in | PRELIMINARY
Intel486™ DX2 MICROPROCESSOR

m Binary Compatible with Large m (EEE 1149.1 Boundary Scan
Software Base Compatibility
* * T
—MS-DOS*, 0S/2"*, Windows m High Performance Design

- UNIX*** System V/intel386 50 MHz/66 MHz Core S,
— peed Using
— IRMX®, iRMK Kernels 25 MHz/33 MHz Bus Clocks

m High Integration Enables On-Chip - RISC Integer Core with Frequent
— 8 Kbyte Code and Data Cache Instructions Executing in One Core
— Floating Point Unit Clock
— Paged, Virtual Memory Management — 80, 106 Mbyte/sec Burst Bus

m Easy To Use . — Dynamic Bus Sizing for 8-, 16-, and
— Built-In Self Test 32-Bit Busses
— Hardware Debugging Support — Complete 32-Bit Architecture

m 168-Pin Grid Array Package ® Multiprocessor Support
—Pin Compatlbleywith Inteld86™ DX — Cache Consistency Protocols

Microprocessor — Support for Second Level Cache

The Intel486 DX2 CPU offers the highest performance for DOS, 0S/2, Windows, and UNIX System V/Intel386
applications. It is 100% binary compatible with the Inte!386™ CPU. Over one million transistors integrate the
RISC integer core, 8 Kbyte cache memory, floating point hardware, and memory management on-chip while
retaining binary compatibility with previous members of the Intel386/Intel486 architectural family. The RISC
integer core executes frequently-used instructions in one core clock cycle, providing leadership performance
levels. An 8 Kbyte unified code and data cache allow the high performance levels to be sustained. A
106 MByte/sec burst bus at 33 MHz bus clock ensures high system throughput even with inexpensive DRAMs.

New features enhance multiprocessing systems; new instructions speed manipulation of memory-based sem-
aphores; and on-chip hardware ensures cache consistency and provides hooks for multilevel caches.

The built-in self-test extensively tests on-chip logic, cache 'memory, and the on-chip paging transiation cache.
Debug features include breakpoint traps on code execution and data accesses.

Intel486™ DX2 Microprocessor Pipelined 32-Bit Microarchitecture

&4 Bit Interunit Transfer Bus

L

7 32-67 Dots Bus 7 Gore.
I 452 -~ d°‘°:|“ 3T
32-bit Dota Bus / oubler
)
Linear Address Bus
32 il Bus interface A2-A31,
BED#-BE3¥
Segmentation Paging PCO, PWT " N
Barre) Shifter | Base/ Unit Uit * Cache Unit , Address Drivers |emmmmmp
index 2 MY I
Bus Descriptor 7 -
Reginter File A Registers 20 8k Byte " o Wrlts Bufters
32 Physical Cache 32 b S
Limit and Transiatlon Address DO-D3 1
AL Attribute Lookanids Data Bus M)
PLA Buffer . Transcelvers ADS# W/R# D/C#
o 3
+ 1 128 3 ROY# LOCK# PLOCK#
Y 8us Control BOFF¥ A20M# BREQ
HOLD HLDA RESET
- Request Sequancer NTR NMI
Displocemant Bus / Prefetcher FERR® BNNE®
micro-instruction 2 1 e [t
* (4
¥ - ¥ Coda 32 Byte Code Burst Bus Control BROY# BLAST!
- / Straom Queus T
Floating Control ond & e .| preeccemaeaa.
L — Point Protection Test & 7 24 2 x 16 Bytes Bus Size Control 8516# BSBN
- Unit Unit M Decods e
- 1l 1 THEEETTTTTTT Jaeeecracmeemm-
Decoded KEns FLusis
AHOLD, EADS#
£.0. Register Controf imatrostion Cache Control
ile Ry |t —/— e PCHKS
Pority Generation 0DPO-DP3
and Cantrol —>
............. oK
Boundary Soan |, » TuS
Control ™
00

241245-1

November 1993
Order Number: 241245-004

]
|nte| . Intel486T™ DX2 MICROPROCESSOR

Intel386, i386, Intel387, i387, Intel486, i486, Intel487, 487 are trademarks of Intel Corporation.
*MS-DOS is a registered trademark of Microsoft Corporation.
**(08/2 and Windows are trademarks of Microsoft Corporation.
***UNIX is a trademark of UNIX Systems Laboratories.

I PRELIMINARY 23

intgl.

Quick Reference to Chapters

CONTENTS PAGE
1.0 INTRODUCTION 212
2.0 ARCHITECTURAL OVERVIEW 2-19
3.0 REAL MODE ARCHITECTURE 2-50
4.0 PROTECTED MODE

ARCHITECTURE 2-52
5.0 ON-CHIPCACHE 2-80
6.0 HARDWARE INTERFACE 2-85
70BUSOPERATION 2-98
8.0 TESTABILITY 21131
9.0 DEBUGGING SUPPORT 2-149
2-4

CONTENTS PAGE
10.0 INSTRUCTION SET SUMMARY .. 2-154

11.0 DIFFERENCES WITH THE
Intei386™ MICROPROCESSOR ...

12.0 Pentium™ OVERDRIVE™
PROCESSOR SOCKET 2-182

13.0 CONVERTING AN EXISTING
Intel486™ CPU-BASED SYSTEM ... 2-192

2-181

14.0 ELECTRICAL DATA 2-197
15.0 MECHANICAL DATA 2-206
16.0 SUGGESTED SOURCES FOR
Intel486™ ACCESSORIES 2-209
17.0 REVISION HISTORY 2-210

intel486™ DX2 Microprocessor

CONTENTS PAGE
1.0 INTRODUCTION 2-12
Pinoutl 2-10
Brief Pin Descriptions 2-13
2.0 ARCHITECTURAL OVERVIEW 2-19
2.1 RegisterSet 2-19
2.1.1 Base Architecture
Registers 2-20
2.1.2 System Level Registers 2-24
2.1.3 Floating Point Registers 2-28
2.1.4 Debug and Test Registers ... 2-35
2.1.5 Register Accessibility 2-35
2.1.6 Compatibility 2-36
2.2 InstructionSet 2.37
2.3 Memory Organization 2-37
2.3.1 Address Spaces 2-37
2.3.2 Segment Register Usage2-38
241/08Spacecoeiiiiinnn. 2-38
2.5 AddressingModes 2-39
2.5.1 Addressing Modes
Overview 2-39
2.5.2 Register and Immediate
Modesoiiill 2-39
2.5.3 32-Bit Memory Addressing
Modes 2-39
2.5.4 Differences between 16- and
32-Bit Addresses 2-41
26DataFormats 2-41
26.1DataTypes 2-41
2.6.2 Little Endian vs Big Endian
DataFormats 2-45
271interrupts ... 2-45
2.7.1 Interrupts and Exceptions 2-45
2.7.2 Interrupt Processing 2-45
2.7.3 Maskable Interrupt 2-46
2.7.4 Non-Maskable Interrupt 2-47
2.7.5 Software Interrupts 2-47
2.7.6 Interrupt and Exception
Priorities 2-47
2.7.7 Instruction Restart 2-48

CONTENTS PAGE
2.78DoubleFault 2-48
2.7.9 Floating Point Interrupt

Vectorsc.cooiiiiiiat 2-48

3.0 REAL MODE ARCHITECTURE 2.50

3.1 Real Mode Introduction 2-50
3.2 Memory Addressing 2-51
3.3 Reserved Locations 2-54
B4interrupts ...l
3.5 Shutdown and Halt
4.0 PROTECTED MODE
ARCHITECTURE
4.1 Introduction
4.2 Addressing Mechanism 2-52
4.3 Segmentation 2-53
4.3.1 Segmentation Introduction ... 2-53
4.3.2 Terminology 2-53
4.3.3 Descriptor Tables 2-53
4.3.4 Descriptors 2-54
4.4 Protection 2-63
4.4.1 Protection Concepts 2-63
4.4.2 Rules of Privilege 2-63
4.4.3 Privilege Levels 2-63
4.4.4 Privilege Level Transfers 2-66
445CallGates 2-67
4.4.6 Task Switching e 2-67
4.4.7 Initialization and Transition to
ProtectedMode 2-68
4.4.8 Tools for Building Protected
Systems ...l 2-69
45Paging ... 2-69
4.5.1 Paging Concepts 2-69
4.5.2 Paging Organization 2-70
4.5.3 Page Level Protection
(R/W,U/SBIts) 2-71
4.5.4 Page Cacheability
(PWT,PCDBIts) 2.72
4.5.5 Translation Lookaside
Buffer ...l 2-72
4.5.6 Paging Operation 2.73
4.5.7 Operating System
Responsibilities 2.74

CONTENTS

4.6 Virtual 8086 Environment 2-74
4.6.1 Executing 8086 Programs 2.74

4.6.2 Virtual 8086 Addressing
Mechanism 2-74

4.6.3 Paging in Virtual Mode 2.74

4.6.4 Protection and Virtual 8086
Mode to 1/0 Permission

Bitmap 2.75
4.6.5 Interrupt Handling 2-76
4.6.6 Entering and Leaving Virtual

8086Mode 2.77

5.0 ON-CHIPCACHE 2-80
5.1 Cache Organization 2-80
5.2CacheControl 2-81
5.3 Cache LineFills 2-81
5.4 Cache Line Invalidations 2-82
5.5 Cache Replacement 2.82
5.6 Page Cacheability 2-83
5.7 CacheFlushing 2-84
5.8 Caching Translation Lookaside

BufferEntries 2-84

6.0 HARDWARE INTERFACE 2-85
6.1 Introduction 2-85
6.2 Signal Descriptions 2-86

6.2.1 Clock (CLK) 2-86
6.2.2 Address Bus

(A31-A2, BEO#-BE3#) 2-86
6.2.3 Data Lines (D31-D0) 2-87
6.24Parity 2-87
6.2.5 Bus Cycle Definition 2-87
6.26BusControl 2-88
6.2.7 Burst Control 2-88
6.2.8 Interrupt Signals 2-89
6.2.9 Bus Arbitration Signals 2-89
6.2.10 Cache Invalidation 2-90
6.2.11 Cache Control 2-91

2-6

6.2.12 Page Cacheability Outputs
(PWT, PCD)

6.2.13 Numeric Error Reporting 2-91

6.2.14 Bus Size Control
(BS16#,BS8#) 2-92

CONTENTS PAGE
6.2.15 Address Bit 20 Mask
(A20M#) 2-92
6.2.16 Boundary Scan Test
Signals ...l 2-92
6.3 Write Buffers 293
6.3.1 Write Buffers and 1/0
Cyclescooviiviiiinninannn. 2-94
6.3.2 Write Buffers Implications on
LockedBusCycles 2-94
6.4 Interrupt and Non-Maskable
interrupt Interface 2-94
6.4.1 Interrupt Logic 2-94
6.42NMiLogic 295
6.5 Reset and Initialization 2-95
6.5.1 Pin State during Reset 2-96
7.0BUS OPERATION 2-98
7.1 Data Transfer Mechanism 2-98

7.1.1 Memory and I/0 Spaces 2-98

7.1.2 Memory and 1/0 Space
Organization 2-99

7.1.3 Dynamic Data Bus Sizing ... 2-100
7.1.4 Interfacing with 8-, 16- and 32-

bit Memories 2-101
7.1.5 Dynamic Bus Sizing during

Cache LineFills 2-103
7.1.6 Operand Alignment 2-103

7.2 Bus Functional Description 2-104

7.2.1 Non-Cacheable Non-Burst

SingleCycle 2-104
7.2.2 Multiple and Burst Cycle Bus

Transfers 2-105
7.2.3 Cacheable Cycles 2-109
7.2.4 Burst Mode Details 2-112
7.2.58-and 16-BitCycles 2-116
7.2.6 LockedCycles 2-118
7.2.7 Pseudo-Locked Cycles 2-119
7.28 Invalidate Cycles 2-119
7.29BusHold 2123
7.2.10 Interrupt Acknowledge 2-123
7.2.11 Special Bus Cycles 2-126
7.2.12 Bus Cycle Restart 2-127
7.213Bus States 2-128
7.2.14 Floating Point Error

Handling 2-129

CONTENTS PAGE
8.0 TESTABILITY 2-131
8.1 Built-in Self Test (BIST) 2-131
8.2 On-Chip Cache Testing 2-131
8.2.1 Cache Testing Registers TR3,
TR4andTR5 2-131
8.2.2 Cache Testability Write 2-132
8.2.3 Cache Testability Read 2-134
8.24FlushCache 2-134
8.3 Translation Lookaside Buffer (TLB)
Testingc...ooilL. 2-134
8.3.1 Translation Lookaside Buffer
Organization 2-134
8.3.2 TLB Test Registers: TR6 and
TR7 2-135
8.3.3TLBWrite Test 2-137
8.3.4 TLB Lookup Test 2-137
8.4 3-state Output TestMode 2-137
8.5 Intel486™ DX2 Microprocessor
Boundary Scan (JTAG) 2-137
8.5.1 Boundary Scan
Architecture 2-138
8.5.2 Data Registers 2-138
8.5.3 Instruction Register 2-139
8.5.4 Test Access Port (TAP)
Controller 2-141
8.5.5 Boundary Scan Register
ell ... 2-144
8.5.6 TAP Controller
Initialization 2-144
8.5.7 Boundary Scan Description
Language(BSDL) 2-145
9.0 DEBUGGING SUPPORT 2-149
9.1 Breakpoint Instructions 2-149
9.2 Single Step Instructions 2-149
9.3 Debug Registers 2-149
9.3.1 Linear Address Breakpoint
Registers 2-150
9.3.2 Debug Control Register 2-150
9.3.3 Debug Status Register 2-153
9.3.4 Use of Resume Flag (RF) in
Flag Register 2-153

CONTENTS PAGE

10.0 INSTRUCTION SET SUMMARY .. 2-154

10.1 Intel486™ DX2 Microprocessor
Instruction Encoding and Clock

CountSummary 2-154
10.2 Instruction Encoding 2173
10.2.1 Overview 2-173
10.2.2 32-Bit Extensions of the
InstructionSet 2-174
10.2.3 Encoding of Integer
InstructionFields 2-174

10.2.4 Encoding of Floating Point
InstructionFields

11.0 DIFFERENCES WITH THE
Intel386™ MICROPROCESSOR ...

12.0 Pentium™ OVERDRIVE™

PROCESSOR SOCKET 2-182
12.0.1 Pentium OverDrive
Processor Overview 2-183
12.1 Pentium OverDrive Processor
CircuitDesign 2-183
12.2SocketLayout 2-184
12.2.1 Backward Compatibility 2-184
12.2.2 Physical Dimensions 2-184
12.2.3 “End User Easy” 2-185
12.2.4 ZIF Socket Vendors 2-186
12.3 Thermal Design
Considerations 2-186
12.4 BIOS and Software 2-187
12.4.1 Intel486™ DX2 Upgrade
Processor Detection 2-187
12.4.2 Timing Dependent Loops .. 2-187
12.5 Test Requirements 2-187
12.6 Pentium OverDrive Processor
SocketPinout 2-187
1261 Pinout 2-188
12.6.2 Pin Description 2-190
12.6.3 Reserved Pin
Specification 2-190
12.7 D.C./A.C. Specifications 2-191
2-7

CONTENTS PAGE

13.0 CONVERTING AN EXISTING
Intel486T™ CPU-BASED SYSTEM ... 2-192

14.0 ELECTRICAL DATA 2-197
14.1 Power and Grounding 2-197
14.2 Maximum Ratings 2-197
14.3 D.C. Specifications 2-198
14.4 A.C. Specifications 2-198

2-8

CONTENTS PAGE

15.0 MECHANICAL DATA 2-206
15.1 Package Thermal

Specifications 2-207

16.0 SUGGESTED SOURCES FOR
Intel486™ DX2 ACCESSORIES 2-208

17.0 REVISION HISTORY 2-210

DATA SHEET DESIGNATONS

Intel uses various data sheet markings to designate each phase of the document as it relates to the product.
The marking appears in the upper, right-hand corner of the data sheet. The following is the definition of these
markings: .

Data Sheet Marking Description

Product Preview Contains information on products in the design phase of development. Do not
finalize a design with this information. Revised information will be published when
the product becomes available.

Advanced Information Contains information on products being sampled or in the initial production phase
of development.*

Preliminary Contains preliminary information on new products in productlon *

No Marking Contains information on products in full production.*

*Specifications within these data sheets are subject to change without notice. Verify with your local Intel sales
office that you have the latest data shest before finalizing a design.

I 29

intel486™ DX2 MICROPROCESSOR

S R Q P N M L K J H G F E D C B A
1 A27 A28 A3t Do D2 vSs VvSS ¥ss vee vssS VsS OP1 vss D9 D11 D19 D20 ‘|
cC O O O 0 0 0O 0 0O 0O 0 0O 0O O O O
2 A26 A25 VSS A29 Dt vee D6 vce DS D3 ycC D8 vcc D13 D18 D21 D22 2
o O O O O O 0 0o o o o o o O O
3 A23 vece At7 A30 DPO D4 o7 D14 D16 DP2 D12 D1S D10 D17 CLK VSS TCK 3
0O O 0O 0O O 0O 0O O 0O 0O 0 0O O O O o o
4 NC VSS A19 vee vss 023 | 4
o O O O O O
5 Al4 A18 A21 VCC VSS OP3 5
O O O o O O
6 vsS VCC A24 D27 D25 D24 6
o O O O O O
7 A2 A15 A22 D26 vCC VSS 7
O O O © O O
8 VvSS VCC A20 D28 D31 D29 8
o O O o O O
9| vss vec ats Intel486 DX2 MICROPROCESSOR p30 vec vss | g
o O O o O O
168-Pin
10 VSS VCC A13 Ne N Ne |10
O O O PGA Pinout O O O
11 VSS VCC A9 up# vec vss |11
o O O TOP SIDE VIEW 0 O O
12 VSS A1 A5 NG N Ne |12
O O O O O O
13 A10 A8 A7 NC NC NC 13
O O O o O O
14 VSS veC A2 FERR¥ TMS TDI | 14
o O O o O O
15 A8 A3 BREQ HLDA LOCK# D/C# PWT BEQ# BE2# BRDY# NC KEN# HOLD A20M# FLUSH# NMI IGNNE# 15
O 0O 0O 0 0O 0O 0O 0O 0 O o o 0o o o o o
1 6 A4 BLAST# PLOCK# VCC M/10# VCC YCC VCC BEt# VvCC VCC RDY# VCC BS8# RESET TDO INTR 1 6
O 0O 0O 0O 0O 0O O 0 0O 0o 0 0o o o o o o
17 ADS# NC PCHK# VSS W/R# VSS ¥sSS VSS PCD vsS VSS BE3# VSS DOFF# BS16# EADS# AHOLD 17
O 0 0O 0O 0O O 0O O 0O 0O 0O 0O 0O 0O O o o
S R Q P N M L K J H G F E D C B A
241245-3
Figure 1.1
2-10

PRELIMINARY I

L]
Intd o Intel486™ DX2 MICROPROCESSOR

A-B C D E F G H J K L M N P Q@ R S
1 /Dzu Dig DIt D9 VSS DPI VSS VSS VCC VSS VSS VSS D2 DO A31 A28 a27 | {
© 0o 0O 0O 0O 0O 0O 0 0 0 0o o o o
2 D22 D21 D18 013 vCcC D8 VCC D3 D5 VCC D6 VCC DI A29 VSS A25 A28 | 2
0O 60 0o 00O 0 00 0O 0O 0 0 o o o o
3 TGk VSS CLK D17 D10 D15 D12 DP2 D16 D14 D7 D4 DPO A30 A17 vee A3 | 3
© 0 0O o 0O 0O 0 0 0O 0O 0o 0o o0 o
4 D23 VSS vCC A19 vss NC | 4
o O o o
5 DP3 vSs vcC A21 A18 A4 | 5§
© O O O O
6 D24 D25 D27 az4 vec vss | g
o o O O
7 VSS vCC D26 A22 A1s A2 | 7
o O o
8 029 D31 D28 A20 vCC VSS | 8
O o o
ol vss vee 0w Inte|486 DX2 MICROPROCESSOR s v ves | g
o O o 168-Pin
10 NC NC NC : A13 vee vss 110
o O O PGA Pinout o O O
11] vss vec uee PIN SIDE VIEW as vee vss |11
o O O 0 O O
12 NG NC NC . A5 A11 vss |12
© O O o O
13 NG NC NC A7 a8 a0 113
0O o0 o© ‘ © o0 o
14 DI TMS FERR# A2 vee vss | 14
O ©0 o 0 O O
15 | IGNNE® NMI FLUSH®* A20M# HOLD KEN# NC BRDY# BE2# BEQ# PWT D/C# LOCK¥ HLDA BREQ A3 a6 115
© 0 0 0 0O 0O 0O 000 0 0O 0o 0o 0 o o
16 INTR TDO RESET B8S8# VCC RDY# VCC VCC BEI# VCC VCC VCC M/I0# vCC PLock# BLasT# as | 16
© 0 o 0,0 O 0O 0 0O O O 0O 0O 0O o o o
17 | AHOLD EADS# BS16# BOFF# VSS BE3* VSS VSS PCD VSS VSS VSS W/R# VSS PCHK# NC ADS# | {7
© 0 0o o o 0O 0O 0 0 0O O O v O 0o o o
A B C D E F GG H J K L M N P Q R S
241245-2

Figure 1.2

I PRELIMINARY 21

Intel486™ DX2 MICROPROCESSOR

1.0 INTRODUCTION

Pin Cross Reference by Pin Name

Vee

Address Data Control Test(1) N/C Vss
Ao Q4 Do P1 A20M # D15 TCK A3 A10 B7 A7
A3 R15 Dy N2 ADS# S$17 TDI Al4 Al12 B9 A9
Ay S16 Dy N1 AHOLD A7 TDO B16 A13 B11 A1l
As a12 D3 H2 BEO# K15 TMS B14 B10 C4 B3
Ag 815 Dy M3 BE1# J16 B12 C5 B4
Az Q13 Ds J2 BE2# J15 B13 E2 BS
Ag R13 Dg L2 BE3# F17 c10 E16 E1
Ag Qtt Dy L3 BLAST # R16 c12 G2 E17
Aio S$13 Dg F2 BOFF # D17 Cc13 G16 G1
Aqq R12 Dg D1 BRDY # H15 G15 H16 G17
Aq2 S7 Dio E3 BREQ Q15 R17 J1 H1
Aqg Q10 Dyq C1 BS8# D16 S4 K2 H17
Aqg 85 D12 G3 BS16+# Cc17 K16 K1
Aqs R7 D13 D2 CLK c3 L16 K17
YT Q9 D4 K3 D/C# M15 M2 L1
A7 Q3 Dis F3 DPO N3 M16 L17
Aqs R5 D1s J3 DP1 F1 P16 M1
Aqg Q4 D¢z D3 DP2 H3 R3 M17
Ao Q8 D1s Cc2 DP3 A5 R6 P17
Azq Q5 Dig B1 EADS # B17 R8 Q2
Ao2 Q7 Dsg Al FERR # C14 R9 R4
A23 S3 D24 B2 FLUSH # C15 R10 S6
YN Q6 Doo A2 HLDA P15 R11 S8
Aos R2 D23 A4 HOLD E15 R14 S9
Az S2 Doy AB IGNNE # A15 $10
Az7 S1 Das B6 INTR A16 St
Azg R1 Dog c7 KEN# F15 812
Azg P2 Do7 Cé LOCK# N15 S14
A3p P3 Dog c8 M/10# N16
Agq (0]} D2g A8 NMI B15

D3p c9 PCD J17
Daq B8 PCHK # Q17
PWT L15
PLOCK # Q16
RDY # F16
RESET Ci6
up#(1) c11
W/R# N17
NOTE:

1. These pins were No-Connects on the 25 MHz and 33 MHz Intel486 DX microprocessors. For compatibility with old
designs they can still be left unconnected.

2-12

PRELIMINARY I

|nte| o Intel486™ DX2 MICROPROCESSOR

QUICK PIN REFERENCE

What follows is a brief pin description. For detailed signal descriptions refer to Section 6.

Symbol Type Name and Function

CLK | Clock provides the fundamental timing for the bus interface unit and is multiplied by
two (2x) to provide the internal frequency for the Intel486 DX2. All external timing
parameters are specified with respect to the rising edge of CLK.

ADDRESS BUS

A31-A4 170 A31-A2 are the address /ines of the microprocessor. A31-A2, together with the

A2-~A3 0 byte enables BEO # ~BE3#, define the physical area of memory or input/output
space accessed. Address lines A31-A4 are used to drive addresses into the
microprocessor to perform cachs line invalidations. Input signals must meet setup
and hold times tz2 and ta3. A31-A2 are not driven during bus or address hold.

BEO-3# (o) The byte enable signals indicate active bytes during read and write cycles. During
the first cycle of a cache fill, the external system should assume that all byte
enables are active. BE3# applies to D24~D31, BE2# applies to D16-D23, BE1#
applies to D8-D15 and BEO # applies to DO-D7. BEO# —-BE3 # are active LOW and
are not driven during bus hold.

DATA BUS

D31-D0 170 These are the data /ines for the Intel486 DX2 microprocessor. Lines D0-D7 define
the least significant byte of the data bus while lines D24~D31 define the most
significant byte of the data bus. These signals must meet setup and hold times too
and tp3 for proper operation on reads. These pins are driven during the second and
subsequent clocks of write cycles.

DATA PARITY

DPO-DP3 1/0 There is one data parity pin for each byte of the data bus. Data parity is generated
on all write data cycles with the same timing as the data driven by the Intel486 DX2
microprocessor. Even parity information must be driven back into the
microprocessor on the data parity pins with the same timing as read information to
insure that the correct parity check status is indicated by the Intel486 DX2
microprocessor. The signals read on these pins do not affect program execution.
Input signals must mest setup and hold times tpo and tas. DPO-DP3 should be
connected to Vg through a pullup resistor in systems which do not use parity.
DPO-DP3 are active HIGH and are driven during the second and subsequent clocks
of write cycles.

PCHK # (0] Parity Status is driven on the PCHK # pin the clock after ready for read operations.
The parity status is for data sampled at the end of the previous clock. A parity error
is indicated by PCHK # being LOW. Parity status is only checked for enabled bytes
as indicated by the byte enable and bus size signals. PCHK # is valid only in the
clock immediately after read data is returned to the microprocessor. At all other
times PCHK # is inactive (HIGH). PCHK # is never floated.

I PRELIMINARY 2-13

]
Intel486™ DX2 MICROPROCESSOR Inté o

QUICK PIN REFERENCE (Continued) ‘
Symbol | Type I . Name and Function

BUS CYCLE DEFINITION
M/IO# (0] The memory/input-output, data/control and write/read lines are the primary bus
D/C# (0] definition signals. These signals are driven valid as the ADS # signal is asserted.
WiR#+ O | m/io# D/C# W/R# BusCycle Initiated

0 0 0 Interrupt Acknowledge

0 0 1 Halt/Special Cycle

0 1 0 1/0 Read

0 1 1 170 Write

1 0 0 Code Read

1 0 1 Reserved

1 1 0 Memory Read

1 1 1 Memory Write

The bus definition signals are not driven during bus hold and follow the timing of the
- address bus. Refer to Section 7.2.11 for a description of the special bus cycles.

LOCK # (0] The bus lock pin indicates that the current bus cycle is locked. The Intel486 DX2
microprocessor will not allow a bus hold when LOCK # is asserted (but address
holds are allowed). LOCK # goes active in the first clock of the first locked bus cycle
and goes inactive after the last clock of the last locked bus cycle. The last locked
cycle ends when ready is returned. LOCK # is active LOW and is not driven during
bus hold. Locked read cycles will not be transformed into cache filt cycles if KEN# is
returned active.

PLOCK # 0 The pseudo-lock pin indicates that the current bus transaction requires more than
one bus cycle to complete. Examples of such operations are floating point long
reads and writes (64 bits), segment table descriptor reads (64 bits), in addition to
cache line fills (128 bits). The Intel486 DX2 microprocessor will drive PLOCK # active
until the addresses for the last bus cycle of the transaction have been driven
regardless of whether RDY # or BRDY # have been returned.

Normally PLOCK# and BLAST # are inverse of each other. However during the first
bus cycle of a 64-bit floating point write, both PLOCK # and BLAST # will be
asserted.

PLOCK # is a function of the BS8#, BS16# and KEN# inputs. PLOCK# should be
sampled only in the clock ready is returned. PLOCK # is active LOW and is not
driven during bus hoid.

BUS CONTROL

ADS # (e] The address status output indicates that a valid bus cycle definition and address are
available on the cycle definition lines and address bus. ADS # is driven active in the
same clock as the addresses are driven. ADS # is active LOW and is not driven
during bus hold.

RDY # | The non-burst ready input indicates that the current bus cycle is complete. RDY #

indicates that the external system has presented valid data on the data pins in
response to a read or that the external system has accepted data from the Intel486
DX2 microprocessor in response to a write. RDY # is ignored when the bus is idie
and at the end of the first clock of the bus cycle.
RDY # is active during address hold. Data can be returned to the processor white
AHOLD is active.
RDY # is active LOW, and is not provided with an internal pullup resistor. RDY #
must satisfy setup and hold times t1g and t17 for proper chip operation.

¥

2-14 PRELIMINARY I

intel.

Intel486™ DX2 MICROPROCESSOR

QUICK PIN REFERENCE (Continued)

Symbol | Type l

Name and Function

BURST CONTROL

BRDY #

The burst ready input performs the same function during a burst cycle that RDY #
performs during a non-burst cycle. BRDY # indicates that the external system has
presented valid data in response to a read or that the external system has accepted data
in response to a write. BRDY # is ignored when the bus is idle and at the end of the first
clock in a bus cycle.

BRDY # is sampled in the second and subsequent clocks of a burst cycle. The data
presented on the data bus will be strobed into the microprocessor when BRDY # is
sampled active. If RDY # is returned simultaneously with BRDY #, BRDY # is ignored
and the burst cycle is prematurely interrupted

BRDY # is active LOW and is provided with a small pullup resistor. BRDY # must satisfy
the setup and hold times t1g and t17.

BLAST #

The burst last signal indicates that the next time BRDY # is returned the burst bus cycle
is complete. BLAST # is active for both burst and non-burst bus cycles. BLAST # is
active LOW and is not driven during bus hold.

INTERRUPTS

RESET

The resetinput forces the Inteld86 DX2 microprocessor to begin execution at a known
state. The microprocessor cannot begin execution of instructions until at least 1 ms after
Ve and CLK have reached their proper DC and AC specifications. The RESET pin
should remain active during this time to insure proper microprocessor operation. RESET
is active HIGH. RESET is asynchronous but must meet setup and hold times tpg and ty
for recognition in any specific clock.

INTR

The maskable interrupt indicates that an external interrupt has been generated. If the
internal interrupt flag is set in EFLAGS, active interrupt processing will be initiated. The
Intel486 DX2 microprocessor will generate two locked interrupt acknowledge bus cycles
in response to the INTR pin going active. INTR must remain active until the interrupt
acknowledges have been performed to assure that the interrupt is recognized.

INTR is active HIGH and Is not provided with an internal pulldown resistor. INTR is
asynchronous, but must meet setup and hold times tog and t24 for recognition in any
specific clock.

NMI

The non-maskable interrupt request signal indicates that an external non-maskable
interrupt has been generated. NMI is rising edge sensitive. NMI must be held LOW for at
least four CLK periods before this rising edge. NMI is not provided with an internal
pulldown resistor. NMI is asynchronous, but must meet setup and hold times tpg and tg4
for recognition in any specific clock.

BUS ARBITRATION

BREQ

0

The internal cycle pending signal indicates that the Intel486 DX2 microprocessor has
internally generated a bus request. BREQ is generated whether or not the Intel486 DX2
microprocessor is driving the bus. BREQ is active HIGH and is never floated.

HOLD

The bus hold request allows another bus master complete control of the Intel486 DX2
microprocessor bus. In response to HOLD going active the Intel486 DX2 microprocessor
will float most of its output and input/output pins. HLDA will be asserted after completing
the current bus cycle, burst cycle or sequence of locked cycles. The Intel486 DX2
microprocessor will remain in this state until HOLD is deasserted. HOLD is active high
and is not provided with an internal pulldown resistor. HOLD must satisfy setup and hold
times t1g and tyg for proper operation.

HLDA

Hold acknowledge goes active in response to a hold request presented on the HOLD
pin. HLDA indicates that the Intel486 DX2 microprocessor has given the bus to another
local bus master. HLDA is driven active in the same clock that the Intel486 DX2
microprocessor floats its bus. HLDA is driven inactive when leaving bus hold. HLDA is
active HIGH and remains driven during bus hold.

I PRELIMINARY 2-15

]
Intel486™ DX2 MICROPROCESSOR : |n‘te| R

"QUICK PIN REFERENCE (Continued)

Symbol l Type I

Name and Function

BUS ARBITRATION (Continued)

BOFF #

The backoffinput forces the intel486 DX2 microprocessor to float its bus in the next
clock. The microprocessor will float all pins normally floated during bus hold but HLDA
will not be asserted in response to BOFF #. BOFF # has higher priority than RDY # or
BRODY #; if both are returned in the same clock, BOFF # takes effect. The
microprocessor remains in bus hold until BOFF # is negated. if a bus cycle was in
progress when BOFF # was asserted the cycle will be restarted. BOFF # is active LOW
and must meet setup and hold times t1g and t1g for proper operation.

CACHE INVALIDATION

AHOLD

The address hold request allows another bus master access to the Intel486 DX2
microprocessor’s address bus for a cache invalidation cycle. The Intel486 DX2
microprocessor will stop driving its address bus in the clock following AHOLD going
active. Only the address bus will be floated during address hold, the remainder of the
bus will remain active. AHOLD is active HIGH and is provided with a small internal
pulidown resistor. For proper operation AHOLD must mest setup and hold times t1g and
t10-

EADS #

This signal indicates that a valid external address has been driven onto the Intel486 DX2
microprocessor address pins. This address will be used to perform an internal cache
invalidation cycle. EADS # is active LOW and is provided with an internal pullup resistor.
EADS # must satisfy setup and hold times t12 and t13 for proper operation.

CACHE CONTROL

KEN#

The cache enable pin is used to determine whether the current cycle is cacheable.
When the Intel486 DX2 microprocessor generates a cycle that can be cached and
KEN# is active, the cycle will become a cache line fill cycle. Returning KEN# active one
clock before ready during the last read in the cache line fill will cause the line to be
placed in the on-chip cache. KEN # is active LOW and is provided with a small internal
pullup resistor. KEN # must satisfy setup and hold times t14 and ty5 for proper operation. |.

FLUSH#

The cache flush input forces the Intel486 DX2 microprocessor to flush its entire internal
cache. FLUSH # is active low and need only be asserted for one clock. FLUSH# is
asynchronous but setup and hold times tpg and to1 must be met for recognition in any
specific clock. FLUSH# being sampled low in the clock before the falling edge of
RESET causes the Intel486 DX2 microprocessor to enter the tri-state test mode.

