ON Semiconductor®

ASM3P2669A

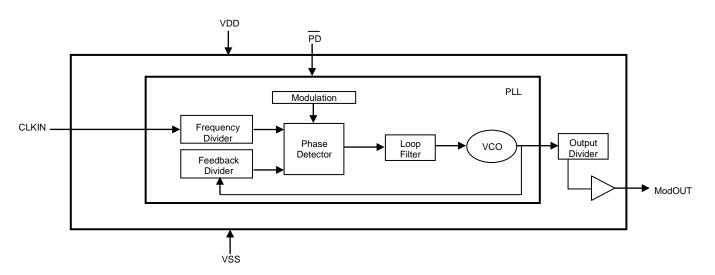
Low Power Peak EMI Reducing Solution

Features

- Generates a 1X low EMI spread spectrum clock of the input frequency.
- Integrated loop filter components.
- Operates with a 3.3V / 2.5V supply.
- Operating current less than 4mA.
- Low power CMOS design.
- Input frequency range: 6MHz to 12MHz for 2.5V
 - 6MHz to 13MHz for 3.3V
- Frequency deviation: ±1% @ 10MHz
- 6-pin TSOT-23, 8-pin SOIC and 8-pin TSSOP packages.
- Commercial, Industrial and Extended Industrial temperature range

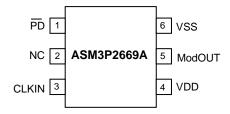
Product Description

The ASM3P2669A is a versatile spread spectrum frequency modulator designed specifically for a wide range of clock frequencies. The ASM3P2669A reduces electromagnetic interference (EMI) at the clock source, allowing system wide reduction of EMI of all clock


dependent signals. The ASM3P2669A allows significant system cost savings by reducing the number of circuit board layers, ferrite beads and shielding that are traditionally required to pass EMI regulations.

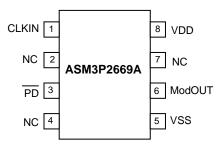
The ASM3P2669A uses the most efficient and optimized modulation profile approved by the FCC and is implemented by using a proprietary all digital method.

The ASM3P2669A modulates the output of a single PLL in order to "spread" the bandwidth of a synthesized clock, and more importantly, decreases the peak amplitudes of its harmonics. This results in significantly lower system EMI compared to the typical narrow band signal produced by oscillators and most frequency generators. Lowering EMI by increasing a signal's bandwidth is called 'spread spectrum clock generation.'


Application

The ASM3P2669A is targeted towards all portable devices with very low power requirements like MP3 players and digital still cameras.

Block Diagram


Pin Configuration (6-pin TSOT- 23 Package)

Pin Description

Pin#	Pin Name	Туре	Description
1	PD	I	Power-down control pin. Pull low to enable power-down mode. Connect to VDD if not used.
2	NC	-	No connect.
3	CLKIN	I	External reference clock input.
4	VDD	Р	Power supply for the entire chip.
5	ModOUT	0	Spread spectrum clock output.
6	VSS	Ρ	Ground connection.

Pin Configuration (8-pin SOIC and TSSOP Package)

Pin Description

Pin#	Pin Name	Туре	Description		
1	CLKIN	Ι	External reference clock input.		
2	NC		No Connect.		
3	PD	Ι	Power-down control pin. Pull low to enable power-down mode. Connect to VDD if not used.		
4	NC		No connect.		
5	VSS	Р	Ground connection.		
6	ModOUT	0	Spread spectrum clock output.		
7	NC		No connect.		
8	VDD	Р	Power supply for the entire chip		

Specifications

VDD (V)	Frequency Range (MHz)	Modulation Rate
2.5	6-12	F _{IN} /256
3.3	6-13	FIN/230

Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit
VDD, V _{IN}	Voltage on any pin with respect to Ground	-0.5 to +4.6	V
T _{STG}	Storage temperature	-65 to +125	°C
T _A	Operating temperature	-40 to +85	°C
Ts	Max. Soldering Temperature (10 sec)	260	°C
TJ	Junction Temperature	150	°C
T _{DV}	Static Discharge Voltage (As per JEDEC STD22- A114-B)	2	ΚV
Note: These are s device relia	tress ratings only and are not implied for functional use. Exposure to absolute maximum ratings f	or prolonged periods of time	may affect

