

1W, FIXED INPUT, ISOLATED DUAL OUTPUT SMD DC-DC CONVERTER

FEATURES

- ◆Footprint over pins 1.64cm²
- ◆ Short Circuit Protection(automatic recovery)
- ◆I/O isolation voltage 1000VDC
- ◆Operating Temperature: -40°C ~ + 85°C
- ♦ High efficiency up to 78%
- ◆Toroidal magnetics
- ◆Small SMD package with footprint
- ◆Power density 1.36W/cm³
- ◆Lead frame technology
- ◆Multi-layer ceramic capacitors
- ◆Custom solutions available

MODEL SELECTION NTA⁰05⁰05⁸XMC

①Product Series ②Input Voltage

③Output Voltage

4Fixed Input&SMD Package

APPLICATIONS

The NTA-X series are miniature,1W DC/DC converters with high isolation in a SMD package. With a new package design these converters are qualified for the higher temperatures requested by lead-free reflow solder processes. With the small footprint, these converters are the ideal solution for board level power distribution, mainly for applications in the industrial and telecom field. For automated SMD production lines the devices can be supplied in standard tape and reel package.

SELECTION GUIDE								
	I	Input Output		utput	Efficiency	Isolation	MTTF1	
Order code	Voltage(VDC)	Current (mA)	Voltage	Current	(%.Typ.)	Capacitance	WITT	
	Nominal	Rated Load	(VDC)	(mA)	(70.1yp.)	pF	KHrs	
NTA0303XMC	3.3	402	±3.3	±152	81	29	1005	
NTA0305XMC	3.3	388	±5	±100	83	30	399	
NTA0309XMC	3.3	405	±9	±55	74	34	827	
NTA0312XMC	3.3	390	±12	±42	76	40	375	
NTA0315XMC	3.3	392	±15	±33	81	42	206	
NTA0503XMC	5	259	±3.3	±152	85	31	964	
NTA0505XMC	5	290	±5	±100	83	33	1697	
NTA0505NXMC	5	251	±5	±100	86	42	367	
NTA0509XMC	5	267	±9	±55	85	38	682	
NTA0512XMC	5	260	±12	±42	74	44	343	
NTA0515XMC	5	256	±15	±33	78	43	188	
NTA1205XMC	12	121	±5	±100	80	50	559	
NTA1209XMC	12	113	±9	±55	80	72	375	
NTA1212XMC	12	111	±12	±42	85	89	243	
NTA1215XMC	12	110	±15	±33	81	100	154	

1. Calculated using MIL-HDBK-217F with nominal input voltage at full load. All specifications typical at TA=25℃, nominal input voltage and rated output current unless otherwise specified.

Input Characteristics					
Parameter	Conditions	Min.	Тур.	Max.	Units
	Continuous operation, 3V input	2.97	3.3	3.63	VDC
Voltage range	Continuous operation, 5V input	4.5	5	5.5	VDC
	Continuous operation, 12V input	10.8	12	13.2	VDC
Start up time			41	50	mA p-p

Isolation Characteristics					
Parameter Condition		Min.	Тур.	Max.	Units
Isolation voltage Flash tested for 1 second		1000			VDC
Resistance	Viso= 1000VDC	10			GΩ

General Characteristics						
Parameter	Conditions	Min.	Тур.	Max.	Units	
	0312, 0315		100		kHz	
Switching frequency	0303, 0305, 0503, 0505		110		kHz	
	All other variants		115		kHz	

Absolute Maximum Ratings				
Parameter	Conditions			
Lead temperature 1.5mm from case for 10 seconds	300℃			
Internal power dissipation	700mW			
Input voltage V , NTA03 types	5.5V			
Input voltage Vin, NTA05 types	7V			
Input voltage Vin, NTA12 types	15V			

NTA-X Series

Darameter	Conditions	Min.	Tun	Max.	Un
Parameter	Conditions	IVIII1.	Тур.	Max.	Un
Rated Power TA=-40°C to 85°C				1.0	V
Voltage Set Point See tolerance envelope					
Line regulation	High VIN to low VIN		1.0	1.2	%'
	10% load to rated load, 0303& 0503		10	15	%
	10% load to rated load, 5V output types		10	12	%
	10% load to rated load, 0309		9.0	10	9
Load regulation ¹	10% load to rated load, 0509 & 1209		6.5	8.0	%
	10% load to rated load, 0312 & 0315		11	14	%
	10% load to rated load, 0512 & 1212		6.0	8.5	%
	10% load to rated load, 0515 & 1215		6.0	7.0	%
	BW=DC to 20MHz, 3.3V output types, NTA0305 & NTA0505		40	80	mV
	BW=DC to 20MHz, all other 5V output types		50	100	mV
Ripple & Noise	BW=DC to 20MHz, 9V output types		35	80	mV
	BW=DC to 20MHz, 12V output types		50	110	mV
	BW=DC to 20MHz, 15V output types		65	110	mV

ı		
		load regulation change.

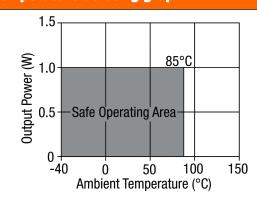
Temperature Characteristics					
Parameter	Conditions	Min.	Тур.	Max.	Units
Specification	All output types	-40		85	$^{\circ}$
Storage		-55		125	$^{\circ}$
Case temperature rise	0305, 0505, 0312, 0315		19		°C
above	0303, 0309, 0503		25		$^{\circ}$
above	0505, 1205		46		°C
ambient	All other variants		35		$^{\circ}$
Cooling	Free air convection				

Technical notes

ISOLATION VOLTAGE

'Hi Pot Test', "Flash Tested'," Withstand Voltage ", 'Proof Voltage", "Dielectric Withstand Voltage'&'Isolation Test Voltage" are all terms that relate to the same thing, a test voltage, applied for a specified time, across a component designed to provide electrical isolation, to verify the integrity of that isolation.

Professional Power Module A-XT series of DC/DC converters are all 100% production tested at their stated isolation voltage. This is 1kVDC for 1 second. A question commonly asked is, "What is the continuous voltage that can be applied across the part in normal operation?"


For a part holding no specifi c agency approvals, such as the A-XT series, both input and output should normally be maintained within SELV limits i.e. less than 42.4V peak, or 60VDC. The isolation test voltage represents a measure of immunity to transient voltages and the part should never be used as an element of a safety isolation system. The part could be expected to function correctly with several hundred volts offset applied continuously across the isolation barrier; but then the circuitry on both sides of the barrier must be regarded as operating at an unsafe voltage and further isolation/insulation systems must form a

barrier between these circuits and any user-accessible circuitry according to safety standard requirements. REPEATED HIGH-VOLTAGE ISOLATION TESTING

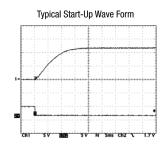
It is well known that repeated high-voltage isolation testing of a barrier component can actually degrade isolation capability, to a lesser or greater degree depending on materials, construction and environment. The A-XT series has toroidal isolation transformers, with no additional insulation between primary and secondary windings of enameled wire. While parts can be expected to withstand several times the stated test voltage, the isolation capability does depend on the wire insulation. Any material, including this enamel (typically polyurethane) is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specifi ed test voltage.

This consideration equally applies to agency recognized parts rated for better than functional isolation where the wire enamel insulation is always supplemented by a further insulation system of physical spacing or barriers

Temperature derating graph

Application Notes

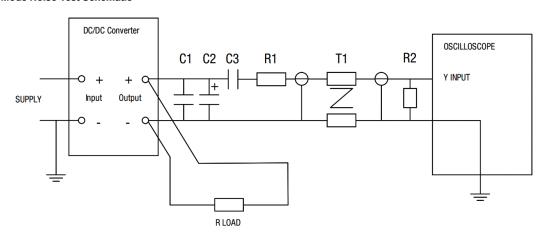
Minimum load


The minimum load to meet data sheet speciffication is 10% of the full rated load across the speciffied input voltage range. Lower than 10% minimum loading will result in an increase in output voltage, which may rise to typically double the speciffied output voltage if the output load falls to less than 5%.

Capacitive loading and start up

Typical start up times for this series, with a typical input voltage rise time of $2.2\mu s$ and output capacitance of $10\mu F$, are shown in the table below. The product series will start into a capacitance of $47\mu F$ with an increased start time, however, the maximum recommended output capacitance is $10\mu F$.

	Start-up time
	Start-up time
	μs
NTA0303XMC	1630
NTA0305XMC	1359
NTA0309XMC	3435
NTA0312XMC	6590
NTA0315XMC	25340
NTA0503XMC	1599
NTA0505XMC	2185
NTA0305NXM	1395



Ripple & Noise Characterization Method

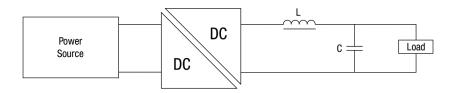
Ripple and noise measurements are performed with the following test configu-ration.

C1	1 μ F X7R multilayer ceramic capacitor, voltage rating to be a minimum of 3 times the output voltage of the DC/DC converter				
C2	10 µ F tantalum capacitor, voltage rating to be a minimum of 1.5 times the output voltage of the DC/DC converter with an ESR of less				
	than 100m Ω at 100 kHz				
С3	100nF multilayer ceramic capacitor, general purpose				
R1	450 Ω resistor, carbon fi Im, $\pm 1\%$ tolerance				
R2	R2 50 Ω BNC termination				
T1	T1 3T of the coax cable through a ferrite toroid				
RLOAD	Resistive load to the maximum power rating of the DC/DC converter. Connections should be made via twisted wires				
Measured	Measured values are multiplied by 10 to obtain the speciffied values.				

Differential Mode Noise Test Schematic

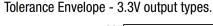
Application Notes

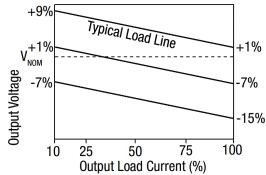
Output Ripple Reduction

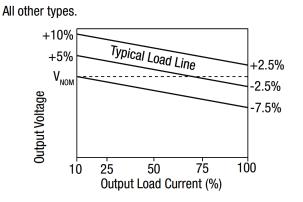

By using the values of inductance and capacitance stated, the output ripple at the rated load is lowered to 5mV p-p max.

Component selection

Capacitor: It is required that the ESR (Equivalent Series Resistance) should be as low as possible, ceramic types are recommended.

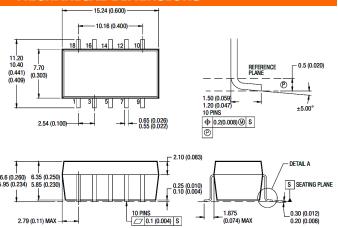

The voltage rating should be at least twice (except for 15V output), the rated output voltage of the DC/DC converter.


Inductor: The rated current of the inductor should not be less than that of the output of the DC/DC converter. At the rated current, the DC resistance of the inductor should be such that the voltage drop across the inductor is <2% of the rated voltage of the DC/DC converter. The SRF (Self Resonant Frequency) should be >20MHz.



	Inductor			Capacitor
	L,µH	SMD	Through Hole	C,µF
NTA0303XMC	10	82103C	11R103C	4.7
NTA0305XMC	22	82223C	11R223C	2.2
NTA0309XMC	22	82223C	11R223C	2.2
NTA0312XMC	47	82473C	11R473C	1
NTA0315XMC	220	82474C	11R474C	0.22
NTA0503XMC	10	82103C	11R103C	4.7
NTA0505XMC	10	82103C	11R103C	4.7
NTA0305NXMC	10	82103C	11R103C	4.7
NTA0509XMC	22	82223C	11R103C	2.2
NTA0512XMC	47	82473C	11R223C	1
NTA0515XMC	220	82474C	11R473C	0.22
NTA1205XMC	10	82103C	11R474C	4.7
NTA1209XMC	22	82223C	11R223C	2.2
NTA1212XMC	47	82473C	11R473C	1
NTA1215XMC	220	82474C	11R474C	0.22

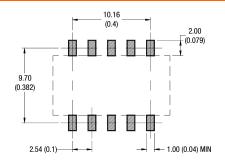
Tolerance Envelopes



The voltage tolerance envelope shows typical load regulation characteristics for this product series. The tolerance envelope is the maximum output voltage variation due to changes in output loading.

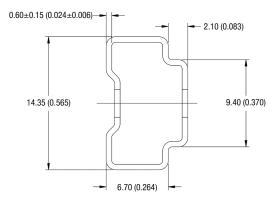
OUTLINE DIMENSIONS & FOOTPRINT DETAILS

MECHANICAL DIMENSIONS

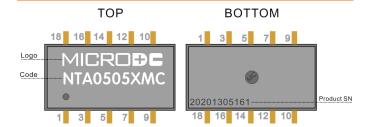

Note:
Unit:mm[inch]
Pin section tolerances:±0.10mm[±0.004inch]
General tolerances:±0.25mm[±0.010inch]

Weight: 1.53g

FOOTPRINT DETAILS		
Pin	Dual	
1	-Vin	
3	+Vin	
5	NA	
7	0V	
9	-Vout	
10	NA	
12	+Vout	
14	NA	
16	NA	
18	NA	


NA - Not available for electrical connection.

SOLDER PAD DIMENSION


Dimensions in [mm], () = Inch Pin pitch tolerances: ±0.13 (±0.005) Other tolerances: ±0.25 (±0.01)

TUBE OUTLINE DIMENSIONS

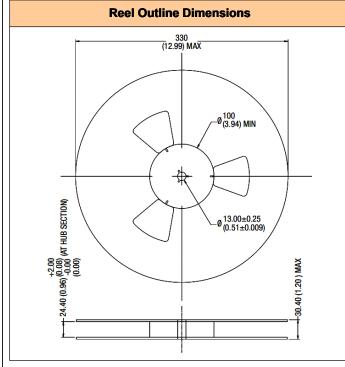
Unless otherwise stated all dimensions in mm±0.5 (inches ±0.02). Tube length : 475±2.0 (18.70±0.07). Tube Quantity :25

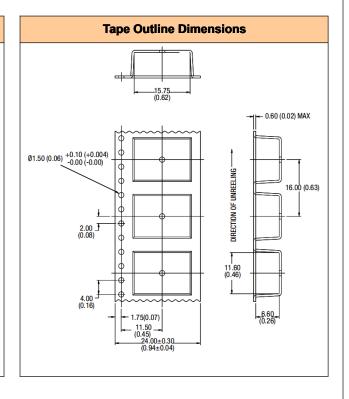
PRODUCT ID DESCRIPTION

Specifications can be changed any time without notice. No parallel connection or plug and play.

Note:

- 1. The load shouldn't be less than 10%, otherwise ripple will increase dramatically.
- 2. Operation under 10% load will not damage the converter; However, they may not meet all specification listed.
- 3. All specifications measured at Ta=25°C, humidity<75%, nominal input voltage and rated output load unless otherwise specified.
- 4. In this data sheet, all the test methods of indications are based on corporate standards.
- 5. Only typical models listed, other models may be different, please contact our technical person for more details.


Tape & Reel Specifications


Reel Packaging Details 00000000000 **GOODS ENCLOSURE** TRAILER SECTION **CARRIER TAPE START** 160 (6.30) MIN **SECTION** 100 (3.94) MIN LEADER SECTION 400 (15.75) MIN

Product Orientation

Pin 1, located nearest to carrier drive sprocket.

Reel Quantity: 500

MICRO **Professional Power Module**

Microdc Professional Power Module,Inc. Tel:0086-20-86000646 E-mail:tech@microdc.cn Website: www.microdc.cn

Microdc Professional Power module, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. Specifications are subject to change without notice. ©2010 Microdc Professional Power Module, Inc. Guangzhou

RoHS COMPLIANT INFORMATION

This series is compatible with RoHS soldering systems with a peak wave solder temperature of 300°C for 10 seconds. The pin termination finish on the SIP package type is Tin Plate, Hot Dipped over Matte Tin with Nickel Preplate. The DIP types are Matte Tin over Nickel Preplate. Both types in this series are backward compatible with Sn/Pb soldering systems.

REACH COMPLIANT INFORMATION

This series has proven that this product does not contain harmful chemicals, it also has harmful chemical substances through the registration, inspection and approval.