PAGE CACHEABILITY

PWT
PCD

0
0]

The page write-through and page cache disable pins reflect the state of the page
attribute bits, PWT and PCD, in the page table entry or page directory entry. If paging is
disabled or for cycles that are not paged, PWT and PCD reflect the state of the PWT and
PCD bits in control register 3. PWT and PCD have the same timing as the cycle definition
pins (M/IO#, D/C# and W/R#). PWT and PCD are active HIGH and are not driven
during bus hold. PCD is masked by the cache disable bit (CD) in Control Register 0.

NUMERIC

ERROR REPORTING

FERR#

0

The floating point error pin is driven active when a floating point error occurs. FERR # is
similar to the ERROR # pin on the Intel387™ math coprocessor. FERR # is inciuded for
compatibility with systems using DOS type floating point error reporting. FERR # will not
go active if FP errors are masked in FPU register. FERR # is active LOW, and is not
floated during bus hold.

PRELIMINARY I

a
|nte| o Intel486 ™ DX2 MICROPROCESSOR

QUICK PIN REFERENCE (Continued)

Symbol l Type | Name and Function
NUMERIC ERROR REPORTING (Continued)
IGNNE # | When the ignore numeric error pin is asserted the Intel486 DX2 microprocessor will

ignore a numeric error and continue executing non-control floating point instructions, but
FERR # will still be activated by the Inteld86 DX2. When IGNNE # is deasserted the
Intel486 DX2 microprocessor will freeze on a non-control floating point instruction, if a
previous floating point instruction caused an error. IGNNE # has no effect when the NE
bit in control register 0 is set. IGNNE # is active LOW and is provided with a small
internal pullup resistor. IGNNE # is asynchronous but setup and hold times tpg and to4
must be met to insure recognition on any specific clock.

BUS SIZE CONTROL
BS16+# | The bus size 16 and bus size 8 pins (bus sizing pins) cause the Intel486 DX2
BS8# | microprocessor to run multiple bus cycles to complete a request from devices that

cannot provide or accept 32 bits of data in a single cycle. The bus sizing pins are
sampled every clock. The state of these pins in the clock before ready is used by the
Intel486 DX2 microprocessor to determine the bus size. These signals are active LOW
and are provided with internal pullup resistors. These inputs must satisfy setup and hold
times t14 and t45 for proper operation.

ADDRESS MASK

A20M # | When the address bit 20 mask pin is asserted, the Intel486 DX2 microprocessor masks
physical address bit 20 (A20) before performing a lookup to the internal cache or driving
a memory cycle on the bus. A20M# emulates the address wraparound at one Mbyte
which occurs on the 8086. A20M # is active LOW and should be asserted only when the
processor is in real mode. This pin is asynchronous but should meet setup and hold
times tzg and ty1 for recognition in any specific clock. For proper operation, A20M #
should be sampled high at the falling edge of RESET.

TEST ACCESS PORT

TCK | Test Clock is an input to the Intel486 DX2 CPU and provides the clocking function
required by the JTAG boundary scan feature. TCK is used to clock state information and
data into and out of the component. State select information and data are clocked into
the component on the rising edge of TCK on TMS and TDI, respectively. Data is clocked
out of the part on the falling edge of TCK on TDO.

TOI | Test Data Input is the serial input used to shift JTAG instructions and data into the
component. TDI is sampled on the rising edge of TCK, during the SHIFT-IR and the
SHIFT-DR TAP controller states. During all other tap controller states, TDl is a ““don’t
care”.

TDO (o] Test Data Output is the serial output used to shift JTAG instructions and data out of the
component. TDQ is driven on the falling edge of TCK during the SHIFT-IR and
SHIFT-DR TAP controller states. At all other times TDO is driven to the high impedance
state.

TMS | Test Mode Select is decoded by the JTAG TAP (Tap Access Port) to select the
operation of the test logic. TMS is sampled on the rising edge of TCK. To guarantee
deterministic behavior of the TAP controller TMS is provided with an internal pull-up
resistar.

I PRELIMINARY 217

]
Intel486™ DX2 MICROPROCESSOR |n‘te| o

QUICK PIN REFERENCE (Continued)

Symbol l Type l Name and Function

POWER DOWN MODE (UPGRADE PROCESSOR SUPPORT)

UP# | The Upgrade Present pin forces the Intel486 DX2 to 3-state all of its outputs and enter
the power down mode. When the Upgrade Present pin is sampled asserted by the CPU in
the clock before the falling edge of RESET, the power down mode is enabled. UP # has
no effect on the power down status except during this edge. The CPU is also forced to 3-
state all of it’s outputs immediately in response to this signal. The UP # signal must
remain asserted in order to keep the pins 3-stated. UP # is active low and is provided with
an internal pull-up resistor.

Table 1.1. Output Pins Table 1.2. Input Pins
Name Active When Name Active Synchronous/
Level Floated Level Asynchronous
BREQ HIGH CLK
HLDA HIGH RESET HIGH Asynchronous
BEO#-BE3# LOW Bus Hold HOLD HIGH Synchronous
PWT, PCD HIGH Bus Hold AHOLD HIGH Synchronous
W/R#,D/C#, M/I0# | HIGH Bus Hold EADS # LOW Synchronous
LOCK # LOW Bus Hold BOFF # LOW Synchronous
PLOCK # LOW Bus Hold FLUSH # LOW Asynchronous
ADS # LOW Bus Hold A20M # LOW Asynchronous
BLAST # LOW Bus Hold BS16#,BS8# LOW Synchronous
PCHK # LOW KEN # LOW Synchronous
FERR# LOW RDY # LOW Synchronous
RES_B LOW BRDY # LOW Synchronous
A2-A3 HIGH | Bus, Address Hold INTR HIGH Asynchronous
NMI HIGH Asynchronous
IGNNE # LOW Asynchronous
RES_A LOW Asynchronous
UP# LOW Asynchronous
Table 1.3. input/Output Pins Table 1.4. Test Pins
Active When Input or Sampled/
Name Level Floated Name Output Driven On
DO-D31 HIGH " BusHold TCK Input N/A
DPO-DP3 HIGH Bus Hold ;i
f TCK
Ad-A31 HIGH | Bus, Address Hold ol Input Rising Edge of TC
TDO Qutput Falling Edge of TCK
TMS Input Rising Edge of TCK

2-18 PRELIMINARY I

intgl.

Intel486™ DX2 MICROPROCESSOR

2.0 ARCHITECTURAL OVERVIEW

The Intel486 DX2 microprocessor is a fully compati-
ble member of the Intel486 family.

The Intel486 microprocessor family is a 32-bit archi-
tecture with on-chip memory management, floating
point and cache memory units.

The intel486 DX microprocessor contains all the
features of the Intel386™ microprocessor with en-
hancements to increase performance. The instruc-
tion set includes the complete Intel386 microproces-
sor instruction set along with extensions to serve
new applications. The on-chip memory management
unit (MMU) is completely compatible with the In-
tel386 microprocessor MMU. The Intel486 DX mi-
croprocessor brings the Intel387™ math coproces-
sor on-chip. All software written for the Intel386 mi-
croprocessor, Intel387 math coprocessor and previ-
ous members of the 86/87 architectural family will
run on the Intel486 DX microprocessor without any
modifications.

Several enhancements have been added to the In-
tel486 DX microprocessor to increase performance.
On-chip cache memory allows frequently used data
and code to be stored on-chip reducing accesses to
the external bus. A clock doubler has been added to
speed up internal operations to twice that of an in-
tel486 DX microprocessor running with the same
bus clock. RISC design techniques have been used
to reduce instruction cycle times. A burst bus feature
enables fast cache fills. All of these features, com-
bined, lead to performance greater than triple that of
a Intel386 microprocessor.

The memory management unit (MMU) consists of a
segmentation unit and a paging unit. Segmentation
allows management of the logical address space by
providing easy data and code relocatibility and effi-
cient sharing of global resources. The paging mech-
anism operates beneath segmentation and is trans-
parent to the segmentation process. Paging is op-
tional and can be disabled by system software. Each
segment can be divided into one or more 4 Kbyte
segments. To implement a virtual memory system,
the Intel486 DX microprocessor supports full restart-
ability for all page and segment faults.

Memory is organized into one or more variable
length segments, each up to four gigabytes (232
bytes) in size. A segment can have attributes associ-
ated with it which include its location, size, type (i.e.,
stack, code or data), and protection characteristics.
Each task on a Intel486 DX microprocessor can
have a maximum of 16,381 segments, each up to
four gigabytes in size. Thus each task has a maxi-
mum of 64 terabytes (trillion bytes) of virtual memo-
ry.

I PRELIMINARY

The segmentation unit provides four-levels of pro-
tection for isolating and protecting applications and
the operating system from each other. The hardware
enforced protection allows the design of systems
with a high degree of integrity.

The Intel486 DX microprocessor has two modes of
operation: Real Address Mode (Real Mode) and Pro-
tected Mode Virtual Address Mode (Protected
Mode). In Real Mode the Intel486 DX microproces-
sor operates as a very fast 8086. Real Mode is re-
quired primarily to set up the processor for Protected
Mode operation. Protected Mode provides access to
the sophisticated memory management paging and
privilege capabilities of the processor.

Within Protected Mode, software can perform a task
switch to enter into tasks designated as Virtual 8086
Mode tasks. Each virtual 8086 task behaves with
8086 semantics, allowing 8086 software (an applica-
tion program or an entire operating system) to exe-
cute.

The on-chip floating point unit operates in parallel
with the arithmetic and logic unit and provides arith-
metic instructions for a variety of numeric data types.
It executes numerous built-in transcendental func-
tions (e.g., tangent, sine, cosine, and log functions).
The floating point unit fully conforms to the ANSI/
|IEEE standard 754-1985 for floating point arithmetic.

The on-chip cache is 8 Kbytes in size. It is 4-way set
associative and follows a write-through policy. The
on-chip cache includes features to provide flexibility
in external memory system design. Individual pages
can be designated as cacheable or non-cacheable
by software or hardware. The cache can also be en-
abled and disabled by software or hardware.

Finally the Intel486 DX2 microprocessor has fea-
tures to facilitate high performance hardware de-
signs. The 1x bus clock eases high frequency board
level designs. While the 2x clock doubler improves
execution performance without increasing the board
design complexity. This 2x clock doubler enhances
all operations operating out of the cache and/or not
blocked by external bus accesses. The burst bus
feature enables fast cache fills. These features are
described beginning in Section 6.

2.1 Register Set
The Intel486 DX microprocessor register set in-

cludes all the registers contained in the Intel386 mi-
croprocessor and the Intel387 math coprocessor.

2-19

A

Intel486™ DX2 MICROPROCESSOR

The register set can be split into the following cate-
gories:

Base Architecture Registers
General Purpose Registers
Instruction Pointer
Flags Register
Segment Registers

Systems Level Registers
Control Registers
System Address Registers

Floating Point Registers
Data Registers
Tag Word
Status Word
Instruction and Data Pointers
Control Word

Debug and Test Registers

General Purpose Registers
31 24] 23 16| 15 8|7 0
' AH AX AL |EAX

BH BX BL |EBX
CH ©x oL |Ecx
DH DX DL |EDX

sl ESI
DI EDI
BP EBP
SP ESP

Segment Registers

15 0

[Code Segment
S8s Stack Segment
DS
ES
]
GS

Data Segments

Instruction Pointer

31 16 15 0

|] P | e
Flags Register

| | FLAGS | EFLaGs

Figure 2.1. Base Architecture Registers

2-20

intel.

The base architecture and floating point registers
are accessible by the applications program. The sys-
tem level registers are only accessible at privilege
level 0 and are used by the systems level program.
The debug and test registers are also only accessi-
ble at privilege level 0.

2.1.1 BASE ARCHITECTURE REGISTERS

Figure 2.1 shows the Intel486 DX2 microprocessor
base architecture registers. The contents of these
registers are task-specific and are automatically
loaded with a new context upon a task switch opera-
tion.

The base architecture includes six directly accessi-
ble descriptors, each specifying a segment up to
4 Gbytes in size. The descriptors are indicated by
the selector values placed in the Intel486 DX2 mi-
croprocessor segment registers. Various selector
values can be loaded as a program executes.

The selectors are also task-specific, so the segment
registers are automatically loaded with new context
upon a task switch operation.

2.1.1.1 General Purpose Registers

The eight 32-bit general purpose registers are
shown in Figure 2.1. These registers hold data or
address quantities. The general purpose registers
can support data operands of 1, 8, 16 and 32 bits,
and bit fields of 1 to 32 bits. Address operands of 16
and 32 bits are supported. The 32-bit registers are
named EAX, EBX, ECX, EDX, ESI, EDI, EBP and
ESP.

The least significant. 16 bits of the general purpose
registers can be accessed separately by using the
16-bit names of the registers AX, BX, CX, DX, SI, DI,
BP and SP. The upper 16 bits of the register are not
changed when the lower 16 bits are accessed sepa-
rately.

Finally 8-bit operations can individually access the
lowest byte (bits 0-7) and the higher byte (bits 8-
15) of the general purpose registers AX, BX, CX and
DX. The lowest bytes are named AL, BL, CL and DL
respectively. The higher bytes are named AH, BH,
CH and DH respectively. The individual byte acces-
sibility offers additional flexibility for data operations
but is not used for effective address calculation.

2.1.1.2 Instruction Pointer

The instruction pointer, shown in Figure 2.1, is a 32-
bit register named EIP. EIP holds the offset of the
next instruction to be executed. The offset is always
relative to the base of the code segment (CS). The
lower 16 bits (bits 0—15) of the EIP contain the 16-bit

PRELIMINARY I

Intel486™ DX2 MICROPROCESSOR

FLAGS

3322222222221 111%10 11111
109B7654321098B765432109876543210
AfV]R Nj o Jojofi|TIs|Z A P (4
EFLAGS RESERVED FOR INTEL clulrlolrl o IrlrkelelrlrlolelolrlslF

j S,
ALIGNMENT CHECK
VIRTUAL MODE

RESUME FLAG
NESTED TASK FLAG

1/0 PRIVILEGE LEVEL
OVERFLOW

Y X I
LCARRY FLAG
PARITY FLAG

AUXILIARY CARRY
ZERO FLAG
SIGN FLAG
TRAP FLAG

DIRECTION FLAG

INTERRUPT ENABLE

NOTE:
@ indicates Intel Reserved: do not define; see Section 2.1.6.

241245-4

Figure 2.2. Flags Register

instruction pointer named IP, which is used for 16-bit
addressing.

2.1.1.3 Flags Register

The flags register is a 32-bit register named
EFLAGS. The defined bits and bit fields within
EFLAGS control certain operations and indicate
status of the Intel486 DX2 microprocessor. The low-
er 16 bits (bits 0-15) of EFLAGS contain the 16-bit
register named FLAGS, which is most useful when
executing 8086 and 80286 code. EFLAGS is shown
in Figure 2.2.

EFLAGS bits 1, 3, 5, 15 and 19-31 are “‘undefined”.
When these bits are stored during interrupt process-
ing or with a PUSHF instruction {push flags onto
stack), a one is stored in bit 1 and zeros in bits 3, 5,
15 and 19-31.

The EFLAGS register in the Intel486 DX microproc-
essor contains a new bit not previously defined. The
new bit, AC, is defined in the upper 16 bits of the

register and it enables faults on accesses to misa-

ligned
AC

data.
{Alignment Check, bit 18)

The AC bit enables the generation of faults if a
memory reference is to a misaligned address.
Alignment faults are enabled when AC is set
to 1. A mis-aligned address is a word access
to an odd address, a dword access to an ad-
dress that is not on a dword boundary, or an
8-byte reference to an address thatis noton a
64-bit word boundary. See Section 7.1.6 for
more information on operand alignment.

Alignment faults are only generated by pro-
grams running at privilege leve! 3. The AC bit
setting is ignored at privilege levels 0, 1 and 2.
Note that references to the descriptor tables
(for selector loads), or the task state segment
(TSS), are implicitly level 0 references even if
the instructions causing the references are
executed at level 3. Alignment faults are re-
ported through interrupt 17, with an error code
of 0. Table 2.1 gives the alignment required
for the Inteld86 DX microprocessor data

types.

Table 2.1. Data Type Alignment Requirements

Memory Access

Ali

gnment (Byte Boundary)

Word

Dword

Single Precision Real
Double Precision Real
Extended Precision Real
Selector

48-Bit Segmented Pointer
32-Bit Flat Pointer

32-Bit Segmented Pointer
48-Bit “Pseudo-Descriptor”
FSTENV/FLDENY Save Area
FSAVE/FRSTOR Save Area
Bit String

ANARAODO®O®ALN

4/2 (On Operand Size)
4/2 (On Operand Size)
4

I PRELIMINARY

2-21

Intel486™ DX2 MICROPROCESSOR

IMPLEMENTATION NOTE:

Several instructions on the Intel486 DX microproc-
essor generate misaligned references, even if their
memory address is aligned. For example, on the In-
teld86 DX microprocessor, the SGDT/SIDT (store
global/interrupt descriptor table) instruction reads/
writes two bytes, and then reads/writes four bytes
from a “pseudo-descriptor” at the given address.
The Intel486 DX microprocessor will generate misa-
ligned references unless the address is on a 2 mod
4 boundary. The FSAVE and FRSTOR instructions
.(floating point save and restore state) will generate
misaligned references for one-half of the register
save/restore cycles. The Intel486 DX microproces-
sor will not cause any AC faults if the effective ad-
dress given in the instruction has the proper align-
ment.

VM (Virtual 8086 Mode, bit 17)

The VM bit provides Virtual 8086 Mode within
Protected Mode. If set while the Intel486 DX
microprocessor is in Protected Mode, the In-
tel486 DX microprocessor will switch to Virtual
8086 operation, handling segment loads as
the 8086 does, but generating exception 13
faults on privileged opcodes. The VM bit can
be set only in Protected Mode, by the IRET
instruction (if current privilege level = 0) and
by task switches at any privilege level. The
VM bit is unaffected by POPF. PUSHF always
pushes a 0 in this bit, even if executing in Vir-

tual 8086 Mode. The EFLAGS image pushed *

during interrupt processing or saved during
task switches will contain a 1 in this bit if the
interrupted code was executing as a Virtual
8086 Task.

RF (Resume Flag, bit 16)

The RF flag is used in conjunction with the
debug register breakpoints. It is checked at
instruction boundaries before breakpoint pro-
cessing. When RF is set, it causes any debug
fault to be ignored on the next instruction. RF
is then automatically reset at the successful
completion of every instruction (no faults are
signalled) except the IRET instruction, the
POPF instruction, (and JMP, CALL, and INT
instructions causing a task switch). These in-
structions set RF to the value specified by the
memory image. For example, at the end of the
breakpoint service routine, the IRET instruc-
tion can pop an EFLAG image having the RF
bit set and resume the program’s execution at
the breakpoint address without generating an-
other breakpoint fault on the same location.

NT (Nested Task, bit 14)

This flag applies to Protected Mode. NT is set
to indicate that the execution of this task is
nested within another task. If set, it indicates

2-22

IOPL

OF

DF

TF

intgl.

that the current nested task’s Task State Seg-
ment (TSS) has a valid back link to the previ-
ous task’s TSS. This bit is set or reset by con-
trol transfers to other tasks. The valus of NT
in EFLAGS is tested by the IRET instruction to
determine whether to do an inter-task return
or an intra-task return. A POPF or an IRET
instruction will affect the setting of this bit ac-
cording to the image popped, at any privilege
level.

(input/Qutput Privilege Level, bits 12-13)

This two-bit field applies to Protected Mode.
IOPL indicates the numerically maximum CPL
(current privilege level) value permitted to ex-
ecute 170 instructions without generating an
exception 13 fault or consulting the 1/0 Per-
mission Bitmap. It also indicates the maximum
CPL value allowing alteration of the IF (INTR
Enable Fiag) bit when new values are popped
into the EFLAG register. POPF and IRET in-
struction can alter the IOPL field when execut-
ed at CPL = 0. Task switches can always al-
ter the IOPL field, when the new flag image is
loaded from the incoming task’s TSS.

(Overfiow Flag, bit 11)

OF is set if the operation resulted in a signed
overflow. Signed overflow occurs when the
operation resulted in carry/borrow into the
sign bit (high-order bit) of the result but did not
result in a carry/borrow out of the high-order
bit, or vice-versa. For 8-, 16-, 32-bit opera-
tions, OF is set according to overflow at bit 7,
15, 31, respectively.

(Direction Flag, bit 10)

DF defines whether ESI and/or EDI registers
postdecrement or postincrement during the
string instructions. Postincrement occurs if DF
is reset. Postdecrement occurs if DF is set.

(INTR Enable Flag, bit 9)

The IF flag, when set, allows recognition of
external interrupts signalled on the INTR pin.
When IF is reset, external interrupts signalled
on the INTR are not recognized. IOPL indi-
cates the maximum CPL value allowing altera-
tion of the IF bit when new values are popped
into EFLAGS or FLAGS.

(Trap Enable Flag, bit 8)

TF controls the generation of exception 1 trap
when single-stepping through code. When TF
is set, the intel486 DX microprocessor gener-
ates an exception 1 trap after the next instruc-
tion is executed. When TF is reset, exception
1 traps occur only as a function of the break-
point addresses loaded into debug registers
DRO-DR3.

PRELIMINARY I

in

tel.

Intel486™ DX2 MICROPROCESSOR

SF (Sign Flag, bit 7) NOTE:
SF is set if the high-order bit of the result is !N these descriptions, “set” means “set to 1,” and
set, it is reset otherwise. For 8-, 16-, 32-bit reset” means “reset to 0.
operations, SF reflects the state of bit 7, 15,
31 respectively. 2.1.1.4 Segment Registers
ZF (Zero Flag, bit 6) , Six 16-bit { registers hold t select
. . . ix 16-bit segment registers hold segment selector
S'i:se'sits;t r'; a;i bits of the result are 0. Other- 5,0 identifying the currently addressable memory
o set. . segments. In protected mode, each segment may
AF (Auxiliary Carry Flag, bit 4) range in size from one byte up to the entire linear
The Auxiliary Flag is used to simplify the addi- and physical address space of the machine, 4
tion and subtraction of packed BCD quanti- Gbytes (232 bytes). In real address mode, the maxi-
ties. AF is set if the operation resulted in a Mum segment size is fixed at 64 Kbytes (216 bytes).
carry out of bit 3 (addition) or a borrow into bit . .
3 (subtraction). Otherwise AF is reset. AF is The six addressable segments are defined by the
affected by carry out of, or borrow into bit 3 ~ segment registers CS, 88, DS, ES, FS and GS. The
only, regardless of overall operand length: 8, selector in CS indicates the current code segment;
16 or 32 bits. the selector in SS indicates the current stack seg-
. . ment; the selectors in DS, ES, FS and GS indicate
PF (Parity Flags, bit 2) the current data segments.
PF is set if the low-order eight bits of the oper-
ation contains an even number of “1’s"” (even :
parity). PF is reset if the low-order eight bits ~ 2.1.1.5 Segment Descriptor Cache Registers
have odd parity. PF is a function of only the . .
low-order eight bits, regardless of operand The segment descrlpt.or_ cache registers are not pro-
size. grammer visible, yet it is very u§efyl_ to unders?and
. their content. A programmer invisible descriptor
CF (Carry Flag, bit 0) cache register is associated with each programmer-
CF is set if the operation resulted in a carry visible segment register, as shown by Figure 2.3.
out of (addition), or a borrow into (subtraction) Each descriptor cache register holds a 32-bit base
the high-order bit. Otherwise CF is reset. For address, a 32-bit sagment limit, and the other neces-
8-, 16- or 32-bit operations, CF is set accord- sary segment attributes.
ing to carry/borrow at bit 7, 15 or 31, respec-
tively.
SEGMENT
REGISTERS DESCRIPTOR REGISTERS (LOADED AUTOMATICALLY)
‘ N r Other N
Segment
15 0 Physical Base Address Segment Limit Attributes from Descriptor
Selector CS- —_
Selector SS- — —
Selector DS- el Bl
Selector ES- ——=|—
Selector FS- e Rl et
Selector GS- el el et

Figure 2.3. Intel486™ DX Microprocessor Segment Registers
and Associated Descriptor Cache Registers

I PRELIMINARY

2-23

intel486™ DX2 MICROPROCESSOR

When a selector value is loaded into a segment reg-
ister, the associated descriptor cache register is au-
tomatically updated with the correct information. In
Real Address Mode, only the base address is updat-
ed directly (by shifting the selector value four bits to
the left), since the segment maximum limit and attri-
butes are fixed in Real Mode. In Protected Mode,
the base address, the limit, and the attributes are all
updated per the contents of the segment descriptor
indexed by the selector.

Whenever a memory reference occurs, the segment
descriptor cache register associated with the seg-
ment being used is automatically involved with the
memory reference. The 32-bit segment base ad-
dress becomes a component of the linear address
calculation, the 32-bit limit is used for the limit-check
operation, and the attributes are checked against
the type of memory reference requested.

2.1.2 SYSTEM LEVEL REGISTERS

The system level registers, Figure 2.4, control opera-
tion of the on-chip cache, the on-chip floating point

intel.

unit (FPU) and the segmentation and paging mecha-
nisms. These registers are only accessible to pro-
grams running at privilege level 0, the highest privi-
lege level.

The system level registers include three control reg-
isters and four segmentation base registers. The
three control registers are CRO, CR2 and CR3. CR1
is reserved for future Intel processors. The four seg-
mentation base registers are the Global Descriptor
Table Register (GDTR), the Interrupt Descriptor Ta-
ble Register (IDTR), the Local Descriptor Table Reg-
ister (LDTR) and the Task State Segment Register
(TR).

2.1.2.1 Control Registers
Control Register 0 (CRO)

CRO, shown in Figure 2.5, contains 10 bits for con-
trol and status purposes. Five of the bits defined in
the Intel486 DX microprocessor's CRO are newly de-
fined. The new bits are CD, NW, AM, WP and NE.
The function of the bits in CRO can be categorized
as follows: :

34 24|23 18|15 8|7 0
CRO
PAGE FAULT LINEAR ADDRESS REGISTER CR2
PAGE DIRECTORY BASE REGISTER | CR3
SYSTEM ADDRESS REGISTERS
47 32-BIT LINEAR BASE ADDRESS 16 15 LIMIT 0
GDTR
IDTR
SYSTEM SEGMENT
REGISTERS DESCRIPTOR REGISTERS (AUTOMATICALLY LOADED)
fis o 7 32-BIT LINEAR BASE ADDRESS 20-BIT SEGMENT LIMIT ATTRIBUTES"
TR| SELECTOR
LDTR | SELECTOR
Figure 2.4. System Level Registers
31 0
Plc Tie|m[P
a|o Ys{m|p|e|CRO
N . J
MSW
NOTE:
indicates Intel reserved: Do not define; See Section 2.1.6

Figure 2.5. Control Register 0

2-24

PRELIMINARY I

integl.

Intel486 DX Microprocessor Operating Modes: PG,
PE (Table 2.2)

On-Chip Cache Control Modes: CD, NW (Table 2.3)

On-Floating Point Unit Control: TS, EM, MP, NE
(Table 2.4)

Alignment Check Control: AM
Supervisor Write Protect: WP

Table 2.2. Processor Operating Modes

PG | PE Mode

0 0 | REAL Mode. Exact 8086 semantics,
with 32-bit extensions available with
prefixes.

Protected Mode. Exact 80286
semantics, plus 32-bit extensions
through both prefixes and “default”
prefix setting associated with code
segment descriptors. Also, a sub-
mode is defined to support a virtual
8086 within the context of the
extended 80286 protection model.

UNDEFINED. Loading CRO with this
combination of PG and PE bits will
raise a GP fault with error code 0.

Paged Protected Mode. All the
facilities of Protected mode, with
paging enabled underneath
segmentation.

Table 2.3. On-Chip Cache Control Modes

CD | NW Operating Mode

1 1 | Cache fills disabled, write-through and
invalidates disabled.

1 0 | Cache fills disabled, write-through and
invalidates enabled.

0 1 | INVALID. If CRO is loaded with this
configuration of bits, a GP fault with
error code is raised.

0 0 | Cache fills enabled, write-through and

invalidates enabled.

Table 2.4. On-Chip Floating Point Unit Control

CROBIT Instruction Type

EM (TS | MP | Floating-Point Wait
0 0 0 Exscute Execute
0 o] 1 . Execute Execute
0 1 0 Trap 7 Execute
0 1 1 Trap 7 Trap 7
1 0 0 Trap 7 Execute
1 0 1 Trap 7 Execute
1 1 0 Trap 7 Execute
1 1 1 Trap 7 Trap 7

I PRELIMINARY

Intel486™ DX2 MICROPROCESSOR

The low-order 16 bits of CRO are also known as the
Machine Status Word (MSW), for compatibility with
the 80286 protected mode. LMSW and SMSW (load
and store MSW) instructions are taken as special
aliases of the load and store CRO operations, where
only the low-order- 16 bits of CRO are involved. The
LMSW and SMSW instructions in the Intel486 DX
microprocessor work in an identical fashion to the
LMSW and SMSW instructions in the 80286 (i.e.,
they only operate on the low-order 16 bits of CRO
and ignores the new bits). New Intel486 DX micro-
processor operating systems should use the MOV
CRO, Reg instruction.

The defined CRO bits are described below.
PG (Paging Enable, bit 31)

The PG bit is used to indicate whether paging is
enabled (PG =1) or disabled (PG=0). See Ta-
ble 2.2.

CD (Cache Disable, bit 30)

The CD bit is used to enable the on-chip cache.
When CD=1, the cache will not be filled on
cache misses. When CD=0, cache fills may be
performed on misses. See Table 2.3.

The state of the CD bit, the cache enable input
pin (KEN#), and the relevant page cache dis-
able (PCD) bit determine if a line read in re-
sponse to a cache miss will be installed in the
cache. A line is installed in the cache only if
CD=0 and KEN# and PCD are both zero. The
relevant PCD bit comes from either the page
table entry, page directory entry or control reg-
ister 3. Refer to Section 5.6 for more details on
page cacheability.

CD is set to one after RESET.
NW (Not Write-Through, bit 29)

The NW bit enables on-chip cache write-
throughs and write-invalidate cycles (NW=0).
When NW=0, all writes, including cache hits,
are sent out to the pins. Invalidate cycles are
enabled when NW=0. During an invalidate cy-
cle a line will be removed from the cachs if the
invalidate address hits in the cache. See Table
2.3.

When NW=1, write-throughs and write-invali-
date cycles are disabled. A write will not be sent
to the pins if the write hits in the cache. With
NW =1 the only write cycles that reach the ex-
ternal bus are cache misses. Write hits with
NW=1 will never update main memory. Invali-
date cycles are ignored when NW=1.

AM (Alignment Mask, bit 18)

The AM bit controls whether the alignment
check (AC) bit in the flag register (EFLAGS) can
allow an alignment fault. AM=0 disables the
AC bit. AM=1 enables the AC bit. AM=0 is the
Intel386 microprocessor compatible mode.

2-25

Intel486™ DX2 MICROPROCESSOR

WP

NE

2-26

Intel386 microprocessor software may load in-
correct data into the AC bit in the EFLAGS reg-
ister. Setting AM=0 will prevent AC faults from
occurring before the Intel4d86 DX microproces-
sor has created the AC interrupt service routine.

(Write Protect, bit 16)

WP protects read-only pages from supervisor
write access. The Intel386 microprocessor al-
lows a read-only page to be written from privi-
lege levels 0-2. The Intel486 DX microproces-
sor is compatible with the Intel386 microproces-
sor when WP=0. WP=1 forces a fault on a
write to a read-only page from any privilege lev-
el. Operating systems with Copy-on-Write fea-
tures can be supported with the WP bit. Refer
to Section 4.5.3 for further details on use of the
WP bit.

{(Numerics Exception, bit 5)

The NE bit controls whether unmasked floating
point exceptions (UFPE) are handled through
interrupt vector 16 (NE= 1) or through an exter-
nal interrupt (NE=0). NE=0 (default at reset)
supports the DOS operating system error re-
porting scheme from the 8087, 80287 and In-
tel387 math coprocessor. in DOS systems,
math coprocessor errors are reported via exter-
nal interrupt vector 13. DOS uses interrupt vec-
tor 16 for an operating system call. Refer to
Sections 6.2.13 and 7.2.14 for more information
on floating point error reporting.

For any UFPE the floating point error output pin
(FERR #) will be driven active.

For NE=0, the Intel486 DX microprocessor
works in conjunction with the ignore numeric er-
ror input (IGNNE#) and the FERR# output
pins. When a UFPE occurs and the IGNNE #
input is inactive, the Intel4d86 DX microproces-
sor freezes immediately before executing the
next floating point instruction. An external inter-
rupt ‘controller will supply an interrupt vector
when FERR # is driven active. The UFPE is ig-
nored if IGNNE # is active and floating point ex-
ecution continues.

NOTE:

The freeze does not take place if the next in-
struction is one of the control instructions
FNCLEX, FNINIT, FNSAVE, FNSTENV,
FNSTCW, FNSTSW, FNSTSW AX, FNENI,
FNDIS| and FNSETPM. The freeze does occur
if the next instruction is WAIT.

For NE=1, any UFPE will result in a software
interrupt 16, immediately before executing the
next non-controt floating point or WAIT instruc-
tion. The ignore numeric error input (IGNNE #)
signal will be ignored.

L]
intgl.
TS (Task Switched, bit 3)

The TS bit is set whenever a task switch opera-
tion is performed. Execution of a floating point
instruction with TS=1 will cause a device not
available (DNA) fault (trap vector 7). If TS=1
and MP=1 (monitor coprocessor in CR0O) a
WAIT instruction will cause a DNA fault. See
Table 2.4.

(Emulate Coprocessor, bit 2)

The EM bit determines whether floating point
instructions are trapped (EM = 1) or executed. If
EM=1, all floating point instructions will cause
fault 7. .

EM

NOTE:
WAIT instructions are not affected by the state
of EM. See Table 2.4.

(Monitor Coprocessor, bit 1)

The MP bit is used in conjunction with the TS bit
to determine if WAIT instructions should trap. If
MP=1 and TS=1, WAIT instructions cause
fault 7. Refer to Table 2.4. The TS bitis set to 1
on task switches by the Intel486 DX microproc-
essor. Floating point instructions are not affect-
ed by the state of the MP bit. It is recommended
that the MP bit be set to one for the normal
operation of the Intel486 DX microprocessor.

(Protection Enable, bit 0)

The PE bit enables the segment based protec-
tion mechanism. If PE= 1 protection is enabled.
When PE=0 the Inteld86 DX microprocessor
operates in REAL mode, with segment based
protection disabled, and addresses formed as
in an 8086. Refer to Table 2.2.

MP

PE

All new CRO bits added to the Intel386 and Intel486
DX microprocessors, except for ET and NE, are up-
ward compatible with the 80286 because they are in
register bits not defined in the 80286. For strict com-
patibility with the 80286, the load machine status
word (LMSW) instruction is defined to not change
the ET or NE bits.

Control Register 1 (CR1)

CR1 is reserved for use in future Intel microproces-
SOrs.

Control Register 2 (CR2)

CR2, shown in Figure 2.6, holds the 32-bit linear ad-
dress that caused the last page fault detected. The
error code pushed onto the page fault handler's
stack when it is invoked provides additional status
information on this page fault.

PRELIMINARY I

Intel486™ DX2 MICROPROCESSOR

31 0
PAGE FAULT LINEAR ADDRESS REGISTER CR2
3
PAGE DIRECTORY BASE REGISTER
NOTE:
@ indicates Intel reserved: Do not define; See Section 2.1.6.