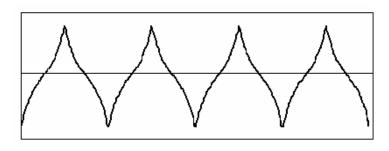
Symbol	Parameter	Min	Тур	Max	Unit	
VIL	Input low voltage	VSS-0.3		0.8	V	
VIH	Input high voltage	2.0		VDD+0.3	V	
IIL	Input low current			-35	μA	
I _{IH}	Input high current			35	μA	
V _{OL}	Output low voltage (VDD = 2.5 V , $I_{OL} = 8\text{mA}$)			0.6	V	
V _{OH}	Output high voltage (VDD = 2.5 V, I _{OH} = 8mA)	1.8			V	
I _{DD}	Static supply current ¹			10	uA	
Icc	Dynamic supply current (Unloaded Output)		2	2.5	mA	
VDD	Operating voltage	2.375	2.5	2.625	V	
t _{ON}	Power-up time (first locked cycle after power-up) ²			5	mS	
Z _{OUT}	Z _{OUT} Output impedance 40 Ω					
	CLKIN pin and PD pin are pulled <u>lo</u> w. nd XIN / CLKIN input are stable, PD pin is made high from low.				•	

DC Electrical Characteristics for 2.5V Supply

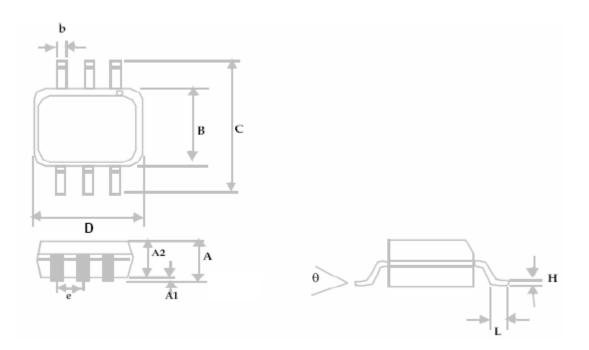
AC Electrical Characteristics for 2.5V Supply

Symbol	Parameter	Min	Тур	Max	Unit	
CLKIN	Input frequency	Input frequency			12	MHz
ModOUT	Output frequency		6		12	MHz
		CLKIN = 6MHz		±1.25		
f _d	Frequency Deviation	CLKIN = 10MHz		±1		%
		CLKIN = 12MHz		±0.9		
t _{LH} 1	Output Rise time (measured from 0.7V to 1.7V)		0.9	1.7	2.5	nS
t _{HL} 1	Output Fall time (measured from	1.7V to 0.7V)	0.6	1	1.5	nS
t _D	Output Duty Cycle		45	50	55	%
t _{JC}	Cycle-to-Cycle Jitter			±250	±400	pS
Note: 1. t _{LH} and	d t_{HL} are measured into a capacitive load of 1	5pF.	•			

Symbol	Parameter	Min	Тур	Max	Unit
VIL	Input low voltage	VSS-0.3		0.8	V
V _{IH}	Input high voltage	2.0		VDD+0.3	V
IIL	Input low current			-35	μA
I _{IH}	Input high current			35	μA
V _{OL}	Output low voltage (VDD = 3.3 V , $I_{OL} = 8\text{mA}$)			0.4	V
V _{OH}	Output high voltage (VDD = 3.3 V, I _{OH} = 8mA)	2.5		-	V
I _{DD}	Static supply current ¹			10	uA
Icc	Dynamic supply current (Unloaded Output)		2.5	3	mA
VDD	Operating voltage	2.7	3.3	3.6	V
t _{ON}	Power-up time (first locked cycle after power-up) ²			5	mS
Z _{OUT}	Output impedance		35		Ω
	CLKIN pin and PD pin are pulled <u>lo</u> w. Ind XIN / CLKIN input are stable, PD pin is made high from low.	•		•	


