCD, DCR		0		1		(0		1
PDR		0	1	0	1	0 1		0	1
CMOS buffer	PMOS			—	On	—		—	On
	NMOS			On	_			On	—
Pull-up MOS transistor		h		_	On	_	On		

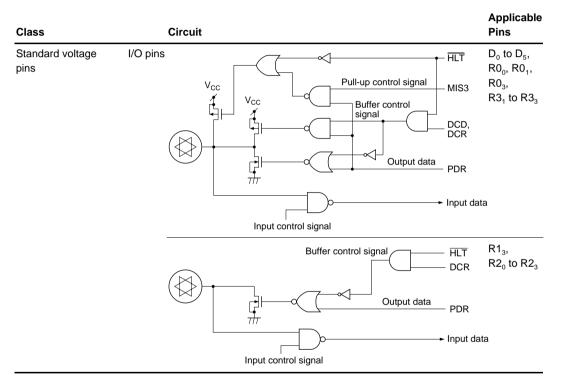
Notes: 1. -: Off

2. The PDR registers are not allocated addresses in RAM. The PDR registers are accessed by special-purpose I/O instructions.

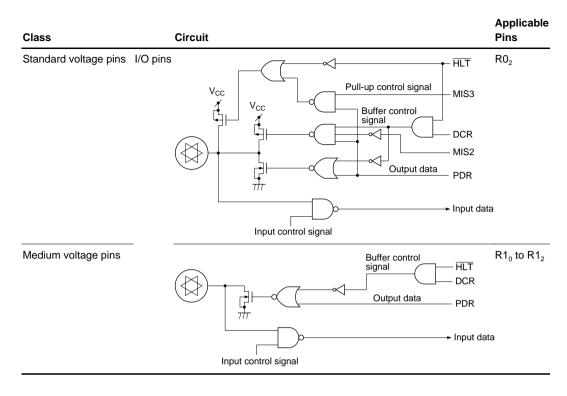
(5) Miscellaneous Register (MIS: 00C): MIS is a 2-bit write-only register that controls the on/off states of the D, R0, and R3 port pin pull-up MOS transistors and the on/off state of the R0₂/SO pin output buffer PMOS transistor. MIS is initialized to 0 on reset and in stop mode.

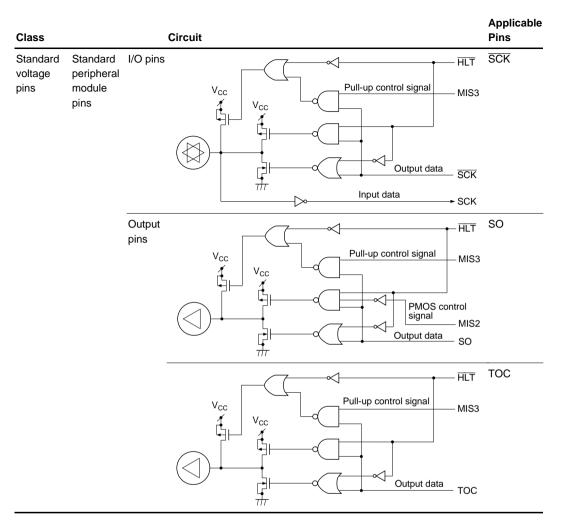
Bit 3—Pull-Up MOS Transistor Control (MIS3): Controls the on/off states of the pull-up MOS transistors built into the I/O port pins.

MIS3	Description	
0	All pull-up MOS transistors will be turned off.	(initial value)
1	Pull-up MOS transistors for which the corresponding PDR bit is 1 will b	be turned on.


Bit 2—R0₂/SO Pin Output Buffer Control (MIS2): Controls the on/off state of the R0₂/SO pin output buffer PMOS transistor.

MIS2	Description	
0	The $R0_2$ /SO pin output will be a CMOS output.	(initial value)
1	The $R0_2$ /SO pin output will be an NMOS open drain output.	


8.1.3 I/O Pin Circuit Structures


Table 8-3 shows the port and peripheral module pin circuits.


- Notes: 1. Since the system is reset in stop mode, the built-in peripheral module selections are cleared. Since the internal $\overline{\text{HLT}}$ signal goes to the low (active) level, the I/O pins go to the high impedance state. Also, all the pull-up MOS transistors are turned off.
 - 2. In all low power modes other than stop mode, the internal HLT signal goes to the high level.

Table 8-3 Input and Output Pin Circuits

8.1.4 Port States in Low Power Modes

The D_0 and D_4 pins and the R0 and R3 port pins have shared functions as input or output pins for built-in peripheral modules. In standby mode, since the CPU stops, the pins selected as output ports maintain their immediately prior output values. Also, pins selected for use by built-in peripheral modules that operate in standby mode continue to operate. (Output pins used by modules that stop in standby mode maintain their immediately prior output values.) See section 5, "Low Power Modes", for details on which built-in peripheral modules can operate in each mode.

Table 8-4 lists the port states in the low power modes.

Low Power Mode	Port States
Standby mode	Pins maintain their values immediately prior to entering standby mode.
Stop mode	Built-in peripheral function selections are cleared, and the port and peripheral function I/O pins go to the high impedance state.

Table 8-4 Port States in Low Power Modes

8.1.5 Handling Unused Pins

I/O pins that are unused in user systems must be tied to a fixed potential, since floating I/O pins can cause noise that can interfere with LSI operation.

The built-in pull-up MOS transistors can be used to pull up unused pins to V_{cc} . Alternatively, unused pins can be pulled up to V_{cc} with external resistors of about 100 k Ω .

Application programs should maintain the PDR, DCD and DCR contents for unused pins at their reset state values. Alternatively, unused pins can be selected for use as peripheral function I/O pins.

8.2 D Port

8.2.1 Overview

The D port is a 6-pin I/O port (D_0 to D_5 , where D_1 and D_2 are high current pins that can each accept a current influx of up to 15 mA) that can be accessed in 1-bit units.

The output levels on the pins D_0 to D_5 can be set to low or high by accessing the port in one-bit units with the SED, SEDD, RED, and REDD output instructions. The output data is stored in the PDR for each pin. The level on each of the pins D0 to D5 can be tested in one-bit units with the TD and TDD input instructions.

The DCD registers are used to turn the D port output buffers on or off. When the DCD corresponding to a given pin is 1, the data in the corresponding PDR will be output from that pin. The on/off states of the output buffers can be controlled individually for each D port pin. The DCD registers are allocated in the RAM address space.

The pins D_0 and D_4 have shared functions as built-in peripheral module pins. PMRB is used to switch these functions.

Figure 8-1 shows the structure of the D port.

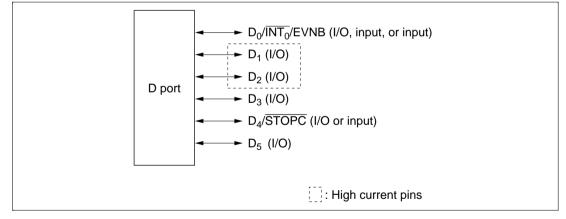


Figure 8-1 D Port Structure

Register Configuration and Descriptions 8.2.2

Table 8-5 shows the configuration of the D port registers.

Table 8-5 **D** Port Register Configuration

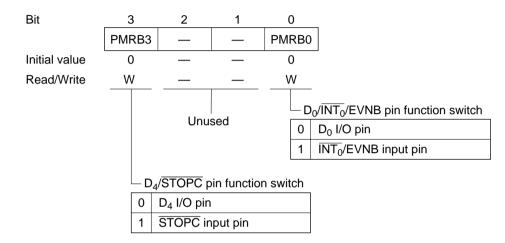
Address	Register	Symbol	R/W	Initial Value
_	Port data registers	PDR	W*	1
\$02C	Data control registers	DCD0	W	\$0
\$02D		DCD1	W	00
\$024	Port mode register B	PMRB	W	00

Note: * The SED, SEDD, RED, and REDD instructions can be used to write to the PDRs.

(1) Port Data Registers (PDR): Each of the I/O pins D_0 to D_5 includes a built-in PDR. When a SED or SEDD instruction is executed for one of the pins D_0 to D_5 the corresponding PDR is set to 1, and when a RED or REDD instruction is executed, the corresponding PDR is cleared to 0. When a bit corresponding to a D port pin in DCD0 or DCD1 is 1, the corresponding output buffer is turned on and the value of the corresponding PDR will be output from that pin.

The PDR registers are set to 1 on reset and in stop mode.

(2) Data Control Registers (DCD0, DCD1: \$02C, \$02D)


		Bit	3	2	1	0	
DCD0	: \$02C		DCD03	DCD02	DCD01	DCD00	
		Initial value	0	0	0	0	
		Read/Write	W	W	W	W	
		Bit	3	2	1	0	
DCD1: \$02D			_	_	DCD11	DCD10	
		Initial value			0	0	
		Read/Write	—	—	W	W	
Bits in DCD0 and DCD1	Description						
0	The CMOS output buffer is turned off and the output goes to the high impedance state. (initial value)						
1	The output b	uffer is turned o	n and the	value in th	e correspo	onding PD	R is output.

HITACHI

The bits in DCD0 and DCD1 correspond to the D port pins as shown in the table.

			Bit		
Register	Bit 3	Bit 2	Bit 1	Bit 0	
DCD0	D ₃	D_2	D ₁	D ₀	
DCD1	_		D_{5}	D_4	

(3) **Port Mode Register B** (**PMRB: \$024**): PMRB is a 2-bit write-only register that switches the D port I/O pin shared functions.

Bit 3—D_4/\overline{\text{STOPC}} Pin Function Switch (PMRB3): Selects whether the $D_4/\overline{\text{STOPC}}$ pin is used as the D_4 I/O pin or as the stop mode clear pin (STOPC).

PMRB3	Description	
0	The D_4 /STOPC pin functions as the D_4 I/O pin.	(initial value)
1	The D_4 /STOPC pin functions as the STOPC input pin.	

Bit 0—D_0/\overline{INT}_0/EVNB Pin Function Switch (PMRB0): Selects whether the $D_0/\overline{INT}_0/EVNB$ pin is used as the D_0 I/O pin or as the $\overline{INT}_0/EVNB$ input pin.

PMRB0	Description	
0	The $D_0/\overline{INT}_0/EVNB$ pin functions as the D_0 I/O pin.	(initial value)
1	The $D_0/\overline{INT}_0/EVNB$ pin functions as the $\overline{INT}_0/EVNB$ input pin.	

Refer to section 18.2.2, "Timer Mode Register B2 (TMB2)", for details on switching between the \overline{INT}_0 and EVNB functions.

8.2.3 Pin Functions

The functions of the pins D0 to D5 are switched by the bits in registers PMRA and PMRB as shown in table 8-6.

Table 8-6D Port Pin Functions

Pin	Pin Functions and Selection Methods					
D₀∕INT₀/EVNB	The pin function DCD0 DCD00 bi	is switched as shown t.	below by t	he PMRB	PMRB0 bit and the	
	PMRB0	0			1	
	DCD00	0		1	_	
	Pin function	D_0 input pin	D ₀ out	put pin	INT ₀ /EVNB input pin*	
		is pin as the EVNB pin rupt mask (IM0: \$000		e INT ₀ inte	errupt by setting the	
D ₁	The pin function	is switched as shown	below by t	he DCD0	DCD01 bit.	
	DCD01	0			1	
	Pin function	D₁ input pin			D ₁ output pin	
D_2	· · · ·	n is switched as shown below by the DCD0			DCD02 bit.	
	DCD02	0			1	
	Pin function	D ₂ input pin			D ₂ output pin	
D_3	The pin function is switched as shown below by the DCD0 DCD03 bit. DCD03 0					
		0			D ₃ output pin	
	Pin function	D ₃ input pin				
D₄/STOPC	The pin function is switched as shown below by the PMRB PMRB3 bit and the DCD1 DCD10 bit.					
	PMRB3	0			1	
	DCD10	0		1	_	
	Pin function	D_4 input pin D_4 output pin		put pin	STOPC input pin	
					DODALLY	
D5	· · · · · · · · · · · · · · · · · · ·	is switched as shown	below by t			
	DCD11	0			1	
	Pin function	D₅ input pin			D₅ output pin	

8.3 R Ports

8.3.1 Overview

The R port consists of the three 4-bit I/O ports and one 3-bit port, ports R0 to R3. These ports are accessed in 4-bit units.

Ports R0 and R3 are standard voltage I/O ports, $R1_0$ to $R1_2$ are medium voltage NMOS open drain I/O ports, and $R1_3$ and R2 are standard voltage NMOS open drain I/O ports.

The individual ports R0 to R3 are accessed in 4-bit units with the LRA and LRB output instructions to control the output levels (high or low) on each pin. Output data is stored in the PDR built into each pin. Similarly, the LAR and LBR input instructions can be used to access the R ports in 4-bit units to read the input levels on the port pins.

DCR registers are used to control the port R0 to R3 output buffer on/off states. When the DCR bit corresponding to a pin in one of the ports R0 to R3 is set to 1, the data in the corresponding PDR is output from that pin. Thus the output buffer on/off states can be controlled on an individual pin basis for the R port pins. The DCR registers are allocated in the RAM address space.

The pins in ports R1 and R2 are high current pins that can accept current influxes of up to 15 mA.

The R0 and R3 port pins have shared functions as built-in peripheral module pins. Register settings are used to switch these functions. (See table 8-7.)

Figure 8-2 shows the R port pin structure.

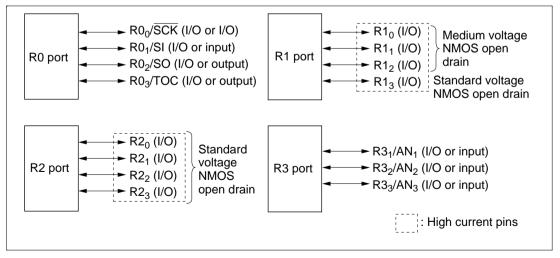


Figure 8-2 R Port Structure

8.3.2 Register Configuration and Descriptions

Table 8-7 shows the configuration of the R port related registers,

 Table 8-7
 R Port Register Configuration

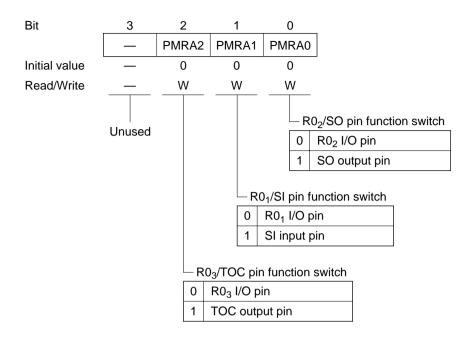
Address Register		Symbol	R/W	Initial Value	
_	 Port data registers PDR 		W*	1	
\$030	Data control registers	DCR0	W	\$0	
\$031		DCR1	W	\$0	
\$032		DCR2	W	\$0	
\$033		DCR3	W	\$0	
\$004	Port mode register A	PMRA	W	\$0	
\$005	Serial mode register	SMR	W	\$0	
\$019	A/D mode register 1	AMR1	W	\$0	

Note: * The LRA and LRB instructions are used to write to the PDR registers.

(1) **Port Data Registers (PDR):** All the I/O pins in ports R0 to R3 include a PDR that holds the output data. When an LRA or an LRB instruction is executed for one of ports R0 to R3, the contents of the accumulator (A) or the B register (B) are transferred to the specified R port PDRs. When the corresponding bit in DCR0 to DCR3 for the specified port is 1, the output buffers for the corresponding pins will be turned on and the values in the PDRs will be output from the pins.

The PDR registers are set to 1 on reset and in stop mode.

(2) Data Control Registers (DCR0 to DCR3: \$030, \$031, \$032, \$033)


	Bit	3	2	1	0
DCR0: \$030		DCR03	DCR02	DCR01	DCR00
	Initial value	0	0	0	0
	Read/Write	W	W	W	W
	Dit	2	2	4	0
	Bit	3	2	1	0
DCR1: \$031		DCR13	DCR12	DCR11	DCR10
	Initial value	0	0	0	0
	Read/Write	W	W	W	W
	Bit	3	2	1	0
DCR2: \$032		DCR23	DCR22	DCR21	DCR20
	Initial value	0	0	0	0
	Read/Write	W	W	W	W
	Bit	3	2	1	0
DCR3: \$033		DCR33	DCR32	DCR31	—
	Initial value	0	0	0	
	Read/Write	W	W	W	—

Bits in DCR0 to DCR3	Description
0	The output buffer (CMOS buffer) is turned off and the output goes to the high impedance state. (initial value)
1	 CMOS three state outputs: the buffer is turned on and the corresponding PDR value is output.
	• NMOS open drain pins: A low level is output when the PDR is set to 0, and the pin goes to the high impedance state when the PDR is set to 1.

The table below lists the correspondence between the bits in DCR0 to DCR3 and the port R0 to R3 pins.

	Bit				
Register	Bit 3	Bit 2	Bit 1	Bit 0	
DCR0	R0 ₃	R0 ₂	R0 ₁	R0 ₀	
DCR1	R1 ₃	R1 ₂	R1₁	R1 ₀	
DCR2	R2 ₃	R2 ₂	R2 ₁	R2 ₀	
DCR3	R3 ₃	R3 ₂	R3 ₁		

(3) **Port Mode Register A (PMRA: \$004):** PMRA is a 3-bit write-only register whose bits PMRA2 to PMRA0 switch the functions of the port R0 shared function pins.

Bit 2—R0₃/TOC Pin Function Switch (PMRA2): Selects whether the $R0_3$ /TOC pin functions as the $R0_3$ input pin or as the timer C output pin (TOC).

PMRA2	Description	
0	The $R0_3$ /TOC pin functions as the $R0_3$ I/O pin.	(initial value)
1	The $R0_3$ /TOC pin functions as the TOC output pin.	

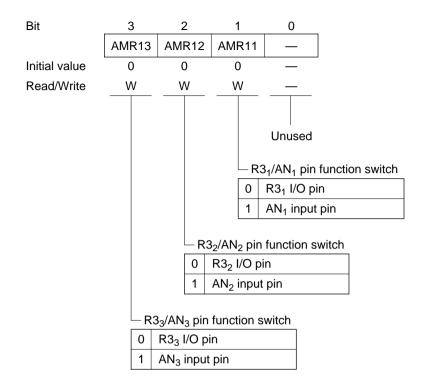
Bit 1— R0₁/SI Pin Function Switch (PMRA1): Selects whether the R0₁/SI pin functions as the R0₁ I/O pin or as the serial reception data input pin (SI).

PMRA1	Description	
0	The R0 ₁ /SI pin functions as the R0 ₁ I/O pin.	(initial value)
1	The $R0_1/SI$ pin functions as the SI input pin.	

Bit 0—R0₂/SO Pin Function Switch (PMRA0): Selects whether the R0₂/SO pin functions as the R0₂ I/O pin or as the serial transmission data output pin (SO).

PMRA0	Description	
0	The $R0_2/SO$ pin functions as the $R0_2$ I/O pin.	(initial value)
1	The $R0_2$ /SO pin functions as the SO output pin.	

(4) Serial Mode Register (SMR: \$005): SMR is a 4-bit write-only register whose SMR3 bit switches the R_{0_0}/\overline{SCK} pin function.


This section only describes the SMR3 bit. See section 20.2.1, "Serial Mode Register (SMR)" for details on bits SMR2 to SMR0.

Bit	3	2	1	0
	SMR3	SMR2	SMR1	SMR0
Initial value	0	0	0	0
Read/Write	W	W	W	W
		Transf	er clock se	election
	R	0 ₀ /SCK pin	function s	switch
	0	R0 ₀ I/O pi	n	
	1	SCK I/O p	oin	

Bit 3—R0₀/ $\overline{\text{SCK}}$ **Pin Function Switch (SMR3):** Selects whether the R0₀/ $\overline{\text{SCK}}$ pin functions as the R0₀ I/O pin or as the serial interface transfer clock I/O pin.

SMR3	Description	
0	The $R0_0/\overline{SCK}$ pin functions as the $R0_0$ I/O pin.	(initial value)
1	The $R0_0/\overline{SCK}$ pin functions as the \overline{SCK} I/O pin.	

(5) A/D Mode Register 1 (AMR1: \$019): AMR1 is a 3-bit write-only register that switches the functions of the R3 port shared function pins.

Bit 3—R3₃/AN₃ Pin Function Switch (AMR13): Selects whether the R3₃/AN₃ pin functions as the R3₃ I/O pin or as the A/D converter channel 3 input pin AN₃.

AMR13	Description	
0	The $R3_3/AN_3$ pin functions as the $R3_3$ I/O pin.	(initial value)
1	The $R3_3/AN_3$ pin functions as the AN_3 input pin.	

Bit 2—R3₂/AN₂ Pin Function Switch (AMR12): Selects whether the R3₂/AN₂ pin functions as the R3₂ I/O pin or as the A/D converter channel 2 input pin AN₂.

AMR12	Description	
0	The $R3_2/AN_2$ pin functions as the $R3_2$ I/O pin.	(initial value)
1	The $R3_2/AN_2$ pin functions as the AN_2 input pin.	

Bit 1— $R3_1/AN_1$ Pin Function Switch (AMR11): Selects whether the $R3_1/AN_1$ pin functions as the R3₁ I/O pin or as the A/D converter channel 1 input pin AN₁.

AMR11	Description	
0	The $R3_1/AN_1$ pin functions as the $R3_1$ I/O pin.	(initial value)
1	The $R3_1/AN_1$ pin functions as the AN_1 input pin.	

8.3.3 Pin Functions

The pin functions of the R port pins are switched by register settings as shown in table 8-8.

Table 8-8R Port Pin Functions

Pin Pin Functions and Selection Methods

R0₀/SCK The pin function is switched by the SMR SMR3 bit and the DCR0 DCR00 bit as shown below.

SMR3	0		1
DCR00	0 1		—
Pin function	$R0_0$ input pin	$R0_0$ output pin	SCK I/O pin

$R0_1/SI$ The pin function is switched by the PMRA PMRA1 bit and the DCR0 DCR01 bit as shown below.

PMRA1	0		1
DCR01	0 1		—
Pin function	R0₁ input pin	R01 output pin	SI input pin

R0₂/SO The pin function is switched by the PMRA PMRA0 bit and the DCR0 DCR02 bit as shown below.

PMRA0	0		1
DCR02	0 1		—
Pin function	R0 ₂ input pin	R0 ₂ output pin	SO output pin

R0₃/TOC The pin function is switched by the PMRA PMRA2 bit and the DCR0 DCR03 bit as shown below.

PMRA2	(1	
DCR03	0	1	—
Pin function	R03 input pin	R03 output pin	TOC output pin

Table 8-8 R Port Pin Functions (cont)

Pin P1		Selection Methods	0 bit as shown balaw
R1 ₀	DCR10		1
	Pin function		•
	PinTunction	$R1_0$ input pin	R1 ₀ output pin*
D1	The pip function is a	witched by the DCP1 DCP1	1 hit og shown holow
R1₁	-	witched by the DCR1 DCR1	
	DCR11 Dis function	0	D1 output pin*
	Pin function	R1 ₁ input pin	R1 ₁ output pin*
D1	The pip function is a	witched by the DCD1 DCD1	2 hit og ghown halow
R1 ₂	-	witched by the DCR1 DCR1	2 bit as shown below.
	DCR12	0	•
	Pin function	R1 ₂ input pin	R1 ₂ output pin*
	The size for sting is a		
R1 ₃	· · ·	witched by the DCR1 DCR1	
	DCR13	0	1
	Pin function	R1 ₃ input pin	R1 ₃ output pin*
R2 ₀	· · ·	witched by the DCR2 DCR2	20 bit as shown below.
	DCR20	0	1
	Pin function	$R2_0$ input pin	R2 ₀ output pin*
R2 ₁	The pin function is s	witched by the DCR2 DCR2	1 bit as shown below.
	DCR21	0	1
	Pin function	$R2_1$ input pin	R2 ₁ output pin*
R2 ₂	The pin function is s	witched by the DCR2 DCR2	2 bit as shown below.
	DCR22	0	1
	Pin function	R2 ₂ input pin	R2 ₂ output pin*
R2 ₃	The pin function is s	witched by the DCR2 DCR2	3 bit as shown below.
1123	DODOO	0	1
	DCR23	0	

- Notes: 1. R1₀ to R1₂ are medium voltage NMOS open drain I/O pins. These pins go to the high impedance state when their PDR is set to 1.
 - 2. $R1_3$ and $R2_0$ to $R2_3$ are standard voltage NMOS open drain I/O pins. These pins go to the high impedance state when their PDR is set to 1.

Table 8-8 R Port Pin Functions (cont)

Pin Pin Functions and Selection Methods

R3₁/AN₁ The pin function is switched by the AMR1 AMR11 bit and the DCR3 DCR31 bit as shown below.

AMR11	(1	
DCR31	0	1	—
Pin function	R3₁ input pin	R3 ₁ output pin	AN₁ input pin

R3₂/AN₂ The pin function is switched by the AMR1 AMR12 bit and the DCR3 DCR32 bit as shown below.

AMR12	(1	
DCR32	0	1	—
Pin function	R32 input pin	R3 ₂ output pin	AN ₂ input pin

R3₃/AN₃ The pin function is switched by the AMR1 AMR13 bit and the DCR3 DCR33 bit as shown below.

AMR13	(1	
DCR33	0	1	—
Pin function	R33 input pin	R33 output pin	AN_3 input pin

8.4 Usage Notes

Keep the following points in mind when using the I/O ports.

- When the MIS MIS2 bit is set to 1, the R0₂/SO pin will be an NMOS open drain output regardless of whether it is selected for use as the R0₂ pin or as the SO pin by the PMRA PMRA0 bit.
- I/O pins that are unused in user systems must be tied to a fixed potential, since floating I/O pins can cause noise that can cause the LSI to operate incorrectly.

The built-in pull-up MOS transistors can be used to pull up unused pins to V_{CC} . Alternatively, unused pins can be pulled up to V_{CC} with external resistors of about 100 k Ω .

Application programs should maintain the PDR and DCR contents for unused pins at their reset state values. Also note that unused pins must not be selected for use as peripheral function I/O pins.

• When the MIS MIS3 bit is set to 1 (pull-up MOS transistors active) and the PDR for an R port/analog input shared function pin has the value 1, the MOS transistor for the corresponding pin will not be turned off by selecting the analog input function with the AMR1 register.

To use an R port/analog input shared function pin as an analog input when the pull-up MOS transistors are active, always clear the PDR for the corresponding pin to 0 first and then turn off the pull-up MOS transistor. (Note that the PDR registers are set to 1 immediately following a reset.)

Figure 8-3 shows the circuit for the R port/analog input shared function pins.

AMR1 is used to set the port outputs to high impedance. ACR is used to switch the analog input channel.

The states of the R port/analog input shared function pins are set, as shown in table 8-9, by the combination of the AMR1 register, the MIS3 bit, the DCR, and the PDR settings.

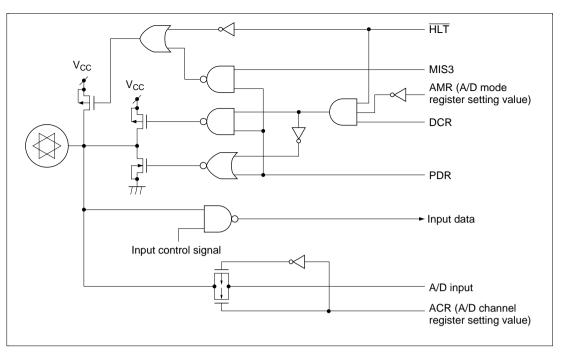
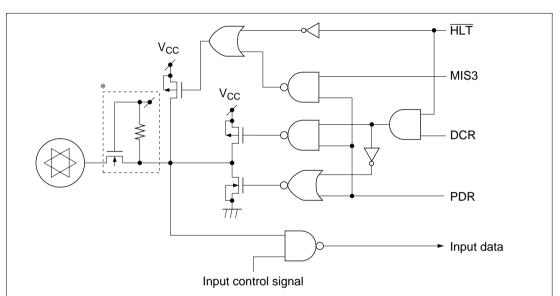


Figure 8-3 R Port/Analog Input Shared Function Pin Circuit

Table 8-9 Program Control of the R Port/Analog Input Shared Function Pins


Corresponding b		0 (R port selected)							
MIS3 bit				0	1			1	
DCR	DCR 0		0 1		0		1		
PDR		0	1	0	1	0	1	0	1
CMOS buffer	PMOS			—	On	_		_	On
	NMOS			On	_			On	_
Pull-up MOS transistor			-			—	On	_	On

Note: -: off

Corresponding bi	it in AMR1	1 (analog inp				nput selected)				
MIS3 bit			0				1			
DCR		0		1		0		1		
PDR		0	1	0	1	0	1	0	1	
CMOS buffer	PMOS	-				_		_	_	
	NMOS				_				—	
Pull-up MOS tran		-	_		_	On	—	On		

Note: -: off

• In the HD404394 Series evaluation chip set, the circuits for the medium voltage NMOS open drain pins (R1₀ to R1₂) and the standard voltage NMOS open drain pins (R1₃ and R2₀ to R2₃) differ from the ZTATTM and the mask ROM microcomputer versions as shown in figure 8-4. Although the outputs in both the ZTATTM and mask ROM versions can be set to high impedance by the combinations listed in table 8.10, the R1₀ to R1₂ outputs cannot be set to high impedance in the evaluation chip set. Also note that the R1₃ and R2₀ to R2₃ outputs go to the high level when both the corresponding DCR and PDR are 1. Please keep this in mind when using the evaluation chip set.

Note: * Only included in the $R1_0$ to $R1_2$ pin circuits. Does not appear in the $R1_3$ and $R2_0$ to $R2_3$ pin circuits.

(a) Evaluation Chip Pin Circuit Structure

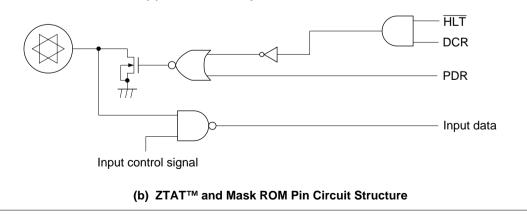


Figure 8-4 Medium Voltage NMOS Open Drain Pin Circuits

Table 8-10 ZTATTM and Mask ROM Microcomputer NMOS Open Drain Pin High Impedance Control

DCR	PDR	Description	
0	*	High impedance output	(initial value)
1	0	NMOS buffer on. Low level output	
	1	High impedance output	

Note: * Don't care

Section 9 I/O Ports (HD404318 Series)

9.1 Overview

9.1.1 Features

The HD404318 Series I/O ports have the following features.

- The nine pins D₀ to D₈ as well as the R1, R2, and R8 ports are high voltage I/O pins. Also, RA₁ is a high voltage input pin. R0, R3, and R4 are standard voltage I/O pins that, in output mode, are CMOS three state outputs.
- Certain I/O pins (D₀ to D₄, and the pins in the R0, R3, and R4 ports) are shared with the builtin peripheral modules, such as timers and the serial interface. Setting these pins for use with the built-in peripheral modules takes priority over their setting for use as D or R port pins.
- Register settings are used to select input or output for I/O pins and to select the I/O port or peripheral module usage for shared function pins.
- Of the built-in peripheral module pins, the D₃/BUZZ pin is a PMOS open drain output. All other output pins are CMOS outputs. However, the R0₂/SO pin can be selected to be an NMOS open drain output by setting a register.
- Since the system is reset in stop mode, the built-in peripheral module selections are cleared and the I/O pins go to the high impedance state.
- The CMOS output pins have built-in programmable pull-up MOS transistors. The on/off state of these transistors can be controlled by register settings on an individual basis. Note that the pull-up MOS transistor on/off settings are independent of the pin settings for use as built-in peripheral module pins.

Table 9-1 provides an overview of the HD404318 Series port functions.

Table 9-1Port Functions

Port	Overview	Pin	Shared Function	Function Switching Register
D_0 to D_8	High voltage I/O port	D_0/\overline{INT}_0	External interrupt input 0	PMRB
	Accessed in bit units	D_1/\overline{INT}_1	External interrupt input 1	-
	 Accessed with the SED, 	D ₂ /EVNB	Timer B event input	-
	SEDD, RED, REDD, TD, and TDD instructions.	D ₃ /BUZZ	Alarm output	PMRA
	 Pull-down resistors available 	D₄/STOPC	Stop mode clear	PMRB
	as a mask option.	D ₅ to D ₈	_	_
R0	Standard voltage I/O ports	R0 ₀ /SCK	Transfer clock I/O	SMR
	Accessed in 4-bit units.	R0 ₁ /SI	Serial reception data input	PMRA
	• Accessed with the LAR, LBR, LRA, and LRB instructions.	R0 ₂ /SO	Serial transmission data output	-
	Programmable pull-up MOS	R0 ₃ /TOC	Timer C output	-
R3	- transistors	R3 ₀ /AN ₀	Analog input channel 0	AMR1
		R3 ₁ /AN ₁	Analog input channel 1	-
		R3 ₂ /AN ₂	Analog input channel 2	-
		R3 ₃ /AN ₃	Analog input channel 3	_
R4	=	R4 ₀ /AN ₄	Analog input channel 4	AMR2
		R4 ₁ /AN ₅	Analog input channel 5	-
		R4 ₂ /AN ₆	Analog input channel 6	-
		R4 ₃ /AN ₇	Analog input channel 7	_

Table 9-1 Port Functions (cont)

Port	Overview	Pin	Shared Function	Function Switching Register
R1	High voltage I/O ports	R1 ₀	—	
	Accessed in 4-bit units.	R1 ₁		
	Accessed with the LAR,	R1 ₂		
	LBR, LRA, and LRB — instructions.	R1 ₃		
R2		R2 ₀		
	as a mask option.	R2 ₁		
		R2 ₂		
		R2 ₃		
R8		R8 ₀	_	
		R81		
		R8 ₂		
		R8 ₃		
RA	• High voltage input port (1 bit)	RA ₁ /V _{disp}	High voltage pin output	Mask
	 Accessed with the LAR and LBR instructions. 		power supply	option

9.1.2 I/O Control

The D, R1, R2, and R8 ports are high voltage I/O ports, RA₁ is a 1-bit high voltage input port, and R0, R3, and R4 are standard voltage I/O ports. The different port types have different circuit structures as follows.

(1) High Voltage I/O Pin Circuit: The D, R1, R2, and R8 port pins are high voltage I/O pins that have no I/O switching function. When a port data register is set to 1, the PMOS transistor turns on and a high level voltage is output from the pin. When the PDR is set to 0, the pin goes to the open state. If the built-in pull-down resistor mask option was selected, the V_{disp} voltage is output. When external signals are applied, applications must set the PDR value to 0 so that the external (input) and internal (output) signals do not collide at the pin.

Note that there are no pull-down resistors on the high voltage I/O pins in the ZTATTM versions of these microcomputers.

(2) Standard Voltage CMOS Three State I/O Pin Circuit: The pins in the R0, R3, and R4 ports are standard voltage CMOS three state I/O ports. I/O through these ports is controlled by the PDRs and the data control registers (DCR). When the DCR bit corresponding to a given pin is 1, that pin functions as an output pin and outputs the value in the PDR. When a given DCR bit is 0, the corresponding pin functions as an input pin.

(3) **Pull-Up MOS Control:** Each I/O pin in the R0, R3, and R4 ports has a built-in programmable pull-up MOS transistor. When the miscellaneous register (MIS) MIS3 bit is set to 1 the pull-up MOS transistor for pins for which the corresponding PDR is set to 1 will be turned on. Thus the on/off state of each pin can be controlled independently by the PDRs. Note that the pull-up MOS transistor on/off settings are independent of the pin settings for use as built-in peripheral module pins.

Table 9-2 shows how register settings control the port I/O pins.

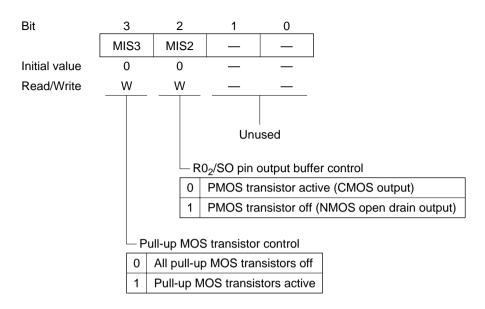

MIS3		0				1			
DCR		0		1		0		1	
PDR		0	1	0	1	0	1	0	1
CMOS buffer	PMOS			_	On	_		_	On
	NMOS			On	_			On	_
Pull-up MOS transistor		i i			On		On		

Table 9-2 Register Settings for I/O Pin Control

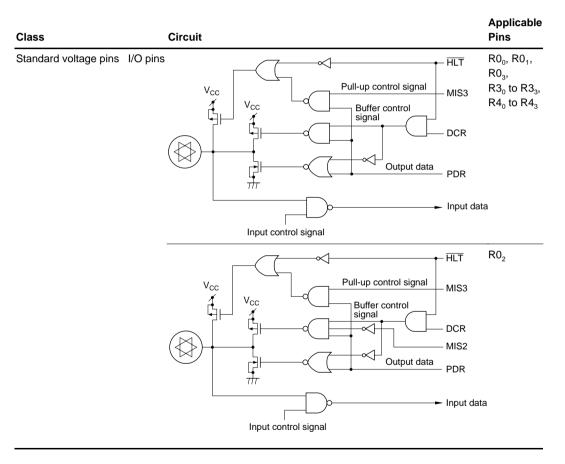
2. The PDR registers are not allocated addresses in RAM. The PDR registers are accessed by special-purpose I/O instructions.

Notes: 1. -: Off

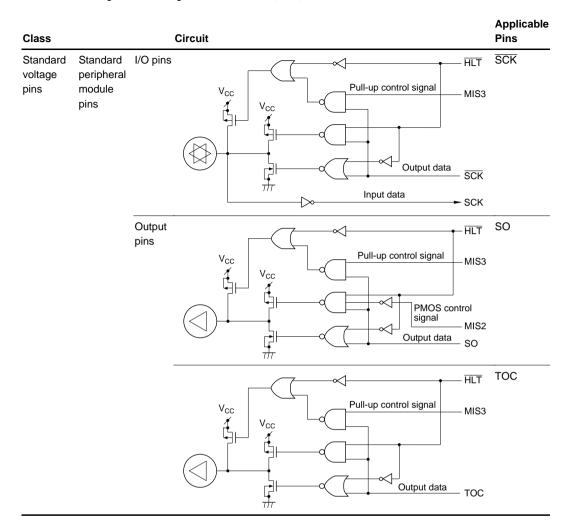
(4) **Miscellaneous Register** (**MIS: \$00C**): MIS is a 2-bit write-only register that controls the on/off states of the R0, R3, and R4 port pin pull-up MOS transistors and the on/off state of the $R0_2/SO$ pin output buffer PMOS transistor. MIS is initialized to \$0 on reset and in stop mode.

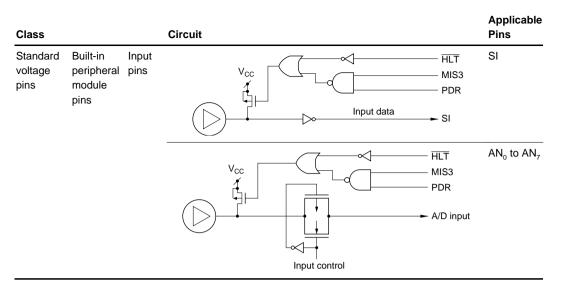
Bit 3—Pull-Up MOS Transistor Control (MIS3): Controls the on/off states of the pull-up MOS transistors built into the I/O port pins.

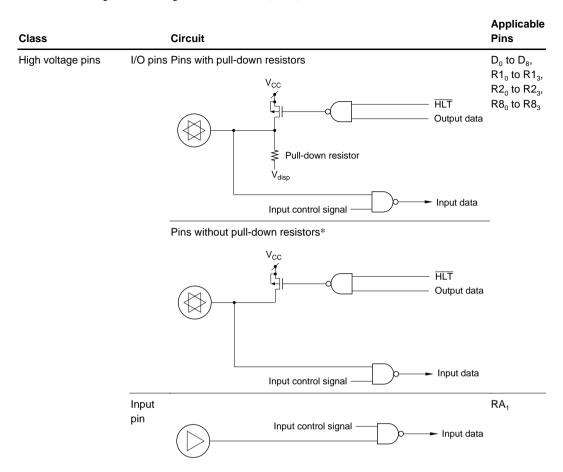
MIS3	Description	
0	All pull-up MOS transistors will be turned off.	(initial value)
1	Pull-up MOS transistors for which the corresponding PDR bit is 1 will b	be turned on.

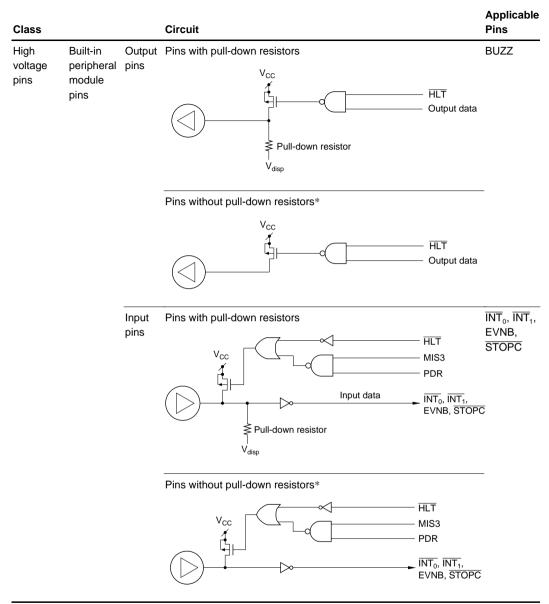

Bit 2—R0₂/SO Pin Output Buffer Control (MIS2): Controls the on/off state of the R0₂/SO pin output buffer PMOS transistor.

MIS2	Description	
0	The $R0_2/SO$ pin output will be a CMOS output.	(initial value)
1	The $R0_2/SO$ pin output will be an NMOS open drain output.	


9.1.3 I/O Pin Circuit Structures


Table 9-3 shows the port and peripheral module pin circuits.


- Notes: 1. Since the system is reset in stop mode, the built-in peripheral module selections are cleared. Since the internal $\overline{\text{HLT}}$ signal goes to the low (active) level, the I/O pins go to the high impedance state. Also, all the pull-up MOS transistors are turned off.
 - 2. In all low power modes other than stop mode, the internal HLT signal goes to the high level.


Table 9-3 Input and Output Pin Circuits

Note: * The ZTAT[™] versions of these microcomputers only support pins without pull-down resistors.

Note: * The ZTAT[™] versions of these microcomputers only support pins without pull-down resistors.

9.1.4 Port States in Low Power Modes

The D_0 to D_4 pins and the R0, R3, and R4 port pins have shared functions as input or output pins for built-in peripheral modules. In standby mode, since the CPU stops, the pins selected as output ports maintain their immediately prior output values. Also, pins selected for use by built-in peripheral modules that operate in standby mode continue to operate. (Output pins used by modules that stop in standby mode maintain their immediately prior output values.) See section 5, "Low Power Modes", for details on which built-in peripheral modules can operate in each mode.

Table 9-4 lists the port states in the low power modes.

Low Power Mode	Port States
Standby mode	Pins maintain their values immediately prior to entering standby mode.
Stop mode	Built-in peripheral function selections are cleared, and the port and peripheral function I/O pins go to the high impedance state.

 Table 9-4
 Port States in Low Power Modes

9.1.5 Handling Unused Pins

I/O pins that are unused in user systems must be tied to a fixed potential, since floating I/O pins can cause noise that can interfere with LSI operation. The following are examples of techniques that can prevent noise problems.

High voltage pin:	Select "no pull-down MOS transistor (PMOS open drain)" as the mask option and connect the pin to $V_{\rm CC}$ on the user system printed circuit board.
Standard voltage pin:	Either use the built-in pull-up MOS transistor to pull the pin up to V_{CC} , or pull up the pin to V_{CC} externally with a pull-up resistor of about 100 k Ω .

Application programs should maintain the PDR and DCR contents for unused pins at their reset state values. Also note that unused pins must not be selected for use as peripheral function I/O pins.

9.2 D Port

9.2.1 Overview

The D port is a 9-pin high voltage I/O port (D_0 to D_8) that can be accessed in 1-bit units.

The output levels on the pins D_0 to D_8 can be set to low or high by accessing the port in one-bit units with the SED, SEDD, RED, and REDD output instructions. The output data is stored in the PDR for each pin. The level on each of the pins D_0 to D_8 can be tested in one-bit units with the TD and TDD input instructions.

The pins D_0 to D_4 have shared functions as built-in peripheral module pins. PMRA and PMRB are used to switch these functions.

Figure 9-1 shows the structure of the D port.

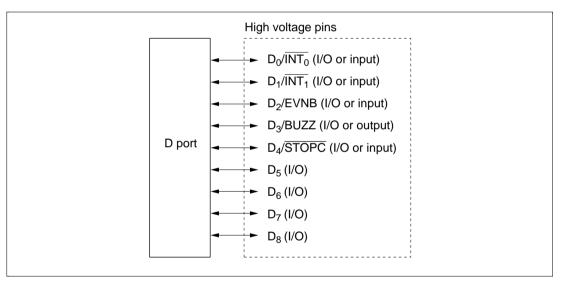


Figure 9-1 D Port Structure

9.2.2 Register Configuration and Descriptions

Table 9-5 shows the configuration of the D port registers.

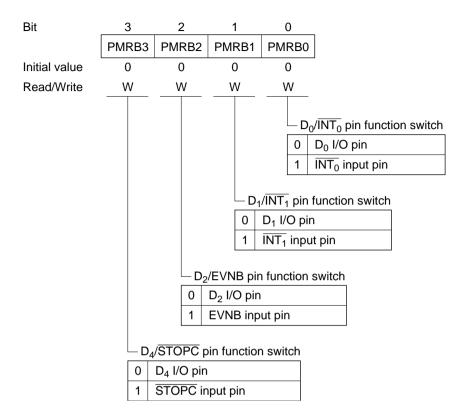
 Table 9-5
 D Port Register Configuration

Address	Register	Symbol	R/W	Initial Value
_	Port data registers	PDR	W*	0
\$004	Port mode register A	PMRA	W	\$0
\$024	Port mode register B	PMRB	W	\$0

Note: * The SED, SEDD, RED, and REDD instructions can be used to write to the PDRs.

(1) Port Data Registers (PDR): Each of the I/O pins D_0 to D_8 includes a built-in PDR that stores the output data. When a SED or SEDD instruction is executed for one of the pins D_0 to D_8 the corresponding PDR is set to 1, and when a RED or REDD instruction is executed, the corresponding PDR is cleared to 0.

The PDRs are cleared to 0 on reset and in stop mode.


(2) Port Mode Register A (PMRA: \$004): PMRA is a 4-bit write-only register whose PMRA3 bit switches the function of the D_3 /BUZZ pin. This section describes the function of the PMRA3 bit. See section 9.3.2 (3), "Port Mode Register A (PMRA)", for details on the PMRA2 to PMRA0 bits.

Bit 3— D_3 /BUZZ Pin Function Switch (PMRA3): Selects whether the D_3 /BUZZ pin functions as the D_3 input pin or as the alarm output pin (BUZZ).

PMRA3	Description	
0	D_3 /BUZZ pin functions as the D_3 I/O pin.	(initial value)
1	D₃/BUZZ pin functions as the BUZZ output pin.	

(3) **Port Mode Register B** (**PMRB: \$024**): PMRB is a 4-bit write-only register that switches the D port I/O pin shared functions.

Bit 3—D₄/STOPC Pin Function Switch (PMRB3): Selects whether the D₄/STOPC pin is used as the D₄ I/O pin or as the stop mode clear pin (STOPC).

PMRB3	Description	
0	The $D_4/\overline{\text{STOPC}}$ pin functions as the D_4 I/O pin.	(initial value)
1	The $D_4/\overline{\text{STOPC}}$ pin functions as the $\overline{\text{STOPC}}$ input pin.	

Bit 2—D_2/EVNB Pin Function Switch (PMRB2): Selects whether the D_2 /EVNB pin is used as the D_2 I/O pin or as the timer B event count input pin (EVNB).

PMRB2	Description	
0	The D_2 /EVNB pin functions as the D_2 I/O pin.	(initial value)
1	The D_2 /EVNB pin functions as the EVNB input pin.	

Bit 1—D_1/\overline{INT}_1 Pin Function Switch (PMRB1): Selects whether the D_1/\overline{INT}_1 pin is used as the D_1 I/O pin or as external interrupt 1 input pin (\overline{INT}_1).

PMRB1	Description	
0	The D_1/\overline{INT}_1 pin functions as the D_1 I/O pin.	(initial value)
1	The D_1/\overline{INT}_1 pin functions as the \overline{INT}_1 input pin.	

Bit 0—D₀/\overline{INT}_0 Pin Function Switch (PMRB0): Selects whether the D₀/ \overline{INT}_0 pin is used as the D₀ I/O pin or as external interrupt 0 input pin (\overline{INT}_0).

PMRB0	Description	
0	The D_0/\overline{INT}_0 pin functions as the D_0 I/O pin.	(initial value)
1	The D_0/\overline{INT}_0 pin functions as the \overline{INT}_0 input pin.	

9.2.3 Pin Functions

The functions of the pins D_0 to D_4 are switched by register PMRA and PMRB settings as shown in table 9-6.

Table 9-6	D ₀ to D ₄ Port Pin Functions
-----------	---

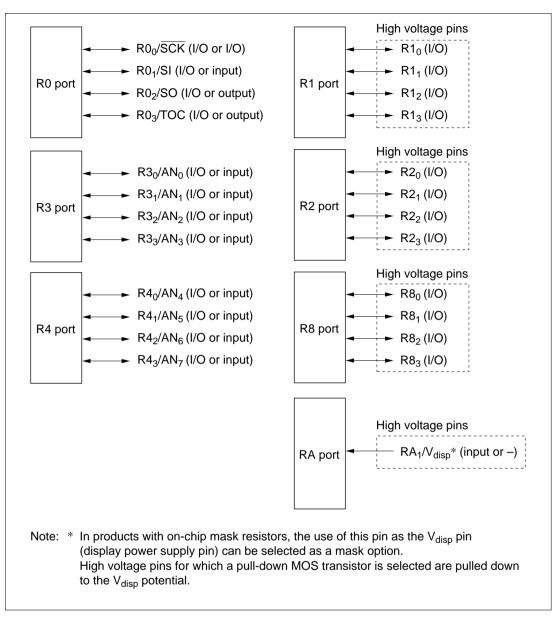
Pin	Pin Functions an	d Selection Methods			
D_0/\overline{INT}_0	The pin function is	switched as shown below by	/ the PMRB PMRB0 bit.		
	PMRB0	0	1		
	Pin function	D ₀ I/O pin	INT ₀ input pin		
D_1/\overline{INT}_1	The pin function is	switched as shown below by	/ the PMRB PMRB1 bit.		
	PMRB1	0	1		
	Pin function	D ₁ I/O pin	INT ₁ input pin		
D ₂ /EVNB	The pin function is switched as shown below by the PMRB PMRB2 bit.				
	PMRB2	0	1		
	Pin function	D ₂ I/O pin	EVNB input pin		
D ₃ /BUZZ	The pin function is	switched as shown below by	/ the PMRA PMRA3 bit.		
	PMRA3	0	1		
	Pin function	D ₃ I/O pin	BUZZ output pir		
	ųk				
D₄/STOPC	The pin function is	switched as shown below by	/ the PMRB PMRB3 bit.		
	PMRB3	0	1		
	Pin function	D₄ I/O pin	STOPC input pir		

9.3 R Ports

9.3.1 Overview

The R port consists of the six 4-bit I/O ports R0 to R4 and R8 and the 1-bit input port RA_1 . These ports are accessed in 4-bit units.

R0, R3, and R4 are standard voltage I/O ports. RA is a high voltage input port and R1, R2 and R8 are high voltage I/O ports that can directly drive fluorescent display tubes.


The individual ports R0 to R4 and R8 are accessed in 4-bit units with the LRA and LRB output instructions to control the output levels (high or low) on each pin. Output data is stored in the PDR built into each pin. Similarly, the LAR and LBR input instructions can be used to access the R ports in 4-bit units to read the input levels on the port pins.

The RA_1 input-only port consists of a single bit. The values of bits 3, 2, and 0 are undefined when this port is accessed by the input instructions.

DCR registers are used to control on/off states of the R0, R3, and R4 output buffers. When the DCR bit corresponding to a pin in an R0, R3, or R4 port is set to 1, the contents of the PDR corresponding to that pin is output from the pin. Thus the output buffer on/off states can be controlled on an individual pin basis for the R port pins. The DCR registers are allocated in the RAM address space.

The R0, R3, and R4 port pins have shared functions as built-in peripheral module pins. Register settings are used to switch these functions. (See table 9-7.)

Figure 9-2 shows the R port pin structure.

9.3.2 Register Configuration and Descriptions

Table 9-7 shows the configuration of the R port related registers.

Address	Register		Symbol	R/W	Initial Value
_	Port data	Standard voltage pins	PDR	W*	1
	registers	High voltage pins			0
\$030	Data contro	Data control registers		W	\$0
\$033			DCR3	W	\$0
\$034			DCR4	W	\$0
\$004	Port mode register A		PMRA	W	\$0
\$005	Serial mode register		SMR	W	\$0
\$019	A/D mode register 1		AMR1	W	\$0
\$01A	A/D mode re	egister 2	AMR2	W	00

 Table 9-7
 R Port Register Configuration

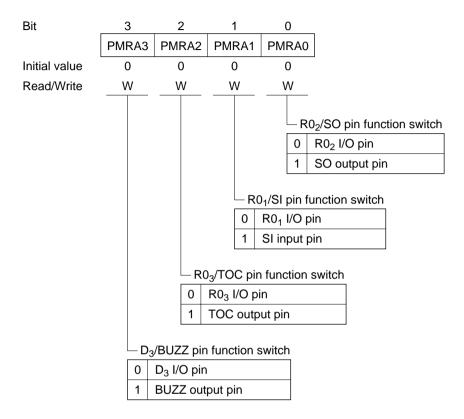
Note: * The LRA and LRB instructions are used to write to the PDR registers.

(1) **Port Data Registers (PDR):** All the I/O pins in ports R0 to R4 and R8 include a PDR that holds the output data. When an LRA or an LRB instruction is executed for one of ports R0 to R4 or R8, the contents of the accumulator (A) or the B register (B) are transferred to the specified R port PDRs. When bits in DCR0, DCR3, or DCR4 are set to 1, the output buffers for the corresponding pins in port R0, R3 or R4 will be turned on and the values in the PDRs will be output from those pins.

The PDR registers for standard voltage pins are set to 1 on reset and in stop mode, and the PDRs for high voltage pins are cleared to 0.

(2) Data Control Registers (DCR0, DCR3, DCR4: \$030, \$033, \$034)

	Bit	3	2	1	0
DCR0: \$030		DCR03	DCR02	DCR01	DCR00
	Initial value	0	0	0	0
	Read/Write	W	W	W	W
	Bit	3	2	1	0
DCR3: \$033		DCR33	DCR32	DCR31	DCR30
	Initial value	0	0	0	0
	Read/Write	W	W	W	W
	Bit	3	2	1	0
DCR4: \$034		DCR43	DCR42	DCR41	DCR40
	Initial value	0	0	0	0
	Read/Write	W	W	W	W


Bits in DCR0, DCR3, and DCR4	Description
0	The output buffer (CMOS buffer) is turned off and the output goes to the high impedance state. (initial value)
1	The output buffer is turned on and the corresponding PDR value is output.

The table below lists the correspondence between the bits in DCR0, DCR3, and DCR4 and the port R0, R3, and R4 pins.

			Bit		
Register	Bit 3	Bit 2	Bit 1	Bit 0	
DCR0	R0 ₃	R0 ₂	R0 ₁	R0 ₀	
DCR3	R3 ₃	R3 ₂	R3 ₁	R3 ₀	
DCR4	R4 ₃	R4 ₂	R4 ₁	R4 ₀	

(3) **Port Mode Register A (PMRA: \$004):** PMRA is a 4-bit write-only register whose bits PMRA2 to PMRA0 switch the functions of the port R0 shared function pins.

This section describes the bits PMRA2 to PMRA0. See section 9.2.2 (2), "Port Mode Register A (PMRA)", for details on the PMRA3 bit.

Bit 2—R0₃/TOC Pin Function Switch (PMRA2): Selects whether the $R0_3$ /TOC pin functions as the R0₃ I/O pin or as the timer C output pin (TOC).

PMRA2	Description	
0	The $R0_3$ /TOC pin functions as the $R0_3$ I/O pin.	(initial value)
1	The $R0_3$ /TOC pin functions as the TOC output pin.	

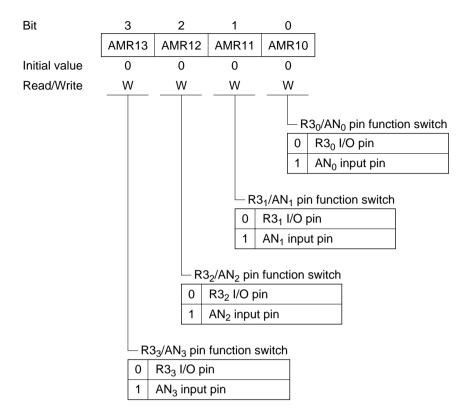
Bit 1—R0₁/SI Pin Function Switch (PMRA1): Selects whether the R0₁/SI pin functions as the R0₁ I/O pin or as the serial reception data input pin (SI).

PMRA1	Description	
0	The $R0_1/SI$ pin functions as the $R0_1$ I/O pin.	(initial value)
1	The $R0_1$ /SI pin functions as the SI input pin.	

Bit 0—R0₂/SO Pin Function Switch (PMRA0): Selects whether the $R0_2/SO$ pin functions as the $R0_2$ I/O pin or as the serial transmission data output pin (SO).

PMRA0	Description	
0	The $R0_2/SO$ pin functions as the $R0_2$ I/O pin.	(initial value)
1	The $R0_2$ /SO pin functions as the SO output pin.	

(4) Serial Mode Register (SMR: \$005): SMR is a 4-bit write-only register whose SMR3 bit switches the $R_{0/2}$ SCK pin function.


This section only describes the SMR3 bit. See section 20.2.1, "Serial Mode Register (SMR)" for details on bits SMR2 to SMR0.

Bit	3	2	1	0
	SMR3	SMR2	SMR1	SMR0
Initial value	0	0	0	0
Read/Write	W	W	W	W
	F	Transf R0 ₀ /SCK pin	er clock se	
	0	R0 ₀ I/O pi	in	
	1	SCK I/O p	oin	

Bit 3—R0₀/SCK Pin Function Switch (SMR3): Selects whether the R0₀/SCK pin functions as the R0₀ I/O pin or as the serial interface transfer clock I/O pin (\overline{SCK}).

SMR3	Description	
0	The $R0_0/\overline{SCK}$ pin functions as the $R0_0$ I/O pin.	(initial value)
1	The $R0_0/\overline{SCK}$ pin functions as the \overline{SCK} I/O pin.	

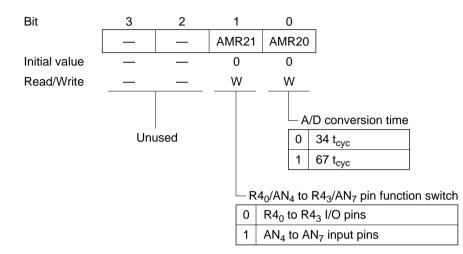
(5) A/D Mode Register 1 (AMR1: \$019): AMR1 is a 4-bit write-only register that switches the functions of the R3 port shared function pins.

Bit 3—R3₃/AN₃ Pin Function Switch (AMR13): Selects whether the R3₃/AN₃ pin functions as the R3₃ I/O pin or as the A/D converter channel 3 input pin AN₃.

AMR13	Description	
0	The $R3_3/AN_3$ pin functions as the $R3_3$ I/O pin.	(initial value)
1	The $R3_3/AN_3$ pin functions as the AN_3 input pin.	

Bit 2—R3₂/AN₂ Pin Function Switch (AMR12): Selects whether the $R3_2/AN_2$ pin functions as the R3₂ I/O pin or as the A/D converter channel 2 input pin AN₂.

AMR12	Description	
0	The $R3_2/AN_2$ pin functions as the $R3_2$ I/O pin.	(initial value)
1	The $R3_2/AN_2$ pin functions as the AN_2 input pin.	


Bit 1—R3₁/AN₁ **Pin Function Switch (AMR11):** Selects whether the R3₁/AN₁ pin functions as the R3₁ I/O pin or as the A/D converter channel 1 input pin AN₁.

AMR11	Description	
0	The $R3_1/AN_1$ pin functions as the $R3_1$ I/O pin.	(initial value)
1	The $R3_1/AN_1$ pin functions as the AN_1 input pin.	

Bit 0—R3₀/AN₀ Pin Function Switch (AMR10): Selects whether the $R3_0/AN_0$ pin functions as the R3₀ I/O pin or as the A/D converter channel 0 input pin AN₀.

AMR10	Description	
0	The $R3_0/AN_0$ pin functions as the $R3_0$ I/O pin.	(initial value)
1	The $R3_0/AN_0$ pin functions as the AN_0 input pin.	

(6) A/D Mode Register 2 (AMR2: \$01A): AMR2 is a 2-bit write-only register whose AMR21 bit switches the functions of all four bits of the R4 port (R4₀ to R4₃) to be A/D converter input channels (AN₄ to AN₇). This section describes the AMR21 bit. See section 15.2.2, "A/D Mode Register 2 (AMR2)", for details on the AMR20 bit.

Bit 1—R4₀/AN₄ to R4₃/AN₇ Pin Function Switch (AMR21): Selects whether the R4₀/AN₄ to R4₃/AN₇ pins function as the R4₀ to R4₃ I/O pins or as the A/D converter channel 4 to 7 input pins (AN₄ to AN₇).

AMR21	Description	
0	The R4 $_{\rm 0}/AN_{\rm 4}$ to R4 $_{\rm 3}/AN_{\rm 7}$ pins function as the R4 $_{\rm 0}$ to R4 $_{\rm 3}$ I/O pins.	(initial value)
1	The $R4_0/AN_4$ to $R4_3/AN_7$ pins function as the AN_4 to AN_7 input pins.	

9.3.3 Pin Functions

The pin functions of the R port pins are switched by register settings as shown in table 9-8.

Table 9-8R Port Pin Functions

Pin	Pin Functions and Selection Methods					
R₀/SCK	The pin function shown below.	The pin function is switched by the SMR SMR3 bit and the DCR0 DCR00 bit as shown below.				
	SMR3	()	1		
	DCR00	0	1			
	Pin function	$R0_0$ input pin	$R0_0$ output pin	SCK I/O pin		
R0 ₁ /SI	shown below.	is switched by the PM	IRA PMRA1 bit and th	e DCR0 DCR01 bit a		
	PMRA1	()	1		
	DCR01	0	1			
	Pin function	R0 ₁ input pin	R0 ₁ output pin	SI input pin		
R0 ₂ /SO	The pin function is switched by the PMRA PMRA0 bit and the DCR0 DCR02 bit a shown below.					
	PMRA0			1		
	DCR02	0	1	—		
	Pin function	R0 ₂ input pin	R0 ₂ output pin	SO output pin		
R0 ₃ /TOC	The pin function is switched by the PMRA PMRA2 bit and the DCR0 DCR03 shown below.			e DCR0 DCR03 bit a		
	PMRA2	0		1		
	DCR03	0	1			
	Pin function	$R0_3$ input pin	R0 ₃ output pin	TOC output pin		

Table 9-8 R Port Pin Functions (cont)

Pin function

Pin Pin Functions and Selection Methods R3₀/AN₀ The pin function is switched by the AMR1 AMR10 bit and the DCR3 DCR30 bit as shown below. AMR10 0 1 **DCR30** 0 1 Pin function R3₀ input pin R3₀ output pin AN₀ input pin R3₁/AN₁ The pin function is switched by the AMR1 AMR11 bit and the DCR3 DCR31 bit as shown below. AMR11 0 1 DCR31 0 1 Pin function R3, input pin R3, output pin AN₁ input pin The pin function is switched by the AMR1 AMR12 bit and the DCR3 DCR32 bit as R3₂/AN₂ shown below. AMR12 0 1 DCR32 0 1 Pin function R3, input pin R3, output pin AN₂ input pin R3₃/AN₃ The pin function is switched by the AMR1 AMR13 bit and the DCR3 DCR33 bit as shown below. AMR13 0 1 DCR33 0 1 Pin function R3₃ output pin R3₃ input pin AN₃ input pin $R4_0/AN_4$ The pin function is switched by the AMR2 AMR21 bit and the DCR4 DCR40 bit as shown below. AMR21 0 1 DCR40 0 1

HITACHI

R4₀ input pin

R4₀ output pin

AN₄ input pin

Table 9-8 R Port Pin Functions (cont)

Pin	Pin Functions	and Selection Methods			
R4 ₁ /AN ₅	The pin function shown below.	is switched by the AM	IR2 AMR21 bit and the	e DCR4 DCR41 bit as	
	AMR21	()	1	
	DCR41	0	1		
	Pin function	R4 ₁ input pin	R41 output pin	AN₅ input pin	
R4 ₂ /AN ₆	The pin function is switched by the AMR2 AMR21 bit and the DCR4 DCR42 bit as shown below.				
	AMR21	(1		
	DCR42	0	1	_	
	Pin function	R4 ₂ input pin	R4 ₂ output pin	AN ₆ input pin	
R4 ₃ /AN ₇	The pin function shown below.	is switched by the AM	IR2 AMR21 bit and the	e DCR4 DCR43 bit as	
	AMR21	()	1	
	DCR43	0	1	—	
	Pin function	R4 ₃ input pin	R4 ₃ output pin	AN ₇ input pin	

9.4 Usage Notes

Keep the following points in mind when using the I/O ports.

- When the MIS MIS2 bit is set to 1, the R0₂/SO pin will be an NMOS open drain output regardless of whether it is selected for use as the R0₂ pin or as the SO pin by the PMRA PMRA0 bit.
- I/O pins that are unused in user systems must be tied to a fixed potential, since floating I/O pins can cause noise that can interfere with LSI operation. The following are examples of techniques that can prevent noise problems.

High voltage pin:	Select "no pull-down MOS transistor (PMOS open drain)" as the mask option and connect the pin to V_{CC} on the user system printed circuit board.
Standard voltage pin:	Either use the built-in pull-up MOS transistor to pull the pin up to V_{CC} , or pull up the pin to V_{CC} externally with a pull-up resistor of about 100 k Ω .

Application programs should maintain the PDR and DCR contents for unused pins at their reset state values. Also note that unused pins must not be selected for use as peripheral function I/O pins.

• When the MIS MIS3 bit is set to 1 (pull-up MOS transistors active) and the PDR for an R port/analog input shared function pin has the value 1, the pull-up MOS transistor for the corresponding pin will not be turned off by selecting the analog input function with the AMR1 and AMR2 register.

To use an R port/analog input shared function pin as an analog input when the pull-up MOS transistors are active, always clear the PDR for the corresponding pin to 0 first and then turn off the pull-up MOS transistor. (Note that the PDR registers are set to 1 immediately following a reset.)

Figure 9-3 shows the circuit for the R port/analog input shared function pins. AMR1 and AMR2 are used to set the port outputs to high impedance. ACR is used to switch the analog input channel.

The states of the R port/analog input shared function pins are set, as shown in table 9-9, by the combination of the AMR1 (or AMR2) register, the MIS3 bit, the DCR, and the PDR settings.

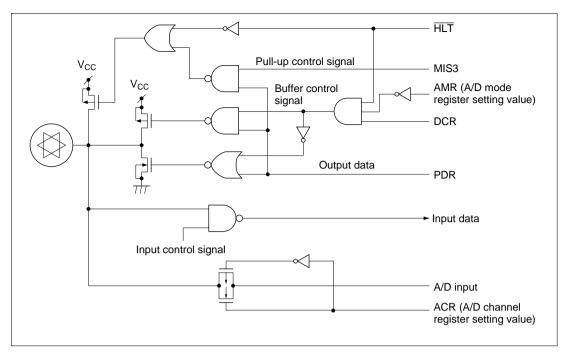


Figure 9-3 R Port/Analog Input Shared Function Pin Circuit Structure

Table 9-9 Program Control of the R Port/Analog Input Shared Use Pins

Corresponding b or AMR2			() (R port	selected	l)			
MIS3 bit		0 1							
DCR			0		1	(0 1		1
PDR		0	1	0	1	0	1	0	1
CMOS buffer	PMOS			_	On	-		_	On
NMOS		1		On				On	_
Pull-up MOS transistor			-	_			On		On

Note: -: off

Corresponding b or AMR2	it in AMR1	1 (analog input selected)							
MIS3 bit		0 1							
DCR	DCR		0		1	(0 1		1
PDR		0	1	0	1	0	1	0	1
CMOS buffer PMOS				_	_	_	_	_	_
NMOS				_	_			_	_
Pull-up MOS transistor			-		i.		On	_	On

Note: -: off

Section 10 I/O Ports (HD404358 and HD404358 Series)

10.1 Overview

10.1.1 Features

The HD404358 and HD404358R Series I/O ports have the following features.

• HD404358 Series: The four pins R2₀ to R2₃ are medium voltage NMOS open drain I/O pins. RA₁ is an input-only pin. The D, R0, R1, R3, R4, and R8 port pins are standard voltage I/O pins that, in output mode, are CMOS three state outputs.

HD404358R Series: Pins D_0 to D_8 , R0, R1, R2, R3, R4, and R8 are CMOS three state standard voltage I/O pins. Of these, 20 pins (D_5 to D_8 , R0, R1, R2, and R8) can handle current levels of up to 15 mA. Also, RA₁ is an input-only pin.

- Certain I/O pins (D₀ to D₄, and the pins in the R0, R3, and R4 ports) are shared with the builtin peripheral modules, such as timers and the serial interface. Setting these pins for use with the built-in peripheral modules takes priority over their setting for use as D or R port pins.
- Register settings are used to select input or output for I/O pins and to select the I/O port or peripheral module usage for shared function pins.
- All peripheral module output pins are CMOS outputs. However, the R0₂/SO pin can be selected to be an NMOS open drain output by setting a register.
- Since the system is reset in stop mode, the built-in peripheral module selections are cleared and the I/O pins go to the high impedance state.
- The CMOS output pins have built-in programmable pull-up MOS transistors. The on/off state of these transistors can be controlled by register settings on an individual basis. Note that the pull-up MOS transistor on/off settings are independent of the pin settings for use as built-in peripheral module pins.

Table 10-1 provides an overview of the HD404358 Series port functions.

Table 10-1Port Functions

Port	Overview	Pin	Shared Function	Function Switching Register
D_0 to D_8	HD404358 Series:	D ₀ /INT ₀	External interrupt input 0	PMRB
	Standard voltage I/O port	D_1/\overline{INT}_1	External interrupt input 1	
	Accessed in bit units	D ₂ /EVNB	Timer B event input	
	Accessed with the SED,	D₃/BUZZ	Alarm output	PMRA
	SEDD, RED, REDD, TD, and TDD instructions.	D₄/STOPC	Stop mode clear	PMRB
	 Programmable pull-up MOS transistors HD404358R Series: 	D_5 to D_8	_	_
	• Standard voltage I/O port.			
	 D₅ to D₈ is high current pins (max. 15 mA) 			
	Accessed in bit units			
	 Accessed with the SED, SEDD, RED, REDD, TD, and TDD instructions. 			
	Programmable pull-up MOS transistors			

Table 10-1 Port Functions (cont)

Port	Overview	Pin	Shared Function	Function Switching Register
R0	HD404358 Series:	R0 ₀ /SCK	Transfer clock I/O	SMR
	Standard voltage I/O port	R0 ₁ /SI	Serial reception data input	PMRA
	Accessed in 4-bit units.	R0 ₂ /SO	Serial transmission data	_
	 Accessed with the LAR, LBR, 		output	_
	LRA, and LRB instructions.	R0 ₃ /TOC	Timer C output	
R3	Programmable pull-up MOS	R3 ₀ /AN ₀	Analog input channel 0	AMR1
	transistors HD404358R Series:	R3 ₁ /AN ₁	Analog input channel 1	
		R3 ₂ /AN ₂	Analog input channel 2	_
	 Standard voltage I/O port. R0, R1, R8 is high current 	R3 ₃ /AN ₃	Analog input channel 3	_
R4	pins (max. 15 mA)	R4 ₀ /AN ₄	Analog input channel 4	AMR2
	 Accessed in 4-bit units. 	R4 ₁ /AN ₅	Analog input channel 5	_
	• Accessed with the LAR, LBR,	R4 ₂ /AN ₆	Analog input channel 6	_
	LRA, and LRB instructions.	R4 ₃ /AN ₇	Analog input channel 7	_
R1	Programmable pull-up MOS	R1 ₀	_	_
	transistors	R1,	_	
		R1 ₂	_	
		R1 ₃	_	
R8		R8 ₀		_
		R8 ₁	_	
		R8 ₂	_	
		R8 ₃	_	

Port	Overview	Pin	Shared Function	Function Switching Register
R2	HD404358 Series:	R2 ₀	_	
	Medium voltage NMOS open drain I/O port	R2 ₁ R2 ₂		
	• Accessed in 4-bit units.	R2 ₃		
	 Accessed with the LAR, LBR, LRA, and LRB instructions. HD404358R Series: 			
	• Standard voltage I/O port.			
	 High current pins (max. 15 mA) 			
	Accessed in 4-bit units.			
	 Accessed with the LAR, LBR, LRA, and LRB instructions. 			
	 Programmable pull-up MOS transistors 			
RA	Standard voltage input port (1 bit)	RA ₁	_	_
	Accessed with the LAR and			
	LBR instructions.			

10.1.2 I/O Control

HD404358 Series: R2 is a medium voltage NMOS open drain I/O port and the D_0 to D_8 , R0, R1, R3, R4 and R8 ports are standard voltage I/O ports. The different port types have different circuit structures as follows.

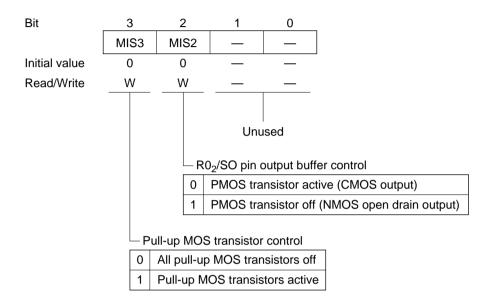
HD404358R Series: The D₀ to D₈, R0, R1, R2, R3, R4 and R8 are standard voltage I/O ports.

(1) Medium Voltage NMOS Open Drain I/O Pin Circuit (HD404358 Series): R2 is a medium voltage NMOS open drain I/O port and I/O through this port is controlled by the port data registers (PDR) and the data control registers (DCR). When the DCR bit corresponding to a given pin is 1, that pin functions as an output pin and when the value in the PDR is 0, the pin's NMOS transistor turns on and the pin outputs a low level voltage. When the value in the PDR is 1 the pin goes to the high impedance state. When a given DCR bit is 0, the corresponding pin functions as an input pin.

(2) Standard Voltage CMOS Three State I/O Pin Circuit: The pins in the D_0 to D_8 , R0, R1, R3, R4, and R8 ports (HD404358 Series) or D_0 to D_8 , R0, R1, R2, R3, R4 and R8 ports (HD404358R) are standard voltage CMOS three state I/O ports. I/O through these ports is controlled by the PDRs and the data control registers (DCD or DCR). When the DCD or DCR bit corresponding to a given pin is 1, that pin functions as an output pin and outputs the value in the PDR. When a given DCD or DCR bit is 0, the corresponding pin functions as an input pin.

(3) Pull-Up MOS Control: The I/O pins in ports D_0 to D_8 and ports R0, R1, R3, R4, and R8 (HD404358 series) have built-in programmable pull-up MOS transistors. This also applies to I/O pins in ports D_0 to D_8 and ports R0, R1, R2, R3, R4, and R8 (HD404358R series). When the miscellaneous register (MIS) MIS3 bit is set to 1 the pull-up MOS transistor for pins for which the corresponding PDR is set to 1 will be turned on. Thus the on/off state of each pin can be controlled independently by the PDRs. Note that the pull-up MOS transistor on/off settings are independent of the pin settings for use as built-in peripheral module pins.

Table 10-2 shows how register settings control the port I/O pins.


 Table 10-2
 Register Settings for I/O Pin Control

MIS3				0		1			
DCD, DCR		0 1		0		1			
PDR		0	1	0	1	0	1	0	1
CMOS buffer	PMOS	-		—	On	-		_	On
NMOS				On	—			On	—
Pull-up MOS trar	Pull-up MOS transistor		-			—	On	_	On

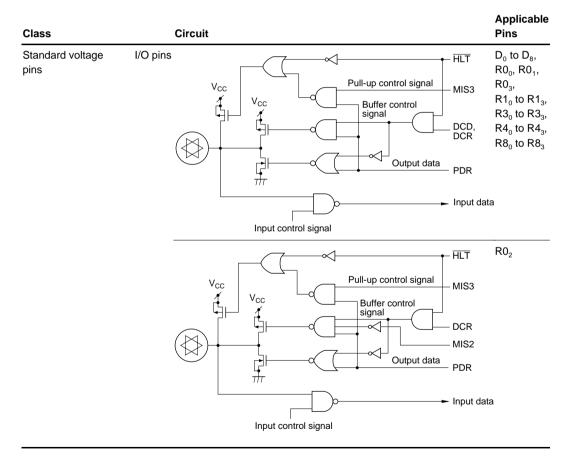
Notes: 1. -: Off

2. The PDR registers are not allocated addresses in RAM. The PDR registers are accessed by special-purpose I/O instructions.

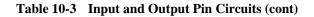
(4) Miscellaneous Register (MIS: 00C): MIS is a 2-bit write-only register that controls the on/off states of the D, R0, and R3 port pin pull-up MOS transistors and the on/off state of the R0₂/SO pin output buffer PMOS transistor. MIS is initialized to 0 on reset and in stop mode.

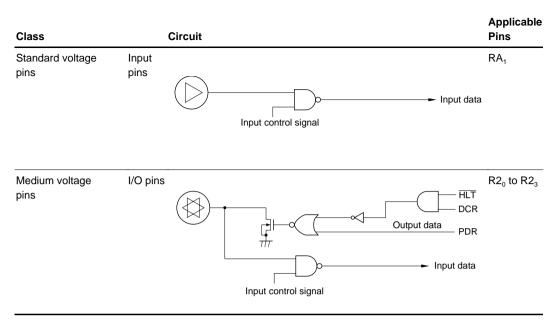
Bit 3—Pull-Up MOS Transistor Control (MIS3): Controls the on/off states of the pull-up MOS transistors built into the I/O port pins.

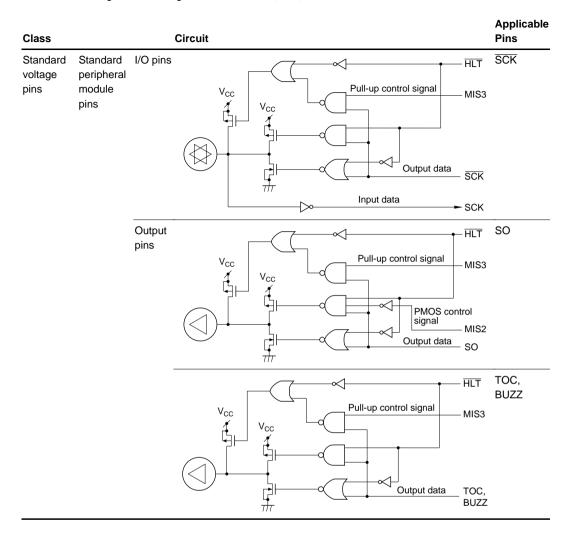
MIS3	Description	
0	All pull-up MOS transistors will be turned off.	(initial value)
1	Pull-up MOS transistors for which the corresponding PDR bit is 1 will b	be turned on.

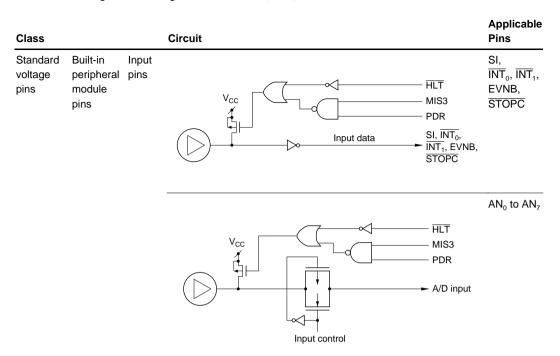

Bit 2—R0₂/SO Pin Output Buffer Control (MIS2): Controls the on/off state of the R0₂/SO pin output buffer PMOS transistor.

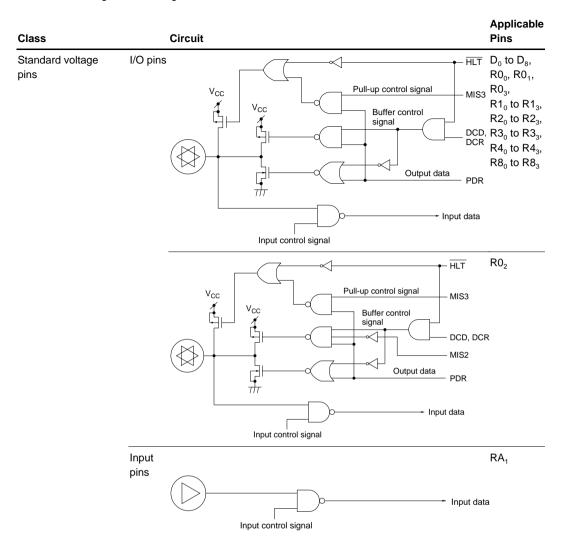
MIS2	Description	
0	The R0 ₂ /SO pin output will be a CMOS output.	(initial value)
1	The $R0_2$ /SO pin output will be an NMOS open drain output.	


10.1.3 I/O Pin Circuit Structures


Table 10-3 shows the port and peripheral module pin circuits for the HD404358 series, and table 10-4 shows the port and peripheral module pin circuits for the HD404358R series.


