

S-5723A Series

HIGH-SPEED BIPOLAR DETECTION TYPE HALL IC

www.sii-ic.com

© Seiko Instruments Inc., 2009-2010

Rev.3.0_00

The S-5723A Series, developed by CMOS technology, is a bipolar detection type Hall IC with a high-sensitivity and high-speed detection.

The output voltage changes when the S-5723A Series detects the intensity level of flux density and a polarity change. Using the S-5723A Series with a magnet makes it possible to detect rotation in various devices.

High-density mounting is possible by using the small SOT-23-3 package.

■ Features

- · Built-in chopping stabilized amplifier
- Detection of bipolar magnetic fields
- Applicable in various devices with wide range of option

Detection logic for magnetism: Level "L" at S pole detection, level "H" at S pole detection

Output form: Nch open drain output, CMOS output

• Wide power supply voltage range : 2.4 V to 5.5 V

• High-speed detection : Operating cycle 132 μ s typ., 240 μ s max.

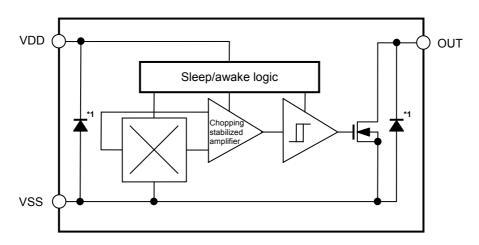
• Operating temperature range : -40°C to +85°C

Small dependency magnetic characteristics against temperature

Lead-free, Sn 100%, halogen-free*1

*1. Refer to "■ Product Name Structure" for details.

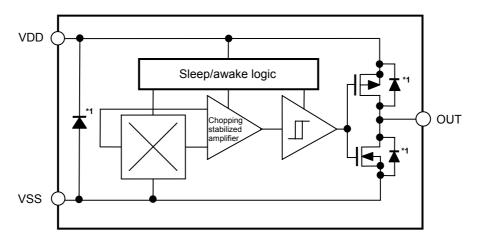
■ Applications


- Playthings, portable games
- Home appliances

■ Package

• SOT-23-3

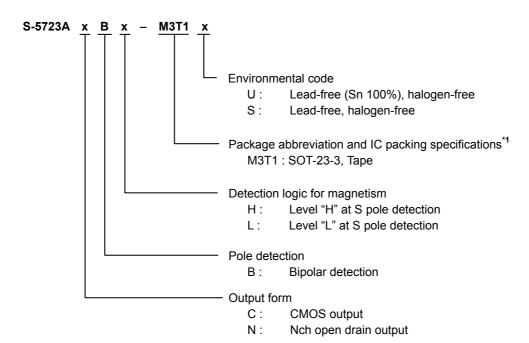
■ Block Diagrams


1. Nch open drain output product

*1. Parasitic diode

Figure 1

2. CMOS output product



*1. Parasitic diode

Figure 2

■ Product Name Structure

1. Product name

^{*1.} Refer to the tape specifications at the end of this book.

2. Package

Dookaga Nama	Drawing Code				
Package Name	Package	Tape	İ	Reel	
SOT-23-3	MP003-C-P-SD	MP003-C-C-SD	İ	MP003-Z-R-SD	

3. Product name list

Table 1

Output Form	Pole Detection	Detection Logic for Magnetism	Product Name
Nch open drain output	Bipolar detection	Level "L" at S pole detection	S-5723ANBL-M3T1y

Remark 1. Please contact our sales office for products with specifications other than the above.

- 2. y: S or U
- 3. Please select products of environmental code = U for Sn 100%, halogen-free products.

■ Pin Configuration

SOT-23-3 Top view

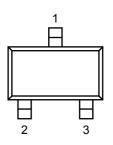


Table 2

Pin No.	Symbol	Pin Description
1	VSS	GND pin
2	VDD	Power supply pin
3	OUT	Output pin

Figure 3

■ Absolute Maximum Ratings

Table 3

/-	-	~=~				
- 1	12 = :	<i>)</i> ⊢ ∘ (.	IINIACC	∩th ∆r	74/100	specified)
١.	1 a – 1	200	unicoo	OHIEL	WISE	SUCCILICUI

Item		Symbol	Absolute Maximum Rating	Unit
Power sup	ply voltage	V_{DD}	V_{SS} – 0.3 to V_{SS} + 7.0	V
Output	Nch open drain output	V _{OUT}	V_{SS} – 0.3 to V_{SS} + 7.0	V
voltage CMOS output		VOUT	V_{SS} – 0.3 to V_{DD} + 0.3	V
Power diss	Power dissipation		430 ^{*1}	mW
Operating ambient temperature		T _{opr}	-40 to +85	°C
Storage te	mperature	T _{stg}	-40 to +125	°C

*1. When mounted on board

[Mounted board]

(1) Board size : 114.3 mm \times 76.2 mm \times t1.6 mm (2) Name : JEDEC STANDARD51-7

Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions.