Figure 2.6. Control Registers 2 and 3

Control Register 3 (CR3)

CR3, shown in Figure 2.8, contains the physical
base address of the page directory table. The In-
tel486 DX microprocessor page directory is always
page aligned (4 Kbyte-aligned). This alignment is en-
forced by only storing bits 20-31 in CR3.

In the intel486 DX microprocessor CR3 contains two
new bits, page write-through (PWT) (bit 3) and page
cache disable (PCD) (bit 4). The page table entry
(PTE) and page directory entry (PDE) also contain
PWT and PCD bits. PWT and PCD control page
cacheability. When a page is accessed in external
memory, the state of PWT and PCD are driven out
on the PWT and PCD pins. The source of PWT and
PCD can be CR3, the PTE or the PDE. PWT and
PCD are sourced from CR3 when the PDE is being
updated. When paging is disabled (PG = 0 in CRO),
PCD and PWT are assumed to be 0, regardiess of
their state in CRS3.

A task switch through a task state segment (TSS)
which changes the values in CR3, or an explicit load
into CR3 with any value, will invalidate all cached
page table entries in the translation lookaside buffer
(TLB).

The page directory base address in CR3 is a physi-
cal address. The page directory can be paged out
while its associated task is suspended, but the oper-
ating system must ensure that the page directory is
resident in physical memory before the task is dis-
patched. The entry in the TSS for CR3 has a physi-
cal address, with no provision for a present bit. This
means that the page directory for a task must be
resident in physical memory. The CR3 image in a
TSS must point to this area, before the task can be
dispatched through its TSS.

I PRELIMINARY

2.1.2.2 System Address Registers

Four special registers are defined to reference the
tables or segments supported by the 80286, In-
tel386 and Intel486 DX microprocessor protection
model. These tables or segments are:

GDT (Global Descriptor Table)
IDT (Interrupt Descriptor Table)
LDT (Local Descriptor Table)
TSS (Task State Segment)

The addresses of these tables and segments are
stored in special registers, the System Address and
System Segmant Registers, illustrated in Figure 2.4.
These registers are named GDTR, IDTR, LDTR and
TR respectively. Section 4, Protected Mode Archi-
tecture, describes the use of these registers.

System Address Registers: GDTR and IDTR

The GDTR and IDTR hold the 32-bit linear base ad-
dress and 16-bit limit of the GDT and IDT, respec-
tively.

Since the GDT and IDT segments are global to all
tasks in the system, the GDT and IDT are defined by
32-bit linear addresses (subject to page translation if
paging is enabled) and 16-bit limit values.

System Segment Registers: LDTR and TR

The LDTR and TR hold the 16-bit selector for the
LDT descriptor and the TSS descriptor, respectively.

Since the LDT and TSS segments are task specific
segments, the LDT and TSS are defined by selector
values stored in the system segment registers.

NOTE:

A programmer-invisible segment descriptor register
is associated with each system segment register.

2-27

Intel486™ DX2 MICROPROCESSOR

2.1.3 FLOATING POINT REGISTERS

Figure 2.7 shows the floating point register set. The
on-chip FPU contains eight data registers, a tag
word, a control register, a status register, an instruc-
tion pointer and a data pointer.

Tag
Field
79 78 64 63 0 10
RO | Sign | Exponent Significand
R1
R2
R3
R4
RS
R6
R7
15 0 47 0
Control Register Instruction Pointer
Status Register Data Pointer
Tag Word

Figure 2.7. Floating Point Registers

The operation of the Intel486 DX microprocessor’s
on-chip floating point unit is exactly the same as the
Intel387 math coprocessor. Software written for the
Intel387 math coprocessor will run on the on-chip
floating point unit (FPU) without any modifications.

2.1.3.1 Data Registers

Floating point computations use the intel486 DX mi-
croprocessor's FPU data registers. These eight 80-
bit registers provide the equivalent capacity of twen-
ty 32-bit registers. Each of the eight data registers is

intel.

divided into “fields” corresponding to the FPU’s ex-
tended-precision data type.

The FPU’s register set can be accessed either as a
stack, with instructions operating on the top one or
two stack elements, or as a fixed register set, with
instructions operating on explicitly designated regis-
ters. The TOP field in the status word identifies the
current top-of-stack register. A “push’ operation
decrements TOP by one and loads a value into the
new top register. A “pop”’ operation stores the value
from the current top register and then increments
TOP by one. Like other Intel486 DX microprocessor
stacks in memory, the FPU register stack grows
“down” toward lower-addressed registers.

Instructions may address the data registers either
implicitly or explicitly. Many instructions operate on
the register at the TOP of the stack. These instruc-
tions implicitly address the register at which TOP
points. Other instructions allow the programmer to
explicitly specify which register to use. This explicit
register addressing is also relative to TOP.

2.1.3.2 Tag Word

The tag word marks the content of each numeric
data register, as shown in Figure 2.8. Each two-bit
tag represents one of the eight data registers. The
principal function of the tag word is to optimize the
FPUs performance and stack handling by making it
possible to distinguish between empty and nonemp-
ty register locations. It also enables exception han-
dlers to check the contents of a stack location with-
out the need to perform complex decoding of the

- actual data.

2.1.3.3 Status Word

The 16-bit status word reflects the overall state of
the FPU. The status word is shown in Figure 2.9 and
is located in the status register.

15

0

[a6 | T1AGE) | TAGE) | TAGH)

| tac@ | TAc@ | TAG() | TAGO) |

NOTE:

field refers to logical top of stack.

TAG VALUES;
00 = Valid
01 = Zero

11 = Empty

The index i of tag(i) is not top-relative. A program typically uses the “top” field of Status Word to determine which tag(i)

10 = QNaN, SNaN, infinity, Denormal and Unsupported Formats

Figure 2.8. FPU Tag Word

2-28

PRELIMINARY I

[]
"‘]‘l‘el . Intel486™ DX2 MICROPROCESSOR

BUSY

TOP OF STACK POINTER

CONDITION CODE

15 7 0
ri cjcjc S|P Z|Dj}t
B TOP
3 [1 tJo]S|FJE]E]E EJE

ERROR SUMMARY STATUS
STACK FLAG

EXCEPTION FLAGS:
PRECISION

UNDERFLOW

OVERFLOW

ZERO DIVIDE
DENORMALIZED OPERAND
INVALID OPERATION

241245-5

ES is set if any unmasked exception bit is set; cleared otherwise.
See Table 2.5 for interpretation of condition code.
TOP values:
000 = Register 0 is Top of Stack
001 = Register 1 is Top of Stack
*
L)
L]
111 = Register 7 is Top of Stack
For definitions of exceptions, refer to the Section entitied
“Exception Handling".

Figure 2.9. FPU Status Word

The B bit (Busy, bit 15) is included for 8087 compati- The four numeric condition code bits, C0-C3, are
bility. The B bit reflects the contents of the ES bit (bit similar to the flags in EFLAGS. Instructions that per-
7 of the status word). form arithmetic operations update CO-C3 to reflect

the outcome. The effects of these instructions on
Bits 13-11 (TOP) point to the FPU register that is the condition codes are summarized in Tables 2.5
the current top-of-stack. through 2.8.

I PRELIMINARY 2.29

)]
Intel486™ DX2 MICROPROCESSOR |nte| .

Table 2.5. FPU Condition Code Interpretation

Instruction co(S) [c3(2) | c1a c2(C)
FPREM, FPREM1 Three least significant bits .
(see Table 2.3) of quotient Reduction
0 = complete
Q2 Qo at 1 = incomplete
orO/U# = incomp
FCOM, FCOMP,
FCOMPP, FTST, Result of comparison Zero Operand is not
FUCOM, FUCOMP, (see Table 2.7) or O/U# comparable
FUCOMPP, FICOM, (Table 2.7)
FICOMP
FXAM Operand class Sign Operand class
(see Table 2.8) orC/U# (Table 2.8)
FCHS, FABS, FXCH,
FINCTOP, FDECTOP,
Constant loads, Zero
FXTRACT, FLD, UNDEFINED or O/U# UNDEFINED
FILD, FBLD,
FSTP (ext real)
FIST, FBSTP,
FRNDINT, FST,
FSTP, FADD, FMUL,
FDIV, FDIVR, Roundup
FSUB, FSUBR, UNDEFINED or O/U# UNDEFINED
FSCALE, FSQRT,
FPATAN, F2XM1,
FYL2X, FYL2XP1
FPTAN, FSIN Roundup Reduction
FCOS, FSINCOS UNDEFINED orQ/U#, 0 = complete
undefined 1 = incomplete
ifC2 =1
FLDENV, FRSTOR Each bit loaded from memory
FINIT Clears these bits
FLDCW, FSTENV,
FSTCW, FSTSW, UNDEFINED
FCLEX, FSAVE
O/U# When both IE and SF bits of status word are set, indicating a stack exception, this bit

distinguishes between stack overflow (C1 = 1) and underflow (C1 = 0).

Reduction if FPREM or FPREM1 produces a remainder that is less than the modulus, reduction is
complete. When reduction is incomplete the value at the top of the stack is a partial
remainder, which can be used as input to further reduction. For FPTAN, FSIN, FCOS, and
FSINCOS, the reduction bit is set if the operand at the top of the stack is too large. in this
case the original operand remains at the top of the stack.

Roundup When the PE bit of the status word is set, this bit indicates whether the last rounding in the
instruction was upward.

UNDEFINED Do not rely on finding any specific value in these bits.

2-30 PRELIMINARY I

a
|nte| o Intel486™ DX2 MICROPROCESSOR

Table 2.6. Condition Code Interpretation after FPREM and FPREM1 Instructions

Condition Code Interpretation after FPREM and FPREM1
C2 Cc3 Cc1 Cco
Incomplete Reduction:
1 X X X further interaction required
for complete reduction
Q1 Qo Q2 QMODs8
0 0 0 0
(1) :) g ; Complete Reduction:
0 CO, C3, C1 contain three least
! ! 0 3 significant bits of quotient
0 0 1 4 9 a
0 1 1 5 '
1 0 1 6
1 1 1 7

Table 2.7. Condition Code Resuiting from Comparison

Order Cc3 Cc2 co
TOP > Operand 0 0 0
TOP < Operand 0 0 1
TOP = Operand 1 0 0
Unordered 1 1 1
Table 2.8. Condition Code Defining Operand Class
c3 c2 C1 co Value at TOP
0 0 0 0 + Unsupported
0 0 0 1 + NaN
0 0 1 0 — Unsupported
0 0 1 1 — NaN
0 1 0 0 + Normal
0 1 0 1 + Infinity
0 1 1 0 — Normal
0 1 1 1 — Infinity
1 0 0 0 +0
1 0 0 1 + Empty
1 0 1 0 -0
1 0 1 1 — Empty
1 1 0 0 + Denormal
1 1 1 0 — Denormal

I PRELIMINARY 2-31

Intel486™ DX2 MICROPROCESSOR

Bit 7 is the error summary (ES) status bit. The ES bit
is set if any unmasked exception bit (bits 0-5 in the
status word) is set; ES is clear otherwise. The
FERR # (floating point error) signal is asserted when
ES is set.

Bit 6 is the stack flag (SF). This bit is used to distin-
guish invalid operations dus to stack overflow or un-
derflow. When SF is set, bit 9 (C1) distinguishes be-
tween stack overflow (Ct1=1) and underflow
(C1=0).

Table 2.9 shows the six exception flags in bits 0-5
of the status word. Bits 05 are set to indicate that
the FPU has detected an exception while executing
an instruction.

The six exception flags in the status word can be
individually masked by mask bits in the FPU control
word. Table 2.9 lists the exception conditions, and
their causes in order of precedence. Table 2.9 also
shows the action taken by the FPU if the corre-
sponding exception flag is masked.

An exception that is not masked by the control word
will cause three things to happen: the corresponding
exception flag in the status word will be set, the ES
bit in the status word will be set and the FERR#
output signal will be asserted. When the Intel486 DX
microprocessor attempts to execute another floating
point or WAIT instruction, exception 16 occurs or an
external interrupt happens if the NE=1 in control

intgl.

register 0. The exception condition must be resoived
via an interrupt service routine. The FPU saves the
address of the floating point instruction that caused
the exception and the address of any memory oper-
and required by that instruction in the instruction and
data pointers (see Section 2.1.3.4).

Note that when a new value is loaded into the status
word by the FLDENV (load environment) or
FRSTOR (restore state) instruction, the value of ES
(bit 7) and its reflection in the B bit (bit 15) are not
derived from the values loaded from memory. The
values of ES and B are dependent upon the values
of the exception flags in the status word and their
corresponding masks in the control word. If ES is set
in such a case, the FERR# output of the Intel486
DX microprocessor is activated immediately.

2.1.3.4 Instruction and Data Pointers

Because the FPU operates in parallel with the ALU
(in the Intel486 DX and Intel486 microprocessors
the arithmetic and logic unit (ALU) consists of the
base architecture registers), any errors detected by
the FPU may be reported after the ALU has execut-
ed the floating point instruction that caused it. To
aliow identification of the failing numeric instruction,
the Intel486 DX microprocessor contains two pointer
registers that supply the address of the failing nu-
meric instruction and the address of its numeric
memory operand (if appropriate).

Table 2.9. FPU Exceptions

Exception Cause Defauilt Action
P (It exception is masked)

Invalid Operation on a signaling NaN, unsupported format, Result is a quiet NaN, integer

Operation indeterminate form (0%, 0/0, (+ o) + (—), etc.), or | indefinite, or BCD indefinite
stack overflow/underflow (SF is also set).

Denormalized | At least one of the operands is denormalized, i.e., it has Normal processing

Operand the smallest exponent but a nonzero significand. continues

Zero Divisor The divisor is zero while the dividend is a noninfinite, Result is «©
nonzero number.

Overflow The result is too large in magnitude to fit in the specified Result is largest finite value
format. or e

Underflow The true result is nonzero but too small to be Result is denormalized or
represented in the specified format, and, if underflow zero
exception is masked, denormalization causes loss of
accuracy.

Inexact The true result is not exactly representable in the Normal processing

Result specified format (e.g., 1/3); the result is rounded continues

(Precision) according to the rounding mode.

2-32

PRELIMINARY I

intel.

The instruction and data pointers are provided for
user-written error handlers. These registers are ac-
cessed by the FLDENV (load environment),
FSTENV (store environment), FSAVE (save state)

and FRSTOR (restore state) instructions. Whenever -

the Intel4d86 DX microprocessor decodes a new
floating point instruction, it saves the instruction (in-
cluding any prefixes that may be present), the ad-
dress of the operand (if present) and the opcode.

The instruction and data pointers appear in one of
four formats depending on the operating mode of
the Intel486 DX microprocessor (protected mode or
real-address mode) and depending on the operand-

intel486™ DX2 MICROPROCESSOR

size attribute in effect (32-bit operand or 16-bit oper-
and). When the Intel486 DX microprocessor is in the
virtual-86 mode, the real address mode formats are
used. The four formats are shown in Figures 2.10-
2.13. The floating point instructions FLDENV,
FSTENV, FSAVE and FRSTOR are used to transfer
these values to and from memory. Note that the vali-
ue of the data pointer is undefined if the prior float-
ing point instruction did not have a memory operand.

NOTE:
The operand size attribute is the D bit in a segment
descriptor.

32-BIT PROTECTED MODE FORMAT

k1) 23 7 0

: F

RESEIRVED CONTRC?L WORD 0
1 T

RESEIFIVED STATU? WORD 4

HESE:RVED TAG V:VOHD 8
T T

IP OFFSET X : o]
T

00000 OPCODE 190 CS SELECTOR 10
T

. DATA OPERAND OFFSET , 14
1

RESE:RVED OPERANDJSELECTOR 18
T]

Figure 2.10. Protected Mode FPU instruction and Data Pointer Image in Memory, 32-Bit Format

32-BIT REAL-ADDRESS MODE FORMAT

3 I25) 15 , 7 4]
RESE;RVED CONTRO:L WORD 0
RESE;RVED STATU% WORD 4
RESE:RVED TAG V:VOHD 8
RESE:RVED INSTRUCTION:POINTER 15.0 C
0000 INSTF:(UCTION POINTER 31..16 l Y] | OPé:ODE 10..0 10
RESEJ'FIVED OPERAND PéJINTER 15..0 14
0000 OPE:HANDPOINTER31..16 . 0000 ' 00000000 18

Figure 2.11. Real Mode FPU Instruction and Data Pointer Image in Memory, 32-Bit Format

I PRELIMINARY

2-33

Intel486™ DX2 MICROPROCESSOR

intel.

16-BIT PROTECTED MODE FORMAT

15 7 0
f
CONTHOIL WORD ’ 0
T
STATUSI WORD 2
T
TAG VIVORD 4
T
P OFIFSET 6
T
Ccs SELIECTOR 8
T
OPERAN[? OFFSET A
OPERAND:SELECTOR C
T

16-BIT REAL-ADDRESS MODE AND

VIRTUAL-8086 MODE FORMAT
15 7 0
t
CONTROL WORD 0
i
L)
STATUS WORD 2
TAG WORD 4
1
INSTRUCTION POINTER 15..0 6
L
IP19.16 |0 OPCODE 10..0 8
OPERAND POINTER 15..0 A
1
DP19.16 [0|/0 000000000 0| C
1

Figure 2.12. Protected Mode FPU
Instruction and Data Pointer
Image in Memory, 16-Bit Format

2.1.3.5 FPU Control Word

Figure 2.13. Real Mode FPU
Instruction and Data Pointer
Image in Memory, 16-Bit Format

The FPU provides several processing options that are selected by loading a control word from memory into
the control register. Figure 2.14 shows the format and encoding of fields in the control word.

RESERVED
RESERVED®

ROUNDING CONTROL

PRECISION CONTROL

RESERVED

EXCEPTION MASKS:

PRECISION

UNDERFLOW

* 0" AFTER RESET OR FINIT;
CHANGEABLE UPON LOADING THE
CONTROL WORD (CW). PROGRAMS
MUST IGNORE THIS BIT.

OVERFLOW

ZERO DIVIDE

DENORMALIZED OPERAND

INVALID OPERATION

Precision Control
00—24 bits (single precision)
01-—(reserved)
10—53 bits (double precision)
11—64 bits (extended precision)

241245-6

Rounding Control

00—Round to nearest or even
01—Round down (toward —)
10—Round up (toward + <)
11—Chop (truncate toward zero)

Figure 2.14. FPU Control Word

2-34

PRELIMINARY I

u

intgl.

The low-order byte of the FPU control word config-
ures the FPU error and exception masking. Bits 0-5

of the control word contain individual masks for each
of the six exceptions that the FPU recognizes.

The high-order byte of the control word configures
the FPU operating mode, including precision and
rounding.

RC (Rounding Control, bits 10-11)

The RC bits provide for directed rounding and
true chop, as well as the unbiased round to
nearest even mode specified in the IEEE stan-
dard. Rounding control affects only those in-
structions that perform rounding at the end of
the operation (and thus can generate a preci-
sion exception); namely, FST, FSTP, FIST, all
arithmetic instructions (except FPREM,
FPREM1, FXTRACT, FABS and FCHS), and all
transcendental instructions.

PC (Precision Control, bits 8~9)

The PC bits can be used to set the FPU internal
operating precision of the significand at less
than the default of 64 bits (extended precision).
This can be useful in providing compatibility with
early generation arithmetic processors of small-
er precision. PC affects only the instructions
ADD, SUB, DIV, MUL, and SQRT. For all other
instructions, either the precision is determined
by the opcode or extended precision is used.

2.1.4 DEBUG AND TEST REGISTERS

2.1.4.1 Debug Registers

The six programmer accessible debug registers, Fig-
ure 2.15, provide on-chip support for debugging. De-
bug registers DRO-3 specify the four linear break-
points. The Debug control register DR7, is used to
set the breakpoints and the Debug Status Register,
DRS6, displays the current state of the breakpoints.
The use of the Debug registers is described in Sec-
tion 9.

I PRELIMINARY

Intel486™ DX2 MICROPROCESSOR

Debug Registers
LINEAR BREAKPOINT ADDRESS 0 DRO
LINEAR BREAKPOINT ADDRESS 1 DR1
LINEAR BREAKPOINT ADDRESS 2 DR2
LINEAR BREAKPOINT ADDRESS 3 DR3
Intel Reserved Do Not Define DR4
Intel Reserved Do Not Define DRS
BREAKPOINT STATUS DR6
BREAKPOINT CONTROL DR7

Test Registers

CACHE TEST DATA TR3
CACHE TEST STATUS TR4
CACHE TEST CONTROL TRS
TLB TEST CONTROL TR6
TLB TEST STATUS TR7

TLB = Translation Lookaside Buffer

Figure 2.15

2.1.4.2 Test Registers

The Intel486 DX microprocessor contains five test
registers. The test registers are shown in Figure
2.15. TR6 and TR7 are used to control the testing of
the translation lookaside buffer. TR3, TR4 and TRS
are used for testing the on-chip cache. The use of
the test registers is discussed in Section 8.

2.1.5 REGISTER ACCESSIBILITY
There are a few differences regarding the accessibil-
ity of the registers in Real and Protected Mode. Ta-

ble 2.10 summarizes these differences. See Section
4, Protected Mode Architecture, for further details.

2-35

Intel486™ DX2 MICROPROCESSOR

intel.

Table 2.10. Register Usage

Use in Usein Use in

Register Real Mode Protected Mode Virtual 8086 Mode

Load Store Load Store Load Store
General Registers Yes Yes Yes Yes Yes Yes
Segment Register Yes Yes Yes Yes Yes Yeos

Flag Register Yes Yes Yes Yes I0PL IOPL*
Control Registers Yes Yes PL=0 PL=20 No Yes
GDTR Yes Yes PL=0 Yes No Yes
IDTR Yes Yes PL=0 Yes No Yes
LDTR No No PL=0 Yes No No
TR No No PL=0 Yes No No
FPU Data Registers Yes Yes Yes Yes Yes Yes
FPU Control Registers Yes Yes Yes Yes Yes Yes
FPU Status Registers Yes Yes Yes Yes Yes Yes
FPU Instruction Pointer Yes Yes Yes Yes Yes Yes
FPU Data Pointer Yes Yes Yes Yes Yes Yes
Debug Registers Yes Yes PL=0 PL=0 No No
Test Registers Yes Yes PL=0 PL=20 No No

NOTES:

PL = 0: The registers can be accessed only when the current privilege level is zero.
*10PL: The PUSHF and POPF instructions are made 1/0 Privilege Level sensitive in Virtual 86 Mode.

2.1.6 COMPATIBILITY

VERY IMPORTANT NOTE:
COMPATIBILITY WITH FUTURE PROCESSORS

In the preceding register descriptions, note cer-
tain Intel486 microprocessor register bits are
Intel reserved. When reserved bits are called
out, treat them as fully undefined. This is essen-
tial for your software compatibility with future
processors! Follow the guidelines below:

1) Do not depend on the states of any unde-
fined bits when testing the values of defined
register bits. Mask them out when testing.

2) Do not depend on the states of any unde-
fined bits when storing them to memory or
another register.

2-36

3) Do not depend on the ability to retain infor-
mation written into any undefined bits.

4) When loading registers always load the unde-
fined bits as zeros.

5) However, registers which have been previ-
ously stored may be reloaded without mask-
ing.

Depending upon the values of undefined regis-
ter bits will make your software dependent upon
the unspecified Intel486 DX microprocessor
handiing of these bits. Depending on undefined
values risks making your software incompatible
with future processors that define usages for
the Intel486 microprocessor-undefined bits.
AVOID ANY SOFTWARE DEPENDENCE UPON
THE STATE OF UNDEFINED Intel486 MICRO-
PROCESSOR REGISTER BITS.

PRELIMINARY I

intgl.

2.2 Instruction Set

The Intel486 DX microprocessor instruction set can
be divided into 11 categories of operations:

Data Transfer

Arithmetic

Shift/Rotate

String Manipulation

Bit Manipulation

Control Transfer

High Level Language Support
Operating System Support
Processor Control
Floating Point

Floating Point Control

The Intel486 DX microprocessor instructions are list-
ed in Section 10. Note that all fioating point unit in-
struction mnemonics begin with an F.

All Intel486 DX microprocessor instructions operate
on either 0, 1, 2 or 3 operands; where an operand
resides in a register, in the instruction itself or in
memory. Most zero operand instructions (e.g., CLI,
STI) take only one byte. One operand instructions
generally are two bytes fong. The average instruc-
tion is 3.2 bytes long. Since the Intel486 DX micro-
processor has a 32-byte instruction queue, an aver-
age of 10 instructions will be prefetched. The use of
two operands permits the following types of com-
mon instructions:

Register to Register
Memory to Register
Memory to Memory
Immediate to Register
Register to Memory
Immediate to Memory

The operands can be sither 8, 16, or 32 bits long. As
a general rule, when executing code written for the
Inteld86 DX, Intel486 or Intel386 microprocessors
(32-bit code), operands are 8 or 32 bits; when exs-
cuting existing 80286 or 8086 code (16-bit code),
operands are 8 or 16 bits. Prefixes can be added to
all instructions which override the default length of
the operands (i.e., use 32-bit operands for 16-bit
cods, or 16-bit operands for 32-bit codse).

2.3 Memory Organization

Introduction

Memory on the intel486 DX microprocessor is divid-
ed up into 8-bit quantities (bytes), 16-bit quantities
(words), and 32-bit quantities (dwords). Words are
stored in two consecutive bytes in memory with the
low-order byte at the lowest address, the high order

I PRELIMINARY

Inteld86™ DX2 MICROPROCESSOR

byte at the high address. Dwords are stored in four
consecutive bytes in memory with the low-order byte
at the lowest address, the high-order byte at the
highest address. The address of a word or dword is
the byte address of the low-order byte.

In addition to these basic data types, the Intel486
DX microprocessor supports two larger units of
memory: pages and segments. Memory can be di-
vided up into one or more variable length segments,
which can be swapped to disk or shared between
programs. Memory can also be organized into one
or more 4 Kbyte pages. Finally, both segmentation
and paging can be combined, gaining the advan-
tages of both systems. The Intel486 DX microproc-
essor supports both pages and segments in order to
provide maximum flexibility to the system designer.
Segmentation and paging are complementary. Seg-
mentation is useful for organizing memory in logical
modules, and as such is a tool for the application
programmer, while pages are useful for the system
programmer for managing the physical memory of a
system.

2.3.1 ADDRESS SPACES

The Intel486 DX microprocessor has three distinct
address spates: logical, linear, and physical. A
logical address (also known as a virtual address)
consists of a selector and an offset. A selector is the
contents of a segment register. An offset is formed
by summing all of the addressing components
(BASE, INDEX, DISPLACEMENT) discussed in Sec-
tion 2.5.3 Memory Addressing Modes into an ef-
fective address. Since each task on the Intei486 DX
microprocessor has a maximum of 16K (214 —1) se-
lectors, and offsets can be 4 gigabytes, (232 bits)
this gives a total of 246 bits or 64 terabytes of logi-
cal address space per task. The programmer sees
this virtual address space.

The segmentation unit translates the logical ad-
dress space into a 32-bit linear address space. If the
paging unit is not enabled then the 32-bit linear ad-
dress corresponds to the physical address. The
paging unit translates the linear address space,into
the physical address space. The physical address
is what appears on the address pins.

The primary difference between Real Mode and Pro-
tected Mode is how the segmentation unit performs
the translation of the logical address into the linear
address. [n Real Mode, the segmentation unit shifts
the selector left four bits and adds the result to the
offset to form the linear address. While in Protected
Mode every selector has a linear base address as-
sociated with it. The linear base address is stored in
one of two operating system tables (i.e., the Local
Descriptor Table or Global Descriptor Table). The
selector's linear base address is added to the offset
to form the final linear address.

2-37

Intel486™ DX2 MICROPROCESSOR

EFFECTIVE ADDRESS CALCULATION

iNDEX

BASE DISPLACEMENT
31 0
SCALE
1,2,4,8
PHYSICAL
¥ MEMORY
(¢ je——— BE3# - BEO#
A3t -A2
32 EFFECTIVE
" ADDRESS 32 32
15 320 |0GICAL OR SEGMENTATION £ o] PAGING UNIT . N
R | 43 VIRTUAL ADDRESS UNIT LINEAR (opTIONAL USE) |7 pHYsICAL
SELECTOR [P |—t N ADDRESS ADDRESS
L DESCRIPTOR
INDEX
SEGMENT
REGISTER
241245-7

Figure 2.16. Address Transiation

Figure 2.16 shows the relationship between the vari-
ous address spaces.

2.3.2 SEGMENT REGISTER USAGE

The main data structure used to organize memory is
the segment. On the Intel486 DX microprocessor,
segments are variable sized blocks of linear ad-
dresses which have certain attributes associated
with them. There are two main types of segments:
code and data, the segments are of variable size
and can be as small as 1 byte or as large as 4 giga-
bytes (232 bytes).

In order to provide compact instruction encoding,
and increase processor performance, instructions
do not need to explicitly specify which segment reg-
ister is used. A default segment register is automati-
cally chosen according to the rules of Table 2.11
{Segment Register Selection Rules). In general, data
references use the selector contained in the DS reg-
ister; Stack references use the SS register and In-
struction fetches use the CS register. The contents
of the Instruction Pointer provide the offset. Special
segment override prefixes allow the explicit use of a
given segment register, and override the implicit
rules listed in Table 2.11. The override prefixes also
allow the use of the ES, FS and GS segment regis-
ters.

There are no restrictions regarding the overlapping

of the base addresses of any segments. Thus, all 6
segments could have the base address set to zero

2-38

and create a system with a four gigabyte linear ad-
dress space. This creates a system where the virtual
address space is the same as the linear address
space. Further details of segmentation are dis-
cussed in Section 4.1.

2.4 1/0 Space

The Intel486 DX microprocessor has two distinct
physical address spaces: Memory and 1/0. General-
ly, peripherals are placed in 1/O space although the
Intel486 DX microprocessor also supports memory-
mapped peripherals. The |/O space consists of
64 Kbytes, it can be divided into 64K B-bit ports, 32K
16-bit ports, or 16K 32-bit ports, or any combination
of ports which add up to less than 64 Kbytes. The
64K 1/0 address space refers to physical memory
rather than linear address since 1/0 instructions do
not go through the segmentation or paging hard-
ware. The M/IO# pin acts as an additional address
line thus allowing the system designer to easily de-
termine which address space the processor is ac-
cessing.

The 1/0 ports are accessed via the IN and QUT 1/0
instructions, with the port address supplied as an
immediate 8-bit constant in the instruction or in the
DX register. All 8- and 16-bit port addresses are zero
extended on the upper address lines. The 1/0 in-
structions cause the M/IO# pin to be driven low.

1/0 port addresses 00F8H through 00FFH are re-
served for use by Intel.

PRELIMINARY I

intgl.

Intel486™ DX2 MICROPROCESSOR

Table 2.11. Segment Register Selection Rules

Type of implied (Default) Segment Override
Memory Reference Segment Use Prefixes Possible

Code Fstch Ccs None
Destination of PUSH, PUSHF, INT, SS None
CALL, PUSHA instructions
Source of POP, POPA, POPF, SS None
IRET, RET instructions
Destination of STOS, MOVS, REP ES None
STOS, REP MOVS Instructions
(Dl is Base Register)
Other Data References, with
Effective Address Using Base
Register of:

[EAX] DS

[EBX] DS

[ECX] DS

[EDX] DS Al

[ESI] DS

[EDI] DS

[EBP] SS

[ESP] SS

2.5 Addressing Modes

2.5.1 ADDRESSING MODES OVERVIEW

The Intel486 DX microprocessor provides a total of
11 addressing modes for instructions to specify op-
erands. The addressing modes are optimized to al-
low the efficient execution of high level languages
such as C and FORTRAN, and they cover the vast
majority of data references needed by high-level lan-
guages.

2.5.2 REGISTER AND IMMEDIATE MODES
Two of the.addressing modes provide for instruc-

tions that operats on register or immediate oper-
ands:

Register Operand Mode: The operand is located in
one of the 8-, 16- or 32-bit general registers.

Immediate Operand Mode: The operand is includ-
ed in the instruction as part of the opcode.

I PRELIMINARY

2.5.3 32-BIT MEMORY ADDRESSING MODES

The remaining 9 modes provide a mechanism for
specifying the effective address of an operand. The
linear address consists of two components: the seg-
ment base address and an effective address. The
effective address is calculated by using combina-
tions of the following four address elements:

DISPLACEMENT: An 8-, or 32-bit immediate value,
following the instruction.

BASE: The contents of any general purpose regis-
ter. The base registers are generally used by compil-
ers to point to the start of the local variable area.

INDEX: The contents of any general purpose regis-
ter except for ESP. The index registers are used to
access the elements of an array, or a string of char-
acters.

SCALE: The index register’s value can be multiplied
by a scale factor, either 1, 2, 4 or 8. Scaled index

2-39

Intel486™ DX2 MICROPROCESSOR

mode is especially useful for accessing arrays or
structures.

Combinations of these 4 components make up the 9
additional addressing modes. There is no perform-
ance penalty for using any of these addressing com-
binations, since the effective address calculation is
pipelined with the execution of other instructions.
The one exception is the simultaneous use of Base
and Index components which requires one addition-
al clock.

As shown in Figure 2.17, the effective address (EA)
of an operand is calculated according to the follow-
ing formula.

EA=Base Reg+{Index Reg * Scaling) + Displacement

Direct Mode: The operand’s offset is contained as
part of the instruction as an 8-, 16- or 32-bit dis-
placement.

EXAMPLE: INC Word PTR [500]

Register Indirect Mode: A BASE register contains
the address of the operand.
EXAMPLE: MOV [ECX]}, EDX

intel.

Based Mode: A BASE register's contents is added
to a DISPLACEMENT to form the operand’s offset.
EXAMPLE: MOV ECX, [EAX +24]

Index Mode: An INDEX register's contents is added
to a DISPLACEMENT to form the operand’s offset.
EXAMPLE: ADD EAX, TABLE[ESI]

Scaled Index Mode: An INDEX register’s contents is
multiplied by a scaling factor which is added to a
DISPLACEMENT to form the operand’s offset.
EXAMPLE: IMUL EBX, TABLE[ESI*4],7

Based Index Mode: The contents of a BASE register
is added to the contents of an INDEX register to
form the effective address of an operand.
EXAMPLE: MOV EAX, [ESI] [EBX]

Based Scaled Index Mode: The contents of an IN-
DEX register is multiplied by a SCALING factor and
the result is added to the contents of a BASE regis-
ter to obtain the operand’s offset.

EXAMPLE: MOV ECX, [EDX*8] [EAX]

SEGMENT REGISTER

SELECTOR

ADDRESS

DESCRIPTOR REGISTERS

ACCESS RIGHTS €S
LIMIT
Fl BASE ADDRESS

> (+) DISPLACEMENT
(IN INSTRUCTION)

EFFECTIVE

LINEAR

ADDRESS
*@—b TARGET ADDRESS

l BASE REGISTER I
INDEX REGISTER

SCALE
1,2,4,0R 8

SEGMENT
LIMIT

AN\

SELECTED
SEGMENT

SEGMENT BASE ADDRESS

241245-8

Figure 2.17. Addressing Mode Calculations

2-40

PRELIMINARY I

3

intgl.