- Notes: 1. Since the system is reset in stop mode, the built-in peripheral module selections are cleared. Since the internal $\overline{\text{HLT}}$ signal goes to the low (active) level, the I/O pins go to the high impedance state. Also, all the pull-up MOS transistors are turned off.
 - 2. In all low power modes other than stop mode, the internal HLT signal goes to the high level.


Table 10-3 Input and Output Pin Circuits



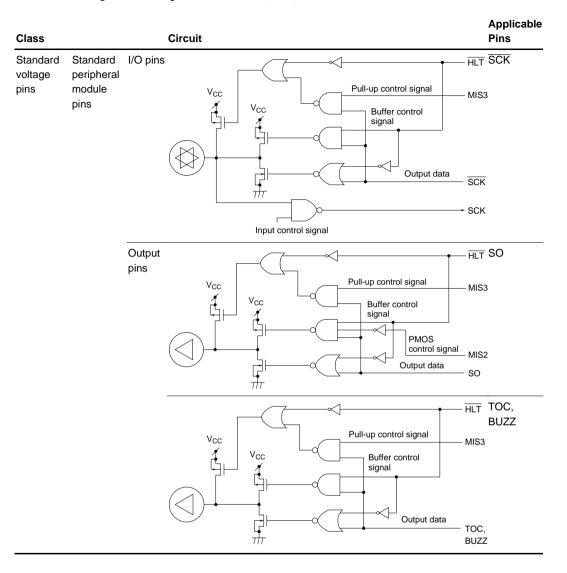

Table 10-3 Input and Output Pin Circuits (cont)

Table 10-3 Input and Output Pin Circuits (cont)

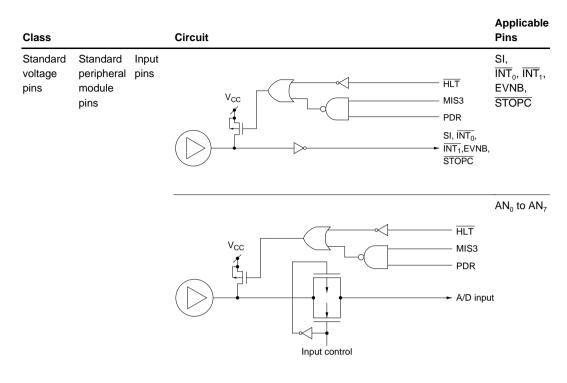


Table 10-4 Input and Output Pin Circuits

Table 10-4 Input and Output Pin Circuits (cont)

Table 10-4 Input and Output Pin Circuits (cont)

10.1.4 Port States in Low Power Modes

The D_0 to D_4 pins and the R0, R3, and R4 port pins have shared functions as input or output pins for built-in peripheral modules. In standby mode, since the CPU stops, the pins selected as output ports maintain their immediately prior output values. Also, pins selected for use by built-in peripheral modules that operate in standby mode continue to operate. (Output pins used by modules that stop in standby mode maintain their immediately prior output values.) See section 5, "Low Power Modes", for details on which built-in peripheral modules can operate in each mode.

Table 10-5 lists the port states in the low power modes.

Low Power Mode	Port States
Standby mode	Pins maintain their values immediately prior to entering standby mode.
Stop mode	Built-in peripheral function selections are cleared, and the port and peripheral function I/O pins go to the high impedance state.

Table 10-5 Port States in Low Power Modes

10.1.5 Handling Unused Pins

I/O pins that are unused in user systems must be tied to a fixed potential, since floating I/O pins can cause noise that can interfere with LSI operation.

The built-in pull-up MOS transistors can be used to pull up unused pins to V_{cc} . Alternatively, unused pins can be pulled up to V_{cc} with external resistors of about 100 k Ω .

Application programs should maintain the PDR, DCD and DCR contents for unused pins at their reset state values. Also note that unused pins must not be selected for use as peripheral function I/O pins.

10.2 D Port

10.2.1 Overview

The D port of the HD404358 series consists of nine I/O ports (D_0 to D_8) that can be accessed in 1-bit units.

The D port of the HD404358R series consists of nine I/O ports (D_0 to D_8 ; of which D_5 to D_8 are capable of handling high current levels of up to 15 mA) that can be accessed in 1-bit units.

The output levels on the pins D_0 to D_8 can be set to low or high by accessing the port in one-bit units with the SED, SEDD, RED, and REDD output instructions. The output data is stored in the PDR for each pin. The level on each of the pins D_0 to D_8 can be tested in one-bit units with the TD and TDD input instructions.

The DCD registers are used to turn the D port output buffers on or off. When the DCD bit corresponding to a given pin is 1, the data in the corresponding PDR will be output from that pin. The on/off states of the output buffers can be controlled individually for each D port pin. The DCD registers are allocated in the RAM address space.

The pins D_0 to D_4 have shared functions as built-in peripheral module pins. PMRB is used to switch these functions.

Figure 10-1 shows the structure of the D port.

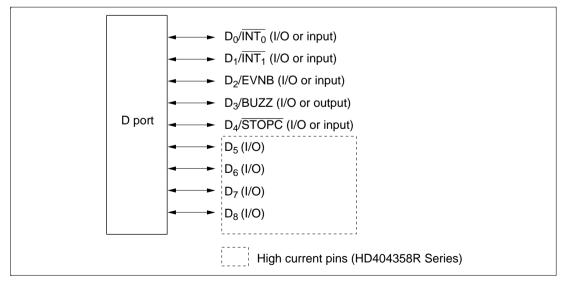


Figure 10-1 D Port Structure

10.2.2 Register Configuration and Descriptions

Table 10-6 shows the configuration of the D port registers.

 Table 10-6
 D Port Register Configuration

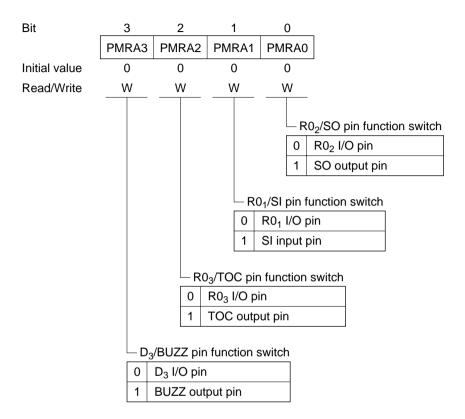
Address	Register	Symbol	R/W	Initial Value
_	Port data registers	PDR	W*	1
\$02C	Data control registers	DCD0	W	\$0
\$02D		DCD1	W	\$0
\$02E		DCD2	W	0
\$004	Port mode register A	PMRA	W	\$0
\$024	Port mode register B	PMRB	W	\$0

Note: * The SED, SEDD, RED, and REDD instructions can be used to write to the PDRs.

(1) Port Data Registers (PDR): Each of the I/O pins D_0 to D_8 includes a built-in PDR. When a SED or SEDD instruction is executed for one of the pins D_0 to D_8 the corresponding PDR is set to 1, and when a RED or REDD instruction is executed, the corresponding PDR is cleared to 0. When bits in DCD0 to DCD2 are set to 1, the output buffers for the corresponding pins will be turned on and the values in the PDRs will be output from those pins.

The PDRs are cleared to 1 on reset and in stop mode.

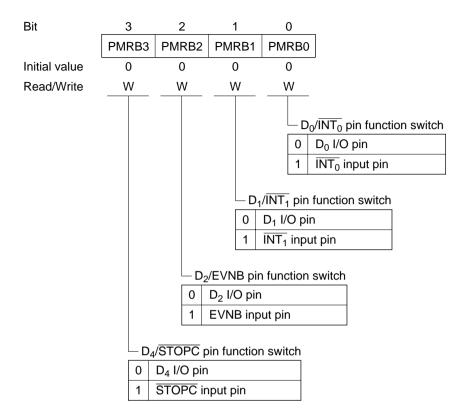
(2) Data Control Registers (DCD0 to DCD2: \$02C, \$02D, \$02E)


	Bit	3	2	1	0
DCD0: \$02C		DCD03	DCD02	DCD01	DCD00
	Initial value	0	0	0	0
	Read/Write	W	W	W	W
	Bit	3	2	1	0
DCD1: \$02D		DCD13	DCD12	DCD11	DCD10
	Initial value	0	0	0	0
	Read/Write	W	W	W	W
	Bit	3	2	1	0
DCD2: \$02E		—	—	—	DCD20
	Initial value	—	—		0
	Read/Write	—	—	—	W

Bits in DCD0 to DCD2	Description
0	The output buffer (CMOS buffer) is turned off and the output goes to the high impedance state. (initial value)
1	The output buffer is turned on and the corresponding PDR value is output.

The table below lists the correspondence between the bits in DCD0 to DCD2 and the D port pins.

			Bit		
Register	Bit 3	Bit 2	Bit 1	Bit 0	
DCD0	D ₃	D_2	D ₁	D _o	
DCD1	D ₇	D ₆	D ₅	D_4	
DCD2				D ₈	


(3) Port Mode Register A (PMRA: \$004): PMRA is a 4-bit write-only register whose PMRA3 bit switches the function of the D_3 /BUZZ pin. This section describes the function of the PMRA3 bit. See section 10.3.2 (3), "Port Mode Register A (PMRA)", for details on the PMRA2 to PMRA0 bits.

Bit 3— D_3 /BUZZ Pin Function Switch (PMRA3): Selects whether the D_3 /BUZZ pin functions as the D_3 I/O pin or as the alarm output pin (BUZZ).

PMRA3	Description	
0	The D_3 /BUZZ pin functions as the D_3 I/O pin.	(initial value)
1	The D_3 /BUZZ pin functions as the BUZZ output pin.	

(4) **Port Mode Register B** (**PMRB: \$024**): PMRB is a 4-bit write-only register that switches the D port I/O pin shared functions.

Bit 3— $D_4/\overline{\text{STOPC}}$ Pin Function Switch (PMRB3): Selects whether the $D_4/\overline{\text{STOPC}}$ pin is used as the D_4 I/O pin or as the stop mode clear pin (STOPC).

PMRB3	Description	
0	The D ₄ / $\overline{\text{STOPC}}$ pin functions as the D ₄ I/O pin.	(initial value)
1	The D ₄ / $\overline{\text{STOPC}}$ pin functions as the $\overline{\text{STOPC}}$ input pin.	

Bit 2— D_2 /EVNB Pin Function Switch (PMRB2): Selects whether the D_2 /EVNB pin is used as the D_2 I/O pin or as the timer B event count input pin (EVNB).

PMRB2	Description	
0	The D_2 /EVNB pin functions as the D_2 I/O pin.	(initial value)
1	The D_2 /EVNB pin functions as the EVNB input pin.	

Bit 1—D_1/\overline{INT}_1 Pin Function Switch (PMRB1): Selects whether the D_1/\overline{INT}_1 pin is used as the D_1 I/O pin or as external interrupt 1 input pin (\overline{INT}_1).

PMRB1	Description	
0	The D_1/\overline{INT}_1 pin functions as the D_1 I/O pin.	(initial value)
1	The D_1/\overline{INT}_1 pin functions as the \overline{INT}_1 input pin.	

Bit 0—D₀/\overline{INT}_0 Pin Function Switch (PMRB0): Selects whether the D₀/ \overline{INT}_0 pin is used as the D₀ I/O pin or as external interrupt 0 input pin (\overline{INT}_0).

PMRB0	Description	
0	The D_0/\overline{INT}_0 pin functions as the D_0 I/O pin.	(initial value)
1	The D_0/\overline{INT}_0 pin functions as the \overline{INT}_0 input pin.	

10.2.3 Pin Functions

The functions of the pins D_0 to D_8 are switched by register settings as shown in table 10-7.

Table 10-7D0 to D8 Port Pin Functions

Pin		nd Selection Method	-			
D_0/\overline{INT}_0	The pin function i DCD0 DCD00 bit	pin function is switched as shown below by the PMRB PMRB0 bit and the 0 DCD00 bit.				
	PMRB	C)	1		
	DCD00	0	1	_		
	Pin function	D_0 input pin	D_0 output pin	\overline{INT}_0 input pin		
D_1/\overline{INT}_1	The pin function i DCD0 DCD01 bit	s switched as shown	below by the PMRB	PMRB1 bit and the		
	PMRB1	C)	1		
	DCD01	0	1	_		
	Pin function	D ₁ input pin	D ₁ output pin	INT₁ input pin		
	DCD0 DCD02 bit PMRB2	С	1	1		
D ₂ /EVNB	The pin function is switched as shown below by the PMRB PMRB2 bit and the DCD0 DCD02 bit.					
		-	1	I		
	DCD02	0	-			
	Pin function	D ₂ input pin	D ₂ output pin	EVNB input pin		
D ₃ /BUZZ	The pin function i DCD0 DCD03 bit	s switched as shown	below by the PMRA	PMRA3 bit and the		
	PMRA3	C)	1		
	DCD03	0	1	_		
	Pin function	D_3 input pin	D ₃ output pin	BUZZ output pin		
	L L					
D₄/STOPC	The pin function i DCD1 DCD10 bit	s switched as shown	below by the PMRB	PMRB3 bit and the		
	PMRB3	C	1	1		
	DCD10	0	1	—		
	Pin function	D₄ input pin	D₄ output pin	STOPC input pir		

Table 10-7 D₀ to D₈ Port Pin Functions (cont)

Pin		Functions and Selection Methods e pin function is switched as shown below by the DCD1 DCD11 bit.		
D_{5}	rr	witched as shown below by t		
	DCD11	0	1	
	Pin function	D₅ input pin	D₅ output pir	
	L			
D ₆	The pin function is s	witched as shown below by t	the DCD1 DCD12 bit.	
	DCD12	0	1	
	Pin function	D ₆ input pin	D ₆ output pir	
	L L			
D ₇	The pin function is s	witched as shown below by t	the DCD1 DCD13 bit.	
	DCD13	0	1	
			D ₇ output pin	
	Pin function	D ₇ input pin	D ₇ output pir	
	Pin function	D ₇ input pin	D ₇ output pir	
		D ₇ input pin witched as shown below by t		
D ₈				

10.3 R Ports

10.3.1 Overview

The R port consists of the six 4-bit I/O ports R0 to R4 and R8 and the 1-bit input port RA_1 . These ports are accessed in 4-bit units.

R0, R1, R3, R4, and R8 are standard voltage CMOS three state I/O ports and R2 is a medium voltage NMOS open drain I/O port of HD404358 Series.

On the HD404358R series pins R0, R1, R2, R3, R4, and R8 are CMOS three state standard voltage I/O pins. Of these, R0, R1, R2, and R8 can handle high current levels of up to 15 mA.

The individual ports R0 to R4 and R8 are accessed in 4-bit units with the LRA and LRB output instructions to control the output levels (high or low) on each pin. Output data is stored in the PDR built into each pin. Similarly, the LAR and LBR input instructions can be used to access the R ports in 4-bit units to read the input levels on the port pins.

The RA1 input-only port consists of a single bit. The values of bits 3, 2, and 0 are undefined when this port is accessed by the input instructions.

DCR registers are used to control on/off states of the R port output buffers. When the DCR bit corresponding to a pin in an R port is set to 1, the contents of the PDR corresponding to that pin is output from the pin. Thus the output buffer on/off states can be controlled on an individual pin basis for the R port pins. The DCR registers are allocated in the RAM address space.

The R0, R3, and R4 port pins have shared functions as built-in peripheral module pins. Register settings are used to switch these functions. (See table 10-8.)

Figure 10-2 shows the R port pin structure.

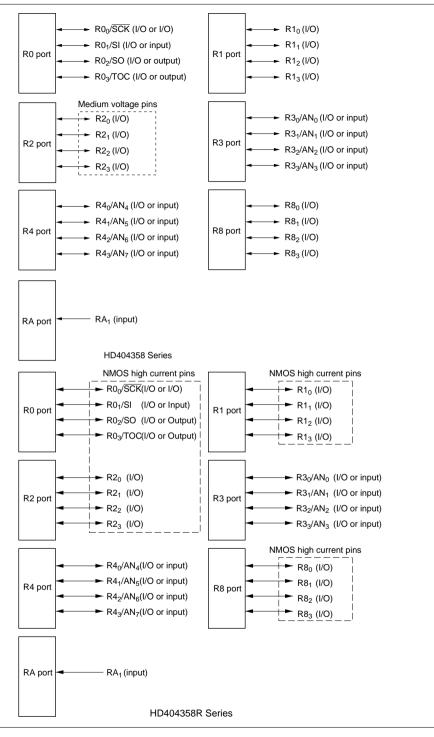


Figure 10-2 R Port Structure

10.3.2 Register Configuration and Descriptions

Table 10-8 shows the configuration of the R port related registers.

Table 10-8 R	Port Register	Configuration
--------------	---------------	---------------

Address	Register	Symbol	R/W	Initial Value
_	Port data registers	PDR	W*	1
\$030	Data control registers	DCR0	W	\$0
\$031		DCR1	W	\$0
\$032		DCR2	W	\$0
\$033		DCR3	W	\$0
\$034		DCR4	W	\$0
\$038		DCR8	W	\$0
\$004	Port mode register A	PMRA	W	\$0
\$005	Serial mode register	SMR	W	\$0
\$019	A/D mode register 1	AMR1	W	\$0
\$01A	A/D mode register 2	AMR2	W	00

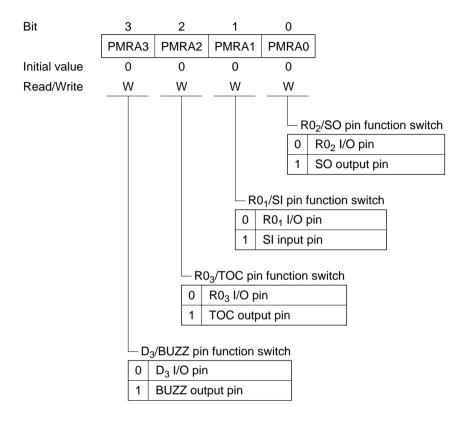
Note: * The LRA and LRB instructions are used to write to the PDR registers.

(1) **Port Data Registers (PDR):** All the I/O pins in ports R0 to R4 and R8 include a PDR that holds the output data. When an LRA or an LRB instruction is executed for one of ports R0 to R4 or R8, the contents of the accumulator (A) or the B register (B) are transferred to the specified R port PDRs. When bits in DCR0 to DCR4, or DCR8 are set to 1, the output buffers for the corresponding pins in port R0 to R4 or R8 will be turned on and the values in the PDRs will be output from those pins.

The PDR registers are set to 1 on reset and in stop mode.

(2) Data Control Registers (DCR0 to DCR4, DCR8: \$030, \$031, \$032, \$033, \$034, \$038)

	Bit	3	2	1	0
DCR0: \$030		DCR03	DCR02	DCR01	DCR00
	Initial value	0	0	0	0
	Read/Write	W	W	W	W
	Bit	3	2	1	0
DCR1: \$031		DCR13	DCR12	DCR11	DCR10
	Initial value	0	0	0	0
	Read/Write	W	W	W	W
	Bit	3	2	1	0
DCR2: \$032		DCR23	DCR22	DCR21	DCR20
- •	Initial value	0	0	0	0
	Read/Write	W	W	W	W
	Bit	3	2	1	0
DCR3: \$033		DCR33	DCR32	DCR31	DCR30
·	Initial value	0	0	0	0
	Read/Write	W	W	W	W
	Bit	3	2	1	0
DCR4: \$034		DCR43	DCR42	DCR41	DCR40
	Initial value	0	0	0	0
	Read/Write	W	W	W	W
	Bit	3	2	1	0
DCR8: \$038		DCR83	DCR82	DCR81	DCR80
	Initial value	0	0	0	0
	Read/Write	W	W	W	W
	Initial value Read/Write Bit Initial value Read/Write Bit Initial value	DCR33 0 W 3 DCR43 0 W 3 DCR83 0	DCR32 0 W 2 DCR42 0 W 2 DCR82 0	DCR31 0 W 1 DCR41 0 W 1 DCR81 0	DCR30 0 W 0 DCR40 0 W 0 DCR80 0


Bits in DCR0 to DCR4, and DCR8	Description
0	The output buffer (CMOS buffer) is turned off and the output goes to the high impedance state. (initial value)
1	 The CMOS three state output buffer is turned on and the corresponding PDR value is output.
	• For medium voltage NMOS open drain pins (R2) of HD404358 Series, when the PDR is 0 a low level is output. When the PDR is 1, the pin goes to the high impedance state.

The table below lists the correspondence between the bits in DCR0 to DCR4 and DCR8 and the port R0 to R4 and R8 pins.

			Bit	
Register	Bit 3	Bit 2	Bit 1	Bit 0
DCR0	R0 ₃	R0 ₂	R0 ₁	R0 ₀
DCR1	R1 ₃	R1 ₂	R1 ₁	R1 ₀
DCR2	R2 ₃	R2 ₂	R2 ₁	R2 ₀
DCR3	R3 ₃	R3 ₂	R3 ₁	R3 ₀
DCR4	R4 ₃	R4 ₂	R4 ₁	R4 ₀
DCR8	R8 ₃	R8 ₂	R8 ₁	R8 ₀

(3) **Port Mode Register A(PMRA: \$004):** PMRA is a 4-bit write-only register whose bits PMRA2 to PMRA0 switch the functions of the port R0 shared function pins.

This section describes the bits PMRA2 to PMRA0. See section 10.2.2 (3), "Port Mode Register A (PMRA)", for details on the PMRA3 bit.

Bit 2—R0₃/TOC Pin Function Switch (PMRA2): Selects whether the R0₃/TOC pin functions as the R0₃ I/O pin or as the timer C output pin (TOC).

PMRA2	Description	
0	The $R0_3$ /TOC pin functions as the $R0_3$ I/O pin.	(initial value)
1	The $R0_3$ /TOC pin functions as the TOC output pin.	

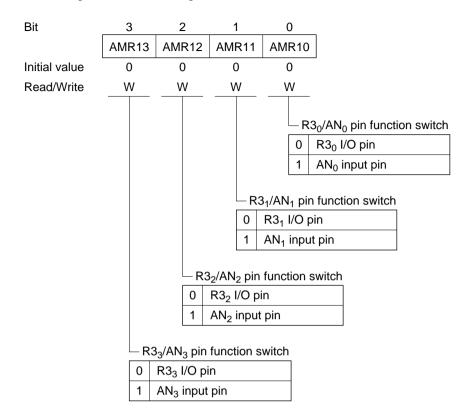
Bit 1—R0₁/SI Pin Function Switch (PMRA1): Selects whether the R0₁/SI pin functions as the R0₁ I/O pin or as the serial reception data input pin (SI).

PMRA1	Description	
0	The $R0_1$ /SI pin functions as the R01 I/O pin.	(initial value)
1	The $R0_1$ /SI pin functions as the SI input pin.	

Bit 0—R0₂/SO Pin Function Switch (PMRA0): Selects whether the R0₂/SO pin functions as the R0₂ I/O pin or as the serial transmission data output pin (SO).

PMRA0	Description	
0	The $R0_2$ /SO pin functions as the $R0_2$ I/O pin.	(initial value)
1	The $R0_2/SO$ pin functions as the SO output pin.	

(4) Serial Mode Register (SMR: \$005): SMR is a 4-bit write-only register whose SMR3 bit switches the R_{0_0}/\overline{SCK} pin function.


This section only describes the SMR3 bit. See section 20.2.1, "Serial Mode Register (SMR)" for details on bits SMR2 to SMR0.

Bit	3	2	1	0
	SMR3	SMR2	SMR1	SMR0
Initial value	0	0	0	0
Read/Write	W	W	W	W
	R	Transf 0 ₀ /SCK pin	er clock se	
	0	R0 ₀ I/O pi	n	
	1	SCK I/O p	pin	

Bit 3—R0₀/ $\overline{\text{SCK}}$ **Pin Function Switch (SMR3):** Selects whether the R0₀/ $\overline{\text{SCK}}$ pin functions as the R0₀ I/O pin or as the serial interface transfer clock I/O pin.

SMR3	Description	
0	The $R0_0/\overline{SCK}$ pin functions as the $R0_0$ I/O pin.	(initial value)
1	The $R0_0$ /SCK pin functions as the SCK I/O pin.	

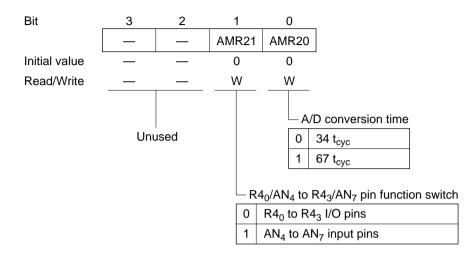
(5) A/D Mode Register 1 (AMR1: \$019): AMR1 is a 4-bit write-only register that switches the functions of the R3 port shared function pins.

Bit 3—R3₃/AN₃ Pin Function Switch (AMR13): Selects whether the R3₃/AN₃ pin functions as the R3₃ I/O pin or as the A/D converter channel 3 input pin AN₃.

AMR13	Description	
0	The $R3_3/AN_3$ pin functions as the $R3_3$ I/O pin.	(initial value)
1	The $R3_3/AN_3$ pin functions as the AN_3 input pin.	

Bit 2—R3₂/AN₂ **Pin Function Switch (AMR12):** Selects whether the R3₂/AN₂ pin functions as the R3₂ I/O pin or as the A/D converter channel 2 input pin AN₂.

AMR12	Description	
0	The $R3_2/AN_2$ pin functions as the $R3_2$ I/O pin.	(initial value)
1	The $R3_2/AN_2$ pin functions as the AN_2 input pin.	


Bit 1—R3₁/AN₁ **Pin Function Switch (AMR11):** Selects whether the R3₁/AN₁ pin functions as the R3₁ I/O pin or as the A/D converter channel 1 input pin AN₁.

AMR11	Description	
0	The $R3_1/AN_1$ pin functions as the $R3_1$ I/O pin.	(initial value)
1	The $R3_1/AN_1$ pin functions as the AN_1 input pin.	

Bit 0—R3₀/AN₀ Pin Function Switch (AMR10): Selects whether the R3₀/AN₀ pin functions as the R3₀ I/O pin or as the A/D converter channel 0 input pin AN₀.

AMR10	Description	
0	The $R3_0/AN_0$ pin functions as the $R3_0$ I/O pin.	(initial value)
1	The $R3_0/AN_0$ pin functions as the AN_0 input pin.	

(6) A/D Mode Register 2 (AMR2: \$1A): AMR2 is a 2-bit write-only register whose AMR21 bit switches the functions of all four bits of the R4 port (R4₀ to R4₃) to be A/D converter input channels (AN₄ to AN₇). This section describes the AMR21 bit. See section 15.2.2, "A/D Mode Register 2 (AMR2)", for details on the AMD20 bit.

Bit 1—R4₀/AN₄ to R4₃/AN₇ Pin Function Switch (AMR21): Selects whether the R4₀/AN₄ to R4₃/AN₇ pins function as the R4₀ to R4₃ I/O pins or as the A/D converter channel 4 to 7 input pins (AN₄ to AN₇).

AMR21	Description	
0	The R4 $_{\rm 0}/\rm{AN}_{4}$ to R4 $_{\rm 3}/\rm{AN}_{7}$ pins function as the R4 $_{\rm 0}$ to R4 $_{\rm 3}$ I/O pins.	(initial value)
1	The $R4_0/AN_4$ to $R4_3/AN_7$ pins function as the AN_4 to AN_7 input pins.	

10.3.3 Pin Functions

The pin functions of the R port pins are switched by register settings as shown in table 10-9.

Table 10-9 R Port Pin Functions

Pin	Pin Functions a	and Selection Method	ds							
R0₀/SCK	The pin function shown below.	The pin function is switched by the SMR SMR3 bit and the DCR0 DCR00 bit as shown below.								
	SMR3	(1							
	DCR00	0	1							
	Pin function	$R0_0$ input pin	$R0_0$ output pin	SCK I/O pin						
R0 ₁ /SI	The pin function shown below.	is switched by the PM	IRA PMRA1 bit and th	e DCR0 DCR01 bit as						
	PMRA1	(1							
	DCR01	0	1	_						
	Pin function	R0 ₁ input pin	R0 ₁ output pin	SI input pin						
R0 ₂ /SO	The pin function shown below.	The pin function is switched by the PMRA PMRA0 bit and the DCR0 DCR02 bit as shown below.								
	PMRA0	()	1						
	DCR02	0	1	—						
	Pin function	R0 ₂ input pin	R0 ₂ output pin	SO output pin						
R0 ₃ /TOC	The pin function shown below.	is switched by the PM	IRA PMRA2 bit and th	e DCR0 DCR03 bit as						
	PMRA2	()	1						
	DCR03	0	1							
	Pin function	$R0_3$ input pin	R0 ₃ output pin	TOC output pin						

Pin	9 R Port Pin Functions								
R1 ₀	Pin Functions and Selection Methods The pin function is switched by the DCR1 DCR10 bit as shown below.								
0	DCR10	0	1						
	Pin function	$R1_0$ input pin	R1 ₀ output pin						
R1,	The pip function	is switched by the DCR1 DCR1	l hit as shown helow						
N 1 ₁	DCR11	0	1						
	Pin function	R1₁ input pin	R1, output pin						
			L						
R1 ₂	The pin function	is switched by the DCR1 DCR12	2 bit as shown below.						
	DCR12	0	1						
	Pin function	R1 ₂ input pin	R1 ₂ output pin						
R1 ₃	The pin function is switched by the DCR1 DCR13 bit as shown below.								
	DCR13	0	1						
	Pin function	R1 ₃ input pin	R1 ₃ output pin						
	The sin formation	is switch address to a DODO DODO							
R2 ₀		is switched by the DCR2 DCR20							
	DCR20	0	1						
	Pin function	R2₀ input pin	R2 ₀ output pin*						
R21	The pin function	is switched by the DCR2 DCR2	l bit as shown below.						
I	DCR21	0	1						
	Pin function	R2₁ input pin	R2 ₁ output pin*						
	L		ł						
R2 ₂	The pin function	is switched by the DCR2 DCR22	2 bit as shown below.						
	DCR22	0	1						
	Pin function	R2 ₂ input pin	R2 ₂ output pin*						

Note: * R2₀ to R2₃ are medium voltage NMOS open drain I/O pins of HD404358 Series. These pins go to the high impedance state when their PDR is set to 1.

Table 10-9 R Port Pin Functions (cont)

R2 ₃	Pin Functions and Selection Methods The pin function is switched by the DCR2 DCR23 bit as shown below.							
	DCR23	0		1				
	Pin function	R2 ₃ input pi	n R	2 ₃ output pin*				
R3₀/AN₀	The pin function shown below.	is switched by the AM	IR1 AMR10 bit and th	e DCR3 DCR30 bit a				
	AMR10	()	1				
	DCR30	0	1					
	Pin function	$R3_0$ input pin	R3 ₀ output pin	AN_0 input pin				
R3₁/AN₁	shown below.	n is switched by the AMR1 AMR11 bit and the		1				
	AMR11	()	1				
	DCR31	0	1					
	Pin function	R31 input pin	R3 ₁ output pin	AN ₁ input pin				
R3 ₂ /AN ₂	The pin function shown below.	is switched by the AM	IR1 AMR12 bit and th	e DCR3 DCR32 bit				
	DCR32	0	1					
	Pin function	R3 ₂ input pin	R3 ₂ output pin	AN ₂ input pin				
R3 ₃ /AN ₃	The pin function shown below.	is switched by the AM	e DCR3 DCR33 bit a					
	DCR33	0	1					
	DOI100		R3 ₃ output pin	AN ₃ input pin				
	Pin function	R3 ₃ input pin						

Table 10-9 R Port Pin Functions (cont)

Pin	Pin Functions a	nd Selection Metho	ds						
R4 ₀ /AN ₄	The pin function is switched by the AMR2 AMR21 bit and the DCR4 DCR40 bit as shown below.								
	AMR21	()	1					
	DCR40	0	1						
	Pin function	$R4_0$ input pin	$R4_0$ output pin	AN_4 input pin					
R4 ₁ /AN ₅	The pin function shown below.	is switched by the AM	IR2 AMR21 bit and the	DCR4 DCR41 bit					
	AMR21	(1						
	DCR41	0	1	_					
	Pin function	R4 ₁ input pin	R4₁ output pin	AN₅ input pin					
R4 ₂ /AN ₆	The pin function shown below.	is switched by the AM	IR2 AMR21 bit and the	DCR4 DCR42 bit					
	DCR42	0	1						
	Pin function	R4 ₂ input pin	R4 ₂ output pin	AN ₆ input pin					
R4 ₃ /AN ₇	The pin function shown below.	is switched by the AM	IR2 AMR21 bit and the	DCR4 DCR43 bit					
	AMR21	()	1					
	DCR43	0	1	_					
	Pin function	R4 ₃ input pin	R4 ₃ output pin	AN ₇ input pin					

Table 10-9 R Port Pin Functions (cont)

Pin	Pin Functions and Selection Methods							
R8 ₀	The pin function is switched by the DCR8 DCR80 bit as shown below.							
	DCR80	DCR80 0						
	Pin function	R8₀ input pin	R8 ₀ output pir					
	L		1					
R81	The pin function is	switched by the DCR8 DCR8	1 bit as shown below.					
	DCR81	0	1					
	Pin function	R81 input pin	R8 ₁ output pir					
	LL		1					
R8 ₂	The pin function is switched by the DCR8 DCR82 bit as shown below.							
	DCR82	0	1					
			R8 ₂ output pi					
	Pin function	R8 ₂ input pin						
	Pin function	R8 ₂ input pin						
R8 ₃		switched by the DCR8 DCR8						
R8 ₃								

10.4 Usage Notes

Keep the following points in mind when using the I/O ports.

- When the MIS MIS2 bit is set to 1, the R0₂/SO pin will be an NMOS open drain output regardless of whether it is selected for use as the R0₂ pin or as the SO pin by the PMRA PMRA0 bit.
- I/O pins that are unused in user systems must be tied to a fixed potential, since floating I/O pins can cause noise that can interfere with LSI operation.

The built-in pull-up MOS transistors can be used to pull up unused pins to V_{CC} . Alternatively, unused pins can be pulled up to V_{CC} with external resistors of about 100 k Ω .

Application programs should maintain the PDR, DCD and DCR contents for unused pins at their reset state values. Also note that unused pins must not be selected for use as peripheral function I/O pins.

• When the MIS MIS3 bit is set to 1 (pull-up MOS transistors active) and the PDR for an R port/analog input shared function pin has the value 1, the MOS transistor for the corresponding pin will not be turned off by selecting the analog input function with the AMR1 or AMR2 register.

To use an R port/analog input shared function pin as an analog input when the pull-up MOS transistors are active, always clear the PDR for the corresponding pin to 0 first and then turn off the pull-up MOS transistor. (Note that the PDR registers are set to 1 immediately following a reset.)

Figure 10-3 shows the circuit for the R port/analog input shared function pins. AMR1 and AMR2 are used to set the port outputs to high impedance. ACR is used to switch the analog input channel.

The states of the R port/analog input shared function pins are set, as shown in table 10-10, by the combination of the AMR1 or AMR2 register, the MIS3 bit, the DCR, and the PDR settings.

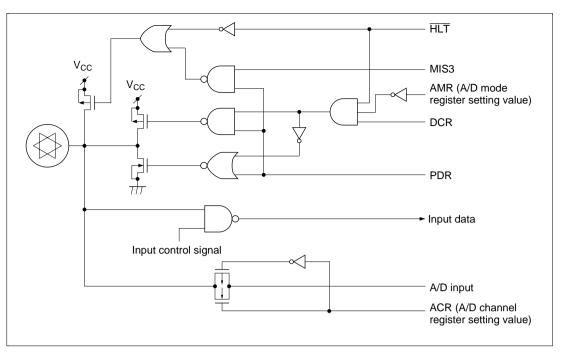
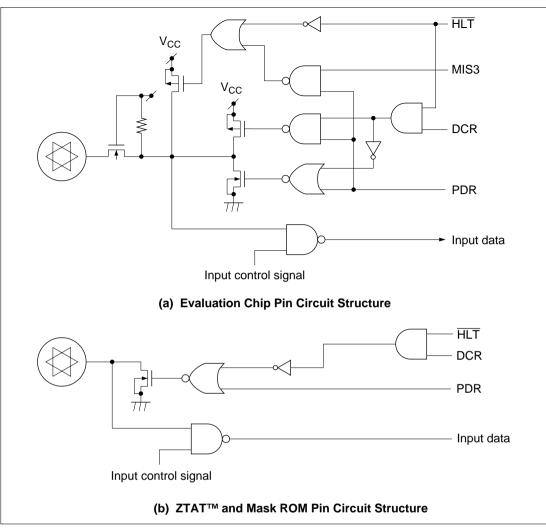


Figure 10-3 R Port/Analog Input Shared Function Pin Circuit

Table 10-10 Program Control of the R Port/Analog Input Shared Function Pins

Corresponding b or AMR2	it in AMR1	0 (R port selected)							
MIS3 bit		0 1			1				
DCR	0 1			0 1			1		
PDR		0	1	0	1	0	1	0	1
CMOS buffer	PMOS	-		_	On			_	On
	NMOS			On	_			On	_
Pull-up MOS trar		-				On		On	


Note: -: off

Corresponding b or AMR2	it in AMR1	1 (analog input selected)							
MIS3 bit		0 1			1				
DCR		0 1		0 1		1			
PDR		0	1	0	1	0	1	0	1
CMOS buffer	PMOS	-		_	_			_	_
	NMOS			_	_	-		_	_
Pull-up MOS trar		-				On	_	On	

Note: -: off

• In the HD404358 Series evaluation chip set, the circuits for the medium voltage NMOS open drain pins (the R2 port pins) differ from the ZTATTM and the mask ROM microcomputer versions as shown in figure 10-4. Although the outputs in both the ZTATTM and mask ROM versions can be set to high impedance by the combinations listed in table 10-11, these outputs cannot be set to high impedance in the evaluation chip set. Please keep this in mind when using the evaluation chip set.

Figure 10-4 shows the circuit for the medium voltage NMOS open drain pins.

Table 10-11 ZTAT™ and Mask ROM Microcomputer Medium Voltage Pin High Impedance Control

DCR	PDR	Description	
0	*	High impedance output	(initial value)
1	0	NMOS buffer on. Low level output	
	1	High impedance output	

Note: * Don't care

Section 11 I/O Ports (HD404339 Series)

11.1 Overview

11.1.1 Features

The HD404339 Series I/O ports have the following features.

- The 14 pins D_0 to D_{13} as well as the R1, R2, R8, and R9 ports are high voltage I/O pins. Also, RA₁ is a high voltage input pin.
- R0, R3, and R4 are standard voltage I/O pins that, in output mode, are CMOS three state outputs.
- Certain I/O pins (D₀ to D₄, and the pins in the R0 and R3 to R5 ports) are shared with the builtin peripheral modules, such as timers and the serial interface. Setting these pins for use with the built-in peripheral modules takes priority over their setting for use as D or R port pins.
- Register settings are used to select input or output for I/O pins and to select the I/O port or peripheral module usage for shared function pins.
- Of the built-in peripheral module pins, the D₃/BUZZ pin is a PMOS open drain output. All other output pins are CMOS three state outputs. However, the R0₂/SO pin can be selected to be an NMOS open drain output by setting a register.
- Since the system is reset in stop mode, the built-in peripheral module selections are cleared and the I/O pins go to the high impedance state.
- The CMOS output pins have built-in programmable pull-up MOS transistors. The on/off state of these transistors can be controlled by register settings on an individual basis. Note that the pull-up MOS transistor on/off settings are independent of the pin settings for use as built-in peripheral module pins.

Table 11-1 provides an overview of the HD404339 Series port functions.

Table 11-1Port Functions

Port	0	verview	Pin	Shared Function	Function Switching Register
	0				PMRB
D_0 to D_{13}	•	High voltage I/O port		External interrupt input 0	
	•	Accessed in bit units	D_1/\overline{INT}_1	External interrupt input 1	-
	•	Accessed with the SED, SEDD, RED, REDD, TD, and	D ₂ /EVNB	Timer B event input	
		TDD instructions.	D₃/BUZZ	Alarm output	PMRA
	•	Pull-down resistors available	D₄/STOPC	Stop mode clear	PMRB
	-	as a mask option.	D_5 to D_{13}	_	—
R0	•	Standard voltage I/O ports	R0₀/SCK	Transfer clock I/O	SMR
•	•	Accessed in 4-bit units.	R0₁/SI	Serial reception data input	PMRA
	•	Accessed with the LAR, LBR, LRA, and LRB instructions.	R0 ₂ /SO	Serial transmission data output	-
	•	Programmable pull-up MOS	R0 ₃ /TOC	Timer C output	-
R3	_	transistors	R3 ₀ /AN ₀	Analog input channel 0	AMR1
			R3 ₁ /AN ₁	Analog input channel 1	-
			R3 ₂ /AN ₂	Analog input channel 2	-
			R3 ₃ /AN ₃	Analog input channel 3	-
R4	-		R4 ₀ /AN ₄	Analog input channel 4	AMR2
			R4₁/AN₅	Analog input channel 5	-
			R4 ₂ /AN ₆	Analog input channel 6	-
			R4 ₃ /AN ₇	Analog input channel 7	-
R5	-		R5 ₀ /AN ₈	Analog input channel 8	AMR2
			R5 ₁ /AN ₉	Analog input channel 9	-
			R5 ₂ /AN ₁₀	Analog input channel 10	-
			R5 ₃ /AN ₁₁	Analog input channel 11	-
R6, R7	_		$\frac{1}{R6_0 \text{ to } R6_3}$ $R7_0 \text{ to } R7_2$		

Table 11-1 Port Functions (cont)

Port	Overview	Pin	Shared Function	Function Switching Register	
R1, R2, R8, R9	High voltage I/O ports	$R1_0$ to $R1_3$	_	_	
	Accessed in 4-bit units.	$R2_0$ to $R2_3$ R8_0 to R8_3			
	 Accessed with the LAR, LBR, LRA, and LRB instructions. 				
	• Pull-down resistors available as a mask option.				
RA	• High voltage input port (1 bit)	RA_1/V_{disp}	High voltage	Mask	
	Accessed with the LAR and LBR instructions.		pin output power supply	option	

11.1.2 I/O Control

The D, R1, R2, R8, and R9 ports are high voltage I/O ports, RA₁ is a 1-bit high voltage input port, and R0 and R3 to R7 are standard voltage I/O ports. The different port types have different circuit structures as follows.

(1) High Voltage I/O Pin Circuit: The D, R1, R2, R8, and R9 port pins are high voltage I/O pins that have no I/O switching function. When a port data register is set to 1, the PMOS transistor turns on and a high level voltage is output from the pin. When the PDR is set to 0, the pin goes to the open state. If the built-in pull-down resistor mask option was selected, the V_{disp} voltage is output. When external signals are applied, applications must set the PDR value to 0 so that the external (input) and internal (output) signals do not collide at the pin.

Note that there are no pull-down resistors on the high voltage I/O pins in the ZTATTM versions of these microcomputers.

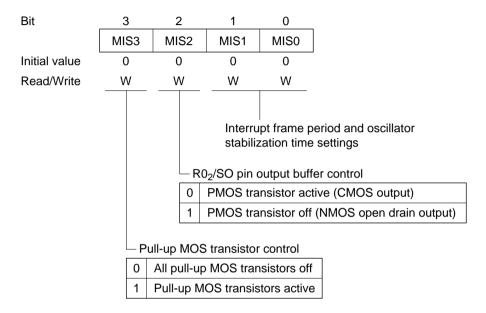
(2) Standard Voltage CMOS Three State I/O Pin Circuit: The pins in the R0 and R3 to R7 ports are standard voltage CMOS three state I/O ports. I/O through these ports is controlled by the PDRs and the data control registers (DCR). When the DCR bit corresponding to a given pin is 1, that pin functions as an output pin and outputs the value in the PDR. When a given DCR bit is 0, the corresponding pin functions as an input pin.

(3) **Pull-Up MOS Control:** Each I/O pin in the R0 and R3 to R7 ports has a built-in programmable pull-up MOS transistor. When the miscellaneous register (MIS) MIS3 bit is set to 1 the pull-up MOS transistor for pins for which the corresponding PDR is set to 1 will be turned on. Thus the on/off state of each pin can be controlled independently by the PDRs. Note that the pull-up MOS transistor on/off settings are independent of the pin settings for use as built-in peripheral module pins.

Table 11-2 shows how register settings control the port I/O pins.

Table 11-2 Register Settings for I/O Pin Control

MIS3	0			1					
DCR		0		1		(C		1
PDR		0	1	0	1	1 0		0	1
CMOS buffer	PMOS			_	On			—	On
	NMOS			On				On	_
Pull-up MOS transistor			I		_	On	_	On	


Notes: 1. -: Off

2. The PDR registers are not allocated addresses in RAM. The PDR registers are accessed by special-purpose I/O instructions.

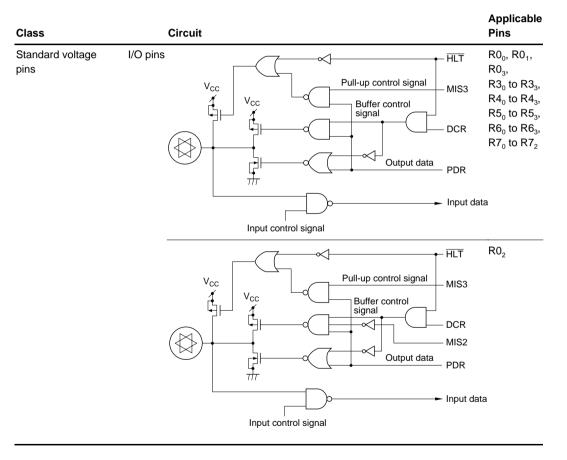
(4) **Miscellaneous Register** (**MIS: \$00C**): MIS is a 4-bit write-only register that controls the on/off states of the R0 and R3 to R7 port pin pull-up MOS transistors, the on/off state of the $R0_2$ /SO pin output buffer PMOS transistor, the interrupt frame period in watch and subactive modes, and the oscillator stabilization period when a low power mode is cleared.

MIS is initialized to \$0 on reset and in stop mode.

This section describes the MIS2 and MIS3 bits. Refer to section 6.2.1, "Miscellaneous Register (MIS)", for details on the MIS0 and MIS1 bits.

Bit 3—Pull-Up MOS Transistor Control (MIS3): Controls the on/off states of the pull-up MOS transistors built into the I/O port pins.

MIS3	Description	
0	All pull-up MOS transistors will be turned off.	(initial value)
1	Pull-up MOS transistors for which the corresponding PDR bit is 1 will b	be turned on.


Bit 2—R0₂/SO Pin Output Buffer Control (MIS2): Controls the on/off state of the R0₂/SO pin output buffer PMOS transistor.

MIS2	Description	
0	The $R0_2$ /SO pin output will be a CMOS output.	(initial value)
1	The $R0_2$ /SO pin output will be an NMOS open drain output.	

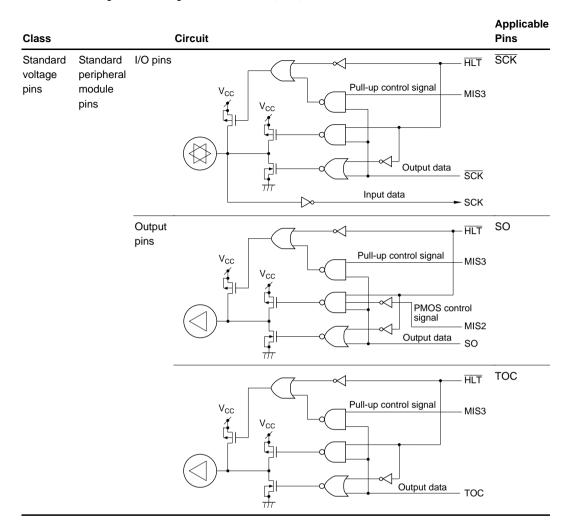
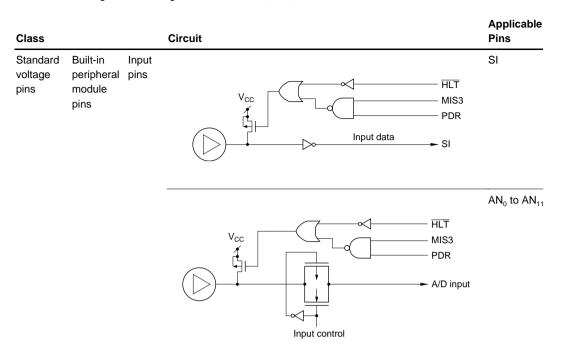

11.1.3 I/O Pin Circuit Structures

Table 11-3 shows the port and peripheral module pin circuits.


- Notes: 1. Since the system is reset in stop mode, the built-in peripheral module selections are cleared. Since the internal $\overline{\text{HLT}}$ signal goes to the low (active) level, the I/O pins go to the high impedance state. Also, all the pull-up MOS transistors are turned off.
 - 2. In all low power modes other than stop mode, the internal HLT signal goes to the high level.

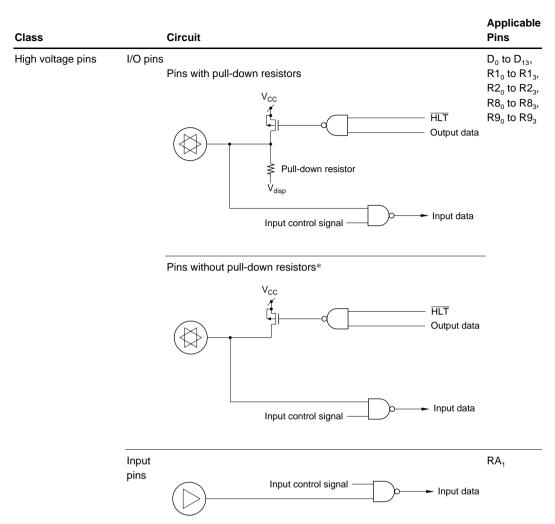
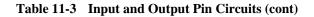

Table 11-3 Input and Output Pin Circuits

Table 11-3 Input and Output Pin Circuits (cont)



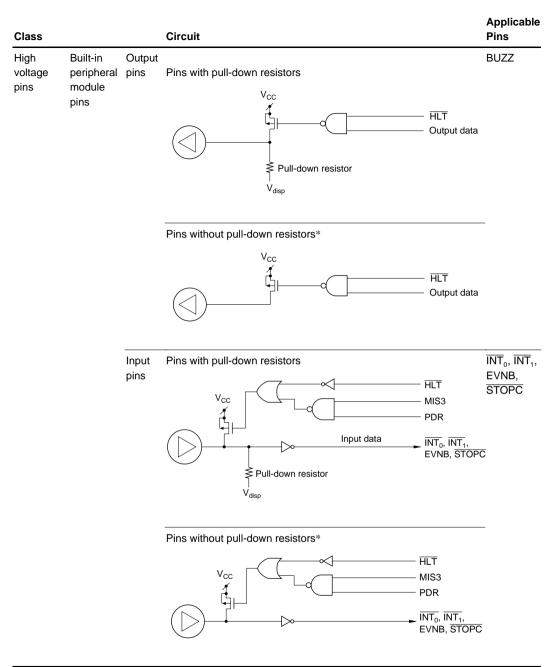

Table 11-3 Input and Output Pin Circuits (cont)

Table 11-3 Input and Output Pin Circuits (cont)

Note: * The ZTAT[™] versions of these microcomputers only support pins without pull-down resistors.

Note: * The ZTAT[™] versions of these microcomputers only support pins without pull-down resistors.

11.1.4 Port States in Low Power Modes

The D_0 to D_4 pins and the R0 and R3 to R5 port pins have shared functions as input or output pins for built-in peripheral modules. Since the CPU stops in standby and watch modes, the pins selected as output ports maintain their immediately prior output values. Also, pins selected for use by built-in peripheral modules that operate in standby or watch mode continue to operate. (Output pins used by modules that stop in these modes maintain their immediately prior output values.) See section 6, "Low Power Modes", for details on which built-in peripheral modules can operate in each mode.

Table 11-4 lists the port states in the low power modes.

Low Power Mode	Port States
Standby mode, watch mode	Pins maintain their values immediately prior to entering standby or watch mode.
Stop mode	Built-in peripheral function selections are cleared, and the port and peripheral function I/O pins go to the high impedance state.

Table 11-4 Port States in Low Power Modes

11.1.5 Handling Unused Pins

I/O pins that are unused in user systems must be tied to a fixed potential, since floating I/O pins can cause noise that can interfere with LSI operation. The following are examples of techniques that can prevent noise problems.

High voltage pin:	Select "no pull-down MOS transistor (PMOS open drain)" as the mask option and connect the pin to $V_{\rm CC}$ on the user system printed circuit board.
Standard voltage pin:	Either use the built-in pull-up MOS transistor to pull the pin up to V_{CC} , or pull up the pin to V_{CC} externally with a pull-up resistor of about 100 k Ω .

Application programs should maintain the PDR and DCR contents for unused pins at their reset state values. Also note that unused pins must not be selected for use as peripheral function I/O pins.

11.2 D Port

11.2.1 Overview

The D port is a 14-pin high voltage I/O port (D_0 to D_{13}) that can be accessed in 1-bit units.

The output levels on the pins D_0 to D_{13} can be set to low or high by accessing the port in one-bit units with the SED, SEDD, RED, and REDD output instructions. The output data is stored in the PDR for each pin. The level on each of the pins D_0 to D_{13} can be tested in one-bit units with the TD and TDD input instructions.

The pins D_0 to D_4 have shared functions as built-in peripheral module pins. PMRA and PMRB are used to switch these functions.

Figure 11-1 shows the structure of the D port.

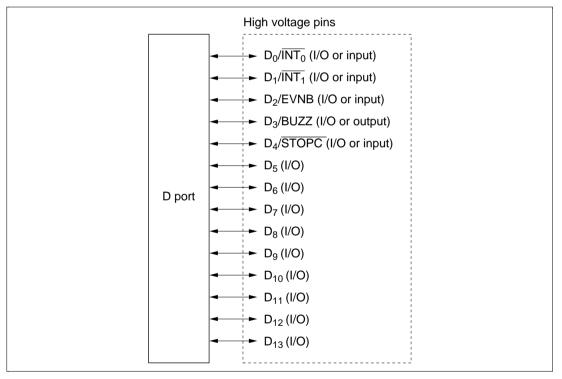
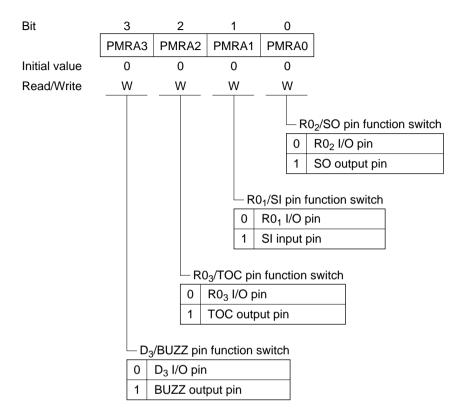


Figure 11-1 D Port Structure

11.2.2 Register Configuration and Descriptions

Table 11-5 shows the configuration of the D port registers.

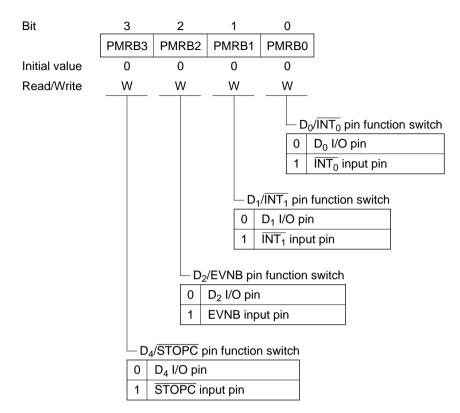
Table 11-5 D Port Register Configuration


Address	Register	Symbol	R/W	Initial Value
_	Port data registers	PDR	W*	0
\$004	Port mode register A	PMRA	W	\$0
\$024	Port mode register B	PMRB	W	\$0

Note: * The SED, SEDD, RED, and REDD instructions can be used to write to the PDRs.

(1) Port Data Registers (PDR): Each of the I/O pins D_0 to D_{13} includes a built-in PDR. When a SED or SEDD instruction is executed for one of the pins D_0 to D_{13} the corresponding PDR is set to 1, and when a RED or REDD instruction is executed, the corresponding PDR is cleared to 0.

The PDRs are cleared to 0 on reset and in stop mode.


(2) Port Mode Register A (PMRA: \$004): PMRA is a 4-bit write-only register whose PMRA3 bit switches the function of the D_3 /BUZZ pin. This section describes the function of the PMRA3 bit. See section 11.3.2 (3), "Port Mode Register A (PMRA)", for details on the PMRA2 to PMRA0 bits.

Bit 3— D_3 /BUZZ Pin Function Switch (PMRA3): Selects whether the D_3 /BUZZ pin functions as the D_3 I/O pin or as the alarm output pin (BUZZ).

PMRA3	Description	
0	D_3 /BUZZ pin functions as the D_3 I/O pin.	(initial value)
1	D₃/BUZZ pin functions as the BUZZ output pin.	

(3) **Port Mode Register B** (**PMRB: \$024**): PMRB is a 4-bit write-only register that switches the D port I/O pin shared functions.

Bit 3—D₄/STOPC Pin Function Switch (PMRB3): Selects whether the D₄/STOPC pin is used as the D₄ I/O pin or as the stop mode clear pin (STOPC).

PMRB3	Description	
0	The $D_4/\overline{\text{STOPC}}$ pin functions as the D_4 I/O pin.	(initial value)
1	The $D_4/\overline{\text{STOPC}}$ pin functions as the $\overline{\text{STOPC}}$ input pin.	

Bit 2—D_2/EVNB Pin Function Switch (PMRB2): Selects whether the D_2 /EVNB pin is used as the D_2 I/O pin or as the timer B event count input pin (EVNB).

PMRB2	Description	
0	The D_2 /EVNB pin functions as the D_2 I/O pin.	(initial value)
1	The D_2 /EVNB pin functions as the EVNB input pin.	

Bit 1—D_1/\overline{INT}_1 Pin Function Switch (PMRB1): Selects whether the D_1/\overline{INT}_1 pin is used as the D₁ I/O pin or as the external interrupt 1 input pin (\overline{INT}_1).

PMRB1	Description	
0	The D_1/\overline{INT}_1 pin functions as the D_1 I/O pin.	(initial value)
1	The D_1/\overline{INT}_1 pin functions as the \overline{INT}_1 input pin.	

Bit 0—D₀/\overline{INT}_0 Pin Function Switch (PMRB0): Selects whether the D₀/ \overline{INT}_0 pin is used as the D₀ I/O pin or as the external interrupt 0 input pin (\overline{INT}_0).

PMRB0	Description	
0	The D_0/\overline{INT}_0 pin functions as the D_0 I/O pin.	(initial value)
1	The D_0/\overline{INT}_0 pin functions as the \overline{INT}_0 input pin.	

11.2.3 Pin Functions

The pin functions of the pins D_0 to D_4 are switched by register settings as shown in table 11-6.

Table 11-6 D_0 to D_4 Port Pin Functions

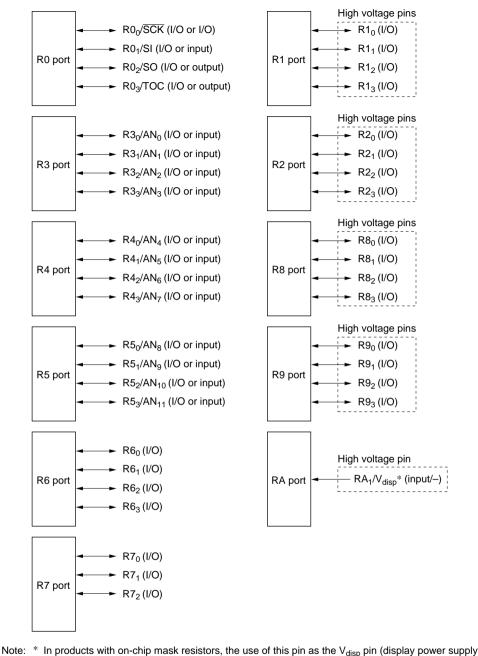
Pin	Pin Functions and	Selection Methods			
D_0/\overline{INT}_0	The pin function is switched as shown below by the PMRB PMRB0 bit.				
	PMRB0	0	1		
	Pin function	D0 I/O pin	INT0 input pin		
D_1/\overline{INT}_1	The pin function is sy	witched as shown below by	/ the PMRB PMRB1 bit.		
	PMRB1	0	1		
	Pin function	D ₁ I/O pin	INT ₁ input pin		
D ₂ /EVNB	The pin function is switched as shown below by the PMRB PMRB2 bit.				
	PMRB2	0	1		
	Pin function	D ₂ I/O pin	EVNB input pin		
D₃/BUZZ	The pin function is sy	witched as shown below by	/ the PMRA PMRA3 bit.		
	PMRA3	0	1		
	Pin function	D ₃ I/O pin	BUZZ output pir		
	<u> </u>				
D₄/STOPC	The pin function is s	witched as shown below by	/ the PMRB PMRB3 bit.		
	PMRB3	0	1		
	Pin function	D₄ I/O pin	STOPC input pir		

11.3 R Ports

11.3.1 Overview

The R port consists of the nine 4-bit I/O ports R0 to R6, R8, and R9, the 3-bit I/O port R7, and the 1-bit input port RA₁. These ports are accessed in 4-bit units.

R0 and R3 to R7 are standard voltage I/O ports. RA is a high voltage input port and R1, R2, R8 and R9 are high voltage I/O ports that can directly drive fluorescent display tubes.


The individual R ports are accessed in 4-bit units with the LRA and LRB output instructions to control the output levels (high or low) on each pin. Output data is stored in the PDR built into each pin. Similarly, the LAR and LBR input instructions can be used to access the R ports in 4-bit units to read the input levels on the port pins.

The RA_1 input-only port consists of a single bit. The values of bits 3, 2, and 0 are undefined when this port is accessed by the input instructions.

DCR registers are used to control on/off states of the R0 and R3 to R7 output buffers. When the DCR bit corresponding to a pin in an R0 or R3 to R7 port is set to 1, the contents of the PDR corresponding to that pin is output from the pin. Thus the output buffer on/off states can be controlled on an individual pin basis for the R port pins. The DCR registers are allocated in the RAM address space.

The R0 and R3 to R5 port pins have shared functions as built-in peripheral module pins. Register settings are used to switch these functions. (See table 11-7.)

Figure 11-2 shows the R port pin structure.

In products with on-chip mask resistors, the use of this pin as the V_{disp} pin (display power supply pin) can be selected as a mask option.
 High voltage pins for which a pull-down MOS transistor is selected are pulled down to the V_{disp} potential.

Figure 11-2 R Port Structure

11.3.2 Register Configuration and Descriptions

Table 11-7 shows the configuration of the R port related registers,

Address	Register		Symbol	R/W	Initial Value
_	Port data registers	Standard voltage pins	PDR	W*	1
		High voltage pins			0
\$030	Data control registe	ers	DCR0	W	\$0
\$033			DCR3	W	\$0
\$034			DCR4	W	\$0
\$035			DCR5	W	\$0
\$036			DCR6	W	\$0
\$037			DCR7	W	-000
\$004	Port mode register A		PMRA	W	\$0
\$005	Serial mode register		SMR	W	\$0
\$019	A/D mode register	1	AMR1	W	\$0
\$01A	A/D mode register 2	2	AMR2	W	-000

 Table 11-7
 R Port Register Configuration

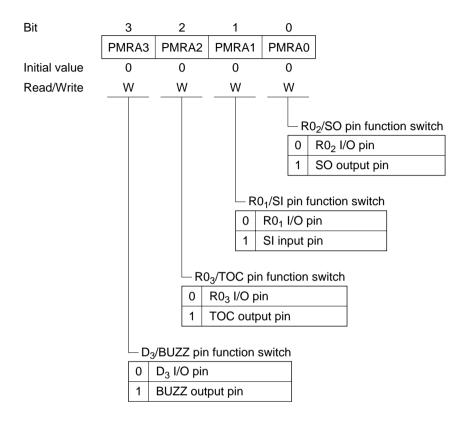
Note: * The LRA and LRB instructions are used to write to the PDR registers.

(1) **Port Data Registers:** All the I/O pins in ports R0 to R9 include a PDR that holds the output data. When an LRA or an LRB instruction is executed for one of ports R0 to R9, the contents of the accumulator (A) or the B register (B) are transferred to the specified R port PDRs. When bits in DCR0 and DCR3 to DCR7 are set to 1, the output buffers for the corresponding pins in ports R0 and R3 to R7 will be turned on and the values in the PDRs will be output from those pins.

The PDR registers for standard voltage pins are set to 1 on reset and in stop mode, and the PDRs for high voltage pins are cleared to 0.

(2) Data Control Registers (DCR0, DCR3 to DCR7: \$030, \$033 to \$037)

	Bit	3	2	1	0
DCR0: \$030		DCR03	DCR02	DCR01	DCR00
	Initial value	0	0	0	0
	Read/Write	W	W	W	W
	Bit	3	2	1	0
DCR3: \$033		DCR33	DCR32	DCR31	DCR30
	Initial value	0	0	0	0
	Read/Write	W	W	W	W
	Bit	3	2	1	0
DCR4: \$034		DCR43	DCR42	DCR41	DCR40
	Initial value	0	0	0	0
	Read/Write	W	W	W	W
	Bit	3	2	1	0
DCR5: \$035		DCR53	DCR52	DCR51	DCR50
	Initial value	0	0	0	0
	Read/Write	W	W	W	W
	Bit	3	2	1	0
DCR6: \$036		DCR63	DCR62	DCR61	DCR60
	Initial value	0	0	0	0
	Read/Write	W	W	W	W
	Bit	3	2	1	0
DCR7: \$037		_	DCR72	DCR71	DCR70
	Initial value	_	0	0	0
	Read/Write	—	W	W	W


Bits in DCR0 and DCR3 to DCR7	Description
0	The output buffer (CMOS buffer) is turned off and the output goes to the high impedance state. (initial value
1	The output buffer is turned on and the corresponding PDR value is output

The table below lists the correspondence between the bits in DCR0 and DCR3 to DCR7 and the port R0 and R3 to R7 pins.

			Bit		
Register	Bit 3	Bit 2	Bit 1	Bit 0	
DCR0	R0 ₃	R0 ₂	R0 ₁	R0 ₀	
DCR3	R3 ₃	R3 ₂	R3 ₁	R3 ₀	
DCR4	R4 ₃	R4 ₂	R4 ₁	R4 ₀	
DCR5	R5 ₃	R5 ₂	R5₁	R5 ₀	
DCR6	R6 ₃	R6 ₂	R6₁	R6 ₀	
DCR7		R7 ₂	R7 ₁	R7 ₀	

(3) **Port Mode Register A** (**PMRA: \$004**): PMRA is a 4-bit write-only register whose bits PMRA2 to PMRA0 switch the functions of the port R0 shared function pins.

This section describes the bits PMRA2 to PMRA0. See section 11.2.2 (2), "Port Mode Register A (PMRA)", for details on the PMRA3 bit.

Bit 2—R0₃/TOC Pin Function Switch (PMRA2): Selects whether the R0₃/TOC pin functions as the R0₃ I/O pin or as the timer C output pin (TOC).

PMRA2	Description	
0	The $R0_3$ /TOC pin functions as the $R0_3$ I/O pin.	(initial value)
1	The $R0_3$ /TOC pin functions as the TOC output pin.	

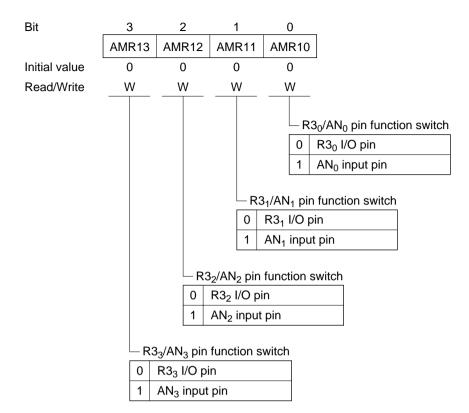
Bit 1—R0₁/SI Pin Function Switch (PMRA1): Selects whether the R0₁/SI pin functions as the R0₁ I/O pin or as the serial reception data input pin (SI).

PMRA1	Description	
0	The R0 ₁ /SI pin functions as the R0 ₁ I/O pin.	(initial value)
1	The $R0_1/SI$ pin functions as the SI input pin.	

Bit 0—R0₂/SO Pin Function Switch (PMRA0): Selects whether the R0₂/SO pin functions as the R0₂ I/O pin or as the serial transmission data output pin (SO).

PMRA0	Description	
0	The $R0_2/SO$ pin functions as the $R0_2$ I/O pin.	(initial value)
1	The $R0_2/SO$ pin functions as the SO output pin.	

(4) Serial Mode Register (SMR: \$005): SMR is a 4-bit write-only register whose SMR3 bit switches the $R_{0/SCK}$ pin function.


This section only describes the SMR3 bit. See section 20.2.1, "Serial Mode Register (SMR)" for details on bits SMR2 to SMR0.

Bit	3	2	1	0
	SMR3	SMR2	SMR1	SMR0
Initial value	0	0	0	0
Read/Write	W	W	W	W
	B	Transf 0₀∕SCK pin	er clock se	
	0	R0 ₀ I/O pi		
	1	SCK I/O p	oin	

Bit 3—R0₀/ $\overline{\text{SCK}}$ **Pin Function Switch (SMR3):** Selects whether the R0₀/ $\overline{\text{SCK}}$ pin functions as the R0₀ I/O pin or as the serial interface transfer clock I/O pin ($\overline{\text{SCK}}$).

SMR3	Description	
0	The $R0_0$ /SCK pin functions as the $R0_0$ I/O pin.	(initial value)
1	The $R0_0$ /SCK pin functions as the SCK I/O pin.	

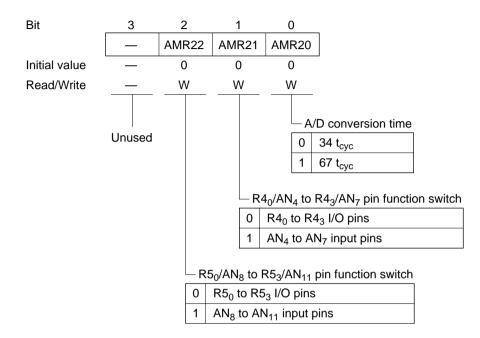
(5) A/D Mode Register 1 (AMR1: \$019): AMR1 is a 4-bit write-only register that switches the functions of the R3 port shared function pins.

Bit 3—R3₃/AN₃ Pin Function Switch (AMR13): Selects whether the R3₃/AN₃ pin functions as the R3₃ I/O pin or as the A/D converter channel 3 input pin AN₃.

AMR13	Description	
0	The $R3_3/AN_3$ pin functions as the $R3_3$ I/O pin.	(initial value)
1	The $R3_3/AN_3$ pin functions as the AN_3 input pin.	

Bit 2—R3₂/AN₂ Pin Function Switch (AMR12): Selects whether the R3₂/AN₂ pin functions as the R3₂ I/O pin or as the A/D converter channel 2 input pin AN₂.

AMR12	Description	
0	The $R3_2/AN_2$ pin functions as the $R3_2$ I/O pin.	(initial value)
1	The $R3_2/AN_2$ pin functions as the AN_2 input pin.	


Bit 1—R3₁/AN₁ **Pin Function Switch (AMR11):** Selects whether the R3₁/AN₁ pin functions as the R3₁ I/O pin or as the A/D converter channel 1 input pin AN₁.

AMR11	Description	
0	The $R3_1/AN_1$ pin functions as the $R3_1$ I/O pin.	(initial value)
1	The $R3_1/AN_1$ pin functions as the AN_1 input pin.	

Bit 0—R3₀/AN₀ Pin Function Switch (AMR10): Selects whether the $R3_0/AN_0$ pin functions as the R3₀ I/O pin or as the A/D converter channel 0 input pin AN₀.

AMR10	Description	
0	The $R3_0/AN_0$ pin functions as the $R3_0$ I/O pin.	(initial value)
1	The $R3_0/AN_0$ pin functions as the AN_0 input pin.	

(6) A/D Mode Register 2 (AMR2: \$01A): AMR2 is a 3-bit write-only register whose AMR21 bit switches the functions of all four bits of the R4 port (R4₀ to R4₃) to be A/D converter input channels (AN₄ to AN₇), and whose AMR22 bit switches the R5 port to be the AN₈ to AN₁₁ input channels. This section describes the AMR21 and AMR22 bits. See section 15.2.2, "A/D Mode Register 2 (AMR2)", for details on the AMR20 bit.

Bit 2—R5₀/AN₈ to R5₃/AN₁₁ Pin Function Switch (AMR22): Selects whether the R5₀/AN₈ to R5₃/AN₁₁ pins function as the R5₀ to R5₃ I/O pins or as the A/D converter channel 8 to 11 input pins (AN₈ to AN₁₁).

AMR22	Description	
0	The $R5_0/AN_8$ to $R5_3/AN_{11}$ pins function as the $R5_0$ to $R5_3$ I/O pins.	(initial value)
1	The $R5_0/AN_8$ to $R5_3/AN_{11}$ pins function as the AN_8 to AN_{11} input pins.	

Bit 1—R4₀/AN₄ to R4₃/AN₇ Pin Function Switch (AMR21): Selects whether the R4₀/AN₄ to R4₃/AN₇ pins function as the R4₀ to R4₃ I/O pins or as the A/D converter channel 4 to 7 input pins (AN₄ to AN₇).

AMR21	Description	
0	The $R4_0/AN_4$ to $R4_3/AN_7$ pins function as the $R4_0$ to $R4_3$ I/O pins.	(initial value)
1	The $R4_0/AN_4$ to $R4_3/AN_7$ pins function as the AN_4 to AN_7 input pins.	

11.3.3 **Pin Functions**

The pin functions of the R port pins are switched by register settings as shown in table 11-8.

1 able 11-0	K I OI t I III F uncu	0115							
Pin	Pin Functions	and Selection Metho	ds						
R0₀/SCK	The pin function shown below.	The pin function is switched by the SMR SMR3 bit and the DCR0 DCR00 bit as shown below.							
	SMR3		0	1					
	DCR00	0	1	—					
	Pin function	$R0_0$ input pin	R0 ₀ output pin	SCK I/O pin					
			1						
R0 ₁ /SI	The pin function is switched by the PMRA PMRA1 bit and the DCR0 DCR01 bit as shown below.								
	PMRA1		0	1					
	DCR01	0	1	_					
	Pin function	R01 input pin	R0 ₁ output pin	SI input pin					
	L								
R0 ₂ /SO	The pin function shown below.	is switched by the PN	/IRA PMRA0 bit and th	e DCR0 DCR02 bit as					
	PMRA0		0	1					
	DCR02	0	1	_					
	Pin function	R0 ₂ input pin	R0 ₂ output pin	SO output pin					

Table 11-8 R Port Pin Functions

R0₃/TOC The pin function is switched by the PMRA PMRA2 bit and the DCR0 DCR03 bit as shown below.

PMRA2	(1	
DCR03	0	1	—
Pin function	R0₃ input pin	R0 ₃ output pin	TOC output pin

HITACHI

Table 11-8 R Port Pin Functions (cont)

Pin R3 ₀ /AN ₀	Pin Functions and Selection Methods The pin function is switched by the AMR1 AMR10 bit and the DCR3 DCR30 bit as shown below.								
	AMR10		0	1					
	DCR30	0 1		_					
	Pin function	$R3_0$ input pin	$R3_0$ output pin	AN_0 input pin					
R3 ₁ /AN ₁	The pin function shown below.	is switched by the AN	/R1 AMR11 bit and the	DCR3 DCR31 bit					
	AMR11		0	1					
	DCR31	0	1	_					
	Pin function	R3 ₁ input pin	R3₁ output pin	AN ₁ input pin					
R3 ₃ /AN ₃	AMR12 DCR32 Pin function The pin function shown below.	0 R3 ₂ input pin	0 1 R3₂ output pin //R1 AMR13 bit and the	1 — AN ₂ input pin DCR3 DCR33 bit					
	AMR13		1						
	DCR33	0	1						
	Pin function	$R3_3$ input pin	R33 output pin	AN_3 input pin					
R4 ₀ /AN ₄	The pin function shown below.	is switched by the AN	IR2 AMR21 bit and the	DCR4 DCR40 bit					
	AMR21		0	1					
	DCR40	0	1						
	Pin function	R4 ₀ input pin	R4 ₀ output pin	AN₄ input pin					

Table 11-8 R Port Pin Functions (cont)

Pin		nd Selection Metho								
$R4_1/AN_5$	The pin function is switched by the AMR2 AMR21 bit and the DCR4 DCR41 bit a shown below.									
	AMR21		0	1						
	DCR41	0	1							
	Pin function	$R4_1$ input pin	R4 ₁ output pin	$AN_{\mathfrak{s}}$ input pin						
R4 ₂ /AN ₆	The pin function shown below.	is switched by the AN	IR2 AMR21 bit and the	DCR4 DCR42 bit						
	AMR21		0	1						
	DCR42	0	1							
	Pin function	R4 ₂ input pin	R4 ₂ output pin	AN ₆ input pin						
R4 ₃ /AN ₇	The pin function is switched by the AMR2 AMR21 bit and the DCR4 DCR43 bit a									
R4 ₃ /AN ₇	The pin function is switched by the AMR2 AMR21 bit and the DCR4 DCR43 bit a shown below.									
	AMR21		1							
	DCR43	0	1							
	Pin function	R4 ₃ input pin	R4 ₃ output pin	AN ₇ input pin						
R5 ₀ /AN ₈	The pin function is switched by the AMR2 AMR22 bit and the DCR5 DCR50 bit a shown below.									
R5 ₀ /AN ₈	shown below.									
R5 ₀ /AN ₈			0	1						
R5₀/AN ₈	shown below.	0	0 1							
R5₀/AN₅	shown below.									
R5 ₀ /AN ₈	shown below. AMR22 DCR50 Pin function	0 R5 ₀ input pin	1	1 — AN₅ input pin						
	shown below. AMR22 DCR50 Pin function	0 R5 ₀ input pin	1 R5 ₀ output pin	1 — AN₅ input pin						
	shown below. AMR22 DCR50 Pin function The pin function shown below.	0 R5 $_{0}$ input pin is switched by the AN	1 R5 ₀ output pin	1 — AN ₈ input pin e DCR5 DCR51 bit						

Table 11-8 R Port Pin Functions (cont)

Pin	Pin Functions a	Pin Functions and Selection Methods								
R5 ₂ /AN ₁₀	The pin function shown below.	The pin function is switched by the AMR2 AMR22 bit and the DCR5 DCR52 bit as shown below.								
	AMR22		0	1						
	DCR52	0	1							
	Pin function	R5 ₂ input pin	R5 ₂ output pin	AN ₁₀ input pin						
R5 ₃ /AN ₁₁	The pin function shown below.	is switched by the AM	/R2 AMR22 bit and th	e DCR5 DCR53 bit as						
	AMR22		1							
	DCR53	0	1							
	Pin function	$R5_3$ input pin	R5 ₃ output pin	AN ₁₁ input pin						

11.4 Usage Notes

Keep the following points in mind when using the I/O ports.

- When the MIS MIS2 bit is set to 1, the R0₂/SO pin will be an NMOS open drain output regardless of whether it is selected for use as the R0₂ pin or as the SO pin by the PMRA PMRA0 bit.
- I/O pins that are unused in user systems must be tied to a fixed potential, since floating I/O pins can cause noise that can interfere with LSI operation. The following are examples of techniques that can prevent noise problems.

High voltage pin:	Select "no pull-down MOS transistor (PMOS open drain)" as the mask option and connect the pin to V_{CC} on the user system printed circuit board.
Standard voltage pin:	Either use the built-in pull-up MOS transistor to pull the pin up to V_{CC} , or pull up the pin to V_{CC} externally with a pull-up resistor of about 100 k Ω .

Application programs should maintain the PDR and DCR contents for unused pins at their reset state values. Also note that unused pins must not be selected for use as peripheral function I/O pins.

• When the MIS MIS3 bit is set to 1 (pull-up MOS transistors active) and the PDR for an R port/analog input shared function pin has the value 1, the MOS transistor for the corresponding pin will not be turned off by selecting the analog input function with the AMR1 or AMR2 register.

To use an R port/analog input shared function pin as an analog input when the pull-up MOS transistors are active, always clear the PDR for the corresponding pin to 0 first and then turn off the pull-up MOS transistor. (Note that the PDR registers are set to 1 immediately following a reset.)

Figure 11-3 shows the circuit for the R port/analog input shared function pins. AMR1 and AMR2 are used to set the port outputs to high impedance. ACR is used to switch the analog input channel.

The states of the R port/analog input shared function pins are set, as shown in table 11-9, by the combination of the AMR1 (or AMR2) register, the MIS3 bit, the DCR, and the PDR settings.

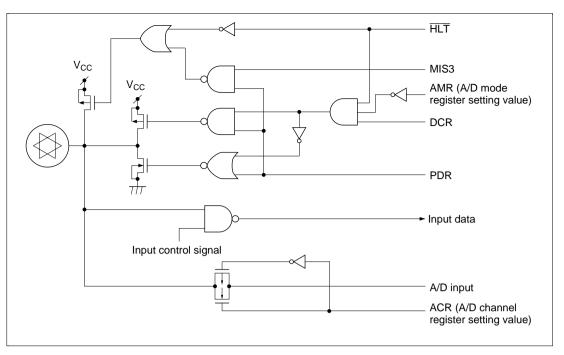


Figure 11-3 R Port/Analog Input Shared Function Pin Circuit Structure

Table 11-9 Program Control of the R Port/Analog Input Shared Function Pins

Corresponding b or AMR2	it in AMR1	0 (R port selected)							
MIS3 bit		0				1			
DCR		0 1		0			1		
PDR		0	1	0	1	0	1	0	1
CMOS buffer	PMOS	-		_	On	_		_	On
	NMOS			On	_			On	—
Pull-up MOS transistor			_				On	—	On

Note: -: off

Corresponding to or AMR2	oit in AMR1	1 (analog input selected)							
MIS3 bit		0) 1				
DCR		0 1		0 1		1			
PDR		0	1	0	1	0	1	0	1
CMOS buffer	PMOS	-		_	_			_	_
	NMOS			_	_			_	_
Pull-up MOS transistor			-				On	_	On

Note: -: off

Section 12 I/O Ports (HD404369 Series)

12.1 Overview

12.1.1 Features

The HD404369 Series I/O ports have the following features.

- The eight pins R1₀ to R1₃ and R2₀ to R2₃ are medium voltage NMOS open drain I/O pins. RA₁ is an input-only pin. The D, R0, R1, and R3 to R9 port pins are standard voltage I/O pins that, in output mode, are CMOS three state outputs.
- Certain I/O pins (D₀ to D₄, and the pins in the R0 and R3 to R5 ports) are shared with the builtin peripheral modules, such as timers and the serial interface. Setting these pins for use with the built-in peripheral modules takes priority over their setting for use as D or R port pins.
- Register settings are used to select input or output for I/O pins and to select the I/O port or peripheral module usage for shared function pins.
- All peripheral module output pins are CMOS outputs. However, the R0₂/SO pin can be selected to be an NMOS open drain output by setting a register.
- Since the system is reset in stop mode, the built-in peripheral module selections are cleared and the I/O pins go to the high impedance state.
- The CMOS output pins have built-in programmable pull-up MOS transistors. The on/off state of these transistors can be controlled by register settings on an individual basis. Note that the pull-up MOS transistor on/off settings are independent of the pin settings for use as built-in peripheral module pins.

Table 12-1 provides an overview of the HD404369 Series port functions.

Table 12-1Port Functions

Port	Overview	Pin	Shared Function	Function Switching Register
D_0 to D_{13}	Standard voltage I/O port	D_0 / \overline{INT}_0	External interrupt input 0	PMRB
•	Accessed in bit units	D_1/\overline{INT}_1	External interrupt input 1	_
	Accessed with the SED,	D ₂ /EVNB	Timer B event input	_
	SEDD, RED, REDD, TD, and TDD instructions.	D₃/BUZZ	Alarm output	PMRA
	 Programmable pull-up MOS 	D₄/STOPC	Stop mode clear	PMRB
	transistors	D ₅ to D ₁₃	_	_
R0	Standard voltage I/O port	R0 ₀ /SCK	Transfer clock I/O	SMR
	Accessed in 4-bit units.Accessed with the LAR,	R0 ₁ /SI	Serial reception data input	PMRA
	LBR, LRA, and LRB instructions.	R0 ₂ /SO	Serial transmission data output	_
	Programmable pull-up MOS	R0 ₃ /TOC	Timer C output	_
R3	transistors	R3 ₀ /AN ₀	Analog input channel 0	AMR1
		R3 ₁ /AN ₁	Analog input channel 1	_
		R3 ₂ /AN ₂	Analog input channel 2	
		R3 ₃ /AN ₃	Analog input channel 3	
R4		$R4_0/AN_4$	Analog input channel 4	AMR2
		R4 ₁ /AN ₅	Analog input channel 5	
		$R4_2/AN_6$	Analog input channel 6	
	_	R4 ₃ /AN ₇	Analog input channel 7	
R5		R5 ₀ /AN ₈	Analog input channel 8	AMR2
		R5₁/AN ₉	Analog input channel 9	_
		R5 ₂ /AN ₁₀	Analog input channel 10	
	_	R5 ₃ /AN ₁₁	Analog input channel 11	
R6 to R9		R6 ₀ to R6 ₃	_	—
		$R7_0$ to $R7_2$	_	
		$R8_0$ to $R8_3$	_	
		$R9_0$ to $R9_3$		

Table 12-1 Port Functions (cont)

Port	Overview	Pin	Shared Function	Function Switching Register
R1, R2	Medium voltage NMOS open drain I/O port	$R1_0$ to $R1_3$ $R2_0$ to $R2_3$	_	_
	Accessed in 4-bit units.			
	• Accessed with the LAR, LBR, LRA, and LRB instructions.			
RA	 Standard voltage input port (1 bit) 	RA ₁	_	_
	• Accessed with the LAR and LBR instructions.			

12.1.2 I/O Control

R1 and R2 are medium voltage NMOS open drain I/O ports and the D, R0, and R3 to R9 ports are standard voltage I/O ports. The different port types have different circuit structures as follows.

(1) Medium Voltage NMOS Open Drain I/O Pin Circuit: R1 and R2 are medium voltage NMOS open drain I/O ports and I/O through these ports is controlled by the port data registers (PDR) and the data control registers (DCR). When the DCR bit corresponding to a given pin is 1, that pin functions as an output pin and when the value in the PDR is 0, the pin's NMOS transistor turns on and the pin outputs a low level voltage. When the value in the PDR is 1 the pin goes to the high impedance state. When a given DCR bit is 0, the corresponding pin functions as an input pin.

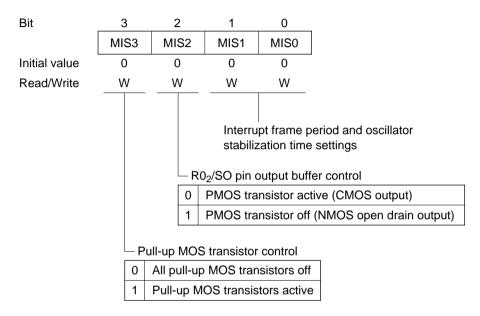
(2) Standard Voltage CMOS Three State I/O Pin Circuit: The pins in the D, R0, and R3 to R9 ports are standard voltage CMOS three state I/O ports. I/O through these ports is controlled by the PDRs and the data control registers (DCD or DCR). When the DCD or DCR bit corresponding to a given pin is 1, that pin functions as an output pin and outputs the value in the PDR. When a given DCD or DCR bit is 0, the corresponding pin functions as an input pin.

(3) **Pull-Up MOS Control:** Each I/O pin in the D, R0 and R3 to R9 ports has a built-in programmable pull-up MOS transistor. When the miscellaneous register (MIS) MIS3 bit is set to 1 the pull-up MOS transistor for pins for which the corresponding PDR is set to 1 will be turned on. Thus the on/off state of each pin can be controlled independently by the PDRs. Note that the pull-up MOS transistor on/off settings are independent of the pin settings for use as built-in peripheral module pins.

Table 12-2 shows how register settings control the port I/O pins.

MIS3	0			1					
DCD, DCR		0		1		0		1	
PDR		0	1	0	1	0	1	0	1
CMOS buffer	PMOS	-	_		On			_	On
	NMOS			On				On	_
Pull-up MOS transistor			-				On		On

Table 12-2 Register Settings for I/O Pin Control


Notes: 1. —: Off

2. The PDR registers are not allocated addresses in RAM. The PDR registers are accessed by special-purpose I/O instructions.

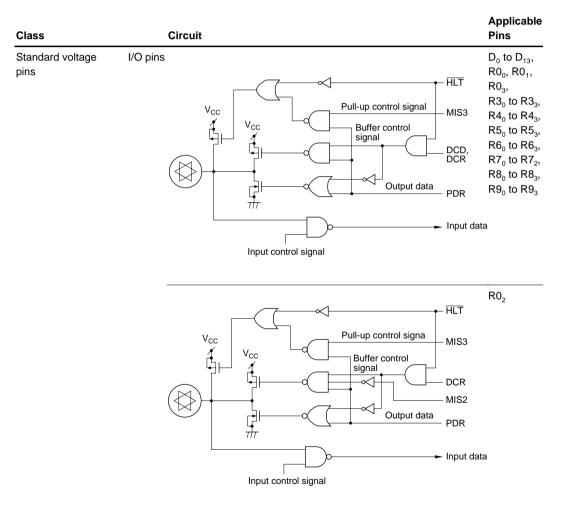
(4) Miscellaneous Register (MIS: 00C): MIS is a 4-bit write-only register that controls the on/off states of the D, R0, and R3 to R9 port pin pull-up MOS transistors and the on/off state of the R0₂/SO pin output buffer PMOS transistor.

MIS is initialized to \$0 on reset and in stop mode.

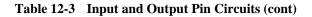
This section describes the MIS2 and MIS3 bits. Refer to section 6.2.1, "Miscellaneous Register (MIS)", for details on the MIS0 and MIS1 bits.

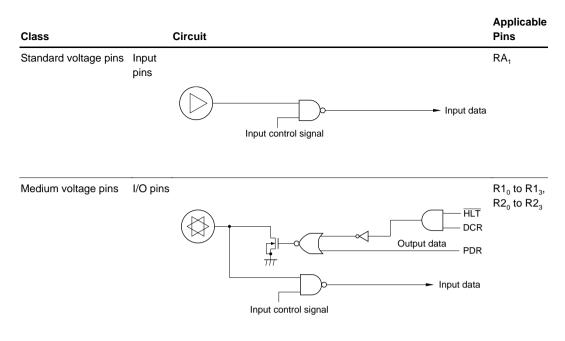
Bit 3—Pull-Up MOS Transistor Control (MIS3): Controls the on/off states of the pull-up MOS transistors built into the I/O port pins.

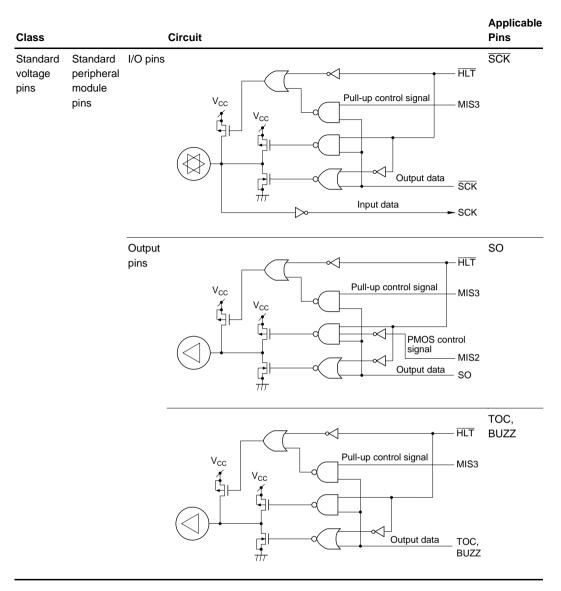
MIS3	Description	
0	All pull-up MOS transistors will be turned off.	(initial value)
1	Pull-up MOS transistors for which the corresponding PDR bit is 1 will	be turned on.

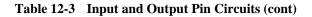

Bit 2—R0₂/SO Pin Output Buffer Control (MIS2): Controls the on/off state of the R0₂/SO pin output buffer PMOS transistor.

MIS2	Description	
0	The $R0_2$ /SO pin output will be a CMOS output.	(initial value)
1	The $R0_2$ /SO pin output will be an NMOS open drain output.	


12.1.3 I/O Pin Circuit Structures


Table 12-3 shows the port and peripheral module pin circuits.


- Notes: 1. Since the system is reset in stop mode, the built-in peripheral module selections are cleared. Since the internal $\overline{\text{HLT}}$ signal goes to the low (active) level, the I/O pins go to the high impedance state. Also, all the pull-up MOS transistors are turned off.
 - 2. In all low power modes other than stop mode, the internal HLT signal goes to the high level.


Table 12-3 Input and Output Pin Circuits

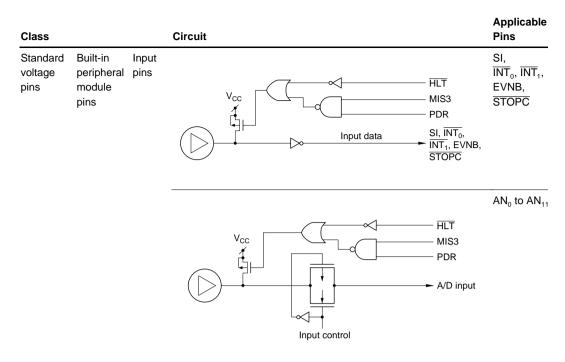


Table 12-3 Input and Output Pin Circuits (cont)

12.1.4 Port States in Low Power Modes

The D_0 to D_4 pins and the R0 and R3 to R5 port pins have shared functions as input or output pins for built-in peripheral modules. Since the CPU stops in standby and watch mode, the pins selected as output ports maintain their immediately prior output values. Also, pins selected for use by builtin peripheral modules that operate in standby or watch mode continue to operate. (Output pins used by modules that stop in standby or watch mode maintain their immediately prior output values.) See section 6, "Low Power Modes", for details on which built-in peripheral modules can operate in each mode.

Table 12-4 lists the port states in the low power modes.

Table 12-4	Port States in Low Power Modes	

Low Power Mode	Port States
Standby mode, watch mode	Pins maintain their values immediately prior to entering standby mode.
Stop mode	Built-in peripheral function selections are cleared, and the port and peripheral function I/O pins go to the high impedance state.

12.1.5 Handling Unused Pins

I/O pins that are unused in user systems must be tied to a fixed potential, since floating I/O pins can cause noise that can interfere with LSI operation.

The built-in pull-up MOS transistors can be used to pull up unused pins to V_{cc} . Alternatively, unused pins can be pulled up to V_{cc} with external resistors of about 100 k Ω .

Application programs should maintain the PDR and DCR contents for unused pins at their reset state values. Also note that unused pins must not be selected for use as peripheral function I/O pins.

12.2 D Port

12.2.1 Overview

The D port is a 14-pin I/O port (D_0 to D_{13}) that can be accessed in 1-bit units.

The output levels on the pins D_0 to D_{13} can be set to low or high by accessing the port in one-bit units with the SED, SEDD, RED, and REDD output instructions. The output data is stored in the PDR for each pin. The level on each of the pins D_0 to D_{13} can be tested in one-bit units with the TD and TDD input instructions.

The DCD registers are used to turn the D port output buffers on or off. When the DCD bit corresponding to a given pin is 1, the data in the corresponding PDR will be output from that pin. The on/off states of the output buffers can be controlled individually for each D port pin. The DCD registers are allocated in the RAM address space.

The pins D_0 to D_4 have shared functions as built-in peripheral module pins. PMRB is used to switch these functions.

Figure 12-1 shows the structure of the D port.

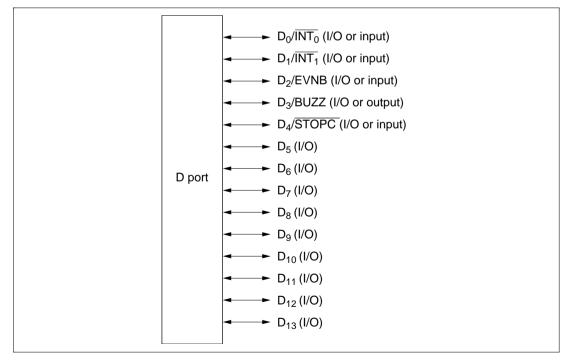


Figure 12-1 D Port Structure

12.2.2 Register Configuration and Descriptions

Table 12-5 shows the configuration of the D port registers.

 Table 12-5
 D Port Register Configuration

Address	Register	Symbol	R/W	Initial Value
_	Port data registers	PDR	W*	1
\$02C	Data control registers	DCD0	W	\$0
\$02D		DCD1	W	\$0
\$02E		DCD2	W	\$0
\$02F		DCD3	W	00
\$024	Port mode register B	PMRB	W	\$0

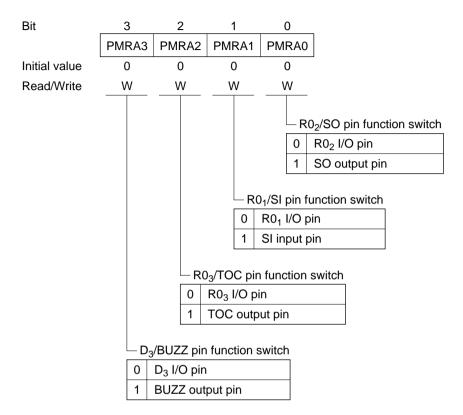
Note: * The SED, SEDD, RED, and REDD instructions can be used to write to the PDRs.

(1) Port Data Registers (PDR): Each of the I/O pins D_0 to D_{13} includes a built-in PDR. When a SED or SEDD instruction is executed for one of the pins D_0 to D_{13} the corresponding PDR is set to 1, and when a RED or REDD instruction is executed, the corresponding PDR is cleared to 0. When bits in DCD0 to DCD3 are set to 1, the output buffers for the corresponding pins will be turned on and the values in the PDRs will be output from those pins.

The PDRs are cleared to 1 on reset and in stop mode.

(2) Data Control Registers (DCD0 to DCD3: \$02C, \$02D, \$02E, \$02F)

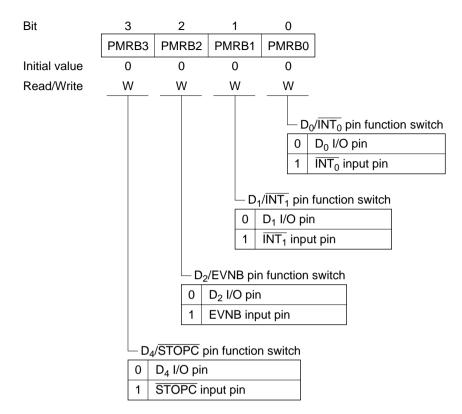
		Bit	3	2	1	0
DCD0	\$02C		DCD03	DCD02	DCD01	DCD00
		Initial value	0	0	0	0
		Read/Write	W	W	W	W
		Bit	3	2	1	0
DCD1	: \$02D		DCD13	DCD12	DCD11	DCD10
		Initial value	0	0	0	0
		Read/Write	W	W	W	W
		Bit	3	2	1	0
DCD2	: \$02E		DCD23	DCD22	DCD21	DCD20
		Initial value	0	0	0	0
		Read/Write	W	W	W	W
		Bit	3	2	1	0
DCD3	\$02F		_	—	DCD31	DCD30
		Initial value			0	0
		Read/Write	—	—	W	W
Bits in DCD0 to DCD3	Description					
0	•	uffer (CMOS bu	ıffer) is turı	ned off and	d the outpu	ut goes to (
. <u> </u>						(


The output buffer is turned on and the corresponding PDR value is output.

1

The table below lists the correspondence between the bits in DCD0 to DCD2 and the D port pins.

	Bit				
Register	Bit 3	Bit 2	Bit 1	Bit 0	
DCD0	D ₃	D_2	D ₁	Do	
DCD1	D ₇	D ₆	D ₅	D_4	
DCD2	D ₁₁	D ₁₀	D ₉	D ₈	
DCD3	_		D ₁₃	D ₁₂	


(3) Port Mode Register A (PMRA: \$004): PMRA is a 4-bit write-only register whose PMRA3 bit switches the function of the D_3 /BUZZ pin. This section describes the function of the PMRA3 bit. See section 12.3.2 (3), "Port Mode Register A (PMRA)", for details on the PMRA2 to PMRA0 bits.

Bit 3— D_3 /BUZZ Pin Function Switch (PMRA3): Selects whether the D_3 /BUZZ pin functions as the D_3 I/O pin or as the alarm output pin (BUZZ).

PMRA3	Description	
0	D_3 /BUZZ pin functions as the D_3 I/O pin.	(initial value)
1	D₃/BUZZ pin functions as the BUZZ output pin.	

(4) **Port Mode Register B** (**PMRB: \$024**): PMRB is a 4-bit write-only register that switches the D port I/O pin shared functions.

Bit 3—D₄/STOPC Pin Function Switch (PMRB3): Selects whether the D₄/STOPC pin is used as the D₄ I/O pin or as the stop mode clear pin (STOPC).

PMRB3	Description	
0	The $D_4/\overline{\text{STOPC}}$ pin functions as the D_4 I/O pin.	(initial value)
1	The $D_4/\overline{\text{STOPC}}$ pin functions as the $\overline{\text{STOPC}}$ input pin.	

Bit 2—D_2/EVNB Pin Function Switch (PMRB2): Selects whether the D_2 /EVNB pin is used as the D_2 I/O pin or as the timer B event count input pin (EVNB).

PMRB2	Description	
0	The D_2 /EVNB pin functions as the D_2 I/O pin.	(initial value)
1	The D_2 /EVNB pin functions as the EVNB input pin.	

Bit 1—D_1/\overline{INT}_1 Pin Function Switch (PMRB1): Selects whether the D_1/\overline{INT}_1 pin is used as the D₁ I/O pin or as the external interrupt 1 input pin (\overline{INT}_1).

PMRB1	Description	
0	The D_1/\overline{INT}_1 pin functions as the D_1 I/O pin.	(initial value)
1	The D1/ \overline{INT}_1 pin functions as the \overline{INT}_1 input pin.	

Bit 0—D₀/\overline{INT}_0 Pin Function Switch (PMRB0): Selects whether the D₀/ \overline{INT}_0 pin is used as the D₀ I/O pin or as the external interrupt 0 input pin (\overline{INT}_0).

PMRB0	Description	
0	The D_0/\overline{INT}_0 pin functions as the D_0 I/O pin.	(initial value)
1	The D_0/\overline{INT}_0 pin functions as the \overline{INT}_0 input pin.	

12.2.3 Pin Functions

The functions of the pins D_0 to D_{13} are switched by register settings as shown in table 12-6.

Table 12-6 D_0 to D_{13} Port Pin Functions

Pin		nd Selection Method				
D_0/\overline{INT}_0		The pin function is switched as shown below by the PMRB PMRB0 bit and the DCD0 DCD00 bit.				
	PMRB	()	1		
	DCD00	0	1	—		
	Pin function	D_0 input pin	D_0 output pin	\overline{INT}_0 input pin		
D_1/\overline{INT}_1	The pin function i DCD0 DCD01 bit		below by the PMRB F	PMRB1 bit and the		
	PMRB1	()	1		
	DCD01	0	1	—		
	Pin function	D ₁ input pin	D ₁ output pin	INT ₁ input pin		
	PMRB2	. ()	1		
D ₂ /EVNB	DCD0 DCD02 bit			F		
		0	, 1	1		
	DCD02 Pin function			EVNB input pin		
	Finituriculori	D ₂ input pin	D ₂ output pin			
D ₃ /BUZZ	The pin function i DCD0 DCD03 bit		below by the PMRA F	PMRA3 bit and the		
	PMRA3	()	1		
	DCD03	0	1	—		
	Pin function	D_3 input pin	D ₃ output pin	BUZZ output pin		
				•		
D₄/STOPC	The pin function i DCD1 DCD10 bit		below by the PMRB F	PMRB3 bit and the		
	PMRB3	()	1		
	DCD10	0	1	—		
	Pin function	D₄ input pin	D₄ output pin	STOPC input pin		

Table 12-6 D_0 to D_{13} Port Pin Functions (cont)

D₅	The pin function is s	witched as shown below by	the DCD1 DCD11 bit.		
	DCD11	0	1		
	Pin function	D₅ input pin	D₅ output pin		
	L L		1		
D ₆	The pin function is s	witched as shown below by	the DCD1 DCD12 bit.		
	DCD12	0	1		
	Pin function	D ₆ input pin	D ₆ output pin		
D ₇	The pin function is s	witched as shown below by	the DCD1 DCD13 bit.		
7	DCD13	0	1		
	Pin function	D ₇ input pin	D ₇ output pin		
	I I				
D ₈	The pin function is s	witched as shown below by	the DCD2 DCD20 bit.		
	DCD20	0	1		
	Pin function	D ₈ input pin	D ₈ output pin		
	·				
D ₉	The pin function is switched as shown below by the DCD2 DCD21 bit.				
	DCD21	0	1		
	Pin function	D ₉ input pin	D ₉ output pin		
D ₁₀	The pin function is s	witched as shown below by	the DCD2 DCD22 bit.		
	DCD22	0	1		
	Pin function	D ₁₀ input pin	D ₁₀ output pir		
	The pin function is switched as shown below by the DCD2 DCD23 bit.				
D ₁₁	DCD23				
		0	1 De output pir		
	Pin function	D ₁₁ input pin	D ₁₁ output pir		
D ₁₂	The pin function is s	witched as shown below by	the DCD3 DCD30 bit.		
	r t		1		
- 12	DCD30	0	1		

Pin	Pin Pin Functions and Selection Methods			
D ₁₃	The pin function	is switched as shown below by	the DCD3 DCD31 bit.	
	DCD31	0	1	
	Pin function	D ₁₃ input pin	D ₁₃ output pin	

Table 12-6 D₀ to D₁₃ Port Pin Functions (cont)

12.3 R Ports

12.3.1 Overview

The R port consists of the nine 4-bit I/O ports R0 to R6, R8, and R9, the 3-bit I/O port R7, and the 1-bit input port RA_1 .

R0 and R3 to R9 are standard voltage CMOS three state I/O ports and R1 and R2 are medium voltage NMOS open drain I/O ports.

The individual ports R0 to R9 are accessed in 4-bit units with the LRA and LRB output instructions to control the output levels (high or low) on each pin. Output data is stored in the PDR built into each pin. Similarly, the LAR and LBR input instructions can be used to access the R ports in 4-bit units to read the input levels on the port pins.

The RA_1 input-only port consists of a single bit. The values of bits 3, 2, and 0 are undefined when this port is accessed by the input instructions.

DCR registers are used to control on/off states of the R port output buffers. When the DCR bit corresponding to a pin in an R port is set to 1, the contents of the PDR corresponding to that pin is output from the pin. Thus the output buffer on/off states can be controlled on an individual pin basis for the R port pins. The DCR registers are allocated in the RAM address space.

The R0 and R3 to R5 port pins have shared functions as built-in peripheral module pins. Register settings are used to switch these functions. (See table 12-7.)

Figure 12-2 shows the R port pin structure.

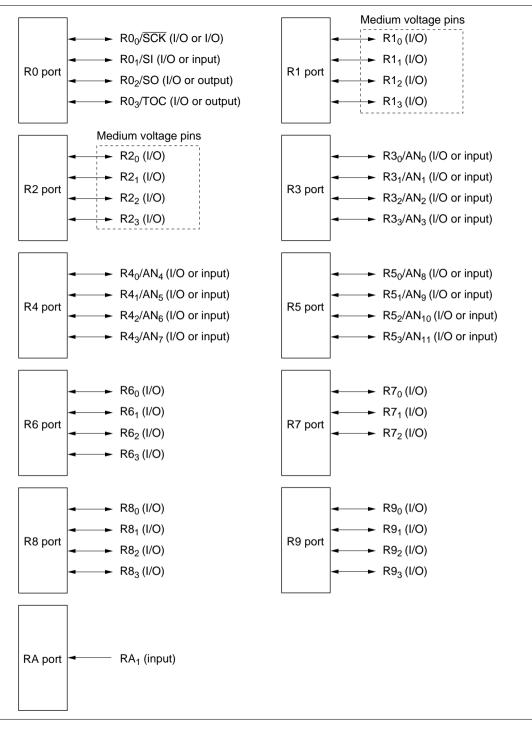


Figure 12-2 R Port Structure

12.3.2 Register Configuration and Descriptions

Table 12-7 shows the configuration of the R port related registers.

Table 12-7 R Port Register Configuration

Address	Register	Symbol	R/W	Initial Value
_	Port data registers	PDR	W*	1
\$030	Data control registers	DCR0	W	\$0
\$031		DCR1	W	\$0
\$032		DCR2	W	\$0
\$033		DCR3	W	\$0
\$034		DCR4	W	\$0
\$035		DCR5	W	\$0
\$036		DCR6	W	\$0
\$037		DCR7	W	-000
\$038		DCR8	W	\$0
\$039		DCR9	W	\$0
\$004	Port mode register A	PMRA	W	\$0
\$005	Serial mode register	SMR	W	\$0
\$019	A/D mode register 1	AMR1	W	\$0
\$01A	A/D mode register 2	AMR2	W	-000

Note: * The LRA and LRB instructions are used to write to the PDR registers.

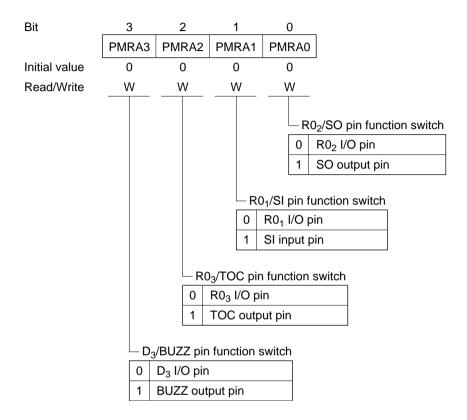
(1) **Port Data Registers (PDR):** All the I/O pins in ports R0 to R9 include a PDR that holds the output data. When an LRA or an LRB instruction is executed for one of ports R0 to R9, the contents of the accumulator (A) or the B register (B) are transferred to the specified R port PDRs. When bits in DCR0 to DCR9 are set to 1, the output buffers for the corresponding pins in ports R0 to R9 will be turned on and the values in the PDRs will be output from those pins.

The PDR registers are set to 1 on reset and in stop mode.

(2) Data Control Registers (DCR0 to DCR9: \$030 to \$039)

	Bit	3	2	1	0
DCR0: \$030		DCR03	DCR02	DCR01	DCR00
	Initial value	0	0	0	0
	Read/Write	W	W	W	W
	Bit	3	2	1	0
DCR1: \$031		DCR13	DCR12	DCR11	DCR10
	Initial value	0	0	0	0
	Read/Write	W	W	W	W
	Bit	3	2	1	0
DCR2: \$032		DCR23	DCR22	DCR21	DCR20
·	Initial value	0	0	0	0
	Read/Write	W	W	W	W
	Bit	3	2	1	0
DCR3: \$033	2	DCR33	DCR32	DCR31	DCR30
DCK3. 9033	Initial value	0	0	0	0
	Read/Write	W	W	W	W
	Bit	3	2	1	0
DCR4: \$034	2	DCR43	DCR42	DCR41	DCR40
·	Initial value	0	0	0	0
	Read/Write	W	W	W	W
	Bit	3	2	1	0
	Dit	DCR53	DCR52	DCR51	DCR50
DCR5: \$035	Initial value	0	0	0	0
	Read/Write	Ŵ	W	Ŵ	W
		••		••	
	Bit	3	2	1	0
	Dit	DCR63	DCR62	DCR61	DCR60
DCR6: \$036	Initial value	0	0	0	0
	Read/Write	W	W	W	W
	iteau/Wille	٧V	٧V	vv	٧V

	Bit	3	2	1	0
DCR7: \$037		—	DCR72	DCR71	DCR70
	Initial value	0	0	0	0
	Read/Write	W	W	W	W
	Bit	3	2	1	0
DCR8: \$038		DCR83	DCR82	DCR81	DCR80
	Initial value	0	0	0	0
	Read/Write	W	W	W	W
	Bit	3	2	1	0
DCR9: \$039		DCR93	DCR92	DCR91	DCR90
	Initial value	0	0	0	0
	Read/Write	W	W	W	W


Bits in DCR0 to DCR9	Description
0	The output buffer (CMOS buffer) is turned off and the output goes to the high impedance state. (initial value
1	 The CMOS three state output buffer is turned on and the corresponding PDR value is output.
	 For medium voltage NMOS open drain pins (R1 and R2), when the PDR is 0 a low level is output. When the PDR is 1, the pin goes to the high impedance state.

The table below lists the correspondence between the bits in DCR0 to DCR9 and the port R0 to R9 pins.

			Bit	
Register	Bit 3	Bit 2	Bit 1	Bit 0
DCR0	R0 ₃	R0 ₂	R0 ₁	R0 ₀
DCR1	R1 ₃	R1 ₂	R1₁	R1 ₀
DCR2	R2 ₃	R2 ₂	R2 ₁	R2 ₀
DCR3	R3 ₃	R3 ₂	R3₁	R3 ₀
DCR4	R4 ₃	R4 ₂	R4 ₁	R4 ₀
DCR5	R5 ₃	R5 ₂	R5₁	R5₀
DCR6	R6 ₃	R6 ₂	R6₁	R6 ₀
DCR7		R7 ₂	R7 ₁	R7 ₀
DCR8	R8 ₃	R8 ₂	R8₁	R8₀
DCR9	R9 ₃	R9 ₂	R9₁	R9 ₀

(3) **Port Mode Register A (PMRA: \$004):** PMRA is a 4-bit write-only register whose bits PMRA2 to PMRA0 switch the functions of the port R0 shared function pins.

This section describes the bits PMRA2 to PMRA0. See section 12.2.2 (3), "Port Mode Register A (PMRA)", for details on the PMRA3 bit.

Bit 2—R0₃/TOC Pin Function Switch (PMRA2): Selects whether the R0₃/TOC pin functions as the R0₃ I/O pin or as the timer C output pin (TOC).

PMRA2	Description	
0	The $R0_3$ /TOC pin functions as the $R0_3$ I/O pin.	(initial value)
1	The $R0_3$ /TOC pin functions as the TOC output pin.	

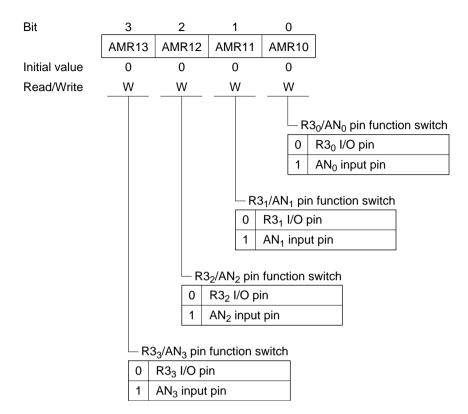
Bit 1—R0₁/SI Pin Function Switch (PMRA1): Selects whether the R0₁/SI pin functions as the R0₁ I/O pin or as the serial reception data input pin (SI).

PMRA1	Description	
0	The $R0_1/SI$ pin functions as the $R0_1$ I/O pin.	(initial value)
1	The $R0_1/SI$ pin functions as the SI input pin.	

Bit 0—R0₂/SO Pin Function Switch (PMRA0): Selects whether the $R0_2/SO$ pin functions as the $R0_2$ I/O pin or as the serial transmission data output pin (SO).

PMRA0	Description	
0	The $R0_2/SO$ pin functions as the $R0_2$ I/O pin.	(initial value)
1	The R0 ₂ /SO pin functions as the SO output pin.	

(4) Serial Mode Register (SMR: \$005): SMR is a 4-bit write-only register whose SMR3 bit switches the $R_{0/SCK}$ pin function.


This section only describes the SMR3 bit. See section 20.2.1, "Serial Mode Register (SMR)" for details on bits SMR2 to SMR0.

Bit	3	2	1	0
	SMR3	SMR2	SMR1	SMR0
Initial value	0	0	0	0
Read/Write	W	W	W	W
	F	Transf R0 ₀ /SCK pin	er clock se	
	0	R0 ₀ I/O pi		
	1	SCK I/O p	oin	

Bit 3—R0₀/SCK Pin Function Switch (SMR3): Selects whether the R0₀/SCK pin functions as the R0₀ I/O pin or as the serial interface transfer clock I/O pin (\overline{SCK}).

SMR3	Description	
0	The $R0_0/\overline{SCK}$ pin functions as the $R0_0$ I/O pin.	(initial value)
1	The $R0_0$ /SCK pin functions as the SCK I/O pin.	

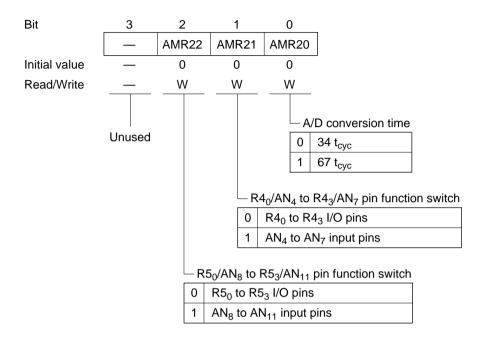
(5) A/D Mode Register 1 (AMR1: \$019): AMR1 is a 4-bit write-only register that switches the functions of the R3 port shared function pins.

Bit 3—R3₃/AN₃ Pin Function Switch (AMR13): Selects whether the R3₃/AN₃ pin functions as the R3₃ I/O pin or as the A/D converter channel 3 input pin AN₃.

AMR13	Description	
0	The $R3_3/AN_3$ pin functions as the $R3_3$ I/O pin.	(initial value)
1	The $R3_3/AN_3$ pin functions as the AN_3 input pin.	

Bit 2—R3₂/AN₂ Pin Function Switch (AMR12): Selects whether the $R3_2/AN_2$ pin functions as the R3₂ I/O pin or as the A/D converter channel 2 input pin AN₂.

AMR12	Description	
0	The $R3_2/AN_2$ pin functions as the $R3_2$ I/O pin.	(initial value)
1	The $R3_2/AN_2$ pin functions as the AN_2 input pin.	


Bit 1—R3₁/AN₁ **Pin Function Switch (AMR11):** Selects whether the R3₁/AN₁ pin functions as the R3₁ I/O pin or as the A/D converter channel 1 input pin AN₁.

AMR11	Description	
0	The $R3_1/AN_1$ pin functions as the $R3_1$ I/O pin.	(initial value)
1	The $R3_1/AN_1$ pin functions as the AN_1 input pin.	

Bit 0—R3₀/AN₀ Pin Function Switch (AMR10): Selects whether the $R3_0/AN_0$ pin functions as the R3₀ I/O pin or as the A/D converter channel 0 input pin AN₀.

AMR10	Description	
0	The $R3_0/AN_0$ pin functions as the $R3_0$ I/O pin.	(initial value)
1	The $R3_0/AN_0$ pin functions as the AN_0 input pin.	

(6) A/D Mode Register 2 (AMR2: \$01A): AMR2 is a 3-bit write-only register whose AMR21 bit switches the functions of all four bits of the R4 port to be A/D converter input channels (AN₄ to AN₇), and whose AMR22 bit switches the functions of all four bits of the R5 port to be A/D converter input channels (AN₈ to AN₁₁). This section describes the AMR22 and AMR21 bits. See section 15.2.2, "A/D Mode Register 2 (AMR2)", for details on the AMR20 bit.

Bit 2—R5₀/AN₈ to R5₃/AN₁₁ Pin Function Switch (AMR22): Selects whether the R5₀/AN₈ to R5₃/AN₁₁ pins function as the R5₀ to R5₃ I/O pins or as the A/D converter channel 8 to 11 input pins (AN₈ to AN₁₁).

AMR22	Description	
0	The $R5_0/AN_8$ to $R5_3/AN_{11}$ pins function as the $R5_0$ to $R5_3$ I/O pins.	(initial value)
1	The $R5_0/AN_8$ to $R5_3/AN_{11}$ pins function as the AN_8 to AN_{11} input pins.	

Bit 1—R4₀/AN₄ to R4₃/AN₇ Pin Function Switch (AMR21): Selects whether the R4₀/AN₄ to R4₃/AN₇ pins function as the R4₀ to R4₃ I/O pins or as the A/D converter channel 4 to 7 input pins (AN₄ to AN₇).

AMR21	Description	
0	The R4 $_{\rm 0}/\text{AN}_{\rm 4}$ to R4 $_{\rm 3}/\text{AN}_{\rm 7}$ pins function as the R4 $_{\rm 0}$ to R4 $_{\rm 3}$ I/O pins.	(initial value)
1	The $R4_0/AN_4$ to $R4_3/AN_7$ pins function as the AN_4 to AN_7 input pins.	

12.3.3 Pin Functions

The pin functions of the R port pins are switched by register settings as shown in table 12-8.

Pin	Pin Functions and Selection Methods							
R0 ₀ /SCK	The pin function shown below.	is switched by the SM	IR SMR3 bit and the D	OCR0 DCR00 bit as				
	SMR3		0	1				
	DCR00	0	1					
	Pin function	$R0_0$ input pin	R0 ₀ output pin	SCK I/O pin				
	L		1	I				
R0₁/SI	The pin function shown below.	The pin function is switched by the PMRA PMRA1 bit and the DCR0 DCR01 bit a shown below.						
	PMRA1		1					
	DCR01	0 1						
	DCRUI	0	1	—				
	Pin function	R01 input pin	R01 output pin	— SI input pin				
				— SI input pin				
R0 ₂ /SO	Pin function	R01 input pin						
R0 ₂ /SO	Pin function The pin function	R01 input pin	R01 output pin					
R0 ₂ /SO	Pin function The pin function shown below.	R01 input pin	R01 output pin	e DCR0 DCR02 bit a				

Table 12-8R Port Pin Functions

 $R0_3/TOC$ The pin function is switched by the PMRA PMRA2 bit and the DCR0 DCR03 bit as shown below.

PMRA2	(1	
DCR03	0	1	—
Pin function	R0₃ input pin	R0 ₃ output pin	TOC output pin

Table 12-8 R Port Pin Functions (cont)

Pin		d Selection Methods						
R1 ₀	The pin function is	switched by the DCR1 DCR10) bit as shown below.					
	DCR10	0	1					
	Pin function	$R1_{o}$ input pin	R1₀ output pin*					
	The pin function is	switched by the DCR1 DCR1	l bit as shown below.					
ŗ	DCR11	0	1					
	Pin function	R1₁ input pin	R1₁ output pin*					
R1 ₂	The pin function is	switched by the DCR1 DCR12	2 bit as shown below.					
	DCR12	0	1					
	Pin function	R1 ₂ input pin	R1 ₂ output pin*					
R1₃	The pin function is switched by the DCR1 DCR13 bit as shown below.							
	DCR13	0	1					
	Pin function	R1 ₃ input pin	R1 ₃ output pin*					
R2 ₀	The pin function is switched by the DCR2 DCR20 bit as shown below.							
	DCR20	0	1					
	Pin function	$R2_0$ input pin	R2₀ output pin*					
	ι							
R2 ₁	The pin function is	The pin function is switched by the DCR2 DCR21 bit as shown below.						
	DCR21	0	1					
	Pin function	R2 ₁ input pin	R2₁ output pin*					
	·							
R2 ₂	The pin function is	switched by the DCR2 DCR22	2 bit as shown below.					
	DCR22	0	1					
	Pin function	R2 ₂ input pin	R2 ₂ output pin*					
	L							

Note: * R1₀ to R1₃ and R2₀ to R2₃ are medium voltage NMOS open drain I/O pins. These pins go to the high impedance state when their PDR is set to 1.

Table 12-8 R Port Pin Functions (cont)

Pin R2 ₃	Pin Functions and Selection Methods The pin function is switched by the DCR2 DCR23 bit as shown below.							
	DCR23	0		1				
	Pin function	R2 ₃ input pi	n Rź	2 ₃ output pin*				
		<u> </u>						
R3 ₀ /AN ₀	The pin function shown below.	is switched by the AN	IR1 AMR10 bit and the	DCR3 DCR30 bit a				
	AMR10		D	1				
	DCR30	0	1					
	Pin function	$R3_0$ input pin	R3 ₀ output pin	AN_0 input pin				
R3₁/AN₁	The pin function is switched by the AMR1 AMR11 bit and the DCR3 DCR31 bit a shown below.							
	AMR11	0		1				
	DCR31	0	1	—				
	Pin function	R3₁ input pin	R3 ₁ output pin	AN₁ input pin				
R3 ₂ /AN ₂	The pin function is switched by the AMR1 AMR12 bit and the DCR3 DCR32 bit a shown below.							
	AMR12		0	1				
	DCR32	0	1					
	Pin function	R3 ₂ input pin	R3 ₂ output pin	AN ₂ input pin				
	L L							
R3₃/AN₃	The pin function shown below.	The pin function is switched by the AMR1 AMR13 bit and the DCR3 DCR33 bit a shown below.						
	AMR13		0	1				
	DCR33	0	1					
	Pin function	R33 input pin	R3 ₃ output pin	AN ₃ input pin				

Note: * R1₀ to R1₃ and R2₀ to R2₃ are medium voltage NMOS open drain I/O pins. These pins go to the high impedance state when their PDR is set to 1.

Table 12-8 R Port Pin Functions (cont)

Pin Functions a	and Selection Metho	ds						
The pin function shown below.	The pin function is switched by the AMR2 AMR21 bit and the DCR4 DCR40 bit as shown below.							
AMR21		1						
DCR40	0	1	—					
Pin function	$R4_0$ input pin	R4 ₀ output pin	AN ₄ input pin					
The pin function shown below.	is switched by the AN	IR2 AMR21 bit and the	e DCR4 DCR41 bit a					
AMR21	0		1					
DCR41	0	1						
Pin function	R4 ₁ input pin	R4 ₁ output pin	AN₅ input pin					
The pin function is switched by the AMR2 AMR21 bit and the DCR4 DCR42 b shown below.								
AMR21		0	1					
DCR42	0	1	—					
Pin function	R4 ₂ input pin	R4 ₂ output pin	AN ₆ input pin					
The pin function shown below.	The pin function is switched by the AMR2 AMR21 bit and the DCR4 DCR43 bit as shown below.							
AMR21		0	1					
DCR43	0	1	—					
	The pin function shown below.AMR21DCR40Pin functionThe pin function shown below.AMR21DCR41Pin functionThe pin function shown below.AMR21DCR42Pin functionThe pin function shown below.AMR21DCR42Pin functionThe pin function shown below.AMR21AMR21AMR21AMR21AMR21AMR21	The pin function is switched by the AM shown below. AMR21 DCR40 0 Pin function R4₀ input pin The pin function is switched by the AM shown below. AMR21 0 DCR41 0 Pin function R4₁ input pin The pin function is switched by the AM shown below. AMR21 0 Pin function R4₁ input pin The pin function is switched by the AM shown below. AMR21 0 Pin function is switched by the AM shown below. AMR21 0 The pin function is switched by the AM shown below. AMR21 0 Pin function is switched by the AM shown below. AMR21 0	shown below. AMR21 0 DCR40 0 1 Pin function R4₀ input pin R4₀ output pin The pin function is switched by the AMR2 AMR21 bit and the shown below. 0 AMR21 0 1 DCR41 0 1 Pin function R4₁ input pin R4₁ output pin The pin function is switched by the AMR2 AMR21 bit and the shown below. 0 MR21 0 1 Pin function is switched by the AMR2 AMR21 bit and the shown below. 0 MR21 0 1 Pin function is switched by the AMR2 AMR21 bit and the shown below. 0 MR21 0 1 Pin function is switched by the AMR2 AMR21 bit and the shown below. 0 MR21 0 0 MR21 0 0					

Table 12-8 R Port Pin Functions (cont)

Pin		Pin Functions and Selection Methods							
R5 ₀ /AN ₈	The pin function shown below.	The pin function is switched by the AMR2 AMR22 bit and the DCR5 DCR50 bit as shown below.							
	AMR22	0		1					
	DCR50	0	1						
	Pin function	$R5_0$ input pin	R5₀ output pin	AN ₈ input pin					
R5₁/AN ₉	The pin function shown below.	is switched by the AM	IR2 AMR22 bit and the	e DCR5 DCR51 bit a					
	AMR22	()	1					
	DCR51	0	1	_					
	Pin function	R5₁ input pin	R5₁ output pin	AN ₉ input pin					
	ui.								
R5 ₂ /AN ₀	The pin function is switched by the AMR2 AMR22 bit and the DCR5 DCR52 bit shown below.								
	AMR22	(1						
	DCR52	0	1	—					
	Pin function	R5 ₂ input pin	R5 ₂ output pin	AN ₁₀ input pin					
R5 ₃ /AN ₁₁	The pin function shown below.	is switched by the AM	IR2 AMR22 bit and the	e DCR5 DCR53 bit a					
	AMR22	(0	1					
	DCR53	0	1						
	Pin function	R5₃ input pin	R5 ₃ output pin	AN ₁₁ input pin					

Table 12-8 R Port Pin Functions (cont)

Pin		Pin Functions and Selection Methods					
$R6_0$	The pin function is s	witched by the DCR6 DCR6	0 bit as shown below.				
	DCR60	0	1				
	Pin function	R6 ₀ input pin	R6 ₀ output pin				
R61	The pin function is a	switched by the DCR6 DCR6	1 bit as shown below.				
	DCR61	0	1				
	Pin function	R6 ₁ input pin	R6 ₁ output pir				
R6 ₂	The pin function is a	witched by the DCR6 DCR6	2 bit as shown below.				
	DCR62	0	1				
	Pin function	R6 ₂ input pin	R6 ₂ output pin				
	I I						
R6 ₃	The pin function is switched by the DCR6 DCR63 bit as shown below.						
	DCR63	0	1				
	Pin function	R63 input pin	R6 ₃ output pir				
$R7_0$	r r	witched by the DCR7 DCR7	0 bit as shown below.				
	DCR70	0	1				
	Pin function	$R7_0$ input pin	R7 ₀ output pir				
R71	The pin function is a	witched by the DCR7 DCR7	1 bit as shown below.				
I	DCR71	0	1				
	Pin function	R7₁ input pin	R7 ₁ output pir				
R7 ₂	The pin function is a	witched by the DCR7 DCR7	2 bit as shown below.				
	DCR72	0	1				
	Pin function	R7 ₂ input pin	R7 ₂ output pir				

Pin Pin Functions and Selection Methods R8₀ The pin function is switched by the DCR8 DCR80 bit as shown below. **DCR80** 1 0 Pin function R8₀ input pin R8_o output pin The pin function is switched by the DCR8 DCR81 bit as shown below. R8₁ DCR81 0 1 Pin function R8, input pin R8, output pin R8₂ The pin function is switched by the DCR8 DCR82 bit as shown below. DCR82 0 1 Pin function R8₂ input pin R8₂ output pin R8₃ The pin function is switched by the DCR8 DCR83 bit as shown below. DCR83 1 0 Pin function R8₃ input pin R8₃ output pin R9₀ The pin function is switched by the DCR9 DCR90 bit as shown below. DCR90 0 1 Pin function R9_o input pin R9_o output pin R9₁ The pin function is switched by the DCR9 DCR91 bit as shown below. DCR91 1 0 Pin function R9₁ input pin R9₁ output pin R9₂ The pin function is switched by the DCR9 DCR92 bit as shown below. DCR92 0 1 Pin function R9, input pin R9₂ output pin $R9_3$ The pin function is switched by the DCR9 DCR93 bit as shown below. DCR93 0 1 Pin function R9₃ input pin R9₃ output pin

Table 12-8 R Port Pin Functions (cont)

12.4 Usage Notes

Keep the following points in mind when using the I/O ports.

- When the MIS MIS2 bit is set to 1, the R0₂/SO pin will be an NMOS open drain output regardless of whether it is selected for use as the R0₂ pin or as the SO pin by the PMRA PMRA0 bit.
- I/O pins that are unused in user systems must be tied to a fixed potential, since floating I/O pins can cause noise that can interfere with LSI operation.

The built-in pull-up MOS transistors can be used to pull up unused pins to V_{CC} . Alternatively, unused pins can be pulled up to V_{CC} with external resistors of about 100 k Ω .

Application programs should maintain the PDR, DCD and DCR contents for unused pins at their reset state values. Also note that unused pins must not be selected for use as peripheral function I/O pins.

• When the MIS MIS3 bit is set to 1 (pull-up MOS transistors active) and the PDR for an R port/analog input shared function pin has the value 1, the MOS transistor for the corresponding pin will not be turned off by selecting the analog input function with the AMR1 or AMR2 register.

To use an R port/analog input shared function pin as an analog input when the pull-up MOS transistors are active, always clear the PDR for the corresponding pin to 0 first and then turn off the pull-up MOS transistor. (Note that the PDR registers are set to 1 immediately following a reset.)

Figure 12-3 shows the circuit for the R port/analog input shared function pins. AMR1 and AMR2 are used to set the port outputs to high impedance. ACR is used to switch the analog input channel.

The states of the R port/analog input shared function pins are set, as shown in table 12-9, by the combination of the AMR1 or AMR2 register, the MIS3 bit, the DCR, and the PDR settings.

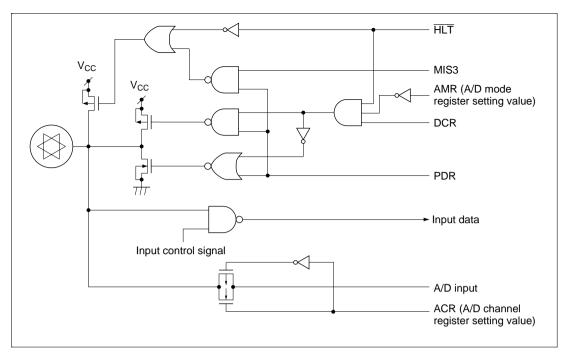
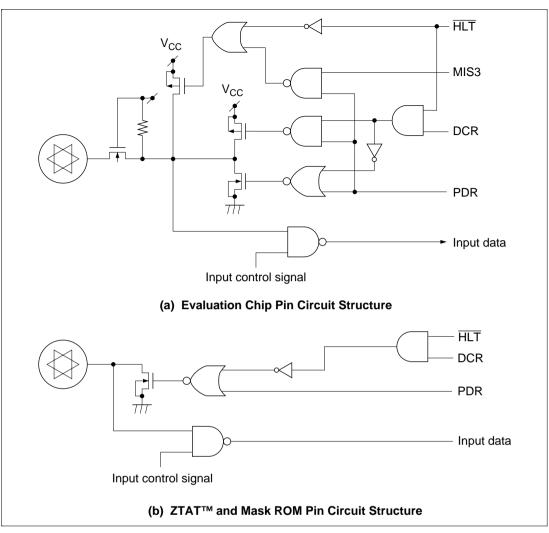


Figure 12-3 R Port/Analog Input Shared Function Pin Circuit

Table 12-9 Program Control of the R Port/Analog Input Shared Function Pins

Corresponding b or AMR2	it in AMR1	0 (R port selected)								
MIS3 bit		0 1				1				
DCR		0			1	0			1	
PDR		0	1	0	1	0	1	0	1	
CMOS buffer	PMOS	-	<u> </u>	_	On	—		_	On	
	NMOS			On				On		
Pull-up MOS trai	MOS transistor —			•	—	On		On		


Note: -: off

Corresponding b or AMR2	it in AMR1	1 (analog input selected)							
MIS3 bit		0 1							
DCR		0 1			1	0		1	
PDR		0	1	0	1	0	1	0	1
CMOS buffer	PMOS	-		_				_	
	NMOS			_	_			_	_
Pull-up MOS trai	nsistor	— I				On		On	

Note: -: off

In the HD404369 Series evaluation chip set, the circuits for the medium voltage NMOS open drain pins (the R1 and R2 port pins) differ from the ZTATTM and the mask ROM microcomputer versions as shown in figure 12-4. Although the outputs in both the ZTATTM and mask ROM versions can be set to high impedance by the combinations listed in table 12-10, these outputs cannot be set to high impedance in the evaluation chip set. Please keep this in mind when using the evaluation chip set.

Figure 12-4 shows the circuit for the medium voltage NMOS open drain pins.

Table 12-10 ZTAT™ and Mask ROM Microcomputer NMOS Open Drain Pin High Impedance Control

DCR	PDR	Description		
0	*	High impedance output	(initial value)	
1	0	NMOS buffer on. Low level output		
	1	High impedance output		

Note: * Don't care

Section 13 Oscillator Circuits (HD404344R/HD404394/HD404318/HD404358/ HD404358R Series)

13.1 Overview

13.1.1 Features

The HD404344R, HD404394, HD404318, HD404358, and HD404358R Series microcomputers include a system clock oscillator circuit with the following features.

• The system clock oscillator circuit supports the use of a ceramic oscillator, a crystal oscillator, a resistor, or an external clock input. The system clock is generated by dividing the oscillator frequency by four internally (i.e., $f_{cyc} = f_{OSC}/4$). Note that $\phi_{CPU} = \phi_{PER} = f_{cyc}$.

The following oscillator elements and external clock frequencies can be used.

HD404344R Series

Use an oscillator or an external clock with a frequency in the range 0.4 to 5.4 MHz^{*1}. Alternately, for CR oscillation^{*2} connect a resistor.

HD404394 and HD404318 Series

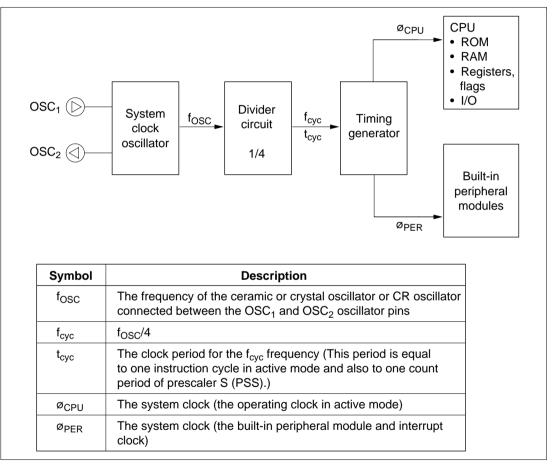
Use an oscillator or an external clock with a frequency in the range 0.4 to 4.5 MHz.

HD404358 Series

Use an oscillator or an external clock with a frequency in either the range 0.4 to 5.0 MHz^{*3} , or the range 0.4 to 8.5 MHz^{*4} .

HD404358R series

Use an oscillator or an external clock with a frequency in the range 0.4 to 5.0 MHz*⁵ or 0.4 to 8.5 MHz*⁶. Alternately, for CR oscillation*⁷ connect a resistor.


Notes: 1. HD404341R, HD404342R, HD404344R, HD4074344

- 2. HD40C4341R, HD40C4342R, HD40C4344R
- 3. HD404354, HD404356, HD404358
- 4. HD40A4354, HD40A4356, HD40A4358, HD407A4359
- 5. HD404354R, HD404356R, HD404358R
- 6. HD40A4354R, HD40A4356R, HD40A4358R, HD407A4359R
- 7. HD40C4354R, HD40C4356R, HD40C4358R, HD407C4359R

• The built-in peripheral module operating clock (ϕ_{PER}) is input to an 11-bit prescaler (PSS) and divided to generate the clocks that are used as the counter operating clocks for the built-in peripheral modules. The divisors can be set individually using the mode registers for each built-in peripheral module.

13.1.2 Block Diagram

Figure 13-1 shows the block diagram of the oscillator circuit used in the HD404344R, HD404394, HD404318, HD404358, and HD404358R Series microcomputers.

Figure 13-1 Oscillator Circuit Block Diagram (HD404344R/HD404394/HD404318/HD404358/HD404358R Series)

13.1.3 Oscillator Circuit Pins

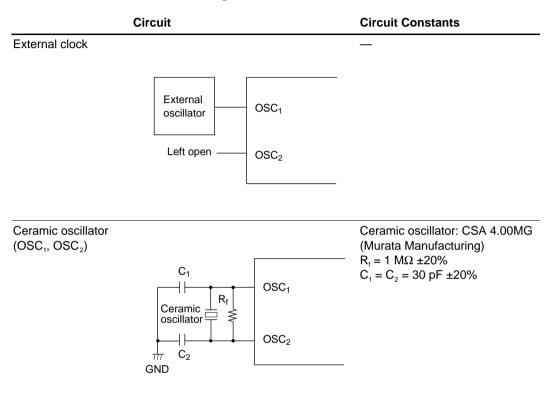
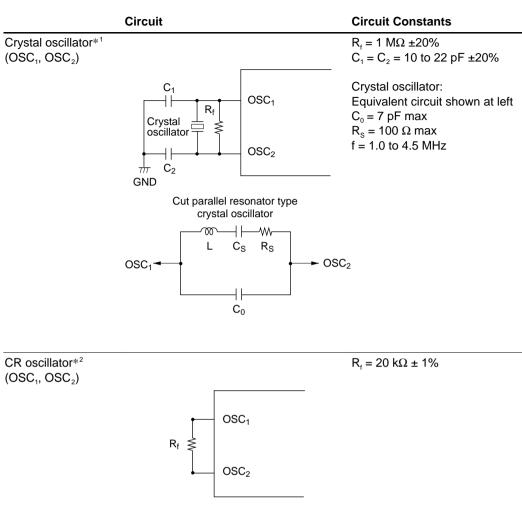

Table 13-1 lists the pins used by the oscillator circuit.

Table 13-1 Oscillator Circuit Pins


Pin	Symbol	I/O	Function			
System clock oscillator pin 1	OSC ₁	Input	Connections for the system clock oscillator element* (An external clock can be input to OSC ₁ .)			
System clock oscillator pin 2	OSC ₂	Output				
Note: * HD404344R Series						
Connect a ceramic oscillator with a frequency in the range 0.4 to 4.5 MHz or a resistor.						
HD404394 and H	HD404394 and HD404318 Series					
	Use a ceramic or crystal oscillator element with a frequency in the range 0.4 to 4.5 MHz. <u>HD404358 Series</u>					
	Use a ceramic or crystal oscillator element with a frequency in either the range 0.4 to 5.0 MHz, or the range 0.4 to 8.5 MHz.					
<u>HD404358R Ser</u>	HD404358R Series					
	Connect a ceramic or crystal oscillator with a frequency in the range 0.4 to 5.0 MHz or 0.4 to 8.5 MHz, or a resistor.					

13.2 Oscillator Connection and External Clock Input

The system clock oscillator circuit supports the use of a ceramic oscillator, a crystal oscillator, a resistor, or an external clock input. Table 13-2 shows sample oscillator circuits.

Table 13-2 Oscillator Circuit Examples

Table 13-2 Oscillator Circuit Examples (cont)

13.3 Usage Notes

Keep the following points in mind when designing and implementing the oscillator circuit.

- When using a crystal or ceramic oscillator the circuit constants will differ depending on the device actually used, the stray capacitances in the mounted circuit and other factors. Therefore, these circuit parameters should be determined in consultation with the manufacturer of the crystal or ceramic oscillator element used.
- The distance between the OSC₁ and OSC₂ pins and the devices connected to those pins should be kept as short as possible. Do not allow any other lines to cross those lines. (See figure 13-2.) Correct oscillation may become impossible due to induced signals if any lines cross.
- In like manner, the distance between the OSC₁ and OSC₂ terminals, on the one hand, and the oscillator resistor, on the other, should be as short as possible. Do not allow any other lines to cross them.

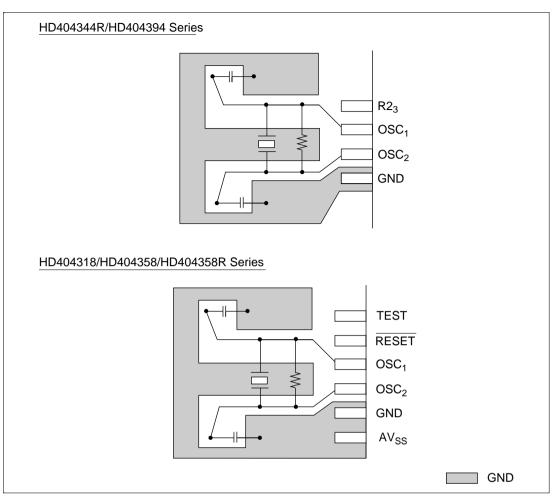


Figure 13-2 Wiring Examples for Crystal and Ceramic Oscillators

Section 14 Oscillator Circuits (HD404339 and HD404369 Series)

14.1 Overview

14.1.1 Features

The microcomputers in the HD404339 and HD404369 Series include a system clock oscillator circuit and a subsystem clock oscillator circuit with the following features.

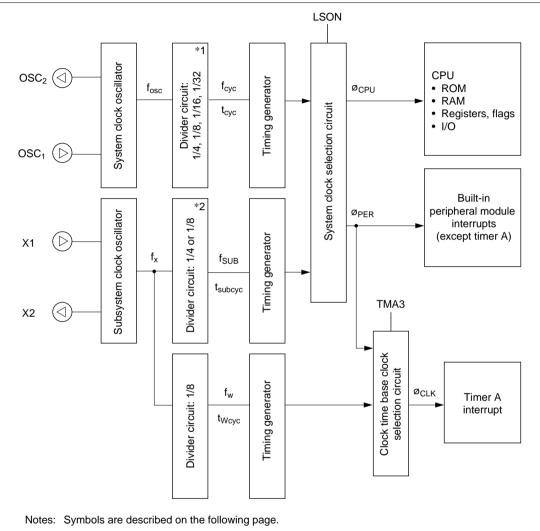
• The system clock oscillator circuit supports the use of a ceramic or crystal oscillator or an external clock input. The system clock is generated by dividing the oscillator frequency by either 4, 8, 16, or 32 internally (i.e., $f_{cyc} = f_{OSC}/4$, $f_{OSC}/8$, $f_{OSC}/16$, or $f_{OSC}/32$: the divisor is software selectable). Note that $\phi_{CPU} = \phi_{PER} = f_{cyc}$.

The following oscillator elements and external clock frequencies can be used.

HD404339 Series

Use an oscillator element or an external clock with a frequency in the range 0.4 to 4.5 MHz.

HD404369 Series


Use an oscillator element or an external clock with a frequency in either the range 0.4 to 5.0 MHz^{*1} , or the range 0.4 to 8.5 MHz^{*2} .

Notes: 1. HD404364, HD404368, HD4043612, HD404369

- 2. HD40A4364, HD40A4368, HD40A43612, HD40A4369, HD407A4369
- The built-in peripheral module operating clock (ϕ_{PER}) is input to an 11-bit prescaler (PSS) and divided to generate the clocks that are used as the counter operating clocks for the built-in peripheral modules. The divisors can be set individually using the mode registers for each built-in peripheral module.
- A 32.768 kHz crystal oscillator is used as the subsystem clock oscillator. A clock generated by dividing this frequency by four or eight ($f_{SUB} = f_X/4$ or $f_X/8$) with an internal divider circuit is used as the system clock in subactive mode. The divisor can be selected by setting a register.
- In all operating modes, a clock generated by dividing the subsystem clock frequency by eight is input to prescaler W (PSW). A clock generated by PSW division is used in timer A clock time base operation.

14.1.2 Block Diagram

Figure 14-1 shows the block diagram of the oscillator circuits used in the HD404339 and HD404369 Series microcomputers.

- 1. The divisor is selected by the system clock selection register 2 (SSR2: \$028) SSR21 and SSR20 bits.
- 2. The divisor is selected by the system clock selection register 1 (SSR1: 027) SSR12 bit.

Figure 14-1 Oscillator Circuit Block Diagram (HD404339/HD404369 Series)

$\frac{(32.768 \text{ kHz})}{f_{\text{cyc}} \qquad f_{\text{osc}}/4, f_{\text{osc}}/8, f_{\text{osc}}/16, \text{ or } f_{\text{osc}}/32}$	Symbol	Description
$ \begin{array}{c} (32.768 \text{ kHz}) \\ \hline f_{cyc} & f_{OSC}/4, f_{OSC}/8, f_{OSC}/16, \text{ or } f_{OSC}/32 \\ \hline t_{cyc} & The clock period for the f_{cyc} frequency (This period is equal to one instruction cycle in active mode and also to one count period for prescaler S (PSS).) \\ \hline f_W & f_X/8 \\ \hline t_{Wcyc} & The clock period for the f_W frequency (one count period for prescaler W (PSW)) \\ \hline f_{SUB} & f_X/4 \text{ or } f_X/8 \\ \hline t_{subcyc} & The clock period for the f_W frequency (one instruction cycle in subactive mode) \\ \hline $	f _{osc}	
t_{cyc} The clock period for the f_{cyc} frequency (This period is equal to one instruction cycle in active mode and also to one count period for prescaler S (PSS).) f_W $f_X/8$ t_{Wcyc} The clock period for the f_W frequency (one count period for prescaler W (PSW)) f_{SUB} $f_X/4$ or $f_X/8$ t_{subcyc} The clock period for the f_W frequency (one instruction cycle in subactive mode) \emptyset_{CPU} The system clock (the CPU operating clock) \emptyset_{CLK} The clock used for timer A and interrupt frame generation (Supplied from PSS when the TMA3 bit is 0, and from PSW when the TMA3 bit is 1.)	f _x	The frequency of the crystal oscillator connected between the X1 and X2 oscillator pins (32.768 kHz)
active mode and also to one count period for prescaler S (PSS).) f_w $f_{x/8}$ t_{wcyc} The clock period for the f_w frequency (one count period for prescaler W (PSW)) f_{SUB} $f_{x}/4$ or $f_{x}/8$ t_{subcyc} The clock period for the f_w frequency (one instruction cycle in subactive mode) ϕ_{CPU} The system clock (the CPU operating clock) ϕ_{CLK} The clock used for timer A and interrupt frame generation (Supplied from PSS when the TMA3 bit is 0, and from PSW when the TMA3 bit is 1.)	f _{cyc}	$f_{osc}/4, f_{osc}/8, f_{osc}/16, \text{ or } f_{osc}/32$
t_{Wcyc} The clock period for the f_w frequency (one count period for prescaler W (PSW)) f_{SUB} $f_x/4$ or $f_x/8$ t_{subcyc} The clock period for the f_w frequency (one instruction cycle in subactive mode) \emptyset_{CPU} The system clock (the CPU operating clock) \emptyset_{CLK} The clock used for timer A and interrupt frame generation (Supplied from PSS when the TMA3 bit is 0, and from PSW when the TMA3 bit is 1.)	t _{cyc}	The clock period for the f_{cyc} frequency (This period is equal to one instruction cycle in active mode and also to one count period for prescaler S (PSS).)
f_{SUB} $f_x/4 \text{ or } f_x/8$ t_{subcyc} The clock period for the f_w frequency (one instruction cycle in subactive mode) \emptyset_{CPU} The system clock (the CPU operating clock) \emptyset_{CLK} The clock used for timer A and interrupt frame generation (Supplied from PSS when the TMA3 bit is 0, and from PSW when the TMA3 bit is 1.)	f _w	f _x /8
t_{subcyc} The clock period for the f_w frequency (one instruction cycle in subactive mode) \emptyset_{CPU} The system clock (the CPU operating clock) \emptyset_{CLK} The clock used for timer A and interrupt frame generation (Supplied from PSS when the TMA3 bit is 0, and from PSW when the TMA3 bit is 1.)	t _{wcyc}	The clock period for the f_w frequency (one count period for prescaler W (PSW))
Ø _{CPU} The system clock (the CPU operating clock) Ø _{CLK} The clock used for timer A and interrupt frame generation (Supplied from PSS when the TMA3 bit is 0, and from PSW when the TMA3 bit is 1.)	f _{sub}	f _x /4 or f _x /8
Ø _{CLK} The clock used for timer A and interrupt frame generation (Supplied from PSS when the TMA3 bit is 0, and from PSW when the TMA3 bit is 1.)	t _{subcyc}	The clock period for the f_w frequency (one instruction cycle in subactive mode)
(Supplied from PSS when the TMA3 bit is 0, and from PSW when the TMA3 bit is 1.)	Ø _{CPU}	The system clock (the CPU operating clock)
	Ø _{CLK}	, v
	Ø _{PER}	The system clock (the built-in peripheral module and interrupt clock)

14.1.3 Oscillator Circuit Pins

Table 14-1 lists the pins used by the oscillator circuit.

Table 14-1 Oscillator Circuit Pins

Symbol	I/O	Function
OSC ₁	Input	Connections for the system clock oscillator element* (An external clock can be input to OSC ₁ .)
OSC ₂	Output	_
X1	Input	Connections for the 32.768 kHz crystal oscillator.
X2	Output	_
	OSC ₁ OSC ₂ X1	OSC ₁ Input OSC ₂ Output X1 Input

Note: * HD404339 Series

Use a ceramic or crystal oscillator element with a frequency in the range 0.4 to 4.5 MHz. <u>HD404369 Series</u>

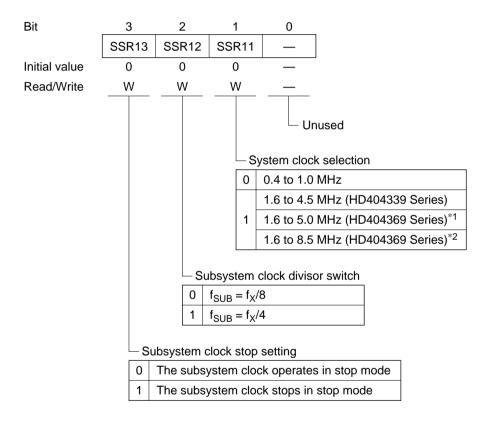
Use a ceramic or crystal oscillator element with a frequency in either the range 0.4 to 5.0 MHz, or the range 0.4 to 8.5 MHz.

14.1.4 Register and Flag Configuration

Table 14-2 lists the registers and flag used in oscillator circuit control.

Table 14-2 Register and Flag Configuration

Address	Item	Symbol	R/W	Initial value
\$027	System clock selection register 1	SSR1	W	\$0
\$028	System clock selection register 2	SSR2	W	\$0
\$020, 0	Low speed on flag	LSON	R/W	0


Note: * LSON is a control bit allocated in the register flag area. It can only be manipulated by the RAM bit manipulation instructions.

14.2 Register and Flag Descriptions

14.2.1 System Clock Selection Register 1 (SSR1: \$027)

SSR1 is a 4-bit write-only register that is used to specify the system clock oscillator frequency (f_{OSC}) actually used, to select the subsystem clock frequency (f_{SUB}) divisor, and to set the subsystem clock oscillator operating state in stop mode.

The SSR1 SSR12 and SSR11 bits are initialized to zero on reset and in stop mode.

Notes: 1. HD404364, HD404368, HD4043612, HD404369

2. HD40A4364, HD40A4368, HD40A43612, HD40A4369, HD407A4369

Bit 3—Subsystem Clock Stop Setting (SSR13): Selects whether the subsystem clock (32.768 kHz) operates or stops in stop mode.

This bit is initialized to 0 only on reset.

SSR13	Description	
0	The subsystem clock operates in stop mode	(initial value)
1	The subsystem clock stops in stop mode	

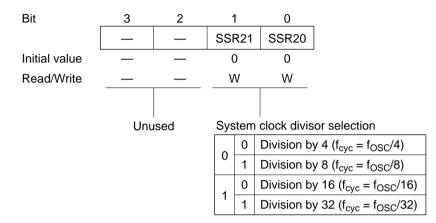
Bit 2—Subsystem Clock Divisor Switch (SSR12): Specifies the divisor for the subsystem clock that is supplied to the CPU and the built-in peripheral modules in subactive mode. However, note that the divisor for the subsystem clock supplied to PSW is fixed at eight, i.e., $f_W = f_X/8$. Thus the clock used for timer A in clock time base mode is not affected by the setting of this bit.

This bit must be set in active mode. The microcomputer may operate incorrectly if this bit is changed in subactive mode. Also, note that this bit is initialized to 0 on reset and in stop mode.

SSR12	Description
0	$f_{_{SUB}}$ will be 1/8 of the subsystem clock oscillator frequency f_x ($f_{_{SUB}} = f_x/8$) and the CPU single instruction cycle time will be 244.14 µs (when $f_x = 32.768$ kHz). (initial value)
1	f_{SUB} will be 1/4 of the subsystem clock oscillator frequency f_x ($f_{SUB} = f_x/4$) and the CPU single instruction cycle time will be 122.07 µs (when $f_x = 32.768$ kHz).

Bit 1—System Clock Selection (SSR11): The SSR11 bit must be set to match the frequency of the system clock.

This bit is initialized to 0 on reset and in stop mode.


SSR11	Description				
0	The system clock frequency is between 0.4 and 1.0 MHz (initial value)			
1	The system clock frequency is between 1.6 and 4.5 MHz (HD404339 Series)				
	The system clock frequency is between 1.6 and 5.0 MHz (HD404369 Se	ries)*1			
	The system clock frequency is between 1.6 and 8.5 MHz (HD404369 Se	ries)*2			

- Notes: If these register settings do not match the frequency of the system oscillator, the subsystem using the 32 kHz oscillator will not operate correctly. If the subsystem clock is used, then the system clock frequency must either be between 0.4 and 1.0 MHz or between 1.6 and 4.5 MHz (or 1.6 and 5.0 MHz, or 1.6 and 8.5 MHz).
 - 1. HD404364, HD404368, HD4043612, HD404369
 - 2. HD40A4364, HD40A4368, HD40A43612, HD40A4369, HD407A4369

14.2.2 System Clock Selection Register 2 (SSR2: \$028)

SSR2 is a 2-bit write-only register that selects the system clock divisor.

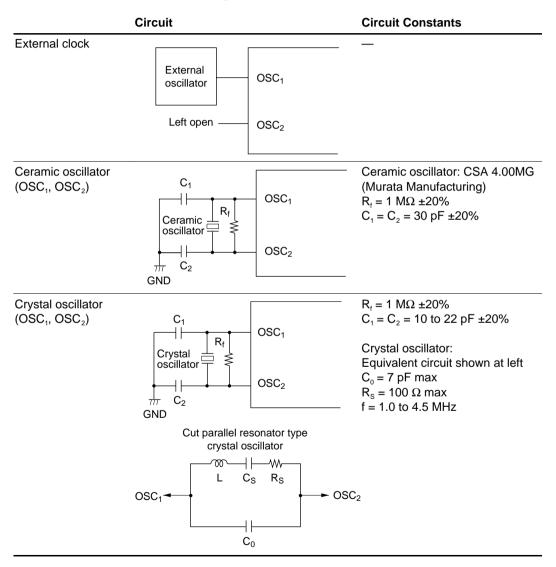
SSR2 is initialized to \$0 on reset and in stop mode.

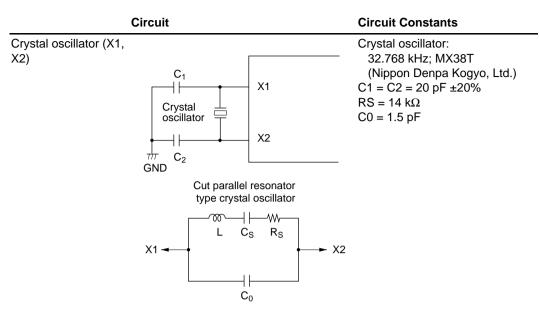
Bits 1 and 0—System Clock Selection (SSR21, SSR20): These bits set the system clock divisor to be 4, 8, 16, or 32, i.e., the system oscillator frequency is divided by 4, 8, 16, or 32. ($f_{cyc} = f_{OSC}/4$, $f_{OSC}/8$, $f_{OSC}/16$, or $f_{OSC}/32$) This setting only takes effect when watch mode is entered. That is, the system clock must be stopped to change the divisor.

SSR21	SSR20	Description	
0	0	The system clock divisor is 4 ($f_{cyc} = f_{OSC}/4$)	(initial value)
	1	The system clock divisor is 8 ($f_{cyc} = f_{OSC}/8$)	
1	0	The system clock divisor is 16 ($f_{cyc} = f_{OSC}/16$)	
	1	The system clock divisor is 32 ($f_{cyc} = f_{OSC}/32$)	

There are two methods for changing the system clock divisor as follows.

- In active mode, set the divisor by writing the SSR21 and SSR20 bits. At this point the immediately prior divisor setting remains in effect. Now, switch to watch mode and then return to active mode. When the system returns to active mode the new clock divisor will be in effect.
- 2. In subactive mode, set the divisor by writing the SSR21 and SSR20 bits. Then, return to active mode by passing through watch mode. When the system returns to active mode the new clock divisor will be in effect. (The change will also take effect for direct transition to active mode.)


14.2.3 Low Speed On Flag (LSON: \$020, 0)


LSON selects whether the system operating clock is taken from the system clock or from the subsystem clock when switching modes between active mode, watch mode, and subactive mode. See section 6.2.5, "Low Speed On Flag (LSON)", for details.

14.3 Oscillator Connection and External Clock Input

The system clock oscillator circuit supports the use of a ceramic or crystal oscillator with a frequency between 0.4 and 4.5 MHz (or between 0.4 and 8.5 MHz) or an external clock input. A 32.768 MHz crystal oscillator must be used as the subsystem clock oscillator. Table 14-3 shows sample oscillator circuits.

Table 14-3 Oscillator Circuit Examples

Table 14-3 Oscillator Circuit Examples (cont)

14.4 Usage Notes

Keep the following points in mind when designing and implementing clock oscillator circuits.

- When using a crystal or ceramic oscillator the circuit constants will differ depending on the device actually used, the stray capacitances in the mounted circuit and other factors. Therefore, these circuit parameters should be determined in consultation with the manufacturer of the crystal or ceramic oscillator element used.
- The distance between the OSC₁ and OSC₂ pins (and X1 and X2 pins) and the devices connected to those pins should be kept as short as possible. Do not allow any other lines to cross those lines. (See figure 14-2.) Correct oscillation may become impossible due to induced signals if any lines cross.
- If the subsystem clock (the 32.768 kHz oscillator) is not used, connect the X1 pin to ground and leave the X2 pin open.

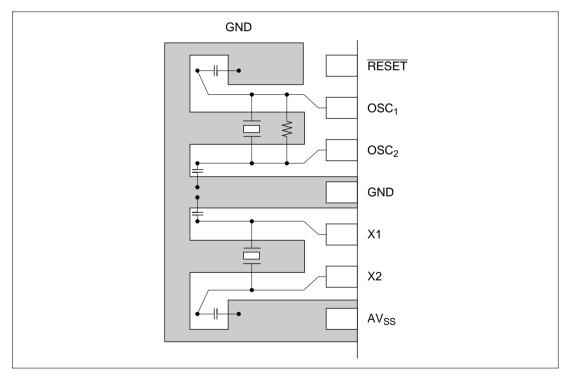


Figure 14-2 Wiring Example for Crystal and Ceramic Oscillators

Section 15 A/D Converter

15.1 Overview

The HMCS43XX family microcomputers include a built-in resistor ladder successive approximations A/D converter.

15.1.1 Features

The A/D converter has the following features.

- Eight bit resolution (1/256 of the reference voltage)
- Input channels

Series	Number of Channels
HD404344R	4
HD404394	3
HD404318	8
HD404358	_
HD404358R	_
HD404339	12
HD404369	_

• Analog power supply

Series	Analog Reference Power Supply
HD404344R	V_{cc} (internal connection)
HD404394	V _{ref}
HD404318	AV _{cc}
HD404358	_
HD404358R	_
HD404339	_
HD404369	_

- Conversion time: 34t_{cyc} or 67t_{cyc} (t_{cyc}: system clock period)
- An interrupt is generated at the completion of an A/D conversion.

15.1.2 Block Diagram

Figures 15-1 (a), (b), and (c) show the block diagrams of the A/D converter circuits used in the HD404344R/HD404394 Series, HD404318/HD404358/HD404358R Series, and HD404339/HD404369 Series microcomputers, respectively.

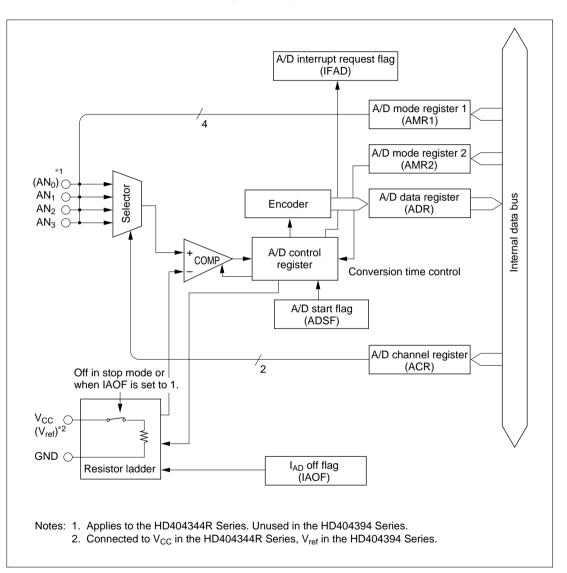


Figure 15-1 (a) A/D Converter Block Diagram (HD404344R/HD404394 Series)

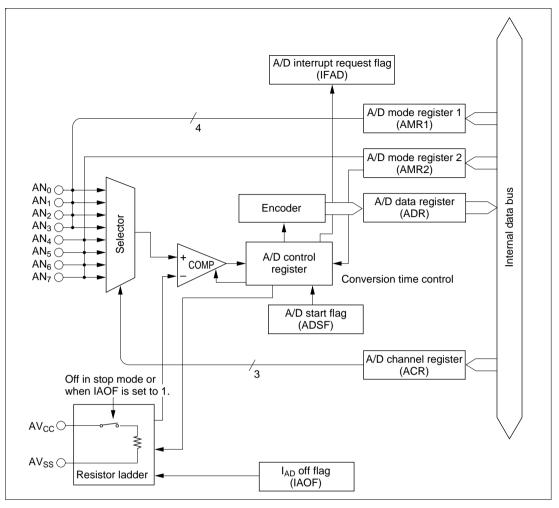


Figure 15-1 (b) A/D Converter Block Diagram (HD404318/HD404358/HD404358R Series)

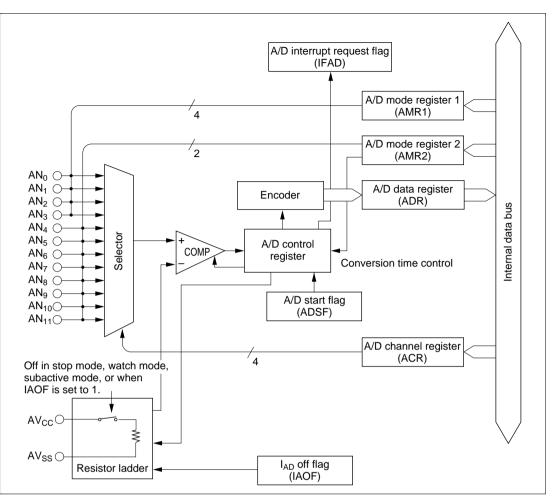


Figure 15-1 (c) A/D Converter Block Diagram (HD404339/HD404369 Series)

15.1.3 Pin Configuration

Table 15-1 shows the configuration of the A/D converter pins.

Table 15-1 Pin Configuration

HD404344R Series

Pin	Symbol	I/O	Function
Analog input channel 0	$R3_0/AN_0$	I/O or input	Shared function: Analog input channel 0 or $R3_0$
Analog input channel 1	$R3_1/AN_1$	I/O or input	Shared function: Analog input channel 1 or R31
Analog input channel 2	R3 ₂ /AN ₂	I/O or input	Shared function: Analog input channel 2 or R3 ₂
Analog input channel 3	R3 ₃ /AN ₃	I/O or input	Shared function: Analog input channel 3 or $R3_3$

HD404394 Series

Pin	Symbol	I/O	Function
Analog reference power supply	V_{ref}	_	Analog reference power supply
Analog input channel 1	$R3_1/AN_1$	I/O or input	Shared function: Analog input channel 1 or R31
Analog input channel 2	R3 ₂ /AN ₂	I/O or input	Shared function: Analog input channel 2 or R3 ₂
Analog input channel 3	R3 ₃ /AN ₃	I/O or input	Shared function: Analog input channel 3 or $R3_3$

Table 15-1 Pin Configuration (cont)

HD404318/HD404358/HD404358R	Series
-----------------------------	--------

Pin	Symbol	I/O	Function
Analog power supply	AV_{cc}		Power supply for the analog block
Analog ground	AV _{ss}		Ground for the analog block
Analog input channel 0	R3 ₀ /AN ₀	I/O or input	Shared function: Analog input channel 0 or $R3_0$
Analog input channel 1	R3 ₁ /AN ₁	I/O or input	Shared function: Analog input channel 1 or R31
Analog input channel 2	R3 ₂ /AN ₂	I/O or input	Shared function: Analog input channel 2 or $R3_2$
Analog input channel 3	R3 ₃ /AN ₃	I/O or input	Shared function: Analog input channel 3 or $R3_3$
Analog input channel 4	R4 ₀ /AN ₄	I/O or input	Shared function: Analog input channel 4 or $R4_0$
Analog input channel 5	R4 ₁ /AN ₅	I/O or input	Shared function: Analog input channel 5 or R4,
Analog input channel 6	R4 ₂ /AN ₆	I/O or input	Shared function: Analog input channel 6 or R4 ₂
Analog input channel 7	R4 ₃ /AN ₇	I/O or input	Shared function: Analog input channel 7 or $R4_3$

Table 15-1Pin Configuration (cont)

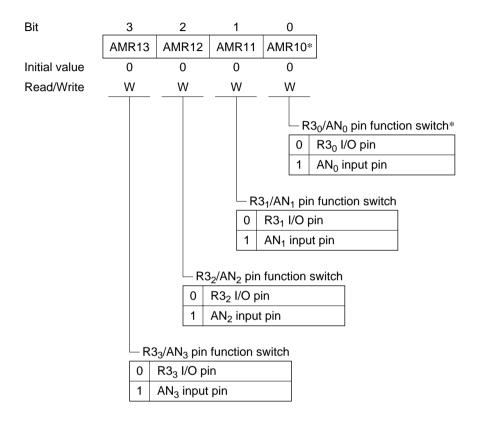
HD404339/HD404369 Series

Pin	Symbol	I/O	Function
Analog power supply	AV_{cc}	_	Power supply for the analog block
Analog ground	AV _{ss}	_	Ground for the analog block
Analog input channel 0	R3 ₀ /AN ₀	I/O or input	Shared function: Analog input channel 0 or $R3_0$
Analog input channel 1	R3 ₁ /AN ₁	I/O or input	Shared function: Analog input channel 1 or R31
Analog input channel 2	R3 ₂ /AN ₂	I/O or input	Shared function: Analog input channel 2 or R3 ₂
Analog input channel 3	R3 ₃ /AN ₃	I/O or input	Shared function: Analog input channel 3 or $R3_3$
Analog input channel 4	R4 ₀ /AN ₄	I/O or input	Shared function: Analog input channel 4 or R4 ₀
Analog input channel 5	$R4_1/AN_5$	I/O or input	Shared function: Analog input channel 5 or R4,
Analog input channel 6	R4 ₂ /AN ₆	I/O or input	Shared function: Analog input channel 6 or R4 ₂
Analog input channel 7	R4 ₃ /AN ₇	I/O or input	Shared function: Analog input channel 7 or $R4_3$
Analog input channel 8	R5 ₀ /AN ₈	I/O or input	Shared function: Analog input channel 8 or $R5_0$
Analog input channel 9	R5 ₁ /AN ₉	I/O or input	Shared function: Analog input channel 9 or R51
Analog input channel 10	R5 ₂ /AN ₁₀	I/O or input	Shared function: Analog input channel 10 or R5 ₂
Analog input channel 11	R5 ₃ /AN ₁₁	I/O or input	Shared function: Analog input channel 11 or $R5_3$

15.1.4 Register and Flag Configuration

Table 15-2 shows the configuration of the registers and flags used by the A/D converter.

 Table 15-2
 Register and Flag Configuration


Address	Item	Symbol	R/W	Initial Value
\$019	A/D mode register 1	AMR1	W	\$0
\$01A	A/D mode register 2	AMR2	W	\$0
\$017	A/D data register L	ADRL	R	\$0
\$018	A/D data register U	ADRU	R	\$8
\$016	A/D channel register	ACR	W	\$0
\$020, 2	A/D start flag	ADSF	R/W*	0
\$021, 2	IAD off flag	IAOF	R/W*	0

Note: * ADSF and IAOF are allocated in the register flag area and can only be manipulated with the RAM bit manipulation instructions. Only a 1 can be written to the ADSF flag, i.e., it can only be set to 1, it cannot be cleared to 0.

15.2 Register and Flag Descriptions

15.2.1 A/D Mode Register 1 (AMR1: \$019)

AMR1 is a 4-bit write-only register that switches the functions of the R3 port shared function pins.

Note: * Applies to the HD404344R, HD404318, HD404358, HD404358R, HD404339, and HD404369 Series. The AMR10 bit is unused in the HD404394 Series.

The AMR TO bit is unused in the HD404394 Selles.

Bit 3—R3₃/AN₃ Pin Function Switch (AMR13): Selects whether the R3₃/AN₃ pin functions as the R3₃ I/O pin or as the A/D converter channel 3 input pin AN₃.

AMR13	Description	
0	The $R3_3/AN_3$ pin functions as the $R3_3$ I/O pin.	(initial value)
1	The $R3_3/AN_3$ pin functions as the AN_3 input pin.	

Bit 2—R3₂/AN₂ Pin Function Switch (AMR12): Selects whether the $R3_2/AN_2$ pin functions as the R3₂ I/O pin or as the A/D converter channel 2 input pin AN₂.

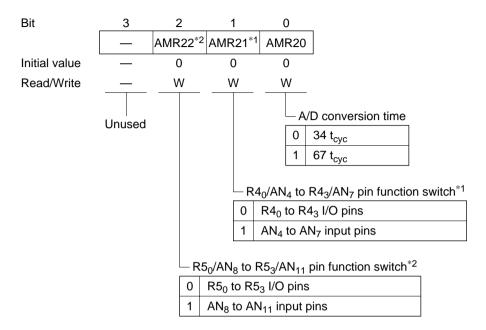
AMR12	Description	
0	The $R3_2/AN_2$ pin functions as the $R3_2$ I/O pin.	(initial value)
1	The $R3_2/AN_2$ pin functions as the AN_2 input pin.	

Bit 1—R3₁/AN₁ **Pin Function Switch (AMR11):** Selects whether the R3₁/AN₁ pin functions as the R3₁ I/O pin or as the A/D converter channel 1 input pin AN₁.

AMR11	Description	
0	The $R3_1/AN_1$ pin functions as the $R3_1$ I/O pin.	(initial value)
1	The $R3_1/AN_1$ pin functions as the AN_1 input pin.	

HD404344R/HD404318/HD404358/HD404358R/HD404339/HD404369 Series

Bit 0—R3₀/AN₀ Pin Function Switch (AMR10): Selects whether the R3₀/AN₀ pin functions as the R3₀ I/O pin or as the A/D converter channel 0 input pin AN₀.


AMR10	Description	
0	The $R3_0/AN_0$ pin functions as the $R3_0$ I/O pin.	(initial value)
1	The $R3_0/AN_0$ pin functions as the AN_0 input pin.	

HD404394 Series

Bit 0—Reserved Bit: This bit is unused.

15.2.2 A/D Mode Register 2 (AMR2: \$01A)

AMR2 is a 4-bit write-only register that sets the A/D conversion time and switches the functions of certain R port shared function pins.

- Notes: 1. Applies to the HD404318, HD404358, HD404358R, HD404339, and HD404369 Series. The AMR21 bit is unused in the HD404344R and HD404394 Series.
 - Applies to the HD404339 and HD404369 Series. The AMR22 bit is unused in the HD404344R, HD404394, HD404318, HD404358, and HD404358R Series.

HD404339/HD404369 Series

Bit 2—R5₀/AN₈ to R5₃/AN₁₁ Pin Function Switch (AMR22): Selects whether the R5₀/AN₈ to R5₃/AN₁₁ pins function as the R5₀ to R5₃ I/O pins or as the A/D converter channel 8 to 11 input pins (AN₈ to AN₁₁).

AMR22	Description	
0	The $R5_0/AN_8$ to $R5_3/AN_{11}$ pins function as the $R5_0$ to $R5_3$ I/O pins.	(initial value)
1	The $R5_0/AN_8$ to $R5_3/AN_{11}$ pins function as the AN_8 to AN_{11} input pins.	

HD404344R/HD404394/HD404318/HD404358/HD404358R Series

Bit 2—Reserved Bit: This bit is unused.

HD404318/HD404358/HD404358R/HD404339/HD404369 Series

Bit 1—R4₀/AN₄ to R4₃/AN₇ Pin Function Switch (AMR21): Selects whether the R4₀/AN₄ to R4₃/AN₇ pins function as the R4₀ to R4₃ I/O pins or as the A/D converter channel 4 to 7 input pins (AN₄ to AN₇).

AMR21	Description	
0	The R4 $_{\rm 0}/AN_{\rm 4}$ to R4 $_{\rm 3}/AN_{\rm 7}$ pins function as the R4 $_{\rm 0}$ to R4 $_{\rm 3}$ I/O pins.	(initial value)
1	The R4 $_{\rm 0}/AN_{\rm 4}$ to R4 $_{\rm 3}/AN_{\rm 7}$ pins function as the AN $_{\rm 4}$ to AN $_{\rm 7}$ input pins.	

HD404344R/HD404394 Series

Bit 1—Reserved Bit: This bit is unused.

Bit 0—A/D Conversion Time Selection (AMR20): Selects the A/D conversion time.

AMR20	Description	
0	Conversion time = $34t_{cyc}$	(initial value)
1	Conversion time = 67t _{cyc}	
Noto: t	is the aveter cleak pariod	

Note: t_{cyc} is the system clock period.

15.2.3 A/D Data Register L, U (ADRL: \$017, ADRU: \$018)

The ADRL/U pair (ADRL and ADRU) forms an 8-bit read-only register in which ADRL is the lower digit and ADRU is the upper digit.

The 8-bit A/D converted data is transferred to the ADRL/U pair and held until the start of the next conversion.

The contents of this register is not guaranteed during A/D converter operation.

The ADRL/U pair is not cleared on reset.

	Bit	3	2	1	0	_
ADRL		ADRL3	ADRL2	ADRL1	ADRL0	
	Initial value	0	0	0	0	
	Read/Write	R	R	R	R	
				A/D co	nverted da	ata (lower 4 bits)
	Bit	3	2	1	0	_
ADRU		ADRU3	ADRU2	ADRU1	ADRU0	
	Initial value	1	0	0	0	
	Read/Write	R	R	R	R	
				A/D co	nverted da	ata (upper 4 bits)

15.2.4 A/D Channel Register (ACR: \$016)

ACR is a 4-bit write-only register that selects the input channel for which A/D conversion will be performed.

Bit	3	2	1	0
	ACR3	ACR2	ACR1	ACR0
Initial value	0	0	0	0
Read/Write	W	W	W	W

Analog input channel selection

	ACR2	ACR1	ACR0	Input channel			
ACR3				HD404344R	HD404394	HD404318/ HD404358/ HD404358R	HD404339/ HD404369
		0	0	AN ₀		AN ₀	AN ₀
	0		1	AN ₁	AN ₁	AN ₁	AN ₁
		1	0	AN ₂	AN ₂	AN ₂	AN ₂
0			1	AN ₃	AN ₃	AN ₃	AN ₃
	1	0	0			AN ₄	AN ₄
			1			AN ₅	AN_5
			0			AN ₆	AN ₆
			1			AN ₇	AN ₇
	0	0	0				AN ₈
1			1				AN ₉
		1	0				AN ₁₀
			1				AN ₁₁
	1	*	*				

Note: * Don't care

: Unused

Bits 3 to 0—Analog Input Channel Selection (ACR3 to ACR0): These bits select the analog input channel.

HD404344R Series

ACR3	ACR2	ACR1	ACR0	Description	
0	0	0	0	Analog input channel 0 (AN0) selected.	(initial value)
			1	Analog input channel 1 (AN1) selected.	
		1	0	Analog input channel 2 (AN2) selected.	
			1	Analog input channel 3 (AN3) selected.	
	1	*	*	Unused	
1	*	*	*	—	

Note: * Don't care

HD404394 Series

ACR3	ACR2	ACR1	ACR0	Description	
0	0	0	0	Unused	(initial value)
			1	Analog input channel 1 (AN1) selected.	
		1	0	Analog input channel 2 (AN2) selected.	
			1	Analog input channel 3 (AN3) selected.	
	1	*	*	Unused	
1	*	*	*		

Note: * Don't care

HD404318/HD404358/HD404358R Series

ACR3	ACR2	ACR1	ACR0	Description	
0	0	0	0	Analog input channel 0 (AN0) selected.	(initial value)
			1	Analog input channel 1 (AN1) selected.	
		1	0	Analog input channel 2 (AN2) selected.	
			1	Analog input channel 3 (AN3) selected.	
	1	0	0	Analog input channel 4 (AN4) selected.	
			1	Analog input channel 5 (AN5) selected.	
		1	0	Analog input channel 6 (AN6) selected.	
			1	Analog input channel 7 (AN7) selected.	
1	*	*	*	Unused	

Note: * Don't care

HD404339/HD404369 Series

ACR3	ACR2	ACR1	ACR0	Description	
0	0	0	0	Analog input channel 0 (AN0) selected.	(initial value)
			1	Analog input channel 1 (AN1) selected.	
		1	0	Analog input channel 2 (AN2) selected.	
			1	Analog input channel 3 (AN3) selected.	
	1	0	0	Analog input channel 4 (AN4) selected.	
			1	Analog input channel 5 (AN5) selected.	
		1	0	Analog input channel 6 (AN6) selected.	
			1	Analog input channel 7 (AN7) selected.	
1	0	0	0	Analog input channel 8 (AN8) selected.	
			1	Analog input channel 9 (AN9) selected.	
		1	0	Analog input channel 10 (AN10) selected.	
			1	Analog input channel 11 (AN11) selected.	
	1	*	*	Unused	

Note: * Don't care

15.2.5 A/D Start Flag (ADSF: \$020, 2)

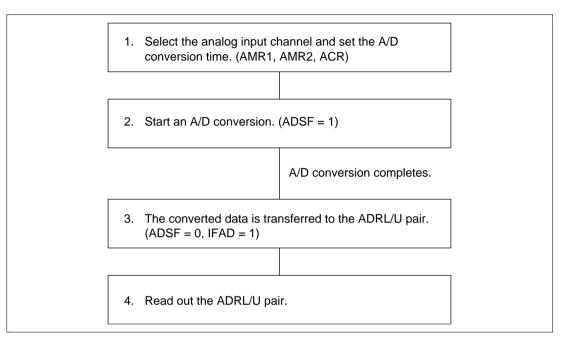
ADSF starts the A/D conversion process. When ADSF is set to 1, the A/D converter starts. When the conversion completes, the converted data is transferred to the ADRL/U pair and ADSF is cleared to 0.

ADSF can be read and written using the RAM bit manipulation instructions.

ADSF is cleared to 0 on reset and in stop mode.

ADSF	Description	
0	(Read) Indicates that the A/D conversion had completed. (Write) The value 0 cannot be written.	(initial value)
1	(Read) An A/D conversion is in progress. (Write) Starts the A/D converter.	

15.2.6 IAD Off Flag (IAOF: \$021, 2)


The current flow through the resistor ladder can be cut off by setting IAOF to 1 in either standby mode or active mode. However, the A/D converter will not operate correctly in this state. Do not use the A/D converter when IAOF is set to 1.

IAOF	Description	
0	Current flows in the resistor ladder.	(initial value)
1	No current flows in the resistor ladder.	

15.3 A/D Converter Operation

15.3.1 A/D Conversion Operation

Figure 15-2 shows the A/D conversion operation sequence.

Figure 15-2 A/D Conversion Operation Sequence

An A/D converter operation proceeds as follows.

- 1. Select the analog input channel and set the A/D conversion time using the AMR register (AMR1, AMR2, and ACR).
- 2. Start an A/D conversion by setting ADSF to 1.
- 3. When the A/D conversion completes, the converted data is transferred to the ADRL/U pair, and ADSF is cleared to 0. At the same time, IFAD is set to 1.
- 4. Read out the data from the ADRL/U pair.

Figure 15-3 shows the timing chart for A/D converter operation.

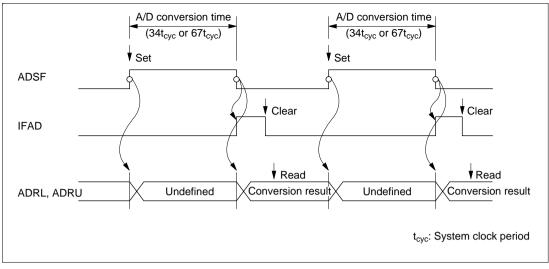
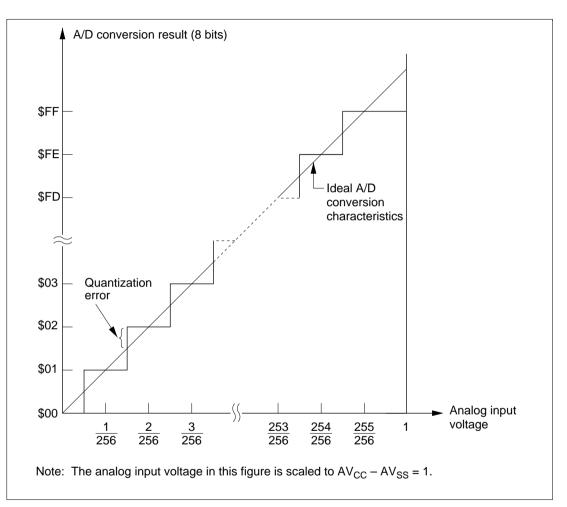


Figure 15-3 A/D Converter Operation Timing Chart


15.3.2 Low Power Mode Operation

The current supplied to the resistor ladder is cut off in stop mode, watch mode*, and subactive mode. As a result, the A/D converter does not operate in these modes.

Note: * Applies to the HD404339 and HD404369 Series.

15.3.3 A/D Converter Precision

Since an A/D converter converts an analog signal to a digital code, there is, in principle, a quantization error (defined to be 1/2 the LSB) associated with the conversion. Figure 15-4 shows the correspondence between an eight-bit resolution A/D converter's analog input voltage and the result of the conversion.

Figure 15-4 Correspondence between A/D Converter Analog Input and Digital Output

The difference between the result of an A/D conversion and the analog input is called the absolute precision. See the "A/D Converter Characteristics" item for each series in section 25, "Electrical Characteristics", for the absolute precision provided by these A/D converters.

15.3.4 Notes on the Analog Reference Power Supply

In products in which the A/D converter reference voltage is fixed at AV_{CC} or V_{CC} (the HD404344R, HD404318, HD404358, HD404358R, HD404339, and HD404369 Series), the resolution is fixed at AV_{CC}/256 or V_{CC}/256. (Note that a reference voltage in the range V_{CC} – $0.3 \le$ AV_{CC} \le V_{CC} + 0.3 must be used even in products that provide an AV_{CC} pin.)

The HD404394 Series microcomputers, which include a V_{ref} pin, support A/D conversions with an even higher resolution (V_{ref}/256) by varying the V_{ref} pin voltage. However, the voltage applied to the V_{ref} pin must be in the range V_{CC}/2 \leq V_{ref} \leq V_{CC}.

15.4 Interrupts

The A/D converter interrupt source is the completion of A/D conversion.

When A/D conversion completes, the IFAD bit in the interrupt control bit area is set to 1.

IFAD is never cleared automatically, even if the interrupt is accepted. The interrupt handling routine should clear IFAD to 0.

The A/D interrupt can be independently enabled or masked with the A/D interrupt mask (IMAD) in the interrupt control bit area.

15.5 Usage Notes

Keep the following points in mind when using the A/D converter.

- ADSF is allocated in the register flag area. Use the SEM and SEMD instructions to set ADSF. Do not attempt to write a 0 to ADSF.
- Do not write ADSF during an A/D conversion.
- The contents of the ADRL/U pair are undefined during an A/D conversion.
- Do not write a 1 to IAOF during an A/D conversion.
- The pull-up MOS transistors on R port/analog input shared function pins are not turned off by selecting the pin for use as an analog input pin with AMR1 if the MIS MIS3 bit is set to 1 (pull-up MOS transistors active) and the PDR for the corresponding pin is set to 1. If the pull-up MOS transistors are activated, always be sure to turn off the pull-up MOS transistor for the pin being used as an analog input pin by clearing to 0 the PDR for that pin. Note that the PDRs are set to 1 immediately following a reset.

Figure 15-5 shows the circuit structure of the R port/analog input shared function pins.

AMR1 is a register that is used to set the port output to the high impedance state. ACR is used to switch the pin function to the analog input function.

Table 15-3 lists the states of the R port/analog input shared function pins that can be set by combinations of the AMR1 (AMR2), MIS3 bit, DCR, and PDR settings.

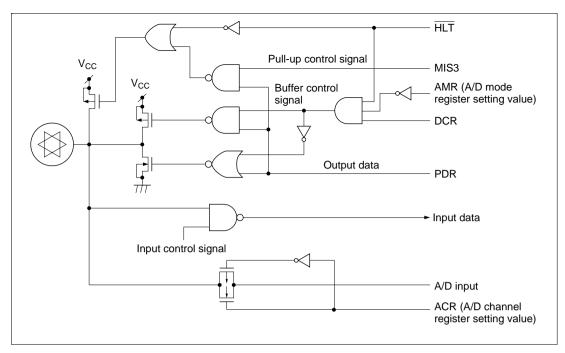


Figure 15-5 R Port/Analog Input Shared Function Pin Circuit

Table 15-3 Program Control of R Port/Analog Input Shared Function Pin States

Corresponding b or AMR2	it in AMR1	0 (R port selected)							
MIS3 bit		0 1							
DCR	0 1			(0	1			
PDR		0	1	0	1	0	1	0	1
CMOS buffer	PMOS	-		_	On			_	On
	NMOS			On				On	
Pull-up MOS trai	I				—	On		On	

Note: -: off

Corresponding b or AMR2	it in AMR1	1 (analog input selected)							
MIS3 bit		0 1							
DCR	0		1		0		1		
PDR		0	1	0	1	0	1	0	1
CMOS buffer	PMOS	-		_	—	—			—
	NMOS			_	_				—
Pull-up MOS trar		-			_	On	_	On	

Note: -: off

15.6 Notes on Mounting Built-in A/D Converter Microcomputers (HD404318 and HD404339 Series Only)

Observe the following points when designing and implementing built-in A/D converter microcomputers circuits.

 Insert bypass capacitors (laminated ceramic type) of about 0.1 μF between AV_{CC} and AV_{ss} and between pins used as analog pins and AV_{ss}. Also, connect unused analog pins to AV_{ss}. Figure 15-6 (a) shows connection examples for the HD404318 series, and figure 15-6 (b) shows connection examples for the HD404339 series.

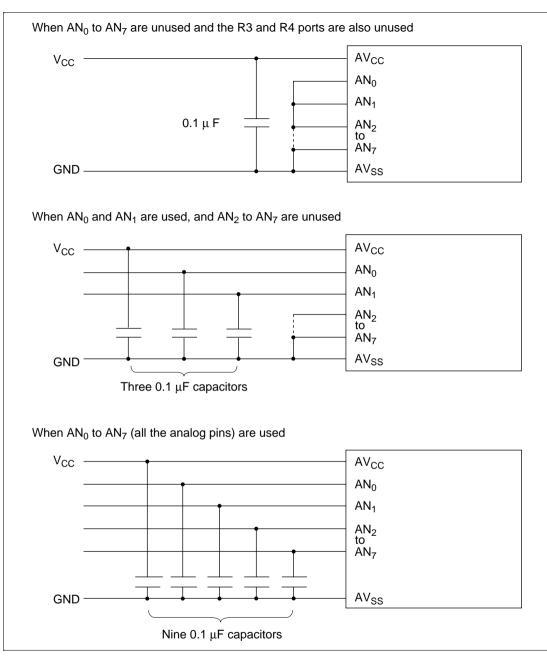


Figure 15-6 (a) Connection Examples for AV_{CC}/AV_{SS} and AV_{SS} and the Used Analog Pins (HD404318 Series)

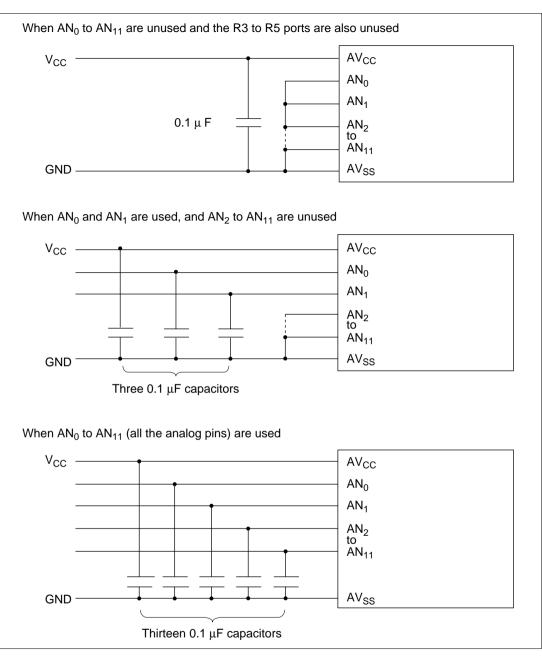


Figure 15-6 (b) Connection Examples for $AV_{\rm CC}/AV_{\rm SS}$ and $AV_{\rm SS}$ and the Used Analog Pins (HD404339 Series)

• Connect the capacitor used in normal power supply circuit design between V_{CC} and ground. Since there will be no resistors inserted in series in the power supply circuit, the capacitors are connected in parallel. Thus a total of two capacitors, a large capacitor (C1) and a small capacitor (C2) are used. Figure 15-7 shows this circuit.

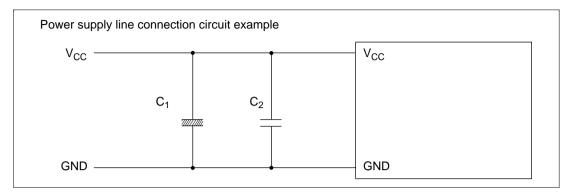


Figure 15-7 V_{CC} to Ground Circuit Example

Section 16 Prescalers

16.1 Overview

The microcomputers in the HMCS43XX family include one or two built-in prescalers. The prescaler(s) provided differ between product series.

	Series	
Prescaler	HD404344R/HD404394/HD404318/HD404358/ HD404358R	HD404339/HD404369
Prescaler S (PSS)	0	0
Prescaler W (PSW)		0

The internal clocks for timers A to C and the operating clocks for each built-in peripheral module are selected from the prescaler outputs by the mode registers for the built-in peripheral modules.

Table 16-1 lists the input clocks and operating conditions for the prescalers.

Table 16-1 Prescaler Input Clocks and Operating Conditions

Item	Input Clock	Reset Condition	Stop Condition
Prescaler S	System clock	 System reset 	System reset
			Stop mode

HD404344R/HD404394/HD404318/HD404358/HD404358R Series

Item	Input Clock	Reset Condition	Stop Condition
Prescaler S	 In active mode and standby mode: system clock In subactive mode: subsystem cloc 		System resetStop modeWatch mode
Prescaler W	 A clock generated by dividing the 32.768 kHz subsystem clock by eight. 	System resetSoftware*	System resetStop mode

Note: * PSW is cleared to 0 when all the bits TMA3 to TMA1 in timer mode register A (TMA) are set to 1.

HD404339/HD404369 Series

Figure 16-1 (a) shows the prescaler output destinations for the HD404344R and HD404394 Series, figure 16-1 (b) shows the destinations for the HD404318, HD404358, and HD404358R Series, and figure 16-1 (c) shows the destinations for the HD404339 and HD404369 Series.

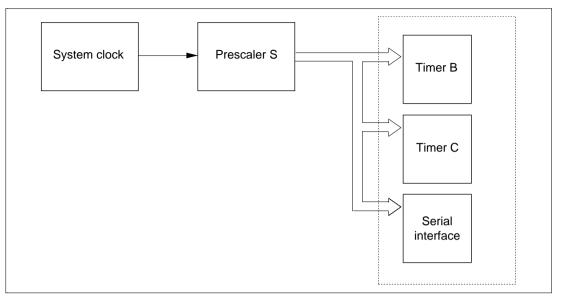


Figure 16-1 (a) Prescaler Output Destinations (HD404344R and HD404394 Series)

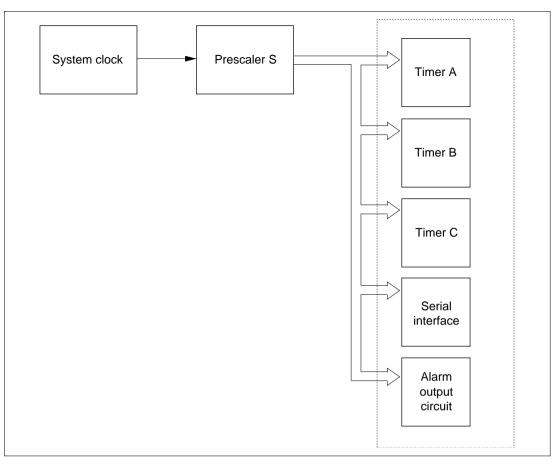


Figure 16-1 (b) Prescaler Output Destinations (HD404318, HD404358, and HD404358R Series)

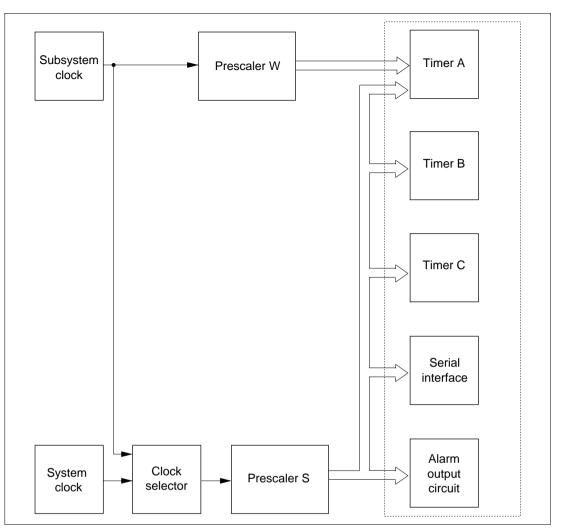


Figure 16-1 (c) Prescaler Output Destinations (HD404339 and HD404369 Series)

16.2 Prescaler S (PSS)

PSS is an 11-bit counter that takes the system clock as its input in active mode and standby mode, and the subsystem clock in subactive mode*.

PSS is initialized to \$000 on reset, and divides the system clock after the reset is cleared.

Although PSS operation stops during reset, in stop mode, and in watch mode*, it continues to operate in all other operating modes. Although the PSS output is supplied to all the built-in peripheral modules, the divisor it implements can be selected independently for each built-in peripheral module.

Note: * Applies to the HD404339 and HD404369 Series.

16.3 Prescaler W (PSW) (HD404339 and HD404369 Series Only)

PSW is a 5-bit counter that takes as its input a clock generated by dividing the 32.768 kHz subsystem clock by eight.

PSW is initialized to \$00 on reset, and divides the subsystem clock after the reset is cleared. Although PSW stops during reset and in stop mode, it continues to operate in all other operating modes. PSW can be reset in software.

Only timer A uses the PSW output.

Section 17 Timer A (HD404318/HD404358/HD404358R/HD404339 /HD404369 Series)

17.1 Overview

The microcomputers in the HD404318, HD404358, HD404358R, HD404339, and HD404369 Series include the timer A peripheral module. (The microcomputers in the HD404344R and HD404394 Series do not include timer A.)

17.1.1 Features

Timer A is an eight-bit free-running timer.

Timer A can also be used as a clock time base in microcomputers in the HD404339 and HD404369 Series, which include the 32.768 kHz subsystem clock oscillator.

HD404318/HD404358/HD404358RSeries

- The timer clock can be selected from one of eight internal clock signals (2048t_{cyc}, 1024t_{cyc}, 512t_{cyc}, 128t_{cyc}, 32t_{cyc}, 8t_{cyc}, 4t_{cyc}, and 2t_{cyc}) generated by prescaler S (PSS).
- Interrupts can be generated on timer counter A (TCA) overflow.

HD404339/HD404369 Series

- The timer clock can be selected from one of eight internal clock signals (with periods of 2048t_{eve}, 1024t_{eve}, 512t_{eve}, 128t_{eve}, 32t_{eve}, 8t_{eve}, 4t_{eve}, and 2t_{eve}) when prescaler S (PSS) is used.
- The timer clock can be selected from one of five internal clock signals (with periods of $32t_{Wcyc}$, $16t_{Wcyc}$, $8t_{Wcyc}$, $2t_{Wcyc}$, and $1/2t_{Wcyc}$) when prescaler W (PSW) is used (when timer A is used as a clock time base).
- Interrupts can be generated by the overflow of the timer counter A (TCA) register.
- Note: t_{cyc} (which is $1/\phi_{PER}$) is the period of one PSS count cycle, and t_{Wcyc} (which is 244.24 µs) is the period of one PSW count cycle.

17.1.2 Block Diagram

Figures 17-1 (a) and (b) show the block diagrams of timer A in the HD404318, HD404358, and HD404358R Series and in the HD404339 and HD404369 Series, respectively.

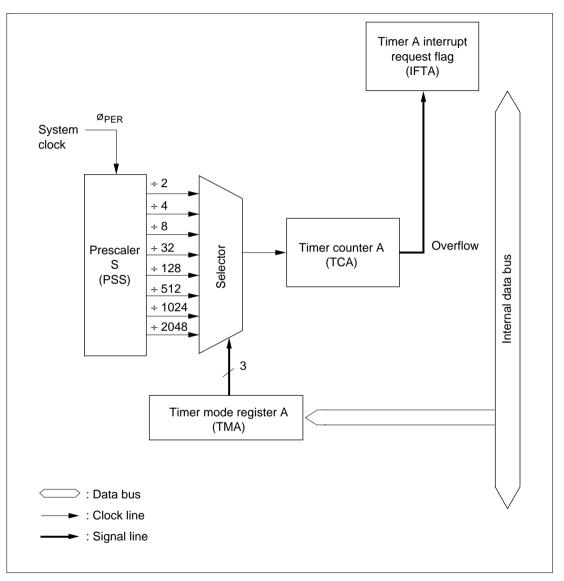


Figure 17-1 (a) Timer A Block Diagram (HD404318, HD404358, and HD404358R Series)

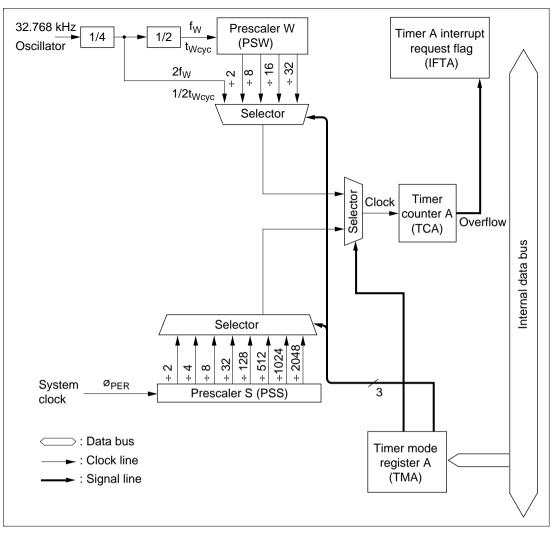


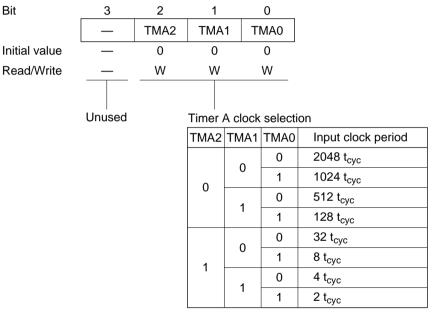
Figure 17-1 (b) Timer A Block Diagram (HD404339 and HD404369 Series)

17.1.3 Register Configuration

Table 17-1 lists the registers associated with timer A.

Table 17-1 Timer A Register Structure

Address	Register	Symbol	R/W	Initial Value
\$008	Timer mode register A	TMA	W	\$0
_	Timer counter A	TCA	_	\$00


17.2 Register Descriptions

17.2.1 Timer Mode Register A (TMA: \$008)

HD404318/HD404358/HD404358R Series

TMA is a 4-bit write-only register that selects the divisor for prescaler S, which is used as the timer A clock source.

TMA is initialized to \$0 on reset and in stop mode.

Note: $t_{cyc} = f_{OSC}/4$

Bits 2 to 0—Timer A Clock Selection (TMA2 to TMA0): These bits select the timer A clock source divisor.

				Description								
TMA2	TMA1	TMA0	Source Prescaler	Symbol	f _{osc} = 400 kHz	f _{osc} = 800 kHz	f _{osc} = 2 MHz	f _{osc} = 4 MHz				
0	0	0	PSS	2048t _{cyc}	20.48 ms	10.24 ms	4.096 ms	2.048 ms				
		1	PSS	1024t _{cyc}	10.24 ms	5.12 ms	2.048 ms	1.024 ms				
	1	0	PSS	512t _{cyc}	5.12 ms	2.56 ms	1.024 ms	512 µs				
		1	PSS	128t _{cyc}	1.28 ms	640 µs	256 µs	128 µs				
1	0	0	PSS	32t _{cyc}	320 µs	160 µs	64 µs	32 µs				
		1	PSS	8t _{cyc}	80 µs	40 µs	16 µs	8 µs				
	1	0	PSS	4t _{cyc}	40 µs	20 µs	8 µs	4 µs				
_		1	PSS	2t _{cyc}	20 µs	10 µs	4 µs	2 µs				

HD404339/HD404369 Series

TMA is a 4-bit write-only register that selects the prescaler to be used as the timer A clock source (PSS or PSW) and the divisor used.

TMA is initialized to \$0 on reset and in stop mode.

Bit	3	2	1	0
	TMA3	TMA2	TMA1	TMA0
Initial value	0	0	0	0
Read/Write	W	W	W	W

Timer A clock selection

TMA3	TMA2	TMA1	TMA0	Prescaler	Input clock period	Mode		
		0	0	PSS	2048 t _{cyc} *1			
	0	0	1	PSS	1024 t _{cyc}			
	0	1	0	PSS	512 t _{cyc}	Free-		
0		1	1	PSS	128 t _{cyc}	running		
		0	0	PSS	32 t _{cyc}	timer mode		
	1	0	1	PSS	8 t _{cyc}			
		1	0	PSS	4 t _{cyc}			
		I	1	PSS	2 t _{cyc}			
		0		0		PSW	32 t _{Wcyc} *2	
	0		1	PSW	16 t _{Wcyc}			
	0	1	0	PSW	8 t _{Wcyc}	Clock time base		
1		I	1	PSW	2 t _{Wcyc}	mode		
		0	0	_	1/2 t _{Wcyc}			
	1	0	1	_	Unused			
	1	1	*	_	Clears PSW and TCA			

Notes: 1. $t_{cyc} = f_{OSC}/4$, $f_{OSC}/8$, $f_{OSC}/16$, or $f_{OSC}/32$ 2. $t_{Wcyc} = f_X/8$

* Don't care

Bit 3—Timer A Source Prescaler Selection (TMA3): Selects PSS or PSW as the timer A clock source.

TMA3	Description	
0	PSS is used as the timer A clock source.	(initial value)
1	PSW is used as the timer A clock source.	

Bits 2 to 0—Timer A Clock Selection (TMA2 to TMA0): These bits select the timer A clock source period. The period selected depends on the combination with TMA3 as follows.

• Free-running mode

a. System Clock Divisor: 4 (SSR21, SSR20* = 00)

				Description							
					Input Clock Period						
ТМАЗ	TMA2	TMA1	ТМА0	Source Prescaler	Symbol	f _{osc} = 400 kHz	f _{osc} = 800 kHz	f _{osc} = 2 MHz	f _{osc} = 4 MHz		
0	0	0	0	PSS	2048t _{cyc}	20.48 ms	10.24 ms	4.096 ms	2.048 ms		
			1	PSS	1024t _{cyc}	10.24 ms	5.12 ms	2.048 ms	1.024 ms		
		1	0	PSS	512t _{cyc}	5.12 ms	2.56 ms	1.024 ms	512 µs		
			1	PSS	128t _{cyc}	1.28 ms	640 µs	256 µs	128 µs		
	1	0	0	PSS	32t _{cyc}	320 µs	160 µs	64 µs	32 µs		
			1	PSS	8t _{cyc}	80 µs	40 µs	16 µs	8 µs		
		1	0	PSS	4t _{cyc}	40 µs	20 µs	8 µs	4 µs		
			1	PSS	2t _{cyc}	20 µs	10 µs	4 µs	2 µs		

Note: * System clock selection register 2 (SSR2) bits 1 and 0

b. System Clock Divisor: 8 (SSR21, SSR20* = 01)

				Description								
					Input Clock Period							
ТМАЗ	TMA2	TMA1	ТМА0	Source Prescaler	Symbol	f _{osc} = 400 kHz	f _{osc} = 800 kHz	f _{osc} = 2 MHz	f _{osc} = 4 MHz			
0	0	0	0	PSS	2048t _{cyc}	40.96 ms	20.48 ms	8.192 ms	4.096 ms			
			1	PSS	1024t _{cyc}	20.48 ms	10.24 ms	4.096 ms	2.048 ms			
		1	0	PSS	512t _{cyc}	10.24 ms	5.12 ms	2.048 ms	1.024 ms			
			1	PSS	128t _{cyc}	2.56 ms	1.28 ms	512 µs	256 µs			
	1	0	0	PSS	32t _{cyc}	640 µs	320 µs	128 µs	64 µs			
			1	PSS	8t _{cyc}	160 µs	80 µs	32 µs	16 µs			
		1	0	PSS	4t _{cyc}	80 µs	40 µs	16 µs	8 µs			
			1	PSS	2t _{cyc}	40 µs	20 µs	8 µs	4 µs			

Note: * System clock selection register 2 (SSR2) bits 1 and 0

c. System Clock Divisor: 16 (SSR21, SSR20* = 10)

				Description							
						Inp	ut Clock P	eriod			
ТМАЗ	TMA2	TMA1	TMA0	Source Prescaler	Symbol	f _{osc} = 400 kHz	f _{osc} = 800 kHz	f _{osc} = 2 MHz	f _{osc} = 4 MHz		
0	0	0	0	PSS	2048t _{cyc}	81.92 ms	40.96 ms	16.384 ms	8.192 ms		
			1	PSS	1024t _{cyc}	40.96 ms	20.48 ms	8.192 ms	4.096 ms		
		1	0	PSS	512t _{cyc}	20.48 ms	10.24 ms	4.096 ms	2.048 ms		
			1	PSS	128t _{cyc}	5.12 ms	2.56 ms	1.024 ms	512 µs		
	1	0	0	PSS	32t _{cyc}	1.28 ms	640 µs	256 µs	128 µs		
			1	PSS	8t _{cyc}	320 µs	160 µs	64 µs	32 µs		
		1	0	PSS	4t _{cyc}	160 µs	80 µs	32 µs	16 µs		
			1	PSS	2t _{cyc}	80 µs	40 µs	16 µs	8 µs		

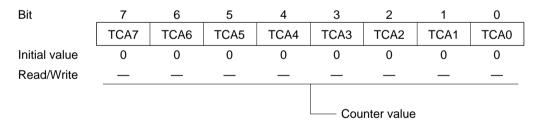
Note: * System clock selection register 2 (SSR2) bits 1 and 0

d. System Clock Divisor: 32 (SSR21, SSR20* = 11)

					Description						
					Input Clock Period						
ТМАЗ	TMA2	TMA1	ТМА0	Source Prescaler	Symbol	f _{osc} = 400 kHz	f _{osc} = 800 kHz	f _{osc} = 2 MHz	f _{osc} = 4 MHz		
0	0	0	0	PSS	2048t _{cyc}	163.84 ms	81.92 ms	32.768 ms	16.384 ms		
			1	PSS	1024t _{cyc}	81.92 ms	40.96 ms	16.384 ms	8.192 ms		
		1	0	PSS	512t _{cyc}	40.96 ms	20.48 ms	8.192 ms	4.096 ms		
			1	PSS	128t _{cyc}	10.24 ms	5.12 ms	2.048 ms	1.024 ms		
	1	0	0	PSS	32t _{cyc}	2.56 ms	1.28 ms	512 µs	256 µs		
			1	PSS	8t _{cyc}	640 µs	320 µs	128 µs	64 µs		
		1	0	PSS	4t _{cyc}	320 µs	160 µs	64 µs	32 µs		
			1	PSS	2t _{cyc}	160 µs	80 µs	32 µs	16 µs		

Note: * System clock selection register 2 (SSR2) bits 1 and 0

Clock time base mode


				Description					
					Input Clock Period				
TMA3	TMA2	TMA1	TMA0	Source Prescaler	Symbol	f _x = 32.768 kHz			
1	0	0	0	PSW	32t _{wcyc}	7.8125 ms			
			1	PSW	16t _{wcyc}	3.9063 ms			
		1	0	PSW	8t _{wcyc}	1.9531 ms			
			1	PSW	2t _{wcyc}	488.28 µs			
	1	0	0	_	1/2t _{wcyc}	122.07 µs			
			1	Unused					
		1	*	Clears PSW and TCA.					

Note: * Don't care

17.2.2 Timer Counter A (TCA)

TCA is an 8-bit increment-only counter that is incremented by the input internal clock. The input clock period is selected by the TMA register*. It is not possible to read or write TCA. When TCA overflows the timer A interrupt request flag (IFTA) is set to 1.

TCA is initialized to \$00 on reset and in stop mode.

Note: * HD404318/HD404358/HD404358R Series

The PSS output is selected by the TMA TMA2 to TMA0 bits. The TMA TMA3 bit is unused. The frequency of the system clock (\emptyset_{PER}) divided by PSS is fixed at 1/4 the oscillator frequency ($\emptyset_{PER} = f_{OSC}/4$).

HD404339/HD404369 Series

The PSS or PSW output is selected by the TMA TMA3 to TMA0 bits. The frequency of the system clock (\emptyset_{PER}) divided by PSS can be selected to be 1/4, 1/8, 1/16, or 1/32 of the oscillator frequency, i.e., $\emptyset_{PER} = f_{OSC}/4$, $f_{OSC}/8$, $f_{OSC}/16$, or $f_{OSC}/32$ by system clock selection register 2 (SSR2). The frequency of the subsystem clock (f_W) divided by PSW is fixed at 1/8 the oscillator frequency ($f_W = f_X/8$).

Writing 111 to bits TMA3 to TMA1 of TMA clears PSW and TCA.

17.3 Timer A Operation

17.3.1 Free-Running Timer Operation

Timer A can be used as an 8-bit free-running timer.

HD404318/HD404358/HD404358R Series

Timer A is incremented continuously immediately following a reset.

HD404339/HD404369 Series

Timer A operates as a free-running timer when the TMA TMA3 bit is set to 0. Since TCA is cleared to \$00 and TMA3 is cleared to 0 on reset, timer A is incremented continuously immediately following a reset and thus functions as a free-running timer.

TCA cannot be cleared when timer A is operating as a free-running timer, i.e., when the TMA3 bit is 0.

The following describes the free-running timer operation common to the microcomputers in the HD404318, HD404358, HD404358R, HD404339, and HD404369 Series.

Timer A operates on one of eight internal clocks output from PSS and selected by the TMA TMA2 to TMA0 bits.

Timer A overflows on the next clock input after the TCA counter reaches \$FF and IFTA is set to 1. A CPU interrupt is generated if the timer A interrupt mask is 0 at that time. See section 4, "Exception Handling", for details on interrupts.

On an overflow, the TCA value returns to \$00, and TCA begins to count up once again. Thus timer A functions as an interval timer that outputs an overflow periodically every 256 input clock periods.

17.3.2 Clock Time Base Operation

HD404339/HD404369 Series

When the TMA TMA3 bit is set to 1 timer A functions as a clock time base.

The TMA TMA2 to TMA0 bits select the timer A operating clock to be one of five internal clocks: four clocks output from PSW and a clock that is not modified by PSW.

Clock time base operation generates interrupts with a precise timing by using the 32.768 kHz crystal oscillator as the base clock.

In clock time base operation (when the TMA3 bit is 1) TCA and PSW can be cleared to \$00 by setting both TMA2 and TMA1 to 1.

Clock time base mode is used when switching to and clearing watch and subactive modes. See section 6, "Low Power Modes", for details.

17.4 Interrupts

The timer A interrupt source is generated by TCA overflow.

When TCA overflows, IFTA in the interrupt control bit area is set to 1. IFTA is never cleared automatically, even if the interrupt is accepted. The interrupt handling routine should clear IFTA to 0.

The timer A interrupt can be independently enabled or disabled by IMTA in the interrupt control bit area. See section 4, "Exception Handling", for details.

17.5 Usage Notes

Errors in the overflow period can occur if the divisor is changed during operation in time base mode. Do not change the divisor during timer operation.

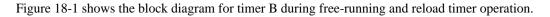
Section 18 Timer B

18.1 Overview

18.1.1 Features

Timer B is an 8-bit multifunction (free-running/event counter/reload timer/input capture*) timer with the following features.

Note: * Applies to the HD404318, HD404358, HD404358R, HD404339, and HD404369 Series. Timer B in the HD404344R and HD404394 Series does not support the input capture function.


HD404344R/HD404394 Series

- The timer clock can be selected from one of seven internal clocks (2048t_{cyc}, 512t_{cyc}, 128t_{cyc}, 32t_{cyc}, 8t_{cyc}, 4t_{cyc}, and 2t_{cyc}), from prescaler S (PSS), or taken from an external event input.
- An interrupt can be generated on timer counter B (TCB) overflow.

HD404318/HD404358/HD404358R/HD404339/HD404369 Series

- The timer clock can be selected from one of seven internal clocks (2048t_{cyc}, 512t_{cyc}, 128t_{cyc}, 32t_{cyc}, 8t_{cyc}, 4t_{cyc}, and 2t_{cyc}) from prescaler S (PSS), or taken from an external event input.
- An interrupt can be generated on timer counter B (TCB) overflow.
- Timer B also supports input capture operation triggered by an external event input.
- Interrupts can be generated on input capture events.

18.1.2 Block Diagram

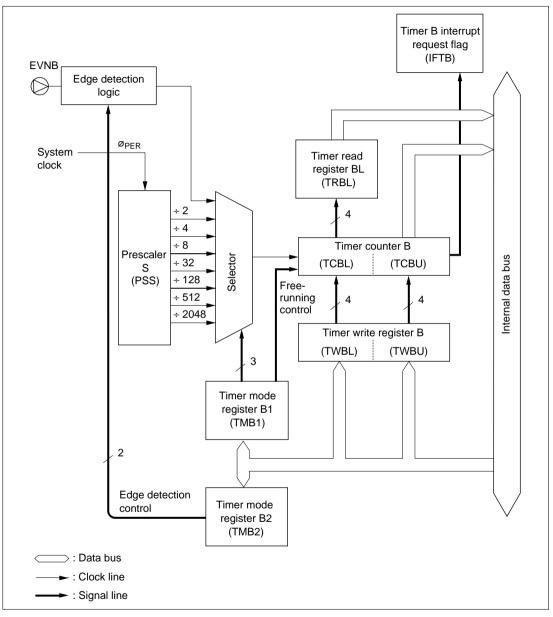


Figure 18-1 Timer B Block Diagram (Free-Running and Reload Timer)

Figure 18-2 shows the block diagram for timer B during input capture operation. (HD404318, HD404358, HD404358R, HD404339, and HD404369 Series)

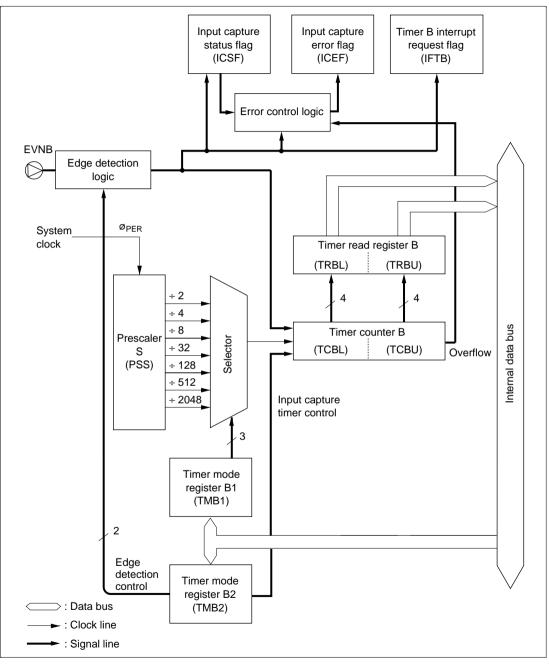


Figure 18-2 Timer B Block Diagram (HD404318, HD404358, HD404358R, HD404339, and HD404369 Series) (Input Capture Timer)

18.1.3 Timer B Pins

Table 18-1 lists the timer B pins.

Table 18-1 Timer B Pins

Pin	Symbol	I/O	Function
Timer B event input	EVNB	Input	Timer B event input and input capture timer trigger input pin*

Note: * Applies to the HD404318, HD404358, HD404358R, HD404339, and HD404369 Series. Timer B in the HD404344R and HD404394 Series does not support the input capture function.

18.1.4 Register Configuration

Table 18-2 lists the registers used by timer B.

Table 18-2 Register Configuration

Address	Register	Symbol	R/W	Initial Value
\$009	Timer mode register B1	TMB1	W	\$0
\$026	Timer mode register B2	TMB2	W	\$0
_	Timer counter B	ТСВ	_	\$00
\$00A	Timer write register BL	TWBL	W	\$0
\$00B	Timer write register BU	TWBU	W	Undefined
\$00A	Timer read register BL	TRBL	R	Undefined
\$00B	Timer read register BU	TRBU	R	Undefined
\$024	Port mode register B	PMRB	W	\$0
\$021, 0	Input capture status flag*	ICSF*	R/W*	0
\$021, 1	Input capture error flag*	ICEF*	R/W*	0

Note: * Applies to the HD404318, HD404358, HD404358R, HD404339, and HD404369 Series. Timer B in the HD404344R and HD404394 Series does not support the input capture function.

ICSF and ICEF are allocated in the register flag area and can be manipulated with the RAM bit manipulation instructions. A value of 1 can be written to these flags to set them, but they cannot be cleared to 0 by program instructions. See section 2, "Memory", for details.

18.2 Register Descriptions

18.2.1 Timer Mode Register B1 (TMB1: \$009)

TMB1 is a 4-bit write-only register that selects the timer B function (free-running or reload timer) and the operating clock.

TMB1 is cleared to \$0 on reset and in stop mode.

Bit	3	2	1		0					
	TMB13	TMB12	2 TME	311 TN	IB10					
Initial value	0	0	0		0					
Read/Write	W	W	W	/	W					
		Timer B o	clock se	lection						
		TMB12	TMB11	TMB10	Input clock source					
			0	0	2048 t _{cyc}					
		0	0	1	512 t _{cyc}					
		0	1	0	128 t _{cyc}					
			I	1	32 t _{cyc}					
			0	0	8 t _{cyc}					
		1	0	1	4 t _{cyc}					
		'	1	0	2 t _{cyc}					
			1	1	EVNB (external event input pin)					
	1	Note: Set port mode register B to the values shown below when the timer B clock is taken from external event input.								
		н	D40434	4R and I	HD404394 Series: Set the PMRB0 bit to 1.					
					4358, HD404358R, HD404339, and HD404369 Series:					
		Se	et the Pl	MRB2 bi	t to 1.					
	└_ Ti	mer B fu	nction s	election						
	0	Free-rur	nning tin	ner						
	1	Reload	timer							

Bit 3—Timer B Function Selection (TMB13): Selects the timer B function.

TMB13	Description	
0	Selects the free-running timer function.	(initial value)
1	Selects the reload timer function.	

Bits 2 to 0—Timer B Clock Selection (TMB12 to TMB10): These bits select the timer B input clock.

• Active mode

HD404344R/HD404394/HD404318/HD404358/HD404358R Series

			Description						
					Inp	ut Clock P	eriod		
TMB12	TMB11	TMB10	Source Prescaler	Symbol	f _{osc} = 400 kHz	f _{osc} = 800 kHz	f _{osc} = 2 MHz	f _{osc} = 4 MHz	
0	0	0	PSS	2048t _{cyc}	20.48 ms	10.24 ms	4.096 ms	2.048 ms	
		1	PSS	512t _{cyc}	5.12 ms	2.56 ms	1.024 ms	512 µs	
	1	0	PSS	128t _{cyc}	1.28 ms	640 µs	256 µs	128 µs	
		1	PSS	32t _{cyc}	320 µs	160 µs	64 µs	32 µs	
1	0	0	PSS	8t _{cyc}	80 µs	40 µs	16 µs	8 µs	
		1	PSS	4t _{cyc}	40 µs	20 µs	8 µs	4 µs	
	1	0	PSS	2t _{cyc}	20 µs	10 µs	4 µs	2 µs	
		1		External event input (EVNB pin)					

HD404339/HD404369 Series

1. System Clock Divisor: 4 (SSR21, SSR20* = 00)

			Description						
					Inp	ut Clock P	eriod		
TMB12	TMB11	TMB10	Source Prescaler	Symbol	f _{osc} = 400 kHz	f _{osc} = 800 kHz	f _{osc} = 2 MHz	f _{osc} = 4 MHz	
0	0	0	PSS	2048t _{cyc}	20.48 ms	10.24 ms	4.096 ms	2.048 ms	
		1	PSS	512t _{cyc}	5.12 ms	2.56 ms	1.024 ms	512 µs	
	1	0	PSS	128t _{cyc}	1.28 ms	640 µs	256 µs	128 µs	
		1	PSS	32t _{cyc}	320 µs	160 µs	64 µs	32 µs	
1	0	0	PSS	8t _{cyc}	80 µs	40 µs	16 µs	8 µs	
		1	PSS	4t _{cyc}	40 µs	20 µs	8 µs	4 µs	
	1	0	PSS	2t _{cyc}	20 µs	10 µs	4 µs	2 µs	
		1		External	event input	(EVNB pin)			

Note: * System clock selection register 2 (SSR2) bits 1 and 0

HD404339/HD404369 Series

2. System Clock Divisor: 8 (SSR21, SSR20* = 01)

				Description						
					Inp	ut Clock P	eriod			
TMB12	TMB11	TMB10	Source Prescaler	Symbol	f _{osc} = 400 kHz	f _{osc} = 800 kHz	f _{osc} = 2 MHz	f _{osc} = 4 MHz		
0	0	0	PSS	2048t _{cyc}	40.96 ms	20.48 ms	8.192 ms	4.096 ms		
		1	PSS	512t _{cyc}	10.24 ms	5.12 ms	2.048 ms	1.024 ms		
	1	0	PSS	128t _{cyc}	2.56 ms	1.28 ms	512 µs	256 µs		
		1	PSS	32t _{cyc}	640 µs	320 µs	128 µs	64 µs		
1	0	0	PSS	8t _{cyc}	160 µs	80 µs	32 µs	16 µs		
		1	PSS	4t _{cyc}	80 µs	40 µs	16 µs	8 µs		
	1	0	PSS	2t _{cyc}	40 µs	20 µs	8 µs	4 µs		
		1		External e	event input (EVNB pin)				

Note: * System clock selection register 2 (SSR2) bits 1 and 0

3. System Clock Divisor: 16 (SSR21, SSR20* = 10)

			Description						
				Input Clock Period					
TMB12	TMB11	TMB10	Source Prescaler	Symbol	f _{osc} = 400 kHz	f _{osc} = 800 kHz	f _{osc} = 2 MHz	f _{osc} = 4 MHz	
0	0	0	PSS	2048t _{cyc}	81.92 ms	40.96 ms	16.384 ms	8.192 ms	
		1	PSS	512t _{cyc}	20.48 ms	10.24 ms	4.096 ms	2.048 ms	
	1	0	PSS	128t _{cyc}	5.12 ms	2.56 ms	1.024 ms	512 µs	
		1	PSS	32t _{cyc}	1.28 ms	640 µs	256 µs	128 µs	
1	0	0	PSS	8t _{cyc}	320 µs	160 µs	64 µs	32 µs	
		1	PSS	4t _{cyc}	160 µs	80 µs	32 µs	16 µs	
	1	0	PSS	2t _{cyc}	80 µs	40 µs	16 µs	8 µs	
		1		External e	event input (EVNB pin)			

Note: * System clock selection register 2 (SSR2) bits 1 and 0

HD404339/HD404369 Series

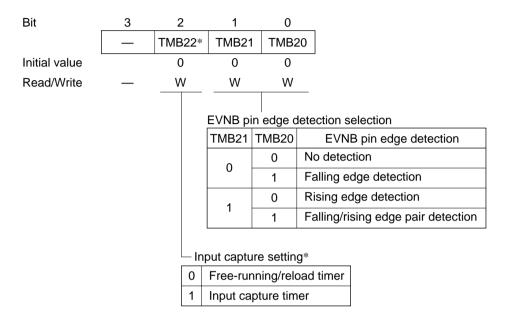
4. System Clock Divisor: 32 (SSR21, SSR20* = 11)

				Description						
				Input Clock Period						
TMB12	TMB11	TMB10	Source Prescaler	Symbol	f _{osc} = 400 kHz	f _{osc} = 800 kHz	f _{osc} = 2 MHz	f _{osc} = 4 MHz		
0	0	0	PSS	2048t _{cyc}	163.84 ms	81.92 ms	32.768 ms	16.384 ms		
		1	PSS	512t _{cyc}	40.96 ms	20.48 ms	8.192 ms	4.096 ms		
	1	0	PSS	128t _{cyc}	10.24 ms	5.12 ms	2.048 ms	1.024 ms		
		1	PSS	32t _{cyc}	2.56 ms	1.28 ms	512 µs	256 µs		
1	0	0	PSS	8t _{cyc}	640 µs	320 µs	128 µs	64 µs		
		1	PSS	4t _{cyc}	320 µs	160 µs	64 µs	32 µs		
	1	0	PSS	2t _{cyc}	160 µs	80 µs	32 µs	16 µs		
		1		External e	event input (I	EVNB pin)				

Note: * System clock selection register 2 (SSR2) bits 1 and 0

• Subactive mode

HD404339/HD404369 Series


			Description					
				Input Clock Period				
			Source		~	32.768 kHz active Mode)		
TMB12	TMB11	TMB10	Prescaler	Symbol	SSR12* = 0	SSR12* = 1		
0	0	0	PSS	2048t _{cyc}	500 ms	250 ms		
		1	PSS	512t _{cyc}	125 ms	62.5 ms		
	1	0	PSS	128t _{cyc}	31.25 ms	15.625 ms		
		1	PSS	32t _{cyc}	7.8125 ms	3.9063 ms		
1	0	0	PSS	8t _{cyc}	1.9531 ms	976.56 µs		
		1	PSS	4t _{cyc}	976.56 µs	488.28 µs		
	1	0	PSS	2t _{cyc}	488.28 µs	244.14 µs		
		1	PSS		External event	input (EVNB pin)		

Note: * System clock selection register 1 (SSR1) bit 2

18.2.2 Timer Mode Register B2 (TMB2: \$026)

TMB2 is a 3-bit write-only register that selects the input capture function and the EVNB pin input edge detection type.

TMB2 is initialized to \$0 on reset and in stop mode.

Note: * Applies to the HD404318, HD404358, HD404358R, HD404339, and HD404369 Series. TMB22 is unused in the HD404344R and HD404394 Series.

Bit 2—Input Capture Setting (TMB22)

HD404318/HD404358/HD404358R/HD404339/HD404369 Series

Selects the timer B function. When this bit is 0, the TMB1 TMB13 bit selects either the freerunning timer or the reload timer function.

TMB22	Description	
0	Selects the free-running/reload timer function.	(initial value)
1	Selects the input capture timer function.	

TMB21	TMB20	Description	
0	0	No edges are detected on the EVNB pin input.	(initial value)
	1	Falling edges are detected on the EVNB pin input.	
1	0	Rising edges are detected on the EVNB pin input.	
	1	Falling/rising edge pairs are detected on the EVNB pin input.	

Bits 1 and 0—EVNB Pin Edge Detection Selection (TMB21, TMB20)

18.2.3 Timer Counter B (TCB)

TCB is an 8-bit up counter that is incremented by the input internal clock.

Bit	7	6	5	4	3	2	1	0	
	TCB7	TCB6	TCB5	TCB4	ТСВ3	TCB2	TCB1	TCB0	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	—	—	—	—	—		—	—	
					Counter value				

The TCB input clock is selected by the TMB1 TMB12 to TMB10 bits.

The value in TCB can be read by reading out the TRBL/U pair, and TCB can be written by writing to the TWBL/U pair.

The timer B interrupt request flag (IFTB) is set to 1 when TCB overflows.

If the free-running timer function is selected for timer B (TMB13 = 0) at this time, TCB will be cleared to \$00 and start to count again. If the reload timer function is selected for timer B (TMB13 = 1), the value in the TWBL/U pair will be written to TCB and TCB will start counting from that value.

TCB is initialized to \$00 on reset and in stop mode.

18.2.4 Timer Write Register TWBL/U (TWBL: \$00A, TWBU: \$00B)

The TWBL/U pair form an 8-bit write-only register in which TWBL is the upper digit and TWBU is the lower digit. The TWBL/U pair is used to set the initial value of TCB, i.e., to set the reload value in reload operation.

	Bit	3	2	1	0
TWBU		TWBU3	TWBU2	TWBU1	TWBU0
	Initial value	Undefined	Undefined	Undefined	Undefined
	Read/Write	W	W	W	W
	Bit	3	2	1	0
TWBL		TWBL3	TWBL2	TWBL1	TWBL0
	Initial value	0	0	0	0
	Read/Write	W	W	W	W

Data must be written in the order TWBL first and then TWBU. When TWBL is written, the value in TCB does not change. Next, when TWBU is written, the value in TWBU is transferred to the upper digit of TCB and the value in TWBL is transferred to the lower digit of TCB.

When the TWBL/U pair is being written for the second or later time and there is no need to change the TWBL reload value, timer B can be initialized by writing only TWBU.

TWBL is initialized to \$0 and TWBU is undefined on reset and in stop mode.

18.2.5 Timer Read Register TRBL/U (TRBL: \$00A, TRBU: \$00B)

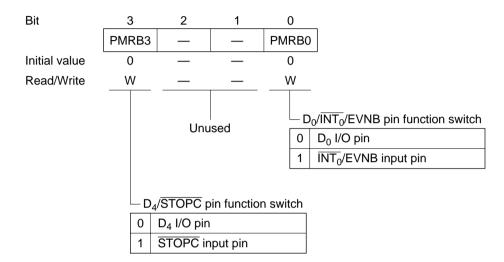
The TRBL/U pair form an 8-bit read-only register in which TRBL and TRBU directly read out the upper and lower digits respectively of TCB in timer B operating modes other than input capture operation*. That is, the TRBL/U pair is used to read out the value in TCB.

Note: * Applies to the HD404318, HD404358, HD404358R, HD404339, and HD404369 Series. Timer B in the HD404344R and HD404394 Series does not support the input capture function.

	Bit	3	2	1	0
TRBU		TRBU3	TRBU2	TRBU1	TRBU0
	Initial value	Undefined	Undefined	Undefined	Undefined
	Read/Write	R	R	R	R
	Bit	3	2	1	0
TRBL		TRBL3	TRBL2	TRBL1	TRBL0
	Initial value	Undefined	Undefined	Undefined	Undefined
	Read/Write	R	R	R	R

Data must be read in the order TRBU first and then TRBL. When TRBU is read out, the current value of the upper digit in TCB is returned and at the same time the value of the lower digit is latched into TRBL. Then, reading out the value in TRBL returns that latched value. This means that the exact value of TCB at the point TRBU was read is acquired.

In input capture operation in HD404318, HD404358, HD404358R, HD404339, and HD404369 Series microcomputers, TRBL and TRBU form an 8-bit register that latches the value in TCB, and can be read in any order.


TRBL and TRBU are undefined on reset and in stop mode.

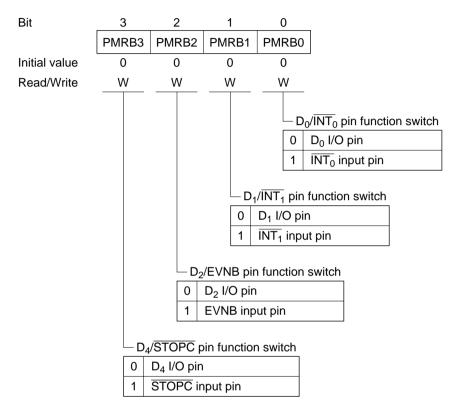
18.2.6 Port Mode Register B (PMRB: \$024)

HD404344R/HD404394 Series

PMRB is a 2-bit write-only register whose PMRB0 bit switches an I/O pin for use as an event counter.

This section describes the PMRB0 bit. See the "Port Mode Register B" item in sections 7 and 8, "I/O Ports", for details on the switching performed by the PMRB3 bit.

Bit 0—D₀/INT₀/EVNB Pin Function Switch (PMRB0): Selects whether the D₀/INT₀/EVNB pin functions as the D0 I/O pin or as the external interrupt 0/timer B event (\overline{INT}_0 /EVNB) input pin.


PMRB0	Description	
0	The $D_0/\overline{INT}_0/EVNB$ pin functions as the D_0 I/O pin.	(initial value)
1	The D0/ \overline{INT}_{o} /EVNB pin functions as the \overline{INT}_{o} /EVNB input pin.	

Set the PMRB0 bit to 1 when this pin is to be used as the EVNB pin. Also, set the TMB1 TMB12 to TMB10 bits to 111, and select the edge detection type with the TMB2 TMB21 and TMB20 bits. Note that the \overline{INT}_0 interrupt should normally be masked at this time. See section 18.2.1, "Timer Mode Register B1 (TMB1)", for more details.

HD404318/HD404358/HD404358R/HD404339/HD404369 Series

PMRB is a 4-bit write-only register whose PMRB2 bit switches an I/O pin to be used for event counting or input capture.

This section describes the PMRB2 bit. See the "Port Mode Register" items in sections 9 to 12, "I/O Ports", for details on the switching performed by the PMRB3, PMRB1, and PMRB0 bits.

Bit 2— D_2 /EVNB Pin Function Switch (PMRB2): Selects whether the D_2 /EVNB pin functions as the D_2 I/O pin or as the timer B event input pin (EVNB).

PMRB2	Description	
0	The D_2 /EVNB pin functions as the D_2 I/O pin.	(initial value)
1	The D_2 /EVNB pin functions as the EVNB input pin.	

Set the PMRB0 bit to 1 when this pin is to be used as the EVNB pin. Also, set the TMB1 TMB12 to TMB10 bits to 111, and select the edge detection type with the TMB2 TMB21 and TMB20 bits. See section 18.2.1, "Timer Mode Register B1 (TMB1)", for more details.

18.2.7 Input Capture Status Flag (ICSF: \$021, 0)

HD404318/HD404358/HD404358R/HD404339/HD404369 Series

ICSF is set to 1 when the edge specified by bits TMB21 to TMB20 is detected on the EVNB pin in input capture operation, i.e., when TMB22 is set to 1.

ICSF can be read and written (only 0 can be written) only by the RAM bit manipulation instructions.

ICSF is cleared to 0 on reset and in stop mode.

ICSF	Description
0	Indicates that no edge was detected in the input capture trigger input (EVNB).
	(initial value)
1	Indicates that an edge was detected in the input capture trigger input (EVNB).

18.2.8 Input Capture Error Flag (ICEF: \$021, 1)

HD404318/HD404358/HD404358R/HD404339/HD404369 Series

ICEF is set to 1 if the next input capture event is detected when ICSF is set to 1, or if TCB overflows when ICSF is set to 1.

ICEF can be read and written (only 0 can be written) only by the RAM bit manipulation instructions.

ICEF is cleared to 0 on reset and in stop mode.

ICEF	Description	
0	Indicates that no input capture operating error has occurred. (initial value)	e)
1	Indicates that either the next input capture trigger was detected with $ICSF = 1$, or that TCB overflowed with $ICSF = 1$.	

18.3 Timer B Operation

Timer B is an 8-bit multifunction timer. Table 18-3 lists the functions supported for each series in the HMCS43XX family. The functions are selected by timer mode register B.

Table 18-3 Timer B Functions

	Series					
Function	HD404344R/HD404394	HD404318/HD404358/HD404358R/ HD404339/HD404369				
Free-running timer	0	0				
Reload timer	0	0				
External event counter	0	0				
Input capture timer		0				

18.3.1 Free-Running Timer

Timer B can be used as an 8-bit free-running timer.

When the TMB TMB22* bit is 0 and furthermore the TMB1 TMB13 bit is 0, timer B operates as an 8-bit free-running timer.

Since TCB is cleared to \$00 and the TMB22* and TMB13 bits are cleared to 0 on reset, timer B is incremented continuously as a free-running timer immediately following a reset. The timer B operating clock is selected by TMB TMB12 to TMB10 to be one of seven internal clocks output from PSS.

Note: * Applies to the HD404318, HD404358, HD404358R, HD404339, and HD404369 Series. This bit is unused in the HD404344R and HD404394 Series.

On the clock input after the count value in TCB reaches \$FF, timer B overflows and IFTB is set to 1. If the timer B interrupt mask (IMTB) is 0 at this time, a CPU interrupt is generated. See section 4, "Exception Handling", for details on interrupts.

On an overflow, the TCB count returns to \$00 and timer B begins to count again.

18.3.2 Reload Timer Operation

When the TMB TMB22* bit is 0 and furthermore the TMB1 TMB13 bit is 1, timer B operates as an 8-bit reload timer. When a reload value is loaded into the TWBL/U pair, that value is loaded into TCB and timer B begins to count up from that value.

On the clock input after the count value in TCB reaches \$FF, timer B overflows, the value in the TWBL/U pair is loaded into TCB, and timer B continues counting from that value. This means that the timer B overflow period can be set to be any value in the range 1 to 256 times the input clock period.

The operating clock and interrupt operation during reload timer operation are identical to those for free-running timer operation.

When a new reload value is loaded into the TWBL/U pair that value is immediately written to TCB.

Note: * Applies to the HD404318, HD404358, HD404358R, HD404339, and HD404369 Series. The TMB22 bit is unused in the HD404344R and HD404394 Series.

18.3.3 External Event Counter Operation

When the TMB1 TMB12 to TMB10 bits are set to 111, TCB is incremented by the EVNB pin input signal edges specified by the TMB21 and TMB20 bits.

Other aspects of timer B operation in this mode are identical to either free-running or reload timer operation depending on the setting of the TMB1 TMB13 bit.

18.3.4 Input Capture Timer Operation

HD404318/HD404358/HD404358R/HD404339/HD404369 Series

The input capture timer function measures the period between EVNB input pin edge detection events. An internal clock must be selected as the TCB operating clock when timer B is used as an input capture timer.

Timer B operates as an input capture timer when the TMB2 TMB22 bit is set to 1. TCB will be cleared to \$00 at that point.

The TMB2 TMB21 and TMB20 bits select the edge detection event type, which can be either a falling edge, a rising edge, or a falling/rising edge pair on the EVNB input pin.

When an edge is detected on the EVNB pin, the value of TCB at that time is written to the TRBL/U pair and IFTB and ICSF are both set to 1. At the same time TCB is cleared to \$00 and continues to count up from \$00.

ICEF is set to 1 if the next edge is detected when ICSF is set to 1 or if TCB overflows.

When timer B is used as an input capture timer (when the TMB22 bit is 1) TRBL and TRBU can be read in any order. (See figure 18-2.)

18.4 Interrupts

Timer B interrupts are generated on TCB overflow and on EVNB pin edge detections during input capture timer operation*.

When an interrupt is generated, IFTB in the interrupt control bit area is set to 1.

Timer B in the HD404344R and HD404394 Series does not support the input capture function. IFTB is never cleared automatically, even if the interrupt is accepted. The interrupt handling routine should clear IFTB to 0.

The timer B interrupt can be independently enabled or disabled by IMTB in the interrupt control bit area.

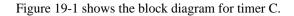
Note: * Applies to the HD404318, HD404358, HD404358R, HD404339, and HD404369 Series. Timer B in the HD404344R and HD404394 Series does not support the input capture function.

18.5 Usage Notes

Keep the following points in mind when using timer B.

- Be sure to write TWBL first and then TWBU when using the TWBL/U pair to set the TCB reload value or to initialize TCB. The value in the TWBL/U pair is written to TCB at the point that TWBU is written. Thus if TWBL has been set and only the value in the upper digit is to be changed, it is only necessary to write TWBU.
- Be sure to read TRBU first and then TRBL when reading the TCB value using the TRBL/U pair. The value in the lower digit of TCB is latched into TRBL when TRBU is read. Thus reading TRBL returns the value of the TCB lower digit at the point TRBU was last read. However, the TRBL/U pair can be read in any order during input capture timer operation.
- When changing the value of TMB1, the new value becomes valid two instructions after the execution of the instruction that wrote TMB1. Therefore it is necessary for programs that initialize timer B (set the reload value or initialize TCB) by writing to the TWBL/U pair to perform this initialization only after the mode changed by TMB1 has become valid.
- When detection of falling/rising edge pairs on the EVNB pin is selected by the TMB2 setting, the falling edge and the rising edge must be separated by at least 2t_{eve}.

Section 19 Timer C


19.1 Overview

19.1.1 Features

Timer C is an 8-bit multifunction timer (free-running/reload timer) with the following features.

- The timer clock can be selected from one of eight internal clocks (2048t_{cyc}, 1024t_{cyc}, 512t_{cyc}, 128t_{cyc}, 32t_{cyc}, 8t_{cyc}, 4t_{cyc}, and 2t_{cyc}), from prescaler S (PSS).
- Timer C can be used as a watchdog timer.
- Timer C can be used to generate waveform (PWM) output.
- An interrupt can be generated on timer counter C (TCC) overflow.

19.1.2 Block Diagram

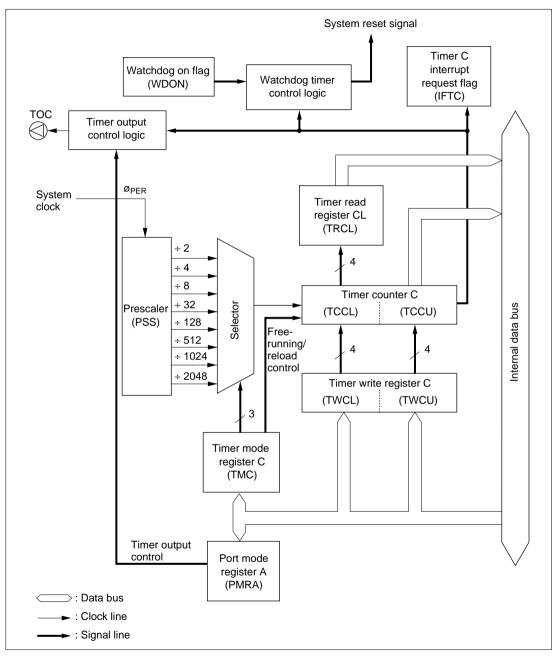


Figure 19-1 Timer C Block Diagram

19.1.3 Timer C Pins

Table 19-1 lists the timer C pins.

Table 19-1 Timer C Pins

Pin	Symbol	I/O	Function
Timer C output	TOC	Output	Timer C output pin

19.1.4 Register Configuration

Table 19-2 lists the registers used by timer C.

Table 19-2 Register Configuration

Address	Register Symbol		R/W	Initial Value	
\$00D	Timer mode register C	TMC	W	\$0	
\$004	Port mode register A	PMRA	W	\$0	
_	Timer counter C	TCC		\$00	
\$00E	Timer write register CL	TWCL	W	\$0	
\$00F	Timer write register CU	TWCU	W	Undefined	
\$00E	Timer read register CL	TRCL	R	Undefined	
\$00F	Timer read register CU	TRCU	R	Undefined	
\$020, 1	Watchdog on flag	WDON*	R/W*	0	

Note: * WDON is allocated in the register flag area and can be manipulated only with the RAM bit manipulation instructions. A value of 1 can be written to set this flag, but it cannot be cleared to 0 by program instructions. See section 2, "Memory", for details.

19.2 Register Descriptions

19.2.1 Timer Mode Register C (TMC: \$00D)

TMC is a 4-bit write-only register that selects the timer C function (free-running or reload timer) and the operating clock.

TMC is cleared to \$0 on reset and in stop mode.

Bit	3	2	1	0	
	TMC3	TMC2	TMC1	TMC	0
Initial value	0	0	0	0	
Read/Write	W	W	W	W	
		Timer C	clock se	lection	
		TMC2	TMC1	TMC0	Input clock cource
			0	0	2048 t _{cyc}
		0	0	1	1024 t _{cyc}
		0	1	0	512 t _{cyc}
			I	1	128 t _{cyc}
			0	0	32 t _{cyc}
		1		1	8 t _{cyc}
		1	1	0	4 t _{cyc}
				1	2 t _{cyc}
	└_ Tir	ner C fund	ction sele	ection	
	0	Free-runn	ing time	r	
	1	Reload tir	ner		

ТМС3	Description	
0	Selects the free-running timer function.	(initial value)
1	Selects the reload timer function.	

Bits 2 to 0—Timer C Clock Selection (TMC2 to TMC0): These bits select the timer C input clock.

• Active mode

HD404344R/HD404394/HD404318/HD404358/HD404358R Series

			Description						
				Input Clock Period					
TMC2	TMC1	тмс0	Source Prescaler	Symbol	f _{osc} = 400 kHz	f _{osc} = 800 kHz	f _{osc} = 2 MHz	f _{osc} = 4 MHz	
0	0	0	PSS	2048t _{cyc}	20.48 ms	10.24 ms	4.096 ms	2.048 ms	
		1	PSS	1024t _{cyc}	10.24 ms	5.12 ms	2.048 ms	1.024 ms	
	1	0	PSS	512t _{cyc}	5.12 ms	2.56 ms	1.024 ms	512 µs	
		1	PSS	128t _{cyc}	1.28 ms	640 µs	256 µs	128 µs	
1	0	0	PSS	32t _{cyc}	320 µs	160 µs	64 µs	32 µs	
		1	PSS	8t _{cyc}	80 µs	40 µs	16 µs	8 µs	
	1	0	PSS	4t _{cyc}	40 µs	20 µs	8 µs	4 µs	
		1	PSS	2t _{cyc}	20 µs	10 µs	4 µs	2 µs	

HD404339/HD404369 Series

1. System Clock Divisor: 4 (SSR21, SSR20* = 00)

		Description							
					Input Clock Period				
TMC2	TMC1	ТМС0	Source Prescaler	Symbol	f _{osc} = 400 kHz	f _{osc} = 800 kHz	f _{osc} = 2 MHz	f _{osc} = 4 MHz	
0	0	0	PSS	2048t _{cyc}	20.48 ms	10.24 ms	4.096 ms	s 2.048 ms	
		1	PSS	1024t _{cyc}	10.24 ms	5.12 ms	2.048 ms	s 1.024 ms	
	1	0	PSS	512t _{cyc}	5.12 ms	2.56 ms	1.024 ms	s 512 µs	
		1	PSS	128t _{cyc}	1.28 ms	640 µs	256 µs	128 µs	
1	0	0	PSS	32t _{cyc}	320 µs	160 µs	64 µs	32 µs	
		1	PSS	8t _{cyc}	80 µs	40 µs	16 µs	8 µs	
	1	0	PSS	4t _{cyc}	40 µs	20 µs	8 µs	4 µs	
		1	PSS	2t _{cyc}	20 µs	10 µs	4 µs	2 µs	

Note: * System clock selection register 2 (SSR2) bits 1 and 0

HD404339/HD404369 Series

2. System Clock Divisor: 8 (SSR21, SSR20* = 01)

				Description						
				Input Clock Period						
TMC2	TMC1	тмс0	Source Prescaler	Symbol	f _{osc} = 400 kHz	f _{osc} = 800 kHz	f _{osc} = 2 MHz	f _{osc} = 4 MHz		
0	0	0	PSS	2048t _{cyc}	40.96 ms	20.48 ms	8.192 ms	4.096 ms		
		1	PSS	1024t _{cyc}	20.48 ms	10.24 ms	4.096 ms	2.048 ms		
	1	0	PSS	512t _{cyc}	10.24 ms	5.12 ms	2.048 ms	1.024 ms		
		1	PSS	128t _{cyc}	2.56 ms	1.28 ms	512 µs	256 µs		
1	0	0	PSS	32t _{cyc}	640 µs	320 µs	128 µs	64 µs		
		1	PSS	8t _{cyc}	160 µs	80 µs	32 µs	16 µs		
	1	0	PSS	4t _{cyc}	80 µs	40 µs	16 µs	8 µs		
		1	PSS	2t _{cyc}	40 µs	20 µs	8 µs	4 µs		

Note: * System clock selection register 2 (SSR2) bits 1 and 0

3. System Clock Divisor: 16 (SSR21, SSR20* = 10)

				Description					
				Input Clock Period					
TMC2	TMC1	тмс0	Source Prescaler	Symbol	f _{osc} = 400 kHz	f _{osc} = 800 kHz	f _{osc} = 2 MHz	f _{osc} = 4 MHz	
0	0	0	PSS	2048t _{cyc}	81.92 ms	40.96 ms	16.384 ms	8.192 ms	
		1	PSS	1024t _{cyc}	40.96 ms	20.48 ms	8.192 ms	4.096 ms	
	1	0	PSS	512t _{cyc}	20.48 ms	10.24 ms	4.096 ms	2.048 ms	
		1	PSS	128t _{cyc}	5.12 ms	2.56 ms	1.024 ms	512 µs	
1	0	0	PSS	32t _{cyc}	1.28 ms	640 µs	256 µs	128 µs	
		1	PSS	8t _{cyc}	320 µs	160 µs	64 µs	32 µs	
	1	0	PSS	4t _{cyc}	160 µs	80 µs	32 µs	16 µs	
		1	PSS	2t _{cyc}	80 µs	40 µs	16 µs	8 µs	

Note: * System clock selection register 2 (SSR2) bits 1 and 0

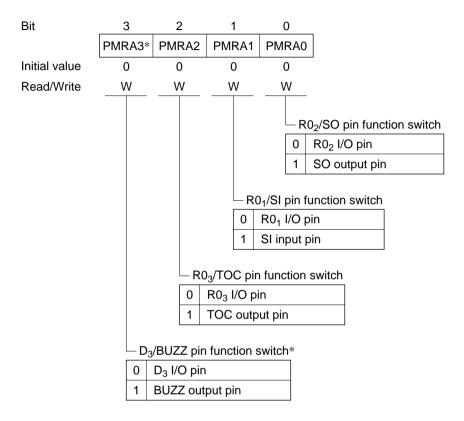
HD404339/HD404369 Series

4. System Clock Divisor: 32 (SSR21, SSR20* = 11)

				Description						
				Input Clock Period						
TMC2	TMC1	ТМС0	Source Prescaler	Symbol	f _{osc} = 400 kHz	f _{osc} = 800 kHz	f _{osc} = 2 MHz	f _{osc} = 4 MHz		
0	0	0	PSS	2048t _{cyc}	163.84 ms	81.92 ms	32.768 ms	16.384 ms		
		1	PSS	1024t _{cyc}	81.92 ms	40.96 ms	16.384 ms	8.192 ms		
	1	0	PSS	512t _{cyc}	40.96 ms	20.48 ms	8.192 ms	4.096 ms		
		1	PSS	128t _{cyc}	10.24 ms	5.12 ms	2.048 ms	1.024 ms		
1	0	0	PSS	32t _{cyc}	2.56 ms	1.28 ms	512 µs	256 µs		
		1	PSS	8t _{cyc}	640 µs	320 µs	128 µs	64 µs		
	1	0	PSS	4t _{cyc}	320 µs	160 µs	64 µs	32 µs		
		1	PSS	2t _{cyc}	160 µs	80 µs	32 µs	16 µs		

Note: * System clock selection register 2 (SSR2) bits 1 and 0

• Subactive mode


HD404339/HD404369 Series

					Description				
				Input Clock Period					
TMC2			Source		f _x = 3	32.768 kHz			
	TMC1	TMC0	Prescaler	Symbol	SSR12* = 0	SSR12* = 1			
0	0	0	PSS	2048t _{cyc}	500 ms	250 ms			
		1	PSS	1024t _{cyc}	250 ms	125 ms			
	1	0	PSS	512t _{cyc}	125 ms	62.5 ms			
		1	PSS	128t _{cyc}	31.25 ms	15.625 ms			
1	0	0	PSS	32t _{cyc}	7.8125 ms	3.9063 ms			
		1	PSS	8t _{cyc}	1.9531 ms	976.56 µs			
	1	0	PSS	4t _{cyc}	976.56 µs	488.28 µs			
		1	PSS	2t _{cyc}	488.28 µs	244.14 µs			

Note: * System clock selection register 1 (SSR1) bit 2

19.2.2 Port Mode Register A (PMRA: \$004)

PMRA is a 4-bit write-only register whose PMRA2 bit switches the R0₃/TOC pin function. This section describes the PMRA2 bit. See sections 20.2.4 and 21.2.1, "Port Mode Register A (PMRA)", for details on the PMRA3, PMRA1, and PMRA0 bits.

Note: * Applies to the HD404318, HD404358, HD404358R, HD404339, and HD404369 Series. The PMRA3 bit is unused in the HD404344R and HD404394 Series.

Bit 2—R0₃/TOC Pin Function Switch (PMRA2): Selects whether the $R0_3$ /TOC pin functions as the R0₃ I/O pin or as the timer C output pin (TOC).

PMRA2	Description	
0	The $R0_3$ /TOC pin functions as the $R0_3$ I/O pin.	(initial value)
1	The $R0_3$ /TOC pin functions as the TOC output pin.	

19.2.3 Timer Counter C (TCC)

Bit	7	6	5	4	3	2	1	0
	TCC7	TCC6	TCC5	TCC4	тссз	TCC2	TCC1	тссо
Initial value	0	0	0	0	0	0	0	0
Read/Write		—	—	—	—		—	
					Cou	nter value		

TCC is an 8-bit up counter that is incremented by the input internal clock.

The TCC input clock is selected by the TMC TMC2 to TMC0 bits.

The value in TCC can be read by reading out the TRCL/U pair, and TCC can be written by writing to the TWCL/U pair.

The timer C interrupt request flag (IFTC) is set to 1 when TCC overflows.

If the free-running timer function is selected for timer C (TMC3 = 0) at this time, TCC will be cleared to \$00 and start to count again. If the reload timer function is selected for timer C (TMC3 = 1), the value in the TWCL/U pair will be written to TCC and TCC will start counting from that value.

TCC is initialized to \$00 on reset and in stop mode.

19.2.4 Timer Write Register TWCL/U (TWCL: \$00E, TWCU: \$00F)

The TWCL/U pair form an 8-bit write-only register in which TWCL is the lower digit and TWCU is the upper digit. The TWCL/U pair is used to set the initial value of TCC, i.e., to set the reload value in reload operation.

	Bit	3	2	1	0
TWCU		TWCU3	TWCU2	TWCU1	TWCU0
	Initial value	Undefined	Undefined	Undefined	Undefined
	Read/Write	W	W	W	W
	Bit	3	2	1	0
TWCL		TWCL3	TWCL2	TWCL1	TWCL0
	Initial value	0	0	0	0
	Read/Write	W	W	W	W

Data must be written in the order TWCL first and then TWCU. When TWCL is written, the value in TCC does not change. Next, when TWCU is written, the value in TWCU is transferred to the upper digit of TCC and the value in TWCL is transferred to the lower digit of TCC.

When the TWCL/U pair is being written for the second or later time and there is no need to change the TWCL reload value, timer C can be initialized by writing only TWCU.

TWCL is initialized to \$0 and TWCU is undefined on reset and in stop mode.

19.2.5 Timer Read Register TRCL/U (TRCL: \$00E, TRCU: \$00F)

The TRCL/U pair form an 8-bit read-only register in which TRCL and TRCU directly read out the lower and upper digits respectively of TCC. That is, the TRCL/U pair is used to read out the value in TCC.

	Bit	3	2	1	0
TRCU		TRCU3	TRCU2	TRCU1	TRCU0
	Initial value	Undefined	Undefined	Undefined	Undefined
	Read/Write	R	R	R	R
	Bit	3	2	1	0
TRCL		TRCL3	TRCL2	TRCL1	TRCL0
	Initial value	Undefined	Undefined	Undefined	Undefined
	Read/Write	R	R	R	R

Data must be read in the order TRCU first and then TRCL. When TRCU is read out, the current value of the upper digit in TCC is returned and at the same time the value of the lower digit is latched into TRCL. Then, reading out the value in TRCL returns that latched value. This means that the exact value of TCC at the point TRCU was read is acquired.

TRCL and TRCU are undefined on reset and in stop mode.

19.2.6 Watchdog On Flag (WDON: \$020, 1)

WDON selects whether timer C functions as a watchdog timer. WDON is allocated in the register flag area and can only by manipulated by the RAM bit manipulation instructions. Only a value of 1 can be written to this flag. It cannot be cleared to 0 by program instructions.

WDON is cleared to 0 on reset and in stop mode.

WDON	Description	
0	Timer C functions normally.	(initial value)
1	Timer C functions as a watchdog timer. When timer C overflows the reset state and reset exception handling begins.	ne system goes to

19.3 Timer C Operation

Timer C is an 8-bit multifunction timer with the following functions.

- Free-running timer
- Reload timer
- PWM output
- Watchdog timer

19.3.1 Free-Running Timer Operation

When the TMC TMC3 bit is 0, timer C operates as an 8-bit free-running timer.

Since TCC is cleared to \$00 and the TMC3 bit is cleared to 0 on reset, timer C is incremented continuously as a free-running timer immediately following a reset. The timer C operating clock is selected by TMC TMC2 to TMC0 to be one of eight internal clocks output from PSS.

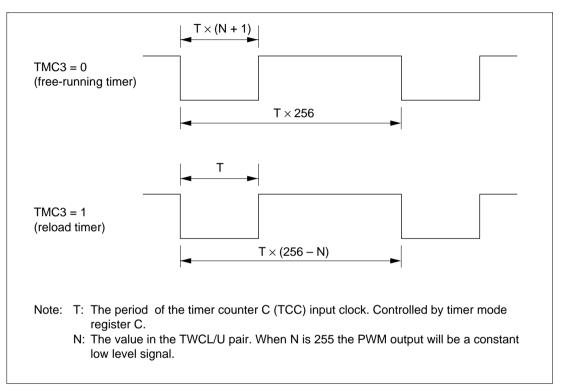
On the clock input after the count value in TCC reaches \$FF, timer C overflows and IFTC is set to 1. If the timer C interrupt mask (IMTC) is 0 at this time, a CPU interrupt is generated. See section 4, "Exception Handling", for details on interrupts.

On an overflow, the TCC count returns to \$00 and timer C begins to count again.

19.3.2 Reload Timer Operation

When the TMC TMC3 bit is 1, timer C operates as an 8-bit reload timer. When a reload value is loaded into the TWCL/U pair, that value is loaded into TCC and timer C begins to count up from that value.

On the clock input after the count value in TCC reaches \$FF, timer C overflows, the value in the TWCL/U pair is loaded into TCC, and timer C continues counting from that value. This means that the timer C overflow period can be set to be any value in the range 1 to 256 times the input clock period.


The operating clock and interrupt operation during reload timer operation are identical to those for free-running timer operation.

When a new reload value is loaded into the TWCL/U pair that value is immediately written to TCC.

19.3.3 PWM Output Operation

When the PMRA PMRA2 bit is set to 1, the $R0_3$ /TOC pin functions as the TOC output pin and timer C generates a PWM output signal.

PWM output operation is a function that generates a variable duty pulse output. The output waveform is controlled by the contents of TMC and the TWCL/U pair as shown in figure 19-2.

19.3.4 Watchdog Timer Operation

When WDON is set to 1 timer C functions as a watchdog timer. A watchdog timer is used to detect program runaway.

In watchdog timer operation, when timer C overflows the system goes to the reset state and reset exception handling begins. Therefore, the application program must reset TCC before its value becomes \$FF so that overflows do not occur in normal operation.

19.4 Interrupts

The timer C interrupt is generated on TCC overflow.

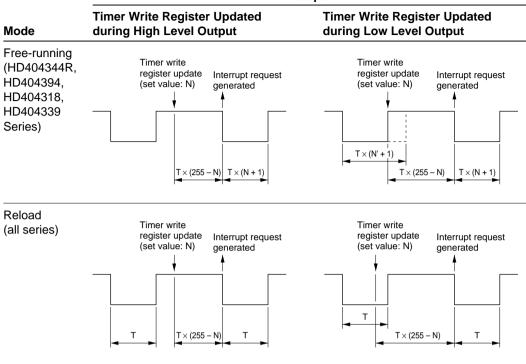
When TCC overflows, IFTC in the interrupt control bit area is set to 1. IFTC is never cleared automatically, even if the interrupt is accepted. The interrupt handling routine should clear IFTC to 0.

The timer C interrupt can be independently enabled or disabled by IMTC in the interrupt control bit area.

19.5 Usage Notes

Keep the following points in mind when using timer C.

• Be sure to write TWCL first and then TWCU when using the TWCL/U pair to initialize TCC. The value in the TWCL/U pair is written to TCC at the point that TWCU is written. Thus if TWCL has been set and only the value in the upper digit is to be changed, it is only necessary to write TWCU.


However, when using PWM output with the reload timer setting (i.e., with the PMRA2 bit set to 1 and the TMC3 bit set to 0) in HD404358, HD404358R, and HD404369 Series microcomputers, after the TWCL/U pair has been written, the contents of the TWCL/U pair are written to TCC when TCC overflows. Also, if only the upper digit needs to be changed, first write TWCL and then write TWCU.

- Be sure to read TRCU first and then TRCL when reading the TCC value using the TRCL/U pair. The value in the lower digit of TCC is latched into TRCL when TRCU is read. Thus reading TRCL returns the value of the TCC lower digit at the point TRCU was last read.
- When changing the value of TMC, the new value becomes valid two instructions after the execution of the instruction that wrote TMC. Therefore it is necessary for programs that initialize timer C (set the reload value or initialize TCC) by writing to the TWCL/U pair to perform this initialization only after the mode changed by TMC has become valid.
- Keep the following points in mind when using the timer output as PWM output.

In PWM output mode, the duty and the period between the point when the timer write register is updated and the point when the next overflow interrupt is generated differ from the set values as shown in table 19-3.

Therefore, when using PWM output, only use the output following the overflow interrupt generated after the timer write register was updated. The PWM output following the first overflow will have the duty and period specified by the settings.

Table 19-3 PWM Output Immediately Following Timer Write Register Update

PWM Output

Section 20 Serial Interface

20.1 Overview

The HMCS43XX microcomputers include a built-in single-channel serial interface. This serial interface is a built-in peripheral module that implements serial data communication with other LSIs. In particular, this serial interface implements 8-bit clock synchronous communication.

20.1.1 Features

The serial interface has the following features.

- The clock source can be selected from one of 13 internal clocks: either the system clock or one of the prescaler S (PSS*) outputs divided by 2 or 4. Alternatively, an external clock can be used as the clock source.
- During idle periods, the transfer output pin can be set to either high or low.
- Interrupts can be generated on transfer complete and transfer errors.

Note: * See section 16, "Prescalers", for details.

20.1.2 Block Diagram

Figure 20-1 shows the block diagram of the serial interface.

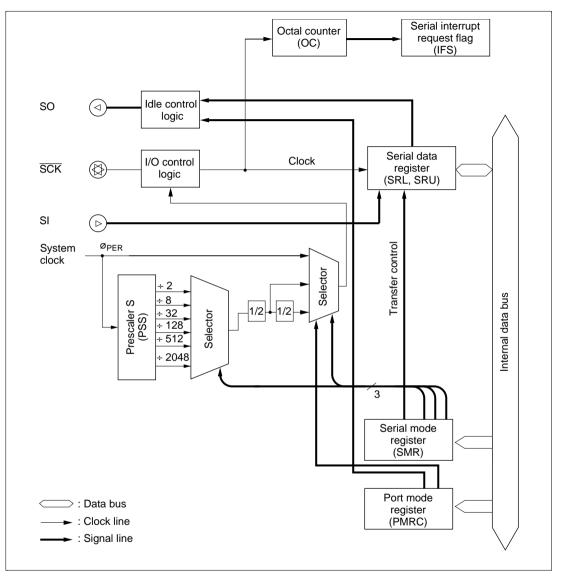


Figure 20-1 Serial Interface Block Diagram

20.1.3 Serial Interface Pins

Table 20-1 lists the pins used by the serial interface.

Table 20-1 Serial Interface Pins

Pin	Symbol	I/O	Function
Serial clock I/O	SCK	I/O	Transfer clock input and output
Serial reception data input	SI	Input	Serial reception data input
Serial transmission data output	SO	Output	Serial transmission data output

20.1.4 Register Configuration

Table 20-2 lists the registers used by the serial interface.

Table 20-2 Register Configuration

Address	Register	Symbol	R/W	Initial Value
\$005	Serial mode register	SMR	W	\$0
\$006	Serial data register L	SRL	R/W	Undefined
\$007	Serial data register U	SRU	R/W	Undefined
	Octal counter	OC	_	000
\$004	Port mode register A	PMRA	W	\$0
\$025	Port mode register C	PMRC	W	00-0
\$00C	Miscellaneous register	MIS	W	\$0

20.2 Register Descriptions

20.2.1 Serial Mode Register (SMR: \$005)

SMR is a 4-bit write-only register that switches the R port and serial clock pin function, selects the transfer clock, and controls serial interface initialization.

The serial interface is initialized by write operations to the SMR. Clock supply to the serial data register and the octal counter stops and the octal counter is cleared to 0.

If a program writes to SMR during a data transfer, the data transmission or reception is aborted and the serial interrupt request flag is set to 1.

SMR is initialized to \$0 on reset and in stop mode.

Bit	3	2	1		0		
	SMR3	SMR	2 SM	R1 S	MR0		
Initial value	0	0	()	0		
Read/Write	W	W	V	V	W		
		Transfei	fer clock selecti			1	1
		SMR2	SMR1	SMR0	SCK pin	Clock source	Prescaler divisor*
		0	0	0	Output	PSS	ø _{PER} /2048
				1	Output	PSS	ø _{PER} /512
		0	1	0	Output	PSS	ø _{PER} /128
			•	1	Output	PSS	ø _{PER} /32
			0	0	Output	PSS	ø _{PER} /8
		1		1	Output	PSS	ø _{PER} /2
			1	0	Output	System clock	Ø _{PER}
			•	1	Input	External clock	—
	R	0 ₀ /SCK	pin func	tion swit	ch		
	0	R0 por	t I/O pin				
	1	SCK c	lock I/O	pin			

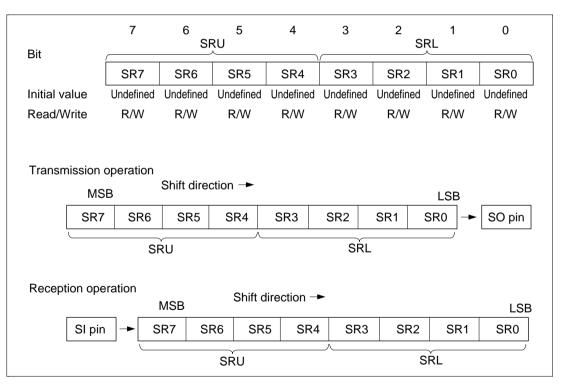
Note: * The transfer clock divisor is determined by the combination of the prescaler divisor set by the SMR2 to SMR0 bits and the prescaler output divisor (2 or 4) set by the PMRC PMRC0 bit.

Bit 3—R0₀/ $\overline{\text{SCK}}$ **Pin Function Switch (SMR3):** Selects whether the R0₀/ $\overline{\text{SCK}}$ pin functions as the R0₀ I/O pin or as the serial interface transfer clock I/O pin.

SMR3	Description	
0	The $R0_0$ / \overline{SCK} pin functions as the $R0_0$ I/O pin.	(initial value)
1	The $R0_0$ /SCK pin functions as the SCK I/O pin.	

Bits 2 to 0—Transfer Clock Selection (SMR2 to SMR0, PMRC0): These bits select the serial interface transfer clock source to be either an external clock, the system clock, or a prescaler S (PSS) output. If PSS output is selected, the PMRC PMRC0 bit selects whether the PSS output will be divided by 2 or 4.

PMRC		SMR			Transfer Clock	Transfer Clock Divisor (a PSS Divisor of	Transfer Clock
PMRC0	SMR2	SMR1	SMR0	SCK Pin	Source	2 or 4)	Period
0	0	0	0	Output	PSS	(ø _{PER} /2048) ÷ 2	4096 t _{cyc} (initial value)
			1	Output	PSS	(ø _{PER} /512) ÷ 2	1024 t _{cyc}
		1	0	Output	PSS	(ø _{PER} /128) ÷ 2	256 t _{cyc}
			1	Output	PSS	(ø _{PER} /32) ÷ 2	64 t _{cyc}
	1	0	0	Output	PSS	(ø _{PER} /8) ÷ 2	16 t _{cyc}
			1	Output	PSS	(ø _{PER} /2) ÷ 2	4 t _{cyc}
		1	0	Output	System clock	Ø _{PER}	t _{cyc}
			1	Input	External clock		
1	0	0	0	Output	PSS	(ø _{PER} /2048) ÷ 4	8192 t _{cyc} (initial value)
			1	Output	PSS	(ø _{PER} /512) ÷ 4	2048 t _{cyc}
		1	0	Output	PSS	(ø _{PER} /128) ÷ 4	512 t _{cyc}
			1	Output	PSS	(ø _{PER} /32) ÷ 4	128 t _{cyc}
	1	0	0	Output	PSS	(ø _{PER} /8) ÷ 4	32 t _{cyc}
			1	Output	PSS	(ø _{PER} /2) ÷ 4	8 t _{cyc}
		1	0	Output	System clock	Ø _{PER}	t _{cyc}
			1	Input	External clock	_	_


t_{cvc}:System clock period

20.2.2 Serial Data Register SRL/U (SRL: \$006, SRU: \$007)

The SRL/U pair form an 8-bit read/write register in which SRU is the upper digit and SRL is the lower digit. Data to be transmitted is written to this register and received data is read from this register.

Data written to the SRL/U pair is shifted right (from upper bit positions to lower bit positions) one bit at a time on the falling edge of the transfer clock and the LSB data is output from the SO pin. Similarly, external data that was transferred LSB first is input from the SI pin. This data is acquired by shifting the SRL/U pair right one bit at a time. (See figure 20-2.)

The SRL/U pair can only be read or written after the last data transmission or reception operation has completed. Data integrity is not guaranteed if data is read or written during a data transmission or reception operation.

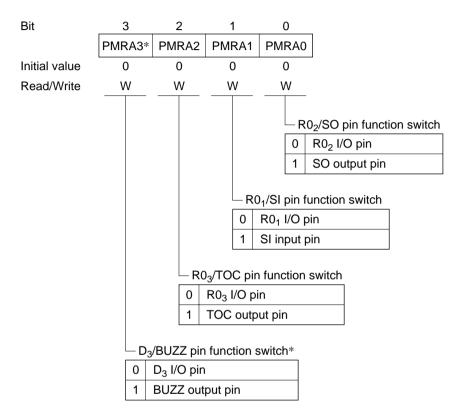
The SRL/U pair is undefined on reset and in stop mode.

Figure 20-2 Shift Operations During Data Transmission and Reception

20.2.3 Octal Counter (OC)

Bit	2	1	0
	OC2	OC1	OC0
Initial value	0	0	0
Read/Write	_	_	_

OC is a 3-bit counter that controls the serial interface operating state transitions. When an STS instruction is executed in the STS instruction wait state, OC is initialized to 000, and after the serial interface switches to the transfer state the OC is incremented by 1 on each rising edge of the transfer clock. When either eight transfer clock cycles complete or the transmission or reception is aborted, OC is cleared to 000 and the serial interface switches from the transfer state to the STS instruction wait state or the transfer clock wait state. At the same time IFS is set to 1.


OC is initialized to 000 on reset and in stop mode.

See section 20.3.4, "Operating States", for details on the OC and operating state transitions.

20.2.4 Port Mode Register A (PMRA: \$004)

PMRA is a 4-bit write-only register whose PMRA2 to PMRA0 bits switch the R0 port pin function. PMRA3 switches the function of the D port D_3 /BUZZ pin.

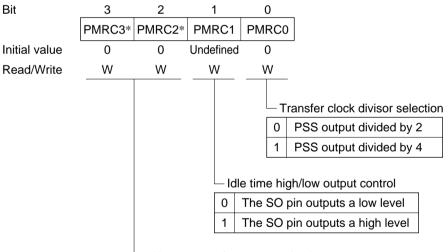
This section describes the PMRA1 and PMRA0 bits. See sections 19.2.2 and 21.2.1, "Port Mode Register A (PMRA)", for details on the PMRA3 and PMRA2 bits.

Note: * Applies to the HD404318, HD404358, HD404358R, HD404339, and HD404369 Series. The PMRA3 bit is unused in the HD404344R and HD404394 Series.

Bit 1— R0₁/SI Pin Function Switch (PMRA1): Selects whether the R0₁/SI pin functions as the R0₁ I/O pin or as the serial reception data input pin (SI).

PMRA1	Description	
0	The $R0_1/SI$ pin functions as the $R0_1$ I/O pin.	(initial value)
1	The R0 ₁ /SI pin functions as the SI input pin.	

Bit 0—R0₂/SO Pin Function Switch (PMRA0): Selects whether the $R0_2/SO$ pin functions as the $R0_2$ I/O pin or as the serial transmission data output pin (SO).


PMRA0	Description	
0	The $R0_2/SO$ pin functions as the $R0_2$ I/O pin.	(initial value)
1	The $R0_2$ /SO pin functions as the SO output pin.	

20.2.5 Port Mode Register C (PMRC: \$025)

PMRC is a 4-bit write-only register that selects the high/low level output state during serial interface idle and sets the divisor for the PSS output used as the transfer clock. This register also sets the alarm frequency,

Do not update or write to this register during serial interface transfers. Writing to this register during a transfer can cause the serial interface to operate incorrectly.

This section describes the PMRC1 and PMRC0 bits. See section 21.2.2, "Port Mode Register C", for details on the PMRC3 and PMRC2 bits.

Alarm output frequency selection*

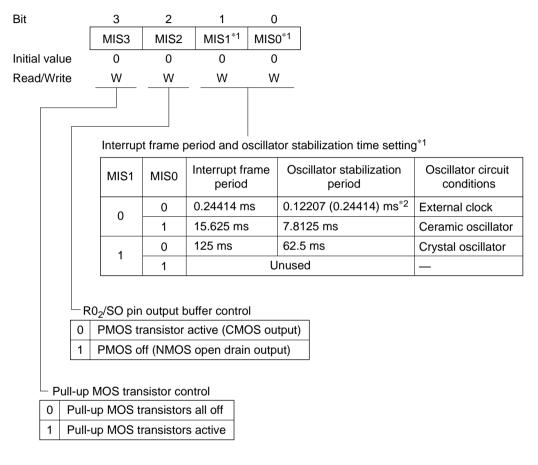
Note: * Applies to the HD404318, HD404358, HD404358R, HD404339, and HD404369 Series. The PMRC3 and PMRC2 bits are unused in the HD404344R and HD404394 Series.

Bit 1—Idle Time High/Low Output Control (PMRC1): Controls the state of the SO pin during serial interface idle. The SO pin changes state when this bit is written.

PMRC1 is undefined on reset and in stop mode.

PMRC1	Description	
0	The SO pin outputs a low level during idle.	(initial value)
1	The SO pin outputs a high level during idle.	

Bit 0—Transfer Clock Divisor Selection (PMRC0): Selects whether the PSS output divided by 2 or 4 is used as the transfer clock. This bit, along with the SMR SMR2 to SMR0 bits, controls the corresponding serial interface transfer clock.


PMRC0 is initialized to 0 on reset and in stop mode.

PMRC0	Description	
0	The PSS output divided by 2 is used as the transfer clock.	(initial value)
1	The PSS output divided by 4 is used as the transfer clock.	

20.2.6 Miscellaneous Register (MIS: \$00C)

MIS is a 4-bit write-only register that controls the port pull-up MOS transistor on/off states, controls the $R0_2/SO$ pin output buffer PMOS transistor on/off state, sets the interrupt frame period (T) in watch mode and subactive mode, and sets the oscillator stabilization time (t_{RC}) when low power modes are cleared.

MIS is initialized to \$0 on reset and in stop mode.

- Notes: 1. Applies to the HD404339 and HD404369 Series. The MIS1 and MIS0 bits are unused in the HD404344R, HD404394, HD404318, HD404358, and HD404358R Series.
 - 2. Values in parentheses are direct transition times.

This section describes the MIS2 bit. See sections 11.1.2(4), 12.1.2(4) and 6.2.1, "Miscellaneous Register (MIS)", for details on the MIS3, MIS1, and MIS0 bits.

Bit 2—R0₂/SO Pin Output Buffer Control (MIS2): Controls the R0₂/SO pin output buffer PMOS transistor on/off state.

MIS2	Description	
0	The $R0_2$ /SO pin functions as a CMOS output.	(initial value)
1	The $R0_2/SO$ pin functions as an NMOS open drain output.	

20.3 Operation

20.3.1 Operating Modes

The serial interface performs 8-bit clock synchronization communication. The serial interface has the four operating modes listed in table 20-3. These modes are selected by the SMR SMR3 bit and the PMRA PMRA1 and PMRA0 bits.

SMR PMRA		PMRA	
SMR3	PMRA1	PMRA0	Operating Mode
1	0	0	Transfer clock continuous output mode
		1	Transmission mode
	1	0	Reception mode
		1	Transmission/reception mode

Table 20-3 Serial Interface Operating Modes

20.3.2 Serial Data Format

Figure 20-3 shows the transfer format for clock synchronous serial data. Eight bits of data can be transmitted or received in a single operation. Data is transmitted (or received) in an LSB first format. Transmitted data is output from one falling edge of the transfer clock to the next falling edge, and received data is input on the rising edge of the transfer clock.

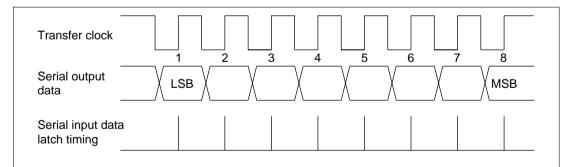
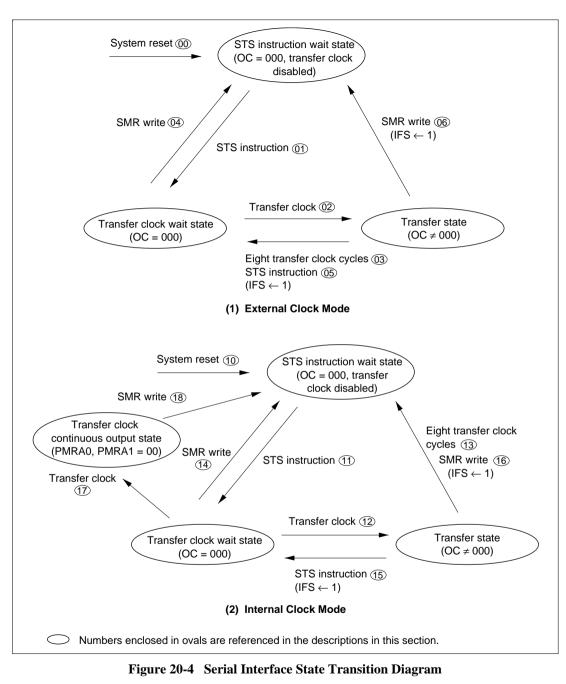


Figure 20-3 Clock Synchronous Serial Data Transfer Format

20.3.3 Transfer Clock

Either an internal clock or an external clock can be used as the transfer clock. The internal clock can be set to be either the system clock or one of 12 clocks generated by dividing PSS output by 2 or 4, for a total of 13 internal clock options. When an internal clock is used, the \overline{SCK} pin functions as the transfer clock output pin.


20.3.4 Operating States

Serial interface transfer operations are initiated by the STS instruction. When an STS instruction is executed, OC is cleared to 000 and is incremented on each transfer clock rising edge. OC is cleared to 000 and IFS is set to 1 when eight transfer clock cycles have completed or when a transmission or reception is aborted.

The serial interface has four operating states as follows.

- STS instruction wait state
- Transfer clock wait state
- Serial state
- Transfer clock continuous output state (internal clock mode only)

Figure 20-4 shows the state transition diagram for the serial interface.

(1) **STS Instruction Wait State:** The serial interface enters the STS instruction wait state on a system reset (items ⁽¹⁾) and ⁽¹⁾) in figure 20-4).

The STS instruction wait state is the state in which the serial interface internal state is initialized. In this state, the serial interface will not operate even if a transfer clock is applied. When an STS instruction is executed (0 or 1) the serial interface switches to the transfer clock wait state.

(2) **Transfer Clock Wait State:** The transfer clock wait state is the period between the execution of an STS instruction and the first transfer clock falling edge.

When the transfer clock is applied (@ or @) with the serial interface in the transfer clock wait state, the OC counter is incremented, the SRL/U pair shift operation starts, and the serial interface switches to the transfer state. However, when transfer clock continuous output mode is selected in internal clock mode, the serial interface does not switch to the transfer state, but rather it switches to the transfer clock continuous output state (@).

If SMR is written when the serial interface is in the transfer clock wait state, the serial interface switches to the STS instruction wait state (0 or 1).

(3) **Transfer State:** Transfer state is the period between the first transfer clock falling edge and the eighth transfer clock rising edge.

If either an STS instruction is executed or eight transfer clock cycles are applied, OC is cleared to 000 and the serial interface state switches. If an STS instruction was executed (⁽⁰⁵⁾), the serial interface switches to the transfer clock wait state. If eight transfer clock cycles were applied, the serial interface transfers to either the transfer clock wait state (⁽⁰³⁾) if it was in external clock mode, or the STS instruction wait state (⁽¹³⁾) if it was in internal clock mode.

In internal clock mode, the transfer clock stops after eight clock cycles.

If SMR is written in the transfer state (⁽¹⁶⁾), the serial interface is initialized and it switches to the STS instruction wait state.

When a transition from transfer state to any other state occurs, OC is cleared to 000 and IFS is set to 1.

(4) Transfer Clock Continuous Output State (Internal Clock Mode Only): Transfer clock continuous output state is a state in which no data transfer is performed but the transfer clock is output continuously from the \overline{SCK} pin. When the PMRA PMRA1 and PMRA0 bits are set to 00 and the serial interface is in the transfer clock wait state, if the transfer clock is applied (17), the serial interface switches to the transfer clock continuous output state. If SMR is written in the transfer clock continuous output state (18), the serial interface is initialized and it switches to the STS instruction wait state.

20.3.5 Transmission and Reception Operations

(1) Serial Interface Initialization: The first step in data transmission or reception operation is initialization of the serial interface by software. This is performed by either resetting the system or writing to the SMR register.

(2) Data Transmission

a. Data transmission procedure in external clock mode

Figure 20-5 shows the data transmission procedure in external clock mode.

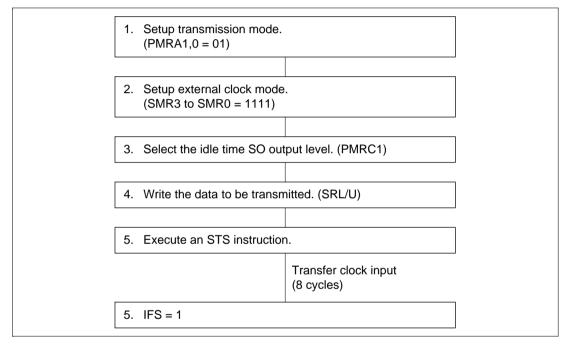


Figure 20-5 Data Transmission Procedure (External Clock Mode)

Use the following procedure for data transmission in external clock mode.

- 1. Setup transmission mode by setting the PMRA1 and PMRA0 bits to 01.
- 2. Setup external clock mode by setting the SMR3 to SMR0 bits to 1111.

The serial interface internal states are initialized when SMR is written.

- 3 Select either a low or high level SO pin idle output by setting the PMRC1 bit. The SO pin will immediately go to either the high or low level when PMRC1 is written.
- 4 Write the data to be transmitted to the SRL/U pair.
- 5 Execute an STS instruction. The serial interface will switch from the STS instruction wait state to the transfer clock wait state.

When the external clock is applied, the serial interface will switch from the transfer clock wait state to the transfer state on the first transfer clock falling edge, and the serial interface will begin the transmission operation.

6. When eight transfer clock cycles have been input, OC is cleared to 000 and IFS is set to 1. At the same time the serial interface switches from the transfer state to the transfer clock wait state thus completing the transmission operation.

After the transfer completes, the SO pin holds the value of the MSB of the transmitted data. The output value on the SO pin can be changed by setting the PMRC1 bit.

In the transfer clock wait state, if the transfer clock continues to be input, data transmission operations are repeated. Also, the serial interface can be returned to the STS instruction wait state to prepare for the next transmission by performing a dummy write to the SMR register.

If the SMR register is written during a transmission operation, OC is cleared to 0 and IFS is set to 1. At the same time the serial interface switches to the STS instruction wait state and the transmission is aborted.

Figure 20-6 shows the operation sequence for data transmission in external clock mode.

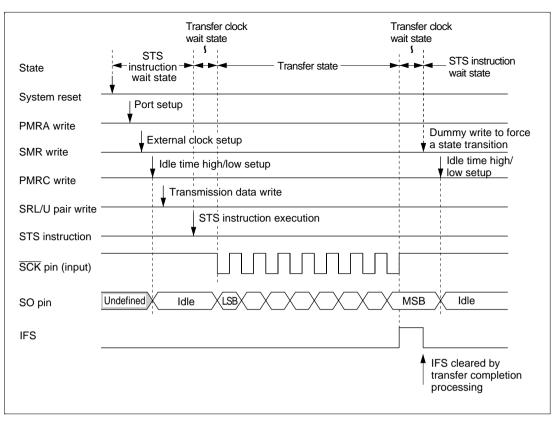


Figure 20-6 Serial Transmission Operation Sequence (External Clock Mode)

b. Data transmission procedure in internal clock mode

Figure 20-7 shows the data transmission procedure in internal clock mode.

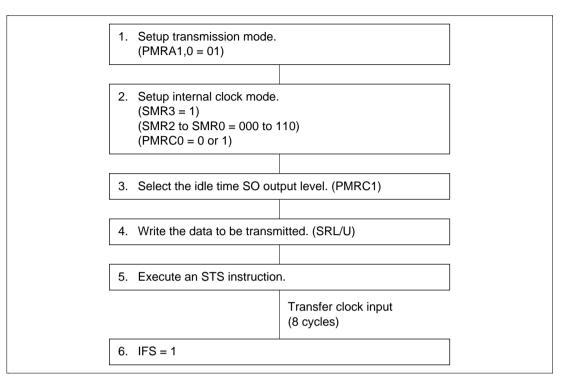


Figure 20-7 Data Transmission Procedure (Internal Clock Mode)

Use the following procedure for data transmission in internal clock mode.

- 1. Setup transmission mode by setting the PMRA1 and PMRA0 bits to 01.
- 2. Setup internal clock mode by setting the SMR2 to SMR0 bits.

The serial interface internal states are initialized when SMR is written.

Select a divisor of 2 or 4 transfer clock for the prescaler output by setting the PMRC0 bit.

- 3. Select either a low or high level SO pin idle output by setting the PMRC1 bit. The SO pin will immediately go to either the high or low level when PMRC1 is written.
- 4. Write the data to be transmitted to the SRL/U pair.
- 5. Execute an STS instruction. The serial interface will switch from the STS instruction wait state to the transfer clock wait state.

When the internal clock is applied, the serial interface will switch from the transfer clock wait state to the transfer state on the first transfer clock falling edge, and the serial interface will begin the transfer operation.

6. When eight transfer clock cycles have been input, OC is cleared to 000 and IFS is set to 1. At the same time the serial interface switches from the STS instruction wait state to the transfer clock wait state thus completing the transfer.

After the transfer completes, the SO pin holds the value of the MSB of the transmitted data. The output value on the SO pin can be changed by setting the PMRC1 bit.

In internal clock mode, the $\overline{\text{SCK}}$ pin functions as the transfer clock output pin and outputs the transfer clock, which is identical to the selected internal clock.

If the SMR register is written during a transmission operation, OC is cleared to 000 and IFS is set to 1. At the same time the serial interface switches to the STS instruction wait state and the transmission is aborted.

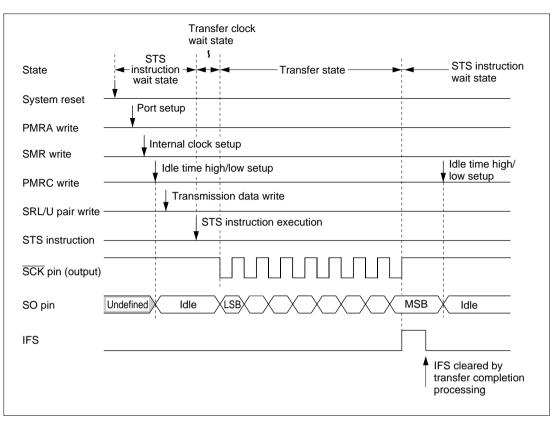


Figure 20-8 Serial Transmission Operation Sequence (Internal Clock Mode)

(3) Data Reception

a. Data reception procedure in external clock mode

Figure 20-9 shows the data reception procedure in external clock mode.

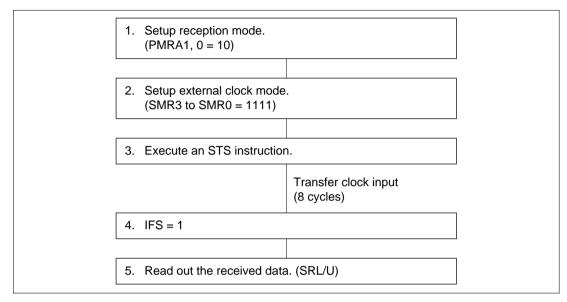


Figure 20-9 Data Reception Procedure (External Clock Mode)

Use the following procedure for data reception in external clock mode.

- 1. Setup reception mode by setting the PMRA1 and PMRA0 bits to 10.
- 2. Setup external clock mode by setting the SMR3 to SMR0 bits to 1111.

The serial interface internal states are initialized when SMR is written.

3. Execute an STS instruction. The serial interface will switch from the STS instruction wait state to the transfer clock wait state.

When the external clock is applied, the serial interface will switch from the transfer clock wait state to the transfer state on the first transfer clock falling edge, and the serial interface will begin the reception operation.

- 4. When eight transfer clock cycles have been input, OC is cleared to 000 and IFS is set to 1. At the same time the serial interface switches from the transfer state to the transfer clock wait state thus completing the reception operation.
- 5. Read out the received data from the SRL/U pair.

After the completion of data reception with the serial interface in the transfer clock wait state, the reception operation will be repeated if the transfer clock continues to be input. Also, the serial interface can be returned to the STS instruction wait state to prepare for the next transmission by performing a dummy write to the SMR register.

If the SMR register is written during a reception operation, OC is cleared to 000 and IFS is set to 1. At the same time the serial interface switches to the STS instruction wait state and the reception is aborted.

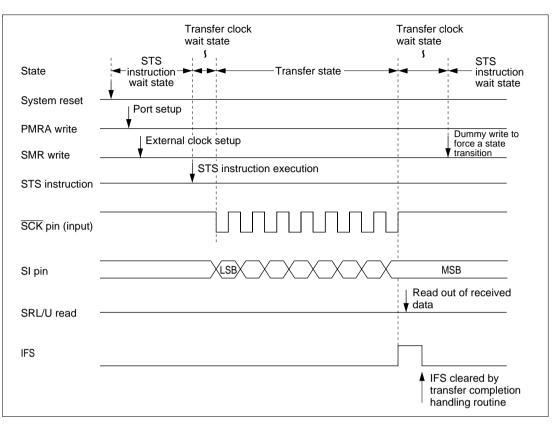


Figure 20-10 shows the operation sequence for data reception in external clock mode.

Figure 20-10 Serial Reception Operation Sequence (External Clock Mode)

b. Data reception procedure in internal clock mode

Figure 20-11 shows the data reception procedure in internal clock mode.

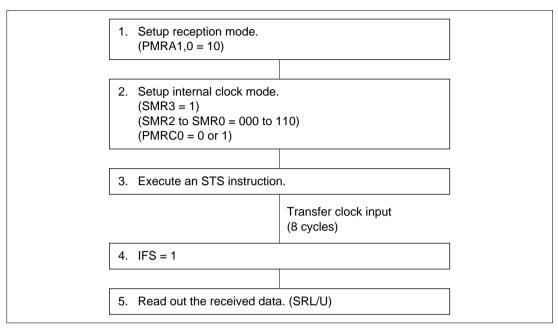
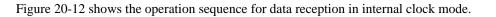


Figure 20-11 Data Reception Procedure (Internal Clock Mode)

Use the following procedure for data reception in internal clock mode.

- 1. Setup reception mode by setting the PMRA1 and PMRA0 bits to 10.
- 2. Setup internal clock mode by setting the SMR2 to SMR0 bits, and select the transfer clock.

The serial interface internal states are initialized when SMR is written.


Select a divisor of 2 or 4 for the prescaler output by setting the PMRC0 bit.

3. Execute an STS instruction. The serial interface will switch from the STS instruction wait state to the transfer clock wait state.

When the internal clock is applied, the serial interface will switch from the transfer clock wait state to the transfer state on the first transfer clock falling edge, and the serial interface will begin the reception operation.

- 4. When eight transfer clock cycles have been input, OC is cleared to 000 and IFS is set to 1. At the same time the serial interface switches from the transfer state to the STS instruction wait state thus completing the reception operation.
- 5. Read out the received data from the SRL/U pair.

If the SMR register is written during a reception operation, OC is cleared to 000 and IFS is set to 1. At the same time the serial interface switches to the STS instruction wait state and the reception is aborted.

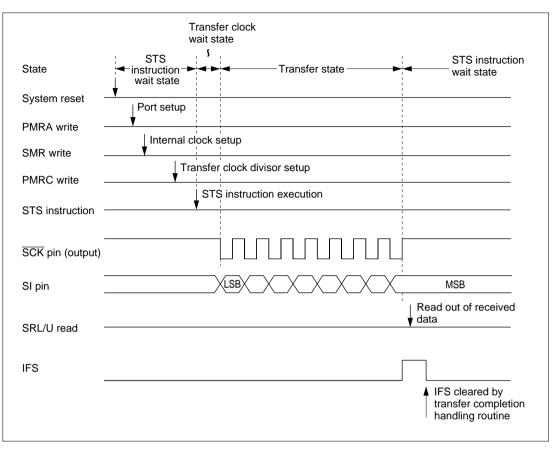


Figure 20-12 Serial Reception Operation Sequence (Internal Clock Mode)

(4) Simultaneous Transmission and Reception

a. Simultaneous transmission and reception in external clock mode

Figure 20-13 shows the simultaneous transmission and reception procedure in external clock mode.

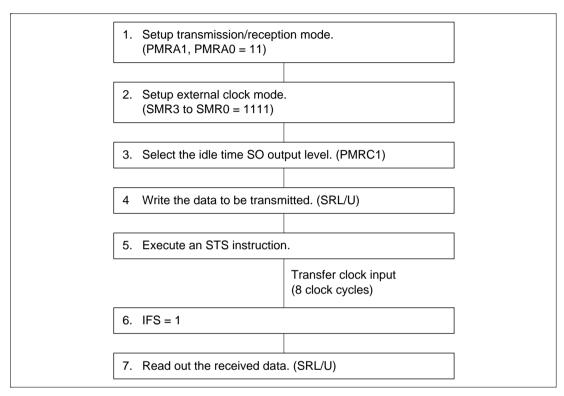


Figure 20-13 Simultaneous Transmission and Reception Procedure (External Clock Mode)

Use the following procedure for simultaneous transmission and reception in external clock mode.

- 1. Setup transmission/reception mode by setting the PMRA1 and PMRA0 bits to 11.
- 2. Setup external clock mode by setting the SMR3 to SMR0 bits to 1111.

The serial interface internal states are initialized when SMR is written.

- 3. Select either a low or high level SO pin idle output by setting the PMRC1 bit. The SO pin will immediately go to either the high or low level when PMRC1 is written.
- 4. Write the data to be transmitted to the SRL/U pair.
- 5. Execute an STS instruction. The serial interface will switch from the STS instruction wait state to the transfer clock wait state.

When the external clock is applied, the serial interface will switch from the transfer clock wait state to the transfer state on the first transfer clock falling edge, and the serial interface will begin the transmission/reception operation. The SRL/U pair will be shifted right (in the MSB to LSB direction) in synchronization with the transfer clock, received data will be acquired in the MSB, and transmitted data will be output from the LSB.

- 6. When eight transfer clock cycles have been input, OC is cleared to 000 and IFS is set to 1. At the same time the serial interface switches from the transfer state to the transfer clock wait state thus completing the transmission/reception operation.
- 7. Read out the received data from the SRL/U pair.

After the transfer completes, the SO pin holds the value of the MSB of the transmitted data. The output value on the SO pin can be changed by setting the PMRC1 bit.

In the transfer clock wait state, if the transfer clock continues to be input, data transmission/

reception operations are repeated. Also, the serial interface can be returned to the STS instruction wait state to prepare for the next transmission/reception by performing a dummy write to the SMR register.

If the SMR register is written during a transmission/reception operation, OC is cleared to 000 and IFS is set to 1. At the same time the serial interface switches to the STS instruction wait state and the transmission/reception operation is aborted.

See figures 20-6 and 20-10 for the transmission/reception operation in external clock mode.

b. Simultaneous transmission and reception in internal clock mode

Figure 20-14 shows the simultaneous transmission and reception procedure in internal clock mode.

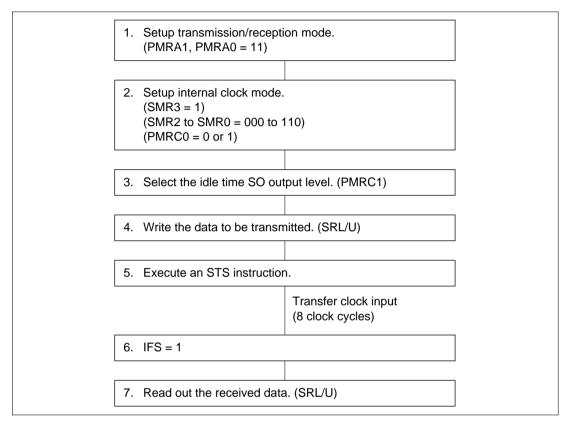


Figure 20-14 Simultaneous Transmission and Reception Procedure (Internal Clock Mode)

Use the following procedure for simultaneous transmission and reception in internal clock mode.

- 1. Setup transmission/reception mode by setting the PMRA1 and PMRA0 bits to 11.
- Setup internal clock mode by setting the SMR2 to SMR0 bits, and select the transfer clock.
 The serial interface internal states are initialized when SMR is written.

Select a divisor of 2 or 4 transfer clock for the prescaler output by setting the PMRC0 bit.

- 3. Select either a low or high level SO pin idle output by setting the PMRC1 bit. The SO pin will immediately go to either the high or low level when PMRC1 is written.
- 4. Write the data to be transmitted to the SRL/U pair.
- 5. Execute an STS instruction. The serial interface will switch from the STS instruction wait state to the transfer clock wait state.

When the internal clock is applied, the serial interface will switch from the transfer clock wait state to the transfer state on the first transfer clock falling edge, and the serial interface will begin the transmission/reception operation.

- 6. When eight transfer clock cycles have been input, OC is cleared to 000 and IFS is set to 1. At the same time the serial interface switches from the transfer state to the STS instruction wait state thus completing the transmission/reception operation.
- 7. Read out the received data from the SRL/U pair.

After the transfer completes, the SO pin holds the value of the MSB of the transmitted data. The output value on the SO pin can be changed by setting the PMRC1 bit.

In internal clock mode, the $\overline{\text{SCK}}$ pin functions as the transfer clock output pin and outputs the transfer clock, which is identical to the selected internal clock.

If the SMR register is written during a transmission/reception operation, OC is cleared to 000 and IFS is set to 1. At the same time the serial interface switches to the STS instruction wait state and the transmission/reception operation is aborted.

See figures 20-8 and 20-12 for the transmission/reception operation in internal clock mode.

(5) **Transfer Clock Continuous Output Operation:** Figure 20-15 shows the transfer clock continuous output operation procedure.

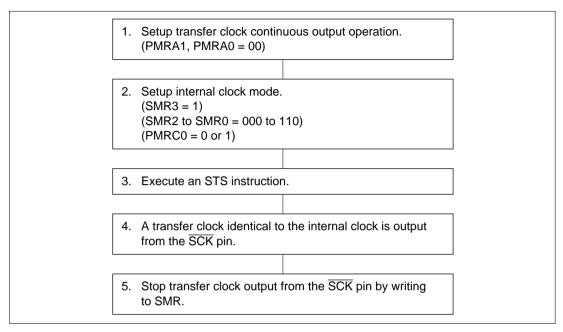


Figure 20-15 Transfer Clock Continuous Output Operation Procedure

Use the following procedure for transfer clock continuous output.

- 1. Setup transfer clock continuous output mode by setting the PMRA1 and PMRA0 bits to 00.
- $2. \ \ Setup \ internal \ clock \ mode \ by \ setting \ the \ SMR2 \ to \ SMR0 \ bits, \ and \ select \ the \ transfer \ clock.$

The serial interface internal states are initialized when SMR is written.

Select a divisor of 2 or 4 for the prescaler output by setting the PMRC0 bit.

- 3. Execute an STS instruction. The serial interface will switch from the STS instruction wait state to the transfer clock wait state.
- 4. When the internal clock is applied, the serial interface will switch from the transfer clock wait state to the transfer state on the first transfer clock falling edge, and a transfer clock identical to the internal clock will be output from the \overline{SCK} pin.
- 5. If the SMR is written in the transfer clock continuous output state, the serial interface will switch to the STS instruction wait state and transfer clock output will stop.

20.3.6 High- or Low-Level Output Selection during Idle

The serial interface allows user software to set the state of the SO pin arbitrarily during serial interface idle states, i.e., the STS instruction wait state and the transfer clock wait state. The output level during serial interface idle state is controlled by writing the PMRC PMRC1 bit. In the transfer state, the SO pin output level cannot be controlled.

20.3.7 Transfer Clock Error Detection (External Clock Mode)

The serial interface will operate incorrectly if external noise results in extraneous pulses being added to the transfer clock. The procedure shown in figures 20-16 and 20-17 allows such errors to be detected.

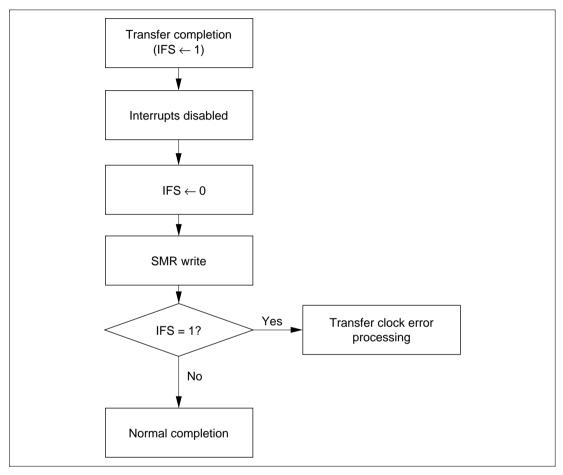


Figure 20-16 Transfer Clock Error Detection Flowchart

If more than 8 clock cycles are incorrectly applied in the transfer state, OC will be cleared to 000 and IFS set to 1 on the eighth (including noise) clock cycle. At the same time, the serial interface will switch from the transfer state to the transfer clock wait state. However, the serial interface will switch to the transfer state once again on the falling edge of the next clock pulse, which is a correct clock pulse.

At the same time, the interrupt processing routine will terminate the transfer, clear IFS to 0, and perform a dummy write to SMR. Since this dummy write causes the serial interface to switch from the transfer state to the STS instruction wait state, IFS will be set to 1 once again. (See figure 20-4.) Therefore, transfer clock errors can be detected by testing the IFS state after performing the SMR dummy write.

Figure 20-17 shows the transfer clock error detection sequence.

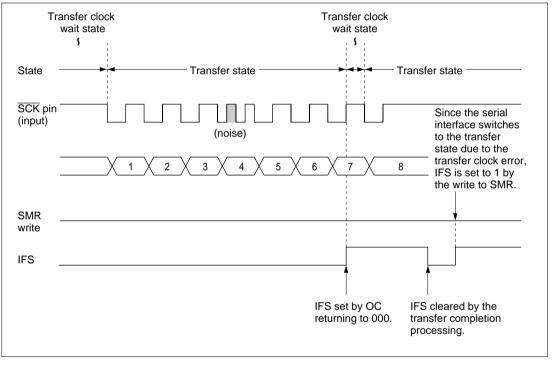


Figure 20-17 Transfer Clock Error Detection Sequence

20.4 Interrupts

The serial interface interrupt source is generated when the serial interface switches from the transfer state to any other state, i.e., when OC is cleared to 000. IFS is set to 1 when the serial interface interrupt source occurs.

IFS is never cleared automatically, even if the interrupt is accepted. The interrupt handling routine should clear IFS to 0.

The serial interrupt can be independently enabled or masked with the serial interrupt mask (IMS) in the interrupt control bit area.

20.5 Usage Notes

Keep the following points in mind when using the serial interface.

- If PMRA is to be written in either the transfer clock wait state or the transfer state, the serial interface should be re-initialized by writing to the SMR register.
- In the transfer state, IFS is not set to 1 by writing to SMR or switching to another state by executing an STS instruction during the first low level period of the transfer clock. To set the IFS flag reliably, execute an input instruction for the R0₀ pin, which will be assigned to be the SCK pin, and confirm that the SCK pin is at the high level. After this has been done, program software to write to SMR or to execute the STS instruction.
- Changes to the SMR register become valid two instruction cycles after the execution of the instruction that wrote the register. Therefore application programs must be written so that the STS instruction is executed only after a period of at least $2t_{cyc}$ has elapsed after the SMR register was written.
- MIS register control of the PMOS transistor on/off state is valid regardless of the PMRA register R0₂/SO pin function selection.

Section 21 Alarm Output (HD404318/HD404358/HD404358R/HD404339 /HD404369 Series)

21.1 Overview

The microcomputers in the HD404318, HD404358, HD404358R, HD404339, and HD404369 Series include a built-in alarm output circuit.

21.1.1 Features

This circuit can output a signal generated by dividing the system clock to the BUZZ pin for use as an alarm drive signal. The alarm output circuit has the following features.

• The alarm output circuit can output one of four frequencies (these will be 488 Hz, 977 Hz, 1.95 kHz, and 3.91 kHz when f_{OSC} is 4 MHz) generated by dividing the system clock. The output waveform is a 50% duty square wave.

21.1.2 Block Diagram

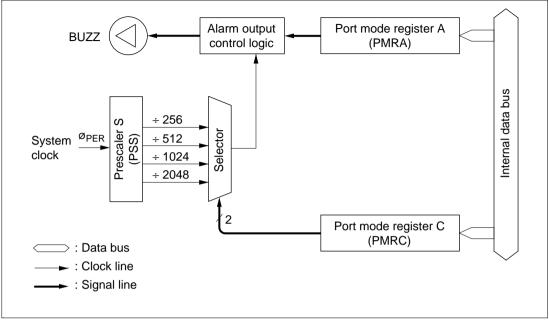


Figure 21-1 shows the block diagram of the alarm output circuit.

Figure 21-1 Alarm Output Circuit Block Diagram

21.1.3 Pin Functions

Table 21-1 lists the pins used by the alarm output circuit.

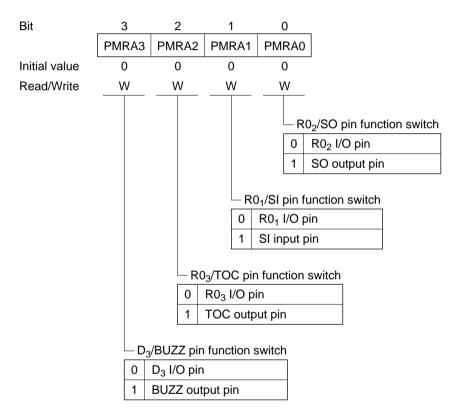
Table 21-1 Pin Configuration

Pin	Symbol	I/O	Function
Alarm output	BUZZ	Output	Alarm signal output

21.1.4 Register Configuration

Table 21-2 lists the registers used by the alarm output circuit.

Table 21-2 Register Configuration


Address	Register	Symbol	R/W	Initial Value
\$004	Port mode register A	PMRA	W	\$0
\$025	Port mode register C	PMRC	W	\$0

21.2 Register Descriptions

21.2.1 Port Mode Register A (PMRA: \$004)

PMRA is a 4-bit write-only register whose PMRA3 bit switches the function of the D_3 /BUZZ pin and whose other bits switch the functions of the R0 port pins.

This section describes the PMRA3 bit. See the "Port Mode Register A (PMRA)" items in sections 9 to 12, "I/O Ports", for details on the PMRA2 to PMRA0 bit in the HD404318, HD404358, HD404338R, HD404339, and HD404369 Series microcomputers.

Bit 3—D₃/BUZZ Pin Function Switch (PMRA3): Selects whether the $D_3/BUZZ$ pin functions as the D_3 I/O pin or as the alarm output pin (BUZZ).

PMRA3	Description	
0	The D ₃ /BUZZ pin functions as the D ₃ I/O pin.	(initial value)
1	The D_3 /BUZZ pin functions as the BUZZ output pin.	

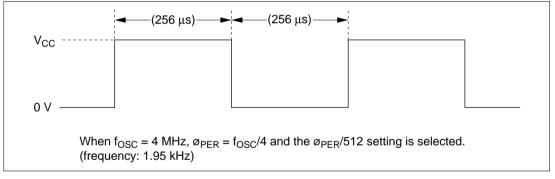
21.2.2 Port Mode Register C (PMRC: \$025)

PMRC is a 4-bit write-only register whose PMRC3 and PMRC2 bits select the alarm output frequency.

This section describes the PMRC3 and PMRC2 bits. See section 20.2.5, "Port Mode Register C (PMRC)" for details on the PMRC1 and PMRC0 bits.

Bit	3	2	1	1	0	_
	PMRC3	PMRC2	PM	RC1	PMRC	
Initial value	0	0	()	0	
Read/Write	W	W	V	V	W	
					Цт	ransfer clock divisor selection
					0	PSS output divided by 2
					1	PSS output divided by 4
				— Idl	e time hi	gh/low output control
				0	The SO	pin outputs a low level
				1	The SO	pin outputs a high level
		- Alarm f	reque	ncy s	selection	
		PMRC3	PMR	C2	Ala	rm frequency
		0	0		ø _{PER} /2	048
		0	1		ø _{PER} /1	024
		1	0		ø _{PER} /5	12
		1	1		ø _{PER} /2	56
	Ø _{PER} : Built-in peripheral module operating clock					

Bits 3 and 2—Alarm Frequency Selection (PMRC3, PMRC2): The PMRC3 and PMRC2 bits are initialized to 0 on reset and in stop mode.


PMRC3	PMRC2	Description	Alarm Frequency when ø _{PER} = 1 MHz*
0	0	A signal with a frequency of $\phi_{PER}/2048$ is output.	488 Hz
	1	A signal with a frequency of $ø_{PER}/1024$ is output.	977 Hz
1	0	A signal with a frequency of $ø_{PER}/512$ is output.	1.95 kHz
	1	A signal with a frequency of $\emptyset_{\text{PER}}/256$ is output.	3.91 kHz

Note: * HD404318/HD404358/HD404358R Series: $\phi_{PER} = f_{OSC}/4$ HD404339/HD404369 Series: $\phi_{PER} = f_{OSC}/4$, $f_{OSC}/8$, $f_{OSC}/16$, or $f_{OSC}/32$

21.3 Operation

The alarm output circuit selects one of four frequencies generated by using prescaler S (PSS) to divide the system clock. Figure 21-2 shows the output waveform.

The output is a 50% duty square wave.

Figure 21-2 Alarm Output Waveform Example

Section 22 ROM

22.1 Overview

Table 22-1 lists the built-in ROM provided by the HMCS43XX Family microcomputers.

Table 22-1Built-in ROM

HD404344R/HD404394 Series

Product Number			
HD404344R Series	HD404394 Series	Capacity	ROM Type
HD404341RS	HD404391S	1,024 words	Mask ROM
HD404341RFP	HD404391FP		
HD404341RFT	HD404391FT		
HD40C4341RS			
HD40C4341RFP			
HD40C4341RFT			
HD404342RS	HD404392S	2,048 words	
HD404342RFP	HD404392FP		
HD404342RFT	HD404392FT		
HD40C4342RS			
HD40C4342RFP			
HD40C4342RFT			
HD404344RS	HD404394S	4,096 words	
HD404344RFP	HD404394FP		
HD404344RFT	HD404394FT		
HD40C4344RS			
HD40C4344RFP			
HD40C4344RFT			
HD4074344S	HD4074394S	4,096 words	ZTAT™*
HD4074344FP	HD4074394FP		
HD4074344FT	HD4074394FT		
Note: * ZTAT™ is a regis	stered trademark of Hitachi, Lt	d.	

Table 22-1 Built-in ROM (cont)

HD404318 Series Capacity **ROM Type Product Number** 4,096 words Mask ROM HD404314S HD404314H 6,144 words HD404316S HD404316H HD404318S 8,192 words HD404318H ZTAT™* HD4074318S 8,192 words HD4074318H Note: * ZTAT[™] is a registered trademark of Hitachi, Ltd. HD404358 Series

Capacity	ROM Type
4,096 words	Mask ROM
6,144 words	
8,192 words	
16,384 words	ZTAT™∗
	4,096 words 6,144 words 8,192 words

Note: * ZTAT[™] is a registered trademark of Hitachi, Ltd.

Table 22-1Built-in ROM (cont)

HD404358R Series

Product Number	Capacity	ROM Type
HD404354RS/HD40A4354RS/HD40C4354RS	4,096 words	Mask ROM
HD404354RH/HD40A4354RH/HD40C4354RH	_	
HD404356RS/HD40A4356RS/HD40C4356RS	6,144 words	_
HD404356RH/HD40A4356RH/HD40C4356RH	_	
HD404358RS/HD40A4358RS/HD40C4358RS	8,192 words	
HD404358RH/HD40A4358RH/HD40C4358RH	_	
HD407A4359RS/HD407C4359RS	16,384 words	ZTAT™∗
HD407A4359RH/HD407C4359RH	_	
Note: *ZTAT [™] is a registered trademark of Hitad	chi, Ltd.	

HD404339 Series

Product Number	Capacity	ROM Type
HD404334S	4,096 words	Mask ROM
HD404334FS		
HD404336S	6,144 words	
HD404336FS		
HD404338S	8,192 words	
HD404338FS		
HD4043312S	12,288 words	
HD4043312FS		
HD404339S	16,384 words	
HD404339FS		
HD4074339S	16,384 words	ZTAT™*
HD4074339FS		

Note: * ZTAT[™] is a registered trademark of Hitachi, Ltd.

Table 22-1Built-in ROM (cont)

Product Number	Capacity	ROM Type
HD404364S/HD40A4364S	4,096 words	Mask ROM
HD404364F/HD40A4364F		
HD404368S/HD40A4368S	8,192 words	
HD404368F/HD40A4368F		
HD4043612S/HD40A43612S	12,288 words	
ID4043612F/HD40A43612F		
ID404369S/HD40A4369S	16,384 words	
HD404369F/HD40A4369F		
HD407A4369S	16,384 words	ZTAT™∗
ID407A4369F		

Note: * ZTAT[™] is a registered trademark of Hitachi, Ltd.

22.2 PROM Mode

22.2.1 PROM Mode

HD4074344/HD4074394

The HD4074344, HD4074394, HD4074318, HD407A4359, HD407A4359R, HD407C4359R, HD407C4359R, HD407A339, and HD407A4369 microcomputers support PROM mode. When these microcomputers are set to PROM mode, their microcomputer functions are stopped and they operate identically to the HN27C256 and HN27256 PROM products, thus allowing the internal PROM to be programmed.

Table 22-2 shows the method for switching these products to PROM mode.

Table 22-2 PROM Mode Setup Methods

	Setting Lovel	
	Setting Level	
$M_0 (R3_1/AN_1)$	Low level	
RESET		
1339		
	Setting Level	
\overline{M}_{o} (D ₀ / \overline{INT}_{o})	High level	
\overline{M}_1 (D ₁ / \overline{INT}_1)		
RESET	Low level	
7A4359R/HD407C4359R/HD40	<u>17A4369</u>	
	Setting Level	
\overline{M}_{0} (R4 ₁ /AN ₅)	Low level	
\overline{M}_1 (R4 ₂ /AN ₆)		
DECET		
	$ \frac{\overline{M}_{0} (D_{0}/\overline{INT}_{0})}{\overline{M}_{1} (D_{1}/\overline{INT}_{1})} $ $ \overline{RESET} $ 7A4359R/HD407C4359R/HD40 $ \overline{M}_{0} (R4_{1}/AN_{5}) $ $ \overline{M}_{1} (R4_{2}/AN_{6}) $	Mode Setting Level Mode RESET A339 Setting Level A339 Setting Level Mode Mode Mode Mode

22.2.2 Socket Adapter Pin Correspondence and Memory Map

The on-chip PROM is programmed by using a socket adapter corresponding to the package type as shown in table 22-3. This converts the microcomputer to a 28-pin package thus allowing the use of a general-purpose PROM writer. Figures 22-1 to 22-5 show the socket adapter pin correspondences.

Since the HMCS400 Series instructions are 10-bit instructions, these products include an on-chip conversion circuit that allows a general-purpose PROM writer to be used. This circuit divides each instruction into upper and lower 5-bit segments and allows each segment to be programmed as a different address. Since the HD4074344 and HD4074394 have 4,096 words of PROM on chip, the PROM writer should be set for an 8-kbyte address space (\$0000 to \$1FFF). Since the HD4074318 has 8,192 words of PROM on chip, the PROM writer should be set for a 16-kbyte address space (\$0000 to \$3FFF). And since the HD407A4359, HD407A4359R, HD407C4359R, HD407C4359R, HD4074339, and HD407A4369 have 16,384 words of PROM on chip, the PROM writer should be set for a 32-kbyte address space (\$0000 to \$7FFF).

Figures 22-6 to 22-8 show the memory maps when these microcomputers are in PROM mode.

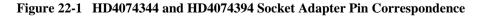

Product Number	Package	Socket Adapter Product Number
HD4074344/HD4074394	DP-28S	HS4344ESS01H
	FP-28DA	HS4344ESP01H
	FP-30D	HS4344ESF01H
HD4074318	DP-42S	HS4318ESS01H
	FP-44A	HS4318ESH01H
HD407A4359/HD407A4359R/	DP-42S	HS4359ESS01H
HD407C4359R	FP-44A	HS4359ESH01H
HD4074339	DP-64S	HS4339ESS01H
	FP-64B	HS4339ESF01H
HD407A4369	DP-64S	HS4369ESS01H
	FP-64B	HS4369ESF01H

Table 22-3 Socket Adapters

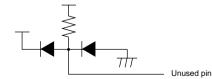
Figure 22-1 shows the HD4074344 and HD4074394 socket adapter pin correspondence.

16 F 21 F 22 F 23 F 24 F 25 C 26 C 27 C 30 C 1 F 2 F 3 F	EST 33/AN ₃ 80/SCK 80/SCK 80/SI 802/SO 90/INT ₀ /EVNB 91 92 93 93 95 810 811				$\begin{array}{c} \text{Pin} \\ \text{V}_{\text{PP}} \\ \text{O}_0 \\ \text{O}_1 \\ \text{O}_2 \\ \text{O}_3 \\ \text{O}_4 \\ \text{A}_0 \\ \text{A}_1 \\ \end{array}$	HN27C256, HN2725 1 11 12 13 15 16 10 9 0
16 F 21 F 22 F 23 F 24 F 25 C 26 C 27 C 30 C 1 F 2 F 3 F	R3 ₃ /AN ₃ R0 ₀ /SCK R0 ₁ /SI R0 ₂ /SO R0 ₃ /TOC D ₀ /INT ₀ /EVNB D ₁ D ₂ D ₃ R1 ₀	I I			$ \begin{array}{c} O_{0} \\ O_{1} \\ O_{2} \\ O_{3} \\ O_{4} \\ A_{0} \\ A_{1} \end{array} $	11 12 13 15 16 10 9
21 F 22 F 23 F 24 F 25 C 26 C 27 C 30 C 1 F 2 F 3 F	x00/SCK - x01/SI - x02/SO - x02 - x02 - x02 - x03 - x04 - x05 - x04 - x05 - x06 - x07 - x08 - x04 - x05 - x06 - x07 - x08 - x08 - x07 - x08 -	I I			$ \begin{array}{c} O_1\\ O_2\\ O_3\\ O_4\\ A_0\\ A_1 \end{array} $	12 13 15 16 10 9
22 F 23 F 24 F 25 C 26 C 27 C 28 C 30 C 1 F 2 F 3 F	R01/SI - R02/SO - R03/TOC - D01/T0/EVNB - D1 - D2 - D3 - D5 -	 			O ₂ O ₃ O ₄ A ₀ A ₁	13 15 16 10 9
23 F 24 F 25 C 26 C 27 C 28 C 30 C 1 F 2 F 3 F	R02/SO - R03/TOC - D0/INT0/EVNB - D1 - D2 - D3 - D5 - R10 -				$ \begin{array}{c} O_3 \\ O_4 \\ A_0 \\ A_1 \end{array} $	16 10 9
24 F 25 C 26 C 27 C 28 C 30 C 1 F 2 F 3 F	$\frac{RO_3/TOC}{PO_1/NT_0/EVNB} = \frac{PO_2}{PO_3} = \frac{PO_3}{PO_5} = \frac{PO_3}{PO_5} = \frac{PO_3}{PO_5} = \frac{PO_5}{PO_5} $				O ₄ A ₀ A ₁	16 10 9
25 C 26 C 27 C 28 C 30 C 1 F 2 F 3 F	$D_0/\overline{INT_0}/EVNB$ - D_1 - D_2 - D_3 - D_5 - C_1 - C_2 - C_3 - C_5 - C_1 - C_2 - C_3 - C_5 - C_1 - C_2 - C_2 - C_3 - C_5				A ₀ A ₁	10 9
26 C 27 C 28 C 30 C 1 F 2 F 3 F	P_1 - P_2 - P_2 - P_3				A ₁	9
27 C 28 C 30 C 1 F 2 F 3 F	P_2					
28 C 30 C 1 F 2 F 3 F	r_{3}^{-}	 		- : F	A ₂	8
30 C 1 F 2 F 3 F		 			A ₃	7
1 F 2 F 3 F	۲ ₀	1			A ₄	6
2 F 3 F	0				A ₅	5
3 F		1			A ₆	4
	R1 ₂	- - -			A ₇	3
4 F	R1 ₃ -	1			A ₈	25
	R20 -				A ₉	24
	R21 -	1		_ <u>_</u>	A ₁₀	21
		 				23
		i +				2
		1				20
						22
		1	•		-	28
					00	-
		1	•		GND	14
		 	-			
11 0	GND -	1				
		.1			$\begin{array}{c} O_0 \text{ to } O_4 \\ A_0 \text{ to } A_{12} \\ \hline OE \end{array}$	Programming power sup Data I/O Address input Dutput enable Chip enable
t adapter w			ld A ₁₄) and	unuse		
1	8 F 29 C 9 C 15 F 18 V 14 F 20 F 11 C	8 R2 ₃ 29 D ₄ /STOPC 9 OSC ₁ 15 R3 ₂ /AN ₂ (X _{ON}) 18 V _{CC} 14 R3 ₁ /AN ₁ (M ₀) 20 RESET 11 GND	8 R2 ₃ 29 D ₄ /STOPC 9 OSC ₁ 15 R3 ₂ /AN ₂ (X _{ON}) 18 V _{CC} 14 R3 ₁ /AN ₁ (M ₀) 20 RESET 11 GND	8 R2 ₃ 29 D ₄ /STOPC 9 OSC ₁ 15 R3 ₂ /AN ₂ (X _{ON}) 18 V _{CC} 14 R3 ₁ /AN ₁ (M ₀) 20 RESET 11 GND	8 R23 29 D ₄ /STOPC 9 OSC1 15 R32/AN2 (X _{ON}) 18 V _{CC} 14 R3 ₁ /AN ₁ (M ₀) 20 RESET 11 GND	8 R23 A12 29 D4/STOPC CE 9 OSC1 OE 15 R32/AN2 (X _{ON}) Vcc 14 R3//AN1 (M0) GND 20 RESET GND 11 GND GND Symbols Vpp: F 00 to 04: CE 07: CE 08: CE: 07: CE: <

2. Pins not specifically mentioned in the figure should be left open.

Figure 22-2 shows the HD4074318 socket adapter pin correspondence.

HN27C256, HN2725 1 11 12 13 15 16 17 18 19 10 9 8 7 6 5 4 3 25 24 21
11 12 13 15 16 17 18 19 10 9 8 7 6 5 4 3 25 24
12 13 15 16 17 18 19 10 9 8 7 6 5 4 3 25 24
13 15 16 17 18 19 10 9 8 7 6 5 4 3 25 24
15 16 17 18 19 10 9 8 7 6 5 4 3 25 24
16 17 18 19 10 9 8 7 6 5 4 3 25 24
17 18 19 10 9 8 7 6 5 4 3 25 24
18 19 10 9 8 7 6 5 4 3 25 24
19 10 9 8 7 6 5 4 3 25 24
10 9 8 7 6 5 4 3 25 24
9 8 7 6 5 4 3 25 24
8 7 6 5 4 3 25 24
7 6 5 4 3 25 24
6 5 4 3 25 24
5 4 3 25 24
4 3 25 24
3 25 24
25 24
24
21
23
2
26
27
20
22
28
14


Note: Pins not specifically mentioned in the figure should be left open.

HD407A4359/HD407A4359R, and HD407C4359R HN27C256, HN27256 (pin 28) Pin HN27C256, HN27256 DP-42S FP-44A Pin TEST V_{PP} 6 1 1 RA₁ O₀ 1 11 39 12 7 R3₀/AN₀ R0₂/SO O1 12 4 42 R3₁/AN₁ 13 8 5 43 R0₃/TOC 02 13 R3₂/AN₂ 14 9 D₀/INT₀ 22 17 03 15 R3₃/AN₃ 15 10 D₁/INT₁ O₄ 16 23 18 16 R4₀/AN₄ 11 39 35 $R2_0$ A_0 10 24 19 D₂/EVNB A₁ 9 A₂ 25 20 D₂/BUZZ 8 D_5 7 27 23 A_3 D_6 6 28 24 A_4 R1₀ A_5 35 31 5 н A₆ 4 R1, 36 32 R1₂ 3 37 33 A_7 A₈ 38 34 R1₃ 25 $\overline{A}_{\underline{9}}$ D7 24 29 25 40 R2 21 36 A₁₀ 41 37 R2₂ A₁₁ 23 A₁₂ 2 38 R2₃ 42 R8, A₁₃ 26 33 29 R83 A₁₄ 27 34 30 CE 31 27 R8. 20 ŌĒ 32 28 R8₁ 22 28 2 40 R0₀/SCK V_{cc} R0₁/SI 3 41 3 OSC₁ 8 30 26 D₈ V_{cc} 21 16 20 15 AV_{cc} $R4_1/AN_5(\overline{M_0})$ GND 14 17 12 13 $R4_2/AN_6$ ($\overline{M_1}$) 18 7 2 RESET 10 5 GND 6 AV_{SS} 11 - - - -

Figure 22-3 shows the HD407A4359, HD407A4359R, and HD407C4359R socket adapter pin correspondence.

Notes: 1. The PROM adapter unused data pins (O_5 to O_7) are connected inside the socket adapter with the circuit shown below.

 $\begin{array}{lll} V_{pp} & \mbox{Programming power supply} \\ O_0 \mbox{to} O_{4^{\prime}} & \mbox{Data} \ I/O \\ A_0 \mbox{to} A_{14} & \mbox{Address input} \\ \hline \overline{OE} & \mbox{Output enable} \\ \hline \overline{CE} & \mbox{Chip enable} \end{array}$

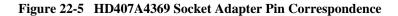
2. Pins not specifically mentioned in the figure should be left open.

Figure 22-3 HD407A4359, HD407A4359R, and HD407C4359R Socket Adapter Pin Correspondence

Figure 22-4 shows the HD4074339 socket adapter pin correspondence.

DP-64S	HD407433 FP-64B	Pin		Pin	, HN27256 (pin 28) HN27C256, HN27
12	6	TEST		- V _{PP}	1
5	63	R70 -	•		11
20	14	R3 ₀ /AN ₀			
4	62	R63 -	•	- O ₁	12
21	15	R3 ₁ /AN ₁			
3	61	R6 ₂	•		13
22	16	R3 ₂ /AN ₂		-	
2	60	R61 -	•	- O ₃	15
23	17	R3 ₃ /AN ₃			
1	59	R60 -	•	- O ₄	16
24	18	R4 ₀ /AN ₄			
25	19	R4 ₁ /AN ₅			17
26	20	R4 ₂ /AN ₆			18
27	21	R4 ₃ /AN ₇		- 0 ₇	19
60	54	R20 -		- A ₀	10
36	30	D ₂ /EVNB		Δ.	9
37	31	D ₃ /BUZZ		- A2	8
39	33	D ₅ -		- A2	7
40	34	D ₆			6
56	50	R1 ₀		Δ_	5
57	51	R1 ₁		$-\frac{1}{1}$ A_6	4
58	52	R1 ₂		A ₇	3
59	53	R1 ₃		- Ao	25
41	35	D ₇ -		<u></u> Δ.	24
61	55	R2 ₁			21
62	56	R2 ₂		A ₁₀	23
63	57	R2 ₃		A ₁₂	2
50	44	R8 ₂		A ₁₃	26
51	45	R8 ₃		A ₁₄	20
48	43	R8 ₀			20
40	42	R8 ₁			20
34	28	D_0/INT_0 (M ₀)			28
35	20	$D_0/INT_0(M_0)$ $D_1/INT_1(M_1)$		V CC	20
8	29	R0 ₀ /SCK -			
9	3	R0 ₁ /SI			
<u> </u>	8	OSC1			
42	36	D ₈			
33	27	V _{CC}			
32	26	AV _{CC}			
13	7	RESET		GND	14
16	10	GND	I	GND	14
		X1	I		
17	11	AV _{SS}			
19	13	AV _{SS}			
				Symbols V_{PP} :Pr O_0 to O_7 :Da A_0 to A_{14} :Ao	
					utput enable

Figure 22-5 shows the HD407A4369 socket adapter pin correspondence.


DP-64S FP-6	4B Pin	Pin	HN27C256, HN272
12 6	TEST	V _{PP}	1
64 58	RA ₁	• O ₀	11
20 14	R3 ₀ /AN ₀		
10 4	R0 ₂ /SO	• O ₁	12
21 15	R3 ₁ /AN ₁		
11 5		O2	13
22 16			
34 28		• O ₃	15
23 17			
35 29		• O ₄	16
24 18			
60 54	- · · ·	A ₀	10
36 30	v	A ₁	9
37 31	-		8
39 33			7
40 34			6
	0	A ₄	5
56 50		A ₅	4
57 51		A ₆	
58 52		A ₇	3
59 53	<u> </u>	A_8	25
41 35		A ₉	24
61 55		A ₁₀	21
62 56		A ₁₁	23
63 57		A ₁₂	2
50 44	-	A ₁₃	26
51 45		A ₁₄	27
48 42		CE	20
49 43		OE	22
8 2	R0 ₀ /SCK	V _{cc}	28
9 3	R0 ₁ /SI	♦	
14 8	OSC ₁	♦	
42 36	D ₈	•	
33 27	V _{cc}	↓	
32 26	AV _{cc}		
25 19		GND	14
26 20		•	
13 7	2 0 1 1/	•	
17 11		•	
16 10		•	
19 13			
10 13	, , , , ss		

2. Pins not specifically mentioned in the figure should be left open.

TT

- Unused pin

Figure 22-6 shows the PROM mode memory map for the HD4074344 and the HD4074394.

	Н	N2	27C25	6 or H	HN27	256 A	ddre	ss Ma	ар			F	١D	40743	44 an	nd HD	4074	394 A	Addre	ss Ma	ар		
Bit Address			7	6	5	4	3	2	1	0	Bit Address			9	8	7	6	5	4	3	2	1	0
\$0000		$\left \right $	1	1	1	RO_4	RO_3	RO ₂	RO ₁	RO ₀			$\left \right $	50									
\$0001			1	1	1	RO ₉	RO ₈	RO ₇	RO_6	RO₅	\$0000			RO ₉	RO ₈	RO7	RO ₆	RO ₅	RO ₄	RO ₃	RO ₂	RO ₁	RO
\$001F	Vector address area (32 bytes)								\$000F														
\$0020 \$007F		Zero page subroutine area (128 bytes)						es)	\$0010 \$003F Zero page subroutine area (64 words)														
\$0080 \$1FFF	Pattern area/program area (8,192 byte						ytes)	\$0040 \$0FFF	}	-	F	atter	n are	a/pro	gram	area	(4,09	6 wo	rds)				

Upper three bits not used (set to 111).

Byte: 8 bits Word: 10 bits

Figure 22-6 HD4074344 and HD4074394 PROM Mode Memory Map

Figure 22-7 shows the PROM mode memory map for the HD4074318.

	Н	N2	7C25	6 or ⊦	HN27	256 A	ddre	ss Ma	ар					H	HD40	74318	3 Add	ress	Мар				
Bit Address		-	7	6	5	4	3	2	1	0	Bit Address			9	8	7	6	5	4	3	2	1	0
\$0000)	$\left \right $] 1	1	1	RO ₄	RO_3	RO_2	RO ₁	RO ₀]	$\left \right $		-								
\$0001			1	1	1	RO ₉	RO ₈	RO ₇	RO_6	RO ₅	\$0000			RO ₉	RO ₈	RO ₇	RO ₆	RO ₅	RO ₄	RO3	RO ₂	RO1	RO
\$001F			Vector address area (32 bytes)						\$000F	F													
\$0020			 Zero page subroutine area (128 byte 						(****)	\$0010				7		- aub	tin		- (C 4		(a)		
\$007F		ſ	Ze	o paç	je su	brout	ne ar	ea (1	20 Dy	(les)	\$003F		IJ	Zero page subroutine area (64 words)									
\$0080			_					,			\$0040		l							,			
\$1FFF		ſ	Pattern area (8,192 bytes)							\$0FFF		ſ		Patte	ern ai	rea (4	,096	word	S)				
\$2000	Ţ		- /						\$1000	Ţ			_			0.40	_						
\$3FFF	ĺ		Program area (32,768 bytes)						\$1FFF	ĺ			Prog	fram a	area	8,192	2 wor	ds)					

Upper three bits not used (set to 111).

Byte: 8 bits Word: 10 bits

Figure 22-7 HD4074318 PROM Mode Memory Map

Figure 22-8 shows the PROM mode memory map for the HD407A4359, HD407A4359R, HD407C4359R, HD407C4359R, HD407C4359R, HD407A4369.

	F	IN:	27C2	56 c	or H	IN27	256 A	ddre	ss Ma	ар		HD4	07	'A4	13	,					7C43 ress I		HD4	0743	39,
Bit Address			7	6	5	5	4	3	2	1	0	Bit Address			9		8	7	6	5	4	3	2	1	0
\$0000		$\left \right $] 1		1	1	RO_4	RO_3	RO ₂	RO ₁	RO ₀)		$\left \right $										
\$0001			1		1	1	RO ₉	RO ₈	RO ₇	RO_6	RO₅	\$0000				RO ₉	RO8	RO7	RO ₆	RO ₅	RO ₄	RO3	RO ₂	RO1	RO
\$001F								\$000F			Vector address area (16 words)														
\$0020 \$007F			} z	Zero page subroutine area (128 bytes						/tes)	\$0010 \$003F			}	Zero page subroutine area (64 words)										
\$0080		Ţ	_				0.40					\$0040		l			- <i></i>								
\$1FFF		ſ	F	atter	'n a	area (8,192	2 byte	es)			\$0FFF		ſ			Patte	ern ar	ea (4	,096	words	5)			
\$2000								\$1000	Π				D			40.40									
\$7FFF			F	Program area (32,768 bytes) Program area (16,192 words)																					

Upper three bits not used (set to 111).

Byte: 8 bits Word: 10 bits

Figure 22-8 HD407A4359, HD407A4359R, HD407C4359R, HD4074339, and HD407A4369 PROM Mode Memory Map

22.3 Programming

Table 22-4 lists the settings used to select write, verify, and other modes when PROM programming.

Table 22-4 Write Mode Selection in PROM Mode	Table 22-4	Write Mode Selection in PROM Mode	
--	-------------------	-----------------------------------	--

			Pin	
Mode	CE	ŌE	O_0 to O_7 (O_0 to O_4)* ¹	$A_0 \text{ to } A_{14} (A_0 \text{ to } A_{12})^{*^2}$
Write	L	Н	Data input	Address input
Verify	Н	L	Data output	Address input
Programming disable	H	Н	High impedance	Address input

Symbols

L: Low level

H: High Level

- Notes: 1. O_0 to O_7 : Applies to the HD4074318 and HD4074339.
 - $\rm O_0$ to $\rm O_4$: Applies to the HD4074344, HD4074394, HD407A4359, HD407A4359R, HD407C4359R, and HD407A4369.
 - 2. $A_{\rm 0}$ to $A_{\rm 14}$: Applies to the HD4074318, HD407A4359, HD407A4359R, HD407C4359R, HD407C4359R, HD407C4359R, HD407A4369.
 - A_0 to A_{12} : Applies to the HD4074344 and HD4074394.

Note that write and read operations in PROM mode have the same specifications as the HN27C256 and HN27256 standard EPROM products.

22.3.1 Write/Verify

Write/verify mode provides efficient high-speed programming. With this method, high-speed writing can be performed without electrically stressing the device and without reducing data reliability. Data in unused regions is set to \$FF. Figure 22-9 shows the basic flowchart for this high-speed programming technique. Tables 22-5 and 22-6 list the electrical characteristics during programming and figure 22-10 shows the timing.

Figure 22-9 shows the flowchart for high-speed programming.

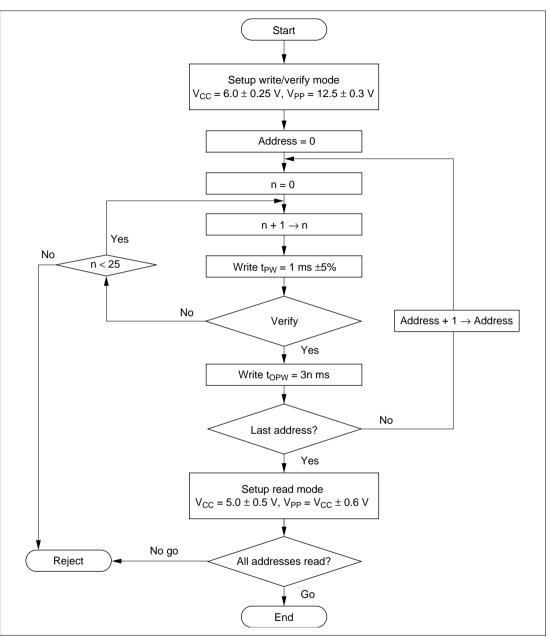


Figure 22-9 Flowchart for High-Speed Programming

Table 22-5 lists the DC characteristics and table 22-6 lists the AC characteristics.

Table 22-5 DC Characteristics

 $V_{CC} = 6.0 \text{ V} \pm 0.25 \text{ V}, V_{PP} = 12.5 \text{ V} \pm 0.3 \text{ V}, V_{SS} = 0 \text{ V}, T_a = 25^{\circ}\text{C} \pm 5^{\circ}\text{C}$, unless specified otherwise.

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Input high level voltage	$\begin{array}{c} O_{0} \text{ to } O_{7} (O_{0} \text{ to } O_{4})^{*1}, \\ A_{0} \text{ to } A_{14} (A_{0} \text{ to } A_{12})^{*2}, \\ \overline{OE}, \overline{CE} \end{array}$	V _{IH}	2.2	_	V _{cc} + 0.3	V	
Input low leve voltage	$\frac{I O_0 \text{ to } O_7 (O_0 \text{ to } O_4)^{*1},}{A_0 \text{ to } A_{14} (A_0 \text{ to } A_{12})^{*2},}$ $\frac{A_0 \text{ to } A_{14} (A_0 \text{ to } A_{12})^{*2},}{\overline{OE}, \overline{CE}}$	V _{IL}	-0.3		0.8	V	
Output high level voltage	$O_0 \text{ to } O_7 (O_0 \text{ to } O_4)^{*^1}$	V _{OH}	2.4		_	V	I _{OH} = -200 μA
Output low level voltage	$O_0 \text{ to } O_7 (O_0 \text{ to } O_4)^{*^1}$	V _{oL}			0.4	V	I _{oL} = 1.6 mA
Input leakage current	$\begin{array}{c} O_{0} \text{ to } O_{7} (O_{0} \text{ to } O_{4})^{*1}, \\ A_{0} \text{ to } A_{14} (A_{0} \text{ to } A_{12})^{*2}, \\ \overline{OE}, \overline{CE} \end{array}$	I _{IL}			2	μA	V _{in} = 5.25 V/0.5 V
V _{cc} current		I _{cc}		_	30	mA	
V _{PP} current		I _{PP}			40	mA	

Notes: 1. O_0 to O_7 : Applies to the HD4074318 and HD4074339.

 $O_{\rm 0}$ to $O_{\rm 4}\!\!:$ Applies to the HD4074344, HD4074394, HD407A4359, HD407A4359R, HD407C4359R, and HD407A4369.

2. A_0 to A_{14} : Applies to the HD4074318, HD407A4359, HD407A4359R, HD407C4359R, HD407C4359R, HD407C4359R, HD407A4369.

 A_0 to A_{12} : Applies to the HD4074344 and HD4074394.

Table 22-6 AC Characteristics

 V_{CC} = 6.0 V ±0.25 V, V_{PP} = 12.5 V ±0.3 V, T_a = 25°C ±5°C, unless specified otherwise.

Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Address setup time	t _{AS}	2	_	_	μs	Figure 22-10*
OE setup time	t _{oes}	2			μs	
Data setup time	t _{DS}	2			μs	
Address hold time	t _{AH}	0			μs	
Data hold time	t _{DH}	2			μs	
Data output disable time	t _{DF}			130	ns	
V _{PP} setup time	t _{VPS}	2			μs	
Program pulse width	t _{PW}	0.95	1.0	1.05	ms	
CE pulse width during overprogramming	t _{opw}	2.85		78.75	ms	_
V _{cc} setup time	t _{vcs}	2			μs	
Data output delay time	t _{oe}	0		500	ns	
Note: * Input pulse level: 0.8 to 2.	2 V					
Input rise/fall times \leq 20 n	S					
Timing reference levels:	Input: 1	.0 V, 2.0	V			

Output: 0.8 V, 2.0 V

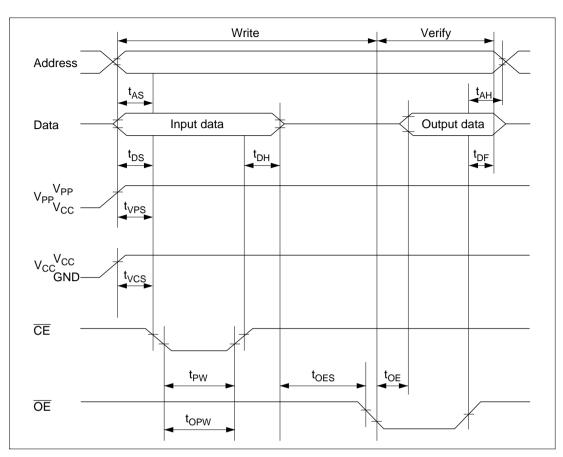


Figure 22-10 shows the PROM write/verify timing.

Figure 22-10 PROM Write/Verify Timing

22.3.2 PROM Programming Notes

• Use the stipulated voltages and times for PROM programming.

The programming voltage (V_{PP}) in PROM mode is 12.5 V.

The product may be permanently damaged if a voltage in excess of the rated voltage is applied. In particular, be especially careful of PROM writer overshoot.

When the PROM writer is setup for either the Hitachi HN27256 or HN27C256, or the Intel specifications, V_{PP} will be 12.5 V.

- Make sure that the PROM writer, the socket adapter, and microcomputer chip are all aligned correctly, i.e., that their respective index marks match. Incorrect alignment can result in product damage due to overcurrents. Before writing, reconfirm that the product is correctly connected to the PROM writer.
- Do not touch the socket adapter or microcomputer during programming. This could cause contact faults that could result in programming failures.

22.3.3 Post-Programming Reliability

After programming, screening products by baking them at 150°C can be effective at improving data retention characteristics. Baking is one type of screening and allows early data retention failures in PROM memory cells to be caught in a short period.

Figure 22-11 shows the flowchart for the recommended screening procedure.

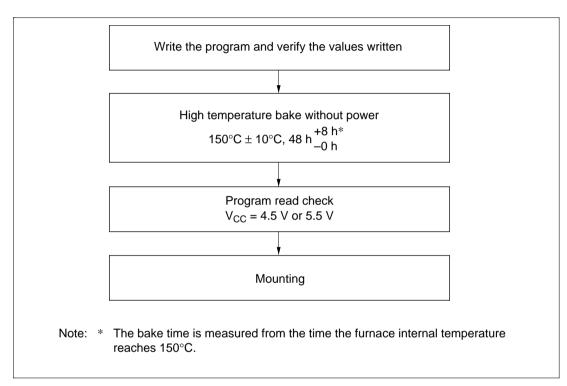


Figure 22-11 Recommended Screening Procedure

22.4 Notes on Ordering ROM

There are products in which data areas drawn on the mask and the ROM data actually used differ. Write 1s to the addresses in unused areas in the ROM data. This applies both when ordering using EPROMs and when ordering by sending data.

Figure 22-12 shows the ROM data configurations for the corresponding products.

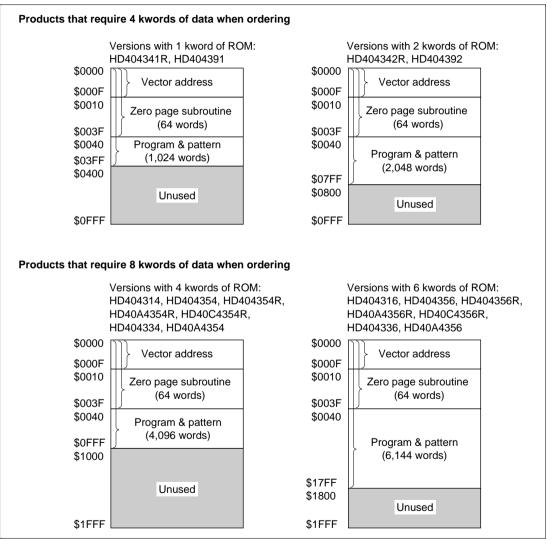


Figure 22-12 ROM Data Configurations (1)

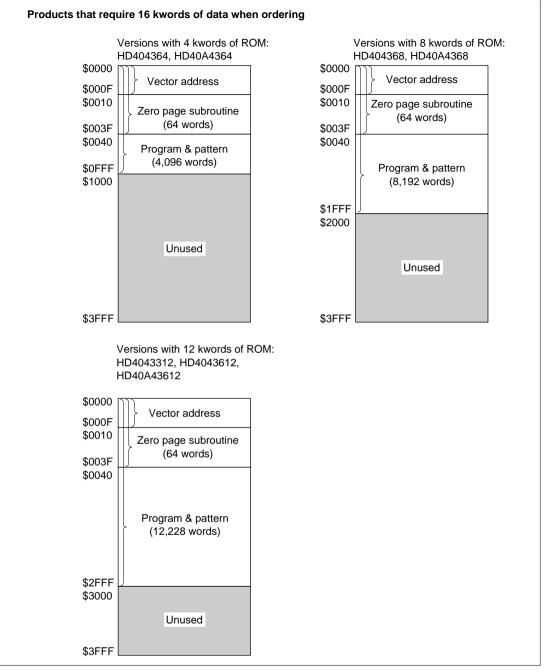


Figure 22-12 ROM Data Configurations (2)

Section 23 RAM

23.1 Overview

23.1.1 Features

The HMCS43XX Family RAM consists of three areas: the memory register area, the data area, and the stack area. The sizes of the memory register and stack areas are identical in all products in the HMCS43XX Family, but the size of the data areas differs between products.

Registers that control the system, interrupts, and the built-in peripheral modules are allocated in the RAM address space. This section describes the RAM areas other than the area used for these control registers.

The RAM areas have the following features.

• Memory register area (locations \$040 to \$04F)

This is a 16 digit area that consists of the 16 memory registers (MR(0) to MR(15)). In addition to the usual RAM access instructions, the register to register instructions (LAMR and XMRA) can be used to access this area.

• Data area

HD404344R/HD404394 Series

The data area consists of 176 digits of memory at RAM addresses \$050 to \$0FF.

HD404318 Series

The data area consists of 304 digits of memory at RAM addresses \$050 to \$17F.

HD404358 Series

The data area consists of 304 digits of memory at RAM addresses \$050 to \$17F in products with 8,192 or fewer words of ROM, i.e., the HD404354, HD404356, HD404358, HD40A4354, HD40A4356, and HD40A4358.

The data area consists of 432 digits of memory at RAM addresses \$050 to \$1FF in products with 12,288 or more words of ROM, i.e., the HD404359, HD40A4359, and HD407A4359.

HD404358R Series

The data area consists of 432 digits of memory at RAM addresses \$050 to \$1FF.

HD404339 Series

The data area consists of 432 digits of memory at RAM addresses \$050 to \$1FF.

HD404369 Series

The data area consists of 432 digits of memory at RAM addresses \$050 to \$1FF.

• Stack area (locations \$3C0 to \$3FF)

This area is used to save the program counter (PC), status (ST), and carry (CA) during subroutine calls and interrupt handling. Locations not used as stack area can be used as data area.

23.1.2 RAM Memory Map

Figure 23-1 shows the RAM memory map.

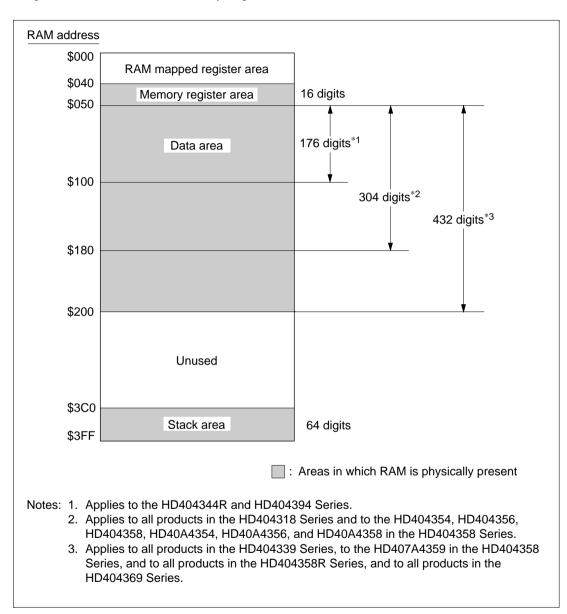


Figure 23-1 RAM Memory Map

23.2 RAM Enable Flag (RAME: \$021, 3)

The RAME flag shown in table 23-1 is a flag that indicates that the contents of RAM prior to the mode transition that cleared stop mode were maintained.

Table 23-1 RAM Enable Flag

Address	Flag	Symbol	R/W	Initial Value
\$021, 3	RAM enable flag	RAME	R/W*	0

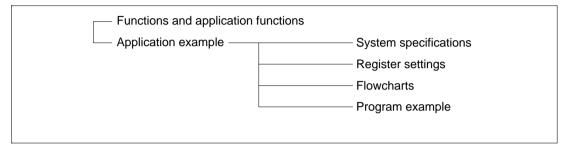
Note: * RAME is allocated in the register flag area and can only be manipulated with the RAM bit manipulation instructions. Only a value of 0 can be written to this flag, thus clearing it.

RAME is set to 1 when stop mode is cleared by a STOPC input. After clearing stop mode, a user program can be sure that the contents of RAM just before stop mode was entered were maintained by reading this flag and confirming that it was set to 1.

See the "RAM Enable Flag" items, sections 5.2.2 and 6.2.7, for more details on the RAME flag.

23.3 Usage Notes

Keep the following points in mind when using RAM.


- The contents of RAM are not guaranteed when power is first applied.
- The contents of RAM are not guaranteed after a reset.
- After power is turned on the values stored in the memory register area, data area, and stack area are undefined, regardless of whether a reset is input or not. It is essential to initialize these areas before use.

Section 24 Application Examples

24.1 Using the A/D Converter

This section describes the use of the A/D converter. Feel free to take advantage of the techniques presented here in user application systems.

This section has the following structure:

Figure 24-1 Application Example Organization

This application example uses an HD404339 Series microcomputer. While the techniques shown here apply equally to the HD404344R, HD404318, HD404358, HD404358R, and HD404369 Series microcomputers, the details of the register settings, clock settings, and pin arrangements would differ somewhat. See section 15, "A/D Converter", for details.

Note: Although the operation of the program examples included in this section has been verified, their operation should be re-verified if they are used in an actual user system.

(1) Functions and Application Functions

- This application measures four analog input channels with an 8-bit resolution.
- This system can be used for various types of sensor detection applications (e.g., temperature or humidity) and key scan inputs.

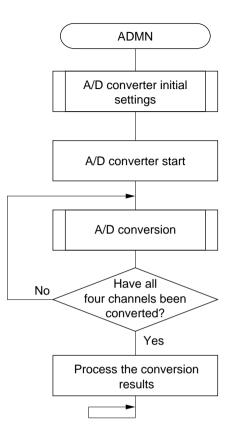
(2) Application Example (Use of the 8-bit 4-Channel A/D Converter)

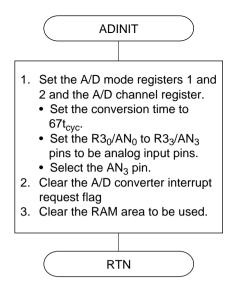
System Specifications

• The system stores the results of the 4-channel A/D conversions in RAM. Figure 24-2 shows the mapping of the RAM where the results are stored.

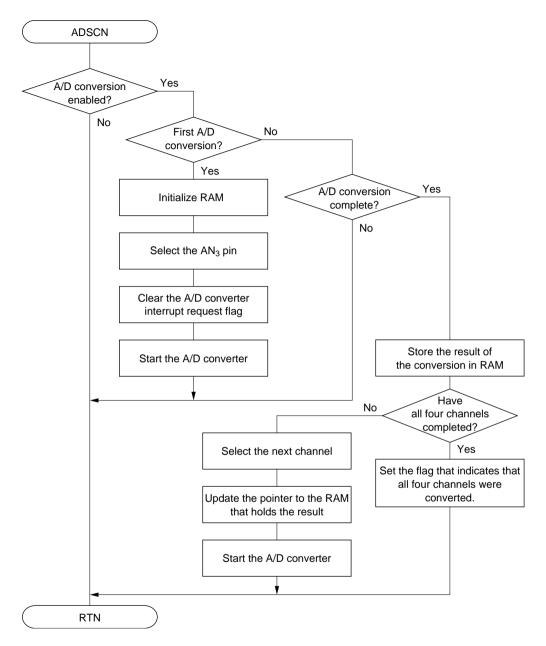
X Y	\$3	\$2	\$1	\$0
\$A	(lower digit)			
\$B	CH3 (upper digit)	CH2	CH1	CH0

Figure 24-2 RAM Mapping


• The completion of an A/D converter operation is detected by reading the A/D converter interrupt request flag. This application does not use interrupts.


Register Settings

- A/D mode register 1 (AMR1: \$019)
- A/D mode register 2 (AMR2: \$01A)
- A/D channel register (ACR: \$016) The analog input pins and the A/D conversion time are specified by these three registers.
- A/D start flag (ADSF: \$020, 2) Setting this flag starts an A/D conversion.
 - 1: A/D conversion start
 - 0: A/D conversion complete
- A/D interrupt request flag (IFAD: \$003, 0) Indicates that an A/D conversion has completed.
 - 1: A/D conversion complete
 - 0: A/D conversion in progress
- IAD off flag (IAOF: \$021, 2) Controls the current in the A/D converter resistor ladder.
- A/D data register (ADRL: \$017, ADRU: \$018) Holds the result of an 8-bit A/D conversion.
 ADRL: Holds the lower 4 bits of an 8-bit A/D conversion.
 ADRU: Holds the upper 4 bits of an 8-bit A/D conversion.


Flowcharts

a. Main routine

c. A/D conversion

Sample Program

*	* Symbol definitions						
	RSP	EQU	1,\$000	* Stack pointer reset			
	IFAD	EQU	0,\$003	* A/D interrupt request flag			
	ADSF	EQU	2,\$020	* A/D start flag			
	IAOF	EQU	2,\$021	* IAD off flag			
	AMR1	EQU	\$019	* A/D mode register 1			
	AMR2	EQU	\$01A	* A/D mode register 2			
	ACR	EQU	\$016	* A/D channel register			
	ADRL	EQU	\$017	* A/D data register (lower digit)			
	ADRU	EQU	\$018	* A/D data register (upper digit)			

* RAM mapping

ADCHNO	EQU	\$0A4	* A/D conversion result storage address pointer
ADFLAG	EQU	\$0B4	* Flag RAM
ADSTF	EQU	0, ADFLAG	* A/D start flag
AD1STF	EQU	1, ADFLAG	* A/D first flag
ADENDF	EQU	2, ADFLAG	* A/D end flag

* Interrupt vector settings

0		
ORG	\$0000	
JMPL	ADMN	* Reset vector address
JMPL	ADMN	* $\overline{\text{INT}}_{0}$ interrupt vector address
JMPL	ADMN	* $\overline{\text{INT}}_1$ interrupt vector address
JMPL	ADMN	* Timer A interrupt vector address
JMPL	ADMN	* Timer B interrupt vector address
JMPL	ADMN	* Timer C interrupt vector address
JMPL	ADMN	* A/D interrupt vector address
JMPL	ADMN	* Serial interrupt vector address

* Main prog	* Main program						
	ORG	\$0100					
ADMN	EQU	*					
	REMD	RSP	* Stack pointer reset				
	BR	*+1	* Status set				
	CALL	ADINIT	* Call the ADINIT routine (Initializes the A/D converter and RAM.)				
	SEMD	ADSTF	* Start the A/D converter				
ADMN01	CALL	ADSCN	* Call the ADSCN routine (Executes the A/D conversions.)				
	TMD	ADENDF	* A/D conversion completed?				
	BRS	ADMN99	* If yes, branch to ADMN99.				
	BRS	ADMN01	* If no, branch to ADMN01.				
ADMN99	BRS	ADMN99					

* ADINIT routine (Initializes the A/D converter and RAM.)

ADINIT	EQU	*	
	LMID	\$F,AMR1	* A/D mode register 1 (Sets the R_{30}^{\prime}/AN_{0} to R_{33}^{\prime}/AN_{3} pins to function as the AN_{0} to AN_{3} pins.)
	LMID	1, AMR2	* A/D mode register 2 (Sets the A/D conversion time to be $67t_{cyc}$.)
	LMID	3, ACR	* A/D channel register (Sets the analog input channel to be AN ₃ .)
	REMD	IFAD	* Clear the A/D interrupt request flag.
	REMD	IAOF	* Clear the IAD off flag.
	LMID	0, ADFLAG	* Clear the usage flag.
	LMID	3, ADCHNO	* Initialize the pointer.
	RTN		

* ADSCN routine (Executes the A/D conversions.)

ADSCN	EQU	*	
	LWI	0	* Clear the W register.
	TMD	ADSTF	* Is ADSTF 1?
	BRS	ADSCN00	* If yes, branch to ADSCN00.
ADSCN99	RTN		* If no, return to the main program.
ADSCN00	TMD	AD1STF	* Is AD1STF 1?
	BRS	ADSCN10	* If yes, branch to ADSCN10.

	*** First (c	*** First (channel 3) A/D conversion ***		
	LMID	3,ACR	* A/D channel register	
	REMD	IFAD	* A/D interrupt request flag	
	SEMD	AD1STF	* Set AD1STF. (Indicates that the first A/D conversion is being performed.)	
	LMID	3, ADCHNO	* Initialize the pointer.	
	SEMD	ADSF	* Set the A/D start flag (Starts an A/D conversion.)	
	BRS	ADSCN99	* Branch to ADSCN99.	
	*** Channe	el 0 to 2 A/D con	nversions ***	
ADSCN10	TMD	IFAD	* A/D interrupt request flag (Has the previous A/D conversion completed?)	
	BRS	ADSCN11	* If yes, branch to ADSCN11.	
	BRS	ADSCN99	* If no, branch to ADSCN99.	
ADSCN11	REMD	IFAD	* Clear the A/D interrupt request flag.	
	LXI	\$A	* Specify the ADRL transfer destination RAM address (X).	
	LAMD	ADCHNO	* Load the pointer.	
	LYA		* Specify the transfer destination RAM address (Y).	
	LAMD	ADRL	* Move the ADRL value to the accumulator.	
	LMA		* Store the contents of the accumulator in RAM.	
	LXI	\$B	* Specify the ADRU transfer destination RAM address (X).	
	LAMD	ADRU	* Move the ADRU value to the accumulator.	
	LMADY		* Store the contents of the accumulator in RAM. $Y \leftarrow Y - 1$	
	BRS	ADSCN12	* Branch to ADSCN12 if the A/D conversion has not completed.	
	LMID	4, ADFLAG	* If the A/D conversion has completed, set ADENDF to 1, AD1STF to 0, and ADSTF to 0.	
	BRS	ADSCN99	* Branch to ADSCN99.	

ADSCN12	LAY		* Move the next transfer destination RAM address (Y) to the accumulator.
	LMAD	ADCHN0	* Update the pointer.
	LMAD	ACR	* Select the next A/D conversion channel.
	SEMD	ADSF	* Set the A/D start flag (Starts an A/D conversion.)
	BR	*+1	* Set the status.
	BRS	ADSCN99	* Branch to ADSCN99.
	END		

24.2 Using Timer B

This section describes the use of timer B. Feel free to take advantage of the techniques presented here in user application systems.

This section has the following structure:

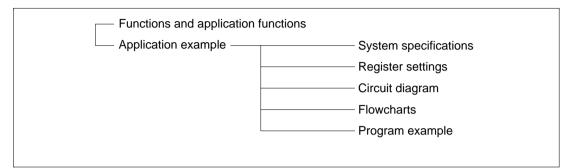


Figure 24-3 Application Example Organization

This application example uses an HD404339 Series microcomputer. While the techniques shown here apply equally to the HD404318, HD404358, HD404358R, and HD404369 Series microcomputers, the details of the register settings, clock settings, and pin arrangements would differ somewhat in the HD404318, HD404358, and HD404358R Series. See section 18, "Timer B", for details.

Note: Although the operation of the program examples included in this section has been verified, their operation should be re-verified if they are used in an actual user system.

(1) Functions and Application Functions

- Free-running/reload timer Key scan control, fixed time interrupts, and other functions
- External event counter Pulse counter
- Input capture timer operation Measuring the time between trigger input edges.

(2) Application Example (Frequency Measurement Using Timer B)

This section presents an application that uses the HD4074339 timer B (in input capture timer mode) to determine the frequency of an input signal (square wave) and display the result in a pair of LEDs.

System Specifications

- The system clock used has a 1 MHz internal frequency based on a 4 MHz applied frequency.
- The signal to be measured is input to the EVNB pin, and the result of the frequency determination is output from the D port (pins D₅ and D₆) to be displayed on two LEDs connected to those pins.
- The input frequency is judged to be one of three levels as listed below, and the result is displayed in the LEDs.

Overflow	Both LEDs off
Under 1000 Hz	One LED lit.
1000 Hz or over	Two LEDs lit.

• Input capture mode is used for the timer B operating mode.

Register Settings

• A 4 MHz system clock oscillator frequency and a system clock divisor of 4 are used.

The system clock selection register 1 (SSR1: \$027) bit 1 is set.

The system clock selection register 2 (SSR2: \$028) is set to \$0.

• The input clock period used is 8t_{cyc}.

Timer mode register B1 (TMB1: \$009) is set to \$4.

This allows timer B to measure periods up to a maximum of 8 μ s × 256 counts, which is 2040 μ s (490 Hz), in 8 μ s units.

• The timer is used in input capture mode and rising edge detection is used.

Timer mode register B2 (TMB2: \$026) is set to \$6.

• The pull-up MOS transistors are set to be active by setting bit 3 in the miscellaneous register (MIS: \$00C).

Since the D_2 /EVNB pin is used as the EVNB pin, the port mode register (PMRB: \$024) bit 2 is set.

TMB1 Register Setting (\$009)

Bit	TMB13	TMB12	TMB11	TMB10				
Setting	0	1	0	0				
TMB2 Register Setting (\$026)								

Bit	TMB23	TMB22	TMB21	TMB20
Setting	Х	1	1	0

Figure 24-4 shows the timer B counter output.

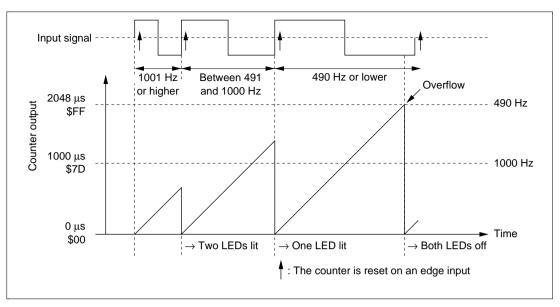


Figure 24-4 Timer B Counter Output

Frequency Determination Block Circuit Diagram: This circuit determines the frequency of a signal output from a pulse generator using an HD4074339.

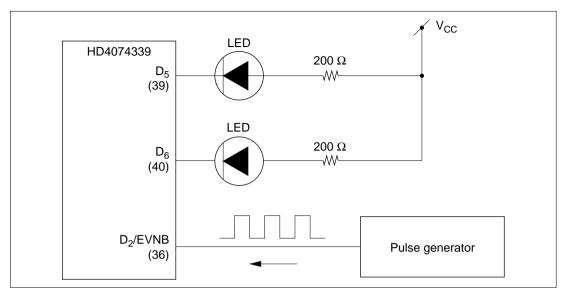
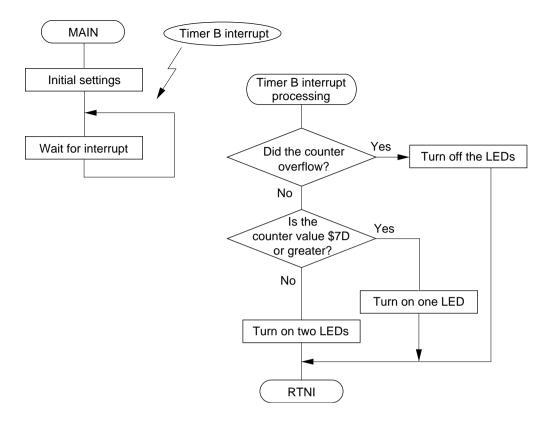



Figure 24-5 Frequency Determination Block Circuit Diagram

Flowcharts

Sample Program

* Symbol de	efinitions		
IE	EQU	\$0,\$000	* Interrupt enable flag
IFTB	EQU	\$0,\$002	* Timer B interrupt flag
IMTB	EQU	\$1,\$002	* Timer B interrupt mask
MIS	EQU	\$3,\$00C	* Miscellaneous register
TMB1	EQU	\$009	* Timer mode register B1
TRBL	EQU	\$00A	* Timer read register BL
TRBU	EQU	\$00B	* Timer read register BU
TMB2	EQU	\$026	* Timer mode register B2
ICEF	EQU	\$1,\$021	* ICT error flag
ICSF	EQU	\$0,\$021	* ICT status flag
PMRB	EQU	\$024	* Port mode register B
SSR1	EQU	\$027	* System clock selection register 1
SSR2	EQU	\$028	* System clock selection register 2
* Interrupt v	vector setting	°C .	
interrupt	ORG	\$000	
STRV	JMPL	FDPROG	* Start vector address
	ORG	\$008	
ICTV	JMPL	TBINT	* Timer B interrupt vector address
* Main prog	tram		
Main prog	ORG	\$1000	
	LMID	\$2,SSR1	* System clock: 4 MHz
	LMID	\$0,SSR2	* System clock divisor: 4
	LMID	\$4,TMB1	* Input clock period: 8tcyc
	LMID	\$6,TMB2	* Set timer B to ICT mode with rising edge detection.
	LMID	\$4,PMRB	* Pin mode: EVNB
	SEMD	MIS	* Pull-up MOS transistors active
	REMD	ICEF	* Reset the ICT error flag.
	REMD	ICSF	* Reset the ICT status flag.
	REMD	IMTB	* Reset the timer B interrupt mask.
	SEMD	IE	* IE = 1 (interrupts enabled)
BINT	NOP		* Interrupt wait loop
	JMPL	BINT	

* Timer B in	terrupt handl	ing routine	
TBINT	REMD	IFTB	* Reset the timer B interrupt flag.
	TMD	ICEF	* If $ICEF = 1$
	BRL	SET0	
COMPU	LAI	\$7	
	ALEMD	TRBU	* If $7 \leq TRBU$
	BRL	IFEQ	
	JMPL	SET2	
IFEQ	ANEMD	TRBU	* If \$7 ≠ TRBU
	BRL	SET1	
COMPL	LAI	\$D	
	ALEMD	TRBL	* If $D \leq TRBL$
	BRL	SET1	
	JMPL	SET2	
SET0	SEDD	\$5	* Turn both LEDs off.
	SEDD	\$6	
	JMPL	TMEREND	
SET1	REDD	\$5	* Light one LED.
	SEDD	\$6	
	JMPL	TMEREND	
SET2	REDD	\$5	* Light both LEDs.
	REDD	\$6	
TMEREND	REMD	ICEF	* Reset the ICT error flag.
	REMD	ICSF	* Reset the ICT status flag.
	RTNI		
	END		
			ICT: Input capture timer
			\$: Indicates a hexadecimal value.

Section 25 Electrical Characteristics

25.1 HD404344R Series

25.1.1 Absolute Maximum Ratings

Table 25-1 lists the absolute maximum ratings of the HD404344R Series microcomputers.

Item	Symbol	Rated Value	Unit	Notes
Power supply voltage	V _{cc}	-0.3 to +7.0	V	
Programming voltage	V _{PP}	-0.3 to +14.0	V	1
Pin voltage	V _T	-0.3 to V _{cc} + 0.3	V	2
Allowable total input current (current flowing in to the LSI)	ΣI_0	100	mA	3
Allowable total output current (current flowing out from the LSI)	$-\Sigma I_0$	30	mA	4
Allowable input current	I ₀	30	mA	5, 6
(current flowing in to the LSI)		4	mA	5, 7
Allowable output current (current flowing out from the LSI)	-I ₀	4	mA	8
Operating temperature	T _{opr}	-20 to +75	°C	
Storage temperature	T _{stg}	-55 to +125	°C	

Notes: 1. Applies to the HD4074344 TEST (V_{PP}) pin.

2. Applies to D_0 to D_5 , R0, R1, R2, and R3.

- 3. The allowable total input current is the sum of the currents flowing from all the I/O pins to ground at the same time.
- 4. The allowable total output current is the sum of the currents flowing from V_{cc} to all the I/O pins at the same time.
- 5. The allowable input current is the maximum value of the currents flowing from each I/O pin to ground.
- 6. Applies to D_1 , D_2 , R1, and R2.
- 7. Applies to D_0 , D_3 to D_5 , R0, and R3.
- 8. The allowable output current is the maximum value of the currents flowing from $\rm V_{cc}$ to each I/O pin.

Use of this LSI at levels that exceed the absolute maximum ratings can permanently damage the LSI. Also note that it is desirable to use this LSI within the conditions specified in the "Electrical Characteristics" section during normal operation. Exceeding those conditions can cause the LSI to operate incorrectly and may adversely affect LSI reliability.

All voltage values are referenced to ground.

25.1.2 Electrical Characteristics

(1) DC Characteristics

Tables 25-2 and 25-3 list the DC characteristics of the HD404344R Series microcomputers.

Table 25-2 DC Characteristics (HD404344R Series)

 $\begin{array}{ll} \text{HD40C4342R, HD40C4341R} & : & V_{\text{CC}} = 2.5 \text{ to } 5.5 \text{ V}, \text{ GND} = 0 \text{ V}, \text{ } \text{T}_{a} = -20 \text{ to } 75^{\circ}\text{C} \\ \text{HD4074344} & : & V_{\text{CC}} = 2.7 \text{ to } 5.5 \text{ V}, \text{ GND} = 0 \text{ V}, \text{ } \text{T}_{a} = -20 \text{ to } 75^{\circ}\text{C} \\ \text{unless specified otherwise.} \end{array}$

Rated Value Applicable Test Symbol Min Unit Conditions Item Pins Typ Max Notes V_{cc} + 0.3 V 0.8 V_{cc} Input high V_{IH} RESET. STOPC. level voltage INT₀, SCK, **EVNB** 0.7 V_{cc} $V_{cc} + 0.3$ SL $V_{cc} - 0.5$ — $V_{cc} + 0.3$ OSC₁ 0.2 V_{cc} Input low V RESET. -0.3 V level voltage STOPC. INT₀, SCK, **EVNB** SI -0.3 $0.3 V_{cc}$ -0.3 OSC₁ 0.5 $V_{cc} - 1.0$ — Output high SCK, SO, $-I_{OH} = 0.5 \text{ mA}$ V_{OH} V level voltage TOC SCK, SO, Output low V_{OL} 0.4 V $I_{OL} = 0.5 \text{ mA}$ level voltage TOC RESET. 1 uА $V_{in} = 0 V \text{ to } V_{CC}$ 1 I/O leakage | |_ | current STOPC. INT₀, SCK, SI, SO, EVNB, TOC, OSC₁ Active mode V_{cc} 3.5 mΑ $V_{cc} = 5 V$, 2 I_{CC1} $f_{OSC} = 4 \text{ MHz}$ current drain $V_{cc} = 3 V$, 0.4 2, 4 I_{CC2} $f_{OSC} = 400 \text{ kHz}$ 0.5 2.5

Table 25-2 DC Characteristics (HD404344R Series) (cont)

$\begin{array}{ll} \text{HD404344R, HD404342R, HD404341R, HD40C4344R,} \\ \text{HD40C4342R, HD40C4341R} & : & V_{\text{CC}} = 2.5 \text{ to } 5.5 \text{ V}, \text{ GND} = 0 \text{ V}, \text{ } \text{T}_{a} = -20 \text{ to } 75^{\circ}\text{C} \\ \text{HD4074344} & : & V_{\text{CC}} = 2.7 \text{ to } 5.5 \text{ V}, \text{ GND} = 0 \text{ V}, \text{ } \text{T}_{a} = -20 \text{ to } 75^{\circ}\text{C} \\ \text{unless specified otherwise.} \end{array}$

		Applicable		Rated V	alue		Test	
Item	Symbol	• •	Min	Тур	Max	Unit	Conditions	Notes
Standby mode current drain	e I _{SBY1}	V _{cc}	_	_	1.5	mA	$V_{cc} = 5 V,$ $f_{osc} = 4 MHz$	3
	I _{SBY2}		_	_	0.2		$V_{\rm cc} = 3 \text{ V},$	3, 4
			_		0.4		$f_{\rm OSC}$ = 400 kHz	3, 5
Stop mode current drain	I _{STOP}	V _{cc}			10	μA	$V_{in} (\overline{\text{RESET}}) = V_{CC} - 0.3 \text{ V}$ to V_{CC} , $V_{in} (\text{TEST}) = 0 \text{ V to } 0.3 \text{ V}$	
Stop mode data retention voltage	V _{STOP}	V _{cc}	2	_	_	V		

Notes: 1. Except for the current flowing in the pull-up MOS transistors and output buffers.

2. The power supply current with the system in the reset state and no I/O currents flowing.

Test conditions	System state	Reset state		
	Pin states	RESET At the ground potential		
		TEST At the ground potential		
		• D0 to D5, R0 to R3 At the V_{cc} potential		

3. The power supply current with the system timers operating and no I/O currents flowing.

Test conditions	System state	I/O: The same as in the reset state		
		Standby mode		
	Pin states	• RESET At the V _{cc} potential		
		TEST At the ground potential		
		• D_0 to D_5 , R0 to R3 At the V _{cc} potential		

- 4. Applies to the HD4074344.
- 5. Applies to the HD404344R, HD404342R, HD404341R, HD40C4344R, HD40C4342R, and HD40C4341R.

Table 25-3 Standard Pin I/O Characteristics (HD404344R Series)

HD404344R, HD404342R, HD404341R, HD40C4344R,				
HD40C4342R, HD40C4341R	: $V_{CC} = 2.5$ to 5.5 V, GND = 0 V, $T_a = -20$ to 75°C			
HD4074344	: $V_{CC} = 2.7$ to 5.5 V, GND = 0 V, $T_a = -20$ to 75°C			
unless specified otherwise.				

		Applicable	R	ated Va	alue		Test	
Item	Symbol	Pins	Min	Тур	Max	Unit	Conditions	Notes
Input high level voltage	V _{IH}	D₀ to D₅, R0 to R3	$0.7 \ V_{cc}$	—	V _{cc} + 0.3	V		
Input low level voltage	V _{IL}	D₀ to D₅, R0 to R3	-0.3	_	$0.3 V_{cc}$	V		
Output high level voltage	V _{OH}	D₀ to D₅, R0 to R3	V _{cc} - 1.0		—	V	−I _{OH} = 0.5 mA	
Output low level voltage	V _{ol}	D₀ to D₅, R0 to R3	_	_	0.4	V	I _{oL} = 0.5 mA	
		D ₁ , D ₂ , R1, R2	_	—	2.0	_	$I_{oL} = 15 \text{ mA},$ $V_{cc} = 4.5 \text{ V to}$ 5.5 V	
I/O leakage current	I _{IL}	D₀ to D₅, R0 to R3			1	μA	V _{in} = 0 V to V _{CC}	1
Pull-up MOS transistor current	–I _{PU}	D₀ to D₅, R0 to R3	30	150	300	μA	$V_{\rm CC} = 5 \text{ V},$ $V_{\rm in} = 0 \text{ V}$	

Notes: 1. Except for the current flowing in the pull-up MOS transistors and output buffers.

(2) AC Characteristics

Tables 25-4 and 25-5 list the AC characteristics of the HD404344R Series microcomputers.

Table 25-4 AC Characteristics (HD404344R Series)

HD404344R, HD404342R, HD404341R, HD40C4344R,

HD40C4342R, HD40C4341R	: $V_{CC} = 2.5$ to 5.5 V, GND = 0 V, $T_a = -20$ to 75°C
HD4074344	: $V_{CC} = 2.7$ to 5.5 V, GND = 0 V, $T_a = -20$ to 75°C
unless specified otherwise.	

Rated Value Applicable Test Symbol Pins Conditions Item Min Тур Max Unit Notes Clock oscillator OSC₁, 4.5 MHz Clock divisor = 4fosc 0.4 frequency (ceramic OSC₂ oscillator) Clock oscillator OSC₁, Clock divisor = 4 1.0 2.0 3.5 MHz f frequency (resistor OSC₂ $R_{f} = 20 \text{ k}\Omega$ oscillator) 0.89 10 Clock divisor = 4Instruction cycle timet ___ μs (ceramic oscillator, external clock) Instruction cycle timet_{cvc} 1.14 Clock divisor = 44.0 ____ μs (resistor oscillator) $R_f = 20 \ k\Omega$ OSC₁, Oscillator $t_{\rm RC}$ 2.0 ms 1 stabilization period OSC₂ (external clock) Oscillator t_{RC} OSC₁, 2.0 ms 1 stabilization period OSC₂ (ceramic oscillator) Oscillator OSC₁, 0.5 $R_f = 20 \ k\Omega$ 1,8 t_{RC} ms stabilization period OSC, (resistor oscillator) 2 External clock high OSC₁ 92 t_{CPH} ns level width

Table 25-4 AC Characteristics (HD404344R Series) (cont)

HD404344R, HD404342R, HD404341R, HD40C4344R,

HD40C4342R, HD40C4341R	: $V_{CC} = 2.5$ to 5.5 V, GND = 0 V, $T_a = -20$ to 75°C
HD4074344	: $V_{CC} = 2.7$ to 5.5 V, GND = 0 V, $T_a = -20$ to 75°C
unless specified otherwise.	

		Applicable	Rated Value				Test	
ltem	Symbol	Pins	Min	Тур	Max	Unit	Conditions	Notes
External clock low level width	t _{CPL}	OSC ₁	92		_	ns		2
External clock rise time	t _{CPr}	OSC ₁	—	_	20	ns		2
External clock fall time	t _{CPf}	OSC ₁	—		20	ns		2
INT₀, EVNB high level width	t _{IH}	ĪNT₀, EVNB	2	_	_	t _{cyc}		3
INT₀, EVNB low level width	t _⊪	ĪNT₀, EVNB	2			t _{cyc}		3
Reset low level widt	ht _{RSTL}	RESET	2		—	t _{cyc}		4
STOPC low level width	t _{STPL}	STOPC	1			t _{RC}		5
Reset rise time	t _{RSTr}	RESET	_		20	ms		4
STOPC rise time	t _{sTPr}	STOPC			20	ms		5
Input capacitance	C _{in}	All input pins other than TEST, and $R1_0$ to $R1_2$	_	_	15	pF	$\label{eq:f} \begin{array}{l} f=1 \mbox{ MHz}, \\ V_{in}=0 \mbox{ V} \end{array}$	
		TEST	_	_	15		f = 1 MHz,	6
			_	_	40		$V_{in} = 0 V$	7
		$R1_0$ to $R1_2$	_	_	15		f = 1 MHz,	6
					30		$V_{in} = 0 V$	7

Notes: 1. There are three cases where the oscillator stabilization period applies:

 When power is first applied, the time between the point when V_{cc} reaches V_{cc min} and the point the oscillator is stable.

- When stop mode is cleared, the time between the point when the RESET input reaches the low level and the point the oscillator is stable.
- When stop mode is cleared, the time between the point when the STOPC input reaches the low level and the point the oscillator is stable.

To assure the time necessary to achieve stable oscillation at power on and when clearing stop mode, apply a low level to the $\overline{\text{RESET}}$ or $\overline{\text{STOPC}}$ input for at least t_{RC} .

Since the oscillator stabilization period varies with the details of the mounted circuit, stray capacitances, and other factors, this value should be determined based on thorough consultations with the manufacturer of the ceramic oscillator used.

- 2. See figure 25-1.
- 3. See figure 25-2.
- 4. See figure 25-3.
- 5. See figure 25-4.
- Applies to the HD404344R, HD404342R, HD404341R, HD40C4344R, HD40C4342R, and HD40C4341R.
- 7. Applies to the HD4074344.
- 8. Applies to the HD40C4344R, HD40C4342R, and HD40C4341R.

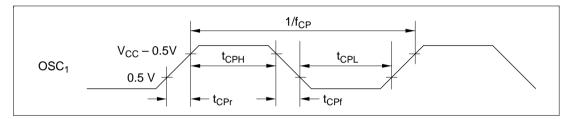


Figure 25-1 External Clock Timing (HD404344R Series)

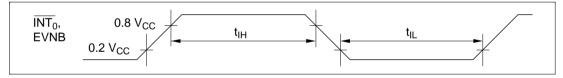


Figure 25-2 Interrupt Timing (HD404344R Series)

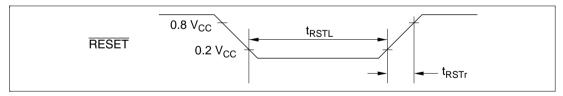


Figure 25-3 Reset Timing (HD404344R Series)

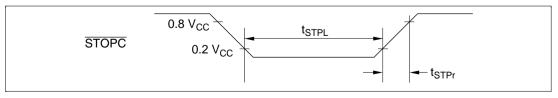


Figure 25-4 STOPC Timing (HD404344R Series)

Table 25-5 Serial Interface Timing Characteristics (HD404344R Series)

HD404344R, HD404342R, HD404341R, HD40C4344R,								
HD40C4342R, HD40C4341R	: $V_{CC} = 2.5$ to 5.5 V, GND = 0 V, $T_a = -20$ to 75°C							
HD4074344	: $V_{CC} = 2.7$ to 5.5 V, GND = 0 V, $T_a = -20$ to 75°C							
unless specified otherwise.								

When the Transfer Clock is Output:

		Applicable	F	Rated V	alue		Test	
ltem	Symbol	Pins	Min	Тур	Max	Unit	Conditions	Notes
Transfer clock cycle time	t _{Scyc}	SCK	1	—	_	t _{cyc}	With the load shown in figure 25-6	1
Transfer clock high level width	t _{sckh}	SCK	0.4			t _{Scyc}	With the load shown in figure 25-6	1
Transfer clock low level width	t _{SCKL}	SCK	0.4			t _{Scyc}	With the load shown in figure 25-6	1
Transfer clock rise time	t _{SCKr}	SCK	_	—	80	ns	With the load shown in figure 25-6	1
Transfer clock fall time	t _{SCKf}	SCK			80	ns	With the load shown in figure 25-6	1
Serial output data delay time	t _{DSO}	SO			300	ns	With the load shown in figure 25-6	1
Serial input data setup time	t _{ssi}	SI	100	_	_	ns		1
Serial input data hold time	t _{HSI}	SI	200			ns		1

Note: 1. See figure 25-5.

Table 25-5 Serial Interface Timing Characteristics (HD404344R Series) (cont)

HD404344R, HD404342R, HD404341R, HD40C4344R,								
HD40C4342R, HD40C4341R	: $V_{CC} = 2.5$ to 5.5 V, GND = 0 V, $T_a = -20$ to 75°C							
HD4074344	: $V_{CC} = 2.7$ to 5.5 V, GND = 0 V, $T_a = -20$ to 75°C							
unless specified otherwise.								

When the Transfer Clock is Input:

		Applicable	F	Rated V	alue		Test	
ltem	Symbol	Pins	Min	Тур	Max	Unit	Conditions	Notes
Transfer clock cycle time	t _{scyc}	SCK	1	_	_	t _{cyc}		1
Transfer clock high level width	t _{scкн}	SCK	0.4	_	_	t _{scyc}		1
Transfer clock low level width	t _{sckl}	SCK	0.4	_	_	t _{scyc}		1
Transfer clock rise time	t _{SCKr}	SCK		_	80	ns		1
Transfer clock fall time	t _{sckf}	SCK		—	80	ns		1
Serial output data delay time	t _{DSO}	SO	_	—	300	ns	With the load shown in figure 25-6	1
Serial input data setup time	t _{ssi}	SI	100			ns		1
Serial input data hold time	t _{HSI}	SI	200			ns		1
Note: 1. See figur	re 25-5.							

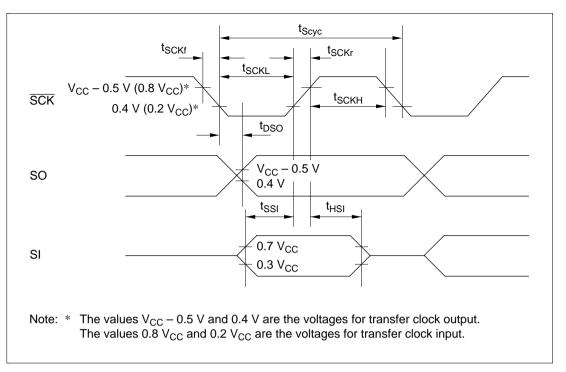


Figure 25-5 Serial Interface Timing

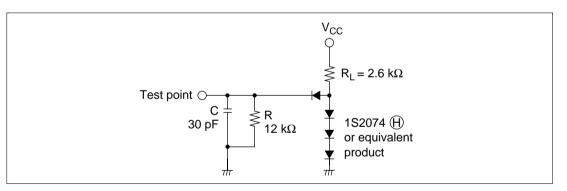


Figure 25-6 Timing Load Circuit

(3) A/D Converter Characteristics

Table 25-6 lists the characteristics of the HD404344R Series A/D converter.

Table 25-6 A/D Converter Characteristics (HD404344R Series)

HD404344R, HD404342R, HD404341R, HD40C4344R,

HD40C4342R, HD40C4341R	: $V_{CC} = 2.5$ to 5.5 V, GND = 0 V, $T_a = -20$ to 75°C
HD4074344	: $V_{CC} = 2.7$ to 5.5 V, GND = 0 V, $T_a = -20$ to 75°C
unless specified otherwise.	

		Applicable Pins	R	ated V	alue		Test	
Item Sy	Symbol		Min	Тур	Max	Unit	Conditions	Notes
Analog input voltage	AV_{in}	AN_0 to AN_3	GND	_	V_{cc}	V		
Analog input capacitance	CA _{in}	AN_0 to AN_3		15		pF		
Resolution			_	8		Bits		
Number of inputs			0		4	Channels		
Absolute		AN ₀ to AN ₃	-2.0	_	2.0	LSB		1
precision			-2.5	—	2.5		$T_{a} = 25^{\circ}C,$ $V_{cc} = 5.0 \text{ V}$	2
Conversion time			34	—	67	t _{cyc}		
Input impedance		$\mathrm{AN}_{\scriptscriptstyle 0}$ to $\mathrm{AN}_{\scriptscriptstyle 3}$	1	—	—	MΩ	$f_{OSC} = 1 \text{ Mhz},$ $V_{in} = 0 \text{ V}$	

HD40C4341R. 2. Supplies to the HD4074344.

25.2 HD404394 Series

25.2.1 Absolute Maximum Ratings

Table 25-7 lists the absolute maximum ratings of the HD404394 Series microcomputers.

Item	Symbol	Rated Value	Unit	Notes
Power supply voltage	V _{cc}	-0.3 to +7.0	V	
Programming voltage	V _{PP}	-0.3 to +14.0	V	1
Pin voltage	V _T	-0.3 to V_{cc} + 0.3	V	2
		-0.3 to +15.0	V	3
Allowable total input current (current flowing in to the LSI)	ΣI _o	100	mA	4
Allowable total output current (current flowing in to the LSI)	$-\Sigma I_0$	30	mA	5
Allowable input current	I ₀	30	mA	6, 7
(current flowing in to the LSI)		4	mA	6, 8
Allowable output current (current flowing out from the LSI)	- I ₀	4	mA	9
Operating temperature	T _{opr}	-20 to +75	°C	
Storage temperature	T _{stg}	–55 to +125	°C	

Notes: 1. Applies to the HD4074394 TEST (V_{PP}) pin.

- 2. Applies to D_0 to D_5 , R0, R13, R2, and R3₁ to R3₃.
- 3. Applies to $R1_0$ to $R1_2$.
- 4. The allowable total input current is the sum of the currents flowing from all the I/O pins to ground at the same time.
- 5. The allowable total output current is the sum of the currents flowing from V_{cc} to all the I/O pins at the same time.
- 6. The allowable input current is the maximum value of the currents flowing from each I/O pin to ground.
- 7. Applies to D_1 , D_2 , R1, and R2.
- 8. Applies to D_0 , D_3 to D_5 , R0, and R3₁ to R3₃.
- 9. The allowable output current is the maximum value of the currents flowing from V_{cc} to each I/O pin.

Use of this LSI at levels that exceed the absolute maximum ratings can permanently damage the LSI. Also note that it is desirable to use this LSI within the conditions specified in the "Electrical Characteristics" section during normal operation. Exceeding those conditions can cause the LSI to operate incorrectly and may adversely affect LSI reliability. All voltage values are referenced to ground.

25.2.2 Electrical Characteristics

(1) DC Characteristics

Tables 25-8 to 25-10 list the DC characteristics of the HD404394 Series microcomputers.

Table 25-8 DC Characteristics (HD404394 Series)

		Applicable	R	ated Va	alue		Test	
Item	Symbol		Min	Тур	Max	Unit	Conditions	Notes
Input high level voltage	V _{IH}	RESET, STOPC, INT₀, SCK, EVNB	0.8 V _{cc}	—	V _{cc} + 0.3	V		
		SI	$0.7 \ V_{cc}$		V _{cc} + 0.3	-		
		OSC ₁	$V_{cc} - 0.5$		V _{cc} + 0.3	_		
Input low leve voltage	I V _{IL}	RESET, STOPC, INT₀, SCK, EVNB	-0.3	_	0.2 V _{cc}	V		
		SI	-0.3		$0.3 V_{cc}$	_		
		OSC ₁	-0.3		0.5	-		
Output high level voltage	V _{OH}	SCK, SO, TOC	$V_{cc} - 1.0$			V	–I _{он} = 0.5 mA	
Output low level voltage	V _{oL}	SCK, SO, TOC			0.4	V	I _{oL} = 0.5 mA	
I/O leakage current	I _{IL}	$\label{eq:response} \begin{array}{c} \hline \textbf{RESET},\\ \hline \textbf{STOPC},\\ \hline \textbf{SCK}, \ \textbf{INT}_0,\\ \hline \textbf{SI}, \ \textbf{SO},\\ \hline \textbf{EVNB}, \ \textbf{TOC},\\ \hline \textbf{OSC}_1 \end{array}$	—		1	μΑ	$V_{in} = 0 V \text{ to } V_{CC}$	1
Active mode current drain	I _{CC1}	V _{cc}			3.5	mA	$V_{cc} = 5 V,$ $f_{osc} = 4 MHz$	2
	I _{CC2}		_	_	0.4	_	$V_{cc} = 3 V,$ $f_{osc} = 400 \text{ kHz}$	_

Table 25-8 DC Characteristics (HD404394 Series) (cont)

 $V_{CC} = 2.7$ to 5.5 V, GND = 0 V, $T_a = -20$ to 75°C unless specified otherwise.

		Applicable Pins		Rated V	alue		Test	
Item	Symbol		Min	Тур	Max	Unit	Conditions	Notes
Standby mode current drain	I _{SBY1}	V _{cc}	_	_	1.5	mA	$V_{cc} = 5 V,$ $f_{osc} = 4 MHz$	3
	I _{SBY2}	_	_		0.2		V _{cc} = 3 V, f _{osc} = 400 kHz	_
Stop mode current drain	I _{STOP}	V _{cc}	_	_	10	μA	$V_{in} (\overline{\text{RESET}}) = V_{CC} - 0.3 \text{ V}$ to V_{CC} , $V_{in} (\text{TEST}) = 0 \text{ V to } 0.3 \text{ V}$	
Stop mode data retention voltage	V _{STOP}	V _{cc}	2	—	—	V		

Notes: 1. Except for the current flowing in the pull-up MOS transistors and output buffers.

2. The power supply current with the system in the reset state and no I/O currents flowing.

Test conditions	System state	Reset state
	Pin states	• RESET At the ground potential
		TEST At the ground potential
		• D_0 to D_5 , R_0 to R_3 At the V_{cc} potential

3. The power supply current with the system timers operating and no I/O currents flowing.

Test conditions	System state	I/O: The same as in the reset state
		Standby mode
	Pin states	• RESET At the V _{cc} potential
		• TEST At the ground potential
		• D_0 to D_5 , R0 to R3 At the V _{cc} potential

Table 25-9 Standard Pin I/O Characteristics (HD404394 Series)

$V_{cc} = 2.7$ to 5.5 V,	GND = 0 V.	$T_{a} = -20$ to 7	5°C unless spe	ecified otherwise.
	01.2 0.,	-a =0.00 /	e e anness sp.	

		Applicable	R	ated Va	alue		Test	
Item	Symbol	• •	Min	Тур	Max	Unit	Conditions	Notes
Input high level voltage	V _{IH}	D_0 to D_5 , R0, R1 ₃ , R2, R3 ₁ to R3 ₃	$0.7 V_{cc}$	_	V _{cc} + 0.3	V		
Input low level voltage	V _{IL}	D_0 to D_5 , R0, R1 ₃ , R2, R3 ₁ to R3 ₃	-0.3		0.3 V _{cc}	V		
Output high level voltage	V _{OH}	D_0 to D_5 , R0, R3 ₁ to R3 ₃	V _{cc} – 1.0			V	−l _{oH} = 0.5 mA	
		R1 ₃ , R2	$V_{cc} - 0.5$	_		-	500 k Ω at V _cc	
Output low level voltage	V _{oL}	D_0 to D_5 , R0, R1 ₃ , R2, R3 ₁ to R3 ₃			0.4	V	I _{oL} = 0.5 mA	
		D ₁ , D ₂ , R1 ₃ , R2	_	_	2.0	_	$I_{oL} = 15 \text{ mA},$ $V_{cc} = 4.5 \text{ V to}$ 5.5 V	
I/O leakage current	I _{IL}	D_0 to D_5 , R0, R1 ₃ , R2, R3 ₁ to R3 ₃			1	μA	$V_{in} = 0 V \text{ to } V_{cc}$	1
Pull-up MOS transistor current	-I _{PU}	D_0 to D_5 , R0, R3 ₁ to R3 ₃	30	150	300	μA	$V_{cc} = 5 V,$ $V_{in} = 0 V$	

Note: Except for the current flowing in the pull-up MOS transistors and output buffers.

Table 25-10 Medium Voltage NMOS Open Drain Pin I/O Characteristics (HD404394 Series)

 $V_{CC} = 2.7$ to 5.5 V, GND = 0 V, $T_a = -20$ to 75°C unless specified otherwise.

		Applicable Rated Value					Test		
Item	Symbol		Min	Тур	Max	Unit	Conditions	Notes	
Input high level voltage	V _{IH}	$R1_0$ to $R1_2$	$0.7 \ V_{cc}$	_	12.0	V			
Input low level voltage	I V _{IL}	$R1_0$ to $R1_2$	-0.3		$0.3 V_{cc}$	V			
Output high level voltage	V _{OH}	$R1_0$ to $R1_2$	11.5		_	V	500 kΩ at 12 V		
Output low	V _{OL}	$R1_0$ to $R1_2$	_		0.4	V	I _{он} = 0.5 mA		
level voltage			_	_	2.0	_	$I_{oL} = 15 \text{ mA},$ $V_{cc} = 4.5 \text{ V to}$ 5.5 V	_	
I/O leakage current	_{IL}	$R1_0$ to $R1_2$	_		20	μA	V _{in} = 0 V to 12 V	1	

Note: Except for the current flow in the output buffers.

(2) AC Characteristics

Tables 25-11 and 25-12 list the AC characteristics of the HD404394 Series microcomputers.

Table 25-11 AC Characteristics (HD404394 Series)

 $V_{CC} = 2.7$ to 5.5 V, GND = 0 V, $T_a = -20$ to 75°C unless specified otherwise.

		Applicable	F	ated V	alue		Test	
ltem	Symbol	Pins	Min	Тур	Max	Unit	Conditions	Notes
Clock oscillator frequency	f _{osc}	OSC ₁ , OSC ₂	0.4	4	4.5	MHz		
Instruction cycle time (ceramic oscillator)	t _{cyc}	_	0.89	1	10	μs	Clock divisor = 4	
Oscillator stabilization period	t _{RC}	OSC ₁ , OSC ₂		_	2	ms		1
External clock high level width	t _{CPH}	OSC ₁	92			ns		2
External clock low level width	t _{CPL}	OSC ₁	92	—	—	ns		2
External clock rise time	t _{CPr}	OSC ₁	_	—	20	ns		2
External clock fall time	t _{CPf}	OSC ₁	_	_	20	ns		2
\overline{INT}_{0} , EVNB high level width	t _{IH}	ĪNT₀, EVNB	2		—	t _{cyc}		3
INT ₀ , EVNB low level width	t _{ı∟}	ĪNT₀, EVNB	2	—	—	\mathbf{t}_{cyc}		3
Reset low level widt	ht _{RSTL}	RESET	2	_		t _{cyc}		4
STOPC low level width	t _{STPL}	STOPC	1			t _{RC}		5
Reset rise time	t _{RSTr}	RESET	_	_	20	ms		4
STOPC rise time	t _{sTPr}	STOPC			20	ms		5

Table 25-11 AC Characteristics (HD404394 Series) (cont)

 $V_{CC} = 2.7$ to 5.5 V, GND = 0 V, $T_a = -20$ to 75°C unless specified otherwise.

		Applicable		Rated V	alue		Test	
Item	Symbol		Min Typ Max		Unit	Conditions	Notes	
Input capacitance	C _{in}	All input pins other than TEST V_{ref} , and $R1_0$ to $R1_2$,	_	15	pF	f = 1 MHz, $V_{in} = 0 \text{ V}$	
		TEST	—		15		f = 1 MHz,	6
			_		40		$V_{in} = 0 V$	7
		V _{ref}		_	30		$f = 1 \text{ MHz},$ $V_{in} = 0 \text{ V}$	
		$R1_0$ to $R1_2$	—	_	30		$\begin{array}{l} f=1 \text{ MHz},\\ V_{in}=0 \text{ V} \end{array}$	

Notes: 1. There are three cases where the oscillator stabilization period applies:

 When power is first applied, the time between the point when V_{cc} reaches 2.7 V and the point the oscillator is stable.

- When stop mode is cleared, the time between the point when the RESET input reaches the low level and the point the oscillator is stable.
- When stop mode is cleared, the time between the point when the STOPC input reaches the low level and the point the oscillator is stable.

To assure the time necessary to achieve stable oscillation at power on and when clearing stop mode, apply a low level to the RESET or STOPC input for at least t_{RC} . Since the oscillator stabilization period varies with the details of the mounted circuit, stray capacitances, and other factors, this value should be determined based on thorough consultations with the manufacturer of the ceramic oscillator used.

- 2. See figure 25-7.
- 3. See figure 25-8.
- 4. See figure 25-9.
- 5. See figure 25-10.
- 6. Applies to the HD404391, HD404392, and HD404394.
- 7. Applies to the HD4074394.

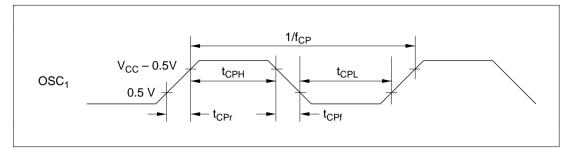


Figure 25-7 External Clock Timing (HD404394 Series)

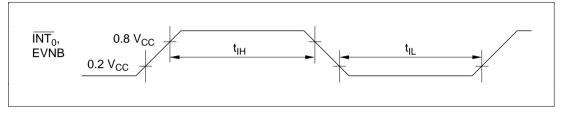


Figure 25-8 Interrupt Timing (HD404394 Series)

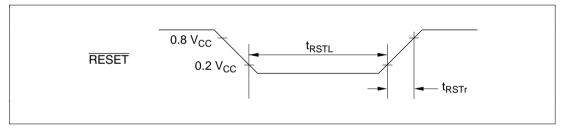


Figure 25-9 Reset Timing (HD404394 Series)

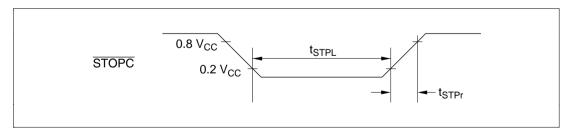


Figure 25-10 STOPC Timing (HD404394 Series)

Table 25-12 Serial Interface Timing Characteristics (HD404394 Series)

 $V_{CC} = 2.7$ to 5.5 V, GND = 0 V, $T_a = -20$ to 75°C unless specified otherwise.

When the Transfer Clock is Output:

		Applicable	1	Rated Va	lue		Test	
Item S	Symbol	Pins	Min	Тур	Max	Unit	Conditions	Notes
Transfer clock t cycle time	t _{Scyc}	SCK	1	—	—	t _{cyc}	With the load shown in figure 25-12	1
Transfer clock t high level width	t _{sckh}	SCK	0.4			t _{Scyc}	With the load shown in figure 25-12	1
Transfer clock t low level width	t _{sckl}	SCK	0.4			t _{Scyc}	With the load shown in figure 25-12	1
Transfer clock t rise time	t _{SCKr}	SCK	—	_	80	ns	With the load shown in figure 25-12	1
Transfer clock t fall time	t _{sckf}	SCK			80	ns	With the load shown in figure 25-12	1
Serial output t data delay time	t _{DSO}	SO	_		300	ns	With the load shown in figure 25-12	1
Serial input data t setup time	t _{ssi}	SI	100	—	—	ns		1
Serial input data t hold time	t _{HSI}	SI	200	_	_	ns		1

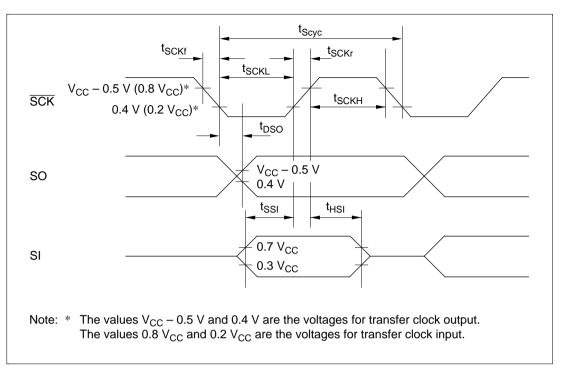

Note: See figure 25-11.

Table 25-12 Serial Interface Timing Characteristics (HD404394 Series) (cont)

 $V_{CC} = 2.7$ to 5.5 V, GND = 0 V, $T_a = -20$ to 75°C unless specified otherwise.

When the Transfer Clock is Input:

		Applicable Pins		Rated Va	alue		Test	Notes
ltem	Symbol		Min	Тур	Max	Unit	Conditions	
Transfer clock cycle time	t _{Scyc}	SCK	1	_	_	\mathbf{t}_{cyc}		1
Transfer clock high level width	t _{scкн}	SCK	0.4	_		t _{Scyc}		1
Transfer clock low level width	t _{sckl}	SCK	0.4	_		t _{Scyc}		1
Transfer clock rise time	t _{scKr}	SCK		_	80	ns		1
Transfer clock fall time	t _{sckf}	SCK	_	_	80	ns		1
Serial output data delay time	t _{DSO}	SO	—	_	300	ns	With the load shown in figure 25-12	1
Serial input data setup time	t _{ssi}	SI	100	_		ns		1
Serial input data hold time	t _{HSI}	SI	200			ns		1
Note: See figur	e 25-11.							

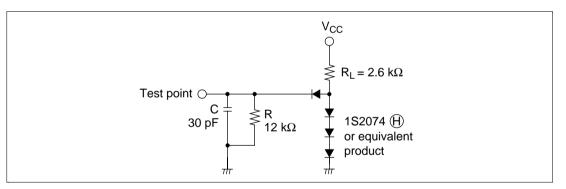


Figure 25-12 Timing Load Circuit

(3) A/D Converter Characteristics

Table 25-13 lists the characteristics of the HD404394 Series A/D converter.

Table 25-13 A/D Converter Characteristics (HD404394 Series)

 $V_{CC} = 2.7$ to 5.5 V, GND = 0 V, $T_a = -20$ to 75°C unless specified otherwise.

		Applicable	Ra	Rated Value			Test	
ltem	Symbol	Pins	Min	Тур	Мах	Unit	Conditions	Notes
Analog input reference voltag range	V _{ref} e	V_{ref}	$0.5 V_{cc}$	_	V _{cc}	V		
Analog input voltage	AV_{in}	AN_1 to AN_3	GND		$V_{\rm ref}$	V		
Current from V _{ref} to GND	I _{AD}		_		200	μA	$V_{ref} = V_{CC} =$ 5.0 V	
Analog input capacitance	CA_{in}	AN_1 to AN_3	—	15		pF		
Resolution			_	8	—	Bits		
Number of input	S		0		3	Channels		
Absolute precision		AN ₁ to AN ₃	-3.0		3.0	LSB	$T_{a} = 25^{\circ}C,$ $V_{ref} = V_{CC} =$ 5.0 V	
Conversion time			34		67	t _{cyc}		
Input impedance	9	AN ₁ to AN ₃	1			MΩ	$f_{OSC} = 1 \text{ MHz},$ $V_{in} = 0 \text{ V}$	

25.3 HD404318 Series

25.3.1 Absolute Maximum Ratings

Table 25-14 lists the absolute maximum ratings of the HD404318 Series microcomputers.

Item	Symbol	Rated Value	Unit	Notes
Power supply voltage	V _{cc}	-0.3 to +7.0	V	
Programming voltage	V _{PP}	-0.3 to +14.0	V	1
Pin voltage	V _T	-0.3 to V _{cc} + 0.3	V	2
		V_{cc} – 45 to V_{cc} + 0.3	V	3
Allowable total input current (current flowing in to the LSI)	ΣI_0	70	mA	4
Allowable total output current (current flowing out from the LSI)	$-\Sigma I_0$	150	mA	5
Allowable input current	I ₀	4	mA	6, 7
(current flowing in to the LSI)		20	mA	6, 8
Allowable output current	- I ₀	4	mA	9, 10
(current flowing out from the LSI)		30	mA	10, 11
Operating temperature	T _{opr}	-20 to +75	°C	
Storage temperature	T _{stg}	-55 to +125	°C	

Notes: 1. Applies to the HD4074318 TEST (V_{PP}) pin.

- 2. Applies to all standard pins.
- 3. Applies to high voltage pins.
- The allowable total input current is the sum of the currents flowing from all the I/O pins to ground at the same time.
- 5. The allowable total output current is the sum of the currents flowing from V_{cc} to all the I/O pins at the same time.
- The allowable input current is the maximum value of the currents flowing from each I/O pin to ground.
- 7. Applies to R3 and R4.
- 8. Applies to R0.
- 9. Applies to R0, R3, and R4.
- 10. The allowable output current is the maximum value of the currents flowing from V_{cc} to each I/O pin.
- 11. Applies to D_0 to D_8 , R1, R2, and R8.

Use of this LSI at levels that exceed the absolute maximum ratings can permanently damage the LSI. Also note that it is desirable to use this LSI within the conditions specified in the "Electrical Characteristics" section during normal operation. Exceeding those conditions can cause the LSI to operate incorrectly and may adversely affect LSI reliability.

25.3.2 Electrical Characteristics

(1) DC Characteristics

Tables 25-15 to 25-17 list the DC characteristics of the HD404318 Series microcomputers.

Table 25-15 DC Characteristics (HD404318 Series)

 $V_{CC} = 4.0$ to 5.5 V, GND = 0 V, $V_{disp} = V_{CC} - 40$ V to V_{CC} , $T_a = -20$ to 75°C unless specified otherwise.

		Applicable	Rated Value				Test	
ltem	Symbol		Min	Тур	Max	Unit	Conditions	Notes
Input high level voltage	V _{IH}	RESET, SCK, SI INT₀, INT₁, STOPC, EVNB	0.8 V _{cc}	_	V _{cc} + 0.3	V		
		OSC ₁	$V_{cc} - 0.5$	_	$V_{cc} + 0.3$			
Input low level voltage	V _{IL}	RESET, SCK, SI	-0.3		$0.2 V_{cc}$	V		
		INT ₀ , INT ₁ , STOPC, EVNB	V _{cc} – 40		0.2 V _{cc}	_		
		OSC ₁	-0.3	—	0.5	_		
Output high level voltage	V _{он}	SCK, SO, TOC	V _{cc} – 0.5		_	V	—I _{он} = 0.5 mA	
Output low level voltage	V _{oL}	SCK, SO, TOC			0.4	V	I _{oL} = 0.4 mA	
I/O leakage current	I _{IL}	RESET, SCK, SI, SO, TOC, OSC ₁			1	μA	V _{in} = 0 V to V _{CC}	1
		INT₀, INT₁, STOPC, EVNB			20	_	$V_{in} = V_{CC} - 40 \text{ V to } V_{CC}$	
Active mode	I _{cc}	V _{cc}	_	_	5.0	mA	V _{cc} = 5 V,	2, 5
current drain			_	_	8.0	-	$f_{OSC} = 4 MHz$	2, 6

Table 25-15 DC Characteristics (HD404318 Series) (cont)

 V_{CC} = 4.0 to 5.5 V, GND = 0 V, V_{disp} = V_{CC} – 40 V to V_{CC} , T_a = –20 to 75°C unless specified otherwise.

		Applicable		Rated V	alue		Test	
ltem	Symbol	Pins	Min	Тур	Max	Unit	Conditions	Notes
Standby mode current drain	I _{SBY}	V _{cc}			2.0	mA	$V_{cc} = 5 V,$ $f_{osc} = 4 MHz$	3
Stop mode I _{STOP}	ISTOP	V _{cc}			10	μA	$V_{cc} = 5 V$	4, 5
current drain			_		20			4, 6
Stop mode data retention voltage		V _{cc}	2			V		

Notes: 1. Except for the current flowing in the pull-up MOS transistors and output buffers.

2. The power supply current with the system in the reset state and no I/O currents flowing.

Test conditions	System state	Reset state
	Pin states	• RESET, TEST At the ground potential
		• R0, R3, and R4 At the V_{cc} potential
		• D_0 to D_8 , R1, R2,
		R8, and RA_1 At the V_{disp} potential

3. The power supply current with the system timers operating and no I/O currents flowing.

Test conditions	System state	I/O: The same as in the reset state				
		Standby mode				
	Pin states	• RESET At the V _{cc} potential				
		TEST At the ground potential				
		• R0, R3, and R4 At the V _{cc} potential				
		• D_0 to D_8 , R1, R2,				
		R8, and RA ₁ At the V_{disp} potential				

4. The power supply current with no I/O currents flowing.

Test conditions	Pin states	• R0, R3, and R4 At the V _{cc} potential
		• D_0 to D_8 , R1, R2,
		R8, and RA ₁ At the ground potential

- 5. Applies to the HD404314, HD404316, and HD404318.
- 6. Applies to the HD4074318.

Table 25-16 Standard Pin I/O Characteristics (HD404318 Series)

 $V_{CC} = 4.0$ to 5.5 V, GND = 0 V, $V_{disp} = V_{CC} - 40$ V to V_{CC} , $T_a = -20$ to 75°C unless specified otherwise.

		Applicable	Ra	ated Va	alue		Test	
Item	Symbol	Pins	Min	Тур	Max	Unit	Conditions	Notes
Input high level voltage	V _{IH}	R0, R3, R4	$0.7 \ V_{cc}$	_	V _{cc} + 0.3 V	V		
Input low level voltage	V _{IL}	R0, R3, R4	-0.3		0.3 V _{cc}	V		
Output high level voltage	V _{OH}	R0, R3, R4	V _{cc} – 0.5			V	—I _{он} = 0.5 mA	
Output low	V _{OL}	R3, R4	_	_	0.4	V	I _{oL} = 1.6 mA	
level voltage		R0			2.0	_	I _{oL} = 10 mA	
I/O leakage current	I _{IL}	R0, R3, R4	_		1	μA	V _{in} = 0 V to V _{CC}	1
Pull-up MOS	-I _{PU}	R0, R3, R4	30	150	300	μA	$V_{\rm CC} = 5 V$,	2
transistor current	1		30	80	180	_	$V_{in} = 0 V$	3

Notes: 1. Except for the current flowing in the output buffers.

2. Applies to the HD404314, HD404316, and HD404318.

3. Applies to the HD4074318.

Table 25-17 High Voltage Pin I/O Characteristics (HD404318 Series)

 V_{CC} = 4.0 to 5.5 V, GND = 0 V, V_{disp} = V_{CC} – 40 V to V_{CC} , T_a = –20 to 75°C unless specified otherwise.

		Applicable	R	ated Va	alue		Test	
ltem	Symbol	Pins	Min	Тур	Max	Unit	Conditions	Notes
Input high level voltage	V _{IH}	D₀ to D ₈ , R1, R2, R8, RA₁	0.7 V _{cc}		V _{cc} + 0.3	V		
Input low level voltage	V _{IL}	D ₀ to D ₈ , R1, R2, R8, RA ₁	$V_{cc} - 40$		0.3 V _{cc}	V		
Output high	V _{OH}	D_0 to D_8 ,	$V_{cc} - 3.0$		_	V	–I _{он} = 15 mA	
level voltage		R1, R2 R8, BUZZ	$V_{cc} - 2.0$	_			−I _{OH} = 10 mA	
		110, 0022	V _{cc} – 1.0	_			—I _{он} = 4 mA	
Output low level voltage	V _{OL}	D₀ to D ₈ , R1, R2	—		V _{cc} – 37	V	V _{disp} = V _{CC} - 40 V	1
		R8, BUZZ	_	—	V _{cc} – 37		150 kΩ at V _{cc} – 40 V	2
I/O leakage current	I _{IL}	D ₀ to D ₈ , R1, R2, R8 RA ₁ , BUZZ	—	_	20	μA	$V_{in} = V_{CC} - 40 \text{ V to}$ V_{CC}	3
Pull-down resistor current	I _{PD}	D₀ to D₀, R1, R2, R8, BUZZ	200	600	1000	μA	$V_{disp} = V_{CC} - 35 V,$ $V_{in} = V_{CC}$	1

Notes: 1. Applies to pins for which the pull-down resistor mask option was selected.

2. Applies to pins for which the no pull-down resistor mask option was selected.

3. Except for the current flow in the output buffers.

(2) AC Characteristics

Tables 25-18 and 25-19 list the AC characteristics of the HD404318 Series microcomputers.

Table 25-18 AC Characteristics (HD404318 Series)

 $V_{CC} = 4.0$ to 5.5 V, GND = 0 V, $V_{disp} = V_{CC} - 40$ V to V_{CC} , $T_a = -20$ to 75°C unless specified otherwise.

		Applicable	Rated Value				Test	
Item	Symbol	Pins	Min	Тур	Max	Unit	Conditions	Notes
Clock oscillator frequency	f _{osc}	OSC ₁ , OSC ₂	0.4	4	4.5	MHz	Clock divisor = 4	
Instruction cycle time	t _{cyc}		0.89	1	10	μs		
Oscillator stabilization period (ceramic oscillator)	t _{RC}	OSC ₁ , OSC ₂			7.5	ms		1
Oscillator stabilization period (crystal oscillator)	t _{RC}	OSC ₁ , OSC ₂		_	40	ms		1
External clock high level width	t _{CPH}	OSC ₁	92	_	—	ns		2
External clock low level width	t _{CPL}	OSC ₁	92	—	—	ns		2
External clock rise time	t _{CPr}	OSC ₁		_	20	ns		2
External clock fall time	t _{CPf}	OSC ₁	_	_	20	ns		2
INT ₀ , INT ₁ , and EVNB high level width	t _{in}	INT ₀ , INT ₁ , EVNB	2	—	—	t _{cyc}		3
INT ₀ , INT ₁ , and EVNB low level width	t _{IL}	INT₀, INT₁, EVNB	2			t _{cyc}		3
RESET low level width	t _{RSTL}	RESET	2			t _{cyc}		4
STOPC low level width	t _{stpl}	STOPC	1		_	t _{RC}		5

Table 25-18 AC Characteristics (HD404318 Series) (cont)

 V_{CC} = 4.0 to 5.5 V, GND = 0 V, V_{disp} = V_{CC} – 40 V to V_{CC} , T_a = –20 to 75°C unless specified otherwise.

		Applicable	F	Rated V	alue	_	Test	
ltem	Symbol	Pins	Min	Тур	Max	Unit	Conditions	Notes
RESET rise time	t _{RSTr}	RESET	_	_	20	ms		4
STOPC rise time	t _{STPr}	STOPC			20	ms		5
Input capacitance	C _{in}	All input pins other than TEST		_	30	pF	$f = 1 \text{ MHz},$ $V_{in} = 0 \text{ V}$	
		TEST			30	_	f = 1 MHz,	6
			_		180		$V_{in} = 0 V$	7

Notes: 1. There are three cases where the oscillator stabilization period applies:

- When power is first applied, the time between the point when V_{cc} reaches 4.0 V and the point the oscillator is stable.
- When stop mode is cleared, the time between the point when the RESET input reaches the low level and the point the oscillator is stable.
- When stop mode is cleared, the time between the point when the STOPC input reaches the low level and the point the oscillator is stable.

To assure the time necessary to achieve stable oscillation at power on and when clearing stop mode, apply a low level to the $\overline{\text{RESET}}$ or $\overline{\text{STOPC}}$ input for at least t_{RC} . Since the oscillator stabilization period varies with the details of the mounted circuit, stray capacitances, and other factors, this value should be determined based on thorough consultations with the manufacturer of the ceramic oscillator used.

- 2. See figure 25-13.
- 3. See figure 25-14.
- 4. See figure 25-15.
- 5. See figure 25-16.
- 6. Applies to the HD404314, HD404316, and HD404318.
- 7. Applies to the HD4074318.

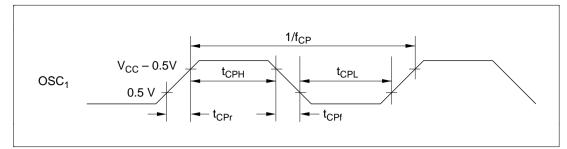


Figure 25-13 External Clock Timing (HD404318 Series)

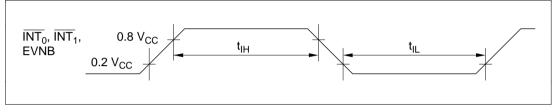


Figure 25-14 Interrupt Timing (HD404318 Series)

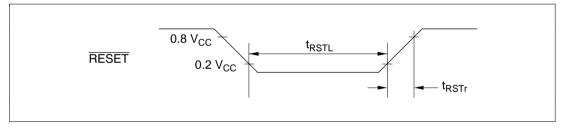


Figure 25-15 Reset Timing (HD404318 Series)

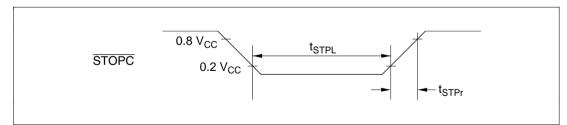


Figure 25-16 STOPC Timing (HD404318 Series)

Table 25-19 Serial Interface Timing Characteristics (HD404318 Series)

 $V_{CC} = 4.0$ to 5.5 V, GND = 0 V, $V_{disp} = V_{CC} - 40$ V to V_{CC} , $T_a = -20$ to 75°C unless specified otherwise.

When the Transfer Clock is Output:

		Applicable	F	Rated V	alue		Test	
Item	Symbol	Pins	ns Min Typ Max Unit Conditions N	Notes				
Transfer clock cycle time	t _{Scyc}	SCK	1	—		t _{cyc}	With the load shown in figure 25-18	1
Transfer clock high level width	t _{scкн}	SCK	0.4	_	_	t _{Scyc}	With the load shown in figure 25-18	1
Transfer clock low level width	t _{sckl}	SCK	0.4			t _{Scyc}	With the load shown in figure 25-18	1
Transfer clock rise time	t _{SCKr}	SCK			80	ns	With the load shown in figure 25-18	1
Transfer clock fall time	t _{scкf}	SCK	_	—	80	ns	With the load shown in figure 25-18	1
Serial output data delay time	t _{DSO}	SO			300	ns	With the load shown in figure 25-18	1
Serial input data setup time	t _{ssi}	SI	100			ns		1
Serial input data hold time	t _{HSI}	SI	200			ns		1

Note: See figure 25-17.

Table 25-19 Serial Interface Timing Characteristics (HD404318 Series) (cont)

 $V_{CC} = 4.0$ to 5.5 V, GND = 0 V, $V_{disp} = V_{CC} - 40$ V to V_{CC} , $T_a = -20$ to 75°C unless specified otherwise.

When the Transfer Clock is Input:

	Applicable		Rated V	aiue		Test	
Symbol	Pins	Min	Тур	Max	Unit	Conditions	Notes
$t_{\rm Scyc}$	SCK	1	_	_	t _{cyc}		1
t _{sckh}	SCK	0.4			t _{Scyc}		1
t _{SCKL}	SCK	0.4			t _{Scyc}		1
t _{SCKr}	SCK	_		80	ns		1
t _{SCKf}	SCK	_		80	ns		1
t _{DSO}	SO		_	300	ns	With the load shown in figure 25-18	1
t _{ssi}	SI	100	—	_	ns		1
t _{HSI}	SI	200	—	—	ns		1
	t _{SCVC} t _{SCKH} t _{SCKL} t _{SCKr} t _{SCKr} t _{DSO}	$\begin{array}{c c} t_{SCVC} & \overline{SCK} \\ \hline t_{SCKH} & \overline{SCK} \\ \hline t_{SCKL} & \overline{SCK} \\ \hline t_{SCKr} & \overline{SCK} \\ \hline t_{SCKr} & \overline{SCK} \\ \hline t_{DSO} & SO \\ \hline t_{SSI} & SI \\ \end{array}$	$\begin{array}{c c} t_{\text{SCyc}} & \overline{\text{SCK}} & 1 \\ \hline t_{\text{SCKH}} & \overline{\text{SCK}} & 0.4 \\ \hline t_{\text{SCKL}} & \overline{\text{SCK}} & 0.4 \\ \hline t_{\text{SCKr}} & \overline{\text{SCK}} & - \\ \hline t_{\text{SCKr}} & \overline{\text{SCK}} & - \\ \hline t_{\text{SCKr}} & \overline{\text{SCK}} & - \\ \hline t_{\text{DSO}} & \overline{\text{SO}} & - \\ \hline t_{\text{SSI}} & \overline{\text{SI}} & 100 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Note: See figure 25-17.

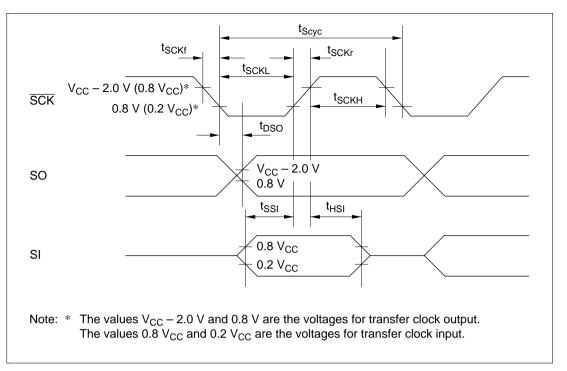


Figure 25-17 Serial Interface Timing (HD404318 Series)

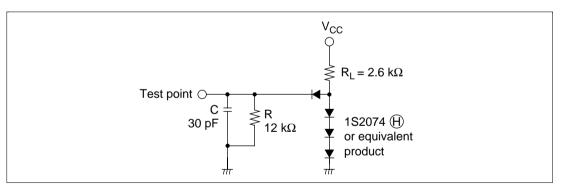


Figure 25-18 Timing Load Circuit

(3) A/D Converter Characteristics

Table 25-20 lists the characteristics of the HD404318 Series A/D converter.

Table 25-20 A/D Converter Characteristics (HD404318 Series)

 $V_{CC} = 4.0$ to 5.5 V, GND = 0 V, $V_{disp} = V_{CC} - 40$ V to V_{CC} , $T_a = -20$ to 75°C unless specified otherwise.

		Applicable	R	ated V	alue		Test	
ltem	Symbol		Min	Тур	Max	Unit	Conditions	Notes
Analog supply voltage	AV_{cc}	AV_{cc}	$V_{cc} - 0.3$	V_{cc}	V _{cc} + 0.3	V		1
Analog input voltage	AV _{in}	AN ₀ to AN ₇	AV _{ss}		AV _{cc}	V		
Current from AV_{cc} to AV_{ss}	I _{AD}				200	μA	$V_{cc} = AV_{cc} =$ 5.0 V	
Analog input capacitance	CA _{in}	AN_0 to AN_7			30	pF		
Resolution			8	8	8	Bits		
Number of inputs			0	—	8	Channels		
Absolute precision			—	_	±2.0	LSB		
Conversion time			34	_	67	t _{cyc}		
Input impedance		AN_0 to AN_7	1	—	_	MΩ		

Note: Connect to the V_{cc} pin if the A/D converter is not used in the application.

25.4 HD404358/HD404358R Series

25.4.1 Absolute Maximum Ratings

Table 25-21 lists the absolute maximum ratings of the HD404358 and HD404358R Series microcomputers.

		HD404358 Series	HD404358R Series			
Item	Symbol	Rated Value	Rated Value	Unit	Notes	
Power supply voltage	V _{cc}	-0.3 to +7.0	–0.3 to +7.0	V		
Programming voltage	V _{PP}	-0.3 to +14.0	-0.3 to +14.0	V	1	
Pin voltage	V _T	-0.3 to V _{cc} + 0.3	-0.3 to V _{cc} + 0.3	V	2	
		-0.3 to +15.0		V	3	
Allowable total input current (current flowing in to the LSI)	ΣI_0	105	160	mA	4	
Allowable total output current (current flowing out from the LSI)	$-\Sigma I_0$	50	50	mA	5	
Allowable input current	I _o	4	4	mA	6, 7	
(current flowing in to the LSI)		30	30	mA	6, 8	
Allowable output current (current flowing out from the LSI)	- I ₀	4	4	mA	9, 10	
Operating temperature	T _{opr}	-20 to +75	-20 to +75	°C		
Storage temperature	T _{stg}	-55 to +125	-55 to +125	°C		

Table 25-21 Absolute Maximum Ratings (HD404358 and HD404358R Series)

Notes: 1. Applies to the HD407A4359, HD407A4359R, and HD407C4359R TEST (V_{PP}) pin.

- 2. Applies to all standard pins.
- 3. Applies to the medium voltage pins.
- 4. The allowable total input current is the sum of the currents flowing from all the I/O pins to ground at the same time.
- 5. The allowable total output current is the sum of the currents flowing from $V_{\rm cc}$ to all the I/O pins at the same time.
- The allowable input current is the maximum value of the currents flowing from each I/O pin to ground.
- 7. HD404358 Series: Applies to D_0 to D_8 , R0, R1, R3, R4, and R8. HD404358R Series: Applies to D_0 to D_4 , R3, and R4.
- HD404358 Series: Applies to R2.
 HD404358R Series: Applies to D₅ to D₈, R0, R1, R2, and R8.
- HD404358 Series: Applies to D₀ to D₈, R0, R1, R3, R4, and R8. HD404358R Series: Applies to D₀ to D₈, R0, R1, R2, R3, R4, and R8.
- 10. The allowable output current is the maximum value of the currents flowing from V_{cc} to each I/O pin.

Use of this LSI at levels that exceed the absolute maximum ratings can permanently damage the LSI. Also note that it is desirable to use this LSI within the conditions specified in the "Electrical Characteristics" section during normal operation. Exceeding those conditions can cause the LSI to operate incorrectly and may adversely affect LSI reliability. All voltage values are referenced to ground.

25.4.2 Electrical Characteristics

(1) DC Characteristics

Tables 25-22 to 25-24 list the DC characteristics of the HD404358 and HD404358R Series microcomputers.

Table 25-22 DC Characteristics (HD404358 and HD404358R Series)

		Applicable	R	ated Va	alue		Test	
Item	Symbol		Min	Тур	Max	Unit	Conditions	Notes
Input high level voltage	V _{IH}	$\frac{\overline{RESET},}{\overline{STOPC},}$ $\frac{\overline{INT}_0,}{\overline{INT}_1,}$ $\frac{\overline{SCK}, \text{EVNB}}{\overline{SCK}, \text{EVNB}}$	0.8 V _{cc}	_	V _{cc} + 0.3	V		
		SI	$0.7 \ V_{cc}$	_	V _{cc} + 0.3			
		OSC ₁	$V_{cc} - 0.5$	_	V _{cc} + 0.3			
Input low level voltage	V _{IL}		-0.3		0.2 V _{cc}	V		
		SI	-0.3		$0.3 V_{cc}$	_		
		OSC ₁	-0.3	_	0.5			
Output high level voltage	V _{OH}	<u>SCK</u> , SO, TOC	$V_{cc} - 0.5$		_	V	−I _{OH} = 0.5 mA	
Output low level voltage	V _{oL}	SCK, SO, TOC			0.4	V	I _{oL} = 0.4 mA	
I/O leakage current	I _{IL}	$\label{eq:response} \begin{array}{c} \overline{\text{RESET}},\\ \overline{\text{STOPC}},\\ \overline{\text{INT}}_0, \overline{\text{INT}}_1,\\ \overline{\text{SCK}}, \text{SI}, \text{SO},\\ \overline{\text{EVNB}}, \overline{\text{TOC}},\\ \overline{\text{OSC}}_1 \end{array}$	_		1	μΑ	$V_{in} = 0 V \text{ to } V_{cc}$	1

Table 25-22 DC Characteristics (HD404358 and HD404358R Series) (cont)

HD404354, HD404356, HD404358, HD40A4354, HD40A4356, HD40A4358: $V_{CC} = 2.7 \text{ to } 6.0 \text{ V}, \text{ GND} = 0 \text{ V}, \text{ } \text{T}_{a} = -20 \text{ to } 75^{\circ}\text{C}$ HD407A4359: $V_{CC} = 2.7 \text{ to } 5.5 \text{ V}, \text{ GND} = 0 \text{ V}, \text{ } \text{ } \text{T}_{a} = -20 \text{ to } 75^{\circ}\text{C}$ HD404358R Series: $V_{CC} = 2.5 \text{ to } 5.5 \text{ V}, \text{ GND} = 0 \text{ V}, \text{ } -20 \text{ to } 75^{\circ}\text{C}$ unless specified otherwise.

		Applicable ol Pins		Rated V	alue		Test	Notes
Item	Symbol		Min	Тур	Max	Unit	Conditions	
Active mode current drain	I _{cc}	V _{cc}	—	—	5.0	mA	$V_{cc} = 5 V,$ $f_{osc} = 4 MHz$	2.5
	I _{CC1}	_	_		3.5	mA	$V_{cc} = 5 V,$ $f_{osc} = 4 MHz$	2.6
	I _{CC2}	_	_		0.6	mA	$V_{cc} = 3 V,$ $f_{osc} = 400 \text{ kHz}$	_
	I _{CC3}	_	_		6.5	mA	$V_{cc} = 5 V,$ $f_{osc} = 8 MHz$	_
Standby mode current drain	I _{SBY}	V _{cc}			2.0	mA	$V_{cc} = 5 V,$ $f_{osc} = 4 MHz$	3.5
	I _{SBY1}	_	_		1.5	mA	$V_{cc} = 5 V,$ $f_{osc} = 4 MHz$	3.6
	I _{SBY2}	_	_		0.4	mA	$V_{cc} = 3 V,$ $f_{osc} = 400 \text{ kHz}$	_
	I _{SBY3}	_	_		2.5	mA	$V_{cc} = 5 V,$ $f_{osc} = 8 MHz$	_
Stop mode current drain	ISTOP	V _{cc}	_	_	10	μA	$V_{cc} = 5 V$	4
Stop mode data retention voltage	V _{STOP}	V _{cc}	2			V		

Notes: 1. Except for the current flowing in the pull-up MOS transistors and output buffers.

2. The power supply current with the system in the reset state and no I/O currents flowing.

Test conditions	System state	Reset state
	Pin states	• RESET, TEST At the ground potential

3. The power supply current with the system timers operating and no I/O currents flowing.

Test conditions	System state	• I/O: The same as in the reset state
		Standby mode
	Pin states	• RESET At the V _{cc} potential
		TEST At the ground potential
		• D_0 to D_8 , R0 to R4,
		R8, and RA ₁ At the V_{cc} potential

4. The power supply current with no I/O currents flowing.

Test conditions	Pin states	• RESET	At the V_{cc} potential
		• TEST	At the ground potential
		• D_0 to D_8 , R0 to R4,	
		R8, and RA_1	At the V_{cc} potential

- 5. Applies to the HD404358 Series.
- 6. Applies to the HD404358R Series.

Table 25-23 Standard Pin I/O Characteristics (HD404358 and HD404358R Series)

HD404354, HD404356, HD404358, HD40A4354, HD40A4356, HD40A4358: $V_{CC} = 2.7 \text{ to } 6.0 \text{ V}, \text{ GND} = 0 \text{ V}, \text{ T}_{a} = -20 \text{ to } 75^{\circ}\text{C}$ HD407A4359: $V_{CC} = 2.7 \text{ to } 5.5 \text{ V}, \text{ GND} = 0 \text{ V}, \text{ T}_{a} = -20 \text{ to } 75^{\circ}\text{C}$ HD404358R Series: $V_{CC} = 2.5 \text{ to } 5.5 \text{ V}, \text{ GND} = 0 \text{ V}, \text{ T}_{a} = -20 \text{ to } 75^{\circ}\text{C}$ unless specified otherwise.

		Applicable	Ra	ated Va	alue	_	Test	
ltem	Symbol		Min	/lin Typ Max		Unit	Conditions	Notes
Input high level voltage	V _{IH}	$\begin{array}{l} \text{HD404358 Series} \\ \text{D}_{0} \text{ to } \text{D}_{8}, \\ \text{R0, R1, R3, R4,} \\ \text{R8, RA_{1}} \\ \text{HD404358R Series} \\ \text{D}_{0} \text{ to } \text{D}_{8}, \\ \text{R0 to R4, R8, RA_{1}} \end{array}$		_	V _{cc} + 0.3	V		
Input low level voltage	V _{IL}	$\begin{array}{l} \text{HD404358 Series} \\ \text{D}_{0} \text{ to } \text{D}_{8}, \\ \text{R0, R1, R3,} \\ \text{R4, R8, RA_{1}} \\ \text{HD404358R Series} \\ \text{D}_{0} \text{ to } \text{D}_{8}, \\ \text{R0 to R4, R8, RA_{1}} \end{array}$			0.3 V _{cc}	V		

Table 25-23 Standard Pin I/O Characteristics (HD404358 and HD404358R Series) (cont)

		Applicable	Ra	ted Va	alue		Test	
Item	Symbol	Pins	Min	Тур	Max	Unit	Conditions	Notes
Output high level voltage	V _{OH}	HD404358 Series D_0 to D_8 , R0, R1, R3, R4, R8		_	_	V	−I _{OH} = 0.5 mA	
		HD404358R Series D_0 to D_8 , R0 to R4, R8	V _{cc} – 1.0	_	_	_		
Output low level voltage	V _{ol}	$\begin{array}{l} HD404358 \; Series \\ D_{0} \; to \; D_{8}, \\ R0, \; R1, \; R3, \; R4, \; R8 \\ HD404358R \; Series \\ D_{0} \; to \; D_{4}, \; R3, \; R4 \end{array}$			0.4	V	I _{oL} = 1.6 mA	
		HD404358R Series D_5 to D_8 , R0 to R2, R8			2.0	V	$I_{oL} = 15 \text{ mA},$ $V_{cc} = 4.5 \text{ to}$ 5.5 V	
I/O leakage current	I _{IL}	HD404358 Series D_0 to D_8 , R0, R1, R3, R4, R8, RA, HD404358R Series D_0 to D_8 , R0 to R4, R8, RA,	_		1	μΑ	$V_{in} = 0 V \text{ to } V_{CC}$	1
Pull-up MOS transistor current	−I _{PU}	HD404358 Series D_0 to D_8 , R0, R1, R3, R4, R8 HD404358R Series D_0 to D_8 , R0 to R4, R8	30	150	300	μΑ	$V_{cc} = 5 V,$ $V_{in} = 0 V$	

Note: 1. Except for the current flowing in the output buffers.

Table 25-24 Medium Voltage NMOS Open Drain Pin I/O Characteristics (HD404358 Series)

HD404354, HD404356, HD404358, HD40A4354, HD40A4356, HD40A4358: $V_{CC} = 2.7 \text{ to } 6.0 \text{ V}, \text{ GND} = 0 \text{ V}, \text{ } \text{T}_{a} = -20 \text{ to } 75^{\circ}\text{C}$ HD407A4359: $V_{CC} = 2.7 \text{ to } 5.5 \text{ V}, \text{ GND} = 0 \text{ V}, \text{ } \text{T}_{a} = -20 \text{ to } 75^{\circ}\text{C}$ unless specified otherwise.

		Applicable	R	ated V	alue		Test	
Item	Symbol	Pins	Min	Тур	Max	Unit	Conditions	Notes
Input high level voltage	V _{IH}	R2	$0.7 \ V_{cc}$		12.0	V		
Input low level voltage	V _{IL}	R2	-0.3		$0.3 V_{cc}$	V		
Output high level voltage	V _{OH}	R2	11.5			V	500 kΩ at 12 V	
Output low	V _{OL}	R2		_	0.4	V	I _{oL} = 0.4 mA	
level voltage			_		2.0		$I_{oL} = 15 \text{ mA},$ $V_{cc} = 4.5 \text{ V to}$ 5.5 V	
I/O leakage current	I _{IL}	R2	_	—	20	μA	$V_{in} = 0 V \text{ to } V_{CC}$	1

Note: 1. Except for the current flow in the output buffers.

(2) AC Characteristics

Tables 25-25 and 25-26 list the AC characteristics of the HD404358 and HD404358R Series microcomputers.

Table 25-25 AC Characteristics (HD404358 and HD404358R Series)

HD404354, HD404356, HD404358, HD40A4354, HD40A4356, HD40A4358: $V_{CC} = 2.7$ to 6.0 V, GND = 0 V, $T_a = -20$ to $+75^{\circ}$ C HD407A4369: $V_{CC} = 2.7$ to 5.5 V, GND = 0 V, $T_a = -20$ to $+75^{\circ}$ C HD404354R, HD404356R, HD404358R, HD40A4354R, HD40A4356R, HD40A4358R, HD40C4354R, HD40C4356R, HD40C4358R, HD407A4359R, HD407C4359R: $V_{CC} = 2.5$ to 5.5 V, GND = 0 V, $T_a = -20$ to $+75^{\circ}$ C unless specified otherwise.

		Applicable	F	Rated V	alue		Test	
ltem	Symbol	Pins	Min	Тур	Max	Unit	Conditions	Notes
Clock oscillator	f _{osc}	OSC ₁ ,	0.4	4	5.0	MHz	Clock divisor = 4	
frequency (ceramic oscillator, crystal oscillator)		OSC ₂	0.4	4	8.5		Clock divisor = 4 V_{cc} = 4.0 to 5.5 V	-
,			0.4	4	8.5		Clock divisor = 4 V_{cc} = 4.5 to 5.5 V	-
Clock oscillator frequency (resistor oscillator)	f _{osc}	OSC_1, OSC_2	1.0	2.2	3.5	MHz	Clock divisor = 4	8
Instruction cycle	t _{cyc}	-11	0.8	1	10	μs	Clock divisor = 4	
time (ceramic oscillator, crystal oscillator, external clock input)			0.47	1	10		Clock divisor = 4	6, 7
Instruction cycle time (resistor oscillator)	t _{cyc}		1.14	1.81	4.0	μs	Clock divisor = 4 $R_f = 20 \text{ k}\Omega$	8
Oscillator stabilization period (ceramic oscillator)	t _{RC}	OSC ₁ , OSC ₂	_	—	7.5	ms		1
Oscillator	t _{RC}	OSC ₁ ,	_	_	30	ms		1,11
stabilization period (crystal oscillator)		OSC ₂	_	—	40			1,12
Oscillator stabilization period (resistor oscillator)	t _{RC}	OSC ₁ , OSC ₂	_		0.5	ms		1, 8

Table 25-25 AC Characteristics (HD404358 and HD404358R Series) (cont)

HD404354, HD404356, HD404358, HD40A4354, HD40A4356, HD40A4358: $V_{CC} = 2.7$ to 6.0 V, GND = 0 V, $T_a = -20$ to $+75^{\circ}$ C HD407A4369: $V_{CC} = 2.7$ to 5.5 V, GND = 0 V, $T_a = -20$ to $+75^{\circ}$ C HD404354R, HD404356R, HD404358R, HD40A4354R, HD40A4356R, HD40A4358R, HD40C4354R, HD40C4356R, HD40C4358R, HD407A4359R, HD407C4359R: $V_{CC} = 2.5$ to 5.5 V, GND = 0 V, $T_a = -20$ to $+75^{\circ}$ C unless specified otherwise.

		Applicable	Rated Value			Test	
ltem	Symbol	Pins	Min	Тур	Max	Unit	Conditions Notes
External clock high	t _{CPH}	OSC ₁	80		_	ns	2
level width			47				$V_{\rm cc}$ = 4.0 to 5.5 V 2, 6
			47				V_{cc} = 4.5 to 5.5 V 2, 7
External clock low	t _{CPL}	OSC ₁	80		_	ns	2
level width			47			_	V_{cc} = 4.0 to 5.5 V 2, 6
			47				V_{cc} = 4.5 to 5.5 V 2, 7
External clock rise time	t _{CPr}	OSC ₁	—	—	20	ns	2
			_	_	15		V_{cc} = 4.0 to 5.5 V 2, 6
			_	_	15	_	V_{cc} = 4.5 to 5.5 V 2, 7
External clock fall time	t _{CPf}	OSC ₁			20	ns	2
			_	_	15		$V_{\rm cc}$ = 4.0 to 5.5 V 2, 6
			_	_	15		V_{cc} = 4.5 to 5.5 V 2, 7
INT ₀ , INT ₁ , and EVNB high level width	t _{IH}	ĪNT₀, ĪNT₁, EVNB	2		_	t _{cyc}	3
INT ₀ , INT ₁ , and EVNB low level width	t _{IL}	INT ₀ , INT ₁ , EVNB	2	—	—	t _{cyc}	3
RESET low level width	t _{RSTL}	RESET	2			t _{cyc}	4
STOPC low level width	t _{stpl}	STOPC	1			t _{RC}	5
RESET rise time	t _{RSTr}	RESET	_	_	20	ms	4
STOPC rise time	t _{sTPr}	STOPC		_	20	ms	5

Table 25-25 AC Characteristics (HD404358 and HD404358R Series) (cont)

HD404354, HD404356, HD404358, HD40A4354, HD40A4356, HD40A4358: $V_{CC} = 2.7$ to 6.0 V, GND = 0 V, $T_a = -20$ to $+75^{\circ}$ C HD407A4369: $V_{CC} = 2.7$ to 5.5 V, GND = 0 V, $T_a = -20$ to $+75^{\circ}$ C HD404354R, HD404356R, HD404358R, HD40A4354R, HD40A4356R, HD40A4358R, HD40C4354R, HD40C4356R, HD40C4358R, HD407A4359R, HD407C4359R: $V_{CC} = 2.5$ to 5.5 V, GND = 0 V, $T_a = -20$ to $+75^{\circ}$ C unless specified otherwise.

		Applicable	F	Rated V	alue		Test	
ltem	Symbol		Min	Тур	Max	Unit	Conditions	Notes
Input capacitance	C _{in}	All I/O pins other than TEST	_	—	15	pF	f = 1 MHz, $V_{in} = 0V$	11
		All I/O pins other than TEST, R2			15			12
		TEST			15			13
			_		40			9
			_	_	180			10
		R2			30			12

Notes: 1. There are three cases where the oscillator stabilization period applies:

- When power is first applied, the time between the point when V_{cc} reaches min and the point the oscillator is stable.
- When stop mode is cleared, the time between the point when the **RESET** input reaches the low level and the point the oscillator is stable.
- When stop mode is cleared, the time between the point when the STOPC input reaches the low level and the point the oscillator is stable.

To assure the time necessary to achieve stable oscillation at power on and when clearing stop mode, apply a low level to the RESET or STOPC input for at least t_{RC} . Since the oscillator stabilization period varies with the details of the mounted circuit, stray capacitances, and other factors, this value should be determined based on thorough consultations with the manufacturer of the ceramic oscillator used.

- 2. See figure 25-19.
- 3. See figure 25-20.
- 4. See figure 25-21.
- 5. See figure 25-22.
- 6. Applies to the HD40A4354R, HD40A4356R, HD40A4358R, and HD407A4359R.
- 7. Applies to the HD40A4354, HD40A4356, HD40A4358, and HD407A4359.
- 8. Applies to the HD40C4354R, HD40C4356R, HD40C4358R, and HD407C4359R.
- 9. Applies to the HD407A4359R and HD407C4359R.
- 10. Applies to the HD407A4359.

- 11. Applies to the HD404358R.
- 12. Applies to the HD404358.
- 13. Applies to the HD404354R, HD404356R, HD404358R, HD40A4354R, HD40A4356R, HD40A4358R, HD40C4354R, HD40C4356R, and HD40C4358R

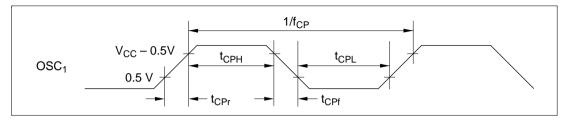


Figure 25-19 External Clock Timing (HD404358 and HD404358R Series)

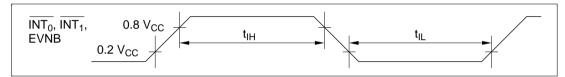


Figure 25-20 Interrupt Timing (HD404358 and HD404358R Series)

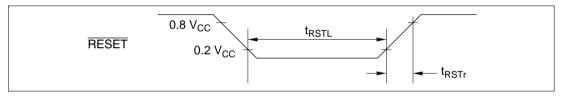


Figure 25-21 Reset Timing (HD404358 and HD404358R Series)

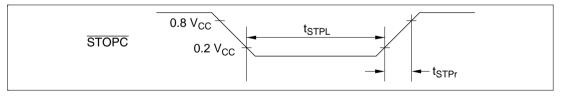


Figure 25-22 STOPC Timing (HD404358 and HD404358R Series)

Table 25-26 Serial Interface Timing Characteristics (HD404358 and HD404358R Series)

HD404354, HD404356, HD404358, HD40A4354, HD40A4356, HD40A4358: $V_{CC} = 2.7 \text{ to } 6.0 \text{ V}, \text{ GND} = 0 \text{ V}, \text{ } \text{T}_{a} = -20 \text{ to } 75^{\circ}\text{C}$ HD407A4359: $V_{CC} = 2.7 \text{ to } 5.5 \text{ V}, \text{ GND} = 0 \text{ V}, \text{ } \text{ } \text{T}_{a} = -20 \text{ to } 75^{\circ}\text{C}$ HD404358R Series: $V_{CC} = 2.5 \text{ to } 5.5 \text{ V}, \text{ GND} = 0 \text{ V}, \text{ } \text{ } \text{ } \text{T}_{a} = -20 \text{ to } +75^{\circ}\text{C},$ unless specified otherwise.

When the Transfer Clock is Output:

	Applicable Rated Value			Test				
Item S	Symbol	Pins	Min	Тур	Max	Unit	Conditions	Notes
Transfer clock t cycle time	t _{Scyc}	SCK	1	_	_	t _{cyc}	With the load shown in figure 25-24	1
Transfer clock thigh level width	t _{sckh}	SCK	0.4	_	_	t _{Scyc}	With the load shown in figure 25-24	1
Transfer clock t low level width	t _{sckl}	SCK	0.4			t _{Scyc}	With the load shown in figure 25-24	1
Transfer clock t rise time	t _{SCKr}	SCK			80	ns	With the load shown in figure 25-24	1
Transfer clock t fall time	t _{SCKf}	SCK	_	_	80	ns	With the load shown in figure 25-24	1
Serial output t data delay time	t _{DSO}	SO			300	ns	With the load shown in figure 25-24	1
Serial input data t setup time	t _{ssi}	SI	100			ns		1
Serial input data t hold time	t _{HSI}	SI	200			ns		1

Note: 1. See figure 25-23.

Table 25-26 Serial Interface Timing Characteristics (HD404358 Series) (cont)

HD404354, HD404356, HD404358, HD40A4354, HD40A4356, HD40A4358: $V_{CC} = 2.7$ to 6.0 V, GND = 0 V, $T_a = -20$ to 75°C HD407A4359: $V_{CC} = 2.7$ to 5.5 V, GND = 0 V, $T_a = -20$ to 75°C HD404358R Series: $V_{CC} = 2.5$ to 5.5 V, GND = 0 V, $T_a = -20$ to +75°C, unless specified otherwise.

When the Transfer Clock is Input:

		Applicable	F	Rated V	alue		Test	
Item	Symbol	Pins	Min	Тур	Max	Unit	Conditions	Notes
Transfer clock cycle time	t _{Scyc}	SCK	1	_	_	t _{cyc}		1
Transfer clock high level width	t _{sckh}	SCK	0.4			t _{scyc}		1
Transfer clock low level width	t _{sckl}	SCK	0.4			t _{scyc}	"	1
Transfer clock rise time	t _{SCKr}	SCK	_		80	ns		1
Transfer clock fall time	t _{sckf}	SCK			80	ns	"	1
Serial output data delay time	t _{DSO}	SO			300	ns	With the load shown in figure 25-24	1
Serial input data setup time	t _{ssi}	SI	100		—	ns		1
Serial input data hold time	t _{HSI}	SI	200	_	_	ns		1
Note: 1. See fig	ure 25-23.							

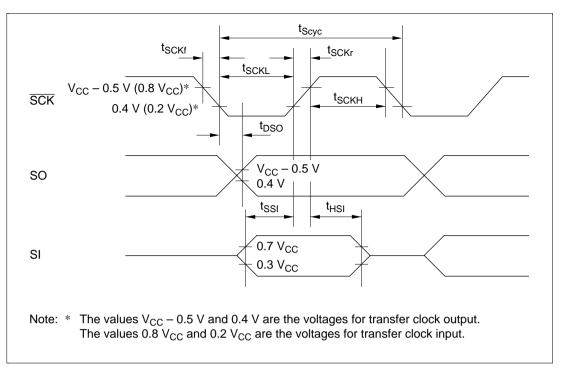


Figure 25-23 Serial Interface Timing (HD404358 and HD404358R Series)

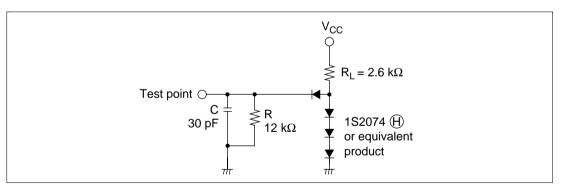


Figure 25-24 Timing Load Circuit

(3) A/D Converter Characteristics

Table 25-27 lists the characteristics of the HD404358 and HD404358R Series A/D converter.

Table 25-27 A/D Converter Characteristics (HD404358 and HD404358 Series A/D Converter Characteristics (HD404358 Characteristics Characteris</th

		Applicable	Rated Value			Test		
ltem	Symbol	Pins	Min	Тур	Max	Unit	Conditions	Notes
Analog supply voltage	AV_{cc}	AV_{cc}	$V_{cc} - 0.3$	V_{cc}	V _{cc} + 0.3	V		1
Analog input voltage	AV _{in}	AN ₀ to AN ₇	AV _{ss}		AV _{cc}	V		
Current from	I _{AD}				200	μA	$V_{cc} = AV_{cc} =$	2
AV_{cc} to AV_{ss}			_	_	500		5.0 V	3
Analog input capacitance	CA_{in}	AN_0 to AN_7	—	—	30	pF		
Resolution			_	8	_	Bits		
Number of inputs			0		8	Channels		
Absolute precision			-2.0		2.0	LSB		
Conversion time			34		67	tcyc		
Input impedance		AN ₀ to AN ₇	1			MΩ		

Notes: 1. Connect to the V_{cc} pin if the A/D converter is not used in the application.

2. Applies to the HD404358.

3. Applies to the HD404358R.

25.5 HD404339 Series

25.5.1 Absolute Maximum Ratings

Table 25-28 lists the absolute maximum ratings of the HD404339 Series microcomputers.

Item	Symbol	Rated Value	Unit	Notes
Power supply voltage	V _{cc}	–0.3 to +7.0	V	
Programming voltage	V _{PP}	-0.3 to +14.0	V	1
Pin voltage	V _T	-0.3 to V _{cc} + 0.3	V	2
		V_{cc} – 45 to V_{cc} + 0.3	V	3
Allowable total input current (current flowing in to the LSI)	ΣI_{0}	70	mA	4
Allowable total output current (current flowing out from the LSI)	$-\Sigma I_0$	150	mA	5
Allowable input current	I ₀	4	mA	6, 7
(current flowing in to the LSI)		20	mA	6, 8
Allowable output current	- I ₀	4	mA	9, 10
(current flowing out from the LSI)		30	mA	10, 11
Operating temperature	T _{opr}	-20 to +75	°C	
Storage temperature	T _{stg}	-55 to +125	°C	

Notes: 1. Applies to the HD4074339 TEST (V_{PP}) pin.

- 2. Applies to all standard pins.
- 3. Applies to high voltage pins.
- The allowable total input current is the sum of the currents flowing from all the I/O pins to ground at the same time.
- 5. The allowable total output current is the sum of the currents flowing from V_{cc} to all the I/O pins at the same time.
- The allowable input current is the maximum value of the currents flowing from each I/O pin to ground.
- 7. Applies to R3 to R5.
- 8. Applies to R0, R6, and R7.
- 9. Applies to R0, and $R3_0$ to $R7_2$.
- 10. The allowable output current is the maximum value of the currents flowing from V_{cc} to each I/O pin.
- 11. Applies to D_0 to D_{13} , R1, R2, R8 and R9.

Use of this LSI at levels that exceed the absolute maximum ratings can permanently damage the LSI. Also note that it is desirable to use this LSI within the conditions specified in the "Electrical Characteristics" section during normal operation. Exceeding those conditions can cause the LSI to operate incorrectly and may adversely affect LSI reliability. All voltage values are referenced to ground.

25.5.2 Electrical Characteristics

(1) DC Characteristics

Tables 25-29 to 25-31 list the DC characteristics of the HD404339 Series microcomputers.

Table 25-29 DC Characteristics (HD404339 Series)

 $V_{CC} = 4.0$ to 5.5 V, GND = 0 V, $V_{disp} = V_{CC} - 40$ V to V_{CC} , $T_a = -20$ to 75°C unless specified otherwise.

		Applicable	Rated Value			Test		
Item	Symbol	• •	Min	Тур	Max	Unit	Conditions	Notes
Input high level voltage	V _{IH}	$\label{eq:response} \begin{array}{c} \overline{\text{RESET}},\\ \overline{\text{SCK}}, SI\\ \overline{\text{INT}}_{o}, \overline{\text{INT}}_{1},\\ \overline{\text{STOPC}},\\ \overline{\text{EVNB}} \end{array}$	0.8 V _{cc}		V _{cc} + 0.3	V		
		OSC ₁	$V_{cc} - 0.5$	_	V _{cc} + 0.3			
Input low level voltage	V _{IL}	RESET, SCK, SI	-0.3	_	$0.2 V_{cc}$	V		
		INT₀, INT₁, STOPC, EVNB	$V_{cc} - 40$		0.2 V _{cc}	_		
		OSC ₁	-0.3	_	0.5	_		
Output high level voltage	V _{OH}	SCK, SO, TOC	V _{cc} – 0.5			V	—I _{он} = 0.5 mA	
Output low level voltage	V _{oL}	SCK, SO, TOC	_		0.4	V	I _{oL} = 0.4 mA	
I/O leakage current	I _{IL}	RESET, SCK, SI, SO, TOC, OSC ₁			1	μA	$V_{in} = 0 V \text{ to } V_{CC}$	1
		INT₀, INT₁, STOPC, EVNB	_		20	_	$V_{in} = V_{CC} - 40 V$ to V_{CC}	
Active mode current drain	I _{cc}	V _{cc}			5.0	mA	$V_{cc} = 5 V,$ $f_{osc} = 4 MHz$	2, 5, 6
			_		8.0			2, 5, 7

Table 25-29 DC Characteristics (HD404339 Series) (cont)

 V_{CC} = 4.0 to 5.5 V, GND = 0 V, V_{disp} = V_{CC} – 40 V to V_{CC} , T_a = –20 to 75°C unless specified otherwise.

		Applicable		Rated V	alue		Test	
Item	Symbol	Pins	Min	Тур	Max	Unit	Conditions	Notes
Standby mode current drain	I _{SBY}	V _{cc}	_	_	2.0	mA	$V_{cc} = 5 V,$ $f_{osc} = 4 MHz$	3, 5
Subactive	I _{SUB}	V _{cc}			100	μA	$V_{\rm CC} = 5 \text{ V},$	4, 6
mode current drain			_	_	320		using a 32 kHz oscillator	4, 7
Watch mode current drain	I _{WTC}	V _{cc}	_	_	20	μA	$V_{cc} = 5 V$, using a 32 kHz oscillator	4
Stop mode	ISTOP	V _{cc}			10	μA	X1 = GND,	4, 6
current drain			_		20		X2 = OPEN	4, 7
Stop mode data retention voltage	V _{STOP}	V _{cc}	2			V		

Notes: 1. Except for the current flowing in the pull-up MOS transistors and output buffers.

2. The power supply current with the system in the reset state and no I/O currents flowing.

Test conditions	System state	Reset state
	Pin states	• RESET, TEST At the ground potential
		• R0, R3 ₀ to R7 ₂ At the V_{cc} potential
		• D ₀ to D ₁₃ , R1, R2,
		R8, R9, and RA ₁ At the V_{disp} potential

3. The power supply current with the system timers operating and no I/O currents flowing.

Test conditions	System state	• I/O: The same as in the reset state
		Standby mode
	Pin states	• RESET At the V _{cc} potentiall
		• TEST At the ground potential
		• R0, R3 ₀ to R7 ₂ At the V_{cc} potential
		• D ₀ to D ₁₃ , R1, R2,
		R8, R9, and RA ₁ At the V_{disp} potential

4. The power supply current with no I/O currents flowing.

Test conditions	Pin states	• R0, R3 ₀ to R7 ₂ At the V _{cc} potential
		• D ₀ to D ₁₃ , R1, R2,
		R8, R9, and RA_1 At the ground potential

- 5. The current drain during operation and in standby mode is proportional to f_{osc} . Therefore, the current ratings when f_{osc} is x MHz can be calculated roughly as follows. maximum value ($f_{osc} = x \text{ MHz}$) = x/4 × maximum value ($f_{osc} = 4 \text{ MHz}$)
- 6. Applies to the HD404334, HD404336, HD404338, HD4043312, and HD404339.
- 7. Applies to the HD4074339.

Table 25-30 Standard Pin I/O Characteristics (HD404339 Series)

 $V_{CC} = 4.0$ to 5.5 V, GND = 0 V, $V_{disp} = V_{CC} - 40$ V to V_{CC} , $T_a = -20$ to 75°C unless specified otherwise.

		Applicable	R	ated Va	alue		Test	
ltem	Symbol	Pins	Min	Тур	Max	Unit	Conditions	Notes
Input high level voltage	V _{IH}	R0, R3 ₀ to R7 ₂	$0.7 \ V_{cc}$	—	V _{cc} + 0.3 V	V		
Input low level voltage	V _{IL}	R0, R3 ₀ to R7 ₂	-0.3		0.3 V _{cc}	V		
Output high level voltage	V _{OH}	R0, R3 ₀ to R7 ₂	V _{cc} – 0.5			V	—I _{он} = 0.5 mA	
Output low	V _{oL}	R3 to R5			0.4	V	I _{oL} = 1.6 mA	
level voltage		R0, R6 ₀ to $R7_2$			2.0		I _{oL} = 10 mA	
I/O leakage current	I _{IL}	R0, R3 ₀ to R7 ₂	_		1	μA	$V_{in} = 0 V \text{ to } V_{CC}$	1
Pull-up MOS	-I _{PU}	R0,	30	150	300	μA	$V_{\rm CC} = 5 \text{ V},$	2
transistor current		$R3_0$ to $R7_2$	30	80	180		$V_{in} = 0 V$	3

Notes: 1. Except for the current flowing in the output buffers.

2. Applies to the HD404334, HD404336, HD404338, HD4043312, and HD404339.

3. Applies to the HD4074339.

Table 25-31 High Voltage Pin I/O Characteristics (HD404339 Series)

 $V_{CC} = 4.0$ to 5.5 V, GND = 0 V, $V_{disp} = V_{CC} - 40$ V to V_{CC} , $T_a = -20$ to 75°C unless specified otherwise.

		Applicable	Rated Value			Test		
Item	Symbol	••	Min	Тур	Max	Unit	Conditions	Notes
Input high level voltage	V _{IH}	D ₀ to D ₁₃ , R1, R2, R8, R9, RA ₁	$0.7 V_{cc}$	_	V _{cc} + 0.3	V		
Input low level voltage	V _{IL}	D ₀ to D ₁₃ , R1, R2, R8, R9, RA ₁	$V_{cc} - 40$	_	0.3 V _{cc}	V		
Output high	V _{OH}	D_0 to D_{13} ,	$V_{cc} - 3.0$		—	V	–I _{он} = 15 mA	
level voltage		R1, R2, R8, R9, BUZZ	$V_{cc} - 2.0$		_		–I _{он} = 10 mA	
		N3, D022	V _{cc} – 1.0		_		—I _{он} = 4 mA	
Output low level voltage	V _{oL}	D ₀ to D ₁₃ , R1, R2, R8,			V _{cc} – 37	V	V _{disp} = V _{cc} - 40 V	1
		R9, BUZZ	—		V _{cc} – 37		150 kΩ at V _{cc} – 40 V	2
I/O leakage current	I _{IL}	D ₀ to D ₁₃ , R1, R2, R8, R9, RA ₁ , BUZZ			20	μA	$V_{in} = V_{CC} - 40 V to V_{CC}$	3
Pull-down resistor current	I _{PD}	D ₀ to D ₁₃ , R1, R2, R8, R9, BUZZ	200	600	1000	μA	$V_{disp} = V_{CC} - 35 V,$ $V_{in} = V_{CC}$	1

Notes: 1. Applies to pins for which the pull-down resistor mask option was selected.

2. Applies to pins for which the no pull-down resistor mask option was selected.

3. Except for the current flow in the output buffers.

(2) AC Characteristics

Tables 25-32 and 25-33 list the AC characteristics of the HD404339 Series microcomputers.

Table 25-32 AC Characteristics (HD404339 Series)

 $V_{CC} = 4.0$ to 5.5 V, GND = 0 V, $V_{disp} = V_{CC} - 40$ V to V_{CC} , $T_a = -20$ to 75°C unless specified otherwise.

		Applicable	Applicable Rated Value			Test		
ltem	Symbol	Pins	Min	Тур	Max	Unit	Conditions	Notes
Clock oscillator frequency	f _{osc}	OSC ₁ , OSC ₂	0.4	4	4.5	MHz	Clock divisor = 4	1
		X1, X2		32.76	8—	kHz		
Instruction cycle	t _{cyc}		0.89	1	10	μs		
time	$t_{ m subcyc}$		_	244.1	4 —		Using a 32 kHz oscillator, clock divisor = 8	
			_	122.0	7 —		Using a 32 kHz oscillator, clock divisor = 4	
Oscillator stabilization period (ceramic oscillator)	t _{RC}	OSC ₁ , OSC ₂			7.5	ms		2
Oscillator stabilization period	t _{RC}	OSC ₁ , OSC ₂	_		40	ms		2
(crystal oscillator)		X1, X2	—		2	S		2
External clock high level width	t _{CPH}	OSC1	92			ns		3
External clock low level width	t _{CPL}	OSC ₁	92			ns		3
External clock rise time	t _{CPr}	OSC ₁	_		20	ns		3
External clock fall time	t _{CPf}	OSC ₁	_	_	20	ns		3

Table 25-32 AC Characteristics (HD404339 Series) (cont)

 $V_{CC} = 4.0$ to 5.5 V, GND = 0 V, $V_{disp} = V_{CC} - 40$ V to V_{CC} , $T_a = -20$ to 75°C unless specified otherwise.

		Applicable	F	Rated Va	alue		Test	
Item	Symbol	Pins	Min	Тур	Мах	Unit	Conditions	Notes
INT₀, INT₁, and EVNB high level width	t _{IH}	ĪNT₀, ĪNT₁, EVNB	2	_	_	t _{cyc} / t _{subcyc}		4
\overline{INT}_{0} , \overline{INT}_{1} , and EVNB low level width	t _{IL}	ĪNT₀, ĪNT₁, EVNB	2	_	_	t _{cyc} / t _{subcyc}		4
RESET low level width	t _{RSTL}	RESET	2			t _{cyc}		5
STOPC low level width	t _{STPL}	STOPC	1			t _{RC}		6
RESET rise time	t _{RSTr}	RESET			20	ms		5
STOPC rise time	t _{sTPr}	STOPC	—	_	20	ms		6
Input capacitance	C _{in}	All input pins other than TEST			30	pF	f = 1 Mhz, $V_{in} = 0 V$	
		TEST	—		30		f = 1 MHz,	7
			_		180		$V_{in} = 0 V$	8

Notes: 1. When a sub-system oscillator (a 32.768 kHz crystal oscillator) is used, f_{osc} must either be in the range 0.4 MHz $\leq f_{osc} \leq$ 1.0 MHz or be in the range 1.6 MHz $\leq f_{osc} \leq$ 4.5 MHz. Furthermore, the SSR11 bit in the system clock selection register 1 (SSR1: \$027) must be set to indicate which of those ranges f_{osc} falls in.

- 2. There are three cases where the oscillator stabilization period applies:
 - When power is first applied, the time between the point when V_{cc} reaches 4.0 V and the point the oscillator is stable.
 - When stop mode is cleared, the time between the point when the **RESET** input reaches the low level and the point the oscillator is stable.
 - When stop mode is cleared, the time between the point when the STOPC input reaches the low level and the point the oscillator is stable.

To assure the time necessary to achieve stable oscillation at power on and when clearing stop mode, apply a low level to the RESET or STOPC input for at least t_{RC} . Since the oscillator stabilization period varies with the details of the mounted circuit, stray capacitances, and other factors, this value should be determined based on thorough consultations with the manufacturer of the ceramic oscillator used.

- 3. See figure 25-25.
- 4. See figure 25-26.
- 5. See figure 25-27.
- 6. See figure 25-28.

- 7. Applies to the HD404334, HD404336, HD404338, HD4043312, and HD404339.
- 8. Applies to the HD4074339.

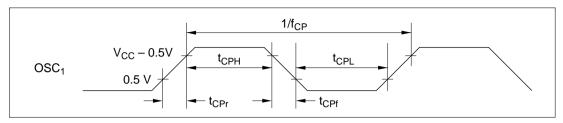


Figure 25-25 External Clock Timing (HD404339 Series)

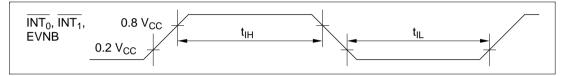


Figure 25-26 Interrupt Timing (HD404339 Series)

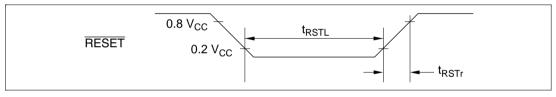


Figure 25-27 Reset Timing (HD404339 Series)

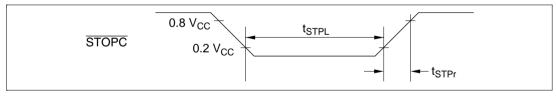


Figure 25-28 STOPC Timing (HD404339 Series)

Table 25-33 Serial Interface Timing Characteristics (HD404339 Series)

 V_{CC} = 4.0 to 5.5 V, GND = 0 V, V_{disp} = V_{CC} – 40 V to V_{CC} , T_a = –20 to 75°C unless specified otherwise.

		Applicable	Rated Value		Test			
ltem	Symbol	Pins	Min	Тур	Max	Unit	Conditions	Notes
Transfer clock cycle time	t _{Scyc}	SCK	1	—	—	t _{cyc}	With the load shown in figure 25-30	1
Transfer clock high level width	t _{scкн}	SCK	0.4	_	_	t _{scyc}	With the load shown in figure 25-30	1
Transfer clock low level width	t _{SCKL}	SCK	0.4			t _{Scyc}	With the load shown in figure 25-30	1
Transfer clock rise time	t _{SCKr}	SCK			80	ns	With the load shown in figure 25-30	1
Transfer clock fall time	t _{SCKf}	SCK	—	—	80	ns	With the load shown in figure 25-30	1
Serial output data delay time	t _{DSO}	SO			300	ns	With the load shown in figure 25-30	1
Serial input data setup time	t _{ssi}	SI	100			ns		1
Serial input data hold time	t _{HSI}	SI	200			ns		1

Note: See figure 25-29.

Table 25-33 Serial Interface Timing Characteristics (HD404339 Series) (cont)

 $V_{CC} = 4.0$ to 5.5 V, GND = 0 V, $V_{disp} = V_{CC} - 40$ V to V_{CC} , $T_a = -20$ to 75°C unless specified otherwise.

When the Transfer Clock is Input:

		Applicable	F	Rated V	alue		Test	
Item	Symbol	Pins	Min	Тур	Max	Unit	Conditions	Notes
Transfer clock cycle time	t _{Scyc}	SCK	1	_	_	t _{cyc}		1
Transfer clock high level width	t _{scкн}	SCK	0.4			t _{Scyc}		1
Transfer clock low level width	t _{SCKL}	SCK	0.4			t _{Scyc}		1
Transfer clock rise time	et _{SCKr}	SCK			80	ns		1
Transfer clock fall time	t _{sckf}	SCK			80	ns		1
Serial output data delay time	t _{DSO}	SO		_	300	ns	With the load shown in figure 25-30	1
Serial input data setup time	t _{ssi}	SI	100	_	_	ns		1
Serial input data hold time	t _{HSI}	SI	200	—	—	ns		1
Note: See figure	25-29.							

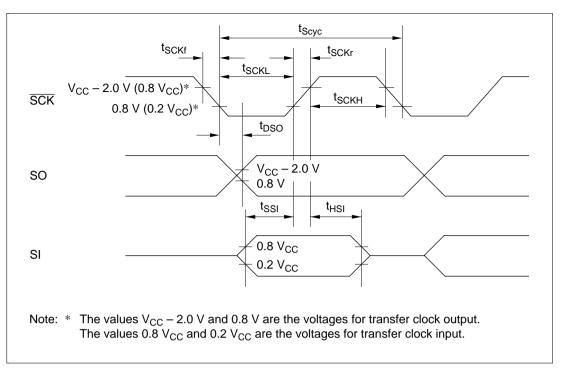


Figure 25-29 Serial Interface Timing (HD404339 Series)

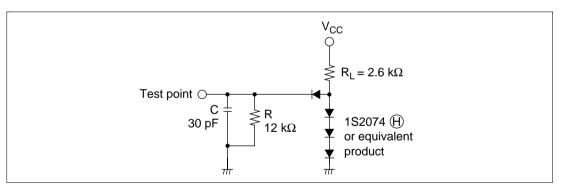


Figure 25-30 Timing Load Circuit

(3) A/D Converter Characteristics

Table 25-34 lists the characteristics of the HD404339 Series A/D converter.

Table 25-34 A/D Converter Characteristics (HD404339 Series)

 $V_{CC} = 4.0$ to 5.5 V, GND = 0 V, $V_{disp} = V_{CC} - 40$ V to V_{CC} , $T_a = -20$ to 75°C unless specified otherwise.

		Applicable	Rated Value			Test		
Item	Symbol		Min	Тур	Max	Unit	Conditions	Notes
Analog supply voltage	AV_{cc}	AV_{cc}	$V_{cc} - 0.3$	V_{cc}	V _{cc} + 0.3	V		1
Analog input voltage	AV_{in}	AN_0 to AN_{11}	AV_{ss}		AV _{cc}	V		
Current from AV_{cc} to AV_{ss}	I _{AD}				200	μA	$V_{cc} = AV_{cc} =$ 5.0 V	
Analog input capacitance	CA _{in}	AN ₀ to AN ₁₁	—		30	pF		
Resolution			8	8	8	Bits		
Number of inputs			0	—	12	Channels		
Absolute precision			—	—	±2.0	LSB		
Conversion time			34		67	t _{cyc}		
Input impedance		AN_0 to AN_{11}	1		—	MΩ		

Note: Connect to the V_{cc} pin if the A/D converter is not used in the application.

25.6 HD404369 Series

25.6.1 Absolute Maximum Ratings

Table 25-35 lists the absolute maximum ratings of the HD404369 Series microcomputers.

Table 25-35 Absolute Maximum Ratings (HD404369 Series)

Item	Symbol	Rated Value	Unit	Notes
Power supply voltage	V _{cc}	-0.3 to +7.0	V	
Programming voltage	V _{PP}	-0.3 to +14.0	V	1
Pin voltage	V _T	-0.3 to V_{cc} + 0.3	V	2
		-0.3 to +15.0	V	3
Allowable total input current (current flowing in to the LSI)	ΣI_0	105	mA	4
Allowable total output current (current flowing out from the LSI)	$-\Sigma I_0$	50	mA	5
Allowable input current	I _o	4	mA	6, 7
(current flowing in to the LSI)		30	mA	6, 8
Allowable output current (current flowing out from the LSI)	-I ₀	4	mA	7, 9
Operating temperature	T _{opr}	-20 to +75	°C	
Storage temperature	T _{stg}	-55 to +125	°C	

Notes: 1. Applies to the HD407A4369 TEST (V_{PP}) pin.

- 2. Applies to all standard pins.
- 3. Applies to the medium voltage pins.
- 4. The allowable total input current is the sum of the currents flowing from all the I/O pins to ground at the same time.
- 5. The allowable total output current is the sum of the currents flowing from V_{cc} to all the I/O pins at the same time.
- The allowable input current is the maximum value of the currents flowing from each I/O pin to ground.
- 7. Applies to D_0 to D_{13} , R0, and R3 to R9.
- 8. Applies to R1 and R2.
- 9. The allowable output current is the maximum value of the currents flowing from $\rm V_{cc}$ to each I/O pin.

Use of this LSI at levels that exceed the absolute maximum ratings can permanently damage the LSI. Also note that it is desirable to use this LSI within the conditions specified in the "Electrical Characteristics" section during normal operation. Exceeding those conditions can cause the LSI to operate incorrectly and may adversely affect LSI reliability. All voltage values are referenced to ground.

25.6.2 Electrical Characteristics

(1) DC Characteristics

Tables 25-36 to 25-38 list the DC characteristics of the HD404369 Series microcomputers.

Table 25-36 DC Characteristics (HD404369 Series)

HD404364, HD404368, HD4043612, HD404369, HD40A4364, HD40A4368, HD40A43612, HD40A4369: $V_{CC} = 2.7$ to 6.0 V, GND = 0 V, $T_a = -20$ to 75°C HD407A4369: $V_{CC} = 2.7$ to 5.5 V, GND = 0 V, $T_a = -20$ to 75°C, unless specified otherwise.

		Applicable	Rated Value			Test		
ltem	Symbol	Pins	Min	Тур	Max	Unit	Conditions	Notes
Input high level voltage	V _{IH}	$\frac{\overline{RESET},}{\overline{STOPC},}$ $\frac{\overline{INT}_0,}{\overline{INT}_1,}$ $\frac{\overline{SCK}, \text{EVNB}}{\overline{SCK}, \text{EVNB}}$	0.8 V _{cc}	_	V _{cc} + 0.3	V		
		SI	$0.7 \ V_{cc}$		V _{cc} + 0.3			
		OSC1	$V_{cc} - 0.5$	—	V _{cc} + 0.3	_		
Input low level voltage	V _{IL}	RESET, STOPC, INT₀, INT₁, SCK, EVNB	-0.3		0.2 V _{cc}	V		
		SI	-0.3	_	$0.3 V_{cc}$	_		
		OSC ₁	-0.3	_	0.5	_		
Output high level voltage	V _{OH}	SCK, SO, TOC	V _{cc} – 0.5		_	V	−I _{OH} = 0.5 mA	
Output low level voltage	V _{oL}	SCK, SO, TOC			0.4	V	$I_{OL} = 0.4 \text{ mA}$	
I/O leakage current	I _{IL}	$\label{eq:response} \begin{array}{l} \hline \textbf{RESET},\\ \hline \textbf{STOPC},\\ \hline \textbf{INT}_0, \ \overline{\textbf{INT}}_1,\\ \hline \textbf{SCK}, \ \textbf{SI}, \ \textbf{SO},\\ \hline \textbf{EVNB}, \ \textbf{TOC},\\ \hline \textbf{OSC}_1 \end{array}$			1	μA	$V_{in} = 0 V \text{ to } V_{CC}$	1

Table 25-36 DC Characteristics (HD404369 Series) (cont)

HD404364, HD404368, HD4043612, HD404369, HD40A4364, HD40A4368, HD40A43612, HD40A4369: $V_{CC} = 2.7 \text{ to } 6.0 \text{ V}, \text{GND} = 0 \text{ V}, \text{ } \text{T}_{a} = -20 \text{ to } 75^{\circ}\text{C}$ HD407A4369: $V_{CC} = 2.7 \text{ to } 5.5 \text{ V}, \text{GND} = 0 \text{ V}, \text{ } \text{T}_{a} = -20 \text{ to } 75^{\circ}\text{C}$, unless specified otherwise.

		Applicable		Rated V	alue		Test	
Item	Symbol		Min	Тур	Max	Unit	Conditions	Notes
Active mode current drain	I _{cc}	V _{cc}	_	—	5.0	mA	$V_{cc} = 5 V,$ $f_{osc} = 4 MHz$	2, 5
Standby mode current drain	e I _{SBY}	V _{cc}	_	_	2.0	mA	$V_{cc} = 5 V,$ $f_{osc} = 4 MHz$	3, 5
Subactive mode current drain	I _{SUB}	V _{cc}	_	_	100	μA	$V_{cc} = 5 V$, using a 32 kHz oscillator	4
Watch mode current drain	I _{WTC}	V _{cc}		_	20	μA	$V_{cc} = 5 V$, using a 32 kHz oscillator	4
Stop mode current drain	I _{STOP}	V _{cc}			10	μA	V _{cc} = 5 V, X1 = GND, X2 = OPEN	4
Stop mode data retention voltage	V_{STOP}	V _{cc}	2	_	_	V		

Notes: 1. Except for the current flowing in the pull-up MOS transistors and output buffers.

2. The power supply current with the system in the reset state and no I/O currents flowing.

Test conditions	System state	Reset state
	Pin states	• RESET, TEST At the ground potential

3. The power supply current with the system timers operating and no I/O currents flowing.

Test conditions	System state	I/O: The same as in the reset state
		Standby mode
	Pin states	• RESET At the V _{cc} potential
		• TEST At the ground potential
		• D ₀ to D ₁₃ , R0 to R9,
		and RA_{1} At the V_{cc} potential

4. The power supply current with no I/O currents flowing.

Test conditions	Pin states	• RESET At the V _{cc} potential
		• TEST At the ground potential
		• D ₀ to D ₁₃ , R0 to R9,
		and RA_1 At the V_{cc} potential

5. The current drain during operation and in standby mode is proportional to f_{osc} . Therefore, the current ratings when f_{osc} is x MHz can be calculated roughly as follows. maximum value ($f_{osc} = x \text{ MHz}$) = x/4 × maximum value ($f_{osc} = 4 \text{ MHz}$)

Table 25-37 Standard Pin I/O Characteristics (HD404369 Series)

HD404364, HD404368, HD4043612, HD404369, HD40A4364, HD40A4368, HD40A43612, HD40A4369: $V_{CC} = 2.7$ to 6.0 V, GND = 0 V, $T_a = -20$ to 75°C HD407A4369: $V_{CC} = 2.7$ to 5.5 V, GND = 0 V, $T_a = -20$ to 75°C, unless specified otherwise.

		Applicable	Rated Value				Test	
Item	Symbol	Pins	Min	Тур	Мах	Unit	Conditions	Notes
Input high level voltage	V _{IH}	D_0 to D_{13} , R0, R3 to R9, RA ₁	$0.7 V_{cc}$	_	V _{cc} + 0.3	V		
Input low level voltage	V _{IL}	D_0 to D_{13} , R0, R3 to R9, RA ₁	-0.3	—	0.3 V _{cc}	V		
Output high level voltage	V_{OH}	D_0 to D_{13} , R0, R3 to R9	$V_{cc} - 0.5$	—	_	V	−I _{OH} = 0.5 mA	
Output low level voltage	V _{oL}	D_0 to D_{13} , R0, R3 to R9			0.4	V	I _{oL} = 1.6 mA	
I/O leakage current	I _{IL}	D_0 to D_{13} , R0, R3 to R9, RA ₁	_		1	μA	$V_{in} = 0 V \text{ to } V_{CC}$	1
Pull-up MOS transistor current	- I _{PU}	D_0 to D_{13} , R0, R3 to R9	30	150	300	μA	$V_{cc} = 5 V,$ $V_{in} = 0 V$	

Note: Except for the current flowing in the output buffers.

Table 25-38 Medium Voltage NMOS Open Drain Pin I/O Characteristics (HD404369 Series)

HD404364, HD404368, HD4043612, HD404369, HD40A4364, HD40A4368, HD40A43612, HD40A4369: $V_{CC} = 2.7$ to 6.0 V, GND = 0 V, $T_a = -20$ to 75°C HD407A4369: $V_{CC} = 2.7$ to 5.5 V, GND = 0 V, $T_a = -20$ to 75°C, unless specified otherwise.

		Applicable	R	Rated V	alue		Test	
Item	Symbol	• •	Min	Тур	Max	Unit	Conditions	Notes
Input high level voltage	V _{IH}	R1, R2	$0.7 \mathrm{V_{cc}}$	_	12.0	V		
Input low level voltage	V _{IL}	R1, R2	-0.3		$0.3 V_{cc}$	V		
Output high level voltage	V _{OH}	R1, R2	11.5		_	V	500 kΩ at 12 V	
Output low	V _{ol}	R1, R2	_	—	0.4	V	I _{oL} = 0.4 mA	
level voltage			_		2.0	_	$I_{oL} = 15 \text{ mA},$ $V_{cc} = 4.5 \text{ V to}$ 5.5 V	_
I/O leakage current	I _{IL}	R1, R2			20	μA	$V_{in} = 0 V \text{ to } V_{CC}$	1

Note: Except for the current flow in the output buffers.

(2) AC Characteristics

Tables 25-39 (1), 25-39 (2), and 25-40 list the AC characteristics of the HD404369 Series microcomputers.

Table 25-39 (1) AC Characteristics (HD404364, HD404368, HD4043612, and HD404369)

$V_{\rm CC} = 2.7$ to 6.0 V	, GND = 0 V, $T_a = -$	-20 to 75°C unless	specified otherwise.
-----------------------------	------------------------	--------------------	----------------------

		Applicable		Rated Va	lue		Test	
Item	Symbol	Pins	Min	Тур	Max	Unit	Conditions	Notes
Clock oscillator frequency	f _{osc}	OSC ₁ , OSC ₂	0.4	4	5.0	MHz	Clock divisor = 4	1
		X1, X2		32.768		kHz		
Instruction cycle	t _{cyc}		0.8	1	10	μs		1
time	t _{subcyc}			244.14			Using a 32 kHz oscillator, clock divisor = 8	
			—	122.07	—		Using a 32 kHz oscillator, clock divisor = 4	
Oscillator stabilization period (ceramic oscillator)	t _{RC} d	OSC ₁ , OSC ₂			7.5	ms		2
Oscillator stabilization period	t _{RC} d	OSC ₁ , OSC ₂	—	—	40	ms		2
(crystal oscillator)		X1, X2	_	_	2	S		2
External clock high level width	t _{CPH}	OSC ₁	80			ns		3
External clock low level width	t _{CPL}	OSC ₁	80			ns		3
External clock rise time	et _{CPr}	OSC ₁			20	ns		3
External clock fall time	t _{CPf}	OSC ₁	_		20	ns		3
\overline{INT}_{0} , \overline{INT}_{1} , and EVNB high level width	t _{iH}	INT₀, INT₁, EVNB	2			t _{cyc} / t _{subcyc}		4

Table 25-39 (1) AC Characteristics (HD404364, HD404368, HD4043612, and HD404369) (cont)

 $V_{CC} = 2.7$ to 6.0 V, GND = 0 V, $T_a = -20$ to 75°C unless specified otherwise.

		Applicable	Applicable Rated Value				Test	
Item	Symbol	Pins	Min	Тур	Max	Unit	Conditions	Notes
INT ₀ , INT ₁ , and EVNB low level width	t _⊫	INT₀, INT₁, EVNB	2	_	_	t _{cyc} / t _{subcyc}		4
RESET low level width	t _{RSTL}	RESET	2	—	—	t _{cyc}		5
STOPC low level width	t _{stpl}	STOPC	1	—	—	t _{RC}		6
RESET rise time	t _{RSTr}	RESET			20	ms		5
STOPC rise time	t _{stPr}	STOPC	_	_	20	ms		6
Input capacitance	C _{in}	All I/O pins other than R1 and R2			15	pF	f = 1 MHz, $V_{in} = 0 V$	
		R1, R2			30		f = 1 MHz, $V_{in} = 0 V$	

Notes: 1. When a sub-system oscillator (a 32.768 kHz crystal oscillator) is used, f_{osc} must either be in the range 0.4 MHz $\leq f_{osc} \leq$ 1.0 MHz or be in the range 1.6 MHz $\leq f_{osc} \leq$ 5.0 MHz. Furthermore, the SSR11 bit in the system clock selection register 1 (SSR1: \$027) must be set to indicate which of those ranges f_{osc} falls in.

- 2. There are three cases where the oscillator stabilization period applies:
 - When power is first applied, the time between the point when V_{cc} reaches 2.7 V and the point the oscillator is stable.
 - When stop mode is cleared, the time between the point when the RESET input reaches the low level and the point the oscillator is stable.
 - When stop mode is cleared, the time between the point when the STOPC input reaches the low level and the point the oscillator is stable.

To assure the time necessary to achieve stable oscillation at power on and when clearing stop mode, apply a low level to the $\overrightarrow{\text{RESET}}$ or $\overrightarrow{\text{STOPC}}$ input for at least t_{RC} . Since the oscillator stabilization period varies with the details of the mounted circuit, stray capacitances, and other factors, this value should be determined based on thorough consultations with the manufacturer of the ceramic oscillator used.

- 3. See figure 25-31.
- 4. See figure 25-32.
- 5. See figure 25-33.
- 6. See figure 25-34.

Table 25-39 (2) AC Characteristics (HD40A4364, HD40A4368, HD40A43612, HD40A4369, and HD407A4369)

HD40A4364, HD40A4368, HD40A43612, HD40A4369: $V_{CC} = 2.7 \text{ to } 6.0 \text{ V}, \text{ GND} = 0 \text{ V}, \text{ } \text{T}_{a} = -20 \text{ to } 75^{\circ}\text{C}$ HD407A4369: $V_{CC} = 2.7 \text{ to } 5.5 \text{ V}, \text{ GND} = 0 \text{ V}, \text{ } \text{T}_{a} = -20 \text{ to } 75^{\circ}\text{C}$, unless specified otherwise.

	Applicable		Rated Va	lue		Test		
Item	Symbol	Pins	Min	Тур	Max	Unit	Conditions	Notes
Clock oscillator	f _{osc}	OSC ₁ ,	0.4	4	5.0	MHz	Clock divisor = 4	1
frequency		OSC ₂	0.4	4	8.5		Clock divisor = 4 V_{cc} = 4.5 to 5.5 V	, 2
		X1, X2		32.768		kHz		
Instruction cycle	t _{cyc}		0.8	1	10	μs		1
time			0.47	1	10	_	V _{cc} = 4.5 to 5.5 V	2
	t _{subcyc}		_	244.14	—		Using a 32 kHz oscillator, clock divisor = 8	
			_	122.07			Using a 32 kHz oscillator, clock divisor = 4	
Oscillator stabilization period (ceramic oscillator)	t _{RC} d	OSC ₁ , OSC ₂		_	7.5	ms		3
Oscillator stabilization period	t _{RC} d	OSC ₁ , OSC ₂	_		40	ms		3
(crystal oscillator)		X1, X2	_		2	S		3
External clock	t _{CPH}	OSC ₁	80	_		ns		4
high level width			47		_	_	V _{cc} = 4.5 to 5.5 V	4
External clock	t _{CPL}	OSC ₁	80	_		ns		4
low level width			47		_		V _{cc} = 4.5 to 5.5 V	4

Table 25-39 (2) AC Characteristics (HD40A4364, HD40A4368, HD40A43612, HD40A4369, and HD407A4369) (cont)

HD40A4364, HD40A4368, HD40A43612, HD40A4369: $V_{CC} = 2.7 \text{ to } 6.0 \text{ V}, \text{ GND} = 0 \text{ V}, \text{ } \text{T}_{a} = -20 \text{ to } 75^{\circ}\text{C}$ HD407A4369: $V_{CC} = 2.7 \text{ to } 5.5 \text{ V}, \text{ GND} = 0 \text{ V}, \text{ } \text{T}_{a} = -20 \text{ to } 75^{\circ}\text{C}$, unless specified otherwise.

	Applicable	F	Rated V	alue		Test		
Item	Symbol		Min	Тур	Max	Unit	Conditions	Notes
External clock	t _{CPr}	OSC ₁	_	_	20	ns		4
rise time			—		15		V _{cc} = 4.5 to 5.5 V	4
External clock	t _{CPf}	OSC ₁	_		20	ns		4
fall time			_	_	15		V _{cc} = 4.5 to 5.5 V	4
INT ₀ , INT ₁ , and EVNB high level width	t _{iH}	ĪNT₀, ĪNT₁, EVNB	2	—	—	t _{cyc} / t _{subcyc}		5
\overline{INT}_0 , \overline{INT}_1 , and EVNB low level width	t _{IL}	ĪNT₀, ĪNT₁, EVNB	2			t _{cyc} / t _{subcyc}		5
RESET low level width	t _{RSTL}	RESET	2			t _{cyc}		6
STOPC low leve width	It _{stpl}	STOPC	1			t _{RC}		7
RESET rise time	t _{RSTr}	RESET			20	ms		6
STOPC rise time	t _{STPr}	STOPC	_		20	ms		7
Input capacitance	C _{in}	All I/O pins other than TEST, R1 and R2	_	_	15	pF	f = 1 MHz, $V_{in} = 0 \text{ V}$	
		TEST			15	_	f = 1 MHz,	8
			_	_	180	_	$V_{in} = 0 V$	9
		R1, R2	_	_	30		$f = 1 \text{ MHz},$ $V_{in} = 0 \text{ V}$	

Notes: 1. When a sub-system oscillator (a 32.768 kHz crystal oscillator) is used, f_{osc} must either be in the range 0.4 MHz $\leq f_{osc} \leq$ 1.0 MHz or be in the range 1.6 MHz $\leq f_{osc} \leq$ 5.0 MHz. Furthermore, the SSR11 bit in the system clock selection register 1 (SSR1: \$027) must be set to indicate which of those ranges f_{osc} falls in.

- 2. When a sub-system oscillator (a 32.768 kHz crystal oscillator) is used, f_{osc} must either be in the range 0.4 MHz $\leq f_{osc} \leq$ 1.0 MHz or be in the range 1.6 MHz $\leq f_{osc} \leq$ 8.5 MHz. Furthermore, the SSR11 bit in the system clock selection register 1 (SSR1: \$027) must be set to indicate which of those ranges f_{osc} falls in.
- 3. There are three cases where the oscillator stabilization period applies:
 - When power is first applied, the time between the point when V_{cc} reaches 2.7 V and the point the oscillator is stable.
 - When stop mode is cleared, the time between the point when the RESET input reaches the low level and the point the oscillator is stable.
 - When stop mode is cleared, the time between the point when the STOPC input reaches the low level and the point the oscillator is stable.

To assure the time necessary to achieve stable oscillation at power on and when clearing stop mode, apply a low level to the RESET or STOPC input for at least tRC. Since the oscillator stabilization period varies with the details of the mounted circuit, stray capacitances, and other factors, this value should be determined based on thorough consultations with the manufacturer of the ceramic oscillator used.

- 4. See figure 25-31.
- 5. See figure 25-32.
- 6. See figure 25-33.
- 7. See figure 25-34.
- 8. Applies to the HD40A4364, HD40A4368, HD40A43612, and HD40A4369.
- 9. Applies to the HD407A4369.

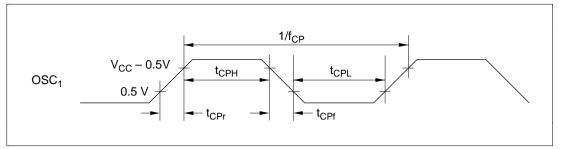


Figure 25-31 External Clock Timing (HD404369 Series)

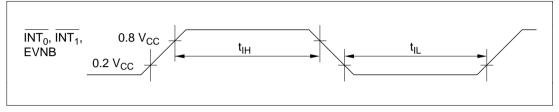


Figure 25-32 Interrupt Timing (HD404369 Series)

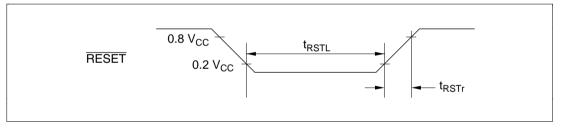


Figure 25-33 Reset Timing (HD404369 Series)

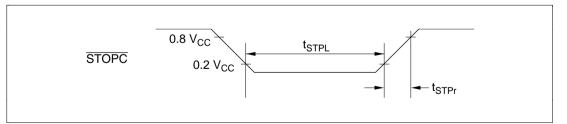


Figure 25-34 STOPC Timing (HD404369 Series)

Table 25-40 Serial Interface Timing Characteristics (HD404369 Series)

HD404364, HD404368, HD4043612, HD404369, HD40A4364, HD40A4368, HD40A43612, HD40A4369: $V_{CC} = 2.7 \text{ to } 6.0 \text{ V}, \text{GND} = 0 \text{ V}, \text{ } \text{T}_a = -20 \text{ to } 75^{\circ}\text{C}$ HD407A4369: $V_{CC} = 2.7 \text{ to } 5.5 \text{ V}, \text{GND} = 0 \text{ V}, \text{ } \text{T}_a = -20 \text{ to } 75^{\circ}\text{C}$, unless specified otherwise.

When the Transfer Clock is Output:

	Applicable	F	Rated V	alue		Test		
Item	Symbol	Pins	Min	Тур	Max	Unit	Conditions	Notes
Transfer clock cycle time	t _{Scyc}	SCK	1	—	—	t _{cyc}	With the load shown in figure 25-36	1
Transfer clock high level width	t _{scкн}	SCK	0.4			t _{Scyc}	With the load shown in figure 25-36	1
Transfer clock low level width	t _{SCKL}	SCK	0.4			t _{Scyc}	With the load shown in figure 25-36	1
Transfer clock rise time	t _{SCKr}	SCK	—	—	80	ns	With the load shown in figure 25-36	1
Transfer clock fall time	t _{SCKf}	SCK			80	ns	With the load shown in figure 25-36	1
Serial output data delay time	t _{DSO}	SO		_	300	ns	With the load shown in figure 25-36	1
Serial input data setup time	t _{ssi}	SI	100	_	_	ns		1
Serial input data hold time	t _{HSI}	SI	200		—	ns		1

Note: See figure 25-35.

Table 25-40 Serial Interface Timing Characteristics (HD404369 Series) (cont)

HD404364, HD404368, HD4043612, HD404369, HD40A4364, HD40A4368, HD40A43612, HD40A4369: $V_{CC} = 2.7 \text{ to } 6.0 \text{ V}, \text{GND} = 0 \text{ V}, \text{ } \text{T}_{a} = -20 \text{ to } 75^{\circ}\text{C}$ HD407A4369: $V_{CC} = 2.7 \text{ to } 5.5 \text{ V}, \text{GND} = 0 \text{ V}, \text{ } \text{ } \text{T}_{a} = -20 \text{ to } 75^{\circ}\text{C}$, unless specified otherwise.

When the Transfer Clock is Input:

	Applicable	F	Rated V	alue		Test			
Item	Symbol	Pins	Min	Тур	Max	Unit	Conditions	Notes	
Transfer clock cycle time	t _{Scyc}	SCK	1	_	_	t _{cyc}		1	
Transfer clock high level width	t _{scкн}	SCK	0.4	_	_	t _{Scyc}		1	
Transfer clock low level width	t _{sckl}	SCK	0.4	_	_	t _{Scyc}		1	
Transfer clock rise time	et _{sckr}	SCK	—	—	80	ns		1	
Transfer clock fall time	t _{sckf}	SCK	_	_	80	ns		1	
Serial output data delay time	t _{DSO}	SO	_	—	300	ns	With the load shown in figure 25-36	1	
Serial input data setup time	t _{ssi}	SI	100			ns		1	
Serial input data hold time	t _{HSI}	SI	200			ns		1	

Note: See figure 25-35.

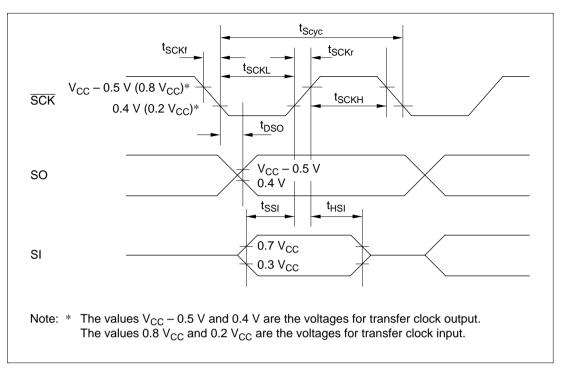


Figure 25-35 Serial Interface Timing (HD404369 Series)

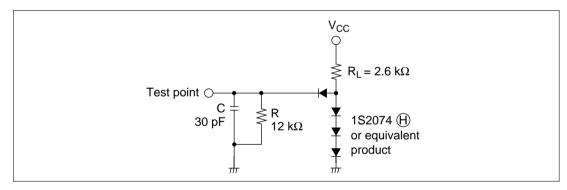


Figure 25-36 Timing Load Circuit

(3) A/D Converter Characteristics

Table 25-41 lists the characteristics of the HD404369 Series A/D converter.

Table 25-41 A/D Converter Characteristics (HD404369 Series)

HD404364, HD404368, HD4043612, HD404369, HD40A4364, HD40A4368, HD40A43612, HD40A4369: $V_{CC} = 2.7$ to 6.0 V, GND = 0 V, $T_a = -20$ to 75°C HD407A4369: $V_{CC} = 2.7$ to 5.5 V, GND = 0 V, $T_a = -20$ to 75°C, unless specified otherwise.

		Applicable	R	ated V	alue		Test	
Item	Symbol		Min	Тур	Max	Unit	Conditions	Notes
Analog supply voltage	AV_{cc}	AV_{cc}	$V_{cc} - 0.3$	V_{cc}	V _{cc} + 0.3	V		1
Analog input voltage	AV _{in}	AN ₀ to AN ₁₁	AV _{ss}		AV _{cc}	V		
Current from AV_{cc} to AV_{ss}	I _{AD}	ï		_	200	μA	$V_{cc} = AV_{cc} =$ 5.0 V	
Analog input capacitance	CA _{in}	AN ₀ to AN ₁₁		_	30	pF		
Resolution			8	8	8	Bits		
Number of inputs		ï	0		12	Channels	;	
Absolute precision		ï			±2.0	LSB		
Conversion time			34		67	t _{cyc}		
Input impedance		AN_0 to AN_{11}	1			MΩ		

Note: Connect to the V_{cc} pin if the A/D converter is not used in the application.

Appendix A Instruction Set

A.1 Instruction Set Overview

The HMCS400 CPU supports 101 instructions, which can be classified into the following ten classes.

- Immediate instructions
- Register to register instructions
- RAM addressing instructions
- RAM to register instructions
- Arithmetic and logic instructions
- Comparison instructions
- RAM bit manipulation instructions
- ROM addressing instructions
- I/O instructions
- Control instructions

Tables A-1 (1) to A-1 (10) describe the functions of these instructions. The table below describes the operation symbols used in the instruction descriptions.

Operation Symbols

$A\toB$	Move A to B
$A \leftrightarrow B$	Exchange A and B
X	Logical negation (not) symbol
1	High level
0	Low level
LSB	Low order bit
MSB	High order bit
NZ	A value other than 0 (not zero)
NB	No borrow occurred due to the operation
OVF	Overflow due to an addition
\cap	Logical and symbol
U	Logical or symbol
\oplus	Logical exclusive or
<i>≠</i>	Inequality (not equal)
≤	Comparison symbol (less than or equal)
i, m, p	Expresses a single digit hexadecimal value (\$0 to \$F).
d	Expresses a three digit hexadecimal value (\$000 to \$3FF).
n	Expresses a two bit binary number.
а	Expresses a six bit binary number.
b	Expresses an eight bit binary number.
u	Means p and d.
у, х	Expresses either 0 or 1.

Table A-1 (1) Immediate Instructions

Operation	Mnemonic	; Op	pera	itio	n C	ode	•					Function	Status	Words/ Cycles
Load A from immediate	LAI i	1	0	0	0	1	1	i ₃	i_2	i,	i _o	$i \to A$		1/1
Load B from immediate	LBI i	1	0	0	0	0	0	i ₃	i ₂	i,	i _o	$i \rightarrow B$		1/1
Load memory from immediate	LMID i, d				0 d ₆				-		•	$i \rightarrow M$		2/2
Load memory from immediate, increment Y	LMIIY i	1	0	1	0	0	1	i3	i2	i1	i0	$i \rightarrow M,$ Y + 1 $\rightarrow Y$	NZ	1/1

Table A-1 (2) Register to Register Instructions

Operation	Mnemonio	: Oj	oera	atio	n C	ode	e					Function	Status	Words/ Cycles
Load A from B	LAB	0	0	0	1	0	0	1	0	0	0	$B\toA$		1/1
Load B from A	LBA	0	0	1	1	0	0	1	0	0	0	$A \rightarrow B$		1/1
Load A from W	LAW	0 0	1 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	$W \rightarrow A$		2/2*
Load A from Y	LAY	0	0	1	0	1	0	1	1	1	1	$Y\toA$		1/1
Load A from SPX	LASPX	0	0	0	1	1	0	1	0	0	0	$SPX\toA$		1/1
Load A from SPY	LASPY	0	0	0	1	0	1	1	0	0	0	$SPY\toA$		1/1
Load A from MR	LAMR m	1	0	0	1	1	1	m	3 m ₂	m ₁	m _o	MR (m) \rightarrow A	A.	1/1
Exchange MR and A	XMRA m	1	0	1	1	1	1	m	3 m ₂	m ₁	m _o	$MR\;(m)\leftrightarrowA$	Ą	1/1

Note: * The LAW and LWA instructions require an operand (\$000) in the second word. However, there is no need to explicitly code this word since the assembler will provide it automatically.

Operation	Mnemonic	O	per	atio	on (Coc	le					Function Status	Words/ Cycles
Load W from immediate	LWI i	0	0	1	1	1	1	0	0	i1	i0	$i \to W$	1/1
Load X from immediate	LXI i	1	0	0	0	1	0	i3	i2	i1	i0	$i \rightarrow X$	1/1
Load Y from immediate	LYI i	1	0	0	0	0	1	i3	i2	i1	i0	$i \rightarrow Y$	1/1
Load W from A	LWA	0 0	1 0	0 0	0 0	0 0	1 0	0 0	0 0	0 0	0 0	$A\toW$	2/2*
Load X from A	LXA	0	0	1	1	1	0	1	0	0	0	$A\toX$	1/1
Load Y from A	LYA	0	0	1	1	0	1	1	0	0	0	$A\toY$	1/1
Increment Y	IY	0	0	0	1	0	1	1	1	0	0	$Y + 1 \rightarrow Y NZ$	1/1
Decrement Y	DY	0	0	1	1	0	1	1	1	1	1	$Y-1 \to Y \ NB$	1/1
Add A to Y	AYY	0	0	0	1	0	1	0	1	0	0	$Y + A \to Y \ OVF$	1/1
Subtract A from Y	SYY	0	0	1	1	0	1	0	1	0	0	$Y-A\toY~NB$	1/1
Exchange X and SPX	XSPX	0	0	0	0	0	0	0	0	0	1	$X \leftrightarrow SPX$	1/1
Exchange Y and SPY	XSPY	0	0	0	0	0	0	0	0	1	0	$Y \leftrightarrow SPY$	1/1
Exchange X and SPX, Y and SPY	XSPXY	0	0	0	0	0	0	0	0	1	1	$\begin{array}{l} X \leftrightarrow SPX, \\ Y \leftrightarrow SPY \end{array}$	1/1

Table A-1 (3) RAM Addressing Instructions

Note: * The LAW and LWA instructions require an operand (\$000) in the second word. However, there is no need to explicitly code this word since the assembler will provide it automatically.

Table A-1 (4) RAM to Register Instructions

Operation	Mnemonic	Op	oera	itio	n Co	ode	1					Function	Status	Words/ Cycles
Load A from memory	LAM(XY)	0	0	1	0	0	1	0	0	у	х	$\begin{array}{l} M \to A \ (X \ \oplus \\ SPX, \ Y \ \oplus \ SPY) \end{array}$		1/1
Load A from memory	LAMD d	0 d ₉	1 d ₈	1 d ₇	0 d ₆	0 d ₅	1 d ₄	0 d ₃	0 d ₂	Ũ	-	$M\toA$		2/2
Load B from memory	LBM(XY)	0	0	0	1	0	0	0	0	у	х	$\begin{array}{c} M \to B \ (X \ \oplus \\ SPX, \ Y \ \oplus \ SPY) \end{array}$		1/1
Load memory from A	LMA(XY)	0	0	1	0	0	1	0	1	у	х	$\begin{array}{c} A \to M \ (X \oplus \\ SPX, Y \oplus SPY) \end{array}$		1/1
Load memory from A	LMAD d	0 d ₉	1 d ₈	1 d ₇	0 d ₆	0 d ₅	1 d ₄	0 d ₃	1 d ₂	0 d ₁	Ŭ	$A\toM$		2/2
Load memory from A, increment Y	LMAIY(X)	0	0	0	1	0	1	0	0	0	х	$\begin{array}{l} A \rightarrow M \\ Y + 1 \rightarrow Y \\ (X \oplus SPX) \end{array}$	NZ	1/1
Load memory from A, decrement Y	LMADY(X)	0	0	1	1	0	1	0	0	0	х	$\begin{array}{ll} A \rightarrow M & \\ Y - 1 \rightarrow Y \\ (X \oplus SPX) \end{array}$	NB	1/1
Exchange memory and A	XMA(XY)	0	0	1	0	0	0	0	0	у	х	$\begin{array}{c} M \to A \ (X \ \oplus \\ SPX, \ Y \ \oplus \ SPY) \end{array}$		1/1
Exchange memory and A	XMAD d	0 d9	1 d8	1 d7	0 d6	0 d5	0 d4	0 d3	0 d2	0 d1	0 d0	$M \oplus A$		2/2
Exchange memory and B	~ /	0		1	1	0		0		У		M ⊕ B (X ⊕ SPX, Y ⊕ SPY)		1/1

Note: The terms (XY) and (X) in the mnemonics are interpreted as follows.

• Mnemonics with (XY) represent four mnemonics. The table below uses LAM(XY) as an example. The assembler generates the bits y and x shown in the table below for these instructions.

Mnemonic	У	x	Function
LAM	0	0	
LAMX	0	1	$X \leftrightarrow SPX$
LAMY	1	0	$Y \leftrightarrow SPY$
LAMXY	1	1	$X \leftrightarrow SPX, Y \leftrightarrow SPY$

• Mnemonics with (X) represent two mnemonics. The table below uses LMAIY(X) as an example. The assembler generates the bit x shown in the table below for these instructions.

Mnemonic	x	Function
LMAIY	0	
LMAIYX	1	$X \leftrightarrow SPX$

Operation	Mnemonic	Op	bera	atic	on (Cod	le					Function	Status	Words/ Cycles
Add immediate to A	ALI	1	0	1	0	0	0	i ₃	i ₂	i,	i _o	$A + i \rightarrow A$	OVF	1/1
Increment B	IB	0	0	0	1	0	0	1	1	0	0	$B + 1 \rightarrow B$	NZ	1/1
Decrement B	DB	0	0	1	1	0	0	1	1	1	1	$B - 1 \rightarrow B$	NB	1/1
Decimal adjust for addition	DAA	0	0	1	0	1	0	0	1	1	0			1/1
Decimal adjust for subtraction	DAS	0	0	1	0	1	0	1	0	1	0			1/1
Negate A	NEGA	0	0	0	1	1	0	0	0	0	0	$\overline{A} + 1 \rightarrow A$		1/1
Complement B	COMB	0	1	0	1	0	0	0	0	0	0	$\overline{B} \to B$		1/1
Rotate right A with carry	ROTR	0	0	1	0	1	0	0	0	0	0			1/1
Rotate left A with carry	ROTL	0	0	1	0	1	0	0	0	0	1			1/1
Set carry	SEC	0	0	1	1	1	0	1	1	1	1	$1 \rightarrow CA$		1/1
Reset carry	REC	0	0	1	1	1	0	1	1	0	0	$0 \to CA$		1/1
Test carry	тс	0	0	0	1	1	0	1	1	1	1		CA	1/1
Add A to memory	AM	0	0	0	0	0	0	1	0	0	0	$M + A \to A$	OVF	1/1
Add A to memory	AMD d	0 d ₉	1 d ₈	0 d ₇	0 d ₆	0 d ₅	0 d ₄	1 d ₃	0 d ₂	0 d ₁	0 d ₀	$M + A \to A$	OVF	2/2
Add A to memory with carry	AMC	0		0		0	1	1			0	$\begin{array}{c} M + A + \\ CA \to A \\ OVF \to CA \end{array}$	OVF	1/1
Add A to memory with carry	AMCD d	0 d ₉	1 d ₈	0 d ₇	-	0 d ₅	1 d ₄	1 d ₃	0 d ₂	0 d ₁	0 d ₀	$\begin{array}{l} M + A + \\ CA \to A \\ OVF \to CA \end{array}$	OVF	2/2
Subtract A from memory with carry	SMC	0	0	1	0	0	1	1	0	0	0	$\begin{array}{l} M-A-\\ \overline{CA} \rightarrow A\\ NB \rightarrow CA \end{array}$	NB	1/1
Subtract A from memory with carry	SMCD d	0 d ₉	1 d ₈	1 d ₇	0 d ₆	0 d₅	1 d ₄	1 d ₃	0 d ₂	0 d ₁	0 d ₀	$\begin{array}{l} M-A-\\ \overline{CA} \rightarrow A\\ NB \rightarrow CA \end{array}$	NB	2/2
OR A and B	OR	0	1	0	1	0	0	0	1	0	0	$A \cup B \to A$		1/1
AND memory with A	ANM	0	0	1	0	0	1	1	1	0	0	$A \cap M \mathop{\rightarrow} A$	NZ	1/1
AND memory with A	ANMD d	0 d ₉	1 d ₈	1 d ₇	0 d ₆	0 d ₅	1 d ₄	1 d ₃	1 d ₂	0 d ₁	0 d ₀	$A \cap M \to A$	NZ	2/2
OR memory with A	ORM	0	0	0	0	0		1	1			$A \cup M \to A$	NZ	1/1
OR memory with A	ORMD d	0 d ₉	1 d ₈	0 d ₇	0 d ₆	0 d ₅	0 d ₄	1 d ₃	1 d ₂	0 d ₁		$A \cup M \to A$	NZ	2/2
EOR memory with A	EORM	0	0	0	0	0	1	1	1	0	0	$A \oplus M \to A$	NZ	1/1
EOR memory with A	EORMD d	0 d ₉	1 d ₈	0 d ₇	0 d ₆	0 d ₅	1 d ₄	1 d ₃	1 d ₂	0 d ₁	0 d ₀	$A \oplus M \to A$	NZ	2/2

Table A-1 (5) Arithmetic and Logic Instructions

Operation	Mnemonic	Op	pera	atic	on C	od	е					Function	Status	Words/ Cycles
Immediate not equal to memory	INEM i	0	0	0	0	1	0	i3	i2	i1	i0	i≠M	NZ	1/1
Immediate not equal to memory	INEMD i, d		1 d ₈		0 d ₆			0	-		•	i≠M	NZ	2/2
A not equal to memory	ANEM	0	0	0	0	0	0	0	1	0	0	A ≠ M	NZ	1/1
A not equal to memory	ANEMD d	0 d ₉	1 d ₈	0 d ₇	0 d ₆	0 d ₅	0 d ₄	0 d ₃	1 d ₂	0 d ₁	0 d ₀	A ≠ M	NZ	2/2
B not equal to memory	BNEM	0	0	0	1	0	0	0	1	0	0	B≠M	NZ	1/1
Y not equal to immediate	YNEI i	0	0	0	1	1	1	i ₃	i ₂	i ₁	i _o	Y≠i	NZ	1/1
Immediate less than or equal to memory	ILEM i	0	0	0	0	1	1	i ₃	i ₂	i,	i _o	i≤M	NB	1/1
Immediate less than or equal to memory	ILEMD i, d	0 d ₉	1 d ₈	0 d ₇	0 d ₆	1 d ₅						i≤M	NB	2/2
A less than or equal to memory	ALEM	0	0	0	0	0	1	0	1	0	0	A≤M	NB	1/1
A less than or equal to memory	ALEMD d	0 d ₉	1 d ₈	0 d ₇	0 d ₆	0 d ₅	1 d ₄	0 d ₃	1 d ₂	0 d ₁	v	A≤M	NB	2/2
B less than or equal to memory	BLEM	0	0	1	1	0	0	0	1	0	0	B≤M	NB	1/1
A less than or equal to immediate	ALEI i	1	0	1	0	1	1	i ₃	i ₂	i ₁	i _o	A≤i	NB	1/1

Table A-1 (6) Comparison Instructions

Table A-1 (7) RAM Bit Manipulation Instructions

Operation	Mnemonic	Op	bera	atic	on C	Cod	le					Function	Status	Words/ Cycles
Set memory bit	SEM n	0	0	1	0	0	0	0	1	n ₁	n _o	$1 \rightarrow M$ (n)		1/1
Set memory bit	SEMD n, d					0 d ₅					•	$1 \rightarrow M (n)$		2/2
Reset memory bit	REM n	0	0	1	0	0	0	1	0	n ₁	n _o	$0 \rightarrow M$ (n)		1/1
Reset memory bit	REMD n, d					0 d ₅						$0 \rightarrow M$ (n)		2/2
Test memory bit	TM n	0	0	1	0	0	0	1	1	n ₁	n _o		M (n)	1/1
Test memory bit	TMD n, d					0 d ₅					0		M (n)	2/2

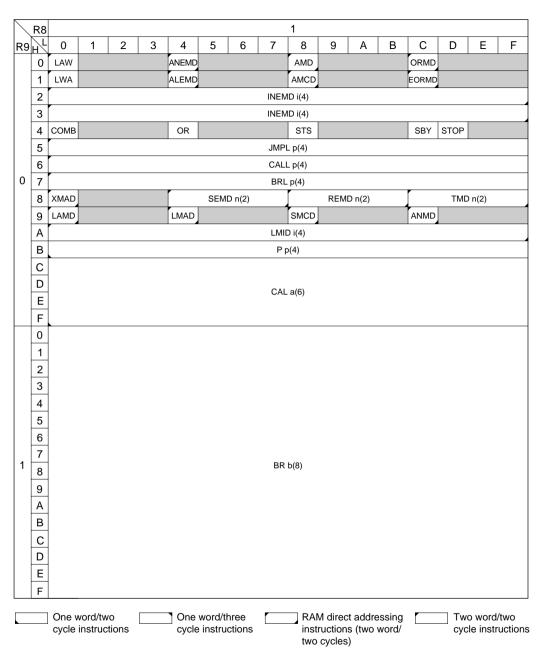
Table A-1 (8) ROM Addressing Instructions

Operation	Mnemonic	Op	oera	tior	n Co	ode						Function	Status	Words/ Cycles
Branch on status 1	BR b	1	1	b ₇	b_6	b_5	b_4	b_3	b_2	b_1	b_0		1	1/1
Long branch on status 1	BRL u	0 d ₉	1 d ₈	0 d ₇	1 d ₆	1 d ₅	1 d ₄	-	_	p ₁ d ₁	-		1	2/2
Long jump unconditionally	JMPL u	0 d ₉	1 d ₈	0 d ₇	1 d ₆	0 d ₅	1 d ₄			p ₁ d ₁				2/2
Subroutine jump on status 1	CAL a	0	1	1	1	a_5	a_4	a ₃	a ₂	a ₁	a ₀		1	1/2
Long subroutine jump on status 1	CALL u	0 d ₉	1 d ₈	0 d ₇	1 d ₆	1 d ₅	0 d ₄			$p_1 \\ d_1$			1	2/2
Table branch	TBR p	0	0	1	0	1	1	p ₃	р ₂	p ₁	p ₀			1/1
Return from subroutine	RTN	0	0	0	0	0	1	0	0	0	0		1	1/3
Return from interrupt	RTNI	0	0	0	0	0	1	0	0	0	1	$1 \rightarrow IE,$ CA restored	ST	1/3

Table A-1 (9) I/O Instructions

Operation	Mnemonic	Op	bera	atio	n Co	ode		Function	Status	Words/ Cycles
Set discrete I/O latch	SED	0	0	1	1	1	0	$0 1 0 0 1 \rightarrow D (Y)$		1/1
Set discrete I/O latch direct	SEDD m	1	0	1	1	1	0	$m_3 m_2 m_1 m_0 1 \rightarrow D (m)$		1/1
Reset discrete I/O latch	RED	0	0	0	1	1	0	$0 1 0 0 0 \rightarrow D(Y)$		1/1
Reset discrete I/O latch direct	REDD m	1	0	0	1	1	0	$m_3 m_2 m_1 m_0 0 \rightarrow D (m)$		1/1
Test discrete I/O latch	TD	0	0	1	1	1	0	0 0 0 0	D (Y)	1/1
Test discrete I/O latch direct	TDD m	1	0	1	0	1	0	$m_{3} m_{2} m_{1} m_{0}$	D (m)	1/1
Load A from R-port register	LAR m	1	0	0	1	0	1	$m_3 m_2 m_1 m_0 R (m) \rightarrow A$		1/1
Load B from R-port register	LBR m	1	0	0	1	0	0	$m_3 m_2 m_1 m_0 R (m) \rightarrow B$		1/1
Load R-port register from A	LRA m	1	0	1	1	0	1	$m_3 m_2 m_1 m_0 A \rightarrow R (m)$		1/1
Load R-port register from B	LRB m	1	0	1	1	0	0	$m_3 m_2 m_1 m_0 B \rightarrow R (m)$		1/1
Pattern generation	Рр	0	1	1	0	1	1	$p_{3} p_{2} p_{1} p_{0}$		1/2

Table A-1 (10) Control Instructions


Operation	Mnemonic	O	pera	atio	n C	ode						Function	Status	Words/ Cycles
No operation	NOP	0	0	0	0	0	0	0	0	0	0			1/1
Start serial	STS	0	1	0	1	0	0	1	0	0	0			1/1
Standby mode/watch mode*	SBY	0	1	0	1	0	0	1	1	0	0			1/1
Stop mode/watch mode	STOP	0	1	0	1	0	0	1	1	0	1			1/1

Note: * Only on the transition from subactive mode.

A.2 Operation Code Map

Table A-2 Opcode Map

\square	R8									0							
R9	L H	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
	0	NOP	XSPX	XSPY	XSPXY	ANEM				AM				ORM			
	1	RTN	RTNI			ALEM				AMC				EORM			
	2								INE	VI i(4)							
	3								INE	VI i(4)							
	4		LBM	(XY)		BNEM				LAB				IB			
	5	LMA	IY(X)			AYY				LASPY				IY			
	6	NEGA				RED				LASPX							тс
0	7								YNE	I i(4)							
	8		LMA	(XY)			SEM	n(2)			REM	1 n(2)			TM	n(2)	
	9		LAM	(XY)			LMA			SMC		1	1	ANM			1
	Α	ROTR	ROTL					DAA				DAS					LAY
	В								TBR	t p(4)							
	С		XMB	(XY)		BLEM				LBA							DB
	D		DY(X)			SYY				LYA							DY
	E	TD				SED				LXA				REC			SEC
	F		LWI i(2)														
	0									i(4)							
	2									i(4) i(4)							
	2									i(4)							
	4									m(4)							
	5									m(4)							
	6									D m(4)							
	7									R m(4)							
1	8								AI	i(4)							
	9								LMP	Y i(4)							
	А								TDD	m(4)							
	В								ALE	il i(4)							
	С								LRB	m(4)							
	D								LRA	m(4)							
	Е	E SEDD m(4)															
	F XMRA m(4)																
			word/tw instruc				word/tl e instru			inst		et addre s (two)				o word/ le instr	'two uctions

Table A-2 Opcode Map (cont)

Appendix B Registers and Flags

B.1 I/O Registers (1)

No indication: Registers and bits common to all products in the HMCS43XX family.

 \triangle : Registers and bits supported by the HD404318, HD404358, and HD404358R Series.

▲: Registers and bits supported by the HD404339 and HD404369 Series.

: Registers and bits that are unused in all products in the HMCS43xx family.

RAM					Bit		
Address	Register	Symbol	Bit 3	Bit 2	Bit 1	Bit 0	Module/Function
\$000	Interrupt control bit area		IM0	IF0	RSP	IE	Interrupt control
\$001	_		IMTA△▲	IFTA△▲	IM1 [△] ▲	IF1 [△] ▲	
\$002	_		IMTC	IFTC	IMTB	IFTB	
\$003	_		IMS	IFS	IMAD	IFAD	
\$004	Port mode register A	PMRA	PMRA3 [△] ▲	PMRA2	PMRA1	PMRA0	D_3 and R_0 port pin function switching
\$005	Serial mode register	SMR	SMR3	SMR2	SMR1	SMR0	Serial interface
\$006	Serial data register L	SRL	SR3	SR2	SR1	SR0	
\$007	Serial data register U	SRU	SR7	SR6	SR5	SR4	
\$008	Timer mode register A	TMA△▲	TMA3▲	TMA2 [△] ▲	TMA1 [△] ▲	TMA0 [△] ▲	Timer A
\$009	Timer mode register B1	TMB1	TMB13	TMB12	TMB11	TMB10	Timer B
\$00A	Timer read register BL/	TRBL	TRBL3	TRBL2	TRBL1	TRBL0	
	Timer write register BL	TWBL	TWBL3	TWBL2	TWBL1	TWBL0	
\$00B	Timer read register BU/	TRBU	TRBU3	TRBU2	TRBU1	TRBU0	
	Timer write register BU	TWBU	TWBU3	TWBU2	TWBU1	TWBU0	
\$00C	Miscellaneous register	MIS	MIS3	MIS2	MIS1 [▲]	MIS0▲	System control and other functions
\$00D	Timer mode register C	тмс	TMC3	TMC2	TMC1	TMC0	Timer C
\$00E	Timer read register CL/	TRCL	TRCL3	TRCL2	TRCL1	TRCL0	
	Timer write register CL	TWCL	TWCL3	TWCL2	TWCL1	TWCL0	
\$00F	Timer read register CU/	TRCU	TRCU3	TRCU2	TRCU1	TRCU0	
	Timer write register CU	TWCU	TWCU3	TWCU2	TWCU1	TWCU0	
\$010 to \$015	_	_					-
\$016	A/D channel register	ACR	ACR3*1	ACR2*1	ACR1*1	ACR0*1	A/D converter
\$017	A/D data register L	ADRL	ADRL3	ADRL2	ADRL1	ADRL0	
\$018	A/D data register U	ADRU	ADRU3	ADRU2	ADRU1	ADRU0	
\$019	A/D mode register 1	AMR1	AMR13	AMR12	AMR11	AMR10* ²	
\$01A	A/D mode register 2	AMR2		AMR22 $^{\triangle}$	AMR21 [△] ▲	AMR20	

Notes: 1. Specification of a channel number not supported by the particular product is illegal.

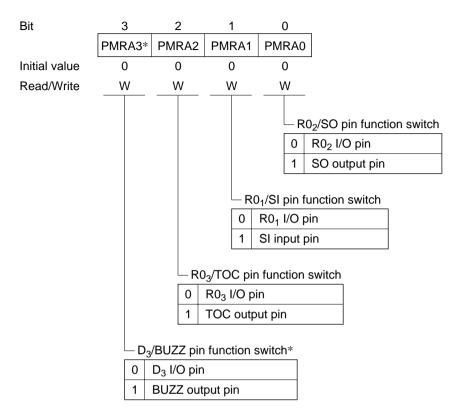
2. AMR10 is unused only in the HD404394 Series.

B.1 I/O Registers (1) (cont)

No indication: Registers and bits common to all products in the HMCS43XX family.

 \bigtriangleup : Registers and bits supported by the HD404318, HD404358, and HD404358R Series.

▲: Registers and bits supported by the HD404339 and HD404369 Series.


: Registers and bits that are unused in all products in the HMCS43xx family.

RAM					Bit		
Address	Register	Symbol	Bit 3	Bit 2	Bit 1	Bit 0	Module/Function
\$01B to \$01F	_	—					-
\$020	Register flag area		DTON▲	ADSF	WDON	LSON▲	Flags used by
\$021			RAME	IAOF	ICEF△▲	ICSF△▲	peripheral modules
\$022	_						and other functions
\$023	_						
\$024	Port mode register B	PMRB	PMRB3	PMRB2 [△] ▲	PMRB1 ^{△▲}	PMRB0	D port pin function switching
\$025	Port mode register C	PMRC	PMRC3 [△] ▲	PMRC2 [△] ▲	PMRC1	PMRC0	Serial interface
\$026	Timer mode register B2	TMB2		TMB22 [△] ▲	TMB21	TMB20	Timer B
\$027	System clock selection register 1	SSR1▲	SSR13▲	SSR12▲	SSR11▲		Clock oscillator
\$028	System clock selection register 2	SSR2▲			SSR21▲	SSR20▲	_
\$029 to \$02B							_
\$02C to \$039	Data control register	DCD0 to DCD3, DCR0 to DCR9		ilid bits differs 12, "I/O Ports	between produ ", for details.	icts. See	Port I/O control
\$03A to \$03F		—					-

B.2 I/O Registers (2)

\$004—Port Mode Register A

PMRA

Note: * Applies to the HD404318, HD404358, HD404358R, HD404339, and HD404369 Series. The PMRA3 bit is unused in the HD404344R and HD404394 Series.

\$005—Serial Mode Register

SMR

Bit	3	2	1	0
	SMR3	SMR2	SMR1	SMR0
Initial value	0	0	0	0
Read/Write	W	W	W	W

Transfer clock selection

SMR2	SMR1	SMR0	SCK pin	Clock source	Prescaler divisor*
	0	0	Output	PSS	ø _{PER} /2048
0	Ū	1	Output	PSS	ø _{PER} /512
	1	0	Output	PSS	ø _{PER} /128
	•	1	Output	PSS	ø _{PER} /32
	0	0	Output	PSS	ø _{PER} /8
1	Ū	1	Output	PSS	ø _{PER} /2
'	1	0	Output	System clock	Ø _{PER}
	•	1	Input	External clock	

- R0₀/ $\overline{\text{SCK}}$ pin function switch

0	R0 ₀ I/O pin
1	SCK I/O pin

Note: * The transfer clock divisor is determined by the combination of the prescaler divisor specified by the SMR2 to SMR0 bits and the prescaler output divisor (2 or 4) specified by the PMRC PMRC0 bit.

\$006—Serial Data Register L \$007—Serial Data Register U				SRL SRU			Serial interface	
Bit	7	6 SF	5 RU	4	3	2 SI	1 ₹L	0
	SR7	SR6	SR5	SR4	SR3	SR2	SR1	SR0
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

HD404318/HD404358/HD404358R Series

Bit	3	2	1		0	
	—	TMA2	ТМА	1 Т	MA0	
Initial value	_	0	0		0	
Read/Write		W	W		W	
	Unused		Timer /	A clock	selecti	ion
			TMA2	TMA1	TMA0	Input clock period
				0	0	2048 t _{cyc}
			0	0	1	1024 t _{cyc}
			0	1	0	512 t _{cyc}
				I	1	128 t _{cyc}
				0	0	32 t _{cyc}
			1	0	1	8 t _{cyc}
				1	0	4 t _{cyc}
				I	1	2 t _{cyc}

Note: $t_{cyc} = f_{OSC}/4$

TMA

HD404339/HD404369 Series

Bit	3	2	1	0
	TMA3	TMA2	TMA1	TMA0
Initial value	0	0	0	0
Read/Write	W	W	W	W

Timer A clock selection -

TMA3	TMA2	TMA1	TMA0	Prescaler	Input clock period	Mode	
		0	0	PSS	2048 t _{cyc} *1		
	0	0	1	PSS	1024 t _{cyc}		
	0	1	0	PSS	512 t _{cyc}		
		I	1	PSS	128 t _{cyc}	Free-running	
0		0	0	PSS	32 t _{cyc}	timer mode	
	1		0	1	PSS	8 t _{cyc}	
		1	0	PSS	4 t _{cyc}		
			1	PSS	2 t _{cyc}		
		0	0	PSW	32 t _{wcyc} *2		
	_		1	PSW	16 t _{wcyc}		
	0	1	0	PSW	8 t _{wcyc}		
1			1	PSW	2 t _{wcyc}	Clock time	
		0	0	_	1/2 t _{wcyc}	base mode	
	1		1	_	Unused		
		1	*	—	PSW and TCA clear		

Notes: 1. $t_{cyc} = f_{OSC}/4$, $f_{OSC}/8$, $f_{OSC}/16$ or $f_{OSC}/32$ 2. $t_{Wcyc} = f_X/8$

* Don't care

Bit	3	2	1	0
	TMB13	TMB12	TMB11	TMB10
Initial value	0	0	0	0
Read/Write	W	W	W	W

Timer B clock selection								
TMB12	TMB11	TMB10	Input clock source					
0		0	2048 t _{cyc}					
0	0	1	512 t _{cyc}					
	1	0	128 t _{cyc}					
	1	32 t _{cyc}						
	0	0	8 t _{cyc}					
0	0	1	4 t _{cyc}					
	1	0	2 t _{cyc}					
	Ι	1	EVNB (external event input pin)					
Note: Set port mode register B as shown below when either $t_{cyc} = f_{OSC}/4$ or external event input is used as the timer B clock.								

HD404344R/HD404394 Series: Set the PMRB0 bit to 1. HD404318/HD404358/HD404358R/HD404339/HD404369 Series: Set the PMRB2 bit to 1.

- Timer B function selection

0 Free-running timer

1 Reload timer

\$00A-Timer Read Register BI \$00B-

TRRI

Timer B

\$00A—Timer Read Register BL \$00B—Timer Read Register BU				Timer B			
				TRBU			
		Bit	3	2	1	0	
Т	RBU		TRBU3	TRBU2	TRBU1	TRBU0	
		Initial value	Undefined	Undefined	Undefined	Undefined	
		Read/Write	R	R	R	R	
		Bit	3	2	1	0	
Т	RBL		TRBL3	TRBL2	TRBL1	TRBL0	
		Initial value	Undefined	Undefined	Undefined	Undefined	
		Read/Write	R	R	R	R	
\$004 Timer W	Vrita Ragis	tor BI		TWBL			Timer B
\$00A—Timer Write Register BL \$00B—Timer Write Register BU				Third D			
SUUB-Timer W	vrite Regis	ter BU		TWBU			
\$00B—11mer w	vrite Regis	ter BU		TWBU			
SUUB—11mer vi	vrite Kegis	Bit	3	Т ₩В Ŭ 2	1	0	
	WBU		3 TWBU3		1 TWBU1	0 TWBU0	
	_		TWBU3	2 TWBU2		TWBU0	
	_	Bit	TWBU3	2 TWBU2	TWBU1	TWBU0	
	_	Bit Initial value	TWBU3 Undefined	2 TWBU2 Undefined	TWBU1 Undefined	TWBU0 Undefined	
	_	Bit Initial value Read/Write	TWBU3 Undefined W	2 TWBU2 Undefined W	TWBU1 Undefined	TWBU0 Undefined W	
	_	Bit Initial value	TWBU3 Undefined W	2 TWBU2 Undefined W	TWBU1 Undefined W	TWBU0 Undefined W	
т	_	Bit Initial value Read/Write	TWBU3 Undefined W	2 TWBU2 Undefined W	TWBU1 Undefined W	TWBU0 Undefined W	
т	WBU	Bit Initial value Read/Write Bit Initial value	TWBU3 Undefined W 3 TWBL3 0	2 TWBU2 Undefined W 2 TWBL2 0	TWBU1 Undefined W 1 TWBL1 0	TWBU0 Undefined W 0 TWBL0 0	
т	WBU	Bit Initial value Read/Write Bit	TWBU3 Undefined W 3 TWBL3	2 TWBU2 Undefined W 2 TWBL2	TWBU1 Undefined W 1 TWBL1	TWBU0 Undefined W 0 TWBL0	
т	WBU	Bit Initial value Read/Write Bit Initial value	TWBU3 Undefined W 3 TWBL3 0	2 TWBU2 Undefined W 2 TWBL2 0	TWBU1 Undefined W 1 TWBL1 0	TWBU0 Undefined W 0 TWBL0 0	
т	WBU	Bit Initial value Read/Write Bit Initial value	TWBU3 Undefined W 3 TWBL3 0	2 TWBU2 Undefined W 2 TWBL2 0	TWBU1 Undefined W 1 TWBL1 0	TWBU0 Undefined W 0 TWBL0 0	
т	WBU	Bit Initial value Read/Write Bit Initial value	TWBU3 Undefined W 3 TWBL3 0	2 TWBU2 Undefined W 2 TWBL2 0	TWBU1 Undefined W 1 TWBL1 0	TWBU0 Undefined W 0 TWBL0 0	
т	WBU	Bit Initial value Read/Write Bit Initial value	TWBU3 Undefined W 3 TWBL3 0	2 TWBU2 Undefined W 2 TWBL2 0	TWBU1 Undefined W 1 TWBL1 0	TWBU0 Undefined W 0 TWBL0 0	

\$00C—Miscellaneous Register

Bit	3	2	1	0
	MIS3	MIS2	MIS1 ^{*1}	MIS0 ^{*1}
Initial value	0	0	0	0
Read/Write	W	W	W	W

	MIS1	MIS0	Interrupt frame period	Oscillator stabilization period	Oscillator circuit conditions
0		0	0.24414 ms	0.12207 (0.24414) ms ^{*2}	External clock
		1	15.625 ms	7.8125 ms	Ceramic oscillato
	1	0	125 ms	62.5 ms	Crystal oscillator
		1	Unused		—

R0₂/SO pin output buffer control

0 PMOS transistor active (CMOS output)

1 PMOS transistor off (NMOS open drain output)

– Pull-up MOS transistor control

0 All pull-up MOS transistors off

1 Pull-up MOS transistors active

- Notes: 1. Applies to the HD404339 and HD404369 Series. Unused in the HD404318, HD404358, HD404358R, HD404344R, and HD404394 Series.
 - 2. Values in parentheses are direct transition times.

\$00D—Timer Mode Register C

TMC

Bit	3	2	1	0	
	TMC3	TMC2	TMC1	TMC	0
Initial value	0	0	0	0	
Read/Write	W	W	W	W	
		Timer C	clock se	lection	
		TMC2	TMC1	TMC0	Input clock cource
			0	0	2048 t _{cyc}
		0	0	1	1024 t _{cyc}
		0	1	0	512 t _{cyc}
			I	1	128 t _{cyc}
			0	0	32 t _{cyc}
		1	0	1	8 t _{cyc}
			1	0	4 t _{cyc}
			I	1	2 t _{cyc}

L Timer C function selection

- 0 Free-running timer
- 1 Reload timer

\$00E—Timer Read Register CL \$00F—Timer Read Register CU

TRCL TRCU Timer C

Bit 3 2 1 0 TRCU3 TRCU2 TRCU1 TRCU TRCU0 Initial value Undefined Undefined Undefined Undefined Read/Write R R R R Bit 3 2 1 0 TRCL TRCL3 TRCL2 TRCL1 TRCL0 Initial value Undefined Undefined Undefined Undefined Read/Write R R R R **\$00E—Timer Write Register CL** Timer C TWCL **\$00F—Timer Write Register CU** TWCU Bit 3 2 1 0 TWCU0 TWCU TWCU3 TWCU2 TWCU1 Initial value Undefined Undefined Undefined Undefined Read/Write W W W W Bit 3 2 1 0 TWCL3 TWCL0 TWCL TWCL2 TWCL1 Initial value 0 0 0 0 Read/Write W W W W

\$016—A/D Channel Register

ACR

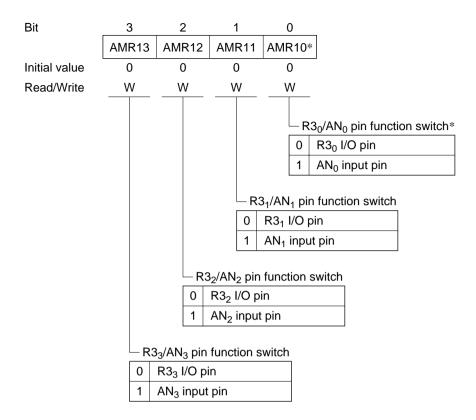
A/D converter

3	2	1	0
ACR3	ACR2	ACR1	ACR0
0	0	0	0
W	W	W	W
	0	0 0	0 0 0

Analog input channel selection

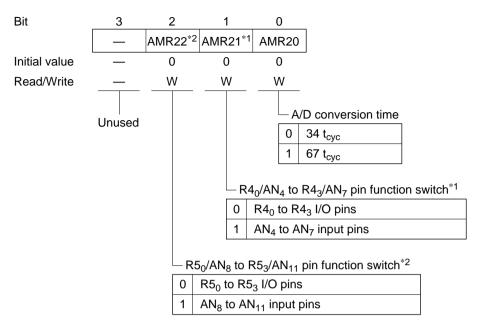
ACR3	ACR2	ACR1	ACR0	Input channel				
				HD404344R	HD404394	HD404318/ HD404358/ HD404358R	HD404339/ HD404369	
0	0	0	0	AN ₀		AN ₀	AN ₀	
			1	AN ₁	AN ₁	AN ₁	AN ₁	
		1	0	AN ₂	AN ₂	AN ₂	AN ₂	
			1	AN ₃	AN ₃	AN ₃	AN ₃	
	1	0	0			AN ₄	AN ₄	
			1			AN ₅	AN ₅	
		1	0			AN ₆	AN ₆	
			1			AN ₇	AN ₇	
1	0	0	0				AN ₈	
			1				AN ₉	
		1	0				AN ₁₀	
			1				AN ₁₁	
	1	*	*					

Note: * Don't care

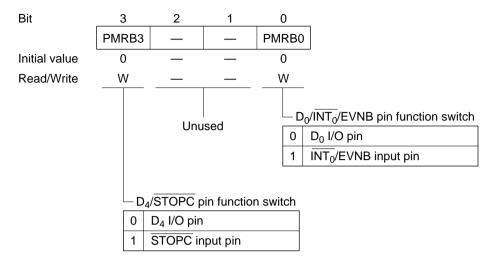

: Unused

\$017—A/D Data Register L \$018—A/D Data Register U

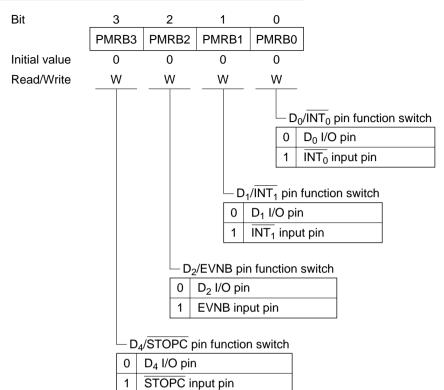
ADRL ADRU

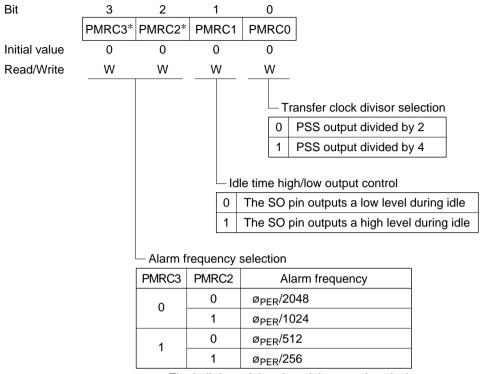

	Bit		2	1	0				
ADRL		ADRL3	ADRL2	ADRL1	ADRL0				
	Initial value	0	0	0	0				
	Read/Write	R	R	R	R				
				A/D converted data (lower 4 bits)					
	Bit	3	2	1	0				
ADRU		ADRU3	ADRU2	ADRU1	ADRU0				
	Initial value	1	0	0	0				
	Read/Write	R	R	R	R				

- A/D converted data (upper 4 bits)

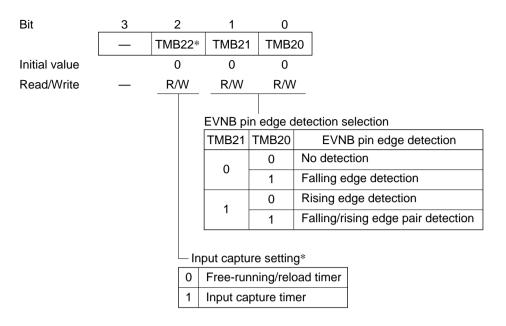

Note: * Applies to the HD404344R, HD404318, HD404358, HD404358R, HD404339, and HD404369 Series.

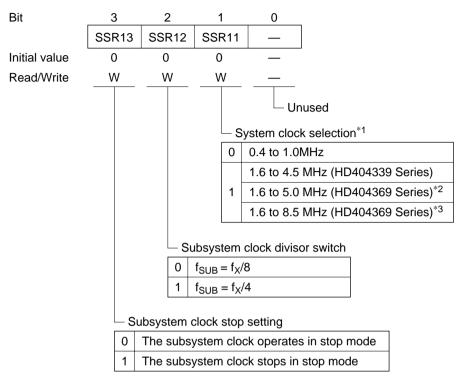
The AMR10 bit is unused in the HD404394 Series.




- Notes: 1. Applies to the HD404318, HD404358, HD404358R, HD404339, and HD404369 Series. The AMR21 bit is unused in the HD404344R and HD404394 Series.
 - Applies to the HD404339 and HD404369 Series. The AMR22 bit is unused in the HD404344R, HD404394, HD404318, HD404358, and HD404358R Series.

HD404344R/HD404394 Series


HD404318/HD404358/HD404358R/HD404339/HD404369 Series


øPER: The built-in peripheral module operating clock

Note: * Applies to the HD404318, HD404358, HD404358R, HD404339, and HD404369 Series. The PMRC3 and PMRC2 bits are unused in the HD404344R and HD404394 Series.

Note: * Applies to the HD404318, HD404358, HD404358R, HD404339, and HD404369 Series. The TMB22 bit is unused in the HD404344R and HD404394 Series.

HD404339/HD404369 Series

- Notes: 1. When the subsystem clock (32.768 kHz crystal oscillator) is used, use the ranges $0.4 \text{ MHz} \le f_{OSC} \le 1.0 \text{ MHz}$ and $1.6 \text{ MHz} \le f_{OSC} \le 4.5 \text{ MHz}$ (8.5 MHz: HD404369 Series).
 - 2. Applies to the HD404364, HD404368, HD4043612, and HD404369.
 - 3. Applies to the HD40A4364, HD40A4368, HD40A43612, HD40A4369, and HD407A4369.

DCD0

DCD1

HD404339/HD404369 Series

Bit	3	2		1	0	_
	_	_	SSI	R21	SSR20	
Initial value	_	_	()	0	
Read/Write			V	V	W	
	Սու	lsed	Sys	stem	clock divis	or selection
				0	Division b	y 4 ($f_{cyc} = f_{OSC}/4$)
			0	1	Division b	y 8 ($f_{cyc} = f_{OSC}/8$)
				0	Division b	y 16 ($f_{cyc} = f_{OSC}/16$)
			1	1	Division b	y 32 ($f_{cyc} = f_{OSC}/32$)

\$02C—Data Control Register D0

HD404344R/HD404394/HD404358/HD404358R/HD404369 Series

Bit	3	2	1	0	
	DCD03	DCD02	DCD01	DCD00	
Initial value	0	0	0	0	
Read/Write	W	W	W	W	

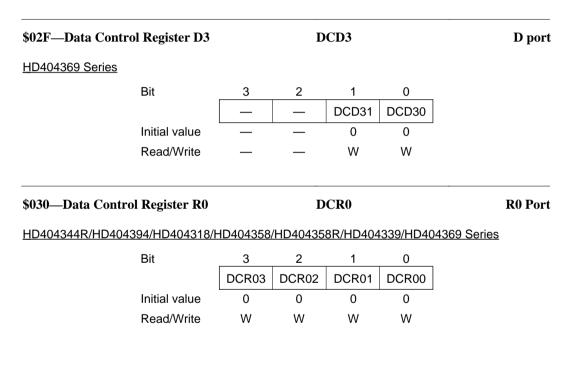
\$02D—Data Control Register D1

HD404344R/HD404394/HD404358/HD404358R/HD404369 Series

Bit	3	2	1	0
	DCD13*	DCD12*	DCD11	DCD10
Initial value	0	0	0	0
Read/Write	W	W	W	W

Note: * Applies to the HD404358, HD404358R, and HD404369 Series. The DCD13 and DCD12 bits are unused in the HD404344R and HD404394 Series.

HITACHI


D port

D port

HD404358/HD404358R/HD404369 Series

Bit	3	2	1	0
	DCD23*	DCD22*	DCD21*	DCD20
Initial value	0	0	0	0
Read/Write	W	W	W	W

Note: * Applies to the HD404369 Series. The DCD23 to DCD21 bits are unused in the HD404358 and HD404358R Series.

HD404344R/HD404394/HD404358/HD404358R/HD404369 Series

Bit	3	2	1	0
	DCR13	DCR12	DCR11	DCR10
Initial value	0	0	0	0
Read/Write	W	W	W	W

DCR1

DCR2

\$032—Data Control Register R2

HD404344R/HD404394/HD404358/HD404358R/HD404369 Series

Bit	3	2	1	0
	DCR23	DCR22	DCR21	DCR20
Initial value	0	0	0	0
Read/Write	W	W	W	W

\$033—Data Control Register R3

634

HD404344R/HD404394/HD404318/HD404358/HD404358R/HD404339/HD404369 Series

Bit	3	2	1	0
	DCR33	DCR32	DCR31	DCR30*
Initial value	0	0	0	0
Read/Write	W	W	W	W

Note: * Applies to the HD404344R, HD404318, HD404358, HD404358R, HD404339, and HD404369 Series. The DCR30 bit is unused in the HD404394 Series.

R2 Port

DCR3

R3 Port

DCR4

R4 port

HD404318/HD404358/HD404358R/HD404339/HD404369 Series

	Bit	3	2	1	0	1
		DCR43	DCR42	DCR41	DCR40	
	Initial value	0	0	0	0	1
	Read/Write	W	W	W	W	
\$035—Data Control	Register R5		D	CR5		R5 por
HD404339/HD404369	<u>Series</u>					
	Bit	3	2	1	0	
		DCR53	DCR52	DCR51	DCR50	
	Initial value	0	0	0	0	1
	Read/Write	W	W	W	W	
\$036—Data Control	Register R6		D	CR6		R6 por
HD404339/HD404369	<u>Series</u>					
	Bit	3	2	1	0	
		DCR63	DCR62	DCR61	DCR60	
	Initial value	0	0	0	0	1
	Read/Write	W	W	W	W	

\$037—Data Control Register R7

HD404339/HD404369 Series

	Bit	3	2	1	0	
		_	DCR72	DCR71	DCR70	
	Initial value	_	0	0	0	
	Read/Write	_	W	W	W	
\$038—Data Contro	l Register R8		D	CR8		R8 port
HD404358/HD40435	8R/HD404369 S	<u>Series</u>				
	Bit	3	2	1	0	
		DCR83	DCR82	DCR81	DCR80	
	Initial value	0	0	0	0	
	Read/Write	W	W	W	W	
\$039—Data Contro	ol Register R9		D	CR9		R9 port
HD404369 Series						
	Bit	3	2	1	0	
		DCR93	DCR92	DCR91	DCR90	
	Initial value	0	0	0	0	
	Read/Write	W	W	W	W	

DCR7

HITACHI

R7 port

Appendix C Option Lists

C.1 HD404344R Series Option List

Please check off the appropriate applications and enter the necessary information.

1 ROM Size

HD404341R: 1-kword	Ceramic oscillator		
HD404342R: 2-kword	External clock		
HD404344R: 4-kword			
HD40C4341R: 1-kword	Resister oscillator		
HD40C4342R: 2-kword			
HD40C4344R: 4-kword			

Date of order	
Customer	
Department	
Name	
ROM code name	
LSI number (Hitachi entry)	

2 ROM Code Data Type

Please specify the first type below (the upper bits and lower bits are mixed together), when using the EPROM on-package microcomputer type (including ZTATTM version).

□ The upper bits and lower bits are mixed together. The upper five bits and lower five bits are programmed to the same EPROM in alternating order (i.e., LULULU...).

The upper bits and lower bits are separated. The upper five bits and lower five bits are programmed to different EPROMs.

3 System Oscillator (OSC₁ and OSC₂)

	HD404341R/HD404342R/ HD404344R		HD40C4341R/HD40C4342R/ HD40C4344R
Ceramic oscillator	f =	MHz	
External clock	f =	MHz	
Resistor oscillator			

The shaded portion indicates unavailable selections.

4 Stop Mode

5 Package

□ Used	
□ Not used	

□ DP-28S	
🗆 FP-28DA	
□ FP-30D	

C.2 HD404394 Series Option List

Please check off the appropriate applications and enter the necessary information .

1 ROM Size

□ HD404391: 1-kword	
HD404392: 2-kword	
HD404394: 4-kword	

Date of order	
Customer	
Department	
Name	
ROM code name	
LSI number (Hitachi entry)	

2 ROM Code Data Type

Please specify the first type below (the upper bits and lower bits are mixed together), when using the EPROM on-package microcomputer type (including ZTATTM version).

□ The upper bits and lower bits are mixed together. The upper five bits and lower five bits are programmed to the same EPROM in alternating order (i.e., LULULU...).

☐ The upper bits and lower bits are separated. The upper five bits and lower five bits are programmed to different EPROMs.

3 System Oscillator (OSC₁ and OSC₂)

Ceramic oscillator	f =	MHz
External clock	f =	MHz

4 Stop Mode

Used	
□ Not used	

5 Package

□ DP-28S	
🗆 FP-28DA	
□ FP-30D	

C.3 HD404318 Series Option List

Please check off the appropriate applications and enter the necessary information .

1 ROM Size

HD404314: 4-kword	
HD404316: 6-kword	
HD404318: 8-kword	

2 I/O Option

		I/O O	ption
Pin	I/O	D	Е
D_0 / \overline{INT}_0	I/O		
D_1/\overline{INT}_1	I/O		
D ₂ /EVNB	I/O		
D ₃ /BUZZ	I/O		
D₄/STOPC	I/O		
D ₅	I/O		
D_6	I/O		
D ₇	I/O		
D ₈	I/O		

D:	Without	pull-down	resistance
----	---------	-----------	------------

E: With pull-down resistance

3 RA₁/V_{disp}

\square RA ₁ : Without pull-down resistance (D)
	/

 $\Box \, V_{\rm disp}$

Note: If even one pin is selected with I/O option E, pin RA_1/V_{disp} must be selected to function as V_{disp} .

Date of order	
Customer	
Department	
Name	
ROM code name	
LSI number (Hitachi entry)	

			I/O Option	
Pin		I/O	D E	
R1	R1 ₀	I/O		
	R1₁	I/O		
	R1 ₂	I/O		
	R1 ₃	I/O		
R2	R2 ₀	I/O		
	R2 ₁	I/O		
	R2 ₂	I/O		
	$R2_3$	I/O		
R8	R8 ₀	I/O		
	R8 ₁	I/O		
	R8 ₂	I/O		
	R8₃	I/O		
RA	RA_1	I	Selected in option 3	

Continued on the following page.

Continued from the preceding page.

ROM code name	
LSI number (Hitachi entry)	

4 ROM Code Data Type

Please specify the first type below (the upper bits and lower bits are mixed together), when using the EPROM on-package microcomputer type (including ZTATTM versions).

□ The upper bits and lower bits are mixed together. The upper five bits and lower five bits are programmed to the same EPROM in alternating order (i.e., LULULU...).

☐ The upper bits and lower bits are separated. The upper five bits and lower five bits are programmed to different EPROMs.

5 System Oscillator (OSC₁ and OSC₂)

Ceramic oscillator	f =	MHz
Crystal oscillator	f =	MHz
External clock	f =	MHz

6 Stop Mode

Used	
Not used	

7 Package

C.4 HD404358 Series Option List

Please check off the appropriate applications and enter the necessary information.

1 ROM Size

5 MHz operation: HD404354	4-kword
8.5 MHz operation: HD40A4354	
5 MHz operation: HD404356	6-kword
8.5 MHz operation: HD40A4356	
5 MHz operation: HD404358	8-kword
8.5 MHz operation: HD40A4358	

Date of order	
Customer	
Department	
Name	
ROM code name	
LSI number (Hitachi entry)	

2 ROM Code Data Type

Please specify the first type below (the upper bits and lower bits are mixed together), when using the EPROM on-package microcomputer type (including ZTATTM version).

☐ The upper bits and lower bits are mixed together. The upper five bits and lower five bits are programmed to the same EPROM in alternating order (i.e., LULULU...).

□ The upper bits and lower bits are separated. The upper five bits and lower five bits are programmed to different EPROMs.

3 System Oscillator (OSC₁ and OSC₂)

Ceramic oscillator	f =	MHz
Crystal oscillator	f =	MHz
External clock	f =	MHz

4 Stop Mode

Used	
Not used	

5 Package

□ DP-42S	
🗌 FP-44A	

C.5 HD404358R Series Option List

Please check off the appropriate applications and enter the necessary information.

1 ROM Size

5 MHz operation: HD404354R	4-kword
B.5 MHz operation: HD40A4354R	
CR oscillator version: HD40C4354R	
5 MHz operation: HD404356R	6-kword
8.5 MHz operation: HD40A4356R	
CR oscillator version: HD40C4356R	
5 MHz operation: HD404358R	8-kword
8.5 MHz operation: HD40A4358R	
CR oscillator version: HD40C4358R	

Date of order	
Customer	
Department	
Name	
ROM code name	
LSI number (Hitachi entry)	

2 ROM Code Data Type

Please specify the first type below (the upper bits and lower bits are mixed together), when using the EPROM on-package microcomputer type (including ZTATTM version).

□ The upper bits and lower bits are mixed together. The upper five bits and lower five bits are programmed to the same EPROM in alternating order (i.e., LULULU...).

☐ The upper bits and lower bits are separated. The upper five bits and lower five bits are programmed to different EPROMs.

3 System Oscillator (OSC₁ and OSC₂)

	HD404354R/	6R/8R, HD40A4354R/6R/8R	HD40C4354R/6R/8R
Ceramic oscillator	f =	MHz	
Crystal oscillator	f =	MHz	
External clock	f =	MHz	
Resistor oscillator			

The shaded portion indicates unavailable selections.

Continued on the following page.

Continued from the preceding page.

ROM code name	
LSI number (Hitachi entry)	

4 Stop Mode

Used	
🗆 Not used	

5 Package

□ DP-42S	
🗆 FP-44A	

C.6 HD404339 Series Option List

Please check off the appropriate applications and enter the necessary information.

1 ROM Size

HD404334: 4-kword	

HD404336: 6-kword

HD404338: 8-kword

HD4043312: 12-kword

HD404339: 16-kword

Date of order	
Customer	
Department	
Name	
ROM code name	
LSI number (Hitachi entry)	

2 Optional Function

* With 32-kHz CPU operation, with time-base for clock
* Without 32-kHz CPU operation, with time-base for clock
Without 32-kHz CPU operation, without time-base for clock

Note: * Options marked with an asterisk require a subsystem crystal oscillator (X1, X2).

Continued on the following page.

Continued from the preceding page.

ROM code name	
LSI number (Hitachi entry)	

3 I/O Option

		I/O Option	
Pin	I/O	D	E
D ₀ /INT ₀	I/O		
D_1/\overline{INT}_1	I/O		
D ₂ /EVNB	I/O		
D ₃ /BUZZ	I/O		
D₄/STOPC	I/O		
D ₅	I/O		
D ₆	I/O		
D ₇	I/O		
D ₈	I/O		
D ₉	I/O		
D ₁₀	I/O		
D ₁₁	I/O		
D ₁₂	I/O		
D ₁₃	I/O		

			I/O Option	
Pin		I/O	D	Е
R1	R1₀	I/O		
	R1₁	I/O		
	R1 ₂	I/O		
	$R1_3$	I/O		
R2	R2 ₀	I/O		
	R2 ₁	I/O		
	R2 ₂	I/O		
	R2₃	I/O		
R8	R8₀	I/O		
	R8 ₁	I/O		
	R8 ₂	I/O		
	R8₃	I/O		
R9	R9₀	I/O		
	R9₁	I/O		
	R9 ₂	I/O		
	$R9_3$	I/O		
RA	RA_1	I	Selected in item 4	

E: With pull-down resistance

4 RA₁/V_{disp}

□ RA ₁ :	Without pull-down resistance (D)
---------------------	----------------------------------

 $\Box V_{disp}$

Note: If even one pin is selected with I/O option E, pin RA_1/V_{disp} must be selected to function as Vdisp.

Continued on the following page.

Continued from the preceding page.

ROM code name	
LSI number (Hitachi entry)	

5 ROM Code Data Type

Please specify the first type below (the upper bits and lower bits are mixed together), when using the EPROM on-package microcomputer type (including ZTATTM version)

□ The upper bits and ower bits are mixed together. The upper five bits and lower five bits are programmed to the same EPROM in alternating order (i.e., LULULU...).

☐ The upper bits and lower bits are separated. The upper five bits and lower five bits are programmed to different EPROMs.

6 System Oscillator (OSC₁ and OSC₂)

Ceramic oscillator	f =	MHz
Crystal oscillator	f =	MHz
External clock	f =	MHz

7 Stop Mode

Used	
Not used	

8 Package

C.7 HD404369 Series Option List

Please check off the appropriate applications and enter the necessary information .

1 ROM Size

5 MHz operation: HD404364	4-kword
B.5 MHz operation: HD40A4364	
5 MHz operation: HD404368	8-kword
B.5 MHz operation: HD40A4368	
5 MHz operation: HD4043612	12-kword
B.5 MHz operation: HD40A43612	
5 MHz operation: HD404369	16-kword
B.5 MHz operation: HD40A439	

Date of order	
Customer	
Department	
Name	
ROM code name	
LSI number (Hitachi entry)	

2 Function Options

* With 32-kHz CPU operation, with time-base for clock
* Without 32-kHz CPU operation: with time-base for clock
Without 32-kHz CPU operation: without time-base for clock

Note: * Options marked with an asterisk require a subsystem crystal oscillator (X1, X2).

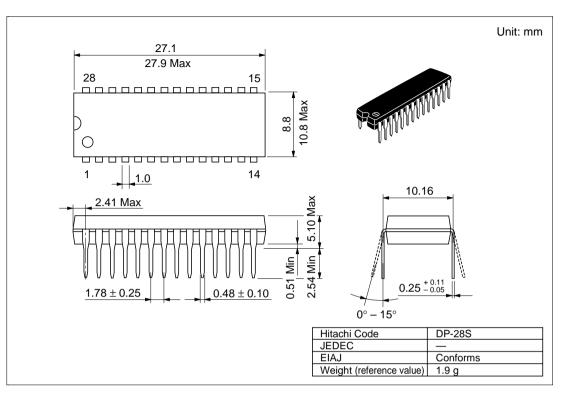
3 ROM Code Data Type

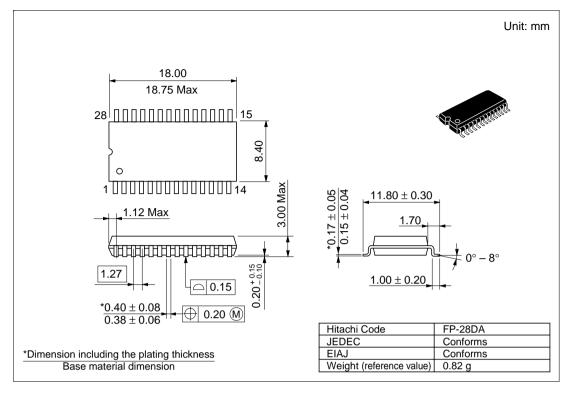
Please specify the first type below (the upper bits and lower bits are mixed together), when using the EPROM on-package microcomputer type (including ZTATTM version).

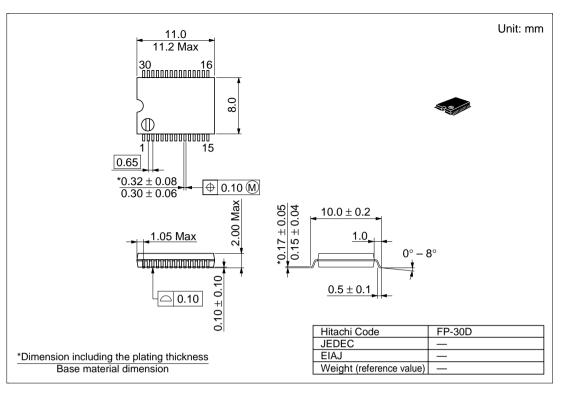
☐ The upper bits and lower bits are mixed together. The upper five bits and lower five bits are programmed to the same EPROM in alternating order (i.e., LULULU...).

The upper bits and lower bits are separated. The upper five bits and lower five bits are programmed to different EPROMs.

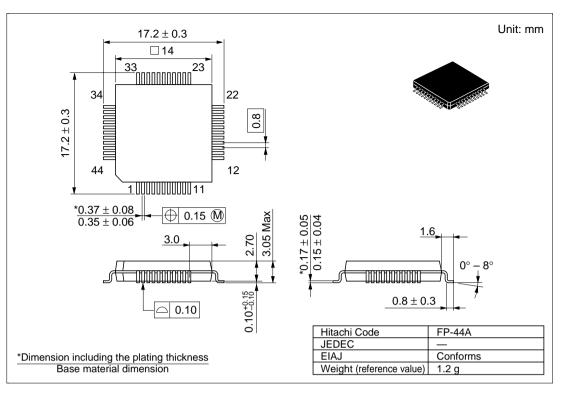
4 System Oscillator (OSC₁ and OSC₂)

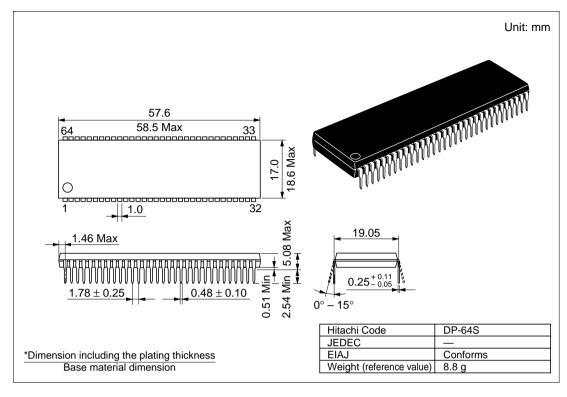

Ceramic oscillator	f =	MHz
Crystal oscillator	f =	MHz
External clock	f =	MHz

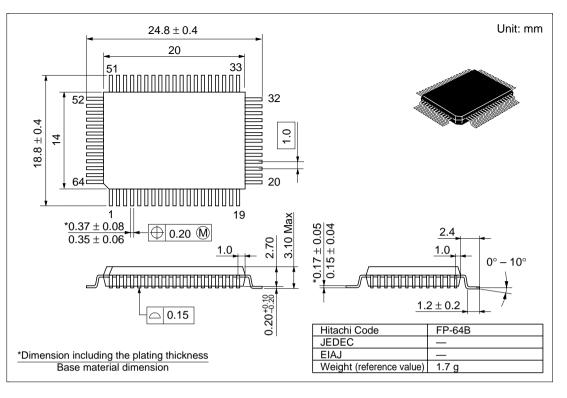

5 Stop Mode


□ Used
□ Not used

□ DP-64S	
□ FP-64B	


Appendix D Package Dimensions





		Unit: mm
		_
37.3 42 38.6 Max 22 0 4 4 0 4 4		MMM
1 <u>-1.0</u> 21		
1.38 Max 1.38 Max 1.78 ± 0.25 1.78 ± 0.25	0°-15°	
	Hitachi Code JEDEC	DP-42S
	EIAJ	Conforms
	Weight (reference value)	4.8 g

HMCS43XX Family Hardware Manual

Publication Date:	1st Edition, February 1995
	3rd Edition, August 2000
Published by:	Electronic Devices Sales & Marketing Group
	Semiconductor & Integrated Circuits
	Hitachi, Ltd.
Edited by:	Technical Documentation Group
	Hitachi Kodaira Semiconductor Co., Ltd.
Copyright © Hitad	chi, Ltd., 1995. All rights reserved. Printed in Japan.