8-bit microcontroller ## MC9S08SE8/4 ## Do more with less ## **Target Applications** - Personal care/handheld devices - AC-powered consumer goods - Power tools - · Security systems - Lawnmowers - Small appliances - Treadmills - Vacuum cleaners - Industrial appliances/compressors - DC computer cooling fans - Power supplies - AC voltage line monitors | MC9S0 | 18SF8/4 | 1 Block | Diagram | |-------|---------|---------|---------| | 24/14 | 24/14 GPIO 8x KB | | ŒΙ | COP | |-----------------------|------------------|--|-----|---------| | | 16-bit
ner | LV | Ί | RTC | | | 16-bit
ner | | S | CI | | 10-ch., 10-bit
ADC | | ICS
(0.2% resolution, 2% deviation) | | | | 8K/4K
Flash | 512/256B
RAM | | ICI | E + BDM | | S08 Core | | | | | | | B (2) | |--|---| | Features | Benefits | | 8-bit HCS08 Central Processor Unit (CPU) | | | Up to 20 MHz HCS08 (10 MHz internal bus
frequency) | Offers high performance up to 5V, ideal for industrial applications | | HC08 instruction set with added BGND instruction | Enables backward object-code compatibility with
68HC08 and 68HC05 Allows existing code libraries to be used Allows for efficient, compact module coding in
assembly or C complier | | Supports up to 32 interrupt/reset sources | Enables software flexibility and optimization for real-
time applications | | Integrated Third-Generation Flash Memory and RAM | | | Embedded flash that is in-application
reprogrammable over the full operating voltage and
temperature range with a single power supply | Provides users a single solution for multiple platforms
or a single platform that is field reprogrammable in
virtually any environment Does not require additional pin or power supply for
flash programming, thus simplifying the interface for
in-line programming and allowing for more GPIO pins | | Extremely fast, byte-writable programming;
as fast as 20 μs (burst mode) | Helps reduce production programming costs through
ultra-fast programming, as well as lowering system
power consumption due to shorter writes | | Up to 100,000 write/erase cycles at typical voltage
and temperature (10k minimum write/erase); 100
years typical data retention (15 years minimum) | Allows electrically erasable programmable read-only
memory (EEPROM) emulation, reducing system costs
and board real estate | | Flexible Clock Options | | | Internal clock source (ICS) module with a
frequency-locked loop (FLL) controlled by internal
or external reference | Eliminates the cost of utilizing external clock
components, reducing board space and increasing
system reliability | | Precision trimming of internal reference allows
typical 0.2 percent resolution and 2 percent
deviation over operating temperature and voltage | Provides one of the most accurate and cost-effective internal clock sources in the market | | Internal reference can be trimmed from 31.25 kHz
to 38.4 kHz, allowing for up to 10 MHz FLL output | Enables adjustment of bus clocks for optimal serial communication baud rates and/or timer intervals | | Low-power oscillator module (XOSC) with
software-selectable crystal or ceramic resonator
range, 31.25 kHz to 38.4 kHz or 1 MHz to 16 MHz | 32 kHz oscillator provides low-power option
for systems requiring time-keeping functionality
(i.e. time and date) while in low-power modes | | 22 I/O Pins, One Input-Only Pin and One Output-Only | y Pin | | Outputs 10 mA each; 60 mA max for package | High-current I/O allows direct drive of LED and other
circuits, virtually eliminating external drivers and
reducing system costs | | Software-selectable pull-ups on ports when used
as inputs; internal pull-up on reset and interrupt
request (IRQ) pin | Reduces customer's system cost by eliminating the
need for external resistors | | Software-selectable slew rate control and drive
strength on ports when used as output | Allows user to configure ports for slower slew rate and
weaker drive to minimize noise emissions from the MCU | | 8-pin keyboard interrupt module with software-
selectable polarity on edge or edge/level modes | Keyboard scan with programmable pull-ups/pull-downs
virtually eliminates external glue logic when interfacing
to simple keypads | | | | ## Overview The MC9S08SE8/4 strengthens Freescale's entry level 8-bit microcontroller portfolio by extending the advantages of the HCS08 core and peripherals to 5V. The highly integrated SE controllers give you the choice of cost-effective higher-pin-count devices, with 20 MHz CPU, for entry-level products. Functionality is enhanced with rich analog capabilities, a complete set of serial modules, a temperature sensor and robust memory options, which are ideal for general-purpose consumer and industrial applications in the 2.7V to 5.5V range. | Cost-Effective Development Tools | | | | |----------------------------------|--|--|--| | Part Number | Description | | | | DEMO9S08SE8
\$75* | Cost-effective
demonstration board
with potentiometer,
LEDs, serial port and
built-in USB-BDM cable
for debugging and
programming | | | | M68CYCLONEPRO
\$499* | HC08/HCS08/HC12/
HCS12 stand-alone
flash programmer or
in-circuit emulator,
debugger, flash
programmer; USB,