Based Index Mode with Displacement: The contents
of an INDEX Register and a BASE register's con-
tents and a DISPLACEMENT are all summed to-

gether to form the operand offset.
EXAMPLE: ADD EDX, [ESI] [EBP + 00FFFFFOH]

Based Scaled Index Mode with Displacement: The
contents of an INDEX register are muitiplied by a
SCALING factor, the result is added to the contents
of a BASE register and a DISPLACEMENT to form
the operand’s offset.

EXAMPLE: MOV EAX, LOCALTABLE[EDI*4]
[EBP + 80)

2.5.4 DIFFERENCES BETWEEN 16- AND 32-BIT
ADDRESSES

In order to provide software compatibility with the
80286 and the 8086, the Intel486 DX Microproces-
sor can execute 16-bit instructions in Real and Pro-
tected Modes. The processor determines the size of
the instructions it is executing by examining the D bit
in the CS segment Descriptor. If the D bit is 0 then
all operand lengths and effective addresses are as-
sumed to be 16 bits long. If the D bit is 1 then the
default length for operands and addresses is 32 bits.
in Real Mode the default size for operands and ad-
dresses is 16 bits.

Regardless of the default precision of the operands
or addresses, the Intel486 DX Microprocessor is
able to execute either 16- or 32-bit instructions. This
is specified via the use of override prefixes. Two pre-
fixes, the Operand Size Prefix and the Address
Length Prefix, override the value of the D bit on an
individual instruction basis. These prefixes are auto-
matically added by Intel assemblers.

Example: The processor is executing in Real Mode
and the programmer needs to access the EAX regis-
ters. The assembler code for this might be MOV
EAX, 32-bit MEMORYOP, ASM486 Macro Assem-
bler automatically determines that an Operand Size
Prefix is needed and ,generates it.

Example: The D bitis 0, and the programmer wishes
to use Scaled Index addressing mode to access an
array. The Address Length Prefix allows the use of
MOV DX, TABLE[ESI*2]. 'The assembler uses an

Intel486™ DX2 MICROPROCESSOR

Address Length Prefix since, with 0=0, the default
addressing mode is 16 bits.

Example: The D bit is 1, and the program wants to
store a 16-bit quantity. The Operand Length Prefix is
used to specify only a 16-bit value; MOV MEM16,
DX.

The OPERAND LENGTH and Address Length Pre-
fixes can be applied separately or in combination to
any instruction. The Address Length Prefix does not
allow addresses over 64 Kbytes to be accessed in
Real Mode. A memory address which exceeds
FFFFH will result in a General Protection Fault. An
Address Length Prefix only allows the use of the ad-
ditional Intel486 DX Microprocessor addressing
modes.

When executing 32-bit code, the Intel486 DX Micro-
processor uses either 8-, or 32-bit displacements,
and any register can be used as base or index regis-
ters. When executing 16-bit code, the displacements
are either 8, or 16 bits, and the base and index regis-
ter conform to the 80286 model. Table 2.12 illus-
trates the differences.

2.6 Data Formats

2.6.1 DATA TYPES

The Intel486 DX Microprocessor can support a wide
variety of data types. In the following descriptions,
the on-chip floating point unit (FPU) consists of the
floating point registers. The central processing unit
(CPU) consists of the base architecture registers.

2.6.1.1 Unsigned Data Types

The FPU does not support unsigned data types. Re-
fer to Table 2.13.

Byte: Unsigned 8-bit quantity

Word: Unsigned 16-bit quantity

Dword: Unsigned 32-bit quantity

The least significant bit (LSB) in a byte is bit 0, and
the most significant bit is 7.

Table 2.12. BASE and INDEX Registers for 16- and 32-Bit Addresses

16-Bit Addressing

32-Bit Addressing

BASE REGISTER BX,BP
INDEX REGISTER SI,DI
SCALE FACTOR none
DISPLACEMENT 0, 8, 16 bits

Any 32-bit GP Register
Any 32-bit GP Register
Except ESP

1,2,4,8

0, 8, 32 bits

I PRELIMINARY

2-41

intel486™ DX2 MICROPROCESSOR

2.6.1.2 Signed Data Types

Al signed data types assume 2's complement nota-
tion. The signed data types contain two fields, a sign
bit and a magnitude. The sign bit is the most signifi-
cant bit (MSB). The number is negative if the sign bit
is 1. If the sign bit is 0, the number is positive. The
magnitude field consists of the remaining bits in the
number. Refer to Table 2.13.

8-bit Integer: Signed 8-bit quantity

16-bit Integer: Signed 16-bit quantity
32-bit Integer: Signed 32-bit quantity
64-bit Integer: Signed 64-bit quantity

The FPU only supports 16-, 32- and 64-bit integers.
The CPU only supports 8-, 16- and 32-bit integers.

2.6.1.3 Floating Point Data Types

Floating point data type in the Intel486 DX micro-
processor contain three fields, sign, significand and
exponent. The sign field is one bit and is the MSB of
the floating point number. The number is negative if
the sign bit is 1. If the sign bit is 0, the number is
positive. The significand gives the significant bits of
the number. The exponent field contains the power
of 2 needed to scale the significand. Refer to Table
2.13.

Only the FPU supports floating point data types.

Single Precision Real: 23-bit significand and 8-
bit exponent. 32 bits total.
52-bit significand and 11-
bit exponent. 64 bits total.

Extended Precision Real: 64-bit significand and 15-
bit exponent. 80 bits total.

Double Precision Real:

2-42

intgl.

The Intel486 DX microprocessor supports packed
and unpacked binary coded decimal (BCD) data
types. A packed BCD data type contains two digits
per byte, the lower digit is in bits 0—3 and the upper
digit in bits 4-7. An unpacked BCD data type con-
tains 1 digit per byte stored in bits 0-3.

2.6.1.4 BCD Data Types

The CPU supports 8-bit packed and unpacked BCD
data types. The FPU only supports 80-bit packed
BCD data types. Refer to Table 2.13.

2.6.1.5 String Data Types

A string data type is a contiguous sequence of bits,
bytes, words or dwords. A string may contain be-
tween 1 byte and 4 Gbytes. Refer to Table 2.14.

String data types are only supported by the CPU.
Byte String: Contiguous sequence of bytes.

Word String: Contiguous sequence of words.
Dword String: Contiguous sequence of dwords.

Bit String: A set of contiguous bits. In the Intel486

DX microprocessor bit strings can be up to 4 gigabits
long.

2.6.1.6 ASCIi Data Types

The Intel4d86 DX microprocessor supports ASCI
(American Standard Code for Information Inter-
change) strings and can perform arithmetic opera-
tions (such as addition and division) on ASCII data.
Refer to Table 2.14.

PRELIMINARY I

intel.

intel486™ DX2 MICROPROCESSOR

Table 2.13. Intel486™ DX Microprocessor Data Types
Supported by Supported by

Base Registers FPU Least Significant Byte
11 !
Data Format Range |Precision| 7 o|7 ol 7 o|7 olr o|7 o, 7 o|7 ol 7 o| 7 0
7 0
Byte X 0-255 |8 bits
15 0
Word X 0-64K |16 bits l
31 [o]
Dword X 0-4G |32 bits
7 0
Two'
8-Bit Integer X 102 |8 bits Complement
SignBit T
15 0
3 4 . Two's
16-Bit Integer XX 10 16 bits Complement
Signgit T
31 0
32-Bit Integer X[x| 10° [32bits Compiement | |
SignBit T
63 0
64-Bit Integer X| 10" |64 bits Commemant |
SignBit T
7 0
8-Bit Unpacked BCD | X 0-9 |1 Digit One BCD Digitper Byte
7 0
8-Bit Packed BCD X 0-9 |2 Digits Twa BCD Digits per Byte
78 72 0
80-Bit Packed BCD x| +10*'8 |18 Digits 'smd|
T SignBit
31 2 0
Biased _—
Single Precision Real x| £10%38 |24 Bits | |Exp. Significand
SignBit T
63 52 0
i +308 ; Biased Significand
Double Precision Real X| £10 53 Bits Exp.
SignBit T
79 83 0
i 14932 . Biasad Significand
Extended Precision Real| |X|+10 64 Bits Exp. 1 9
T SignBit

I PRELIMINARY

2-43

Intel486™ DX2 MICROPROCESSOR

Table 2.14. String and ASCIl Data Types

String Data Types
Address A+N A+1 A
. N vee 1 c
Byte String 7 0| 7 0|7 0|
A+2N+1 A+2N A+3 A+2 A+1 A
T T T
Word String 15 N q **t s ! olvs ° o]
A+4N+3 A+4N+2 A+4N+1 A+4N A+7 A+6 A+5 At4 A+3 A+2 A+1 A
Dword i T — T T ! T)
N s 1 0
String (31 9 3 93 9
A+ 268,435,455 A— 268,435,456
1 A+3 A+2 A+1 A A-1 A-2 A-3 {
Bit
String 7 0|7 0| 7 o7 of7 o7z ...1 o7 of7 0|7 0 7 of7 0
T t Tt
+2,147,489,647 +7 +10 —2,147.483,648
ASCIii Data Types
ASCII Character

2.6.1.7 Pointer Data Types Table 2.15. Pointer Data Types

A pointer data type contains a value that giveg the Lo smBre
brocessor supporss wo types of poimers. Foter o (omaFormatl [[[[[[[[]
Table 2.15. 47 31 0
48-bit Pointer: 16-bit selector and 32-bit offset 48-Bit Pointer B
32-bit Pointer: 32-bit offset - o
32-Bit Pointer Offset

2-44

PRELIMINARY I

n

intgl.

2.6.2 LITTLE ENDIAN vs BIG ENDIAN
DATA FORMATS

The Intel486 DX microprocessor, as well as all other

members of the 86 architecture use the “littls-endi- -

an” method for storing data types that are larger
than one byte. Words are stored in two consecutive
bytes in memory with the low-order byte at the low-
est address and the high order byte at the high ad-
dress. Dwords are stored in four consecutive bytes
in memory with the low-order byte at the lowest ad-
dress and the high order byte at the highest address.
The address of a word or dword data item is the byte
address of the low-order byte.

Figure 2.18 illustrates the differences between the
big-endian and little-endian formats for dwords. The
32 bits of data are shown with the low order bit num-
bered bit 0 and the high order bit numbered 32. Big-
endian data is stored with the high-order bits at the
lowest addressed byte. Little-endian data is stored
with the high-order bits in the highest addressed
byte.

The Intel486 DX microprocessor has two instruc-
tions which can convert 16- or 32-bit data between
the two byte orderings. BSWAP (byte swap) handles
four byte values and XCHG (exchange) handles two
byte values.

m+3 m+2 m+1 m
31 24 23 16 15 8 7 [

[l |

Dword in Littte-Endian Memory Format

m m+1 m+2 m+3
31 24 23 16 15 8 7 0

I I l | |

Dword in Big-Endian Memory Format

Figure 2.18. Big vs Little Endian Memory Format

2.7 Interrupts

2.7.1 INTERRUPTS AND EXCEPTIONS

Interrupts and exceptions alter the normal program
flow, in order to handle external events, to report
errors or exceptional conditions. The difference be-
tween interrupts and exceptions is that interrupts are
used to handle asynchronous external events while
exceptions handle instruction faults. Although a pro-
gram can generate a software interrupt via an INT N
instruction, the processor treats software interrupts
as exceptions.

I PRELIMINARY

Intel486™ DX2 MICROPROCESSOR

Hardware interrupts occur as the result of an exter-
nal event and are classified into two types: maskable
or non-maskable. Interrupts are serviced after the
execution of the current instruction. After the inter-
rupt handler is finished servicing the interrupt, exe-
cution proceeds with the instruction immediately af-
ter the interrupted instruction. Sections 2.7.3 and
2.7.4 discuss the differences between Maskable and
Non-Maskable interrupts.

Exceptions are classified as faults, traps, or aborts
depending on the way they are reported, and wheth-
er or not restart of the instruction causing the excep-
tion is supported. Faults are exceptions that are de-
tected and serviced before the execution of the
faulting instruction. A fault would occur in a virtual
memory system, when the processor referenced a
page or a segment which was not present. The oper-
ating system would fetch the page or segment from
disk, and then the Intel486 DX microprocessor
would restart the instruction. Traps are exceptions
that are reported immediately after the execution of
the instruction which caused the problem. User de-
fined interrupts are examples of traps. Aborts are
exceptions which do not permit the precise location
of the instruction causing the exception to be deter-
mined. Aborts are used to report severe errors, such
as a hardware error, or illegal values in system ta-
bles.

Thus, when an interrupt service routine has been
completed, execution proceeds from the instruction
immediately following the interrupted instruction. On
the other hand, the return address from an excep-
tion fault routine will always point at the instruction
causing the exception and include any leading in-
struction prefixes. Table 2.16 summarizes the possi-
ble interrupts for the Intel486 DX microprocessor
and shows where the return address points.

The Intel486 DX microprocessor has the ability to
handle up to 256 different interrupts/exceptions. In
order to service the interrupts, a table with up to 256
interrupt vectors must be defined. The interrupt vec-
tors are simply pointers to the appropriate interrupt
service routine. In Real Mode (see Section 3.1), the
vectors are 4 byte quantities, a Code Segment plus
a 16-bit offset; in Protected Mode, the interrupt vec-
tors are 8 byte quantities, which are put in an Inter-
rupt Descriptor Table (see Section 4.3.3.4). Of the
256 possible interrupts, 32 are reserved for use by
Intel, the remaining 224 are free to be used by the
system designer.

2.7.2 INTERRUPT PROCESSING

When an interrupt occurs the following actions hap-
pen. First, the current program address and the
Flags are saved on the stack to allow resumption of
the interrupted program. Next, an 8-bit vector is sup-

2-45

Intel486™ DX2 MICROPROCESSOR

plied to the Intel486 DX microprocessor which iden-
tifies the appropriate entry in the interrupt table. The
table contains the starting address of the interrupt
service routine. Then, the user supplied interrupt
service routine is executed. Finally, when an IRET
instruction is executed the old processor state is re-
stored and program execution resumes at the appro-
priate instruction.

The 8-bit interrupt vector is supplied to the Intel486
DX microprocessor in several different ways: excep-
tions supply the interrupt vector internally; software
INT instructions contain or imply the vector; maska-
ble hardware interrupts supply the 8-bit vector via
the interrupt acknowledge bus sequence. Non-
Maskable hardware interrupts are assigned to inter-
rupt vector 2.

intel.

Maskable interrupts are the most common way used
by the Intel486 DX microprocessor to respond to
asynchronous external hardware events. A hard-
ware interrupt occurs when the INTR is pulled high
and the Interrupt Flag bit (IF) is enabled. The proc-
essor only responds to interrupts between instruc-
tions, (REPeat String instructions, have an “interrupt
window”, between memory moves, which allows in-
terrupts during long string moves). When an interrupt
occurs the processor reads an 8-bit vector supplied
by the hardware which identifies the source of the
interrupt, (one of 224 user defined interrupts). The
exact nature of the interrupt sequence is discussed
in Section 7.2.10.

2.7.3 MASKABLE INTERRUPT

Table 2.16. Interrupt Vector Assignments

Return Address
Function ':::";";t Inﬂ(ré‘éE?:u:’ehICh ::Iunlttf nt: Type
ption instruction
Divide Error 0 DIv, IDIV YES FAULT
Debug Exception 1 Any Instruction YES TRAP*
NMI Interrupt 2 INT 2 or NMI NO NMi
One Byte Interrupt 3 INT NO TRAP
interrupt on Overflow 4 INTO NO TRAP
Array Bounds Check 5 BOUND YES FAULT
Invalid OP-Code 6 Any lllegal Instruction YES FAULT
Device Not Avaitable 7 ESC, WAIT YES FAULT
Double Fault 8 Any Instruction That Can ABORT
Generate an Exception

Intel Reserved 9
Invalid TSS 10 JMP, CALL, IRET, INT YES FAULT
Segment Not Present 11 Segment Register Instructions YES FAULT
Stack Fault 12 Stack References YES FAULT
General Protection Fault 13 Any Memory Reference YES FAULT
Page Fault 14 Any Memory Access or Code Fetch YES FAULT
Intel Reserved 15
Floating Point Error 16 Floating Point, WAIT YES FAULT
Alignment Check Interrupt 17 Unaligned Memory Access YES FAULT
Intel Reserved 18-31
Two Byte Interrupt 0-255 INT n NO TRAP

*Some debug exceptions may report both traps on the previous instruction, and faults on the next instruction.

2-46

PRELIMINARY I

]

Intel o

The IF bit in the EFLAG registers is reset when an
interrupt is being serviced. This effectively disables
servicing additional interrupts during an interrupt
service routine. However, the IF may be set explicitly
by the interrupt handier, to allow the nesting of inter-

rupts. When an |RET instruction is executed the
original state of the IF is restored.

2.7.4 NON-MASKABLE INTERRUPT

Non-maskable interrupts provide a method of servic-
ing very high priority interrupts. A common example
of the use of a non-maskable interrupt (NMI) would
be to activate a power failure routine. When the NMI
input is pulied high it causes an interrupt with an
internally supplied vector value of 2. Unlike a normal
hardware interrupt, no interrupt acknowledgment se-
quence is performed for an NMI.

While executing the NMI servicing procedure, the in-
tol486 DX microprocessor will not service further
NMI requests until an interrupt return (IRET) instruc-
tion is executed or the processor is reset. If NMI
occurs while currently servicing an NM|, its presence
will be saved for servicing after executing the first
IRET instruction. The IF bit is cleared at the begin-
ning of an NMI interrupt to inhibit further INTR inter-
rupts.

2.7.5 SOFTWARE INTERRUPTS

A third type of interrupt/exception for the Intel486
DX microprocessor is the software interrupt. An INT
n instruction causes the processor to execute the
interrupt service routine pointed to by the nth vector
in the interrupt table.

A special case of the two byte software interrupt INT
n is the one byte INT 3, or breakpoint interrupt. By
inserting this one byte instruction in a program, the
user can set breakpoints in his program as a debug-
ging tool.

A final type of software interrupt is the single step
interrupt. It is discussed in Section 9.2.

I PRELIMINARY

Intel486™ DX2 MICROPROCESSOR

2.7.6 INTERRUPT AND EXCEPTION
PRIORITIES

Interrupts are externally-generated events. Maska-
ble Interrupts (on the INTR input) and Non-Maskabie
Interrupts (on the NMI input) are recognized at in-
struction boundaries. When NMI and maskabile
INTR are both recognized at the same instruction
boundary, the intel486 DX microprocessor invokes
the NMI service routine first. If, after the NMI service
routine has been invoked, maskable interrupts are
still enabled, then the Intel486 DX microprocessor
will invoke the appropriate interrupt service routine.

Table 2.17a. Intel486™ DX Microprocessor
Priority for Invoking Service Routines in
Case of Simultaneous External Interrupts
1. NMI
2.INTR

Exceptions are internally-generated events. Excep-
tions are detected by the Intel486 DX microproces-
sor if, in the course of executing an instruction, the
Intel486 DX microprocessor detects a problematic
condition. The Intel486 DX microprocessor then im-
mediately invokes the appropriate exception service
routine. The state of the Intel486 DX microprocessor
is such that the instruction causing the exception
can be restarted. If the exception service routine has
taken care of the problematic condition, the instruc-
tion will execute without causing the same excep-
tion.

It is possible for a single instruction to generate sev-
eral exceptions (for example, transferring a single
operand could generate two page faults if the oper-
and location spans two “not present” pages). How-
ever, only one exception is generated upon each at-
tempt to execute the instruction. Each exception
service routine should correct its corresponding ex-
ception, and restart the instruction. In this manner,
exceptions are serviced until the instruction exe-
cutes successfully.

As the Intel486 DX microprocessor executes instruc-
tions, it follows a consistent cycle in checking for
exceptions, as shown in Table 2.17b. This cycle is
repeated as each instruction is executed, and oc-
curs in parallel with instruction decoding and execu-
tion.

2-47

Intel486™ DX2 MICROPROCESSOR

Table 2.17b. Sequence of Exception Checking

Consider the case of the Intel486 DX microproc-
essor having just completed an instruction. It
then performs the following checks before reach-
ing the point where the next instruction is com-
pleted:

1. Check for Exception 1 Traps from the instruc-
tion just completed (single-step via Trap Flag,
or Data Breakpoints set in the Debug Regis-
ters).

2. Check for Exception 1 Faults in the next in-
struction (Instruction Execution Breakpoint
set in the Debug Registers for the next in-
struction).

3. Check for external NMI and INTR.

4. Check for Segmentation Faults that prevent-
ed fetching the entire next instruction (excep-
tions 11 or 13).

5. Check for Page Faults that prevented fetching
the entire next instruction (exception 14).

6. Check for Faults decoding the next instruction
(exception 6 if illegal opcode; exception 6 if in
Real Mode or in Virtual 8086 Mode and at-
tempting to execute an instruction for Protect-
ed Mode only (see Section 4.6.4); or excep-
tion 13 if instruction is longer than 15 bytes, or
privilege violation in Protected Mode (i.e., not
at IOPL or at CPL=0).

7. If WAIT opcods, check if TS=1 and MP=1
(exception 7 if both are 1).

8. If opcode for Floating Point Unit, check if
EM=1 or TS=1 (exception 7 if either are 1).

9. If opcode for Floating Point Unit (FPU), check
FPU error status (exception 16 if error status
is asserted).

10. Check in the following order for each memo-
ry reference required by the instruction:

a. Check for Segmentation Faults that pre-
vent transferring the entire memory quan-
tity (exceptions 11, 12, 13).

b. Check for Page Faults that prevent trans-
terring the entire memory quantity (ex-
ception 14).

NOTE:
The order stated supports the concept of the
paging mechanism being “underneath” the seg-
mentation mechanism. Therefore, for any given
code or data reference in memory, segmenta-
tion exceptions are generated before paging ex-
ceptions are generated.

2-48

intgl.

The Intel486 DX microprocessor fully supports re-
starting all instructions after faults. If an exception is
detected in the instruction to be executed (exception
categories 4 through 10 in Table 2.17b), the Intel486
DX microprocessor invokes the appropriate excep-
tion service routine. The Intel486 DX microprocessor
is in a state that permits restart of the instruction, for
all cases but those in Table 2.17¢c. Note that all such
cases are easily avoided by proper design of the
operating system.

2.7.7 INSTRUCTION RESTART

Table 2.17¢c. Conditions Preventing
Instruction Restart

An instruction causes a task switch to a task
whose Task State Segment is partially “not
present”. (An entirely ‘“‘not present” TSS is re-
startable.) Partially present TSS's can be avoid-
ed either by keeping the TSS's of such tasks
present in memory, or by aligning TSS segments
to reside entirely within a single 4K page (for TSS
segments of 4 Kbytes or less).

NOTE:
These conditions are avoided by using the oper-
ating system designs mentioned in this table.

2.7.8 DOUBLE FAULT

A Double Fault (exception 8) results when the proc-
essor attempts to invoke an exception service rou-
tine for the segment exceptions (10, 11, 12 or 13),
but in the process of doing so, detects an exception
other than a Page Fault (exception 14).

A Double Fault (exception 8) will also be generated
when the processor attempts to invoke the Page
Fault (exception 14) service routine, and detects an
exception other than a second Page Fault. in any
functional system, the entire Page Fault service rou-
tine must remain “present” in memory.

When a Double Fault occurs, the Intel486 DX micro-
processor invokes the exception service routine for
exception 8.

2.7.9 FLOATING POINT INTERRUPT VECTORS

Several interrupt vectors of the Intel486 DX micro-
processor ars used to report exceptional conditions
while executing numeric programs in either real or
protected mode. Table 2.18 shows these interrupts
and their causes.

PRELIMINARY I

|nte| o intel486™ DX2 MICROPROCESSOR

Table 2.18. interrupt Vectors Used by FPU

Interrupt

Number Cause of Interrupt

7 A Floating Point instruction was encountered when EM or TS of the Intel486 DX processor
control register zero (CR0) was set. EM = 1 indicates that software emulation of the
instruction is required. When TS is set, either a Floating Point or WAIT instruction causes
interrupt 7. This indicates that the current FPU context may not belong to the current task.

13 The first word or doubleword of a numeric operand is not entirely within the limit of its
segment. The return address pushed onto the stack of the exception handler points at the
Floating Point instruction that caused the exception, including any prefixes. The FPU has
not executed this instruction; the instruction pointer and data pointer register refer to a
previous, correctly executed instruction.

16 The previous numerics instruction caused an unmasked exception. The address of the
faulty instruction and the address of its operand are stored in the instruction pointer and
data pointer registers. Only Floating Point and WAIT instructions can cause this interrupt.
The Intel486™ DX processor return address pushed onto the stack of the exception
handler points to a WAIT or Floating Point instruction (including prefixes). This instruction
can be restarted after clearing the exception condition in the FPU. The FNINIT, FNCLEX,
FNSTSW, FNSTENV, and FNSAVE instructions cannot cause this interrupt.

I PRELIMINARY 2-49

intel486™ DX2 MICROPROCESSOR

intgl.

3.0 REAL MODE ARCHITECTURE

3.1 Real Mode Introduction

When the processor is reset or powered up it is ini-
tialized in Real Mode. Real Mode has the same base
architecture as the 8086, but allows access to the
32-bit register set of the Intel486 microprocessor
tamily. The addressing mechanism, memory size, in-
terrupt handling, are all identical to the Real Mode
on the 80286.

All of the Intel486 microprocessor instructions are
available in Real Mode (except those instructions
listed in Section 4.6.4). The default operand size in
Real Mode is 16 bits, just like the 8086. In order to
use the 32-bit registers and addressing modes, over-
ride prefixes must be used. In addition, the segment
size on the Intel486 microprocessor in Real Mode is
64 Kbytes so 32-bit effective addresses must have a
value less the 0000FFFFH. The primary purpose of
Real Mode is to set up the processor for Protected
Mode Operation.

The LOCK prefix on the Intel486 microprocessor,
even in Real Mode, is more restrictive than on the
80286. This is due to the addition of paging on the
Intel486 microprocessor in Protected Mode and Vir-
tual 8086 Mode. Paging makes it impossible to guar-
antee that repeated string instructions can be
LOCKed. The Intel486 microprocessor can’t require
that all pages holding the string be physically pres-
ent in memory. Hence, a Page Fault (exception 14)
might have to be taken during the repeated string
instruction. Therefore the LOCK prefix can’t be sup-
ported during repeated string instructions.

These are the only instruction forms where the
LOCK prefix is legal on the Intel486 DX2 microproc-
essor:

Operands
Opcode (Dest, Source)

BIT Test and Mem, Reg/immed
SET/RESET/COMPLEMENT

XCHG Reg, Mem

XCHG Mem, Reg

ADD, OR, ADC, SBB, Mem, Reg/immed
AND, SUB, XOR

NOT, NEG, INC, DEC Mem

CMPXCHG, XADD Mem, Reg

An exception 6 will be generated if a LOCK prefix is
placed before any instruction form or opcode not
listed above. The LOCK prefix allows indivisible
read/modify/write operations on memory operands
using the instructions above. For example, even the
ADD Reg, Mem is not LOCKable, because the Mem
operand is not the destination (and therefore no
memory read/modify/operation is being performed).

Since, on the Intel486 microprocessor, repeated
string instructions are not LOCKable, it is not possi-
ble to LOCK the bus for a long period of time. There-
fore, the LOCK prefix is not IOPL-sensitive on the
Intel486 microprocessor. The LOCK prefix can be
used at any privilege level, but only on the instruc-
tion forms listed above.

15 0
OFFSET
19)
MAX LIMIT
SEGMENT 0000 FIXED AT 64K IN
SELECTOR REAL MODE
—»@—» MEMORY OPERAND
SELECTED
64K SEGMENT

SEGMENT BASE

241245-9

Figure 3.1. Real Address Mode Addressing

2-50

PRELIMINARY I

intel.

3.2 Memory Addressing

In Real Mode the maximum memory size is limited to
1 megabyte. Thus, only address lines A2-A19 are
active. (Exception, after RESET address lines A20-
A31 are high during CS-relative memory cycles until
an intersegment jump or call is executed (see Sec-
tion 6.5)).

Since paging is not allowed in Real Mode the linear
addresses are the same as physical addresses.
Physical addresses are formed in Real Mode by
adding the contents of the appropriate segment reg-
ister which is shifted left by four bits to an effective
address. This addition results in a physical address
from 00000000H to 0010FFEFH. This is compatible
with 80286 Real Mode. Since segment registers are
shifted left by 4 bits, Real Mode segments always
start on 16 byte boundaries.

All segments in Real Mode are exactly 64 Kbytes
long, and may be read, written, or executed. The
Intel486 microprocessor will generate an exception
13 if a data operand or instruction fetch occurs past
the end of a segment (i.e., if an operand has an
offset greater than FFFFH, for example a word with
a low byte at FFFFH and the high byte at 0000H).

Segments may be overlapped in Real Mode. Thus, if
a particular segment does not use all 64 Kbytes an-
other segment can be overlayed on top of the un-
used portion of the previous segment. This allows
the programmer to minimize the amount of physical
memory needed for a program.

3.3 Reserved Locations

There are two fixed areas in memory which are re-
served in Real address mode: system initialization
area and the interrupt table area. Locations 00000H
through 003FFH are reserved for interrupt vectors.
Each one of the 256 possible interrupts has a 4-byte
jump vector reserved for it. Locations FFFFFFFOH
through FFFFFFFFH are reserved for system initiali-
zation.

Intel486™ DX2 MICROPROCESSOR

3.4 Interrupts

Many of the exceptions shown in Table 2.16 and
discussed in Section 2.7 are not applicable to Real
Mode operation, in particular exceptions 10, 11, 14,
17, will not happen in Real Mode. Other exceptions
have slightly different meanings in Real Mode; Table
3.1 identifies these exceptions.

3.5 Shutdown and Halt

The HLT instruction stops program execution and
prevents the processor from using the local bus until
restarted. Either NMI, INTR with interrupts enabled
(IF=1), or RESET will force the Intel486 DX2 micro-
processor out of halt. If interrupted, the saved CS:IP
will point to the next instruction after the HLT.

As in the case in protected mode, the shutdown will
occur when a severe error is detected that prevents
further processing. In Real Mode, shutdown can oc-
cur under two conditions:

An interrupt or an exception occur (exceptions 8 or
13} and the interrupt vector is larger than the Inter-
rupt Descriptor Table (i.e., there is not an interrupt
handler for the interrupt).

A CALL, INT or PUSH instruction attempts to wrap
around the stack segment when SP is not even (i.e.,
pushing a value on the stack when SP = 0001 re-
sulting in a stack segment greater than FFFFH).

An NMI input can bring the processor out of shut-
down if the Interrupt Descriptor Table limit is large
enough to contain the NMI interrupt vector (at least
0017H) and the stack has enough room to contain
the vector and flag information (i.e., SP is greater
than 0005H). If these conditions are not met, the
Intel486 DX2 CPU is unable to execute the NMI and
executes another shutdown cycle. In this case, the
processor remains in the shutdown and can only exit
via the RESET input.

Table 3.1. Exceptions with Different Meanings in Real Mode (see Table 2.16)

Function Interrupt Related Return
Number instructions Address Location
Interrupt table limit too small 8 INT Vector is not Before
within table limit Instruction
CS, DS, ES, FS, GS 13 Word memory reference Before
Segment overrun exception beyond offset = FFFFH. Instruction
An attempt to execute
past the end of CS segment.
SS Segment overrun exception 12 Stack Reference Before
beyond offset = FFFFH Instruction

2-51

I PRELIMINARY

Intei486™ DX2 MICROPROCESSOR

intgl.

4.0 PROTECTED MODE ARCHITECTURE

4.1 Introduction

The complete capabilities of the Intel486 DX2 micro-
processor are unlocked when the processor oper-
ates in Protected Virtual Address Mode (Protected
Mode). Protected Mode vastly increases the linear
address space to four gigabytes (232 bytes) and al-
lows the running of virtual memory programs of al-
most unlimited size (64 terabytes or 246 bytes). In
addition Protected Mode allows the Intel486 DX2 mi-
croprocessor to run all of the existing 8086, 80286
and Intel386 microprocessor software, while provid-
ing a sophisticated memory management and a
hardware-assisted protection mechanism. Protected
Mode allows the use of additional instructions espe-
cially optimized for supporting muititasking operating
systems. The base architecture of the Intel486 mi-
croprocessor remains the same, the registers, in-
structions, and addressing modes described in the
previous sections are retained. The main difference
between Protected Mode, and Real Mode from a
programmer's view is the increased address space,
and a different addressing mechanism.

4.2 Addressing Mechanism

Like Real Mode, Protected Mode uses two compo-
nents to form the logical address, a 16-bit seiector is
used to determine the linear base address of a seg-
ment, the base address is added to a 32-bit effective
address to form a 32-bit linear address. The linear
address is then either used as the 32-bit physical
address, or if paging is enabled the paging mecha-
nism maps the 32-bit linear address into a 32-bit
physical address.

The difference between the two modes lies in calcu-
lating the base address. In Protected Mode the se-
lector is used to specify an index into an operating
system defined table (see Figure 4.1). The table
contains the 32-bit base address of a given seg-
ment. The physical address is formed by adding the
base address obtained from the table to the offset.

Paging provides an additional memory management
mechanism which operates only in Protected Mode.
Paging provides a means of managing the very large
segments of the Intel486 microprocessor family. As
such, paging operates beneath segmentation. The
paging mechanism translates the protected linear
address which comes from the segmentation unit
into a physical address. Figure 4.2 shows the com-
plete Intel486 DX2 addressing mechanism with pag-
ing enabled.

48/32 BIT POINTER

SELECTOR OFFSET

47/31 31/15 0

SEGMENT LIMIT

> ()—>

MEMORY OPERAND

ACCESS RIGHTS
LiMIT
BASE ADDRESS

UP TO
4G BYTES

SELECTED
SEGMENT

SEGMENT BASE

SEGMENT

ADDRESS

DESCRIPTOR

241245-10

Figure 4.1. Protected Mode Addressing

2-52

PRELIMINARY I

intgl.

Intel486™™ DX2 MICROPROCESSOR

48 BIT POINTER

SEGMENT I OFFSETW

PHYSICAL ADDRESS

4K BYTES
15 31 o
AKBYTES
Intel486 DX syrES
4K
ACCESS RIGHTS CPU
paaiNG | s
el MECHANISM -] MEMORY OPERAND PHYSICAL PAGE:
BASE ADDRESS PAGE FRAME 4K BYTES
32 LINEAR N
SEGMENT ADDRESS ADDRESS
DESCRIPTOR 4KBYTES
AK BYTES
4K BYTES
241245-11

Figure 4.2. Paging and Segmentation

4.3 Segmentation

4.3.1 SEGMENTATION INTRODUCTION

Segmentation is one method of memory manage-
ment. Segmentation provides the basis for protec-
tion. Segments are used to encapsulate regions of
memory which have common attributes. For exam-
ple, all of the code of a given program could be con-
tained in a segment, or an operating system table
may reside in a segment. All information about a
segment is stored in an 8 byte data structure called
a descriptor. All of the descriptors in a system are
contained in tables recognized by hardware.