DC Electrical Characteristics for 3.3V Supply

AC Electrical Characteristics for 3.3V Supply


Symbol	F	Min	Тур	Max	Unit	
CLKIN	Input frequency		6		13	MHz
ModOUT	Output frequency		6		13	MHz
		CLKIN = 6MHz		±1.25		
f _d F	Frequency Deviation	CLKIN = 10MHz		±1		%
		CLKIN = 13MHz		±0.9		
t _{LH} ¹	Output Rise time (measured from 0.8V to 2.0V)		0.7	1.3	1.7	nS
t _{HL} ¹	Output Fall time (measured at 2.0V to 0.8V)		0.6	0.9	1.3	nS
t _D	Output Duty Cycle		45	50	55	%
t _{JC}	Cycle - Cycle Jitter			±300	±450	pS

Note: All parameters are at an Extended Industrial temperature range unless otherwise stated.

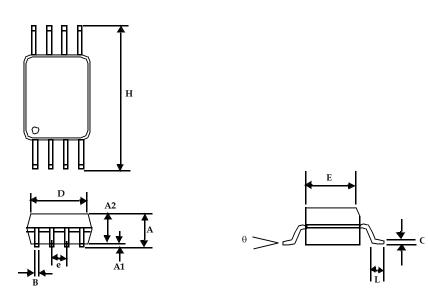
Modulation Profile

Package Information

6-pin TSC	DT-23	Package
-----------	--------------	---------

		Dimensions					
Symbol	Inc	hes	Millimeters				
	Min	Мах	Min	Max			
А		0.04		1.00			
A1	0.00	0.004	0.00	0.10			
A2	0.033	0.036	0.84	0.90			
b	0.012	0.02	0.30	0.50			
н	0.005	BSC	0.127	BSC			
D	0.114	BSC	2.90	BSC			
В	0.06	BSC	1.60	BSC			
е	0.0374 BSC		0.950 BSC				
С	0.11	0.11 BSC		BSC			
L	0.0118	0.02	0.30	0.50			
θ	0°	4°	0°	4°			

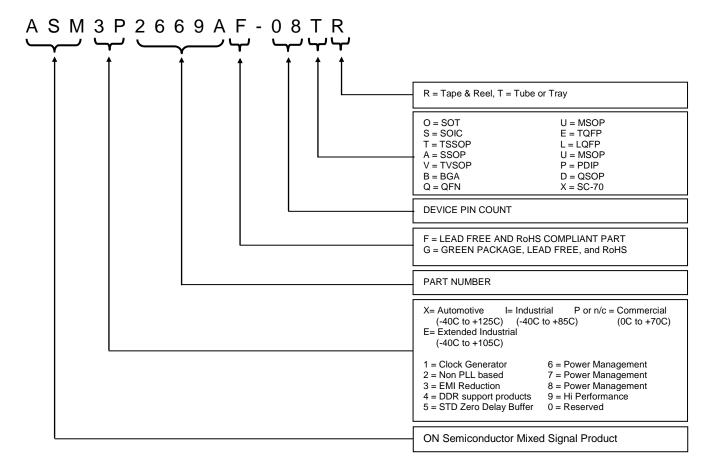
ASM3P2669A



	Dimensions				
Symbol	Inc	hes	Millimeters		
	Min	Max	Min	Max	
A1	0.004	0.010	0.10	0.25	
А	0.053	0.069	1.35	1.75	
A2	0.049	0.059	1.25	1.50	
В	0.012	0.020	0.31	0.51	
С	0.007	0.010	0.18	0.25	
D	0.193	BSC	4.90	BSC	
Е	0.154	BSC	3.91	BSC	
е	0.050 BSC		1.27 BSC		
Н	0.236	BSC	6.00 BSC		
L	0.016	0.050	0.41	1.27	
θ	0°	8°	0°	8°	