serial or Ethernet
interface options | | | | USBMULTILINKBDM
\$99* | Universal HCS08
in-circuit debugger
and flash programmer;
USB PC interface | | | | CWX-HXX-SE
Free** | CodeWarrior™ Special Edition for Microcontrollers; includes integrated development environment (IDE), linker, debugger, unlimited assembler, Processor Expert™ auto-code generator, full-chip simulation and 32 KB C compiler limitation | | | ^{*}Prices indicated are MSRP. | Features | Benefits | |---|--| | Ganged Output Option for PTB (5:2) and PTC (3:0) | | | Allows single write to change state of multiple pins Provides option to tie multiple pins from different
ports to same control registers | Safely drives multiple outputs | | Multiple Serial Communication Options | | | Serial communication interface module with option
for 13-bit break capabilities and double-buffered
transmit and receive | All serial peripherals available for use in parallel on
16-pin devices | | 10-channel, 10-bit Analog-to-Digital Converter (ADC | | | Automatic compare function, software
programmable for greater than, equal to
or less than conditions | Easy interface to analog inputs, such as sensors Used to set conversion complete and generate interrupt only when result matches condition | | Asynchronous clock source | Can be used to run the ADC when MCU clocks are off,
such as in STOP3 low-power mode | | Temperature sensor | Calculates temperature without any external components
and saves an ADC input channel for other use | | Hardware triggerable using the RTC counter | Takes periodic measurements without CPU
involvement; can be used in STOP3 with compare
function to take measurement and wake MCU from
STOP3 only when compare level is reached | | Low-power and high-speed options | Flexible configuration to meet high-performance and
low-power requirements | | Real-Time Counter (RTC) | | | 8-bit modulus counter with binary or
decimal-based prescaler | Serve as a cyclic wakeup from low-power modes
without the need of external components | | Three software selectable clock sources: 1 kHz
internal low-power oscillator, external clock and
32 kHz internal clock | Provides precise time base for time-of-day, calendar or task scheduling functions | | Three Timer Modules | | | Programmable 16-bit timer/PWM modules (TPM1 and TPM2) | Each channel is independently programmable for input
capture, output compare, buffered edge-aligned pulse
width modulation (PWM) or buffered center-aligned PWM | | System Protection | | | Watchdog computer operating properly (COP) reset
with option to run from dedicated 1 kHz internal
clock source or bus clock | Resets device in instance of runaway or corrupted code Independent clock source provides additional protection in case of loss of clock | | Low-voltage detection with reset or interrupt | Allows system to write/save important variables before voltage drops too low Can hold device in reset until reliable voltage levels are reapplied to the part | | Illegal opcode detection with reset | Resets device in instance of runaway or corrupted code | | Security feature for flash and RAM | Prevents unauthorized access to memory to protect a
customer's valuable software IP | | Always-on power-on reset (POR) circuitry | Significantly reduces risk of code runaway due to brownout situations | | Development Support | | | Background debugging system On-chip in-circuit emulation (ICE) with real-time
bus capture | Provides single-wire debugging and emulation interface; eliminates the need for expensive emulation tools Provides circuit emulation without the need for additional expensive development hardware. | | Package Option | าร | | |----------------|---------|-----------------| | Part Number | Package | Temp. Range | | MC9S08SE8CWL | SOIC28 | -40°C to +85°C | | MC9S08SE4CWL | SOIC28 | -40°C to +85°C | | MC9S08SE8VWL | SOIC28 | -40°C to +105°C | | MC9S08SE4VWL | SOIC28 | -40°C to +105°C | | MC9S08SE8MWL | SOIC28 | -40°C to +125°C | | MC9S08SE4MWL | SOIC28 | -40°C to +125°C | | MC9S08SE8CTG | TSS0P16 | -40°C to +85°C | | MC9S08SE4CTG | TSSOP16 | -40°C to +85°C | | MC9S08SE8VTG | TSSOP16 | -40°C to +105°C | | Package Option | 15 | | |----------------|---------|-----------------| | Part Number | Package | Temp. Range | | MC9S08SE4VTG | TSS0P16 | -40°C to +105°C | | MC9S08SE8MTG | TSS0P16 | -40°C to +125°C | | MC9S08SE4MTG | TSS0P16 | -40°C to +125°C | | MC9S08SE8CRL | PDIP28 | -40°C to +85°C | | MC9S08SE4CRL | PDIP28 | -40°C to +85°C | | MC9S08SE8VRL | PDIP28 | -40°C to +105°C | | MC9S08SE4VRL | PDIP28 | -40°C to +105°C | | MC9S08SE8MRL | PDIP28 | -40°C to +125°C | | MC9S08SE8MRL | PDIP28 | -40°C to +125°C | | | | | additional, expensive development hardware Learn More: For current information about Freescale products and documentation, please visit www.freescale.com/8bit. Freescale and the Freescale logo are trademarks or registered trademarks of Freescale Semiconductor, Inc. in the U.S. and other countries. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008. Document Number: MC9S08SE8FS / REV 0 Agile 3: 926-78276 / REV A ^{**}Subject to license agreement and registration