LPS001WP MEMS pressure sensor 300-1100 mbar absolute digital output barometer Preliminary data ### **Features** - Piezoresistive pressure sensor - 300-1100 mbar absolute pressure range - 0.065 mbar resolution - Embedded offset and span temperature compensation - Embedded 16-bit ADC - SPI and I²C interfaces - Supply voltage 2.2 V to 3.6 V - High shock survivability (10000 g) - Small and thin package - ECOPACK[®] lead-free compliant ### **Applications** - Altimeter and barometer for portable devices - Smartphones - Indoor navigation - GPS applications - Weather station equipment - Sports watches ## **Description** The LPS001WP is an ultra compact absolute piezoresistive pressure sensor. It includes a monolithic sensing element and an IC interface able to take information from the sensing element and to provide a digital signal to the external world. Table 1. Device summary The sensing element consists of a suspended membrane realized in side a single mono-silicon substrate. It is capable of detecting pressure and is manufactured using a dedicated process developed by ST, called VENSENS. Thr. V.F.N.SENS process allows the building of a ncno-silicon membrane above an air cavity with controlled gap and defined pressure. The membrane is very small compared to the traditionally built silicon micromachined membranes. Membrane breakage is prevented by intrinsic mechanical stoppers. The IC interface is manufactured using a standard CMOS process that allows a high level of integration to design a dedicated circuit which is trimmed to better match the sensing element characteristics. The LPS001WP is available in a small plastic land grid array (HCLGA) package and is guaranteed to operate over a temperature range extending from -40 °C to +85 °C. The package is holed to allow external pressure to reach the sensing element. The LPS001WP belongs to a family of products suitable for a variety of applications. | Part number | per Temperature range [°C] Packa | | Packing | |-------------|----------------------------------|----------|---------------| | LPS001WP | -40 to +85 | HCLGA-8L | Tray | | LPS001WPTR | -40 10 +65 | HOLGA-6L | Tape and reel | Contents LPS001WP # **Contents** | 1 | Bloc | ck diagram and pin description | 6 | |-----------------|------|--|----| | | 1.1 | Block diagram | 6 | | | 1.2 | Pin description | 6 | | 2 | Мес | hanical and electrical specifications | 8 | | | 2.1 | Mechanical characteristics | 8 | | | 2.2 | Electrical characteristics | 8 | | 3 | Abs | olute maximum ratings | 9 | | 4 | Fund | ctionality | 10 | | | 4.1 | Sensing element | 10 | | | 4.2 | IC interface | 10 | | | 4.3 | IC interface Factory calibration | 10 | | _ | _ | | | | 5 | | lication hints | | | | 5.1 | Soldering information | | | | 5.2 | Procedure for single acquisition (low power consumption) | | | | | 5.2.1 ราวuced power consumption procedure | 12 | | 6 | Digi | te! inverfaces | 13 | | | 3.8 | | | | | S | 6.1.1 I ² C operation | | | ~5 ^U | 6.2 | SPI bus interface | 15 | | Q | | 6.2.1 SPI read | 17 | | | | 6.2.2 SPI write | 17 | | | | 6.2.3 SPI read in 3-wires mode | 18 | | 7 | Regi | ister mapping | 19 | | В | Regi | ister description | 20 | | | 8.1 | WHO_AM_I (0Fh) | 20 | | | 8.2 | CTRL_REG1 (20h) | 20 | | LPS001WP | |----------| |----------| | | 8.3 | CTRL_REG2 (21h) | 21 | |------|------|---|----| | | 8.4 | STATUS_REG (27h) | | | | 8.5 | PRESS_OUT_L (28h) | | | | 8.6 | PRESS_OUT_H (29h) | | | | 8.7 | TEMP_OUT_L (2Ah) | 23 | | | 8.8 | TEMP_OUT_H (2Bh) | 23 | | | 8.9 | DELTA_P_L (2Ch) | 24 | | | 8.10 | DELTA_P_H (2Dh) | | | | 8.11 | REF_P_L (30h) | 24 | | | 8.12 | REF_P_H (31h) | 25 | | | 8.13 | THS_P_L (32h) | 25 | | | 8.14 | REF_P_H (31h) THS_P_L (32h) THS_P_H (33h) | 25 | | 9 | Pack | age information | 27 | | 0000 | | Product(s) | 29 | | | | | | **Contents** List of tables LPS001WP # List of tables | Table 1. | Device summary | | |-------------|--|------------| | Table 2. | Pin description | | | Table 3. | Mechanical characteristics | . 8 | | Table 4. | Electrical characteristics | | | Table 5. | Absolute maximum ratings | | | Table 6. | Power consumption @ 1 Hz and @ 4 Hz ODR | | | Table 7. | Serial interface pin description | | | Table 8. | Serial interface pin description | 13 | | Table 9. | SAD+read/write patterns | | | Table 10. | Transfer when master is writing one byte to slave | 14 | | Table 11. | I ransfer when master is writing multiple bytes to slave | 15 | | Table 12. | Transfer when master is receiving (reading) one byte of data from slave | | | Table 13. | Transfer when master is receiving (reading) multiple bytes of data from s'av > | 15 | | Table 14. | Registers address map | 19 | | Table 15. | WHO_AM_I (0Fh) register | 20 | | Table 16. | Registers address map | 20 | | Table 17. | CTRL REG1 (20h) register description | 20 | | Table 18. | Output data rate bit configurations | 21 | | Table 19. | CTRL_REG2 (21h) register | 21 | | Table 20. | CTRL_REG2 (2111) register description | ∠ I | | Table 21. | PRESS_OUT_L (28h) register | 22 | | Table 22. | RESS_OUT_L (28h) register description | 23 | | Table 24. | PRESS_OUT_H (29h) register description. | | | Table 25. | TEMP_OUT_L (2Ah) register | | | Table 26. | TEMP_OUT_L (2Ah) register description | | | Table 27. | TEMP_OUT_H (2Bh) register | | | Table 28. | TEMP_OUT_H (?Rh) register description. | | | Table 29. | DELTA_P_L (20th register | | | Table 30. | DELTA_P_L (2Ch) register description | | | Table 31. | DELTA [2]-H (2Dh) register | | | Table 32. | DFL TA_P_H (2Dh) register description | | | Table 33. | REF_P_L (30h) register | | | Table 34. | REF_P_L (30h) register description | | | Table 35. | REF_P_H (31h) register | | | ີ aໂກໄລ 36. | REF_P_H (31h) register description | | | Table 37. | THS_P_L (32h) register | | | Table 38. | THS_P_L (32h) register description | | | Table 39. | THS_P_H (33h) register | | | Table 40. | THS_P_H (33h) register description | | | Table 42. | Revision history | 29 | **577** LPS001WP List of figures # **List of figures** | | Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. | Block diagram | 6
11
17
17 | |---|---|---|---------------------| | | Figure 7.
Figure 8.
Figure 9.
Figure 10. | SPI write protocol | 18
18
28 | | | | *e Produce | | | | | Opeoler | | | | | product(s) | | | C | jbsolf | Block diagram Pin connection LPS001WP electrical connection Read and write protocol SPI read protocol Multiple bytes SPI read protocol (2 bytes example) SPI write protocol Multiple bytes SPI write protocol (2 bytes example) SPI read protocol in 3-wires mode HCLGA-8L mechanical drawing | | | | | | | #### Block diagram and pin description 1 #### 1.1 **Block diagram** Figure 1. **Block diagram** #### Pin description 1.2 Pin connection Figure 2. Table 2. Pin description | Pin n° | Pin n° | Pin name | Function | | |---------------------|--------|---------------------|---|--| | 1 | 1 | Vdd | Power supply | | | 2 | 2 | PS | Protocol selection I ² C/SPI mode selection (logic 1: I ² C mode; logic 0: SPI enabled) | | | 3 | 3 | GND | 0 V supply | | | 4 | 4 | HV | Connect to VDD (logical '1') | | | 5 | 5 | CS | SPI enable (chip select) | | | 6 | 6 | SA0/SDO | I ² C less significant bit of device slave address (SA0) SPI serial data output | | | 7 | 7 | SDA/
SDI/
SDO | I ² C serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO) | | | 8 | 8 | SCL/SPC | I ² C serial clock (SCL) SPI serial port clock (SPC) | | | Obsolete Product(s) | | | | | #### Mechanical and electrical specifications 2 Conditions @ Vdd = 2.5 V, T = 25 °C, unless otherwise noted. #### **Mechanical characteristics** 2.1 Table 3. **Mechanical characteristics** | Symbol | Parameter | Test condition | Min. | Typ. ⁽¹⁾ | Max. | Unit | | |---|--------------------------|--|------|---------------------|------|--------------------|--| | Pop | Operating pressure range | | 300 | | 1100 | mbar | | | Res ⁽²⁾ | Pressure resolution | | | 16 | | Lsi)/m/bar | | | Pn | Pressure noise density | | | 0.028 | \C | າກbar/sqrt
(Hz) | | | Acc | Accuracy | P = 300 to 1100 mbar
T = -10 to 85 °C | 01 | +/-25 | | mbar | | | TSo | Temperature resolution | . 0 | | 64 | | LSb/°C | | | Typical specifications are not guaranteed. Parameter given as standard deviation value. | | | | | | | | ^{1.} Typical specifications are not guaranteed. #### **Electrical characteristics** 2.2 Table 4. Electrical characteristics | | Symbol | Farameter | Test condition | Min. | Typ. ⁽¹⁾ | Max. | Unit | |-----|--------------------|---|--|------|---------------------|------|------| | | Vdd | Supproditage | | 2.2 | | 3.6 | V | | 0/6 | લા | Supply current | Continous mode
ODR _P = 7 Hz
ODR _T = 1 Hz | | 190 | | μА | | | ĺ | | During conversion | | 400 | | | | 202 | IddPdn | Supply current in power-down mode | | | 1 | | μΑ | | O | ODR _P | Pressure output data rate ⁽²⁾ | | | 7 | 12.5 | Hz | | | ODR _T | Temperature output data rate ⁽³⁾ | | 1 | 7 | 12.5 | Hz | | | Top ⁽³⁾ | Extended operating temperature range | | -40 | | +85 | °C | ^{1.} Typical specifications are not guaranteed. ^{2.} Parameter given as standard deviation value. ^{2.} For pressure and temperature output data rate configurations refer to *Table 18*. ^{3.} Datasheet specification guaranteed only between -10 to 85 °C. #### **Absolute maximum ratings** 3 Stress above those listed as "Absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 5. **Absolute maximum ratings** | Symbol | Ratings | Maximum value | Unit | |------------------|----------------------------------|------------------|------| | Vdd | Supply voltage | -0.3 to 6 | V | | Vin | Input voltage on any control pin | -0.3 to Vdd +0.3 | V | | Р | Overpressure | 20 | bar | | T _{STG} | Storage temperature range | -40 to 4125 | °C | This is a mechanical shock sensitive device, improper handling can cause permanent damage to the part This is an ESD sensitive device, improper handing can cause permanent damage to Specific Producties). Obsi Functionality LPS001WP ## 4 Functionality The LPS001WP is a high-resolution, digital-output pressure sensor packaged in an LGA holed package. The complete device includes a sensing element based on a piezoresistive Whetstone bridge approach, and an IC interface capable of providing information from the sensing element to external applications as a digital signal. ### 4.1 Sensing element An ST proprietary process is used to obtain a