4.3.2 TERMINOLOGY

The following terms are used throughout the discus-
sion of descriptors, privilege levels and protection:

PL: Privilege Level—One of the four hierarchical
privilege levels. Level 0 is the most privileged ievel
and level 3 is the least privileged. More privileged
levels are numerically smaller than less privileged
levels.

RPL: Requestor Privilege Level—The privilege level
of the original supplier of the selector. RPL is deter-
mined by the least two significant bits of a selector.

DPL: Descriptor Privilege Level—This is the least
privileged level at which a task may access that de-
scriptor (and the segment associated with that de-
scriptor). Descriptor Privilege Level is determined by
bits 6:5 in the Access Right Byte of a descriptor.

I PRELIMINARY

CPL: Current Privilege Level—The privilege level at
which a task is currently executing, which equals the
privilege level of the code segment being executed.
CPL can also be determined by examining the low-
ost 2 bits of the CS register, except for conforming
code segments.

EPL: Effective Privilege Level—The effective privi-
lege level is the least privileged of the RPL and DPL.
Since smaller privilege level values indicate greater
privilege, EPL is the numerical maximum of RPL and
DPL.

Task: One instance of the execution of a program.
Tasks are also referred to as processes.

4.3.3 DESCRIPTOR TABLES

4.3.3.1 Descriptor Tables Introduction

The descriptor tables define all of the segments
which are used in a Intel486 microprocessor system.
There are three types of tables on the Intel486 DX2
microprocessor which hold descriptors: the Global
Descriptor Table, Local Descriptor Table, and the In-
terrupt Descriptor Table. All of the tables are vari-
able length memory arrays. They can range in size
between 8 bytes and 64 Kbytes. Each table can hold
up to 8192 8-byte descriptors. The upper 13 bits of a
selector are used as an index into the descriptor ta-
ble. The tables have registers associated with them
which hold the 32-bit linear base address, and the
16-bit limit of each table.

2-53

Intel486™ DX2 MICROPROCESSOR

Each of the tables has a register associated with it,
the GDTR, LDTR, and the IDTR (see Figure 4.3).
The LGDT, LLDT, and LIDT instructions, load the
base and limit of the Global, Local, and Interrupt De-
scriptor Tables, respectively, into the appropriate
register. The SGDT, SLOT, and SIDT store the base
and limit values. These tables are manipulated by
the operating system. Therefore, the load descriptor
table instructions are privileged instructions.

O,
[] []
15 0, 15 o 3
1 [}
LDT DESCR H H
LDTR SELECTOR ! LDT LIMIT !
1]
' LDT BASE 1
| uNear aporess | |
15 o1 '
1 32 1
IDT LIMIT 1 PROGRAM INVISIBLE 1
| AUTOMATICALLY LOADED !
DT BASE o FROM LDT DESCRIPTOR
IDTR LINEAR ADDRESS [R ——

31 0

15 0

GOT LIWIT
GDT BASE
GOTR | {INEAR ADDRESS
39 [
241245-12

Figure 4.3. Descriptor Table Registers

4.3.3.2 Giobal Descriptor Table

The Global Descriptor Table (GDT) contains de-
scriptors which are possibly available to all of the
tasks in a system. The GDT can contain any type of
segment descriptor except for descriptors which are
used for servicing interrupts (i.e., interrupt and trap
descriptors). Every Intel486 microprocessor system
contains a GDT. Generally the GDT contains code
and data segments used by the operating systems
and task state segments, and descriptors for the
LDTs in a system.

The first slot of the Global Descriptor Table corre-
sponds to the null selector and is not used. The null
selector defines a null pointer value.

4.3.3.3 Local Descriptor Table

LDTs contain descriptors which are associated with
a given task. Generally, operating systems are de-
signed so that each task has a separate LDT. The
LDT may contain only code, data, stack, task gate,
and call gate descriptors. LDTs provide a mecha-

2-54

-

intel.
nism for isolating a given task’s code and data seg-
ments from the rest of the operating system, while
the GDT contains descriptors for segments which
are common to all tasks. A segment cannot be ac-
cessed by a task if its segment descriptor does not
exist in either the current LDT or the GDT. This pro-
vides both isolation and protection for a task’s seg-
ments, while still allowing global data to be shared
among tasks.

Unlike the 6 byte GDT or IDT registers which contain
a base address and limit, the visible portion of the
LDT register contains only a 16-bit selector. This se-
lector refers to a Local Descriptor Table descriptor in
the GDT.

4.3.3.4 Interrupt Descriptor Table

The third table needed for Intel486 microprocessor
systems is the Interrupt Descriptor Table. (See Fig-
ure 4.4) The IDT contains the descriptors which
point to the location of up to 256 interrupt service
routines. The IDT may contain only task gates, inter-
rupt gates, and trap gates. The IDT should be at
least 256 bytes in size in order to hold the descrip-
tors for the 32 Intel Reserved Interrupts. Every inter-
rupt used by a system must have an entry in the IDT.
The IDT entries are referenced via INT instructions,
external interrupt vectors, and exceptions. (See Sec-
tion 2.7 Interrupts).

A mwewoRy
GATE FOR
INTERRUPY #n
GATE FOR
INTERRUPT #n-1
. INTERRUPT
, .) DESCRIPTOR
crPy . TABLE
(lom)
b o GAYE FOR
T LT | INTERRUPT #1
GATE FOR
INTERRUPT #0
DT BASE
L] 0
~ x
241245-13

Figure 4.4. Interrupt Descriptor
Table Register Use

4.3.4 DESCRIPTORS

4.3.4.1 Descriptor Attribute Bits

The object to which the segment selector points to
is called a descriptor. Descriptors are eight byte
quantities which contain attributes about a given re-
gion of linear address space (i.e., a segment). These

PRELIMINARY I

intgl.

attributes include the 32-bit base linear address of
the segment, the 20-bit length and granutarity of the
segment, the protection level, read, write or execute
privileges, the default size of the operands (16-bit or
32-bit), and the type of segment. All of the attribute
information about a segment is contained in 12 bits
in the segment descriptor. Figure 4.5 shows the gen-
eral format of a descriptor. All segments on the in-
tel486 microprocessor have three attribute fields in
common: the P bit, the DPL bit, and the $ bit. The
Present P bitis 1 if the segment is loaded in physical
memory, if P=0 then any attempt to access this
segment causes a not present exception (exception
11). The Descriptor Privilege Level DPL is a two-bit
tield which specifies the protection level 0-3 associ-
ated with a segment.

intel486™ DX2 MICROPROCESSOR

The Intel486 DX microprocessor has two main cate-
gories of segments: system segments and non-sys-
tem segments (for code and data). The segment 8
bit in the segment descriptor determines if a given
segment is a system segment or a code or data seg-
ment. If the S bit is 1 then the segment is either a
code or data segment, if it is 0 then the segment is a
system segment.

4.3.4.2 Intel486 CPVU Code, Data Descriptors
(8=1)

Figure 4.6 shows the general format of a code and
data descriptor and Table 4.1 illustrates how the bits
in the Access Rights Byte are interpreted.

31 0 BYTE
ADDRESS
SEGMENT BASE 15...0 SEGMENT LIMIT15...0 0
LIMIT BASE
BASE31...24 | G| D| 0| AVL 19.. 16 P DTL S ITYPE| A 23.. 16 +4
BASE Base Address of the segment
LIMIT The length of the segment
P Present Bit 1=Present 0=Not Present
DPL Descriptor Privilege Level 0-3 .
S Segment Descriptor 0= System Descriptor 1=Code or Data Segment Descriptor
TYPE Type of Segment
A Accessed Bit
G Granularity Bit 1=Segment length is page granular 0= Segment length is byte granular
D Default Operation Size (recognized in code segment descriptors only)
1=232-bit segment 0= 16-bit segment
[o] Bit must be zero (0) for compatibility with future processors
AVL Available field for user or OS
NOTE:

In a maximum-size segment (i.e., a segment with G=1 and segment limit 19...0=FFFFFH), the lowest 12 bits of the
segment base should be zero (i.e., segment base 11...000=000H).

Figure 4.5. Segment Descriptors

G Granularity Bit

31 0
SEGMENT BASE 15...0 SEGMENT LIMIT15...0 0
LIMIT ACCESS BASE
BASE31...24 (G| D | 0| AVL 19 16 RIGHTS 23 16 +4
. BYTE e
D/B 1=Default Instruction Attributes are 32-Bits
0=Default Instruction Attributes are 16-Bits
AVL Available field for user or OS

1=S8egment length is page granular
0=_Segment length is byte granular
0 Bit must be zero (0) for compatibility with future processors

Figure 4.6. Segment Descriptors

I PRELIMINARY

2-55

intel486™ DX2 MICROPROCESSOR

intel.

Table 4.1. Access Rights Byte Definition for Code and Data Descriptions

Bit

Position Name

Function

I
Q -

7 Present (P)

6-5 |Descriptor Privilege

Segment is mapped into physical memory.

No mapping to physical memory exits, base and limit are
not used.

Segment privilege attribute used in privilege tests.

Level (DPL)
4 Segment Descrip- |S = 1 Code or Data (includes stacks) segment descriptor.
tor (S) 8§ =0 System Segment Descriptor or Gate Descriptor.
3 Executable (E) E = 0 Descriptor type is data segment: If
2 Expansion Direc- |ED = 0 Expand up segment, offsets must be < limit. Data
tion (ED) ED = 1 Expand down segment, offsets must be > limit. r Segment
1 Wiriteable (W) W = 0 Data segment may not be written into. S=1,
Type W = 1 Data segment may be written into. E =10)
gl:f'i(:uiti 3 Executable (E) E = 1 Descriptor type is code segment: If
on 2 Conforming (C) C =1 Code segment may only be executed Code
when CPL > DPL and CPL Segment
remains unchanged. S=1,
1 Readable (R) = Code segment may not be read. E=1)

Code segment may be read.

0 Accessed (A)

>>» 10D
]
o~ o

Segment has not been accessed.
Segment selector has been loaded into segment register
or used by selector test instructions.

Code and data segments have several descriptor
fields in common. The accessed A bit is set whenev-
er the processor accesses a descriptor. The A bit is
used by operating systems to keep usage statistics
on a given segment. The G bit, or granularity bit,
specifies if a segment length is byte-granular or
page-granular. Intel4d86 DX microprocessor seg-
ments can be one megabyte long with byte granular-
ity (G=0) or four gigabytes with page granularity
(G=1), (i.e., 220 pages each page is 4 Kbytes in
length). The granularity is totally unrelated to paging.
A Intel486 DX microprocessor system can consist of
segments with byte granularity, and page granularity,
whether or not paging is enabled.

The executable E bit tells if a segment is a code or
data segment. A code segment (E= 1, S= 1) may be
execute-only or execute/read as determined by the
Read R bit. Code segments are execute only if
R=0, and execute/read if R=1. Code segments
may never be written into.

NOTE:
Code segments may be modified via aliases. Alias-
es are writeable data segments which occupy the
same range of linear address space as the code
segment.

2-56

The D bit indicates the default length for operands
and effective addresses. If D=1 then 32-bit oper-
ands and 32-bit addressing modes are assumed. if
D=0 then 16-bit operands and 16-bit addressing
modes are assumed. Therefore all existing 80286
code segments will execute on the Intel486 DX mi-
croprocessor assuming the D bit is set 0.

Another attribute of code segments is determined by
the conforming C bit. Conforming segments, C=1,
can be executed and shared by programs at differ-
ent privilege levels. (See Section 4.4 Protection.)

Segments identified as data segments (E=0, S=1)
are used for two types of Intel486 DX microproces-
sor segments: stack and data segments. The expan-
sion direction (ED) bit specifies if a segment ex-
pands downward (stack) or upward (data). If a seg-
ment is a stack segment all offsets must be greater
than the segment limit. On a data segment all off-
sets must be less than or equal to the limit. In other
words, stack segments start at the base linear ad-
dress plus the maximum segment limit and grow
down to the base linear address plus the limit. On
the other hand, data segments start at the base lin-
ear address and expand to the base linear address
plus limit.

PRELIMINARY I

n
intgl.
The write W bit controls the ability to write into a

segment. Data segments are read-only if W=0. The
stack segment must have W=1.

The B bit controls the size of the stack pointer regis-
ter. If B=1, then PUSHes, POPs, and CALLs all use
the 32-bit ESP register for stack references and as-
sume an upper limit of FFFFFFFFH. If B=0, stack
instructions all use the 16-bit SP register and as-
sume an upper limit of FFFFH.

4.3.4.3 System Descriptor Formats

System segments describe information about oper-
ating system tables, tasks, and gates. Figure 4.7
shows the general format of system segment de-
scriptors, and the various types of system segments.
Intel486 DX microprocessor system descriptors con-
tain a 32-bit base linear address and a 20-bit seg-
ment limit. 80286 system descriptors have a 24-bit
base address and a 16-bit segment limit. 80286 sys-
tem descriptors are identified by the upper 16 bits
being all zero.

4.3.4.4 LDT Descriptors (S=0, TYPE=2)

LDT descriptors (S=0, TYPE=2) contain informa-
tion about Local Descriptor Tables. L.DTs contain a
table of segment descriptors, unique to a particular
task. Since the instruction to load the LDTR is only
_ available at privilege level 0, the DPL fisld is ignored.
LDT descriptors are only allowed in the Global De-
scriptor Table (GDT).

4.3.4.5 TSS Descriptors (=0,
TYPE=1,3,9,B)

A Task State Segment (TSS) descriptor contains in-
formation about the location, size, and privilege level
of a Task State Segment (TSS). A TSSinturnis a
special fixed format segment which contains all the
state information for a task and a linkage field to

Intel486™ DX2 MICROPROCESSOR

permit nesting tasks. The TYPE field is used to indi-
cate whether the task is currently BUSY (i.e., on a
chain of active tasks) or the TSS is available. The
TYPE field also indicates if the segment contains a
80286 or an Intel486 DX microprocessor TSS. The
Task Register (TR) contains the selector which
points to the current Task State Segment.

4.3.4.6 Gate Descriptors (S= 0,
TYPE=4-7,C, F)

Gates are used to control access to entry points
within the target code segment. The various types of
gate descriptors are call gates, task gates, inter-
rupt gates, and trap gates. Gates provide a level of
indirection between the source and destination of
the control transfer. This indirection allows the proc-
essor to automatically perform protection checks. 1t
also allows system designers to control entry points
to the operating system. Call gates are used to
change privilege levels (see Section 4.4 Protec-
tion), task gates are used to perform a task switch,
and interrupt and trap gates are used to specify in-
terrupt service routines.

Figure 4.8 shows the format of the four types of gate
descriptors. Call gates are primarily used to transfer
program control to a more privileged level. The call
gate descriptor consists of three fields: the access
byte, a long pointer (selector and offset) which
points to the start of a routine and a word count
which specifies how many parameters are to be cop-
ied from the caller’s stack to the stack of the called
routine. The word count field is only used by call
gates when there is a change in the privilege level,
other types of gates ignore the word count field.

Interrupt and trap gates use the destination selector
and destination offset fields of the gate descriptor as
a pointer to the start of the interrupt or trap handler
routines. The difference between interrupt gates and
trap gates is that the interrupt gate disables inter-
rupts (resets the IF bit) while the trap gate does not.

31 16 0
SEGMENTBASE 15...0 SEGMENT LIMIT15...0 . 0
LIMIT BASE
1... +4

BASE 3 24| G|(ofofoO 19...16 P DlI:’L 0 | TYIPE | 23 .. 16
Type Defines Type Defines
0 Invalid 8 Invalid
1 Available 80286 TSS 9 Available Intel486™ DX CPU TSS
2 LDT A Undefined (Intel Reserved)
3 Busy 80286 TSS B Busy Intel486™ DX CPU TSS
4 80286 Call Gate c Intel486™™ DX CPU Call Gate
5 Task Gate (for 80286 or Intel486™ DX CPU Task) D Undefined (Intel Reserved)
6 80286 Interrupt Gate E Intel486™ DX CPU Interrupt Gate
7 80286 Trap Gate F Intel486™™ DX CPU Trap Gate

Figure 4.7. System Segment Descriptors
2-57

I PRELIMINARY

Intel486™ DX2 MICROPROCESSOR

Task gates are used to switch tasks. Task gates
may only refer to a task state segment (see Section
4.4.6 Task Switching) therefore only the destination
selector portion of a task gate descriptor is used,
and the destination offset is ignored.

Exception 13 is generated when a destination selec-
tor does not refer to a correct descriptor type, i.e., a
code segment for an interrupt, trap or call gate, a
TSS for a task gate.

The access byte format is the same for all gate de-
scriptors. P=1 indicates that the gate contents are
valid. P=0 indicates the contents are not valid and
causes exception 11 if referenced. DPL is the de-
scriptor privilege level and specifies when this de-
scriptor may be used by a task (see Section 4.4 Pro-
tection). The S field, bit 4 of the access rights byts,
must be 0 to indicate a system control descriptor.
The type field specifies the descriptor type as indi-
cated in Figure 4.8.

intgl.

4.3.4.7 Differences Between Intel486 DX2
Microprocessor and 80286 Descriptors

In order to provide operating system compatibility
between the 80286 and Intel486 DX2 microproces-
sor, the Intel486 DX microprocessor supports all of
the 80286 segment descriptors. Figure 4.9 shows
the general format of an 80286 system segment de-
scriptor. The only differences between 80286 and
Intel486 DX microprocessor descriptor formats are
that the values of the type fields, and the limit and
base address fields have been expanded for the In-
tel486 DX microprocessors. The 80286 system seg-
ment descriptors contained a 24-bit base address
and 16-bit limit, while the Intel486 DX microproces-
sor system segment descriptors have a 32-bit base
address, a 20-bit limit field, and a granularity bit.

31 24 16 8 5 0
SELECTOR OFFSET15...0 0
WORD
OFFSET 31...16 DPL | O TYPE 0| 0| O|COUNT|+4
) 4...0

Gate Descriptor Flelds

<
e
s
s

Name
Type 4 80286 call gate

80286 interrupt gate
80286 trap gate

P

—omMmO~NoO O

DESTINATION 16-bit

SELECTOR selactor or

DESTINATION offset

Description

Task gate (for 80286 or intel486™ DX CPU task)

Intel486™ DX CPU call gate
Intel486™ DX CPU interrupt gate
Intel4B86™ DX CPU trap gate
Descriptor contents are not valid
Descriptor contents are valid

DPL—least privileged level at which a task may access the gate. WORD COUNT 0-31—the number of paramesters to copy from caller’s stack
1o the called procedure’s stack. The parameters are 32-bit quantities for intel486TM DX CPU gates, and 16-bit quantities for 80286 gates.

Selector to the target code segment
Selector to the target task state segment for task gate

Entry point within the target code segment

OFFSET 16-bit 80286
32-bit Inteld86™ DX CPU
Figure 4.8. Gate Descriptor Formats

31 0
SEGMENTBASE 15...0 SEGMENT LIMIT15...0 0

Intel Reserved BASE

Sett0 0 OPL S| TYPE = 155...16|"*
BASE Base Address of the segment DPL Descriptor Privilege Level 0-3
LIMIT The length of the segment S System Descriptor 0=System 1=User
P Present Bit 1=Present 0= Not Present TYPE Type of Segment
Figure 4.9. 80286 Code and Data Segment Descriptors
2-58

PRELIMINARY I

intel.

By supporting 80286 system segments the Intel486
DX microprocessor is able to execute 80286 appli-
cation programs on an Intel486 DX microprocessor
operating system. This is possible because the proc-
essor automatically understands which descriptors
are 80286-style descriptors and which descriptors
are Intel486 DX Microprocessor-style descriptors. In
particular, if the upper word of a descriptor is zero,
then that descriptor is a 80286-style descriptor.

The only other differences between 80286-style de-
scriptors and Intel486 DX microprocessor-style de-
scriptors is the interpretation of the word count field
of call gates and the B bit. The word count field
specifies the number of 16-bit quantities to copy for
80286 call gates and 32-bit quantities for Intel486
DX microprocessor call gates. The B bit controls the
size of PUSHes when using a call gate; if B=0
PUSHes are 16 bits, if B=1 PUSHes are 32 bits.

4.3.4.8 Selector Flelds

A selector in Protected Mode has three fields: Local
or Global Descriptor Table Indicator (T1), Descriptor

Intel486™ DX2 MICROPROCESSOR

Entry Index (Index), and Requestor (the selector’s)
Privilege Level (RPL) as shown in Figure 4.10. The
TI bits select one of two memory-based tables of
descriptors (the Global Descriptor Table or the Local
Descriptor Table). The Index selects one of 8K de-
scriptors in the appropriate descriptor table. The
RPL bits allow high speed testing of the selector’s
privilege attributes.

4.3.4.9 Segment Descriptor Cache

In addition to the selector value, every segment reg-
ister has a segment descriptor cache register asso-
ciated with it. Whenever a segment register’s con-
tents are changed, the 8-byte descriptor associated
with that selector is automatically loaded (cached)
on the chip. Once loaded, all references to that seg-
ment use the cached descriptor information instead
of reaccessing the descriptor. The contents of the
descriptor cache are not visible to the programmer.
Since descriptor caches only change when a seg-
ment register is changed, programs which modify
the descriptor tables must reload the appropriate
segment registers after changing a descriptor's val-
ue.

SELECTOR
‘is 43210
SEGMENT TI| RPL
REGISTER JoJo --—~ o0 JoJ1]1]1] |
INDEX INDICATOR
TI=1 T|=ol
N N
p SO L
v L4
6
5
4
3
2 2
1 1
0 ° NULL
LOCAL GLOBAL
DESCRIPTOR DESCRIPTOR
TABLE TABLE

241245-14

Figure 4.10. Example Descriptor Selection

I PRELIMINARY 2-59

Intel486™ DX2 MICROPROCESSOR

4.3.4.10 Segment Descriptor Register Settings

The contents of the segment descriptor cache vary
depending on the mode the Intel486 DX microproc-
essor is operating in. When operating in Real Ad-
dress Mode, the segment base, limit, and other attri-
butes within the segment cache registers are de-
fined as shown in Figure 4.11. For compatibility with

intal.

the 8086 architecture, the base is set to sixtesn
times the current selector value, the limit is fixed at
0000FFFFH, and the attributes are fixed so as to
indicate the segment is present and fully usable. In
Real Address Mode, the internal “privilege level” is
always fixed to the highest level, level 0, so I/0 and
other privileged opcodes may be executed.

intersegment JMP, or INT). (Ses Figure 4.13 Example.)

SEGMENT DESCRIPTOR CACHE REGISTER CONTENTS
32 - BIT BASE 32 -BIT LIMIT OTHER ATTRIBUTES
(UPDATED DURING SELECTOR (FIXED) (FIXED)
LOAD INTO SEGMENT REGISTER)

CONFORMING PRIVILEGE
STACK SIZE
EXECUTABLE
WRITEABLE
READABLE
EXPANSION DIRECTION
GRANULARITY
ACCESSED
PRIVILEGE LEVEL
PRESENT

BASE LiMIT } TR
cs 16X CURRENT CS SELECTOR® 0000FFFFH Y| O] Y[B|U|Y|Y]Y]|-]|N
ss 16X CURRENT 5SS SELECTOR 0000FFFFH |Y|o|Y|B|U[Y[Y[N[W]-
0sS 16X CURRENT DS SELECTOR 0000FFFFH |Y|o|Y[B|U[Y[Y[N[-[-
ES 16X CURRENT ES SELECTOR 00OOFFFFH |Y|O|Y|B|U[Y[Y[N] -] -
FS 16X CURRENT FS SELECTOR 0O0OFFFFH |Y|oO|Y|B|U|Y[Y[N[-]-
GS 16X CURRENT GS SELECTOR OOOOFFFFH |Y|o|Y[B|U[Y[Y[N| -]~

*Except the 32-bit CS base is initialized to FFFFFOO0H after reset until first intersegment control transfer (i.e., intersegment CALL, or

241245-15

Key: Y = yes D = expand down
N =no B = byte granularity
0 = privilege level 0 P = page granularity
1 = privilege level 1 W = push/pop 16-bit words
2 = privilege level 2 F = push/pop 32-bit dwords
3 = privilege level 3 - = does not apply to that segment cache register
U = expand up
Figure 4.11. Segment Descriptor Caches for Real Address Mode
{Segment Limit and Attributes are Fixed)
2-60

PRELIMINARY

=

|nte| . Intel486T™ DX2 MICROPROCESSOR
When operating in Protected Mode, the segment
base, limit, and other attributes within the segment

cache registers are defined as shown in Figure 4.12.
In Protected Mode, each of these fields are defined

according to the contents of the segment descriptor
indexed by the selector vaiue loaded into the seg-
ment register.

SEGMENT

DESCRIPTOR CACHE REGISTER CONTENTS

32 - 8IT BASE

(UPDATED DURING
SELECTOR LOAD INTO
SEGMENT REGISTER)

CONFORMING PRIVILEGE

32~ 8IT LIMIT

(UPDATED DURING
SELECTOR LOAD INTO
SEGMENT REGISTER)

OTHER ATTRIBUTES

(UPDATED DURING
SELECTOR LOAD INTO
SEGMENT REGISTER)

STACK SIZE

EXECUTABLE
WRITEABLE

READABLE

EXPANSION DIRECTION

GRANULARITY
ACCESSED

PRIVILEGE LEVEL

PRESENT

[BASE PER SEG DESCR

LIMIT PER SEG DESCR

SS BASE PER SEG DESCR

LIMIT PER SEG DESCR

DS BASE PER SEG DESCR

LIMIT PER SEG DESCR

ES BASE PER SEG DESCR

LIMIT PER SEG DESCR

FS BASE PER SEG DESCR

LIMIT PER SEG DESCR

GS BASE PER SEG DESCR

LIMIT PER SEG DESCR

—l J— - —"
d
d
d
d
d
d

t 1
|a.nnn.n.n.|-1—
t alalalalala H———I

241245-16

Key: Y = fixed yes

N = fixed no

d = per segment descriptor

p = per segment descriptor; descriptor must indicate “present” to avoid exception 11
{exception 12 in case of §S}

r = per segment descriptor, but descriptor must indicate “readable” to avoid exception 13
(special cass for SS)

w = per segment descriptor, but descriptor must indicate ‘writable™ to avoid exception 13
{special case for $S)

- = does not apply to that segment cache register

Figure 4.12. Segment Descriptor Caches for Protected Mode (Loaded per Descriptor)

2-61

I PRELIMINARY

Intel486™ DX2 MICROPROCESSOR

When operating in a Virtual 8086 Mode within the
Protected Mode, the segment base, limit, and other
attributes within the segment cache registers are de-
fined as shown in Figure 4.13. For compatibility with
the B086 architecture, the base is set to sixteen
times the current selector valuse, the limit is fixed at

]

intel.
0000FFFFH, and the attributes are fixed so as to
indicate the segment is present and fully usable. The
virtual program executes at lowest privilege level,

level 3, to allow trapping of all IOPL-sensitive in-
structions and level-0-only instructions.

SEGMENT DESCRIPTOR CACHE REGISTER CONTENTS
32 - BIT BASE 32-BIT LIMIT OTHER ATTRIBUTES
(UPDATED DURING SELECTOR (FIXED) (FIXED)
LOAD INTO SEGMENT REGISTER)
CONFORMING PRIVILEGE
STACK SIZE
EXECUTABLE
WRITEABLE
READABLE
EXPANSION DIRECTION
GRANULARITY
ACCESSED
PRIVILEGE LEVEL
PRESENT
BASE LT v vy
cs 16X CURRENT CS SELECTOR O00OCFFFFH Y|3|Y|B|U|Y[Y]Y]-|N
SS 16X CURRENT 5S SELECTOR 0000FFFFH — [Y]3]Y[BfulYy[n]w]-
DS 16X CURRENT DS SELECTOR 0000FFFFH YI3|Y|[BU|Y|Y|N]=-]|~-
£S 16X CURRENT ES SELECTOR 0000FFFFH__ [Y[3[y[B[u[Y[Y[N[-]-
FS 16X CURRENT FS SELECTOR OO00OFFFFH Y{3]Y|BJU|Y|Y|N]-]~-
GS 16X CURRENT GS SELECTOR Q00O0FFFFH YI3IYIBIVUIY[YIN]I-]|~-
"""""""""""""""""""""""""" 241245-17
Key: Y = yes D = expand down
N =no B = byte granularity
0 = privilege level 0 P = page granularity
1 = privilege level 1 W = push/pop 16-bit words
2 = privilege level 2 F = push/pop 32-bit dwords
3 = privilege level 3 - = does not apply to that segment cache register
U = expand up
Figure 4.13. Segment Descriptor Caches for Virtual 8086 Mode within Protected Mode
{Segment Limit and Attributes are Fixed)
2-62

PRELIMINARY I

intgl.

4.4 Protection

4.4.1 PROTECTION CONCEPTS

cpy
ENFORCED

SOFTWARE
INTERFACES

HIGH SPEED
OPERATING

YSTEM
INTERFACE

241245-18

Figure 4.14. Four-Level Hierarchical Protection ‘

The Intel486 DX Microprocessor has four levels of
protection which are optimized to support the needs
of a multi-tasking operating system to isolate and
protect user programs from each other and the op-
erating system. The privilege levels control the use
of privileged instructions, 1/0 instructions, and ac-
cess to segments and segment descriptors. Unlike
traditional microprocessor-based systems where
this protection is achieved only through the use of
complex external hardware and software the In-
tel486 DX Microprocessor provides the protection
as part of its integrated Memory Management Unit.
The Intel486 DX Microprocessor offers an additional
type of protection on a page basis, when paging is
enabled (See Section 4.5.3 Page Level Protec-
tion).

The four-level hierarchical privilege system is illus-
trated in Figure 4-14. It is an extension of the user/
supervisor privilege mode commonly used by mini-
computers and, in fact, the user/supervisor mode is
fully supported by the Intel486 DX Microprocessor
paging mechanism. The privilege levels (PL) are
numbered 0 through 3. Level 0 is the most privileged
or trusted level.

4.4.2 RULES OF PRIVILEGE

The Intel486 DX Microprocessor controls access to
both data and procedures between levels of a task,
according to the following rules.

* Data stored in a segment with privilege level p
can be accessed only by code executing at a
privilege level at least as privileged as p.

* A code segment/procedure with privilege level p
can only be called by a task executing at the
same or a lesser privilege level than p.

I PRELIMINARY

intel486™ DX2 MICROPROCESSOR

4.4.3 PRIVILEGE LEVELS

4.4.3.1 Task Privilege

At any point in time, a task on the Intel486 DX Micro-
processor always executes at one of the four privi-
lege levels. The Current Privilege Level (CPL) speci-
fies the task’s privilege level. A task's CPL may only
be changed by control transfers through gate de-
scriptors to a code segment with a different privilege
level. (See Section 4.4.4 Privilege Level Transfers)
Thus, an application program running at PL = 3 may
call an operating system routine at PL = 1 (via a
gate) which would cause the task's CPL to be set to
1 until the operating system routine was finished.

4.4.3.2 Selector Privilege (RPL)

The privilege level of a selector is specified by the
RPL field. The RPL is the two least significant bits of
the selector. The selector's RPL is only used to es-
tablish a less trusted privilege level than the current
privilege level for the use of a segment. This level is
called the task’s effective privilege level (EPL). The
EPL is defined as being the least privileged (i.e. nu-
merically larger) level of a task’s CPL and a selec-
tor's RPL. Thus, if selector's RPL = 0 then the CPL
always specifies the privilege level for making an ac-
cess using the selector. On the other hand if RPL =
3 then a selector can only access segments at level
3 regardiess of the task's CPL. The RPL is most
commonly used to verify that pointers passed to an
operating system procedure do not access data that
is of higher privilege than the procedure that origi-
nated the pointer. Since the originator of a selector
can specify any RPL value, the Adjust RPL (ARPL)
instruction is provided to force the RPL bits to the
originator's CPL.

4.4.3.3 1/0 Privilege and 1/0 Permission Bitmap

The 170 privilege level (IOPL, a 2-bit field in the
EFLAG register) defines the least privileged level at
which 1/0 instructions can be unconditionally per-
formed. 1/0 instructions can be unconditionally per-
formed when CPL < IOPL. (The I/0 instructions are
IN, OUT, INS, OUTS, REP INS, and REP OUTS)
When CPL > IOPL, and the current task is associat-
ed with a 286 TSS, attempted |/0 instructions cause
an exception 13 fault. When CPL > IOPL, and the
current task is associated with an intel486 DX Micro-
processor TSS, the 1/0 Permission Bitmap (part of
an Intel486 DX Microprocessor TSS) is consulted on
whether I/0 to the port is allowed, or an exception
13 fault is to be generated instead. For diagrams of
the I/0 Permission Bitmap, refer to Figures 4.15a
and 4.15b. For further information on how the 1/0
Permission Bitmap is used in Protected Mode or in
Virtual 8086 Mode, refer to Section 4.6.4 Protection
and 1/0 Permission Bitmap.

2-63

Intel486™ DX2 MICROPROCESSOR p] o
31 16 15 0 ‘_J
0 5SS BASE
0000000000000000 | BACK LINK
ESPO 4
0000000000000000] sS0 8
ESP1 ¢ STACKS
0000000000000000 | s$1 10 [FOR
CPL O, 1,2
ESP2 14
0000000000000000 I ss2 18
-
CR3 1€
[20
EFLAGS 24
EAX 28)
ECX 2
EDX 30
. EBX 34
EsP 38
£r ” CURRENT
€S| 40} Task
o 44 | STATE
0000000000000000 €S 48
0000000000000000 cs 4
0000000000000000 ss 50
0000000000000000 DS 54
0000000000000000 FS 58
0000000000000000 cs 5¢
0000000000000000 LOT 80 |
BIT_MAP_OFFSET(15:0) 0000000000000000 | T {
:?rﬁr:wAP OFFSET AVAILABLE e 5™ Desus
must be < DFFFH Ll SYSTEM STATUS, ETC. L TRAP BIT
n IN Intel486 DX CPU TSS v
31 2423 16] 15 8|7 0
63 se|ss Ty %3 40] 39 32| Bir_map_oFFsET
95 sa |87 80|79 72| 71 64
T = 96| oFFser + ¢
) L]
 Jaccess | 1ss |
] rowrs | uwr OFFSET + 10
1 : L al oy
. BASE - T 1/0 PERMISSION BITMAP T
L] L]
VST proo ol 65407 (gggragnpﬂpani , gg OFFSET + 1FEC
65439 .
ooohvemE TRUNCATED USING TSS LIMIT.) OFFSET + 1FFO
TASK REGISTER 65471 OFFSET + 1FF4
65503 65472 | OFFSET + 1FF8
™® SELECTOR —
65535 65504 | OFFSET + 1FFC
15 0 “FFH" OFFSET + 2000
% rss Lmim = oFFser + 20000
31 Intel486 DX CPU TSS DESCRIPTOR (IN GDT) 0
' SEGMENT BASE 15...0 SEGMENT LIMIT 15..0
v LIMIT BASE
BASE 31..24 Iclvlolol 1916 PIDI;L |o| TP | 2318
241245-19
Type = 9: Available Intel486™ DX CPU TSS,
Type = B: Busy Inteld86™™ DX CPU TSS

Figure 4.15a. Intel486™ DX Microprocessor TSS and TSS Registers

2-64 PRELIMINARY I

Intel486™ DX2 MICROPROCESSOR

The 1/0 privilege level (IOPL) also affects whether
several other instructions can be executed or cause
an exception 13 fault instead. These instructions are
called “IOPL-sensitive” instructions and they are
CLI and ST!. (Note that the LOCK prefix is not IOPL-
sensitive on the Intel486 microprocessor.)

