NEC

NEC Electronics Inc.

puPD79011

16-Bit Microcomputer:
Single-Chip, CMOS,
With Built-In RTOS

Description

The uPD79011 is an upgraded uPD70322 (V25™) single-
chip microcomputer with a built-in real-time operating
system (RTOS).

The uPD79011 provides high-speed muititask process-
ing particularly suited for real-time event processing
and as a kernel of an embedded control system for
process control and data processing applications.

The RTOS kernel provides extensive system calls for
task synchronization, control, and communication as
well as interrupt and time management,

The pPD79011 instruction set is the same as the V25
instruction set. The yuPD79011 hardware is also identi-
caltothe standard V25, but uses 6K of the internal ROM
for RTOS system code. Refer to the V25 Data Sheet.

Features

L Real-time multitask processing

T Supports five types of system calls
— Task management
— Communication management
- Memory management
— Time management
— Interrupt management

0 High-speed response to events
— System call processing shortens time to 41 us
(minimum) when operated at 8 MHz
— High-speed task switching using V25 register
banks

V25 is a trademark of NEC Corporation.

CP/M is a registered trademark of Digital Research, Inc.
MS-DOS is a registered trademark of Microsoft Corporation.
VMS is a trademark of Digital Equipment Corporation.

UNIX is a trademark of AT&T Bell Laboratories.

50180-1

O Flexibility to perform status changes by event
driven task scheduling function

System clock: 8 MHz maximum
V25 hardware compatibility
CMOS technology

Development tools

— V25 software can be used without modification

— Relocatable assembler (RA70320)

— C compiler (CC70116)

— Concurrent CP/M@, MS-DOS®, VMS™, and
UNIX™ base

o o g O

Ordering Information

Part Number Clock Package
HPD79011L-8 8 MHz 84-pin PLCC
GJ-8 8 MHz 94-pin plastic QFP

pPD79011

Pin Configurations

84-Pin PLCC

PO7/CLKOUT o

Do
D14
D2
D3
Dg
Ds
De
D7
Ag
A4
Az
Az
A4
As
Ag
Az
Ag
Ag
A1p
A1q

OO OO0 0000000000

All IC pins should be tied together and pulled up to V pp with a

10- to 20-kS2 resistor.

[T
© w0 * MmN ~-oo |§|E|E] EI%S S x
f§fofcsscolElBl2BlElE Sy lo
nlululafisialiaSslicinizisicsisinisicialiaialn
roeerwbhsoN-IRYT8RRRRE
12 O 74
 1a 73
14 72
o] 15 7
3 16 70
017 69
s 68
o e 67
d = 66
0= 65
d 22 64
d =s 63
] 24 62
d 25 61
3 26 60
gz 59
] 28 58
O 29 57
O 30 56
O a1 55
] a2 54
83IBV8ESBJITITIIVELLLIRILAR
Do oo0ooU oo oo oo o
8232922€§%|§§§l§§8983|89
<<<<(<(<rx“’or—n:ob—§ >§t§‘
8 e
g &
Note:

P17

PT6

PTs

PT4

PT3

PT2

PT1

PTO

P17 /READY
P1g/SCKO
P15 /TOUT
P14 /INT/POLL
P13 /INTPZINTAK
P12 /INTP1
P14 /INTPO
P1o/NMI
P27/HLDRQ
P2g /HLDAK
P25 /TC1

P24 DMAAK1
P23 /DMARQ1

835L-67198

pPD79011

C

94-Pin Plastic QFP

Sod
1nox1o/40d
0q

ta

cqa

€q

va

@ oM~ © W YTMm AN ON oW
A < « < << <O NN
oOonoOooonooonoRnoOonomnn

oiv
ON
Ly

2] 43210_
g8oPegReC
Ogonononnonnon

|2 m
e
M_m—M

[0 GND

el
€L
vL
SL
9L
1L
8L
6L
08
3:]
c8
€8
ve
S8
98
i8
28
68
06
L6
6
£6
6

FREBLB8BIBYG

3
8

12

g
z
2

58 [1 REFRQ
57 [1 RESET

53 B x1

52 [GND

51

50 {3 nC
49 O Ne

Teg3ee e vm

oF
6€

e

ER8r88388

x4

Sc
e

1 o
] Lid

[sid

1 oN

[S1d

7 vid

1 €ld

1 zid

[1Ld

7 oid

[1 AQvaw/ 4d
[Q08 91d

N inow Sid

] TI0d/INY Pid
1 MVINIZAINY Eid
(] LdINV Sid
3 odiNK bd

[AN OLd

[0 oua L2d
[MvaiHs 924
[0 104/ Sed

0 vwWar Yed
0 Lodwvwas €2d
] ol

U unry

cTso O

Txoo O 13

RxD1 [14

crst [15

Tx0t O 16

P2g/DMARQC O 17

ic O 18
vpbp O 19

vppo 20

P21/DMAAKD [21

Ne [22

p22/7C0 [23

AlNC pins should be tied together and pulied up ta VDD with a

10- 10 20-kQ resistor.

Note:

3351L-87208

uPD79011

NEC

Pin ldentification

Symbol Function

Ag-Aqg Address bus outputs

CLKOUT System clock output

CT50 Clear to send channel 0 input

[955) Clear to send channel 1 input -

Dy-D7 Bidirectional data bus

I0STB 1/O strobe output

MREQ Memory request output

MSTB Memory strobe output

PQg-POy 1/O port 0

P1g/NMI Port 1 input line; nonmaskable interrupt

P1;P12/_ Port 1 input lines; Interrupt requests from

INTPO-INTP1 peripherals 0 and 1

P13/ INTP2/INTAK Port 1 input ling; Interrupt requests from
peripheral 2; interrupt acknowledge output

P14/INT/POLL 1/O port 1; Interrupt request input; 1/O poll input

P1g/TOUT /O port 1; Timer out

P1¢/SCKO 1/O port 1; Serial clock output

P17/READY /O port 1; Ready input

P2¢/DMARQO 1/0 port 2; DMA request 0

P2,/DMAAKD I/O port 2; DMA acknaowledge 0

P2,/TCO 1/0 port 2; DMA terminal count 0

P25/DMARQ1 1/O port 2; DMA request 1

P2,/DMAAKT I/0 port 2; DMA acknowledge 1

P2g/TCT 1/O port 2; DMA terminal count 1

P2¢/HLDAK 1/O port 2; Hold acknowledge output

P27/HLDRQ 1/O port 2; Hold request input

PTO-PT7 Comparator port input lines

REFRQ Refresh pulse output

RESET Reset input

RxD0O Serial receive data channel 0 input

RxD1 Serial receive data channel 1 input

RW Read/write output

TxDO Serial transmit data, channel 0 input

TxD1 Serial transmit data, channel 1 input

X1, X2 Crystal connection terminals

Vbo Positive power supply voltage

VTH Threshold voltage input for comparator

GND Ground reference

IC Internal connection

PIN FUNCTIONS
Ag-Aqg (Address Bus)

Ag-Aqg is the 20-bit address bus used to access all
external devices.

CLKOUT (System Clock)

This is the internal system clock. It can be used to
synchronize external devices to the CPU.

CTSn, RxDn, TxDn, SCKO (Clear to Send,
Receive Data, Transmit Data, Serial Clock Out)

The two serial ports (channels 0 and 1) use these lines
for transmitting and receiving data, handshaking, and
serial clock output.

Dg-D; (Data Bus)

Do-Dy is the 8-bit external data bus.

DMARQn, DMAAKn, TCn (DMA Request, DMA
Acknowledge, Terminal Count)

These are the control signals to and from the on-chip
DMA controller.

HLDAK (Hold Acknowledge)

The HLDAK output (active low) informs external devices
that the CPU has released the system bus.

HLDRQ (Hold Request)

The HLDRQ input (active high) is used by external
devices to request the CPU to release the system bus to
an external bus master. The following lines go into a
high-impedance state with internal 4.7-kQ@ pullup resis-
tors: Ag-Ate, Dg-D7, MREQ, RW, MSTB, REFRQ, and
IOSTB. :

INT (Interrupt Request)

INT is a maskable, active-high, vectored request inter-
rupt. After assertion, external hardware must provide the
interrupt vector number.

INTAK (Interrupt Acknowledge)

After INT is asserted, the CPU will respond with INTAK
(active low) to inform external devices that the interrupt
request has been granted.

NEC

uPD79011

INTPO-INTP2 (External Interrupt)

INTPO-INTP2 allow external devices to generate inter-
rupts. Each can be programmed to be rising or falling
edge triggered.

I0STB (I/0 Strobe)

IOSTB is asserted during read and write operations to
external |/O.

MREQ (Memory Request)

MREQ (active low) informs external memory that the
current bus cycle is a memory access bus cycle.

MSTB (Memory Strobe)

MSTB (active low) is asserted during read and write
operations to external memory.