ASM3P2669A

8-Pin TSSOP Package


	Dimensions					
Symbol	Inc	hes	Millimeters			
	Min	Мах	Min	Max		
А		0.043		1.10		
A1	0.002	0.006	0.05	0.15		
A2	0.033	0.037	0.85	0.95		
В	0.008	0.012	0.19	0.30		
С	0.004	0.008	0.09	0.20		
D	0.114	0.122	2.90	3.10		
E	0.169	0.177	4.30	4.50		
е	0.026 BSC		0.65 BSC			
н	0.252	BSC	6.40 BSC			
L	0.020	0.028	0.50	0.70		
θ	0°	8°	0°	8°		

Ordering Information

Part Number	Marking	Package Type	Temperature
ASM3P2669AF-06OR	H4LL	6-Pin TSOT-23, TAPE & REEL, Pb Free	Commercial
ASM3P2669AF-08TT	3P2669AF	8-Pin TSSOP, TUBE, Pb Free	
ASM3P2669AF-08TR	3P2669AF	8-Pin TSSOP, TAPE & REEL, Pb Free	
ASM3P2669AF-08ST	3P2669AF	8-Pin SOIC, TUBE, Pb Free	
ASM3P2669AF-08SR	3P2669AF	8-Pin SOIC, TAPE & REEL, Pb Free	
ASM3P2669AG-06OR	H3LL	6-Pin TSOT-23, TAPE & REEL, Green	
ASM3P2669AG-08TT	3P2669AG	8-Pin TSSOP, TUBE, Green	
ASM3P2669AG-08TR	3P2669AG	8-Pin TSSOP, TAPE & REEL, Green	
ASM3P2669AG-08ST	3P2669AG	8-Pin SOIC, TUBE, Green	
ASM3P2669AG-08SR	3P2669AG	8-Pin SOIC, TAPE & REEL, Green	
ASM3I2669AF-06OR	H5LL	6-Pin TSOT-23, TAPE & REEL, Pb Free	Industrial
ASM3I2669AF-08TT	3I2669AF	8-Pin TSSOP, TUBE, Pb Free	
ASM3I2669AF-08TR	3I2669AF	8-Pin TSSOP, TAPE & REEL, Pb Free	
ASM3I2669AF-08ST	3I2669AF	8-Pin SOIC, TUBE, Pb Free	
ASM3I2669AF-08SR	3I2669AF	8-Pin SOIC, TAPE & REEL, Pb Free	
ASM3I2669AG-06OR	H6LL	6-Pin TSOT-23, TAPE & REEL, Green	
ASM3I2669AG-08TT	3I2669AG	8-Pin TSSOP, TUBE, Green	
ASM3I2669AG-08TR	3I2669AG	8-Pin TSSOP, TAPE & REEL, Green	
ASM3I2669AG-08ST	3I2669AG	8-Pin SOIC, TUBE, Green	
ASM3I2669AG-08SR	3I2669AG	8-Pin SOIC, TAPE & REEL, Green	
ASM3E2669AG-06OR	H7LL	6-Pin TSOT-23, TAPE & REEL, Green	Extended Industrial
ASM3E2669AG-08TT	3E2669AG	8-Pin TSSOP, TUBE, Green	
ASM3E2669AG-08TR	3E2669AG	8-Pin TSSOP, TAPE & REEL, Green	
ASM3E2669AG-08ST	3E2669AG	8-Pin SOIC, TUBE, Green	
ASM3E2669AG-08SR	3E2669AG	8-Pin SOIC, TAPE & REEL, Green	

LL = 2 Character LOT #

Device Ordering Information

Licensed under US Patent #5,488,627 and #5,631,921.

ASM3P2669A

Note: This product utilizes US Patent #6,646,463 Impedance Emulator Patent issued to PulseCore Semiconductor, dated 11-11-2003.

ON Semiconductor and ^(IIII) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. U.S Patent Pending; Timing-Safe and Active Bead are trademarks of PluseCore Semiconductor, a wholly owned subsidiary of ON Semiconductor. This literature is subject to all applicable cop

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone:** 303-675-2175 or 800-344-3860 Toll Free USA/Canada **Fax:** 303-675-2176 or 800-344-3867 Toll Free USA/Canada **Email:** orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative