# **HSMZ-C430-xxxxx** High Performance Surface Mount LEDs

# **Data Sheet**



## Description

This evolutionary package design allows the optical designer flexibility to minimize the quantity of LEDs required without trading off the ultimate optical performance. This slim package can be easily coupled with secondary optics to efficiently distribute light, providing a total low-profile structure.

These LEDs have a very low package thermal resistance that efficiently dissipates heat out of the LED package to its surrounding, e.g., a circuit board.

High-efficiency LED dice are used in these LED components. AlInGaP (Aluminium Indium Gallium Phosphide) for Red, Red Orange, and Amber, is capable of producing high light output.

These solid-state surface mount LEDs are designed with a reflector cup and dome, which provide directional lighting. The reflector cup focuses the light more efficiently to provide a higher intensity compared to a nonreflector cup equivalent part.

All packages are compatible with IR soldering processes and are shipped in tape and reel with 2000 units per reel.

## Features

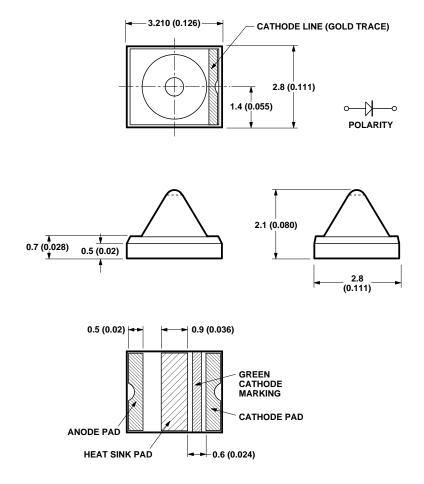
- · Very low thermal impedance
- Smooth, consistent spatial radiation pattern
- Viewing angle: 30°
- 3.2 x 2.8 mm footprint
- High luminous output
- · Compatible with IR solder reflow
- · Colors available: red, amber, and red orange
- Available in 8 mm tape on 7" (178 mm) diameter reels
- Tinted, nondiffused epoxy

### Applications

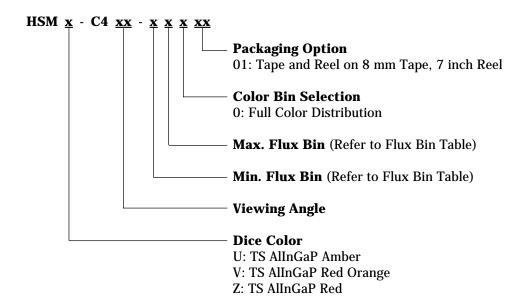
- Variable message sign
- Traffic/rail signal
- Emergency/warning signs
- Decorative devices
- Backlighting
- Automotive

### **Benefits**

- · High package thermal dissipation capability
- Lens design capability to efficiently distribute light into desirable angle
- Small footprint to overcome space count
- High flux output in surface mount package


### **Device Selection Guide**

| Total Flux $\phi_{v}$ (mlm) <sup>[1]</sup> @ 70 mA |      |      |       |                       |                |
|----------------------------------------------------|------|------|-------|-----------------------|----------------|
| Part Number                                        | Min. | Тур. | Max.  | Color                 | Parts per Reel |
| HSMZ-C430-TW001                                    | 2100 | 3800 | 8300  | TS AllnGaP Red        | 2000           |
| HSMV-C430-UX001                                    | 2700 | 4500 | 10700 | TS AlInGaP Red Orange | 2000           |
| HSMU-C430-SV001                                    | 1600 | 3100 | 6300  | TS AllnGaP Amber      | 2000           |


#### Note:

1.  $\phi_V$  is the total luminous flux output as measured with an integrating sphere after the device has stabilized.





NOTES: 1. ALL DIMENSIONS IN MILLIMETERS (INCHES). 2. TOLERANCE IS ± 0.1 mm (± 0.004 IN.) UNLESS OTHERWISE SPECIFIED. 3. HEAT SINK PAD IS CONNECTED TO CATHODE PAD BY PRODUCT DESIGN. 4. DO NOT USE HEAT SINK PAD AS CATHODE. 5. HEAT SINK PAD NEEDS TO BE INDEPENDENT FOR EACH UNIT (IF ARRANGED IN-LINE OR IN MATRIX FORM). 6. DO NOT CONNECT ALL THE HEAT SINKS TOGETHER AS THIS WILL LEAD TO SHORT CIRCUIT. 7. ILLUSTRATION ON HEAT SINK DESIGN FOR MATRIX AND IN-LINE ARRANGEMENT DESIGN SHOWN IN APPLICATION NOTES.



## Absolute Maximum Ratings at $T_A = 25^{\circ}C$

| Parameter                           | AllnGaP          | Units            |
|-------------------------------------|------------------|------------------|
| DC Forward Current <sup>[1]</sup>   | 70               | mA               |
| Peak Pulsing Current <sup>[2]</sup> | 200              | mA               |
| Power Dissipation                   | 230              | mW               |
| Reverse Voltage                     | 5                | V                |
| LED Junction Temperature            | 110              | °C               |
| Operating Temperature Range         | -40 to +100      | °C               |
| Storage Temperature Range           | -55 to +100      | °C               |
| Soldering Temperature               | See IR reflow pr | ofile (Figure 7) |

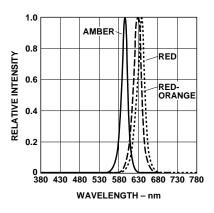
Notes:

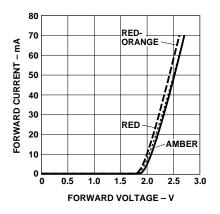
Derate linearly as shown in Figure 4.
Pulse condition of 1/100 duty factor and 1 msec width.

## Electrical Characteristics at T<sub>A</sub> = 25°C

| Forward Voltage<br>V <sub>F</sub> (Volts)<br>@ I <sub>F</sub> = 70 mA |      | Reverse Voltage<br>V <sub>R</sub> (Volts)<br>@ I <sub>R</sub> = 100 μA | Capacitance C<br>(pF), V <sub>F</sub> = 0,<br>f = 1 MHz | Thermal<br>Resistance<br>Rθ <sub>J-PIN</sub> (°C/W) |      |
|-----------------------------------------------------------------------|------|------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------|------|
| Device                                                                | Тур. | Max.                                                                   | Min.                                                    | Тур.                                                | Тур. |
| HSMZ-C430                                                             | 2.7  | 3.2                                                                    | 5                                                       | 30                                                  | 90   |
| HSMV-C430                                                             | 2.6  | 3.2                                                                    | 5                                                       | 30                                                  | 90   |
| HSMU-C430                                                             | 2.7  | 3.2                                                                    | 5                                                       | 30                                                  | 90   |

## Optical Characteristics at T<sub>A</sub> = 25°C


| Part Number | Luminous<br>Intensity/Total Flux<br>I <sub>V</sub> (mcd)<br>/ Φ <sub>V</sub> (mIm) <sup>[2]</sup><br>Typ. | Peak<br>Wavelength<br>λ <sub>peak</sub> (nm)<br>Typ. | Color,<br>Dominant<br>Wavelength<br>λ <sub>d</sub> (nm) <sup>[3]</sup><br>Typ. | Viewing Angle<br>2 θ <sub>1/2</sub> Degrees <sup>[4]</sup><br>Typ. | Luminous<br>Efficacy<br>η <sub>ν</sub> (Im/W)<br>Typ. | Luminous<br>Efficiency<br>(Im/W)<br>Typ. |
|-------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------|
| HSMZ-C430   | 1.2                                                                                                       | 642                                                  | 629                                                                            | 30                                                                 | 150                                                   | 20                                       |
| HSMV-C430   | 1.2                                                                                                       | 634                                                  | 621                                                                            | 30                                                                 | 210                                                   | 25                                       |
| HSMU-C430   | 1.2                                                                                                       | 597                                                  | 593                                                                            | 30                                                                 | 500                                                   | 16                                       |


### Notes:

2.  $\phi_V$  is the total luminous flux output as measured with an integrating sphere after the device has stabilized.

3. The dominant wavelength is derived from the CIE Chromatically Diagram and represents the perceived color of the device.

4.  $\theta_{1/2}$  is the off-axis angle where the luminous intensity is 1/2 the peak intensity.





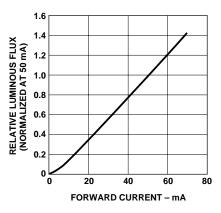
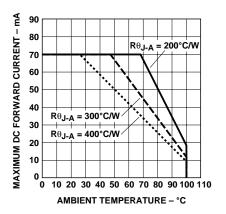






Figure 2. Forward current vs. forward voltage.

Figure 3. Relative luminous flux vs. forward current.



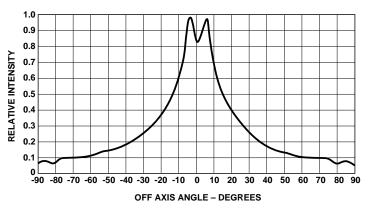
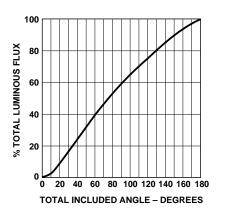




Figure 4. Maximum DC forward current vs. ambient temperature.

Figure 5. Radiation pattern.



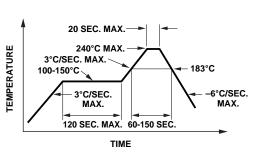
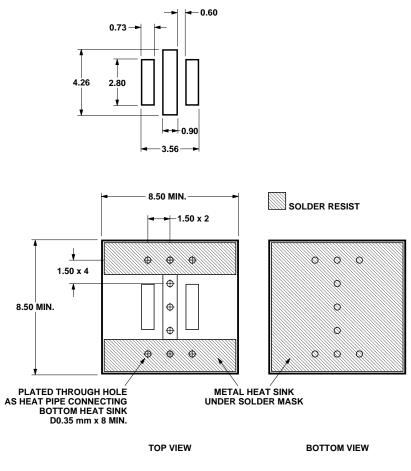




Figure 6. Percent total luminous flux vs. total included angle.

Figure 7. Recommended reflow soldering profile (JEDEC J-STD-020-A).



NOTE: ALL DIMENSIONS IN mm.

Figure 8. Recommended soldering pad pattern.

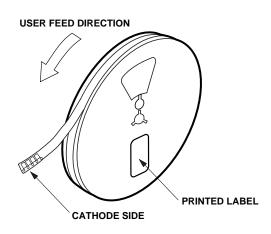



Figure 9. Reel Orientation.

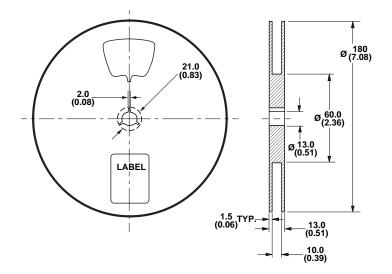



Figure 10. Reel dimensions.

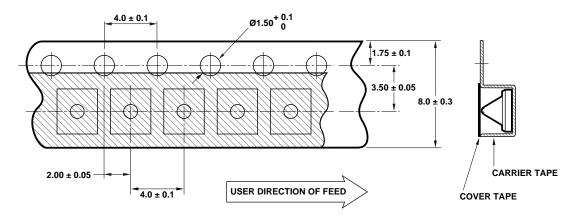



Figure 11. Tape dimensions.

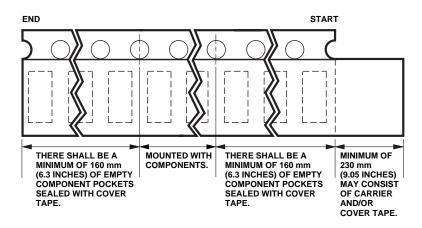



Figure 12. Tape leader and trailer dimensions.

## Convective IR Reflow Soldering

For more information on IR reflow soldering, refer to Application Note 1060, *Surface Mounting SMT LED Indicator Components*.

For more information on using HSMx-C4xx series SMT LEDs, refer to Application Note 1266.

### Flux Bin Category

| Bin ID | Min. | Max. |  |
|--------|------|------|--|
| Q      | 1150 | 1500 |  |
| R      | 1500 | 1900 |  |
| S<br>T | 1900 | 2500 |  |
|        | 2500 | 3200 |  |
| U      | 3200 | 4200 |  |
| V      | 4200 | 5500 |  |
| W      | 5500 | 7200 |  |
| Х      | 7200 | 9300 |  |
|        |      |      |  |

Tolerance =  $\pm 15\%$ 

## **Storage Condition:**

5 to 30°C @ 60% RH max.

Baking is required under the condition:

a) The pack has been opened for more than 1 week.

Baking recommended condition:  $60 \pm 5^{\circ}$ C for 20 hours.

This product is qualified as Moisture Sensitive JEDEC Level 2A.

### Color Bin Category Amber

| Bin ID    | Min.     | Max.  |  |
|-----------|----------|-------|--|
| 1         | 584.5    | 587.0 |  |
| 2         | 587.0    | 589.5 |  |
| 4         | 589.5    | 592.0 |  |
| 6         | 592.0    | 594.5 |  |
| 7         | 594.5    | 597.0 |  |
| Tolerance | = ± 0.5% |       |  |

Red Orange

|           | 5     |       |  |
|-----------|-------|-------|--|
| Bin ID    | Min.  | Max.  |  |
| 1         | 610.5 | 613.5 |  |
| 2         | 613.5 | 616.5 |  |
| 3         | 616.5 | 619.5 |  |
| 4         | 619.5 | 623.5 |  |
| 5         | 623.5 | 626.5 |  |
| Telereree |       |       |  |

Tolerance =  $\pm 0.5\%$ 

### Red

| Full Distribution        |  |
|--------------------------|--|
| Tolerance = $\pm 0.5$ nm |  |

For product information and a complete list of distributors, please go to our website: www.

www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries. Data subject to change. Copyright © 2006 Avago Technologies Pte. All rights reserved. 5988-6494EN May 28, 2006