NMI (Nonmaskable Interrupt)

NMI cannot be masked through software and is typically
used for emergency processing. Upon execution, the
interrupt starting address is obtained from interrupt
vector number 2. NMI can release the standby modes
and can be programmed to be either rising or falling
edge triggered.

P0y-P07 (Port 0)

P0g-PO; are the lines of port 0, an 8-bit bidirectional
parallel I/O port.

P1g-P17 (Port 1)

The status of P1g-P13 can be read but these lines are
always control functions. P14-P17 are the remaining lines
of parallel port 1; each line is individually programmable
as either an input, an output, or a control function.

P2y-P27 (Port 2)

P20-P27 are the lines of port 2, an 8-bit bidirectional
parallel 1/O port. The lines can also be used as control
signals for the on-chip DMA controller.

POLL (Poll)

Upon execution of the POLL instruction, the CPU checks
the status of this pin and, if low, program execution
continues. If high, the CPU checks the level of the line
every five clock cycles until it is low. POLL can be used
to synchronize program execution to external condi-
tions.

PTO-PT7 (Comparator Port)

PTO-PT7 are inputs to the analog comparator port.

READY (Ready)

After READY is de-asserted low, the CPU synchronizes
and inserts at least two wait states into a read or write
cycle to memory or I/O. This allows the processor to
accommodate devices whose access times are longer
than normal execution.

REFRQ (Refresh)

This active-low output pulse can refresh nonstatic RAM.
It can be programmed to meet system specifications
and is internally synchronized so that refresh cycles do
not interfere with normal CPU operation.

RESET (Reset)

A low on RESET resets the CPU and all on-chip periph-
erals. RESET can also release the standby modes. After
RESET returns high, program execution begins from
address FFFFOH.

R/W (Read/Write)

R/W output allows external hardware to determine if the
current operation is a read or a write cycle. It can also
control the direction of bidirectional buffers.

TOUT (Timer Out)

TOUT is the square-wave output signal from the internal
timer.

X1, X2 (Crystal Connections)

The internal clock generator requires an external crystal
across these terminals. By programming the PRC regis-
ter, the system clock frequency can be selected as the
oscillator frequency (fogc) divided by 2, 4, or 8.

Vpp (Power Supply)

Two positive power supply pins (Vpp) reduce internal
noise.

V1 (Threshold Voltage)

The comparator port uses this pin to determine the
analog reference point. The actual threshold to each
comparator line is programmable to V1 x n/16 where n
= 1to 16.

puPD79011 E

GND (Ground) IC (Internal Connection)

Two ground connections reduce internal noise. All IC pins should be tied together and pulled up to Vpp
with a 10- to 20-k{ resistor.

#PD79011 Block Diagram

wlw
sle
3|3
Ag-A
‘E ‘E_ 0 ™19
P2g /DMARQO —»] c gls
ORRARG ~+— -
P24 E:l [/:_zg Programmable ete. ALU
e I
P2 /D_MARQ1 Controller le— RESET
P2, /DMAAK1 ~— PSW T~ RESET
P25/TC1 -] <:_ [+— HLDAK/P2g
18 — HLDRQ/P2;
pc KN 1c [¢— READY/P17
TXDO Y 2 MREQ
RxDO Serial g
P1. /5CKG Interface Internal RAM g MSTB
* s - 256 Bytes Internal ROM El Al
CTS0 - <:> <:> - General ::> (08) = [105TB
TxD1 = Mgaug Rate ngistars 8 fe— FOLUINT/P1,
RxD1 —»1 | Generator Service
CTS1 —» L. Channel
P1g /NMI —
P1 fINTPO —» Instruction Decoder
P12/WP1 »| Programmable Micro Sequencer K Queue K
R Interrupt <:> Micro ROM
P13/ANTP2 _ I Controller
fINTAK
P14 /INT
. —»
/POLL
A4
@ @ ﬁ ﬁ > o
i — x1
! Time Base Port with Clock
16-Bit Timer Counter Port Comparator Generator f—— X2
l l l @ @ @ ﬁ T — Vop
TOUT/P1g REFRQ CLKOUT/PO; PO P1 P2 PTO-PT7 Vyy — GND o lsvecs

NEC

uPD79011
ELECTRICAL SPECIFICATIONS Comparator Characteristics
Ta = -10to +70°C; Vpp = +5.0V *10%

Absolute Maximum Ratings Parameter Symbol Min Max Unit
Ta=25C Accuracy VAcomp +100 mV
Supply voltage, Vop 051070V Iy eshold voltage Vrn 0 Vop+01 V
Input voltage, V| -0.51t0 Vgp+0.5 (< +7.0V) Comparison time tcomp 64 65 tovi
Output voltage, Vo -0.5t0 Vpp+0.5 (= +7.0V) PT input voltage Vipr 0 Voo v
Threshold voltage, V1 ~-0.5t0 Vpp+0.5 (s +7.0V)
Output current fow, o Each output pin 4.0 mA (Total 50 mA) Capacitance
Qutput current high, Igy Each output pin ~2.0 mA (Total ~20 mA) Ta=25CiVpp = 0V
Operating temperature range, Topr _40to +85°C Parameter Symbol Min Max Unit Conditions
Storage temperature range, Tstg -65 to +150°C Input capacitance G 10 pF L:m:a::rrzeid
Exposure to Absolute Maximum Ratings for extended periods may Output capacitance Co 20 PP pins returned
affect device reliability; exceeding the ratings could cause permanent 1/0 capacitance Co 20 pF to ground
damage.
DC Characteristics
Ta = ~10to +70°C; Vpp = +5.0V =10%
Parameter Symbol Min Typ Max Unit Conditions
Supply current, operating mode lop 43 100 mA foLk = 5 MHz

58 120 mA foLk = 8 MHz
Supply current, HALT mode Ippa 17 40 mA fok = 5MHz

21 50 mA fok = 8 MHz
Supply current, STOP mode Ibpa 10 30 A
Input voltage, low ViL 0 0.8 v
Input voltage, high Vil 22 Voo \Y All except RESET, P1p/NMI, X1, X2

Viuz 0.8 x Vpp Voo \ RESET, P1¢/NMI, X1, X2

Output voltage, low VoL 0.45 \ loL = 1.6 mA
Output voltage, high VoH Vop — 1.0 \ loy = -0.4 mA
Input current ™ *20 bA Pig/NMI; V| = O to Vpp
Input leakage current I *10 BA All except P1g/NMI; V} = 0 to Vpp
Output leakage current Lo *10 A Vo = 0to Vpp
V1 supply current ItH 0.5 1.0 mA Vry = 0to Vpp
Data retention voltage Vobr 2.5 5.5 \'4

pPD79011

NEC

Supply Current vs Clock Frequency

External System Clock Control Source

150 Internal Osclilator
Ta=25°C
140 VoD =5V
Typ. Sample _ X1
130 spee, —| o1 ==
Point {
120 1l =
110 c2
Spec. T T
Point y x2
100
90 Note: For a parallel resonant quartz crystal,
. C1, C2 = 15 pF (recommended)
< 80
E
3 70
- External Clock
60
50 Clock X1
40
78HC10
a0
20 x2
10 a3sSL-6718A
0 ‘ Recommended Oscillator Components
0 1 2 3 4 5 6 7 8 9
toLk [MHz] Ceramic Resonator Capacitors
B3 CTARG 1A Manufacturer Product No. C1 (pF) C2 (pF)
Kyocera KBR-10.0M 33 33
Murata Mfg. CSA.10.0MT 47 47
CSA16.0MX040 30 30
TDK FCR10.M2S 30 30
FCR16.0M2S 15 6
AC Characteristics
Ta = -10to +70°C; Vpp = +5.0V =10%
Parameter Symbol Min Max Unit Conditions
Vpp rise, fall time tavps tEVD 200 us STOP mode
Input rise, fall time tir, tie 20 ns Except X1, X2, RESET, NMl!
Input rise, fall time (Schmitt) tirs: tirs 30 ns RESET, NMI
Output rise, fall time ton: tor 20 ns Except CLKOUT
X1 cycle time tovx 98 250 ns 5-MHz CPU clock
62 250 ns 8-MHz CPU clock
X1 width, low twxL 35 ns 5-MHz CPU clock
20 ns 8-MHz CPU clock
X1 width, high twxH 20 ns 5-MHz CPU clock
20 ns 8-MHz CPU clock
X1 rise, fall time xR e 20 ns 8-MHz CPU clock
CLKOUT cycle time tovk 125 2000 ns %2, T = toyk