mono-silicon μ-sized membrane for MEMS pressure sensors, without requiring substrate-to-substrate bonding. When pressure is applied, membrane deflection induces an imbalance in the Wheats one bridge piezoresistors, whose output signal is converted by the IC interface. Intrinsic mechanical stoppers prevent breakage in case of pressure oversuress, ensuring measurement repeatability. The pressure inside the buried cavity under the membrane is constant and controlled by process parameters. To be compatible with traditional packaging technologies, a silicon holed cap is placed on top of the sensing element. During the moulding phase, this opening is covered by dedicated protection to avoid membrane blocking. The package design leaves the holec car exposed, allowing ambient pressure to reach the sensing element. ### 4.2 IC interface The complete neasurement chain consists of a low-noise capacitive amplifier, which converts the resistive unbalance of the MEMS sensor into an analog voltage signal, and of an analog-to-digital converter, which translates the produced signal into a digital bitstream. The converter is coupled with a dedicated reconstruction filter which removes the high irrequency components of the quantization noise and provides low rate and high resolution digital words. The pressure data can be accessed through an I²C/SPI interface, making the device particularly suitable for direct interfacing with a microcontroller. ### 4.3 Factory calibration The IC interface is factory-calibrated at two temperatures and two pressure levels for sensitivity and accuracy. The trimming values are stored inside the device using a non-volatile structure. Each time the device is turned on, the trimming parameters are downloaded into the registers to be employed during normal operation. This allows the user to employ the device without requiring further calibration. LPS001WP Application hints ## 5 Application hints Figure 3. LPS001WP electrical connection The device core is supplied through the Vdd 'ine. Fower supply decoupling capacitors (100 nF ceramic, 10 µF aluminum) should be placed as near as possible to the supply pad of the device (common design practice). The functionality of the device and the measured data outputs are selectable and accessible through the I²C/SPI interfact. When using the I²C, CS must be tied high. It is possible to change, or the fly, the communication interface used to access the device registers. The PC (Protocol Selection) pin performs this change. ## 5.1 Sold@ring information The HCLGA package is compliant with the ECOPACK® standard. It is qualified for soldering heat resistance according to JEDEC J-STD-020C. ## 5.2 Procedure for single acquisition (low power consumption) If the LPS001WP output data rate requested is lower than 7 Hz, a dedicated procedure to reduce the power consumption can be implemented. LPS001WP is in power down, then it is woken up for the acquisition and again put in power down. This procedure reduces the power consumption. **Application hints** LPS001WP #### 5.2.1 Reduced power consumption procedure - LPS001WP power down and low resolution mode - Write CTRL REG1 (20h) <= '1000xxxx'b or - b) Write CTRL_REG1 (20h) <= '0000xxxx'b (normal resolution) - LPS001WP wake up - Write CTRL_REG1 (20h) <= '1100xxxx'b or - Write CTRL REG1 (20h) <= '0100xxxx'b (normal resolution) te Product(s) - Wait 80 ms settling time 3. - Output read - Read PRESS_OUT_H (29h) a) - b) Read PRESS_OUT_L (28h) - c) Read TEMP_OUT_H (2Bh) - Read TEMP_OUT_L (2Ah) d) - LPS001WP power down and low power mode - Write CTRL_REG1 (20h) <= '1000xxxx'b or Write CTRL_REG1 (20h) <= 'OU')0.ccxx'b (normal resolution) Note: Power down and normal mode configuration: CTRL_REG1 (20h) <= '0000xxxx'b Table 6. Power consumotion @ 1 Hz and @ 4 Hz ODR | | | Power consumption | Condition | Min. | Typ. ⁽¹⁾ | Max. | Unit | |--------|-----|-------------------|---------------------------------|------|---------------------|------|------| | | Idd | 100,5 | Low resolution
ODR = 1 Hz | | 21 | | | | ٠. | | Cumply oursent | Normal resolution
ODR = 4 Hz | | 75 | | | | 1050/6 | | Supply current | Normal resolution
ODR = 1 Hz | | 40 | | μA | | Oh | | | Normal resolution
ODR = 4 Hz | | 150 | | | ^{1.} Typical specifications are not guaranteed. LPS001WP Digital interfaces ## 6 Digital interfaces The registers embedded inside the LPS001WP may be accessed through both the I^2C and SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire interface mode. The serial interfaces are mapped onto the same pads. To select/exploit the I²C interface, CS line must be tied high. PS pin select I²C or SPI interface. If the I²C interface is disabled (PS pin connected to GND or logical '0') and CS is kept high (logical '1'), pin SDO and SDI are put in tri-state. Table 7. Serial interface pin description | PIN Name | PIN Description | |-------------|---| | PS | Protocol selection I ² C/SPI mode selection (logic 1: I ² C mode; logic 0: I ² C disabled) | | CS | SPI enable (chip select) | | SCL/SPC | I ² C serial clock (SCL)
SPI serial port clock (SPC) | | SDA/SDI/SDO | I ² C serial data (SDA) SPI serial data input (SDi), 3-wire interface serial data output (SDO) | | SA0/SDO | I ² C less significant bit of device slave address (SA0)
SPI cerial data output (SDO) | ## 6.1 I²C serial interface The LP3001WP I²C is a bus slave. The I²C is employed to write the data into the registers of ose content can also be read back. The relevant I²C terminology is given in *Table 8*. Table 8. Serial interface pin description | Term | Description | |-------------|---| | Transmitter | The device which sends data to the bus | | Receiver | The device which receives data from the bus | | Master | The device which initiates a transfer, generates clock signals, and terminates a transfer | | Slave | The device addressed by the master | There are two signals associated with the I²C bus: the serial clock line (SCL) and the serial data line (SDA). The latter is a bi-directional line used for sending and receiving the data to/from the interface. Both the lines are connected to Vdd through a pull-up resistor embedded inside the LPS001WP. When the bus is free, both lines are high. Digital interfaces LPS001WP The I²C interface is compliant with fast mode (400 kHz) I²C standards as well as normal mode. ### 6.1.1 I²C operation The transaction on the bus is started through a START (ST) signal. A start condition is defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After this has been transmitted by the master, the bus is considered busy. The next byte of data transmitted after the start condition contains the address of the slave in the first 7 bits and the eighth bit tells whether the master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first seven bits after a start condition with its address. If they match, the device considers itself addressed by the master. The slave address (SAD) associated to the LPS001WP is 101110xb. The SDO pad can be used to modify the less significant bit of the device address. If the SDO pad is connected to voltage supply, LSb is '1' (address 1011101b), otherwise, if the SDO pad is connected to ground, the LSb value is '0' (address 1011100b). This solution permits to connect and address two different LPS001WPs to the same I²C lines. Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line LOW so that it remains stable low during the HIGH period of the anknowledge clock pulse. A receiver which has been addressed is obliged to generate an anknowledge after each byte of data has been received. The I²C embedded inside the LPS00 (WF behaves like a slave device and the following protocol must be adhered to. After the start condition (ST) a slave address is sent (SAD + R/W), once a slave acknowledge (SAK) has been returned, an 8-bit sub-address is transmitted (SUB): the 7 LSD represent the actual register address while the MSB enables address auto increment. If the MSb of the SUB field is 1, the SUB (register address) is automatically incremented to allow a multiple data read/write. The slave aciouses is completed with a read/write bit. If the bit was '1' (Read), a repeated START (STE) condition must be issued after the two sub-address bytes; if the bit is '0' (Write), the master transmits to the slave with an unchanged direction. *Table 9* explains how the SE peread/write bit pattern is composed, listing all the possible configurations. Table 9. SAD+read/write patterns | Command | SAD[6:1] | SAD[0] = SDO | R/W | SAD+R/W | |---------|----------|--------------|-----|----------------| | Read | 101110 | 0 | 1 | 10111001 (B9h) | | Write | 101110 | 0 | 0 | 10111000 (B8h) | | Read | 101110 | 1 | 1 | 10111011 (BBh) | | Write | 101110 | 1 | 0 | 10111010 (BAh) | Table 10. Transfer when master is writing one byte to slave | ĺ | Master | ST | SAD + W | | SUB | | DATA | | SP | |---|--------|----|---------|-----|-----|-----|------|-----|----| | | Slave | | | SAK | | SAK | | SAK | | LPS001WP Digital interfaces Table 11. Transfer when master is writing multiple bytes to slave | Master | ST | SAD + W | | SUB | | DATA | | DATA | | SP | |--------|----|---------|-----|-----|-----|------|-----|------|-----|----| | Slave | | | SAK | | SAK | | SAK | | SAK | | Table 12. Transfer when master is receiving (reading) one byte of data from slave | Master | ST | SAD + W | | SUB | | SR | SAD + R | | | NMAK | SP | |--------|----|---------|-----|-----|-----|----|---------|-----|------|------|----| | Slave | | | SAK | | SAK | | | SAK | DATA | | | Table 13. Transfer when master is receiving (reading) multiple bytes of data from slave | Master | ST | SAD+W | | SUB | | SR | SAD+R | | | MAK | | MAK | | NMAK | SP | |--------|----|-------|-----|-----|-----|----|-------|-----|------|-----|------|-----|------|------|----| | Slave | | | SAK | | SAK | | | SAK | DATA | | DATA | | DATA | 15 | | Data are transmitted in byte format (DATA). Each data transfer contains a bits. The number of bytes transferred per transfer is unlimited. Data is transferred with the Most Significant bit (MSb) first. If a receiver can't receive another complete byte of cara until it has performed some other function, it can hold the clock line, SCL LOW, to force the transmitter into a wait state. Data transfer only continues when the receiver is rearry for another byte and releases