The IOPL also affects whether the IF (interrupts en-
able flag) bit can be changed by loading a value into
the EFLAGS register. When CPL < IOPL, then the
IF bit can be changed by loading a new value into
the EFLAGS register. When CPL > IOPL, the IF bit
cannot be changed by a new value POP’ed into (or
otherwise loaded into) the EFLAGS register; the (F
bit merely remains unchanged and no exception is
generated.

I PRELIMINARY

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
31jt 111701 t0j0O0OCOCOT1TI1T 1 1]010O0T1TI1TQOCG|]OOOO0OD 1 1
63|00 1 000 ¥ tj1t 100101 O0G]Tt 111 1100|1111 1001
95 |1 1t 1 oy ottt 1ttt 11ttt
12710 0 0 0 0 0 0 OJO O OOOOOO|0OOOOOODOOO|0O0OOOCDODTOCO
1111 1 1t 1
T ete. ~
1/0 Ports Accessible: 2 — 8, 12, 13, 15, 20 —> 24, 27, 33, 34, 40, 41, 48, 50, 52, 53, 58 —> 60, 62, 63, 96 —» 127 241245-20
Figure 4.15b. Sample |/0 Permission Bit Map
Table 4.2. Pointer Test Instructions 4.4.3.4 Privilege Validation
Instruction| Operands Function The Intel486 DX microprocessor provides several in-
ARPL Selector, |Adjust Requested Privi- structions to speed pointer testing and help maintain
Register |lege Level: adjusts the system integrity by yerlfylng that the selector value
RPL of the selector to the rgaters to an approprlgte §egment. Table 4.2.summa-
numeric maximum of rizes the selector \{alldatlon procedures available for
currant selector RPL value the Inteld86 DX microprocessor.
and the RPL value in the . . S
register. Set zero flag if This pointer ve.rlfuc'atlon prevents the.common prpb-
selactor RPL was lem of an application at PL = 3 calling a operating
changed. systems routine at PL = 0 and passing the operat-
ing system routine a “bad” pointer which corrupts a
VERR |Selector |VERify for Read: sets the data structure belonging to the operating system. If
zero flag if the segment the operating system routine uses the ARPL instruc-
referred to by the selector tion to ensure that the RPL of the selector has no
can be read. greater privilege than that of the caller, then this
VERW |Selector |VERify for Write: sets the problem can be avoided.
zero flag if the segment
referred to by the selector 4.4.3.5 Descriptor Access
can be written.
- — There are basically two s of segment accesses:
LSL Register, |Load Segmen_t lj"T"t reads those involving c)gde gazements guch as controf
Selector | the segment limit into the transfers, and those involving data accesses. Deter-
register if privilege rules mining the ability of a task to access a segment in-
and descriptor type allow. volves the type of segment to be accessed, the in-
Set zero flag if successful. struction used, the type of descriptor used and CPL,
LAR Register, [Load Access Rights: reads| ~ RPL, and DPL as described above.
Selector | the descriptor access Any time an instruction loads data segment registers
oo e atoelSey | (DS, ES, FS, GS) the Intol486 DX microprocessor
zero flag if successful. makes protection validation checks. Selectors load-

ed in the DS, ES, FS, GS registers must refer only to
data segments or readable code segments. The
data access rules are specified in Section 4.4.2
Rules of Privilege. The only exception to those
rules is readable conforming code segments which
can be accessed at any privilege level.

Finally the privilege validation checks are performed.
The CPL is compared to the EPL and if the EPL is
more privileged than the CPL an exception 13 (gen-
eral protection fault) is generated.

The rules regarding the stack segment are slightly
different than those involving data segments. In-
structions that load selectors into 8S must refer to
data segment descriptors for writeable data seg-

2-65

Intel486™ DX2 MICROPROCESSOR

ments. The DPL and RPL must equal the CPL. Al
other descriptor types or a privilege level violation
will cause exception 13. A stack not present fault
causes exception 12. Note that an exception 11 is
used for a not-present code or data segment.

4.4.4 PRIVILEGE LEVEL TRANSFERS

Inter-segment control transfers occur when a selec-
tor is loaded in the CS register. For a typical system
most of these transters are simply the result of a call
or a jump to another routine. There are five types of
control transfers which are summarized in Table 4.3.
Many of these transfers resuit in a privilege levei
transfer. Changing privilege levels is done only via
control transfers, by using gates, task switches, and
interrupt or trap gates.

Control transfers can only occur if the operation
which loaded the selector references the correct de-
scriptor type. Any violation of these descriptor usage
rules will cause an exception 13 (e.g. JMP through a
call gate, or IRET from a normal subroutine call).

In order to provide further system security, all control
transfers are also subject to the privilege rules.

The privilege rules require that:
— Privilege level transitions can only occur via
gates.

— JMPs can be made to a non-conforming code
segment with the same privilege or to a conform-
ing code segment with greater or equal privilege.

intgl.

— CALLs can be made to a non-conforming code
segment with the same privilege or via a gate to a
more privileged level.

— Interrupts handled within the task obey the same
privilege rules as CALLs.

— Conforming Code segments are accessible by
privilege levels which are the same or less privi-
leged than the conforming-code segment’s DPL.

— Both the requested privilege level (RPL) in the
selector pointing to the gate and the task’s CPL
must be of equal or greater privilege than the
gate’s DPL.

— The code segment selected in the gate must be
the same or more privileged than the task’s CPL.

— Return instructions that do not switch tasks can
only return control to a code segment with same
or less privilege.

— Task switches can be performed by a CALL,
JMP, or INT which references either a task gate
or task state segment who’s DPL is less privi-
leged or the same privilege as the old task's CPL.

Any control transfer that changes CPL within a task
causes a change of stacks as a result of the privi-
lege level change. The initial values of SS:ESP for
privilege levels 0, 1, and 2 are retained in the task
state segment (see Section 4.4.6 Task Switching).
During a JMP or CALL control transfer, the new
stack pointer is loaded into the SS and ESP regis-
ters and the previous stack pointer is pushed onto
the new stack.

Table 4.3. Descriptor Types Used for Control Transfer

Descriptor Descriptor
Control Transfer Types Operation Types Referenced Table

Intersegment within the same privilege level JMP, CALL, RET, IRET* | Code Segment | GDT/LDT
Intersegment to the same or higher privilege level | CALL Call Gate GDT/LDT
Interrupt within task may change CPL Interrupt Instruction, Trap or IoT

Exception, External Interrupt

Interrupt Gate
Intersegment to a lower privilege level RET, IRET* Code Segment | GDT/LDT
(changes task CPL)

CALL, JMP Task State GDT

Segment

Task Switch CALL, JMP Task Gate GDT/LDT

IRET** Task Gate 10T

Interrupt Instruction,

Exception, External

Interrupt

*NT (Nested Task bit of flag register) = 0
**NT (Nested Task bit of flag register} = 1

2-66

PRELIMINARY I

intgl.

When RETurning to the original privilege level, use
of the lower-privileged stack is restored as part of
the RET or IRET instruction operation. For subrou-
tine calls that pass parameters on the stack and
cross privilege levels, a fixed number of words (as
specified in the gate’s word count field) are copied
from the previous stack to the current stack. The
inter-segment RET instruction with a stack adjust-
ment value will correctly restore the previous stack
pointer upon return.

4.4.5 CALL GATES

Gates provide protected, indirect CALLs. One of the
major uses of gates is to provide a secure method of
privilege transfers within a task. Since the operating
system defines all of the gates in a system, it can
ensure that all gates only allow entry into a few trust-
ed procedures (such as those which allocate memo-
ry, or perform 1/0).

Gate descriptors follow the data access rules of priv-
ilege; that is, gates can be accessed by a task if the
EPL, is equal to or more privileged than the gate
descriptor's DPL. Gates follow the control transfer
rules of privilege and therefore may only transfer
control to a more privileged level.

Call Gates are accessed via a CALL instruction and
are syntactically identical to calling a normal subrou-
tine. When an inter-level Intel486 DX call gate is ac-
tivated, the following actions occur.

1. Load CS:EIP from gate check for validity

2. 88 is pushed zero-extended to 32 bits

3. ESP is pushed

4. Copy Word Count 32-bit parameters from the
old stack to the new stack

5. Push Return address on stack

The procedure is identical for 80286 Call gates, ex-
cept that 16-bit paramsters are copied and 16-bit
ragisters are pushed.

interrupt Gates and Trap gates work in a similar
fashion as the call gates, except there is no copying
of parameters. The only difference between Trap
and Interrupt gates is that control transfers through
an Interrupt gate disable further interrupts (i.e. the IF
bit is set to 0), and Trap gates leave the interrupt
status unchanged.

4.4.6 TASK SWITCHING

A very important attribute of any muiti-tasking/multi-
user operating systems is its ability to rapidly switch

I PRELIMINARY

Intel486™ DX2 MICROPROCESSOR

between tasks or processes. The Intel486 DX micro-
processor directly supports this operation by provid-
ing a task switch instruction in hardware. The In-
tel486 DX microprocessor task switch operation
saves the entire state of the machine (all of the reg-
isters, address space, and a link to the previous
task), loads a new exscution state, performs protec-
tion checks, and commences execution in the new
task, in about 10 microseconds. Like transfer of con-
trol via gates, the task switch operation is invoked by
executing an inter-segment JMP or CALL instruction
which refers to a Task State Segment (TSS), or a
task gate descriptor in the GDT or LDT. An INT n
instruction, exception, trap, or external interrupt may
also invoke the task switch operation if there is a
task gate descriptor in the associated IDT descriptor
slot.

The TSS descriptor points to a segment (see Figure
4.15) containing the entire Intel486 DX microproces-
sor execution state while a task gate descriptor con-
tains a TSS selector. The Inteld86 DX microproces-
sor supports both 80286 and Intel486 DX microproc-
essor style TSSs. Figure 4.16 shows a 80286 TSS.
The limit of an Inteld86 DX microprocessor TSS
must be greater than 0064H (002BH for a 80286
TSS), and can be as large as 4 Gigabytes. In the
additional TSS space, the operating system is free
to store additional information such as the reason
the task is inactive, time the task has spent running,
and open files belong to the task.

Each task must have a TSS associated with it. The
current TSS is identified by a special register in the
Intel486 DX microprocessor called the Task State
Segment Register (TR). This register contains a se-
lector referring to the task state segment descriptor
that defines the current TSS. A hidden base and limit
register associated with TR are loaded whenever TR
is loaded with a new selector. Returning from a task
is accomplished by the IRET instruction. When IRET
is executed, control is returned to the task which
was interrupted. The current executing task's state
is saved in the TSS and the old task state is restored
from its TSS.

Several bits in the flag register and machine status
word (CRO) give information about the state of a
task which are useful to the operating system. The
Nested Task (NT) (bit 14 in EFLAGS) controls the
function of the IRET instruction. If NT = 0, the IRET
instruction performs the regular return; when NT =
1, IRET performs a task switch operation back to the
previous task. The NT bit is set or reset in the follow-
ing fashion:

2-67

Intei486™ DX2 MICROPROCESSOR

15 0
BACK LINK SELECTOR TO TSS
SP FOR CPL O

SS FOR CPL 0

SP FOR CPL 1

SS FOR CPL 1

SP FOR CPL 2

SS FOR CPL 2

IP (ENTRY POINT)
FLAGS

AX

cx

DX

BX

SP

Bp

S

D

ES SELECTOR

CS SELECTOR

$S SELECTOR

DS SELECTOR

TASK'S LDT SELECTOR

J\ AVAILABLE
wy wy

INITIAL
STACKS
FORCPL 0, 1,2

m O >» ® O A 0O
PR]

<

[

~

o

CURRENT
TASK
STATE

>

o

m

~
(-3

»N
[X]

~
-

»
o

[N
@

()
>

4
by

241245-21

Figure 4.16. 80286 TSS

When a CALL or INT instruction initiates a task
switch, the new TSS will be marked busy and the
back link field of the new TSS set to the old TSS
selector. The NT bit of the new task is set by CALL
or INT initiated task switches. An interrupt that does
not cause a task switch will clear NT. (The NT bit will
be restored after execution of the interrupt handler)
NT may also be set or cleared by POPF or IRET
instructions.

The Intel486 DX Microprocessor Task State Seg-
ment is marked busy by changing the descriptor type
field from TYPE 9H to TYPE BH. An 80286 TSS is
marked busy by changing the descriptor type field
from TYPE 1 to TYPE 3. Use of a selector that refer-
ences a busy task state segment causes an excep-
tion 13.

The Virtual Mode (VM) bit 17 is used to indicate if a
task, is a virtual 8086 task. If VM = 1, then the tasks
will use the Real Mode addressing mechanism. The
virtual 8086 environment is only entered and exited
via a task switch (see Section 4.6 Virtual Mode).

The FPU’s state is not automatically saved when a
task switch occurs, because the incoming task may
not use the FPU. The Task Switched (TS) Bit (bit 3 in
the CRO0) helps deal with the FPU’s state in a muiti-
tasking environment. Whenever the Intel486 DX Mi-

2-68

a

intgl.
croprocessor switches tasks, it sets the TS bit. The
intel486 DX Microprocessor detects the first use of a
processor extension instruction after a task switch
and causes the processor extension not available
exception 7. The exception handler for exception 7
may then decide whether to save the state of the
FPU. A processor extension not present exception
(7) will occur when attempting to execute a Floating
Point or WAIT instruction if the Task Switched and
Monitor coprocessor extension bits are both set (i.e.
TS = 1and MP = 1).

The T bit in the Intel486 DX Microprocessor TSS
indicates that the processor should generate a de-
bug exception when switching to a task. f T = 1
then upon entry to a new task a debug exception 1
will be generated.

4.4.7 INITIALIZATION AND TRANSITION TO
PROTECTED MODE

Since the Intel486 DX Microprocessor begins exe-
cuting in Real Mode immediately after RESET it is
necessary to initialize the system tables and regis-
ters with the appropriate values.

The GDT and IDT registers must refer to a valid GDT
and IDT. The IDT should be at least 256 bytes long,
and GDT must contain descriptors for the initial
code, and data segments. Figure 4.17 shows the ta-
bles and Figure 4.18 the descriptors needed for a
simple Protected Mode Intel486 DX Microprocessor
system. It has a single code and single data/stack
segment each four gigabytes long and a single privi-
lege level PL = 0.

The actual method of enabling Protected Mode is to
load CRO with the PE bit set, via the MOV CR0, R/M
instruction. This puts the Intel486 DX Microproces-
sor in Protected Mode.

After enabling Protected Mode, the next instruction
should execute an intersegment JMP to load the CS
register and flush the instruction decode queue. The
final step is to load all of the data segment registers
with the initial selector values.

An alternate approach to entering Protected Mode
which is especially appropriate for muiti-tasking op-
erating systems, is to use the built in task-switch to
load all of the registers. In this case the GDT would
contain two TSS descriptors in addition to the code
and data descriptors needed for the first task. The
first JMP instruction in Protected Mode would jump
to the TSS causing a task switch and loading all of
the registers with the values stored in the TSS. The
Task State Segment Register should be initialized to
point to a valid TSS descriptor since a task switch
saves the state of the current task in a task state
segment.

PRELIMINARY l

Intel486™ DX2 MICROPROCESSOR

31 2 FrrFrrFF
15 0 RESET ROUTINES FFFFFFFO
ss 1 INITIALIZATION
ROUTINES
e
Fs
e
os [ooto] |
cs
6dTR Jooo17] LiMiT
00000118
00000100 DATA DESCRIPTOR 00000110
BASE ADDRESS CODE DESCRIPTOR 00000108 GDT
NULL SELECTOR
IDTR [000FF | LiMIT 00000100
00000000 INTERRUPT o
BASE ADDRESS DESCRIPTORS (32)
00000000 24124522
Figure 4.17. Simple Protected System
LIMIT
BASE31...24|G|D BASE23...16
2 ofo 19.16 1{(0 0[1]0 O 1(0
00 (H) 1)1 00 (H)
F(H) l L
DATA SEGMENTBASE 15...0 SEGMENTLIMIT15...0
DESCRIPTOR| 0118 (H) FFFF (H)
[LIMIT
BASE31...24 (G| D BASE23...16
1 0|0 19.16 110 0|1t O 1]0
00 (H 111 00 (H
(H) F () | » (H)
CODE SEGMENTBASE 15...0 SEGMENT LIMIT15...0
DESCRIPTOR 0118 (H) FFFF (H)
NULL | DESCRIPTOR
0
31 24 16 15 8 0

Figure 4.18. GOT Descriptors for Simple System

4.4.8 TOOLS FOR BUILDING PROTECTED

4.5 Pagin
SYSTEMS ging

In order to simplify the design of a protected multi- 4.5.1 PAGING CONCEPTS

tasking system, Intel provides a tool which allows

the system designer an easy method of constructing
the data structures needed for a Protected Mode
Intel486 DX microprocessor system. This tool is the
builder BLD-386. BLD-386 lets the operating system
writer specify all of the segment descriptors dis-
cussed in the previous sections (LDTs, IDTs, GDTs,
Gates, and TSSs) in a high-level language.

I PRELIMINARY

Paging is another type of memory management
useful for virtual memory multitasking operating sys-
tems. Unlike segmentation which modularizes pro-
grams and data into variable length segments, pag-
ing divides programs into multiple uniform size
pages. Pages bear no direct reiation to the logical

2-69

Intel486™ DX2 MICROPROCESSOR

structure of a program. While segment selectors can
be considered the logical “name” of a program
module or data structure, a page most likely corre-
sponds to only a portion of a module or data struc-
ture.

By taking advantage of the locality of reference dis-
played by most programs, only a small number of
pages from each active task need be in memory at
any one moment.

4.5.2 PAGING ORGANIZATION

4.5.2.1 Page Mechanism

The Intel486 DX Microprocessor uses two levels of
tables to translate the linear address (from the seg-
mentation unit) into a physical address. There are
three components to the paging mechanism of the
Intel486 DX Microprocessor: the page directory, the
page tables, and the page itself (page frame). All
memory-resident elements of the intel486 DX Micro-
processor paging mechanism are the same size,
namely, 4 Kbytes. A uniform size for all of the ele-
ments simplifies memory allocation and reallocation
schemes, since there is no problem with memory
fragmentation. Figure 4.19 shows how the paging
mechanism works.

intel.

4.5.2.2 Page Descriptor Base Register

CR2 is the Page Fault Linear Address register. It
holds the 32-bit linear address which caused the last
page fault detected.

CR3 is the Page Directory Physical Base Address
Register. It contains the physical starting address of
the Page Directory. The lower 12 bits of CR3 are
always zero to ensure that the Page Directory is al-
ways page aligned. Loading it via a MOV CR3, reg
instruction causes the Page Table Entry cache to be
flushed, as will a task switch through a TSS which
changes the value of CRO. (See 4.5.5 Translation
Lookaside Butfer).

4.5.2.3 Page Directory

The Page Directory is 4 Kbytes long and allows up to
1024 Page Directory Entries. Each Page Directory
Entry contains the address of the next level of ta-
bles, the Page Tables and information about the
page table. The contents of a Page Directory Entry
are shown in Figure 4.20. The upper 10 bits of the
linear address (A22-A31) are used as an index to
select the correct Page Directory Entry.

TWO LEVEL PAGING SCHEME
31 22 12 0
——]| owrectory | TasLe | orrser | USER
LINEAR MEMORY
ADDRESS | 12,
10 10 7 l
3 g @-» ADDRESS
Intel486 DX CPU i T
CRO | 1 T
™ - N
CR1 > >
Q/ PAGE TABLE
CR2 T
CR3 ROOT >
DIRECTORY
CONTROL REGISTERS
241245-23
Figure 4.19. Paging Mechanism
31 12 1" 10 9 8 7 6 5 4 3 2 1 0
0S P P|lUJ|R
PAGE TABLE ADDRESS 31..12 RESERVED 0 0 DI A CIW|—|—]P
D T S| W

Figure 4.20. Page Directory Entry (Points to Page Table)

2-70

PRELIMINARY I

intel.

Intel486™ DX2 MICROPROCESSOR

31 12 N 10 9 8 7 6 5 4 3 2 1 0
0s P|{P|U|R

PAGE FRAME ADDRESS 31..12 RESERVED o(o|D[A|CIW|—|—[TP
D|T|S|W

Figure 4.21. Page Table Entry (Points to Page)

4.5.2.4 Page Tables

Each Page Table is 4 Kbytes and holds up to 1024
Page Table Entries. Page Table Entries contain the
starting address of the page frame and statistical
information about the page (see Figure 4.21). Ad-
dress bits A12-A21 are used as an index to select
one of the 1024 Page Table Entries. The 20 upper-
bit page frame address is concatenated with the
lower 12 bits of the linear address to form the physi-
cal address. Page tables can be shared between
tasks and swapped to disks.

4.5.2.5 Page Directory/Table Entries

The lower 12 bits of the Page Table Entries and
Page Directory Entries contain statistical information
about pages and page tables respectively. The P
(Present) bit 0 indicates if a Page Directory or Page
Table entry can be used in address translation. If

= 1 the entry can be used for address translation
if P = 0 the entry can not be used for translation,
and all of the other bits are available for use by the
software. For example the remaining 31 bits could
be used to indicate where on the disk the page is
stored.

The A (Accessed) bit 5, is set by the Intel486 DX
microprocessor for both types of entries before a
read or write access occurs to an address covered
by the entry. The D (Dirty) bit 6 is set to 1 before a
write to an address covered by that page table entry
occurs. The D bit is undefined for Page Directory
Entries. When the P, A and D bits are updated by the
intel486 DX microprocessor, the processor gener-
ates a Read-Modify-Write cycle which locks the bus
and prevents conflicts with other processors or per-
pherials. Software which modifies these bits should
use the LOCK prefix to ensure the integrity of the
page tables in multi-master systems.

The 3 bits marked OS Reserved in Figure 4.20 and
Figure 4.21 (bits 9-11) are software definable. OSs
are free to use these bits for whatever purpose they
wish. An example use of the OS Reserved bits
would be to store information about page aging. By
keeping track of how long a page has been in mem-
ory since being accessed, an operating system can
implement a page replacement algorithm like Least
Recently Used.

I PRELIMINARY

The (User/Supervisor) U/S bit 2 and the (Read/
Write) R/W bit 1 are used to provide protection attri-
butes for individual pages.

4.5.3 PAGE LEVEL PROTECTION
(R/W, U/S BITS)

The Intel486 DX microprocessor provides a set of
protection attributes for paging systems. The paging
mechanism distinguishes between two levels of pro-
tection: User which corresponds to level 3 of the
segmentation based protection, and supervisor
which encompasses all of the other protection levels
0, 1, 2).

The R/W and U/S bits are used in conjunction with
the WP bit in the flags register (EFLAGS). The in-
tel386 microprocessor does not contain the WP bit.
The WP bit has been added to the Intel486 DX mi-
croprocessor to protect read-only pages from super-
visor write accesses. The Intel386 microprocessor
allows a read-only page to be written from protection
levels 0, 1 or 2. WP=0 is the Intel386 microproces-
sor compatible mode. When WP =0 the supervisor
can write to a read-only page as defined by the U/S
and R/W bits. When WP =1 supervisor access to a
read-only page (R/W = 0) will cause a page fault (ex-
ception 14).

Table 4.4 shows the affect of the WP, U/S and R/W
bits on accessing memory. When WP =0, the super-
visor can write to pages regardless of the state of
the R/W bit. When WP =1 and R/W=0 the supervi-
sor cannot write to a read-only page. A user attempt
to access a supervisor only page (U/S=0), or write
to a read only page will cause a page fault (excep-
tion 14).

The R/W and U/S bits provide protection from user
access on a page by page basis since the bits are
contained in the Page Table Entry and the Page Di-
rectory Table. The U/S and R/W bits in the first level
Page Directory Table apply to all entries in the page
table pointed to by that directory entry. The U/S and
R/W bits in the second level Page Table Entry apply
only to the page described by that entry. The most
restrictive of the U/S and R/W bits from the Page
Directory Table and the Page Table Entry are used
to address a page.

Example: If the U/S and R/W bits for the Page Di-
rectory entry were 10 (user read/execute) and the

2-71

Intel486™ DX2 MICROPROCESSOR

U/S and R/W bits for the Page Table Entry were 01
(no user access at all), the access rights for the
page would be 01, the numerically smalier of the
two.

Note that a given segment can be easily made read-
only for level 0, 1 or 2 via use of segmented protec-
tion mechanisms. (Section 4.4 Protection).

4.5.4 PAGE CACHEABILITY
(PWT AND PCD BITS)

PWT (page write through) and PCD (page cache dis-
able) are two new bits defined in entries in both lev-
els of the page table structure, the Page Directory
Table and the Page Table Entry. PCD and PWT con-
trol page cacheability and write policy.

PWT controls write policy. PWT=1 defines a write-
through policy for the current page. PWT =0 allows
the possibility of write-back. PWT is ignored internal-
ly because the Intel4d86 DX microprocessor has a
write-through cache. PWT can be used to control
the write policy of a second level cache.

PCD controls cacheability. PCD =0 enables caching
in the on-chip cache. PCD alone does not enable
caching, it must be conditioned by the KEN# (cache
enable) input signal and the state of the CD (cache
disable bit) and NW (no write-through) bits in control
register 0 (CR0). When PCD =1, caching is disabled
regardless of the state of KEN#, CD and NW. (See
Section 5.0, On-Chip Cache).

The state of the PCD and PWT bits are driven out on
the PCD and PWT pins during a memory access.

The PWT and PCD bits for a bus cycle are obtained
either from control register 3 (CR3), the Page Direc-
tory Entry or the Page Table Entry, depending on the
type of cycle run. However, when paging is disabled
(PG = 0in CRO0) or for cycles which bypass paging
(i.e., 170 (input/output) references, INTR (interrupt
request) and HALT cycles), the PCD and PWT bits
of CR3 are ignored. The Intel486 DX CPU assumes
PCD = 0 and PWT = 0 and drives these values on
the PCD and PWT pins.

intel.

When paging is enabled (PG=1 in CRO), the bits
from the page table entry are cached in the transia-
tion lookaside buffer (TLB), and are driven any time
the page mapped by the TLB entry is referenced.
For normal memory cycles run with paging enabled,
the PWT and PCD bits are taken from the Page Ta-
ble Entry. During TLB refresh cycles when the Page
Directory and Page Table entries are read, the PWT
and PCD bits must be obtained elsewhere. The bits
are taken from CR3 when a Page Directory Entry is
being read. The bits are taken from the Page Direc-
tory Entry when the Page Table Entry is being updat-
ed.

The PCD or PWT bits in CR3 are initialized to zero at
reset, but can be set to any value by level 0 soft-
ware.

4.5.5 TRANSLATION LOOKASIDE BUFFER

The Intel486 DX Microprocessor paging hardware is
designed to support demand paged virtual memory
systems. However, performance would degrade
substantially if the processor was required to access
two levels of tables for every memory reference. To
solve this problem, the Intel486 DX Microprocessor
keeps a cache of the most recently accessed pages,
this cache is called the Translation Lookaside Buffer
(TLB). The TLB is a four-way set associative 32-en-
try page table cache. It automatically keeps the most
commonly used Page Table Entries in the proces-
sor. The 32-entry TLB coupled with a 4K page size,
results in coverage of 128 Kbytes of memory ad-
dresses. For many common multi-tasking systems,
the TLB will have a hit rate of about 98%. This
means that the processor will only have to access
the two-level page structure on 2% of all memory
references. Figure 4.22 illustrates how the TLB com-
plements the Intel486 DX Microprocessor’s paging
mechanism.

Reading a new entry into the TLB (TLB refresh) is a
two step process handled by the Intel486 DX micro-
processor hardware. The sequence of data cycles to
perform a TLB refresh are:

Table 4.4. Page Level Protection Attributes

u/s R/W wpP User Access Supervisor Access
0 0 0 None Read/Write/Execute
0 1 0 None Read/Write/Execute
1 0 0 Read/Execute Read/Write/Execute
1 1 0 Read/Write/Execute Read/Write/Execute
0 0 1 None Read/Execute
0 1 1 None Read/Write/Execute
1 0 1 Read/Execute Read/Execute
1 1 1 Read/Write/Execute Read/Write/Execute

2-72

PRELIMINARY I

n

intgl.

1. Read the correct Page Directory Entry, as point-
ed to by the page base register and the upper

10 bits of the linear address. The page base
register is in control register 3.

1a. Optionally perform a locked read/write to set
the accessed bit in the directory entry. The di-
rectory entry will actually get read twice if the
Intel486 DX microprocessor needs to set any of
the bits in the entry. If the page directory entry
changes between the first and second reads,
the data returned for the second read will be
used.

2. Read the correct entry in the Page Table and
place the entry in the TLB.

2a. Optionally perform a locked read/write to set
the accessed and/or dirty bit in the page table
entry. Again, note that the page table entry will
actually get read twice if the Intel486 DX micro-
processor needs to set any of the bits in the
entry. Like the directory entry, if the data chang-
es between the first and second read the data
returned for the second read will be used.

Note that the directory entry must always be read
into the processor, since directory entries are never
placed in the paging TLB. Page faults can be sig-
naled from either the page directory read or the
page table read. Page directory and page table en-
tries may be placed in the Intel486 DX on-chip
cache just like normal data.

4.5.6 PAGING OPERATION

32 ENTRIES PHYSICAL
LINEAR TRANSLATION MEMORY
ADDRESS —*—] LOCKASIDE o —
BUFFER
MISS
3 0
O—
PAGE PAGE
DIRECTORY TABLE
®98% HIT RATE
241245-24

Intel486™ DX2 MICROPROCESSOR

However, if the page table entry is not in the TLB,
the Intel486 DX Microprocessor will read the appro-
priate Page Directory Entry. If P = 1 on the Page
Directory Entry indicating that the page table is in
memory, then the Inteld86 DX Microprocessor will
read the appropriate Page Table Entry and set the
Access bit. If P = 1 on the Page Table Entry indicat-
ing that the page is in memory, the Intel486 DX Mi-
croprocessor will update the Access and Dirty bits
as needed and fetch the operand. The upper 20 bits
of the linear address, read from the page table, will
be stored in the TLB for future accesses. However, if
P = 0 for either the Page Directory Entry or the
Page Table Entry, then the processor will generate a
page fault, an Exception 14.

The processor will also generate an exception 14
page fault, if the memory reference violated the
page protection attributes (i.e., U/S or R/W) (e.g.,
trying to write to a read-only page). CR2 will hold the
linear address which caused the page fault. If a sec-
ond page fault occurs, while the processor is at-
tempting to enter the service routine for the first,
then the processor will invoke the page fault (excep-
tion 14) handler a second time, rather than the dou-
ble fault (exception 8) handler. Since Exception 14 is
classified as a fault, CS: EIP will point to the instruc-
tion causing the page fault. The 16-bit error code
pushed as part of the page fault handler will contain
status bits which indicate the cause of the page
fault.

The 16-bit error code is used by the operating sys-
tem to determine how to handle the page fault. Fig-
ure 4.23a shows the format of the page-fault error
code and the interpretation of the bits.

NOTE:
Even though the bits in the error code (U/S, W/R,
and P) have similar names as the bits in the Page
Directory/Table Entries, the interpretation of the er-
ror code bits is different. Figure 4.23b indicates
what type of access caused the page fault.

15 3210
U

Ujujuju|ujujufuju|uvfujufuju|l wi|P
S|R

Figure 4.22. Translation Lookaside Buffer

The paging hardware operates in the following fash-
ion. The paging unit hardware receives a 32-bit lin-
ear address from the segmentation unit. The upper
20 linear address bits are compared with all 32 en-
tries in the TLB to determine if there is a match. I
there is a match (i.e.,, a TLB hit), then the 32-bit
physical address is calculated and will be placed on
the address bus.

I PRELIMINARY

Figure 4.23a. Page Fault Error Code Format

U/S: The U/S bit indicates whether the access
causing the fault occurred when the processor was
executing in User Mode (U/S = 1) or in Supervisor
mode (U/S = 0).

W/R: The W/R bit indicates whether the access

causing the fault was a Read (W/R = 0) or a Write
(W/R = 1).

2-73

Intel486™ DX2 MICROPROCESSOR

P: The P bit indicates whether a page fault was
caused by a not-present page (P = 0), or by a page
level protection violation (P = 1).

U: UNDEFINED
u/s W/R Access Type
0 0 Supervisor* Read
0 1 Supervisor Write
1 0 User Read
1 1 User Write

*Descriptor table access will fault with U/S = 0, even if the program
is executing at level 3.

Figure 4.23b. Type of Access
Causing Page Fault

4.5.7 OPERATING SYSTEM RESPONSIBILITIES

The Intel486 DX Microprocessor takes care of the
page address translation process, relieving the bur-
den from an operating system in a demand-paged
system. The operating system is responsible for set-
ting up the initial page tables, and handling any page
faults. The operating system also is required to inval-
idate (i.e., flush) the TLB when any changes are
made to any of the page table entries. The operating
system must reload CR3 to cause the TLB to be
flushed.

Setting up the tables is simply a matter of loading
CR3 with the address of the Page Directory, and
allocating space for the Page Directory and the
Page Tables. The primary responsibility of the oper-
ating system is to implement a swapping policy and
handie all of the page faults.

A final concern of the operating system is to ensure
that the TLB cache matches the information in the
paging tables. In particular, any time the operating
system sets the P present bit of page table entry to
zero, the TLB must be flushed. Operating systems
may want to take advantage of the fact that CR3 is
stored as part of a TSS, to give every task or group
of tasks its own set of page tables.

4.6 Virtual 8086 Environment

4.6.1 EXECUTING 8086 PROGRAMS

The Intel486 DX Microprocessor allows the execu-
tion of 8086 application programs in both Real Mode
and in the Virtual 8086 Mode (Virtual Mode). Of the
two methods, Virtual 8086 Mode offers the system
designer the most flexibility. The Virtual 8086 Mode
allows the execution of 8086 applications, while still
allowing the system designer to take full advantage
of the Intel486 DX Microprocessor protection mech-

2-74

intgl.

anism. In particular, the Intel486 DX Microprocessor
allows the simultaneous execution of 8086 operating
systems and its applications, and an Intel486 DX Mi-
croprocessor operating system and both 80286 and
Intel486 DX Microprocessor applications. Thus, in a
multi-user Intel486 DX Microprocessor computer,
one person could be running an MS-DOS spread-
sheet, another person using MS-DOS, and a third
person could be running multiple Unix utilities and
applications. Each person in this scenario would be-
lieve that he had the computer completely to him-
self. Figure 4.24 illustrates this concept.

4.6.2 VIRTUAL 8086 MODE ADDRESSING
MECHANISM

One of the major differences between Intel486 DX
Microprocessor Real and Protected modes is how
the segment selectors are interpreted. When the
processor is executing in Virtual 8086 Mode the seg-
ment registers are used in an identical fashion to
Real Mode. The contents of the segment register is
shifted left 4 bits and added to the offset to form the
segment base linear address.