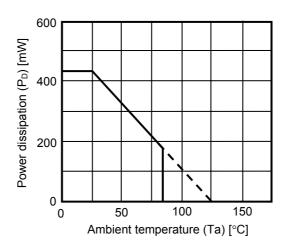


Figure 4 Power Dissipation of Package (When Mounted on Board)

■ Electrical Characteristics

Table 4

(Ta = 25°C, V_{DD} = 3.0 V, V_{SS} = 0 V unless otherwise specified)

		(: a == e; : bb = e:e :	, • 55				
Item	Symbol	Conditions	Min.	Тур.	Max.	Unit	Test Circuit
Power supply voltage	V_{DD}	-	2.4	3.0	5.5	V	_
Average current consumption	I _{DD}	Average value	_	950	1200	μА	1
		Output transistor Nch, V _{OUT} = 0.4 V	1	_	_	mA	2
Output current	I _{OUT}	CMOS output Output transistor Pch, $V_{OUT} = V_{DD} - 0.4 \text{ V}$	-	-	-1	mA	2
Output leakage current	I _{LEAK}	Nch open drain output Output transistor Nch, V _{OUT} = 5.5 V	-	-	1	μА	2
Awake mode time	t _{AW}	-	_	121	-	μS	_
Sleep mode time	t _{SL}	-	_	11	_	μS	_
Operating cycle	tcycle	t _{AW} + t _{SL}	_	132	240	μS	_

■ Magnetic Characteristics

Table 5

(Ta = 25°C, V_{DD} = 3.0 V, V_{SS} = 0 V unless otherwise specified)

			,		, 00			
Item		Symbol	Conditions	Min.	Тур.	Max.	Unit	Test Circuit
Operating point *1	S pole	B _{OP}	_	0.5	3.0	5.3	mT	3
Release point *2	N pole	B _{RP}	_	-5.3	-3.0	-0.5	mT	3
Hysteresis width *3		B _{HYS}	B _{HYS} = B _{OP} - B _{RP}	-	6.0	-	mT	3

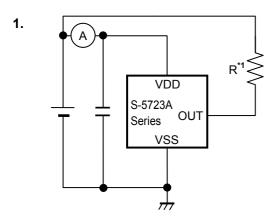
^{*1.} B_{OP} : Operating point

The operating point is the value of magnetic flux density when the detection logic for magnetism is "L" when the S pole is detected, and when the output voltage (V_{OUT}) is inverted from "H" to "L" after the magnetic flux density applied to the S-5723A Series by the magnet (S pole) is increased (by moving the magnet closer).

V_{OUT} retains the state until a magnetic flux density of the N pole higher than B_{RP} is applied.

*2. B_{RP}: Release point

The release point is the value of magnetic flux density when the detection logic for magnetism is "L" when the S pole is detected, and when the output voltage (V_{OUT}) is inverted from "L" to "H" after the magnetic flux density applied to the S-5723A Series by the magnet (N pole) is increased (by moving the magnet closer).


V_{OUT} retains the state until a magnetic flux density of the S pole higher than B_{OP} is applied.

*3. B_{HYS}: Hysteresis width

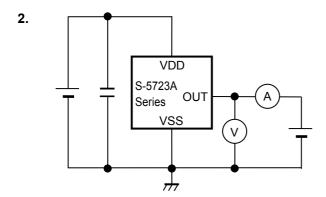
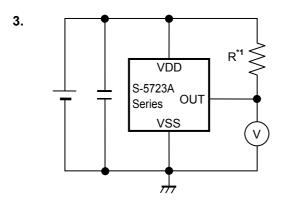
 B_{HYS} is the difference between B_{OP} and B_{RP} .

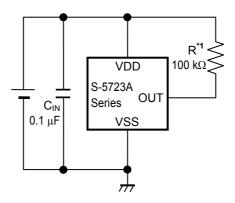
Remark The unit of magnetic density mT can be converted by using the formula 1 mT = 10 Gauss.

■ Test Circuits

***1.** Resistor (R) is unnecessary for the CMOS output product.

Figure 5


Figure 6

*1. Resistor (R) is unnecessary for the CMOS output product.

Figure 7

■ Standard Circuit

*1. Resistor (R) is unnecessary for the CMOS output product.