the data line. If a slave receiver doesn't acknowledge in e slave address (i.e. it is not able to receive because it is performing some real-time function) the data line must be left HIGH by the slave. The master can then abort the transfer. A LOW to HIGH transition on the SDA line while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be terminated by the generation of a STOP (SP) condition. In order to read multiple bytes in crementing the register address, it is necessary to assert the most significant bit of the sub-address field. In other words, SUB(7) must be equal to 1 while SUB(6-0) represents the address of the first register to read. In the presented communication format MAK is master acknowledge and NMAK is no master acknowledge. ### 6.2 See bus interface The LPS001WP SPI is a bus slave. The SPI allows to write and read the registers of the device. The serial interface interacts with the outside world with 4 wires: CS, SPC, SDI and SDO. Digital interfaces LPS001WP Figure 4. Read and write protocol CS is the serial port enable and it is controlled by the SPI master. It goes low at the start of the transmission and returns to high at the end. SPC is the serial port clock and it is controlled by the SPI master. It is stopped high when CS is high (no transmission). SDI and SDO are respectively the serial port data input and output. Those lines are driven at the falling edge of SPC and should be captured at the rising edge of SPC. Both the read register and write register commands are comple ed in 16 clock pulses or in multiples of 8 in the case of multiple byte read/write. Bit duration is the time between two falling edges of SPC. The first bit (bit 0) starts at the first rading edge of SPC after the falling edge of CS while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the rising edge of CS. **bit 0**: \overline{RW} bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0) from the device is read. In the latter case, the chip drives SDO at the start of bit 8. **bit 1**: MS bit. When 0, the audress remains unchanged in multiple read/write commands. When 1, the address is auto incremented in multiple read/write commands. bit 2-7: address > 0(5.0). This is the address field of the indexed register. bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSb first). bit 8-15 data DO(7:0) (read mode). This is the data that is read from the device (MSb first). In multiple read/write commands further blocks of 8 clock periods are added. When the $\overline{\text{MS}}$ bit is 0, the address used to read/write data remains the same for every block. When $\overline{\text{MS}}$ bit is 1, the address used to read/write data is incremented at every block. The function and the behavior of SDI and SDO remain unchanged. LPS001WP Digital interfaces #### 6.2.1 SPI read Figure 5. SPI read protocol The SPI read command is performed with 16 clock pulses. The multiple byte read command is performed adding blocks of 8 clock pulses at the previous one. bit 0: READ bit. The value is 1. **bit 1**: \overline{MS} bit. When 0, do not increment the address, when 1, increment the address in multiple readings. bit 2-7: address AD(5:0). This is the address field of the inuexed register. bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first). bit 16-...: data DO(...-8). Further data in multiple byte readings. Figure 6. Multiple bytes SPI read protocol (2 bytes example) ### 6.2.2 SPI write Figure 7. SPI write protocol Digital interfaces LPS001WP The SPI write command is performed with 16 clock pulses. The multiple byte write command is performed adding blocks of 8 clock pulses at the previous one. bit 0: WRITE bit. The value is 0. **bit 1**: \overline{MS} bit. When 0, do not increment the address, when 1, increment the address in multiple writings. bit 2 -7: address AD(5:0). This is the address field of the indexed register. *bit 8-15*: data DI(7:0) (write mode). This is the data that is written inside the device (MSb first). *bit 16-...*: data DI(...-8). Further data in multiple byte writings. ### 6.2.3 SPI read in 3-wires mode 3-wires mode is entered by setting to 1 bit SIM (SPI serial interface mode selection) in the internal control register. Figure 9. SPI road protocol in 3-wires mode The SPI read command is performed with 16 clock pulses: bit 0: READ bit. The value is 1. **bit 1**: \overline{MS} bit. When 0, do not increment the address, when 1, increment the address in multiple readings. bit 2-7: address AD(5:0). This is the address field of the indexed register. *bit 8-15*: data DO(7:0) (read mode). This is the data that is read from the device (MSb first). Multiple read command is also available in 3-wires mode. LPS001WP Register mapping # 7 Register mapping *Table 14* below provides a listing of the 8-bit registers embedded in the device and the related addresses. Table 14. Registers address map | | Nama | Tuna | Register | address | Defeuit | Comment | |--------|--------------------------|------|----------|----------|----------|----------------| | | Name | Туре | Hex | Binary | Default | Comment | | | Reserved (Do not modify) | | 00-0E | | | Reserved | | | WHO_AM_I | r | 0F | 000 1111 | 10111010 | Dummy register | | | Reserved (Do not modify) | | 10-1F | | | Foserved | | | CTRL_REG1 | rw | 20 | 010 0000 | 00000000 | 100 | | | CTRL_REG2 | rw | 21 | 010 0001 | 00000000 | 70. | | | Reserved (Do not modify) | | 23-26 | | 010 | Reserved | | | Status_Reg | r | 27 | 010 0111 | 0000000 | | | | PRESS_OUT_L | r | 28 | 01U 7000 | output | | | | PRESS_OUT_H | r | 29 | (10 1001 | output | | | | TEMP_OUT_L | r | 2A | 010 1010 | output | | | | TEMP_OUT_H | r | 2B | 010 1011 | output | | | | DELTA_P_L | r | 2C | 010 1100 | output | | | | DELTA_P_H |) r | 2D | 010 1101 | output | | | | Reserved (Do not modity) | | 2E-2F | | | Reserved | | | REF_P | rw | 30 | 011 0000 | 00000000 | | | | KEF_P_H | rw | 31 | 011 0001 | 00000000 | | | | THS_P_L | rw | 32 | 011 0010 | 00000000 | | | 16 | THS_P_H | rw | 33 | 011 0011 | 00000000 | | | 60/ | INTERRUPT_CFG | rw | 34 | 011 0100 | 00000000 | | | Obsole | INT_SOURCE | r | 35 | 011 0101 | output | | | 0. | INT_ACK | r | 36 | 011 0110 | | Dummy register | | | Reserved (Do not modify) | | 37-3F | | | Reserved | Registers marked as *Reserved* must not be changed. Writing to those registers may cause permanent damage to the device. The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up. Register description LPS001WP ## 8 Register description The device contains a set of registers which are used to control its behavior and to retrieve pressure and temperature data. The registers address, made up of 7 bits, is used to identify them and to read/write the data through the serial interface. ### 8.1 WHO_AM_I (0Fh) Table 15. WHO_AM_I (0Fh) register | 1 0 | 1 | 1 | 1 | 0 | 1 | 2 | |-----|---|---|---|---|---|---| |-----|---|---|---|---|---|---| Device identification register. This read only register contains the device identifier which, for LPS001W?, is set to BAh. ## 8.2 CTRL_REG1 (20h) Table 16. CTRL_REG1 (20h) register | Х | PD | ODR1 | いしんり | DIFF_EN | BDU | BLE | SIM | |---|----|------|------|---------|-----|-----|-----| ete Table 17. CTRL_REG1 (20h) register description | | Reserved | Low power iurgionality. Default value: 0
(0: เ จ.ฑะโ mode; 1: low-power activated) | |--------|----------------|---| | | PD | Pewer down control. Default value: 0 (0: power-down mode; 1: active mode) | | 10 | ODF:1
ODF:0 | Output data rate selection. Default value: 00 (see <i>Table 18</i>) | | Obsoli | DIFF_EN | Interrupt circuit enable. Default value: 0 (0: interrupt generation disabled; 1: interrupt circuit enabled) | | | BDU | Block data update. Default value: 0 (0: continuous update; 1: output registers not updated until MSB and LSB reading) | | | BLE | Big/little endian selection. Default value: 0 (0: little endian; 1: big endian) | | | SIM | SPI serial interface mode selection. Default value: 0 (0: 4-wire interface; 1: 3-wire interface) | **PD** bit allows to turn on the device. The device is in power-down mode when PD = '0' (default value after boot). The device is active when PD is set to '1'. **ODR1 - ODR0** bits allow to change the output data rates of pressure and temperature samples. The default value is "00" which corresponds to a data rate of 7 Hz for pressure output and 1Hz for temperature output. ODR1 and ODR2 bits can be configured as described in *Table 18*. Table 18. Output data rate bit configurations | ODR1 ⁽¹⁾ | ODR0 | Pressure output data rate | Temperature output data rate | |---------------------|------|---------------------------|------------------------------| | 0 | 0 | 7 Hz | 1 Hz | | 0 | 1 | 7 Hz | 7 Hz | | 1 | 1 | 12.5 Hz | 12.5 Hz | ^{1. &}quot;10" bit configuration is not allowed and may cause incorrect device functionality. **DIFF_EN** bit is used to enable the circuitry for the computing of delta pressure output, DELTA_P. In default mode (DIFF_EN = '0') this circuitry is turned off. It is suggested to turn on the circuitry only after the configuration of the REF_F_L, REF_P_H, THS_P_L and THS_P_H registers used by the circuitry. **BDU** bit is used to inhibit output registers update between the reading of upper and lower register parts. In default mode (BDU = '0') the lower and upper register parts are updated continuously. If it doesn't read the output fast enough, the data update is blocked until the two registers have been read. In this way, after the reading of the lower (upper) register part, the content of that output register is not updated until the upper (lower) part is read too. This feature avoids reading LSB and MSB related to different samples. **BLE** bit is used to select big endian or little endian representation for output registers. In the big endian one, MSB values are located in PRESS_OUT_L (pressure), TEMP_OUT_L (temperature) and DELTA_P_L (delta pressure), while LSB values are located in PRESS_OUT_H, TEMP_OUT_H and DELTA_P_H. In little endian representation the order is inverted (refer to data registers description for more details). SIM bit selects the SFI serial interface mode. When SIM is '0' (default value) the 4-wire interface mode is selected and data coming from the device are sent to pin #4 (SDO). In 3-wire interface mode, output data are sent to pin #5 (SDI/SDO). ## 8.3 CTRL_REG2 (21h) Table 19. CTRL_REG2 (21h) register | BOOT | Х | Х | Х | Х | Х | Х | 0 ⁽¹⁾ | |------|---|---|---|---|---|---|------------------| |------|---|---|---|---|---|---|------------------| ^{1.} Bit to be kept to '0' for correct device functionality Table 20. CTRL_REG2 (21h) register description | BOOT | Reboot memory content. Default value: 0 | |------|--| | | (0: normal mode; 1: reboot memory content) | **BOOT** bit is used to refresh the content of internal registers stored in the flash memory block. At device power-up, the content of the flash memory block is transferred to the internal registers related to trimming functions to permit a good behavior of the device itself. If for any reason the content of trimming registers was changed, it is sufficient to use this bit Register description LPS001WP to restore the correct values. When the BOOT bit is set to '1' the content of internal flash is copied inside the corresponding internal registers and is used to calibrate the device. These values are factory trimmed and they are different for every device. They permit a good behavior of the device and normally they do not have to be changed. At the end of the boot process the BOOT bit is set again to '0'. The BOOT bit takes effect after one ODR clock cycle. ### 8.4 **STATUS_REG** (27h) | 0 | 0 | P_OR | T_OR | 0 | 0 | P_DA | T_DA | |---|---|------|------|---|---|------|------| |---|---|------|------|---|---|------|------| | P_OR | Pressure data overrun. Default value: 0 (0: no overrun has occurred; 1: new data for pressure has overwritten the previous one) | | |---|--|--| | T_OR | Temperature data overrun. Default value: 0 (0: no overrun has occurred; 1: new data for temperature has overwritten the previous one) | | | Pressure data available. Default value: 0 (0: new data for pressure is not yet available) 1: new data for pressure is available) | | | | T_DA | Temperature data available Devault value: 0 (0: new data for temperature is not yet available; 1: new data for temperature is available) | | The content of this register is updated every ODR cycle, regardless of the BDU value in CTRL REG1. - **P_DA** is set to '1 whenever a new pressure sample is available. P_DA is cleared anytime the PRESS_C\tau_H (29h) register is read. - **T_DA** is set to '1' whenever a new temperature sample is available. T_DA is cleared anytime the TEMP_OUT_H (2Bh) register is read. - **P_OR** bit is set to '1' whenever new pressure data is available and P_DA was set in the previous ODR cycle and not cleared. P_OR is cleared anytime the PRESS_OUT_H (29h) register is read. - **T_OR** is set to '1' whenever new temperature data is available and T_DA was set in the previous ODR cycle and not cleared. T_OR is cleared anytime the TEMP_OUT_H (2Bh) register is read. ## 8.5 PRESS_OUT_L (28h) Table 21. PRESS_OUT_L (28h) register | POLIT7 | POLIT6 | POLIT5 | POUT4 | POLIT3 | POLIT2 | POLIT1 | POLITO | |--------|--------|--------|--------|--------|--------|--------|--------| | 1 0017 | 10010 | 1 0010 | 1 0014 | 1 0010 | 1 0012 | 1 0011 | 1 0010 | #### Table 22. RESS_OUT_L (28h) register description | POUT7 - | Pressure data LSB (when BLE bit in the CTRL_REG1 is set to '0', little endian) | |---------|--| | POUT0 | | Pressure data are expressed as absolute values. Values exceeding the operating pressure range (see *Table 3*) are clipped. In big endian mode (BLE bit in CTRL_REG1 set to '1') the content of this register is the MSB pressure data. ### 8.6 PRESS_OUT_H (29h) ### Table 23. PRESS_OUT_H (29h) register | POUT15 | POUT14 | POUT13 | POUT12 | POUT11 | POUT10 | 7CU 79 | POUT8 | |--------|--------|--------|--------|--------|--------|--------|-------| ### Table 24. PRESS_OUT_H (29h) register description | POUT15 - | Pressure data MSB (when BLE bit in CTRL_PEC1 is set to '0') | |----------|---| | POUT8 | | In big endian mode (BLE bit in CTRL_RECT set to '1') the content of this register is the LSB pressure data. ### 8.7 TEMP_OUT_L (2AIS) ### Table 25. TEMP_OUT_L (2Ah) register | | | <u> </u> | | | | | | |-------|--------------|----------|-------|-------|-------|-------|-------| | TOUT7 | 70016 | TOUT5 | TOUT4 | TOUT3 | TOUT2 | TOUT1 | TOUT0 | ### Table 26. TEMP_OUT_L (2Ah) register description | | | Temperature data LSB (when BLE bit in CTRL_REG1 register is set to '0', little | |---|-------|--| | 1 | TOUT0 | endian) | Temperature data are expressed as 2s complement numbers. In big endian mode (BLE bit in CTRL_REG1 set to '1') the content of this register is the MSB temperature data. ## 8.8 **TEMP_OUT_H** (2Bh) #### Table 27. TEMP_OUT_H (2Bh) register Register description LPS001WP #### Table 28. TEMP_OUT_H (2Bh) register description | TOUT8 - | Temperature data MSB (when BLE bit in CTRL_REG1 register is set to '0') | |---------|---| | TOUT15 | | Temperature data are expressed as 2s complement numbers. In big endian mode (BLE bit in CTRL_REG1 set to '1') the content of this register is the LSB temperature data. ### 8.9 **DELTA_P_L** (2Ch) #### Table 29. DELTA_P_L (2Ch) register | $ \cdot$ \cdot \cdot | | | | | | | | |--------------------------|-----|-----|-----|-----|-----|---------|--| | DP7 | DP6 | DP5 | DP4 | DP3 | DP2 | DP1 DP0 | | #### Table 30. DELTA_P_L (2Ch) register description | DP7 - DP0 | Delta pressure data LSB (when BLE bit in CTRL_REG ' register is set to '0') | |-----------|---| |-----------|---| DELTA_P registers store a delta pressure represerting the difference between a constant reference value, REF_P registers, and the actual pressure measured, PRESS_OUT registers. In big endian mode (BLE bit in CTR'__REG1 set to '1') the content of this register is the MSB delta pressure data. ## 8.10 DELTA_P_H (2Dn) ### Table 31 DZLTA_P_H (2Dh) register | DP15 | DP14 | DP13 | DP12 | DP11 | DP10 | DP9 | DP8 | |------|------|------|------|------|------|-----|-----| | | | | | | | | i | #### Table 32. DELTA_P_H (2Dh) register description | DP15 - DP8 Delta pressure data MSB (when BLE bit in CTRL_REG1 register is set to '0'). | | |--|--| |--|--| In big endian mode (BLE bit in CTRL_REG1 set to '1') the content of this register is the LSB delta pressure data. ## 8.11 REF_P_L (30h) #### Table 33. REF_P_L (30h) register | REFL7 | REFL6 | REFL5 | REFL4 | REFL3 | REFL2 | REFL1 | REFL0 | |-------|-------|-------|-------|-------|-------|-------|-------| | | | | | | | | | ### Table 34. REF_P_L (30h) register description | REFL7 - | Reference pressure LSB data. Default value: 00h. | |---------|--| | REFL0 | | This register contains the lower part of the reference pressure for computing of delta pressure. Full value is REF_P_H & REF_P_L and it is represented as an unsigned number. ### 8.12 REF_P_H (31h) ### Table 35. REF_P_H (31h) register | REFL15 | REFL14 | REFL13 | REFL12 | REFL11 | REFL10 | REFL9 | P.EFI.8 | |--------|--------|--------|--------|--------|--------|-------|---------| |--------|--------|--------|--------|--------|--------|-------|---------| #### Table 36. REF_P_H (31h) register description | REFL15 - | Reference pressure MSB data. Default value: 00h. | 2,00 | |----------|--|------| | REFL8 | | DI. | This register contains the higher part of the reference pressure for computing of delta pressure. Full value is REF_P_H & REF_P_L and it is represented as an unsigned number. ### 8.13 THS_P_L (32h) #### Table 37. THS_P_L (32h) register | THS7 | THS6 | THS5 | THS4 | THS3 | THS2 | THS1 | THS0 | |------|------|------|------|------|------|------|------| | | | | | | | | | #### Table 38 IHS P L (32h) register description | THC7 - | Threshold pressure LSB. Default value: 00h. | |--------|---| | TH:90 | | This register contains the low part of threshold value for pressure interrupt generation. The complete threshold value is given by THS_P_H & THS_P_L and is expressed as an unsigned number. ## 8.14 THS_P_H (33h) #### Table 39. THS P H (33h) register | | | (/ -3 | | | | | | |-------|-------|--------|-------|-------|-------|------|------| | THS15 | THS14 | THS13 | THS12 | THS11 | THS10 | THS9 | THS8 | #### Table 40. THS_P_H (33h) register description | THS15 - | Threshold pressure MSB. Default value: 00h. | |---------|---| | THS8 | | Register description LPS001WP This register contains the high part of threshold value for pressure interrupt generation. The complete threshold value is given by THS_P_H & THS_P_L and is expressed as an unsigned number. LPS001WP Package information # 9 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions, and product status are available at: www.st.com. ECOPACK is an ST trademark. Table 41. HCLGA-8L mechanical data | | Dime | ensions | | |------|-------|---------|------------| | Ref. | | mm | | | Rei. | Min. | Тур. | Ma x. | | E1 | 2.850 | 3.0 | 3 150 | | E3 | | 0 | <u>'Q'</u> | | D1 | 4.850 | 5.0 | 5.150 | | D3 | | 1.200 | | | R1 | | 0.00 | | | A1 | | 1.0 | | | N1 | ~\0 | 1.0 | | | N2 | 0, | 0.625 | | | L1 | | 2.0 | | | L2 | 1(2) | 3.750 | | | P1 | D | 1.300 | | | P2 | | 2.300 | | | OW | | 0.800 | | | d | | 0.200 | | | T2 | | 0.500 | | | К | | 0.050 | | | M1 | | 0.100 | | Figure 10. HCLGA-8L mechanical drawing LPS001WP Revision history # 10 Revision history Table 42. Document revision history | Date | Revision | Changes | |-------------|----------|------------------| | 05-Nov-2010 | 1 | Initial release. | #### Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidia rics (S ſ") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and servin as de cribed herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property ig its is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warrancy covering the use in any manner whatsoever of such third party products or services or any intellectual property contained the ain. UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WELTING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OF w.\h...ANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROFINE OF ENTIRORMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE "SED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK. Resale of ST | roducts with provisions different from the statements and/or technical features set forth in this document shall immediately void any warran'y granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of S7. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2010 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America 30/30 Doc ID 18171 Rev 1