The Intel486 DX Microprocessor allows the operat-
ing system to specify which programs use the 8086
style address mechanism, and which programs use
Protected Mode addressing, on a per task basis.
Through the use of paging, the one megabyte ad-
dress space of the Virtual Mode task can be mapped
to anywhere in the 4 gigabyte linear address space
of the Intel486 DX Microprocessor. Like Real Mode,
Virtual Mode effective addresses (i.e., segment off-
sets) that exceed 64 Kbyte will cause an exception
13. However, these restrictions should not prove to
be important, because most tasks running in Virtual
8086 Mode will simply be existing 8086 application
programs.

4.6.3 PAGING IN VIRTUAL MODE

The paging hardware allows the concurrent running
of multiple Virtual Mode tasks, and provides protec-
tion and operating system isolation. Although it is
not strictly necessary to have the paging hardware
enabled to run Virtual Mode tasks, it is needed in
order to run multiple Virtual Mode tasks or to relo-
cate the address space of a Virtual Mode task to
physical address space greater than one megabyte.

The paging hardware allows the 20-bit linear ad-
dress produced by a Virtual Mode program to be
divided into up to 256 pages. Each one of the pages
can be located anywhere within the maximum 4 gig-
abyte physical address space of the Intel486 DX Mi-
croprocessor. In addition, since CR3 (the Page Di-
rectory Base Register) is loaded by a task switch,
each Virtual Mode task can use a different mapping
scheme to map pages to different physical locations.

PRELIMINARY I

L]

intgl.

Finally, the paging hardware allows the sharing of
the 8086 operating system code between multiple
8086 applications. Figure 4.24 shows how the In-
tel486 DX Microprocessor paging hardware enables

multiple 8086 programs to run under a virtual memo-
ry demand paged system.

4.6.4 PROTECTION AND {/0 PERMISSION
BITMAP

All Virtual 8086 Mode programs execute at privilege
level 3, the level of least privilege. As such, Virtual
8086 Mode, programs are subject to all of the protec-
tion checks defined in Protected Mode. (This is dif-
ferent from Real Mode which implicitly is executing
at privilege level 0, the level of greatest privilege.)
Thus, an attempt to execute a privileged instruction
when in Virtual 8086 Mode will cause an exception
13 fault.

The following are privileged instructions, which may

Intel486™ DX2 MICROPROCESSOR

LIDT; MOV DRn,reg; MOV reg,DRn;
LGDT; MOV TRn,reg; MOV reg,TRn;
LMSW; MOV CRn,reg; MOV reg,CRn.
CLTS;
HLT ;

Several instructions, particularly those applying to
the multitasking model and protection model, are
available only in Protected Mode. Therefore, at-
tempting to execute the following instructions in
Real Mode or in Virtual 8086 Mode generates an
exception 6 fault:

LTR; SIR;
LLDT; SLDT;
LAR; VERR ;
LSL; VERW ;
ARPL.

The instructions which are IOPL-sensitive in Protect-
ed Mode are:

be executed only at Privilege Level 0. Therefore, at- IN; STI;
tempting to execute these instructions in Virtual OUT ; CLI
8086 Mode (or anytime CPL > 0) causes an excep- INS;
tion 13 fault: 0UTS;
REP INS;
REP OUTS;
PHYSICAL
MEMORY
02000000(H)
/ PAGE N
8086 OS
EMPTY
TASK 2 PAGE
TABLE
VIRTUAL MODE PAGE DIRECTORY
Qoae TASK TASK 2
f AVAILABLE
PAGE N
|/
PAGE 1 =1
8086 0S >
EMPTY 00000000(H)
PAGE DIRECTORY TASK 1 PAGE TASK 1 8086 0S
ROOT »> TABLE MEMORY MEMORY
£ TORY 7] TASK 2 Ry Intel386™ cPU 05
\X?JE‘#A:.?"‘ koo wevorr KN weworr
241245-25

Figure 4.24. Virtual 8086 Environment Memory Management

I PRELIMINARY

2-75

Intel486™ DX2 MICROPROCESSOR

In Virtual 8086 Mode, a slightly different set of in-
structions are made IOPL-sensitive. The following in-
structions are IOPL-sensitive in Virtual 8086 Mode:

INT n; STI;
PUSHF ; CLI;
POPF; IRET

The PUSHF, POPF, and IRET instructions are OPL-
sensitive in Virtual 8086 Mode only. This provision
allows the IF flag (interrupt enable flag) to be virtual-
ized to the Virtual 8086 Mode program. The INT n
software interrupt instruction is also IOPL-sensitive
in Virtual 8086 Mode. Note, however, that the INT 3
(opcode OCCH), INTO, and BOUND instructions are
not IOPL-sensitive in Virtual 8086 mode (they aren’t
IOPL sensitive in Protected Mode either).

Note that the 170 instructions (IN, OUT, INS, OUTS,
REP INS, and REP QUTS) are not IOPL-sensitive in
Virtual 8086 mode. Rather, the |/0 instructions be-
come automatically sensitive to the I/0 Permission
Bitmap contained in the Intel486 DX Microproces-
sor Task State Segment. The /O Permission Bit-
map, automatically used by the Intel486 DX micro-
processor in Virtual 8086 Mode, is illustrated by Fig-
ures 4.15a and 4.15b.

The 1/0 Permission Bitmap can be viewed as a 0-
64 Kbit bit string, which begins in memory at offset
Bit_Map__Offset in the current TSS. Bit_Map__
Offset must be < DFFFH so the entire bit map and
the byte FFH which follows the bit map are all at
offsets < FFFFH from the TSS base. The 16-bit
pointer Bit__Map__Offset (15:0) is found in the word
beginning at offset 66H (102 decimal) from the TSS
base, as shown in Figure 4.15a.

Each bit in the 1/0 Permission Bitmap cormresponds
to a single byte-wide |/O port, as illustrated in Figure
4.15a. If a bit is 0, 170 to the corresponding byte-
wide port can occur without generating an excep-
tion. Otherwise the 1/0 instruction causes an excep-
tion 13 fault. Since every byte-wide I/0 port must be
protectable, all bits corresponding to a word-wide or
dword-wide port must be 0 for the word-wide or
dword-wide 1/0 to be permitted. If all the referenced
bits are 0, the |70 will be allowed. If any referenced
bits are 1, the attempted 1/0 will cause an exception
13 fault.

Due to the use of a pointer to the base of the I/O
Permission Bitmap, the bitmap may be located any-
where within the TSS, or may be ignored completely
by pointing the Bit__Map__Offset (15:0) beyond the
limit of the TSS segment. In the same manner, only
a small portion of the 64K 1/0 space need have an
associated map bit, by adjusting the TSS limit to
truncate the bitmap. This eliminates the commitment
of 8K of memory when a complete bitmap is not

2-76

]

intgl.
required, while allowing the fully general case if de-
sired.

EXAMPLE OF BITMAP FOR 170 PORTS 0-255:
Setting the TSS limit to {bit_Map__Offset + 31
+1**} [** see note below] will aliow a 32-byte bit-
map for the 1/0 ports #0-255, plus a terminator
byte of all 1's [** see note below]. This allows the
170 bitmap to control I/0 Permission to /0 port 0-
255 while causing an exception 13 fault on attempt-
ed 1/0 to any 1/0 port 80256 through 65,565.

**IMPORTANT IMPLEMENTATION NOTE: Beyond
the last byte of 170 mapping information in the I/0
Permission Bitmap must be a byte containing alf 1's.
The byte of all 1's must be within the limit of the
Intel486 microprocessor TSS segment (see Figure
4.15a).

4.6.5 INTERRUPT HANDLING

In order to fully support the emulation of an 8086
machine, interrupts in Virtual 8086 Mode are han-
dled in a unique fashion. When running in Virtual
Mode all interrupts and exceptions involve a privi-
lege change back to the host Intel486 DX micro-
processor operating system. The Intel486 DX micro-
processor operating system determines if the inter-
rupt comes from a Protected Mode application or
from a Virtual Mode program by examining the VM
bit in the EFLAGS image stored on the stack.

When a Virtual Mode program is interrupted and ex-
ecution passes to the interrupt routine at level 0, the
VM bit is cleared. However, the VM bit is still set in
the EFLAG image on the stack.

The Intel486 DX operating system in turn handies
the exception or interrupt and then returns control to
the 8086 program. The Intel486 DX operating sys-
tem may choose to let the 8086 operating system
handle ths interrupt or it may emulate the function of
the interrupt handler. For example, many 8086 oper-
ating system calls are accessed by PUSHing param-
eters on the stack, and then executing an INT n in-
struction. If the IOPL is set to O then all INT n instruc-
tions will be intercepted by the Intel486 DX operat-
ing system. The Intel486 DX operating system could
emulate t{gf 8086 operating system’s call. Figure
4.25 shows how the Intel486 DX operating system
could intercept an 8086 operating system’s call to
“Open a File”.

A Intel486 DX operating system can provide a Virtu-
al 8086 Environment which is totally transparent to
the application software via intercepting and then
emulating 8086 operating system’s calls, and inter-
cepting IN and OUT instructions.

PRELIMINARY I

L]

intgl.

4.6.6 ENTERING AND LEAVING VIRTUAL
8086 MODE

Virtual 8086 mode is entered by executing an IRET
instruction (at CPL=0), or Task Switch (at any CPL)
to a Intel486 DX task whose Intel486 DX TSS has a
FLAGS image containing a 1 in the VM bit position
while the processor is executing in Protected Mode.
That is, one way to enter Virtual 8086 mode is to
switch to a task with a Intel486 DX TSS that has a 1
in the VM bit in the EFLAGS image. The other way is
to execute a 32-bit IRET instruction at privilege level
0, where the stack has a 1 in the VM bit in the
EFLAGS image. POPF does not affect the VM bit,
even if the processor is in Protected Mode or level 0,
and so cannot be used to enter Virtual 8086 Mode.
PUSHF always pushes a 0 in the VM bit, even if the
processor is in Virtual 8086 Mode, so that a program
cannot tell if it is executing in REAL mode, or in Vir-
tual 8086 mode.

The VM bit can be set by executing an IRET instruc-
tion only at privilege level 0, or by any instruction or
Interrupt which causes a task switch in Protected
Mode (with VM =1 in the new FLAGS image), and
can be cleared only by an interrupt or exception in
Virtual 8086 Mode. IRET and POPF instructions exe-
cuted in REAL mode or Virtual 8086 mode will not
change the value in the VM bit.

The transition out of virtual 8086 mode to Intel486
DX protected mode occurs only on receipt of an in-
terrupt or exception (such as due to a sensitive in-
struction). In Virtual 8086 mode, all interrupts and
exceptions vector through the protected mode IDT,
and enter an interrupt handler in protected Intel486
DX mode. That is, as part of interrupt processing,
the VM bit is cleared.

Because the matching IRET must occur from level 0,
if an Interrupt or Trap Gate is used to field an inter-
rupt or exception out of Virtual 8086 mode, the Gate
must perform an inter-level interrupt only to level 0.
Interrupt or Trap Gates through conforming seg-
ments, or through segments with DPL >0, will raise a
GP fault with the CS selector as the error code.

4.6.6.1 Task Switches To/From Virtual
8086 Mode

Tasks which can execute in virtual 8086 mode must
be described by a TSS with the Intel486 DX Micro-
processor format (TYPE 9 or 11 descriptor).

A task switch out of virtual 8086 mode will operate
exactly the same as any other task switch out of a
task with an Intel486 DX TSS. All of the programmer
visible state, including the FLAGS register with the
VM bit set to 1, is stored in the TSS.

I PRELIMINARY

intel486™ DX2 MICROPROCESSOR

The segment registers in the TSS will contain 8086
segment base values rather than selectors.

A task switch into a task described by a Intel486 DX
TSS will have an additional-check to determine if the
incoming task should be resumed in virtual 8086
mode. Tasks described by 80286 format TSSs can-
not be resumed in virtual 8086 mode, so no check is
required there (the FLAGS image in 80286 format
TSS has only the low order 16 FLAGS bits). Befors
loading the segment register images from a Intel486
DX TSS, the FLAGS image is loaded, so that the

. segment registers are loaded from the TSS image

as 8086 segment base values. The task is now
ready to resume in virtual 8086 execution mode.

4.6.6.2 Transitions Through Trap and Interrupt
Gates, and IRET

A task switch is one way to enter or exit virtual 8086
mode. The other method is to exit through a Trap or
Interrupt gate, as part of handling an interrupt, and
to enter as part of executing an IRET instruction.
The transition out must use a Intel486 DX Micro-
processor Trap Gate (Type 14), or Intel486 DX Inter-
rupt Gate (Type 15), which must point to a non-con-
forming level 0 segment (DPL = 0) in order to permit
the trap handler to IRET back to the Virtual 8086
program. The Gate must point to a non-conforming
level 0 segment to perform a level switch to level 0
so that the matching IRET can change the VM bit.
Intel486 DX gates must be used, since 80286 gates
save only the low 16 bits of the FLAGS register, so
that the VM bit will not be saved on transitions
through the 80286 gates. Also, the 16-bit IRET (pre-
sumably) used to terminate the 80286 interrupt han-
dler will pop only the lower 16 bits from FLAGS, and
will not affect the VM bit. The action taken for a
Intel486 DX Trap or Interrupt gate if an interrupt oc-
curs while the task is executing in virtual 8086 mode
is given by the following sequence.

(1) Save the FLAGS register in a temp to push later.
Turn off the VM and TF bits, and if the interrupt
is serviced by an Interrupt Gate, turn off IF also.

Interrupt and Trap gates must perform a level
switch from 3 (where the VM86 program exe-
cutes) to level 0 (so IRET can return). This pro-
cess involves a stack switch to the stack given
in the TSS for privilege level 0. Save the Virtual
8086 Mode SS and ESP registers to push in a
later step. The segment register load of SS will
be done as a Protected Mods segment load,
since the VM bit was turned off above.

@

~

2-77

Intel486™ DX2 MICROPROCESSOR

8086 APPLICATION
ROGRAM

| APPLICATION

GP FAULT

intel486 DX CPU

PROGRAM

VIRTUAL 8086

MODE MONITOR

8086

OPERATING *3 —l s

SYSTEM Intel486 DX 0S5
FILE OPEN
ROUTINES

PRIVILEGE
LEVEL 3
(LOWEST)

8086 Application makes ‘Open File Call” —> causes
General Protection Fault (Arrow #1)

Intel486™ DX OS opens file returns control to 8086 OS (Arrow #3)
8086 OS returns control to application. (Arrow #4)
Transparent to Application

PRIVILEGE
LEVEL 0
(HIGHEST)

B0OB6 APPLICATION
PROGRAM

Virtual B086 Monitor intercepts call. Calls Intel486™ DX OS (Arrow #2)

241245-26

Figure 4.25. Virtual 8086 Environment Interrupt and Call Handling

(3) Push the 8086 segment register values onto the
new stack, in the order: GS, FS, DS, ES. These
are pushed as 32-bit quantities, with undefined
values in the upper 16 bits. Then load these 4
registers with null selectors (0).

(4) Push the old 8086 stack pointer onto the new
stack by pushing the SS register (as 32-bits, high
bits undefined), then pushing the 32-bit ESP reg-
ister saved above.

(5) Push the 32-bit FLAGS register saved in step 1.

(6) Push the old 8086 instruction pointer onto the
new stack by pushing the CS register (as 32-bits,
high bits undefined), then pushing the 32-bit EIP
register.

(7) Load up the new CS:EIP value from the interrupt
gate, and begin execution of the interrupt routine
in protected Intel486 DX Microprocessor mode.

The transition out of virtual 8086 mode performs a
level change and stack switch, in addition to chang-
ing back to protected mode. In addition, all of the
8086 segment register images are stored on the
stack (behind the SS:ESP image), and then loaded

2-78

with null (0) selectors before entering the interrupt
handler. This will permit the handler to safely save
and restore the DS, ES, FS, and GS registers as
80286 selectors. This is needed so that interrupt
handlers which don’t care about the mode of the
interrupted program can use the same prolog and
epilog code for state saving (i.e., push all registers in
prolog, pop ail in epilog) regardiess of whether or not
a “native” mode or Virtual 8086 mode program was
interrupted. Restoring nuil selsctors to these regis-
ters before executing the IRET will not cause a trap
in the interrupt handler. Interrupt routines which ex-
pect values in the segment registers, or return val-
ues in segment registers will have to obtain/return
values from the 8086 register images pushed onto
the new stack. They will need to know the mode of
the interrupted program in order to know where to
find/return segment registers, and also to know how
to interpret segment register values.

The IRET instruction will perform the inverse of the
above sequence. Only the extended Intel486 DX
IRET instruction (operand size=32) can be used,
and must be executed at level 0 to change the VM
bit to 1.

PRELIMINARY I

intal.

(1) !f the NT bit in the FLAGS register is on, an inter-
task return is performed. The current state is
stored in the current TSS, and the link field in the
current TSS is used to locate the TSS for the
interrupted task which is to be resumed.

Otherwise, continue with the following se-
quence.

(2) Read the FLAGS image from SS:8[ESP] into the
FLAGS register. This will set VM to the value
active in the interrupted routine.

(3) Pop off the instruction pointer CS:EIP. EIP is
popped first, then a 32-bit word is popped which
contains the CS value in the lower 16 bits. If
VM=0, this CS load is done as a protected
mode segment load. If VM= 1, this will be done
as an 8086 segment load.

(4) Increment the ESP register by 4 to bypass the
FLAGS image which was “popped" in step 1.

I PRELIMINARY

Intel486™ DX2 MICROPROCESSOR

(5) If VM=1, load segment registers ES, DS, FS,

and GS from memory locations SS:[ESP+8],
SS:[ESP+12), SS:[ESP+ 18], and
SS:[ESP + 20], respectively, where the new val-
ue of ESP stored in step 4 is used. Since VM=1,
these are done as 8086 segment register loads.

Else if VM=0, check that the selectors in ES,
DS, FS, and GS are valid in the interrupted rou-
tine. Null out invalid selectors to trap if an at-
tempt is made to access through them.

(6) If (RPL(CS) > CPL), pop the stack pointer

SS:ESP from the stack. The ESP register is
popped first, followed by 32-bits containing SS in
the lower 16 bits. If VM=0, SS is loaded as a
protected mode segment register ioad. If VM=1,
an 8086 segment register load is used.

(7) Resume execution of the interrupted routine. The

VM bit in the FLAGS register (restored from the
interrupt routine’s stack image in step 1) deter-
mines whether the processor resumes the inter-
rupted routine in Protected mode of Virtual 8086
mode.

2-79

Intel486™ DX2 MICROPROCESSOR

intgl.

5.0 ON-CHIP CACHE

To meet its performance goals the Intel486 DX2 mi-
croprocessor contains an eight Kbyte cache. The
cache is software transparent to maintain binary
compatibility with previous generations of the In-
tel386™/Intel486™ architecture.

The on-chip cache has been designed for maximum
flexibility and performance. The cache has several
operating modes offering flexibility during program
execution and debugging. Memory areas can be de-
fined as non-cacheable by software and external
hardware. Protocols for cache line invalidations and
replacement are implemented in hardware, easing
system design.

5.1 Cache Organization

The on-chip cache is a unified code and data cache.
The cache is used for both instruction and data ac-
cesses and acts on physical addresses.

The cache organization is 4-way set associative and
each line is 16 bytes wide. The eight Kbytes of
cache memory are logically organized as 128 sets,
each containing four lines.

The cache memory is physically split into four
2-Kbyte blocks each containing 128 lines (see Fig-
ure 5.1). Associated with each 2-Kbyte block are
128 21-bit tags. There is a valid bit for each line in
the cache. Each line in the cache is either valid or
not valid. There are no provisions for partially valid
lines.

— 211. Bit |, l+— 16-Byte Line Size -
ag
T 128
128 T 2k Byt
lugs ytes Sets
2k Bytes
2k Bytes
2k Bytes
3 LRU 4 valid
l“ gits | Bits |
128
Sets
241245-27

Figure 5.1. On-Chip Cache Physical Organization

2-80

PRELIMINARY I

intgl.

The write strategy of on-chip cache is write-through.
All writes will drive an external write bus cycle in
addition to writing the information to the internal
cache if the write was a cache hit. A write to an
address not contained in the internal cache will only
be written to external memory. Cache allocations
are not made on write misses.

5.2 Cache Control

Control of the cache is provided by the CD and NW
bits in CRO. CD enables and disables the cache. NW
controls memory write-through and invalidates.

The CD and NW bits define four operating modes of
the on-chip cache as given in Table 5.1. These
modes provide flexibility in how the on-chip cache is
used.

Table 5.1. Cache Operating Modes

CD | NW Operating Mode

1 1 | Cache fills disabled, write-through and
invalidates disabled

1 0 | Cache fills disabled, write-through and
invalidates enabled

0 1 | INVALID. IF CRO is loaded with this
configuration of bits, a GP fault with
error code of 0 is raised.

0 0 [Cache fills enabled, write-through and
invalidates enabled

CD=1, NW=1

The cache is completely disabled by setting
CD=1 and NW=1 and then flushing the
cache. This mode may be useful for debug-
ging programs where it is important to see
all memory cycles at the pins. Writes which
hit in the cache will not appear on the exter-
nal bus.

It is possible to use the on-chip cache as
fast static RAM by “pre-loading” certain
memory areas into the cache and then set-
ting CD =1 and NW=1. Pre-loading can be
done by careful choice of memory refer-
ences with the cache turned on or by use of
the testability functions (see Section 8.2).
When the cache is turned off the memory
mapped by the cache is “frozen” into the
cache since fills and invalidates are dis-
abled.

I PRELIMINARY

Intel486™ DX2 MICROPROCESSOR

CD=1, NW=0

Cache fills are disabled but write-throughs
and invalidates are enabled. This mode is
the same as if the KEN# pin was strapped
HIGH disabling cache fills. Write-throughs
and invalidates may still occur to keep the
cache valid. This mode is useful if the soft-
ware must disable the cache for a short pe-
riod of time, and then re-enable it without
flushing the original contents.

CD=0, N\W=1

INVALID. If CRO is loaded with this bit con-
figuration, a General Protection fault with
error code of O is raised. Note that this
mode would imply a non-transparent write-
back cache. A future processor may define
this combination of bits to implement a
write-back cache.

CD=0, NW=0
This is the normal operating mode.

Completely disabling the cache is a two step pro-
cess. First CD and NW must be set to 1 and then the
cache must be flushed. If the cache is not flushed,
cache hits on reads will still occur and data will be
read from the cache.

5.3 Cache Line Fills

Any area of memory can be cached in the intel486
DX microprocessor. Non-cacheable portions of
memory can be defined by the external system or by
software. The external system can inform the In-
tel486 DX microprocessor that a memory address is
non-cacheable by returning the KEN# pin inactive
during a memory access (refer to Section 7.2.3).
Software can prevent certain pages from being
cached by setting the PCD bit in the page table en-
try.

A read request can be generated from program op-
eration or by an instruction pre-fetch. The data will
be supplied from the on-chip cache if a cache hit
occurs on the read address. If the address is not in
the cache, a read request for the data is generated
on the external bus.

If the read request is to a cacheable portion of mem-
ory, the Intel4d86 DX microprocessor initiates a
cache line fill. During a line fill a 16-byte line is read
into the Intel486 DX microprocessor.

Cache fills will only be generated for read misses.
Write misses will never cause a line in the internal
cache to be allocated. If a cache hit occurs on a
write, the line will be updated.

2-81

Intel486™ DX2 MICROPROCESSOR

Cache line fills can be performed over 8- and 16-bit
busses using the dynamic bus sizing feature. Refer
to Section 7.1.3 for a description of dynamic bus
sizing.

Refer to Section 7.2.3 for further information on
cacheable cycles.

5.4 Cache Line Invalidations

The Intel486 DX microprocessor contains both a
hardware and software mechanism for invalidating
lines in its internal cache. Cache line invalidations
are needed to keep the Intel486 DX microproces-
sor's cache contents consistent with external mem-
ory.

Refer to Section 7.2.8 for further information on
cache line invalidations.

5.5 Cache Replacement

When a line needs to be placed in its internal cache
the Intel486 DX microprocessor first checks to see if
there is a non-valid line in the set that can be re-
placed. If all four lines in the set are valid, a pseudo
least-recently-used mechanism is used to determine
which line should be replaced.

A valid bit is associated with each line in the cache.
When a line needs to be placed in a set, the four

intgl.

valid bits are checked to see if there is a non-valid
line that can be replaced. If a non-valid line is found,
that line is marked for replacement.

The four lines in the set are labeled 10, I1, 12, and I3.
The order in which the valid bits are checked during
an invalidation is 10, 11, 12 and 13. All valid bits are
cleared when the processor is reset or when the
cache is flushed.

Replacement in the cache is handled by a pseudo
least recently used (LRU) mechanism when all four
lines in a set are valid. Three bits, BO, B1 and B2,
are defined for each of the 128 sets in the cache.
These bits are called the LRU bits. The LRU bits are
updated for every hit or replace in the cache.

If the most recent access to the set was to 10 or I1,
BO is set to 1. BO is set to 0 if the most recent ac-
cess was to 12 or 13. If the most recent access to
10:11 was to 10, B1 is set to 1, else B1 is set to 0. If
the most recent access to 12:13 was to 12, B2 is set to
1, else B2 is set t0 0.

The pseudo LRU mechanism works in the following
manner. When a line must be replaced, the cache
will first select which of 10:11 and (2:13 was least re-
cently used. Then the cache will determine which of
the two lines was least recently used and mark it for
replacement. This decision tree is shown in Figure
5.2. When the processor is reset or when the cache
is flushed all 128 sets of three LRU bits are set to 0.

Yos J

BO=07?
Yes: 10 or |1 lsast recently used

All four lines in the set valid? L Replace non-valid line

No: 12 or I3 least recently used

241245-28

Figure 5.2. On-Chip Cache Replacement Strategy

2-82 PRELIMINARY I

intgl.

5.6 Page Cacheability

Two bits for cache control, PWT and PCD, are de-
fined in the page table and page directory entries.
The state of these bits are driven out on the PWT
and PCD pins during memory access cycles.

The PWT bit controls write policy for second level
caches used with the Intei486 DX microprocessor.
Setting PWT =1 defines a write-through policy for
the current page while PWT =0 allows the possibility
of write-back. The state of PWT is ignored internally
by the Intel486 DX microprocessor since the on-chip
cache is write through.

Intel486™ DX2 MICROPROCESSOR

The PCD bit controls cacheability on a page by page
basis. The PCD bit is internally ANDed with the
KEN# signal to control cacheability on a cycle by
cycle basis (see Figure 5.3). PCD=0 enables cach-
ing while PCD=1 forbids it. Note that cache fills are
enabled when PCD=0 AND KEN# =0. This logical
AND is implemented physically with a NOR gate.

The state of the PCD bit in the page table entry is
driven on the PCD pin when a page in external mem-
ory is accessed. The state of the PCD pin informs
the external system of the cacheability of the re-
quested information. The external system then re-
turns KEN# telling the Intel486 DX microprocessor
if the area is cacheable. The Intel486 DX microproc-
essor initiates a cache line fill if PCD and KEN#
indicate that the requested information is cacheable.

} CONTROL REGISTERS

cln
cRO 4 M
Y v
FLUSH#
CACHE CONTROL LOGIC + “
jg KEN#
CACHE MEMORY
femmmemmemmmmemesesemm—————— .
' 31 22 12 0 '
[}]
« ——>{oirectory | 1asLe | orrser | '
1 LINEAR I
ADDRESS
: 10// 10// 1 PCD PO
1 ' >
1 i PWT__
1 I v
H §| 0 31 0}
b 31 0 ;
}CRO | '
] 1
1 CRY) 4 peD, PWT |
'] peo, pPur '
JCR2 !
]] .
] >]
 CRS | PCD. PUT ’ PAGE TABLE 1 _ CP
' DIRECTORY 1 (From CRO)
]
]

241245-29

Figure 5.3. Page Cacheability

I PRELIMINARY

2-83

Intel486™ DX2 MICROPROCESSOR

The PCD bit is masked with the CD (cache disable)
bit in control register 0 to determine the state of the
PCD pin. If CD=1 the Intel486 DX microprocessor
forces the PCD pin HIGH. If CD=0 the PCD pin is
driven with the value for the page table entry/direc-
tory. See Figure 5.3.

The PWT and PCD bits for a bus cycle are obtained
from either CR3, the page directory or page table
entry. These bits are assumed to be zero during real
mode, whenever paging is disabled, or for cycles
that bypass paging, (I/O references, interrupt ac-
knowledge and Halt cycles), the PWT and PCD bits
are taken from CR3. These bits are initialized to 0 on
reset, but can be set to any value by level 0 soft-
ware.

When paging is enabled, the bits from the page table
entry are cached in the TLB, and are driven any time
the page mapped by the TLB entry is referenced.
For normal memory cycles, PWT and PCD are taken
from the page table entry. During TLB refresh cycles
where the page table and directory entries are read,
the PWT and PCD bits must be obtained elsewhere.
During page table updates the bits are obtained from
the page directory. When the page directory is up-
dated the bits are obtained from CR3.

5.7 Cache Flushing

The on-chip cache can be flushed by external hard-
ware or by software instructions. Flushing the cache
clears all valid bits for all lines in the cache. The
cache is flushed when external hardware asserts the
FLUSH# pin.

The flush pin needs to be asserted for one clock if
driven synchronously or for two clocks if driven
asynchronously. The flush input is asynchronous but
setup and hold times must be met. The flush pin
should be deasserted after the cache flush is com-
plete. Failure to deassert the pin will cause execu-
tion to stop as the processor will be repeatedly flush-
ing the cache. If external hardware activates flush in
response to an I/0 write, flush must be asserted for
at least two clocks prior to ready being returned for
the 1/0 write. This ensures that the flush completes
before the CPU begins execution of the instruction
following the OUT instruction.

Flush is recognized during HOLD just like EADS #.

The instructions INVD and WBINVD cause the on-
cache to be flushed. External caches connected to
the Inteid86 DX microprocessor are signalled to
flush their contents when these instructions are exe-
cuted.

WBINVD will cause an external write-back cache to
write back dirty lines before flushing its contents.
The external cache is signalled using the bus cycle
definition pins and the byte enables (refer to Section

2-84

intel.

6.2.5 for the bus cycle definition pins and Section
7.2.11 for special bus cycles). Refer to the Intel486
DX microprocessor programmers reference manual
for detailed instruction definitions.

The results of the INVD and WBINVD instructions
are identical for the operation of the Intel486 DX mi-
croprocessor's on-chip cache since the cache is
write-through. Note that the INVD and WBINVD in-
structions are machine dependent. Future members
of the Intel486 DX microprocessor family may
change the definition of this instruction.

5.8 Caching Translation Lookaside
Buffer Entries

The Intel486 DX microprocessor contains an inte-
grated paging unit with a translation lookaside buffer
(TLB). The TLB contains 32 entries. The TLB has
been enhanced over the Intel386 microprocessor’s
TLB by upgrading the replacement strategy to a
pseudo-LRU (least recently used) algorithm. The
pseudo-LRU replacement algorithm is the same as
that used in the on-chip cache.

The paging TLB operation is automatic whenever
paging is enabled. The TLB contains the most re-
cently used page table entries. A page table entry
translates the linear address pointing to a particular
page to the physical address where the page is
stored in memory (refer to Section 4.5, Paging).

The paging unit will look up the linear address in the
TLB in response to an internal bus request. The cor-
responding physical address is passed on to the on-
chip cache or the external bus (in the event of a
cache miss) when the linear address is present in
the TLB.

The paging unit will access the page tables in exter-
nal memory if the linear address is not in the TLB.
The required page table entry will be read into the
TLB and then the cache or bus cycle for the actual
data will take place. The process of reading a new
page table entry into the TLB is called a TLB refresh.

A TLB refresh is a two step process. The paging unit
must first read the page directory entry which points
to the appropriate page table. The page table entry
to be stored in the TLB is then read from the page
table. Control register 3 (CR3) points to the base of
the page directory table.

The Inteld86 DX microprocessor will allow page di-
rectory and page table entries (returned during TLB
refreshes) to be stored in the on-chip cache. Setting
the PCD bits in CR3 and the page directory entry to

1 will prevent the page directory and pagse table en-
tries from being stored in the on-chip cache (see
Section 5.6, Page Cacheability).

PRELIMINARY I

intgl.

Intel486™ DX2 MICROPROCESSOR

6.0 HARDWARE INTERFACE

6.1 Introduction

The Intel486 DX2 microprocessor bus has been de-
signed to be identical with the Intel486 micropro-
cessor bus. Several new features have been added
to the Inteld86 DX2 to increase performance and
testability. New features include a speed doubler for
the core logic, and |IEEE 1149.1 boundary scan sup-
port.

The Intel486 DX2 is driven by what can be called a
2x clock, as opposed to the 1x clock in the Intel486
DX and the 2x clock in the Intel386 micropro-
cessors. Thus a 50 MHz Intel486 DX2 is driven by a
25 MHz clock, in contrast with 25 MHz processors
like the Intel486 DX2 and the Intel386 requiring
25 MHz and 50 MHz, respectively. Since the In-
tel486 DX has a clock doubler driving its core, but
not its bus interface, it provides a simpler system
design for a given performance level than the In-
tel486 DX. In reality, this permits dramatic increases
in performance by just plugging in the Intel486

DX2 in a system that had already been designed for
the Intel486. This performance is supplied because
the bus interface is identical to that of an Intel486
DX and all of the core is running at twice the speed
of the comparable Intel486 DX. This speedup in-
cludes the internal cache memory, the floating point
unit, the instruction decode unit, the ALU and every-
thing except the bus interface.

Like the Intel386 microprocessor, the Intel486 DX
microprocessor has separate parallel busses for
data and addresses. The bidirectonal data bus is
32 bits in width. The address bus consists of two
components: 30 address lines (A2-A31) and 4 byte
enable lines (BEO# -BE3#). The address bus ad-
dresses external memory in the same manner as the
Intel386 microprocessor: The address lines form the
upper 30 bits of the address and the byte enables
select individual bytes within a 4 byte location. The
address lines are bidirectional for use in cache line
invalidations.

Bus ‘_
Control

—p
Interrupt
Signals
AHOLD
—p
Cache
Invalidation

Cache

Control FLUSH® >

{ KEN#
—

FERR#
IGNNE#

Numeric
Error
Reporting

[
|

Page 4_____]
Caching
Control ‘_ i

1]

Address Bit A20M#
20 Mask E—

_D
_D
Boundary
Scan _;
4—

ELCESN <:> A2-A3 1
32-Bit
Address
oatapus | imteessoxa | BES® Bus
Microprocessor BE2#
32-Bit o Byte
BEO#
—

PLOCK#*

]

HOLD
HLDA
BOFF#
BREQ

Bus
Arbitration

M

BRDY#
BLAST#

|

Burat
Coentrol

|

BS8#

BS16#
le—

Bus Size
Control

M/10#

D/C#
L’_ Bus Cycle

LOCK# Definition
DP3
DP2
DPt
DPO
PCHK#

i

Parity

i

|

241245-30

Figure 6.1. Functional Signal Groupings

I PRELIMINARY

2-85

Intel486™ DX2 MICROPROCESSOR

The Intel486 DX microprocessor's burst bus mecha-
nism enables high-speed cache fills from external
memory. Burst cycles can strobe data into the proc-
essor at a rate of one item every clock. Non-burst
cycles have a maximum rate of one item every two
clocks. Burst cycies are not limited to cache fills: all
bus cycles requiring more than a single data cycle
can be bursted.