Figure 8

Caution The above connection diagram and constant will not guarantee successful operation. Perform thorough evaluation using the actual application to set the constant.

■ Operation

1. Direction of applied magnetic flux and position of Hall sensor

The S-5723A Series detects the flux density which is vertical to the marking surface.

Figure 9 shows the direction in which magnetic flux is being applied.

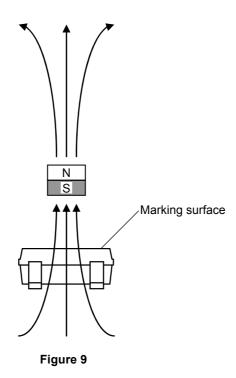
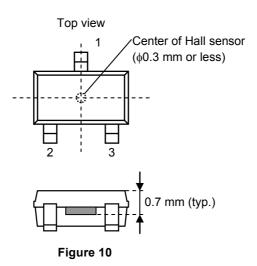



Figure 10 shows the position of Hall sensor.

The center of this Hall sensor is located in the area indicated by a circle, which is in the center of a package as described below.

The following also shows the distance (typ. value) between the marking surface and the chip surface of a package.

2. Basic operation

The S-5723A Series changes the output voltage (V_{OUT}) according to the level of the magnetic flux density (N or S pole) applied by a magnet.

The following explains the operation when the magnetism detection logic is "L" when the S pole is detected.

When the magnetic flux density of the S pole perpendicular to the marking surface exceeds B_{OP} after the S pole of a magnet is moved closer to the marking surface of the S-5723A Series, V_{OUT} changes from "H" to "L". When the N pole of a magnet is moved closer to the marking surface of the S-5723A Series and the magnetic flux density of the N pole is higher than B_{RP} , V_{OUT} changes from "L" to "H". While the magnetic field is not applied, V_{OUT} retains the state.


When the power is turned on, the output voltage (V_{OUT}) is "H" or "L".

Definition of the magnetic field is performed every operating cycle indicated in "

Electrical Characteristics".

Figure 11 shows the relationship between the magnetic flux density and V_{OUT}.

(1) Products level "L" at S pole detection

(2) Products level "H" at S pole detection

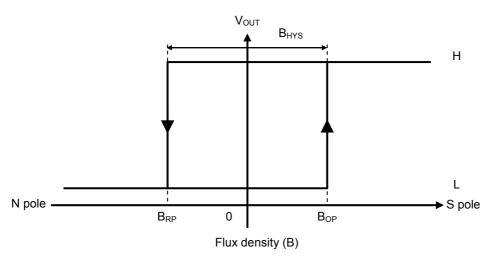
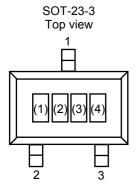



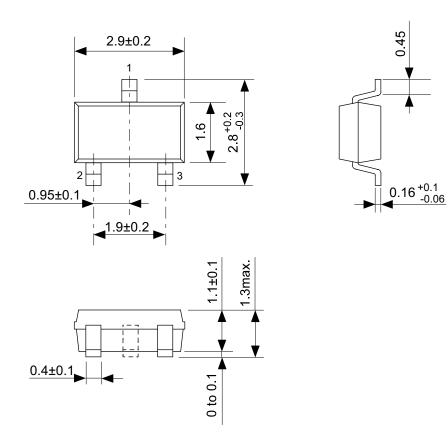
Figure 11

■ Precautions

- If the impedance of the power supply is high, the IC may malfunction due to a supply voltage drop caused by through-type current. Take care with the pattern wiring to ensure that the impedance of the power supply is low.
- Note that the IC may malfunction if the power supply voltage rapidly changes.
- Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic protection circuit.
- Large stress on this IC may affect on the magnetic characteristics. Avoid large stress which is caused by bend and distortion during mounting the IC on a board or handle after mounting.
- When designing for mass production using an application circuit described herein, the product deviation and temperature characteristics of the external parts should be taken into consideration. SII shall not bear any responsibility for patent infringements related to products using the circuits described herein.
- SII claims no responsibility for any disputes arising out of or in connection with any infringement by products including this IC of patents owned by a third party.