NEC

AC Characteristics (cont)

pPD79011

Parameter Symbol Min Max Unit Conditions

CLKOUT width, low twkL 0.5T - 15 ns Note 1

CLKOUT width, high tWKH 0.5T - 15 ns

CLKOUT rise, fall time kR tkE 15 ns

Address delay time tbka 15 90 ns

Address valid to input data valid tbADR T(n+1.5) - 80 ns Note 2

MREQ to data delay time tOMRD Tn+1)-75 ns

MSTE to data delay time tomsp T(n+0.5)-75 ns

MREQ to TC delay time tpMRTC 0.5T+50 ns

MREQ to MSTB delay time tpMRMS 0.5T ~ 35 0.5+35 ns

MREQ width, low twWMRL T{n+1) - 30 ns

Address hold time tHMA 0.5T - 30 ns

Input data hold time tHMDR 0 ns

Next control setup time tsce T-25 ns

TC width, low twrcL 2T - 30 ns

Address data output toAaDwW 0.5T+50 ns

MREQ delay time th AMRA 0.5T - 30 ns

MSTB delay time tpAMS T-30 ns

MSTB width, low twmsL T(n+0.5) - 30 ns

Data output setup time tSDM T(n+1)-50 ns

Data output hold time tHMDw 0.5T - 30 ns

IOSTB delay time thAlS 0.5T - 30 ns

IOSTB to data input tpisp T(n+1)-90 ns

IOSTB width, low twist T(h+1)-30 ns

Address hold time tHisA 0.5T - 30 ns

Data input hold time tHispR o] ns

Output data setup time tspis Tin+1)-50 ns

Output data hold time thisow 0.5T - 30 ns

Next DMARQ setup time tspADQ T ns Demand mode

DMARQ hold time tHpADQ 0 ns Demand mode

DMAAK read width, low twDMRAL T(n+1.5) -30 ns

DMAAK to TC delay time topaTe 0.5T+50 ns

DMAAK write width, low twoMwL T(n+1) - 30 ns

REFRQ delay time tDARF 0.5T - 30 ns

REFRQ width, low twRFL (n+1)T-30 ns

Address hold time tHRFA 0.5T - 30 ns

RESET width, low twRSL 1 30 ms STOP mode release; power-
on reset

RESET widith, low twRsL2 5 ps System warm reset

MREQ, IOSTB to READY setup time tscry T(n-1) - 100 ns nz2

MREQ, 10STE to READY hold time tHCRY T(n - 1) ns nza2

pPD79011

NEC

AC Characteristics {cont)

Parameter Symbol Min Max Unit Conditions
HLDAK output delay time tDKHA 80 ns
Bus control fioat to HLDAK { tCFHA T-50 ns
HLDAK 7to control output time tDHAC T-50 ns
HLDRQ | to control output time tbHQC 3T +30 ns
HLDAK width, low tWHAL T ns
HLDRQ setup time tsHQK 30 ns
HLDRQ to HLDAK delay time tpHQHA 3T+160 ns
HLDRQ width, fow twHQL 1.5T ns
INTP, DMARQ setup time 10k 30 ns
INTP, DMARQ width, high twiQH 8T ns
INTF, DMARQ width, low twial 8T ns
POLL setup time tgpLK 30 ns
NMI width, high twNIH ps
NMI width, low twiIL us
CTS width, low tweTL 2T ns
INTR setup time tsirK 30 ns
INTR hold time tHialo 0 ns
INTAK width, low twiaL 2T-30 ns
INTAK delay time tokia 80 ns
INTAK width, high twiaH T-30 ns
INTAK to data delay time toiaD 2T -130 ns
INTAK to data hold time tH1AD 0 0.5T ns
SCKO cycle time tovTi 1000 ns
SCKO (TSCK) width, high twsTH 450 ns
SCKO (TSCK) width, low twsTL 450 ns
TxD delay time tpTkD 210 ns
TxD hold time thTKD 20 ns
CTS0 (RSCK) cycle time tCYRK 1000 ns
CTS0 (RSCK) width, high twsRH 420 ns
CTS0 (RSCK) width, low twSRL 420 ns
RxD setup time tSROK 80 ns
RxD hold time tHKRD 80 ns

Notes: (1) T = GPU clock period (toyk)

{2) n = number of wait states inserted

STOP Mode Data Retention Characteristics

Ta = ~10to +70°C

Parameter Min Unit
Data retention voltage 25 \
Vpp rise time 200 ns
Vpp fall time 200 pns

10

NEC

pPD79011

Timing Waveforms

Stop Mode Data Retention Timing

AC Input Waveform 2 (RESET , NMI)

90%
10%

Voo
VDDDR

trvD tRVD

83-004333A

AC Input Waveform 1 (Except X1, X2, RESET , NMI)

B3-004306;

A

AC Output Test Point (Except CLKOUT)

83-D04305A

83-D04307A

CLKIN1
[x1]

CLKOUT \

~

tKF

KR

22V
08V

twKL

twkH |

tcyk |

83-004308B

puPD79011

Memory Read

B1 !

CLKOUT

tDKA —»|

tcyk

82 |

Atg-Ag y

=

tDADR

D7-Do

tDMRD —»{ tHMDR [«1-

V.

{DAMR |

MREQ

K

twMRAL l tscc

[*— tDMRMS —|

MSTB

tomsp

tpams

twmsL

10STB

REFRQ

DMAAK1-
DMAAKO

[+ IDMRTC

TCi-TCo

/-

twTCL

83-004309C

12

E

pPD79011

Memory Write

; B1 } B2 {
| tcyk |
cLKOUT
1DKA -+
s \
A19-Ag x)(
\S 2
l+-tDaDW ‘«lHMA -
D7-Do t
I tspm le— \HMDW L>|
R/W \
K
le-tDAMR tWMAL tscc
— -
MREQ /
K 2
le—1DMRMS
—— 4
MsTE Z
tDAMS i twMsL
_ 3
10STB
REFRQ \
DMAAKI-
DMAAKO
le— tDMRTC
TC1TCO

; twrcL i

83-004310C

13

pPD79011

E

I/O Read

tcyk

L

CLKOUT /
tDKA

pol

4
A19-Ao

tDADR

D7-Do

to—!ms;\——

tDISD

v

y

y,

tHISDR

R/W /]

MREQ

MSTB

[e—DAIS —|

twisL

tscc

10STB
k

REFRQ

-

DMAAK1-
DMAAKO

83-004311C

14

NEC

puPD79011

1/0 Write

R/W \ /

B1 ! B2 |
tcyk |
cwkout A
toKA
A19-Ap
K
tpaDW ‘-—'ms;\——

4

¥

D7-Do }_——
X

t
1SDIS HISDW

MREQ

MSTB

| twisL 1scc

le—tDAIS

108T8

REFRQ

v

DMAAK1-
DMAAKO

v

T

83-004312C

15

pPD79011

DMA, 1/O to Memory

B2 |

CLKOUT

toKA —»

4
A1g-Ag
K

D7-Do

e— tDAMR —»

twMRL

le— tHMA —|

r+— IDMAMS

MsTe

tpams

tscc

-

twMSsL —»

10STB

le—tsDADQ

DMARQO-
DMARQ1

l—tHDADQ

DMAAK1-
DMAAKO

gl

tWOMRL

TC1-TCO

[—tDDATC

twrct

1
83-004313C

16

E pPD79011

DMA, Memory to I/0

B1 B2

tcyk

CLKOUT]l__/

le—tDKA —
4 \
A19-Ag
K 7

D7-Do

R/W)l)\

l+—tDAMR —» WMRL ta— tHMA —»|
__) 4 \
MREQ \
tscc
N 4 \
MSTB \
tDAMS] twmsL

iosTB \

[——1IsDADQ
DMARQO
DMARQ1-
- tHDADQ

DMAAKI- \ ¢ 3
DMAAKD "

twomwL

TC1-TCo
le—tDDATC twreL »|

83-004314C

17

pPD79011 N E C

Refresh

B1 B2 |

tcyk

e TN/

re— tDKA

!
A19-Ag
-

D7-Do

by

R/W / \

MREQ

[

MSTB

10878

[

REFRQ

<—l|:mm=—-|\'L tWRFL tHRFA —»|

tscc

DMAAKI- 3
DMAAKD

B3-004315C

RESET 1

creour ¢ W

WRSL1

n

RESET /

83-004316B

18

pPD79011

RESET 2
‘ twRsL2 |
RESET
83-0043173
READY 1
81 | BAW] BAW B2 |
MREQ /

tHCRY ————

tSCRY r‘—

READY /l \\

83-0043188

READY 2

B2

| B t BAW | BAW :

MREQ \

BW

—

tscry”

READY \ / /{ \\

* tsCcRyY [READY setup time] and {HCRY [READY hold time] are a function of
T and n. Timings shown are examples forn = 2and n = 3.

B4 0044108

19

pPD79011

HLDRQ/HLDAK 1
CLKOUT /WF_/
1SHOK 1SHOK —|
HLDRQ)) \

tDKHA —»

Bus control ™

re——twHaL

tCFHA

HLDAK

*A19-Ao, D7-Do, MREQ, MSTB, IOSTB, R/W

tDHQHA } tDHAC

WHAL

83-0043208

HLDRQ/HLDAK 2

CLKOUT /___/__(

tsHQK
»
2%
HLDRQ /
X 7
twHaL
Bus control” —k
— tDKHA tpHac
@
HLDAK
‘A19'A0, D7-Dg, MREQ, MSTB, I0STB, R/W
33-00432° B
INTP, DMARQ Input
CLKOUT
tsiaK tsIGK

%

INTP,
DMARQ ™ /

twiaH

%Y

T

"INTP2-INTPO, DMARQ1-DMARQO

twiaL

£3-0043228

20

N E C pPD79011

POLL input

CLKOUT

tspLK tspPLK

POLL /

83-0043233

NMI Input

"— | [

WNIH { } tWNIL i

83-0043248

CTS Input

CLKOUT _/__/__/__/___/——__/___/_—__
CTs1.CTS0 / \F /

tweTL |

83-004325B

21

pPD79011 N E C

INTR/INTAK
Lot VAVAVAVAVAVAVAVAVAN
tsIRK
INTR
tDK1A tHialQ
1
iN ¢)\ /|
TAK
K b,
twiaH tDIAD |

tWiIAL 1 —»{ tHIAD
D7-Dg 3
tsce tscc
MREQ
10STB

83-0043268

Serial Transmit
teyTK
SCKO / \
R y —
tHTKD |
twsTL twsTH 1
TxD
tDTKD

83-0044218

22

NEC

pPD79011

Serial Receive

tcyRk

cTso _k /‘

twsRL

twsRH

RxD %
tSRDK

tHKRD

83-0043328

ARCHITECTURAL. DESCRIPTION

The pwPD79011 is an upgraded version of xPD70322
{v25), NEC's original single-chip microcomputer. It has a
real-time operating system built into internal ROM.

The uPD79011 is the same as the V25 in both hardware
and software specifications except for the built-in ROM
contents. For more information on the V25, refer to the
wPD70320/70322 V25 Data Sheet

Memory Map

The uPD79011 can access a maximum of 1M bytes of
memory via the 20-bit address bus. A 16K-byte segment
of memory (FCOOOH to FFFFFH) is allocated to the
on-chip ROM. The pPD73011 operating system is stored
in this ROM area.

An external memory area of 2K bytes (FB8OOH to
FBFFFH) contains a configuration table. When reset, the
uPD7901t starts program execution at address
FFFFOH, and performs the necessary initialization ac-
cording to the information in this table. Then, program
control is passed to each user-defined task.

A 1K-byte area (00000H to 003FFH) contains the vector
tables. Thus, the total area for user tasks is from 00400H
to FB7FFH.

Figure 1 is the uPD79011 memory map.

Figure 1. Memory Map

fFFFFF

FFFFO

WOHY reussiuy

FD8co

FC000

FB800

User's Conliguration Table
for RTOS [ROM, max 2KB]

Heset Routine

User's nitial Task
[System Setup, etc.)

<4
7

~ User's Area R

12

00400

00000

Vector Table

Address determined at
configuration time.

49TB-516A

23

pPD79011

NEC

Reset Operation

When reset, the uPD79011 begins program execution at
address FFFFOH and jumps to the reset routine, which
performs the following processing.

® |nijtializes special registers

® Initializes the interrupt vector table

® Generates the system table

o Specifies both semaphore and mailbox areas

® Generates and starts tasks

After completing the required reset processing, the
#PD79011 jumps to the operating system dispatch rou-

tine, and then passes the program control to each
user-defined task.

Figure 2 is a flowchart of system operation at reset time.

Figure 2. Reset Operation Flowchart

(RESET)

| Jumps to RESET routine.

| RESET Operation l

l Dispatcher I

I First User Task I

49TB-517A

Interrupt Vectors

Up to 256 interrupt vectors (4 bytes/vector) can be
stored in the vector table area. See table 1.

Table 1. Vector Table Area Assignments

Vector Start

Number Address Use

0 to 31 00000H Reserved for hardware as on uPD70322 (V25)
321047 00080H Available for use

48 000COH Operating system data table

491055 000C4H Available for use

56t0 63 QO00EOH External uPD71059 (Master. Available for use)
64to71 00100H External nPD71059 (Slave 0. Available for

use)

24

Table 1. Vector Table Area Assignments (cont)
Vector Start
Number Address Use
72t0 79 00120H External uPD71059

(Slave 1. Available for use)
80to 87 00140H External pPD71059

(Slave 2. Available for use)
88to 95 00160H External pPD71059

(Slave 3. Available for use)
96 to 00180H External nPD71059
103 (Slave 4. Available for use)
104 to 001A0OH External uPD71059
M (Slave 5. Available for use)
112 to 001COH External uPD71059
118 (Slave 6. Available for use)
120 to O01EOH External pnPD71059
127 (Slave 7. Available for use)
128 to 00200H Available for use
285

Note: Vectors 56 to 127 are assigned to the master and slave interrupt
controllers when added to the uPD79011. Otherwise, the area is free
to be used.

Configuration Table

The configuration table resides in memory from FB800H
to FBFFFH. The reset routine obtains initialization infor-
mation from the configuration table. Any items not ini-
tialized by the reset routine must be initialized by the
user initial task.

Table 2 is an example of a configuration table. It shows
the assembler sources (described by RA70116). The
input values in the table are only examples.

Table 2. Configuration Table, Filing Example
CONF_TBL Data Type Example Value Notes
PTRO DW INTERNAL_RAM_BASE 1
PTR1 oW TASK_CNT

PTR2 DW SMA_CNT

PTR3 oW MBOX_CNT

INTERNAL_ DB FFH 2
RAM_BASE

PRC_INFO DB 46H

LOW_DS DwW 1000H 3
HIGH_DS DW 2000H

BLK_SIZE DW 2FCOH

NEC

pPD79011

Table 2. Configuration Table, Filing Example
{coni]
CONF_TBL Data Type Example Value Notes
PORTO DW 1000H 4
PORT1 DW 2000H
PORT2 DW OFFFFH
PORT3 DW OFFFFH
PORT4 DW OFFFFH
PORT5 Dw OFFFFH
PORT6 DW OFFFFH
PORT7 DW OFFFFH
PORT8 DW OFFFFH
TASK_CNT DB 2BH 5
MIN_TASK_NO DB 0
INIT_TASK DB 0
IDLE_SP bW 1000H 6
IDLE_SS DW OFO0OH
INIT_PCO Dw 0000H 7
INIT_PSQ DW 4000H ?::I:
INIT_ SPO DW 2000H 0
INIT_SS0 DW OFO00H
INIT_DS0 DW 2000H
INIT_PC1 Dw 1000H 7
INT_PST DwW 4000H User
Task

INIT_SP1 Dw 3000H 1
INIT_SS1 DW OF00OH
INIT_DS1 Dw 2000H
SMA_CNT bw 2 8
INIT_RSCO DwW 1

DW 10H
MBOX_CNT DW 10H
RESERVE DW k 00H 9
CONF_TBL ENDS

END
Notes:
(1) Pointers
(2) System information
(3) RAM information
(4) Interrupt controller information
(5) User task information
(6) Idle task stack information
(7) User task register information
(8) Semaphore/mailbox information
(9) Reserved area

Pointers

A pointer is an offset value obtained using a segment
value of OFB0O8H. The following pointers are provided.
The organization of the configuration table changes
according to user system status.

Pointer Size Points to

PTRO 1 word INTERNAL_RAM_BASE
PTR1 1 word TASK_CNT

PTR2 1 word SMA_CNT

PTR3 1 word MBOX_CNT

System Information

INTERNAL_RAM_BASE: This byte is required to set the
internal RAM base segment of the uPD79011. It is spec-
ified in the internal data area base register (IDB address
OFFFFFH).

If XXH is specified as the IDB value (where X is a
hexadecimal number), the internal RAM base segment is
assumed to be XX00H. Therefore, each register bank and
the special function register (including IDB) are assigned
to the 512-byte area starting at address XXEQOH.

PRC_INFO. This byte sets the processor control register
(PRC), which has the following functions.

® System clock divider of oscillator frequency
® Interval of time base interrupt
® Enable/disable of internal RAM

RAM Information

The configuration table provides the following RAM in-
formation.

LOW_DS/HIGH_DS: These two words specify the user
free RAM area. Because it is a continuous memory area,
boththe upper and lower limit segment addresses (offset
0) must be used to specify this area.

The initialize routine sets the system table and each
control block in this RAM area. Any remaining control
blocks are queued in the system table as memory blocks
(the section System Calls provides more information).
The user free RAM area must be large enough to hold all
control blocks.

25

pPD79011

NEC

BLK_SIZE: This word of information specifies the mem-
ory block size in units of 16 bytes. If BLK_SIZE of zero is
specified, no memory blocks are generated.

Interrupt Controlier

PORTO through PORTS (9 words) provide the information
required when one or more external interrupt controllers
(uPD71059) are connected to uPD79011.

PORTO specifies the port address for the master inter-
rupt controller. PORT1 through PORTS specify the port
addresses corresponding to the slave interrupt control-
lers (0 to 7).

If fewer than nine interrupt controllers are used, OFFFFH
indicates the addresses of the unused interrupt control-
lers.

User Task Information

TASK_CNT: This byte of information specifies the total
number of user tasks (except for idle tasks). Up to 63
tasks can be specified.

MIN_TASK_NO: User task numbers are assigned sequen-
tially starting from this number, the mimimum task
number. Only tasks with numbers greater than the mini-
mum task number are generated.

INIT_TASK: This byte of information indicates the num-
ber of the first task that the operating system must
execute when the system is initialized. All other tasks are
dormant when the system is initialized.

Idle Task Stack

IDLE_SP: This word of information specifies the idle task
stack pointer (SP) value.

IDLE_SS: This word of information specifies the idle task
stack segment (SS) value. When a stack is set, any value
can be used for the address. The stack area must be a
minimum of 32 bytes.

User Task Register Initialization

INIT_PCO: This word of information specifies the initial
value of the program counter (PC) in relation to the
minimum user task number specified for MIN_TASK_NO.

INIT_PS0: This word of information specifies the initial
value of the program segment (PS) for the first user task.

INIT_SPO: This word of information specifies the initial
value of the stack pointer (SP) for the first user task.

INIT_SS0: This word of information specifies the initial
value of the stack segment (SS) for the first user task.

26

INIT_DS0: This word of information specifies the initial
value of the data segment (DS) for the first user task.

The above set of register initial values is repeated for
each user task.
Semaphore/Mailbox

SMA_CNT: This word of information specifies up to 256
semaphores to be used.

INIT_RSCO: This word of information supplies the initial
number of resources for semaphore 0. After specification
of semaphore 0, the initial nhumber of resources of all
other semaphores should be specified sequentially.

MBOX_CNT: This word of information specifies the num-
ber of mailboxes (up to 256) to be used.

Reserved Area

RESERVE is a one-word area. You must specify a value of
0 for RESERVE.

Task Status and Status Change

Table 3 shows the various task statuses. Figure 3 shows
all task status changes.

Table 3. Task Status
Status

Meaning

RUN One task, given priority to use the CPU, is
currently being executed,

A task is ready to execute. A READY task has a
priority lower than the task currently under
execution and is hence blocked by the priority
handler.

READY

WAIT A task is waiting for an event to occur so it can
go into the READY status. This status is caused
by the following conditions:

WAIT - a system call caused the status change
and the task is either waiting for a resource with
a sermnaphore, waiting for a message (through
mail box or direct connection), or waiting for an
interrupt,

SUSPEND The system call SUS_TSK suspended execution
forcibly when the task was in the RUN status,
The task must walit for a system call to restart

execution

WAIT SUSPEND A task was forcibly moved into the WAIT status
and has a double wait status. If the system call
RSM_TSK is issued to a task in the WAIT
SUSPEND status, the task is released from the
SUSPEND status and goes into the WAIT
status. If released from the WAIT status, the task

goes into SUSPEND status.

When the system is initialized, only one task
goes into the READY state. All other tasks go
into the DORMANT status, If the system call
EXT_TSK s issued to a task that is executing,
this task becomes DORMANT.

DORMANT

NEC

puPD79011

Figure 3. Task Status Change
End Start
Dormant
Restart
Suspend estar
Suspend Suspend
Wait Release
Wait
Suspend
Restart Suspend
Wait
S @
.\\c,°“°\ '9%33
o2 J
Dispatch
Run Preemption Ready
49TB-518A
Idle Task

The uPD79011 operates an idle task when no user-set
task needs to be executed. The user-specified maximum
number plus 1 is used as the idle task number.

If the idle task begins execution, it executes the HALT
instruction in the Interrupt Enable status, then waits for
an interrupt to be issued.

FUNCTIONAL DESCRIPTION

The pPD79011 can handle up to 64 tasks numbered and
assigned priorities from 0 to 63. Task numbers and
priority levels correspond to each other. (For example,
task 3 has a task priority of 3.) Level 0 is the highest
priority; level 63 is the lowest priority.

Tasks are scheduled according to their priority levels.
The uPD79011 selects and executes the READY task
with the highest priority (RUN status).

Like the V25, the uPD79011 has 8 register banks (num-
bered 0to 7). Task switching can be done at a high speed
using these register banks. The operating system occu-
pies bank 7. The remaining banks (0 to 6) are all assigned
to tasks.

Of the 7 register banks, tasks numbered 0 to 5 are
assigned to banks 0 to 5 and are resident in the banks.
Because the bank-resident tasks do not require any
processing to save/return the task status, task switching
can be handled quickly.

The remaining tasks, numbered 6 to 63, are all assigned
to bank 6. These tasks, unlike tasks resident in banks,
require processing time to swap the task state to register
bank 6.

Table 4 shows the register banks and tasks.

Table 4. Register Banks and Corresponding

Tasks
Reglister Bank Task *Priority Type
0 0 0 Resident
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 61063 6to63 Non-resident
7 - - Occupied by pPD79011 0OS

No priority can be set for DMA or macroservice transfer.

Task Management

The task management function is used to terminate,
start, suspend, restart tasks, and set the restart address.

If system call STA_TSK is issued to a task, the task exits
the DORMANT status and goes into the READY status.
If system call SUS_TSK is issued to a task, the specified
task goes into the SUSPEND status. The task exits the
SUSPEND status when system call RSM_TASK is issued,
and its status becomes READY.

The restart address is set by issuing system call
SET_ADR. The SET_ADR is always used with system call
RES_INT to end the interrupt handler. (Refer to the
section Interrupt Management for additional informa-
tion.)

Synchronization/Communication Management

Tasks are synchronized by queuing or mutual exclusion.
If tasks are queued, they are processed and executed
one at a time.

Mutual exclusion is used in task processing to prohibit
simultaneous access by more than one task to a shared
resource (such as memory, an I/O device, etc.).

The uPD79011 uses semaphores for task synchroniza-
tion and mailboxes for intertask communication.

Semaphores

The uPD79011 implements semaphores to manage re-
sources and for queuing or mutually excluding tasks.

27

pPD79011

NEC

Both the P instruction (Obtain Resource) and the V
instruction (Release Resource) manage only one re-
source at a time.

The P instruction can use the following system calls.

REQ_RSC: If the request to obtain resource is not ac-
cepted, the task goes into the WAIT status.

POL_RSC: If the request to obtain resource is not ac-
cepted, the system is notified that the request has been
rejected.

The V instruction (system call REL_RSC) releases the
occupied resource.

Figure 4 shows how to use system calls to avoid simul-
taneous read and write to shared memory. In figure 4,
both tasks A and B share the same resource (memory).
An interrupt is issued when task A is executed and
control is passed between the two tasks. If the
REQ_RSC request is not accepted because the resource
is used by another task (task A), task B goes into the
WAIT status.

Figure 4. Mutual Exclusion
(Task A) (Task B)
(REQ_RSC Yy (REQ_RSC)

int —» (Common memory WRITE) (Common memory READ)

Y
REL_RSC)

(REL_RSC] (

49TB-5194

Intertask Communication

Tasks communicate with each other in one of two ways,
directly and nondirectly . Each task has a mailbox witha
task queue for receiving messages and a message queue
for sending messages. No maitbox is required for direct
communication. Messages can be sent directly from one
task to another.

If a task cannot receive a message for any reason (either
directly or in a mailbox), one of the following system
calls is issued.

RCV_MSG: Issued if a message was sent to a mailbox;
the task goes into WAIT status.

RCV_DIR: Issued if a message was sent directly; the task
goes into the WAIT status.

28

POL_MSG: Issued if a message was sent to a mailbox;
notifies the system that no message can be received.

POL_DIR: Issued if a message was sent directly; notifies
the system that no message can be received.

Memory Management

You can issue system calls to secure and return memory
blocks dynamically on the uPD79011. The memory block
size is specified at configuration time.

Task status remains the same and an the error code is
returned when the GET_MEM system call is unable to
secure a block of memory.

If a memory block is specified as the message area, the
system uses the first two bytes of memory (figure 5).
Consequently, available memory (specified in the config-
uration table) is reduced by 2 bytes.

Figure 5. Memory Block
User Area
Allocated Memory Block
T 2 Bytes
Addresses [Used by OS}
4978-520A

Interrupt Management

For internally and externally generated interrupt re-
quests, RTOS has the following functions to support the
associated interrupt service routines.

® Interrupt handler assignment
® Interrupt handler return
e Interrupt enable/disable
e |nterrupt wait status

When DEF_INT is issued, a correspondence is set be-
tween the request level (or vector type) of an external

uPD71059 interrupt controller and the starting address
of its service routine.