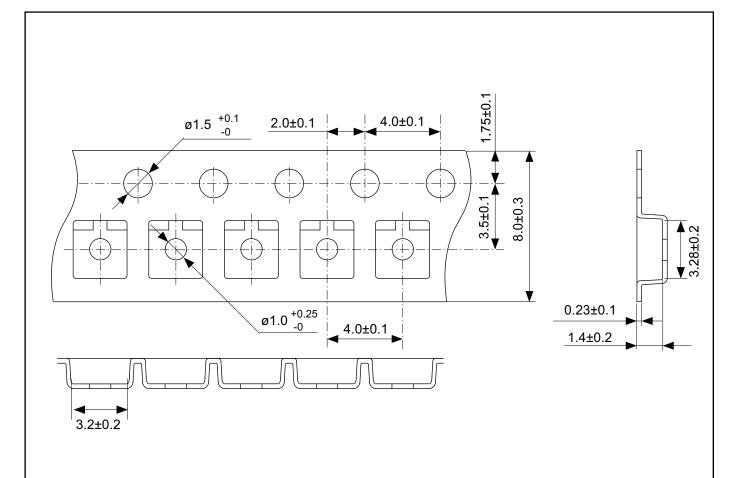
■ Marking Specifications

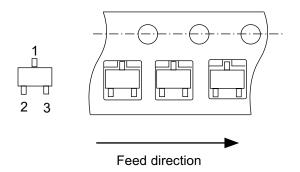
(1) to (3): Product code (Refer to **Product name vs. Product code**.)


(4): Lot number

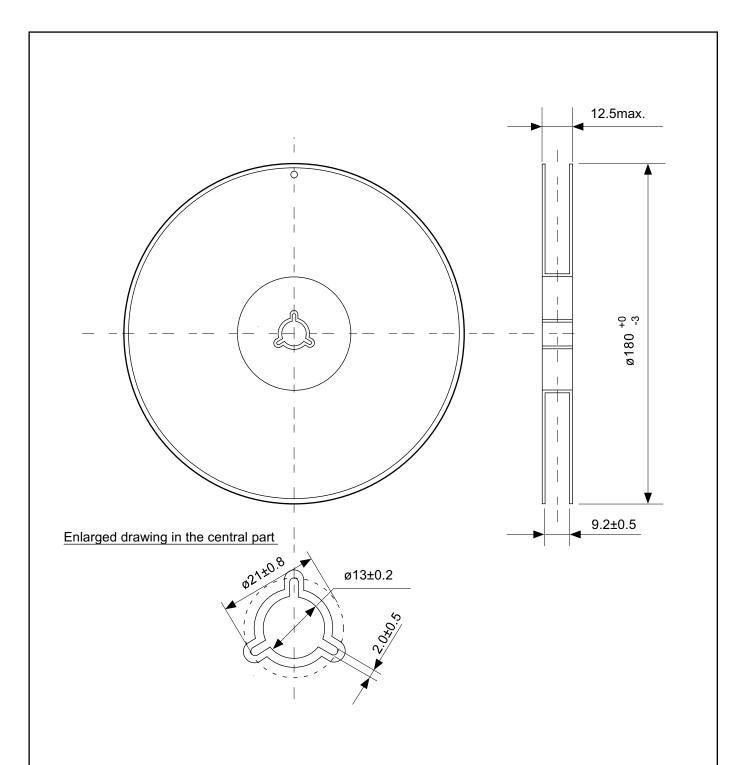
Product name vs. Product code

Product Name	Product Code				
Floduct Name	(1)	(2)	(3)		
S-5723ANBL-M3T1y	Т	5	D		


Remark 1. Please contact our sales office for products with specifications other than the above.


- 2. y: S or U
- 3. Please select products of environmental code = U for Sn 100%, halogen-free products.

No. MP003-C-P-SD-1.0


TITLE	SOT233-C-PKG Dimensions			
No.	MP003-C-P-SD-1.0			
SCALE				
UNIT	mm			
S	Seiko Instruments Inc.			

No. MP003-C-C-SD-2.0

TITLE	SOT233-C-Carrier Tape				
No.	MP003-C-C-SD-2.0				
SCALE	_				
UNIT	mm				
l S	Seiko Instruments Inc.				

No. MP003-Z-R-SD-1.0

TITLE	SOT233-C-Reel					
No.	MP00	3-Z-R-SD)-1.0			
SCALE		QTY.	3,000			
UNIT	mm					
Soika Instruments Inc						
Seiko Instruments Inc.						

Seiko Instruments Inc. www.sii-ic.com

- The information described herein is subject to change without notice.
- Seiko Instruments Inc. is not responsible for any problems caused by circuits or diagrams described herein
 whose related industrial properties, patents, or other rights belong to third parties. The application circuit
 examples explain typical applications of the products, and do not guarantee the success of any specific
 mass-production design.
- When the products described herein are regulated products subject to the Wassenaar Arrangement or other agreements, they may not be exported without authorization from the appropriate governmental authority.
- Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Seiko Instruments Inc. is strictly prohibited.
- The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Seiko Instruments Inc.
- Although Seiko Instruments Inc. exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.