The ENA_INT and DIS_INT calls allow interrupts to be
enabled or disabled.

NEC

pPD79011

The SIG_INT and RES_INT system calls terminate the
interrupt handler and pass control to the top-queued
task (queued by the WAILINT call).

Figure 6 shows how SIG_INT passes control to a task.

The following events occur in the figure.

¢ Due to WAILINT, task B waits for an interrupt.

e An interrupt is issued while task A is running.

e SIG_INT is issued to task B at the end of interrupt
handling.

If the priority of task A is higher than that of task B,
control is passed to task A when SIG_INT is executed
(the interrupted task). If the priority of task B is higher,
control is passed to task B.

Figure 6. SIG_INT Examples

Task B
. Interrupt Handler\
- N
TaskA 7 N
-~

N WALLINT
~N

Interrupt —

~

N

SIG_INT (B)

B3YL-6775A

The RES_INT system call is always used with the SET_
ADR system call to set the restart address. If SET_ADR
has already been issued in an interrupted task handler
that issues RES_INT, RES_INT passes control to the
restart address specified by SET_ADR, not to the ad-
dress where the interrupt was issued.

Figure 7 shows how to use the RES_INT system call to
pass control to a task.

Figure 7. RES_INT Example

Task Interrupt Handler

SET_ADR (Restart_Address)

Interrupt—-vL -7

Restart_Address

RES_INT

49TB-522A

SYSTEM CALLS

The uPD79011 provides the following types of system
calls.

e Task management

e Synchronization/communication management
¢ Memory management

e Time management

Interrupt management

The system calls all have ID numbers assigned to them.
Descriptions of system calls include their syntax and
any error codes that may be returned to the task when
the call is issued.

You can use the C language or assembly language to
develop programs for the uPD79011. If using the C
language, an error code is returned as a function value of
the system call. If using assembly language, an error
code is returned to the AW register of the xPD79011 as a
return parameter.

C Language Interface

The uPD79011 supports the C language, a high-level
language for developing large or small programs. To
issue system calls in the C language, an assembler
routine is required as an interface between the uPD79011
operating system and the C language. Refer to the
Assembly Language Interface section for details on writ-
ing the interface.

Following is the syntax use for issuing calls in the C
language.

err = <name> ([< parameter>]);

Argument Description

err Function value returned by RTOS
<name> 7-letter System Call Name

< parameter> Input parameter

Assembly Language Interface

The uPD79011 has a C language-oriented architecture.
Therefore, when issuing system calls using assembly
language, the pPD79011 always sends and receives
parameters via a stack. (If the system call requires no
parameters, no stacking is needed.)

The syntax for issuing system calls using assembler and
loading the stack for operation are shown below. If the
parameter is a pointer, the offset value is stacked in the
lower address area of the stack, and the segment value is
stacked in the upper address area.

29

MPD79011

NEC

err = <name> (arg1, arg2, arg3);

Argument Description

<name> 7-letter System Call Name
arg1 unsigned int

arg2 int

arg3 unsigned int

The system call is issued in the following sequence.
Parameter 3 (arg3) is stacked.

Parameter 2 {arg2) is stacked.

Parameter 1 (arg1) is stacked.

A pointer to the parameter area is stacked.

The system call number is set in the AW register.
RTOS_ENTRY (FCOOOH) is called between segments.

An intersegment system call is needed even when the
RTOS_ENTRY address is within the same segment.

Figure 8. Stacking Conditions

Parameter Area Pointer «— SS : SP Always necessary to
indicate this position
immediately befare
RTOS _ENTRY
(FOCQ:CO00) is called

between segments

argl

Offset Value of arg2

Segment Value of arg2

arg3 High

49TB-523A

The procedures for issuing the SIG_INT and RES_INT
system calls are different. They are explained later in this
data sheet.

TASK MANAGEMENT SYSTEM CALLS

The following system calls are used for task manage-
ment.

System Call Description

STA_TSK Starts task processing
EXT_TSK Terminates task processing
SUS_TSK Suspends task processing
RSM_TSK Restarts task processing
SET_ADR Sets restart address

Start Task (STA_TSK)

System Call 0. STA_TSK starts task processing during
which the task goes into the READY status from the
DORMANT status. It has the following syntax.

int STA_TSK (task_no)

30

(1) Parameter.

j1ie] Name Description
In int task_no; Task number (0 to 62)

(2) Return value.

Error Code Number Description
E_OK 0 Normal end
E_DMT 1 Task is not DORMANT

(3) Cformat.

short task_no;
ercode = STA_TSK(task_no);

STA_TSK can only be issued to a task that is in the
DORMANT status.

The started task processing is done in one of the follow-
ing ways.

® Executed for the first time.

e After it is terminated once, it is restarted.

If a task is executed for the first time, the task processing
starts from the initial address. Initial values from the
configuration table are also used for the stack pointer,
stack segment, and data segment values. Other register
values are not defined.

If the task processing is ended once and then restarted,
the task also resumes at the initial address. In this case,
the stack pointer, stack segment, data segment values,
and other register values assume the values they had
just before the EXT_TSK system call was issued.

Exit Task (EXT_TSK)

System Call 1. EXT_TSK terminates task processing
and moves the task into the DORMANT status from the
RUN status. It has the following syntax.

int EXT_TSK ()
(1) Return value.

Error Code Number
E_OK 0

(2) C format.
ercode = EXT_TSK();

If STA_TSK restarts a task in the DORMANT status (due
to EXT_TSK), the start address returns to the initial
value. Other register values retain the values they had
when EXT_TSK was issued. Thus, the stack pointer,
stack segment, data segment values may not match the
values assumed at configuration time.

Description
Normal end

NEC

uPD79011

Suspend Task (SUS_TSK)

System Call 2. SUS_TSK suspends a task and puts it
into the SUSPEND status. It has the following syntax.

int SUS_TSK (task_no)

(1) Parameter.

/0 Name Description

In int task_no; Task number (0 to 62)
(2) Return value.

Error Code Number Description

E_OK 0 Normal end

E_DMT 1 Task is DORMANT

E_SUS 2 Task is in SUSPEND status

(3) C format.

short task_no;
ercode = SUS_TSK(task_no);

SUS_TSK cannot be issued to tasks that are in the
DORMANT status or in the SUSPEND status.

If SUS_TSK s issued to a task in the WAIT status, the task
goes into the WAIT SUSPEND status.
Resume Task (RSM_TSK)

System Call 3. RSM_TSK restarts a task that is in the
SUSPEND status. It has the following syntax.

int RSM_TSK (task_no)
(1) Parameter.

/O Name Description
In int task_no; Task number (0 to 62)

(2) Return value.

Error Code Number Description

E_OK 0 Normal end

E_DMT 1 Task is DORMANT
E_SUS 2 Task is not in SUSPEND

status
(3) C format.

short task_no;
ercode = RSM_TSK(task_no);

RSM_TSK cannot be issued to tasks that are in the
DORMANT status or in the SUSPEND status.

If it is issued to a task in the WAIT SUSPEND status, the
task is released from the SUSPEND status and goes into
the WAIT status.

Set Restart Address (SET_ADR)

System Call 4. SET_ADR sets the restart address of a
task. It has the following syntax.

int SET_ADR (restart_adr)

(1) Parameter.
/0 Name Description
In int (restart_adr); Task restart address

Return value

(2)

Error Code Number Description
E_OK 0 Normal end

(3) C format.

ercode = STA_TSK(restart_adr);
pointer restart_adr;

SET_ADR is always used in conjunction with the RES-
_INT system call. If RES_INT is issued on return from the
interrupt handler, control is passed to the restart address
set previously by SET_ADR.

SET_ADR can be issued more than once, but the system
only validates the last restart address that was issued.
Setting the restart address to 0 clears current restart
address.

SYNCHRONIZATION/COMMUNICATION
MANAGEMENT SYSTEM CALLS

The following system calls are used for synchronization/
communication management:

System Call Description

REQ_RSC Requests resource from a
semaphore

POL_RSC Requests resource from a
semaphore (no wait)

REL_RSC Releases resource for a semaphore

RCY_MSG Receives messages from a mailbox

POL_MSG Receives messages from a mailbox
{no wait)

SND_MSG Sends messages to a mailbox

RCV_DIR Receives messages sent to this task

POL_DIR Receives messages sent to this task
(no wait)

SND_DIR Sends messages to the specified
task

Request Resource (REQ_RSC)

System Call 5. REQ_RSC requests a resource from the
specified semaphore. It has the following syntax.

int REQ_RSC (semaphore_no)

3

pPD79011

NEC

(1) Parameter.

1/O Name Description
In int semaphore_no; Semaphore number (0 to
specified number)

(2) Return value.

Error Code Number
E_OK 0

(3) Cformat.

ercode = REQ_RSC(semaphore_no);
short semaphore_no;

Description
Normal end

If REQ_RSC is issued when the resource count is 0, the
task goes into the WAIT status. If the resource count is
more than 1, the resource count is decremented by one.

Each semaphore has a task queue. But, if REQ_RSC
causes a task to go into the WAIT status, the task is
placed in the last position in the queue regardless of its
priority.

Poll Resource (POL_RSC)

System Call 6. POL_RSC is used to request resources
from the specified semaphore. It has the following syn-
tax.

int POL_RSC (semaphore_no)
(1) Parameter.

1/0 Name Description
In int semaphore_no; Semaphore number (0 to
specified number)

(2) Return value.

Error Code Number Description
E_OK 0 Normal end
E_RSC 6 Resource count is 0

(3) Cformat.

ercode = POL_RSC(semaphore_no);
short semaphore_no;

POL_RSC is used to determine whether any resources
are left in the specified semaphore. Unlike the RE-
Q_RSC, POL_RSC never causes a task to go into the
WAIT status. Instead, it returns the E_RSC error code
when the resource count is 0. If the resource count is
more than 1, the count is decremented by 1.

Release Resource (REL_RSC)

System Call 7. REL_RSC releases resource for the
specified semaphore. It has the following syntax.

int REL_RSC (semaphore_no)

32

(1) Parameter.

1/O Name Description
In int semaphore_no; Semaphore number (0 to
specified number)

(2) Return value.

Error Code Number
E_OK 0

(3) Cformat.

ercode = REL_RSC(semaphore_no});
short semaphore_no;

Description
Normal end

When REL_RSC is issued, the semaphore resource
count is increased by 1. If WAIT tasks exist, the earliest-
wait task is selected and released from the WAIT status.

The initial value of the semaphore resource count is set
when the system is started. No error occurs even when
the resource count exceeds the initial value as a result of
issuing REL_RSC. If the resource count exceeds 65,535,
the resource count is cleared to 0 automatically and no
error is generated.

Receive Message (RCV_MSG)

System Call 8. RCV_MSG receives messages from
mailboxes. It has the following syntax.

int RCY_MSG (mailbox_no)
(1) Parameter

/O Name
In int mailbox_no;

Description
Mailbox number (0 to
specified number)

(2) Cformat.

seg = RCV_MSG{mailbox_no);
short mailbox_no;

If RCV_MSG is issued when messages are present in
mailboxes, the earliest message is selected and the
segment value of the message area is returned as the
function value.

If there is no message, the task goes into the WAIT status
and it is placed in the last position in the mailbox queue.

Poll Message (POL_MSG)

System Call 9. POL_MSG receives messages from
mailboxes. It has the following syntax.

int POL_MSG (mailbox_no)

NEC

puPD79011

(1) Parameter.

/O Name
In int mailbox_no;

Description
Mailbox number (0 to

specified number)

(2) Return value. If there are any messages in the spec-
ified mailbox, the message area segment value is
returned. If there is no message, the following error
code is returned.

Error Code Number Description
E_MSG 7 No message found

(8) Cformat.

seg = POL_MSG(mailbox_no);
short mailbox_no;

If POL_MSG is issued when messages are present in
mailboxes, the earliest message is selected and the
segment value of the message area is returned as the
function value.

If no message is found, unlike the RCV_MSG system call,
the task never goes into the WAIT status. Instead, the
E_MSG error code is returned.

Send Message (SND_MSG)

System Call 10. SND_MSG sends messages to mail-
boxes. It has the following syntax.

int SND_MSG (mailbox_no, msg_seg)
(1) Parameter

/O Name Description

In int mailbox_no; Mailbox number (0 to
specified number)

Send message area segment

In int msg_seg;
(2) Return value.

Error Code Number
E_OK 0

(3) Cformat.

ercode = SND_MSG(mailbox_no, msg_seg);
short mailbox_no;
short msg_seg;

Description
Normal end

If SND_MSG is issued when a task is waiting to be
processed, the task is released from the WAIT status, and
the send message area segment value is returned.

If no tasks are in the WAIT status, the message is queued
in the mailbox. Like tasks, messages are queued using
the first-in, first-out (FIFO) method.

Receive Direct Message (RCV_DIR)

System Call 11. RCV_DIR receives messages sent di-
rectly to a task. It has the following syntax.

int RCV_DIR ()
(1) Cformat.
ercode = RCV_DIR();

If RCV_DIR is issued when there is no message, the task
goes into the WAIT status. If a message is present, the
message area segment value is returned.

Poll Direct Message (POL_DIR)

System Call 12. POL_DIR receives messages sent by a
task to itself. It has the following syntax.

int POL_DIR ()

(1) Returnvalue. If POL_DIR is issued when a message is
present, the message area segment value is re-
turned. If no message is present, the following error
code is returned and the task does not enter WAIT

status.
Error Code Number Description
E_MSG 7 No message is present

(2) Cformat.
ercode = POL_DIR(n);

Send Direct Message (SND_DIR})

System Call 13. SND_DIR specifies a task and sends a
message to the specified task. It has the following
syntax.

int SND_DIR (task_no, msg_seg)

(1) Parameter

/O Name Description
In int task_no; Task number (0 to 62)
In int msg_seg; Send message area segment

(2) Return value.

Error Code Number
E_OK 0

(3) C format.

ercode = SND_DIR(task_no, msg_seg);
short task_no;
short msg_seg;

Description
Normal end

If SND_DIR is issued when the specified task is waiting
for a message directly, the task is released from the WAIT
status. The message area segment value is returned to
the task.

33

pPD79011

NEC

If the specified task is not waiting for any message
directly, the message is placed in the task message
queue using the FIFO method.

MEMORY MANAGEMENT SYSTEM CALLS

The following system calls are used for memory man-
agement.

System Call Description
GET_MEM Gets a memory block
REL_MEM Releases the memory block

Get Memory (GET_MEM)

System Call 14. GET_MEM allocates a memory block. 1t
has the following syntax.

int GET_MEM ()

(1) Return value. If a memory block is available when
GET_MEM is issued, the memory block segment
value is returned. If no memory block is present, the
following error code is returned.

Error Code Number
E_BLK 3

(2) Cformat.
ercode = GET_MEM();

GET_MEM can use the memory block as a message area
for intertask communications. The memory block size is
specified when the system is started, and the value is
fixed.

Description
No memory block found

If the error code is returned, the task never goes into the
WAIT status.
Release Memory (REL_MEM)

System Call 15. REL_MEM releases the specified mem-
ory block. It has the following syntax.

int RELLMEM (mem_blk)
(1) Parameter.

/O Name Description
in int mem_blk; Segment value of the released
memory block

(2) Return value.

Error Code Number
E_OK 0

(3) C format.

ercode = REL_MEM(mem_blk);
short mem_blk;

Description
Normal end

34

REL_MEM cannot release memory blocks containing
messages in a mailbox or task queue. The memory block
can only be released after a message is received.

TIME MANAGEMENT SYSTEM CALLS

The following system calls are used for time manage-
ment.

System Call Description
GET_TIM Reads the system time
SET_TIM Sets the system time

Get Time (GET_TIM)

System Call 16. GET_TIM reads the system time. It has
the following syntax.

int GET TIM (time_ptr)
(1) Parameter.

1O Name
In struct t_time * time_ptr;

Description
Pointer to location
of system time

(2) Time structure.

struct t_time{
int I_time;
int m_time;
int h_time;};
(3) Return value.
Error Code Number
E_OK 0
(4) Cformat.

ercode = GET_TIM(time_ptr);
pointer time_ptr;

Description
Normal end

The system time is 3-word data. The lower order word is
stored in the lowest order address; the intermediate data
is in the intermediate address; and the upper order data
is in the highest address.

The minimum resolution of the system time is deter-
mined by the value set in the time base counter in the
wPD79011. However, since interrupts to the pFD79011
are inhibited during system call pracessing, choose the
minimum resolution of the system time with system call
overhead time in mind.

Set Time (SET_TIM)

System Call 17. SET_TIM sets the system time. It has
the following syntax.

NEC

uPD79011

int SET_TIM (time_ptr)

(1) Parameter.

e} Name Description
In struct t_time * time_ptr; Time pointer

(2) Time structure.

struct t_time{
int I_time;
int m_time;
int h_time;};

(3) Return value.

Error Code Number
E_OK 0

(4) C format.

Description
Normal end

pointer time_ptr;
ercode = SET_TIM(time_ptr);

The pPD79011 uses the on-chip timer base counter
output as the system real-time clock source.. The on-
chip timer therefore starts its counting operation when
the system is started.The interval from the SET_TIM call
to the next real-time clock interrupt is an error term
associated with the initial call to SET_TIM, and all
subsequent calls produce additional pseudorandom er-
ror times. The real-time clock interval is set at configu-
ration time.

INTERRUPT MANAGEMENT SYSTEM CALLS

The following system calls are used for interrupt man-
agement:

System Cali Description

DEF_INT Sets the start address of the
interrupt handler

SIG_INT Starts a task waiting for an
interrupt and terminates the
interrupt handler operation

WALLINT Waits for an interrupt

CANLINT Releases a task waiting for an
interrupt from WAIT status

DIS_INT Disables interrupts by device
number

ENA_INT Enables interrupts by device
number

RES_INT Terminates interrupt handler

operation and calls the restart
address

Define Interrupt Handler (DEF_INT)

System Call 18. DEF_INT sets the start address of the
interrupt handler. It has the following syntax.

int DEF_INT (device_no, start_adr)
(1) Parameter.

1/O Name
In int device_no;

Description

Device number (interrupt
level or vector type)
Pointer to interrupt
handler start address

In int (start_adr) ();

(2) Return value.

Error Code Number Description

E_OK 0 Normal end

E_DVN 4 Device number error
E_SYS 5 System error

(3) Cformat.

ercode = DEF_INT(device_no, start_adr);
short device_no;
pointer start_adr;

If DEF_INT is issued, correspondence between interrupt
request level of external xPD71059 interrupt controller
(or interrupt request vector type) and start address of the
interrupt handler is established. When an interrupt . re-
quest vector type is specified, the interrupt request
control register can also be set at the same time.

If 0 is specified for the interrupt handler start address,
the existing start address is cleared. If the start address
of the interrupt handler is cleared after an interrupt
request level of the interrupt controller is specified, the
mask bit (IMK) equivalent to the specified interrupt
request level is set and the interrupt is masked. Then the
existing start address is cleared.

If the start address of the interrupt handler is cleared
after an interrupt request vector type is specified, the
existing start address is cleared and the interrupt re-
quest control register is set. At this time, the interrupt
mask can be set at the same time by explicitly setting bit
6 of the interrupt request control register.

If the start address of the interrupt handler is not 0, the
address is set with no other changes. The IMK (mask bit)
is never altered.

If the start address of the interrupt handler is set after the
vector type of interrupt request is specified, the interrupt
request control register is also set. Therefore, interrupt
mask operation can be specified using bit 6 of the
interrupt request control register.

35

pPD79011

NEC

External Interrupt Controller Definition

The interrupt request level of the external interrupt
controller can be specified by setting 0 in bit 7. It is
specified as follows.

Bit(s) Description

0-2 Slave level interrupt request level

3 If 0, master/slave configuration;
if 1, master only

4-6 Master interrupt request level

7 Fixed to 0

8-15 Upper-order byte is fixed to 0

The low-order byte is used to specify the interrupt level.
Bits 0 to 2 specify the slave interrupt request level when
in master-slave configuration; bit 3, whether to use any
slave device; bits 4 to 6, the master interrupt request
level.

The interrupt request level of the interrupt controller and
each interrupt request vector type are in one-to-one
corrrespondence The interrupt request is divided into 72
levels, and they correspond to interrupt request vector
types 56 to 127.

For example, if, the device consists of only the master, 0
is specified for the master interrupt request level; this
interrupt request vector type becomes 56. Slave inter-
rupt request level 7 must be connected to master inter-
rupt request level 7 when in master-slave configuration
and becomes vector type 127.

The interrupt request vector type can be specified by
setting 1 in bit 7. It is specified as follows.

Bit(s) Description

0-6 Vector type

7 Fixed to 1

8-15 interrupt request control register value

The pPD79011 operating system uses the on-chip time
base counter as the system timer. As a result, other tasks
cannot specify vector type 31 (equivalent to the time
base counter) when the system timer function is used.

Signal Interrupt (SIG_INT)

System Call 19. SIG_INT activates a task waiting for an
interrupt and terminates the currently executing inter-
rupt handler. It has the following syntax.

void SIG_INT (task_no)
(1) Parameter.

/O Name Description
In int task_no; Target task number (0 to 62)

36

(2) C format.

ercode = SIG_INT (task_no);
short task_no;

SIG_INT can be issued only from inside an interrupt
handler.

If SIG_INT is issued, the interrupt handler operation ends
and control is passed to the target task. Therefore, when
SIG_INT is used, control is never passed to the address
following SIG_INT.

If an error occurs, no error code is returned and the
specified task is not started. In this case, control is
returned immediately to the point where the interrupt
was issued.

SIG_INT is not used to control multiprocessing of exter-
nal or internal interrupt requests. Nesting management
related to the interrupt handler and execution of the EQI
(End Of Interrupt) and FINT (Finish Interrupt) instruc-
tions must be done in each interrupt handler.

The procedures used to issue SIG_INT (and system call
RES_INT) differ from those to issue other system calls.
When using assembly language, SIG_INT is issued as
follows.

Procedure Description

PUSH task_no The target task number is set in
stack

BR SIG_INT_ Far jump to absolute address

ENTRY OFCOOEH

Wait for Interrupt (WAI_INT)

System Call 20. WALINT moves a task into the WAIT
status. It has the following syntax.

int WALLINT ()
(1) Return value.
Error Code Number Description
E_OK 0 Normal end
E_INT 8 Release from interrupt
wait status

(2) C format.
ercode = WALINT,;

When issuing this system call, the current task goes into
the interrupt wait status. If the SIG_INT system call is
issued to a waiting task (which was invoked by WAI_INT),
the specified task is released from the WAIT status.

NEC

pPD79011

A task can release another task’s WAIT (for interrupt)
status by means of the CAN_INT system call. Otherwise
an interrupt handler will release the WAIT status after an
interrupt is presented.

if SIG_INT is used to release a task from the WAIT status,
the error code E_OK is returned. If CAN_INT is used to
release the WAIT status, the error code E_INT is re-
turned.

Cancel Interrupt (CAN_INT)

System Call 21. CAN_INT releases the specified task
from the WAIT status. It has the following syntax.

int CAN_INT (task_no)

(1) Parameter.

1/ Name Description
In int task_no; Task number {0 to 62)

(2) Return value.

Error Code Number Description
E_OK 0 Normal end
E_INT 8 Task is not waiting for interrupt

(3) Cformat.

ercode = CAN_INT(task_no);
short task_no;

If CAN_INT is issued to a task that is waiting for an
interrupt (due to system call WAI_INT), the specified task
exits the WAIT status. If CAN_INT is issued when the
specified task is not waiting for any interrupt, the E_INT
error code is returned.

Disable Interrupt (DIS_INT)

System Call 22. DIS_INT disables interrupts in units of
device number (interrupt request level or interrupt re-
quest vector type). It has the following syntax.

int DIS_INT (device_no)

(1) Parameter.

/O Name Description
In int device_no; Device number

(2) Return value.

Error Code Number Description
E_OK 0 Normal end
E_DVN 4 Device number error

(3) C format.

ercode = DIS_INT(device_no);
short device_no;

DIS_INT can be issued from either a task or an interrupt
handler.

To specify the interrupt request level of the interrupt
controller, set the corresponding IMR (mask bit) of the
external 71059. To specify the interrupt request vector
type, set bit 6 of the interrupt request control register.

Enable Interrupt (ENA_INT)

System Call 23. ENA_INT enables interrupts in units of
device number (interrupt request level or interrupt re-
quest vector type). It has the following syntax.

int ENA_INT (device_no)
(1) Parameter.

/O Name Description
In int device_no; Device number

(2) Return vatue.

Error Code Number Description
E_OK 0 Normal end
E_DVN 4 Device number error

(3) Cformat.

ercode = ENA_INT(device_no);
short device_no;

ENA_INT can be issued from either a task or an interrupt
handler.

To specify the interrupt request level of the interrupt
controller, reset the corresponding IMR (mask bit) of
external 71059. To specify the interrupt request vector
type, reset bit 6 of the interrupt request register.

Reset Interrupt (RES_INT)

System Call 24. RES_INT terminates interrupt handler
operation and passes control to the restart address. It
has the following syntax.

void RES_INT ()
(1) Cformat.
ercode = RES_INT();

RES_INT is always used in conjunction with system call
SET_ADR.

If SET_ADR has been already issued in a task that was
interrupted by a handler that issues RES_INT, control is
passed to the specified restart address. If SET_ADR has
not been issued to that task, control is returned to the
point where the interrupt was issued.

RES_INT cannot be used to control multiple interrupt
processing, neither for internal nor for external 71059

37

pPD79011

NEC

sources. Management of interrupt handler nesting and
the execution of EOIl (End Of Interrupt) and FINT (Finish

Interrupt) instructions must be done in each interrupt
handler.

The procedure for issuing RES_INT (and system call
SIG_INT) differs from the procedure for issuing other
system calls. Use the following syntax to issue RES_INT
using assembly language.

BR RES_INT_ ENTRY; Far jump to absolute
address FC020H

38