The Intel486 DX microprocessor has a bus hold fea-
ture similar to that of the Intel386 microprocessor.
During bus hold, the Intel486 DX microprocessor re-
linquishes control of the local bus by floating its ad-
dress, data and control busses.

The Intel486 DX microprocessor has an address
hold feature in addition to bus hold. During address
hold only the address bus is floated, the data and
control busses can remain active. Address hold is
used for cache line invalidations.

Ahead is a brief description of the Intel486 DX mi-
croprocessor input and output signals arranged by
functional groups. Before beginning the signal de-
scriptions a few terms need to be defined. The #
symbol at the end of a signal name indicates the
active, or asserted, state occurs when the signal is
at a low voltage. When a # is not present after the
signal name, the signal is active at the high voltage
level. The term “ready” is used to indicate that the
cycle is terminated with RDY # or BRDY #.

Section 6 and 7 will discuss bus cycles and data
cycles. A bus cycle is at least two clocks long and
begins with ADS # active in the first clock and ready
active in the last clock. Data is transferred to or from
the Intel486 DX microprocessor during a data cycle.
A bus cycle contains one or more data cycles.

intgl.

6.2 Signal Descriptions

6.2.1 CLOCK (CLK)

CLK provides the fundamental timing and the inter-
nal operating frequency for the Intel486 DX2 micro-
processor. All external timing parameters are speci-
fied with respect to the rising edge of CLK.

The Intel486 DX2 microprocessor can operate over
a wide frequency range but CLK's frequency cannot
change rapidly while RESET is inactive. CLK’s fre-
quency must be stable for proper chip operation
since a single edge of CLK is used internally to gen-
erate four phases. CLK only needs TTL levels for
proper operation. Figure 6.2 illustrates the CLK
waveform.

6.2.2 Address Bus (A31-A2, BEO#-BE3+#)

A31-A2 and BEO#-BE3# form the address bus
and provide physical memory and 1/0 port address-
es. The Intel486 DX microprocessor is capable of
addressing 4 gigabytes of physical memory space
{00000000H through FFFFFFFFH), and €4 Kbytes
of I/0 address space (00000000H through
0000FFFFH). A31-A2 identify addresses to a 4-byte
location. BEQO# -BE3# identify which bytes within
the 4-byte location are involved in the current trans-
fer.

Addresses are driven back into the Intel486 DX mi-
croprocessor over A31-A4 during cache line invali-
dations. The address lines are active HIGH. When
used as inputs into the processor, A31-A4 must
meet the setup and hold times, toz and t33. A31-A2
are not driven during bus or address hold.

| £1.5V

tx = input setup times
ty = input hold times, output float, valid and hold times

tx—wra-ty

1.5V

241245-31

Figure 6.2. CLK waveform

2-86

PRELIMINARY I

n
intgl.
The byte enable outputs, BEO# -BE3+#, determine

which bytes must be driven valid for read and write
cycles to external memory.

BE3# applies to D24-D31 ,
BE2# applies to D16-D23
BE1# applies to D8-D15
BEO# applies to DO-D7

BEO#-BE3# can be decoded to generate AQ, Al
and BHE# signals used in 8- and 16-bit systems
(see Table 7.5). BEO# -BE3# are active LOW and
are not driven during bus hold.

6.2.3 DATA LINES (D31-D0)

The bidirectional lines, D31-D0, form the data bus
for the Intel486 DX microprocessor. DO-D7 define
the least significant byte and D24-D31 the most sig-
nificant byte. Data transfers to 8- or 16-bit devices is
possible using the data bus sizing feature controlled
by the BS8+# or BS16# input pins.

D31-D0 are active HIGH. For reads, D31-D0 must
meet the setup and hold times, to2 and tp3. D31-D0
are not driven during read cycles and bus hold.

6.2.4 PARITY
Data Parity input/Outputs (DP0-DP3)

DPO-DP3 are the data parity pins for the processor.
There is one pin for each byte of the data bus. Even
parity is generated or checked by the parity genera-
tors/checkers. Even parity means that there are an
even number of HIGH inputs on the eight corre-
sponding data bus pins and parity pin.

Data parity is generated on all write data cycles with
the same timing as the data driven by the Intel486
DX microprocessor. Even parity information must be
driven back to the Intel486 DX microprocessor on
these pins with the same timing as read information
to insure that the correct parity check status is indi-
cated by the Intel486 DX microprocessor.

The values read on these pins do not affect program
execution. It is the responsibility of the system to
take appropriate actions if a parity error occurs.

Input signals on DPO-DP3 must meet setup and
hold times tz2 and tp3 for proper operation.

Parity Status Output (PCHK #)

Parity status is driven on the PCHK # pin, and a pari-
ty error is indicated by this pin being LOW. PCHK #
is driven the clock after ready for read operations to
indicate the parity status for the data sampled at the

I PRELIMINARY

intel486™ DX2 MICROPROCESSOR

end of the previous clock. Parity is checked during
code reads, memory reads and I/0 reads. Parity is
not checked during interrupt acknowledge cycles.
PCHK# only checks the parity status for enabled
bytes as indicated by the byte enable and bus size
signals. It is valid only in the clock immediately after
read data is returned to the Intel486 DX microproc-
essor. At all other times it is inactive (HIGH).
PCHK # is never floated.

Driving PCHK # is the only effect that bad input pari-
ty has on the Intel486 DX microprocessor. The In-
tel486 DX microprocessor will not vector to a bus
error interrupt when bad data parity is returned. In
systems that will not employ parity, PCHK# can be
ignored. In systems not using parity, DPO-DP3
should be connected to Vg through a pullup resis-
tor.

6.2.5 BUS CYCLE DEFINITION
M/I0#, D/C#, W/R# Outputs

M/IO#, D/C# and W/R # are the primary bus cycle
definition signals. They are driven valid as the ADS #
signal is asserted. M/IO# distinguishes between
memory and I/0 cycles, D/C# distinguishes be-
tween data and control cycles and W/R# distin-
guishes between write and read cycles.

Bus cycle definitions as a function of M/IO#, D/C#
and W/R# are given in Table 6.1. Note there is a
difference between the Intel486 DX microprocessor
and Intel386 microprocessor bus cycle definitions.
The halt bus cycle type has been moved to location
001 in the Intel486 DX microprocessor from location
101 in the Intel386 microprocessor. Location 101 is
now reserved and will never be generated by the
Intel486 DX microprocessor.

Table 6.1. ADS # Initiated Bus Cycle Definitions

M/10# D/C# W/R# Bus Cycle Initiated
0 0 0 Interrupt Acknowledge
0 0 1 Halt/Special Cycle
0 1 0 1/0 Read
0 1 1 170 Write
1 0 0 Code Read
1 0 1 Reserved
1 1 0 Memory Read
1 1 1 Memory Write

Special bus cycles are discussed in Section 7.2.11.
Bus Lock Output (LOCK#)
LOCK# indicates that the Intel4B6 DX microproces-

sor is running a read-modify-write cycle where the
external bus must not be relinquished between the

2-87

Intel486™ DX2 MICROPROCESSOR

read and write cycles. Read-modify-write cycles are
used to implement memory-based semaphores.
Muitiple reads or writes can be locked.

When LOCK # is asserted, the current bus cycle is
locked and the intel486 DX microprocessor shouid
be allowed exclusive access to the system bus.
LOCK# goes active in the first clock of the first
locked bus cycle and goes inactive after ready is
returned indicating the last locked bus cycle.

The Intel486 DX microprocessor will not acknowl-
edge bus hold when LOCK# is asserted (though it
will allow an address hold). LOCK# is active LOW
and is floated during bus hold. Locked read cycles
will not be transformed into cache fill cycles if KEN #
is returned active. Refer to Section 7.2.6 for a de-
tailed discussion of Locked bus cycles.

Pseudo-Lock Output (PLOCK #)

The pseudo-lock feature allows atomic reads and
writes of memory operands greater than 32 bits.
These operands require more than one cycle to
transfer. The Intel486 DX microprocessor asserts
PLOCK # during floating point long reads and writes
(64 bits), segment table descriptor reads (64 bits)
and cache line fills (128 bits).

When PLOCK # is asserted no other master will be
given control of the bus between cycles. A bus hold
request (HOLD) is not acknowledged during pseudo-
locked reads and writes, with one exception. During
non-cacheable non-bursted code prefetches, HOLD
is recognized on memory cycle boundaries even
though PLOCK# is asserted. The Intel486 DX mi-
croprocessor will drive PLOCK # active until the ad-
dresses for the last bus cycle of the transaction
have been driven regardless of whether BRDY # or
RDY # are returned.

A pseudo-locked transfer is meaningful only if the
memory operand is aligned and if its completely con-
tained within a single cache line. A 64-bit floating
point number must be aligned to an 8-byte boundary
to guarantee an atomic access.

Normally PLOCK# and BLAST# are inverse of
each other. However during the first cycle of a 64-bit
floating point write, both PLOCK # and BLAST # will
be asserted.

Since PLOCK# is a function of the bus size and
KEN# inputs, PLOCK# should be sampled only in
the clock ready is returned. This pin is active LOW
and is not driven during bus hold. Refer to Section
7.2.7 for a detailed discussion of pseudo-locked bus
cycles.

2-88

intel.

The bus control signals allow the processor to indi-
cate when a bus cycle has begun, and allow other
system hardware to control burst cycles, data bus
width and bus cycle termination.

6.2.6 BUS CONTROL

Address Status Output (ADS #)

The ADS# output indicates that the address and
bus cycle definition signals are valid. This signal will
go active in the first clock of a bus cycle and go
inactive in the second and subsequent clocks of the
cycle. ADS# is also inactive when the bus is idle.

ADS # is used by external bus circuitry as the indica-
tion that the processor has started a bus cycle. The
external circuit must sample the bus cycle definition
pins on the next rising edge of the clock after ADS #
is driven active.

ADS# is active LOW and is not driven during bus
hold.

Non-burst Ready Input (RDY #)

RDY # indicates that the current bus cycle is com-
plete. In response to a read, RDY # indicates that
the external system has presented valid data on the
data pins. In response to a write request, RDY # indi-
cates that the external system has accepted the In-
tel486 DX microprocessor data. RDY# is ignored
when the bus is idle and at the end of the first clock
of the bus cycle. Since RDY # is sampled during ad-
dress hold, data can be returned to the processor
when AHOLD is active.

RDY # is active LOW, and is not provided with an
internal pullup resistor. This input must satisfy setup
and hold times t1g and ty7 for proper chip operation.

6.2.7 BURST CONTROL
Burst Ready Input (BRDY #)

BRDY # performs the same function during a burst
cycle that RDY # performs during a non-burst cycle.
BRDY # indicates that the external system has pre-
sented valid data on the data pins in response to a
read or that the external system has accepted the
intel486 DX microprocessor data in response to a
write. BRDY # is ignored when the bus is idle and at
the end of the first clock in a bus cycle.

During a burst cycle, BRDY # will be sampled each
clock, and if active, the data presented on the data
bus pins will be strobed into the Intel486 DX micro-
processor. ADS# is negated during the second
through last data cycles in the burst, but address

PRELIMINARY I

intgl.

lines A2-A3 and byte enables will change to reflect
the next data item expected by the Intel486 DX mi-
Croprocessor.

If RDY# is returned simultaneously with BRDY #,
BRDY # is ignored and the burst cycle is premature-
ly aborted. An additional complete bus cycie will be
initiated after an aborted burst cycle if the cache line
fill was not complete. BRDY # is treated as a normal
ready for the last data cycle in a burst transfer or for
non-burstable cycles. Refer to Section 7.2.2 for
burst cycle timing.

BRDY # is active LOW and is provided with a smalil
internal pullup resistor. BRDY # must satisfy the set-
up and hold times t1g and t;7.

Burst Last Output (BLAST #)

BLAST # indicates that the next time BRDY # is re-
turned it will be treated as a normal RDY #, terminat-
ing the line fill or other multiple-data-cycle transfer.
BLAST# is active for all bus cycles regardless of
whether they are cacheable or not. This pin is active
LOW and is not driven during bus hold.

6.2.8 INTERRUPT SIGNALS (RESET, INTR,
NMI)

The interrupt signals can interrupt or suspend exe-
cution of the processor’s current instruction stream.

Reset Input (RESET)

RESET forces the Intel486 DX2 microprocessor to
begin execution at a known state. For a power-up
(cold start) reset, Voo and CLK must reach their
proper DC and AC specifications for at least
1 ms before the Inteld86 DX2 microprocessor be-
gins instruction execution. The RESET pin should
remain active during this time to ensure proper In-
tel486 DX2 microprocessor operation. However, for
a warm boot-up case, RESET is required to re-
main active for a minimum of 15 clocks. The test-
ability operating modes are programmed by the fall-
ing (inactive going) edge of RESET. (Refer to Sec-
tion 8.0 for a description of the test modes during
reset.)

Maskable Interrupt Request Input (INTR)

INTR indicates that an external interrupt has been
generated. Interrupt processing is initiated if the IF
flag is active in the EFLAGS register.

The Intel486 DX microprocessor will generate two
locked interrupt acknowledge bus cycles in re-
sponse to asserting the INTR pin. An 8-bit interrupt
number will be latched from an external interrupt
controller at the end of the second interrupt ac-
knowledge cycle. INTR must remain active until the
interrupt acknowledges have been performed to as-

I PRELIMINARY

intel486™ DX2 MICROPROCESSOR

sure program interruption. Refer to Section 7.2.10
for a detailed discussion of interrupt acknowledge
cycles.

The INTR pin is active HIGH and is not provided with
an internal pulldown resistor. INTR is asynchronous,
but the INTR setup and hold times, tag and tz4, must
be met to assure recognition on any specific clock.

Non-maskable Interrupt Request Input (NMI)

NM! is the non-maskable interrupt request signal.
Asserting NMI causes an interrupt with an internally
supplied vector value of 2. External interrupt ac-
knowledge cycles are not generated since the NMi
interrupt vector is internally generated. When NMi
processing begins, the NMI signal will be masked
internally until the IRET instruction is executed.

NMI is rising edge sensitive after internal synchroni-
zation. NMI must be held LOW for at least four CLK
periods before this rising edge for proper operation.
NMI is not provided with an internal pulldown resis-
tor. NMI is asynchronous but setup and hold times,
ta0 and t21 must be met to assure recognition on any
specific clock.

6.2.9 BUS ARBITRATION SIGNALS

This section describes the mechanism by which the
processor relinquishes control of its local bus when
requested by another bus master.

Bus Request Output (BREQ)

The Intel486 DX microprocessor asserts BREQ
whenever a bus cycle is pending internally. Thus,
BREQ is always asserted in the first clock of a bus
cycle, along with ADS #. Furthermore, if the Intel486
DX microprocessor is currently not driving the bus
(due to HOLD, AHOLD, or BOFF #), BREQ is assert-
ed in the same clock that ADS# would have been
asserted if the processor were driving the bus. After
the first clock of the bus cycle, BREQ may change
state. It will be asserted if additional cycles are nec-
essary to complete a transfer (via BS8#, BS16#,
KEN#), or if more cycles are pending internally.
However, if no additional cycles are necessary to
complete the current transfer, BREQ can be negat-
ed before ready comes back for the current cycle.
External logic can use the BREQ signal to arbitrate
among multiple processors. This pin is driven re-
gardless of the state of bus hold or address hold.
BREQ is active HIGH and is never floated. During a
hold state, internal events may cause BREQ to be
deasserted prior to any bus cycles.

Bus Hold Request Input (HOLD)

HOLD allows another bus master complete control
of the Intel486 DX microprocessor bus. The Intel486

2-89

Intel486™ DX2 MICROPROCESSOR

DX microprocessor will respond to an active HOLD
signal by asserting HLDA and placing most of its
output and input/output pins in a high impedance
state (floated) after completing its current bus cycle,
burst cycle, or sequence of locked cycles. In addi-
tion, if the Intel4d86 DX CPU receives a HOLD re-
quest while performing a code fetch, and that cycle
is backed off (BOFF #), the Intel486 DX CPU will
recognize HOLD before restarting the cycle. The
BREQ, HLDA, PCHK# and FERR# pins are not
floated during bus hold. The Intel486 DX microproc-
essor will maintain its bus in this state until the
HOLD is deasserted. Refer to Section 7.2.9 for tim-
ing diagrams for bus hold cycles and HOLD request
acknowledge during BOFF #.

Unlike the Inte!386 microprocessor, the Intel486 DX
microprocessor will recognize HOLD during re-
set. Pullup resistors are not provided for the outputs
that are floated in response to HOLD. HOLD is ac-
tive HIGH and is not provided with an internal pull-
down resistor. HOLD must satisfy setup and hold
times t1g and t1g for proper chip operation.

Bus Hold Acknowledge Output (HLDA)

HLDA indicates that the Intel486 DX microprocessor
has given the bus to another local bus master. HLDA
goes active in response to a hold request presented
on the HOLD pin. HLDA is driven active in the same
bus clock cycle that the Intel486 DX microprocessor
floats its bus.

HLDA will be driven inactive when leaving bus hold
and the Intel486 DX microprocessor will resume
driving the bus. The Intel486 DX microprocessor will
not cease internal activity during bus hold since the
internal cache will satisfy the majority of bus re-
quests. HLDA is active HIGH and remains driven
during bus hold.

Backoff Input (BOFF #)

Asserting the BOFF # input forces the intel486 DX
microprocessor to release control of its bus in the
next clock. The pins floated are exactly the same as
in response to HOLD. The response to BOFF # dif-
fers from the response to HOLD in two ways: First,
the bus is floated immediately in response to
BOFF # while the Intel486 DX microprocessor com-
pletes the current bus cycle before floating its bus in
response to HOLD. Second the Intel4d86 DX does
not assert HLDA in response to BOFF #.

The processor remains in bus hold until BOFF # is
negated. Upon negation, the Intel486 DX microproc-
essor restarts the bus cycle aborted when BOFF #
was asserted. To the internal execution engine the
effect of BOFF # is the same as inserting a few wait
states to the original cycle. Refer to Section 7.2.12
for a description of bus cycie restart.

2-90

intgl.

Any data returned to the processor while BOFF # is
asserted is ignored. BOFF # has higher priority than
RDY# or BRDY #. If both BOFF# and ready are
returned in the same clock, BOFF # takes effect. If
BOFF # is asserted while the bus is idle, the Intel486
DX microprocessor will float its bus in the next bus
clock. BOFF # is active LOW and must meet setup
and hold times t1g and t1g for proper chip operation.

6.2.10 CACHE INVALIDATION

The AHOLD and EADS# inputs are used during
cache invalidation cycles. AHOLD conditions the In-
tel486 DX microprocessors address lines, A4-A31,
to accept an address input. EADS# indicates that
an external address is actually valid on the address
inputs. Activating EADS # will cause the Intel486 DX
microprocessor to read the external address bus
and perform an internal cache invalidation cycle to
the address indicated. Refer to Section 7.2.8 for
cache invalidation cycle timing.

Address Hold Request Input (AHOLD)

AHOLD is the address hold request. It allows anoth-
er bus master access to the Intel486 DX microproc-
essor address bus for performing an internal cache
invalidation cycle. Asserting AHOLD will force the
Intel486 DX microprocessor to stop driving its ad-
dress bus in the next clock. While AHOLD is active
only the address bus will be floated, the remainder
of the bus can remain active. For example, data can
be returned for a previously specified bus cycle
when AHOLD is active. The Intel486 DX microproc-
essor will not initiate another bus cycle during ad-
dress hold. Since the Intel486 DX microprocessor
floats its bus immediately in response to AHOLD, an
address hold acknowledge is not required. If AHOLD
is asserted while a bus cycle is in progress, and no
readies are returned during the time AHOLD is as-
serted, the Intel486 DX will redrive the same ad-
dress (that it originally sent out) once AHOLD is neg-
ated.

AHOLD is recognized during reset. Since the entire
cache is invalidated by reset, any invalidation cycles
run during reset will be unnecessary. AHOLD is ac-
tive HIGH and is provided with a small internal pull-
down resistor. It must satisfy the setup and hoid
times t1g and tyg for proper chip operation. This pin
determines whether or not the built in self test fea-
tures of the Intel486 DX microprocessor will be exer-
cised on assertion of RESET.

External Address Valid Input (EADS #)

EADS# indicates that a valid external address has
been driven onto the Intel486 DX address pins. This
address will be used to perform an internal cache
invalidation cycle. The external address will be
checked with the current cache contents. If the ad-

PRELIMINARY I

intgl.

dress specified matches any areas in the cache, that
area will immediately be invalidated.

An invalidation cycle may be run by asserting
EADS# regardless of the state of AHOLD, HOLD
and BOFF #. EADS# is active LOW and is provided
with an interna! puliup resistor. EADS # must satisfy
the setup and hold times t1o and t45 for proper chip
operation.

6.2,11 CACHE CONTROL
Cache Enable input (KEN#)

KEN# is the cache enable pin. KEN# is used to
determine whether the data being returned by the
current cycle is cacheable. When KEN# is active
and the intel486 DX microprocessor generates a cy-
cle that can be cached (most any memory read cy-
cle), the cycle will be transformed into a cache line
fill cycle.

A cache line is 16 bytes long. During the first cycle of
a cache line fill the byte-enable pins should be ig-
nored and data should be returned as if all four byte
enables were asserted. The Intel486 DX microproc-
essor will run between 4 and 16 contiguous bus cy-
cles to fili the line depsnding on the bus data width
selected by BS8# and BS16#. Refer to Section
7.2.3 for a description of cache line fill cycles.

The KEN# input is active LOW and is provided with
a small internal pullup resistor. It must satisfy the
setup and hold times t44 and ty5 for proper chip op-
eration.

Cache Flush Input (FLUSH #)

The FLUSH# input forces the intel486 DX micro-
processor to flush its entire internal cache. FLUSH #
is active LOW and need only be asserted for one
clock. FLUSH # is asynchronous but setup and hold
times tyo and t1 must be met for recognition on any
specific clock.

FLUSH # also determines whether or not the 3-state
test mode of the Intel486 DX microprocessor will be
invoked on assertion of RESET.

6.2.12 PAGE CACHEABILITY (PWT, PCD)

The PWT and PCD output signals correspond to two
user attribute bits in the page table entry. When pag-
ing is enabled, PWT and PCD correspond to bits 3
and 4 of the page table entry respactively. For cy-
cles that are not paged when paging is enabled (for
example 1/0 cycles) PWT and PCD correspond to
bits 3 and 4 in control register 3. When paging is
disabled, the Intel486 DX CPU ignores the PCD and
PWT bits and assumes they are zero for the purpose
of caching and driving PCD and PWT.

I PRELIMINARY

Intel486™ DX2 MICROPROCESSOR

PCD is masked by the CD (cache disable) bit in con-
trol register 0 (CR0). When CD=1 (cache line fills
disabled) the Intel486 DX microprocessor forces
PCD HIGH. When CD=0, PCD is driven with the
value of the page table entry/directory.

The purpose of PCD is to provide a cacheabls/non-
cacheable indication on a page by page basis. The
Intel486 DX will not perform a cache fill to any page
in which bit 4 of the page table entry is set. PWT
corresponds to the write-back bit and can be used
by an external cache to provide this functionality.
PCD and PWT bits are assigned to be zero during
real mode or whenever paging is disabled. Refer to
Sections 4.5.4 and 5.6 for a discussion of non-
cacheable pages.

PCD and PWT have the same timing as the cycle
definition pins (M/I0O#, D/C#, W/R#). PCD and
PWT are active HIGH and are not driven during bus
hold.

6.2.13 NUMERIC ERROR REPORTING
(FERR#, IGNNE #)

To allow PC-type floating point error reporting, the
Intel486 DX microprocessor provides two pins,
FERR# and IGNNE #.

Floating Point Error Output (FERR#)

The Intel486 DX microprocessor asserts FERR #
whenever an unmasked floating point error is en-
countered. FERR # is similar to the ERROR# pin on
the Intel387 math coprocessor. FERR# can be
used by external logic for PC-type floating point error
reporting in Intel486 DX microprocessor systems.
FERR # is active LOW, and is not floated during bus
hold.

In some cases, FERR # is asserted when the next
floating point instruction is encountered and in other
cases it is asserted before the next floating point
instruction is encountered depending upon the exe-
cution state of the instruction causing the exception.

The following class of floating point exceptions drive
FERR # at the time the exception occurs (i.e., before
encountering the next floating point instruction).

1. The stack fault, invalid operation, and denormal
exceptions on all transcendental instructions, in-
teger arithmetic instructions, FSQRT, FSCALE,
FPREM(1), FXTRACT, FBLD, and FBSTP.

2. Any exceptions on store instructions (including
integer store instructions).

The following class of floating point exceptions drive

FERR# only after encountering the next floating
point instruction.

2-91

intei486™ DX2 MICROPROCESSOR

1. Exceptions other than on all transcendental in-
structions, integer arithmetic instructions,
FSQRT, FSCALE, FPREM(1), FXTRACT, FBLD,
and FBSTP.

2. Any exception on all basic arithmetic, load, com-
pare, and contro! instructions (i.e., all other in-
structions).

Ignore Numeric Error Input (IGNNE #)

The Intel486 DX microprocessor will ignore a numer-
ic error and continue executing non-control floating
point instructions when IGNNE# is asserted, but
FERR# will still be activated. When deasserted, the
Intel486 DX microprocessor will freeze on a non-
control floating point instruction if a previous instruc-
tion caused an error. IGNNE# has no effect when
the NE bit in control register 0 is set.

The IGNNE# input is active LOW and is provided
with a small internal pullup resistor. This input is
asynchronous, but must meet setup and hold times
too and tpq to insure recognition on any specific
clock.

6.2.14 BUS SIZE CONTROL (BS16#, BS8+#)

The BS16# and BS8 # inputs allow external 16- and
8-bit busses to be supported with a small number of
external components. The Inteld86 DX CPU sam-
ples these pins every clock. The value sampled in
the clock before ready determines the bus size.
When asserting BS16# or BS8+# only 16 or 8 bits of
the data bus need be valid. If both BS16# and
BS8# are asserted, an 8-bit bus width is selected.

When BS16# or BS8# are asserted the Intel486 DX
microprocessor will convert a larger data request to
the appropriate number of smaller transfers. The
byte enables will also be modified appropriately for
the bus size selected.

BS16# and BS8 # are active LOW and are provided
with small internal pullup resistors. BS16# and
BS8 # must satisfy the setup and hold times t14 and
t45 for proper chip operation.

6.2.15 ADDRESS BIT 20 MASK (A20M #)

Asserting the A20M# input causes the Intel486 DX
microprocessor to mask physical address bit 20 be-
fore performing a lookup in the internal cache and
before driving a memory cycle to the outside world.
When A20M# is asserted, the Intel486 DX micro-
processor emulates the 1 Mbyte address wrap-
around that occurs on the 8086. A20M# is active
LOW and must be asserted only when the processor
is in real mode. The A20M# is not defined in Pro-
tected Mode. A20M# is asynchronous but should
meet setup and hold times tyo and ty¢ for recogni-

2-92

n
intgl.
tion in any specific clock. For correct operation of

the chip, A20M# should be sampled high 2 clocks
before and 2 clocks after RESET goes low.

6.2.16 BOUNDARY SCAN TEST SIGNALS

Test Clock (TCK)

TCK is an input to the Inteld86 DX2 CPU and pro-
vides the clocking function required by the JTAG
boundary scan feature. TCK is used to clock state
information and data into and out of the component.
State select information and data are clocked into
the component on the rising edge of TCK on TMS
and TDI, respectively. Data is clocked out of the part
on the falling edge of TCK on TDO.

In addition to using TCK as a free running clock, it
may be stopped in a low, O, state, indefinitely as
described in IEEE 1149.1. While TCK is stopped in
the low state, the boundary scan latches retain their
state.

When boundary scan is not used, TCK should be
tied high or left as a NC (This is important during
power up to avoid the possibility of glitches on the
TCK which could prematurely initiate boundary scan
operations). TCK is supplied with an internal pullup
resistor.

TCK is a clock signal and is used as a reference for
sampling other JTAG signals. On the rising edge of
TCK, TMS and TDI are sampled. On the falling edge
of TCK, TDO is driven.

Test Mode Select (TMS)

TMS is decoded by the JTAG TAP (Tap Access
Port) to select the operation of the test logic, as de-
scribed in Section 8.5.4.

To guarantee deterministic behavior of the TAP con-
troller, TMS is provided with an internal pull-up resis-
tor. If boundary scan is not used, TMS may be tied
high or left unconnected. TMS is sampled on the
rising edge of TCK. TMS is used to select the inter-
nal TAP states required to load boundary scan in-
structions to data on TDI. For proper initialization of
the JTAG logic, TMS should be driven high, “'1", for
at least four TCK cycles following the rising edge of
RESET.

Test Data Input (TDI)

TDl is the serial input used to shift JTAG instructions
and data into the component. The shifting of instruc-
tions and data occurs during the SHIFT-IR and
SHIFT-DR controller states, respectively. These
states are selected using the TMS signal as de-
scribed in Section 8.5.4.

PRELIMINARY I

a

Intel o

An internal pull-up resistor is provided on TDI to en-
sure a known logic state if an open circuit occurs on
the TDI path. Note that when 1" is continuously
shifted into the instruction register, the BYPASS
instruction is selected. TDl is sampled on the
rising edge of TCK, during the SHIFT-IR and the

SHIFT-DR states. During all other TAP controller
states, TDI is a “don’t care’.

Test Data Output (TDO)

TDO is the serial output used to shift JTAG instruc-
tions and data out of the component. The shifting of
instructions and data occurs during the SHIFT-IR
and SHIFT-DR TAP controller states, respsctively.
These states are selected using the TMS signal as
described in Section 8.5.4. When not in SHIFT-IR or
SHIFT-DR state, TDO is driven to a high impedance
state to allow connecting TDO of different devices in
parallel.

TDO is driven on the falling edge of TCK during the
SHIFT-IR and SHIFT-DR TAP controller states. At
all other times TDO is driven to the high impedance
state.

6.3 Write Buffers

The Inteld86 DX2 microprocessor contains four
write buffers to enhance the performance of consec-
utive writes to memory. The buffers can be filled at a
rate of one write per clock until all four buffers are
filled.

When all four buffers are empty and the bus is idle, a
write request will propagate directly to the external
bus bypassing the write buffers. If the bus is not
available at the time the write is generated internally,
the write will be placed in the write buffers and prop-
agate to the bus as soon as the bus becomes avail-
able. The write is stored in the on-chip cache imme-
diately if the write is a cache hit.

Writes will be driven onto the external bus in the
same order in which they are received by the write
buffers. Under certain conditions a memory read will
go onto the external bus before the memory writes
pending in the buffer even though the writes oc-
curred earlier in the program execution.

A memory read will only be reordered in front of all
writes in the buffers under the following conditions: If
all writes pending in the buffers are cache hits and
the read is a cache miss. Under these conditions the
Intel486 DX microprocessor will not read from an
external memory location that needs to be updated
by one of the pending writes.

I PRELIMINARY

Intel486™ DX2 MICROPROCESSOR

Reordering of a read with the writes pending in the
buffers can only occur once before all the buffers
are emptied. Reordering read once only maintains
cache consistency. Consider the following example:
The CPU writes to location X. Location X is in the
internal cache, so it is updated there immediately.
However, the bus is busy so the write out to main
memory is buffered (see Figure 6.3(a)). At this point,
any reads to location X would be cache hits and
most up-to-date data would be read.

Intel486 DX2
CPU Cache Write Buffer Main Memory
w
X| new datax X| newdatax X data x
Y datay
z
Figure 6.3(a)

The next instruction causes a read to location Y.
Location Y is not in the cache (a cache miss). Since
the write in the write buffer is a cache hit, the read is
reordered. When location Y is read, it is put into the
cache. The possibility exists that location Y will re-
place location X in the cache. If this is true, location
X would no longer be cached (see Figure 6.3(b)).

Intel486 DX2
CPU Cache Wirite Buffer Main Memory
w
Y datay X| newdatax X data x
Y
4
Figure 6.3(b)

Cache consistency has been maintained up to this
point. If a subsequent read is to location X (now a
cache miss) and it was reordered in front of the buff-
ered write to location X, stale data would be read.
This is why only 1 read is allowed to be reordered.
Once a read is reordered, all the writes in the write
buffer are flagged as cache misses to ensure that no
more reads are reordered. Since one of the condi-
tions to reorder a read is that all writes in the write
buffer must be cache hits, no more reordering is al-
lowed until all of those flagged writes propogate to
the bus. Similarly, if an invalidation cycle is run all
entries in the write buffer are flagged as cache
misses.

For multiple processor systems and/or systems us-
ing DMA techniques, such as bus snooping, locked
semaphores should be used to maintain cache con-
sistency.

2-93

Intel486™ DX2 MICROPROCESSOR

6.3.1 WRITE BUFFERS AND 1/0 CYCLES

input/Output (I/0) cycles must be handled in a dif-
terent manner by the write buffers.

I/0 reads are never reordered in front of buffered
memory writes. This insures that the Intel486 DX mi-
croprocessor will update all memory locations be-
fore reading status from an I/0 device.

The Intel486 DX microprocessor never buffers sin-
gle I/0 writes. When processing an QUT instruction,
internal execution stops until the /0 write actually
completes on the external bus. This allows time for
the external system to drive an invalidate into the
Intel486 DX microprocessor or to mask interrupts
before the processor progresses to the instruction
following OUT. REP QUTS instructions will be buff-
ered.

I/0 device recovery time must be handled slightly
differently by the Intel486 DX microprocessor than
with the Intel386 microprocessor. /O device back-
to-back write recovery times could be guaranteed by
the Intel386 microprocessor by inserting a jump to
the next instruction in the code that writes to the
device. The jump forces the Intel386 microprocessor
to generate a prefetch bus cycle which can't begin
until the /0 write completes.

Inserting a jump to the next write will not work with
the Intel486 DX microprocessor because the pre-
fetch could be satisfied by the on-chip cache. A read
cycle must be explicitly generated to a non-cache-
able location in memory to guarantee that a read
bus cycle is performed. This read will not be allowed
to proceed to the bus until after the 1/0 write has
completed because |/O writes are not buffered. The
1/0 device will have time to recover to accept anoth-
er write during the read cycle.

6.3.2 WRITE BUFFERS IMPLICATIONS ON
LOCKED BUS CYCLES

Locked bus cycles are used for read-modify-write
accesses to memory. During a read-modify-write ac-
cess, a memory base variable is read, modified and
then written back to the same memory location. it is
important that no other bus cycles, generated by
other bus masters or by the Intel486 DX microproc-
essor itself, be allowed on the external bus between
the read and write portion of the locked sequence.

During a locked read cycle the Intel486 DX micro-
processor will always access external memory, it will
never look for the location in the on-chip cache, but
for write cycles, data is written in the internal cache
(if cache hit) and in the external memory. All data
pending in the Intel486 DX microprocessor's write
buffers will be written to memory before a locked
cycle is allowed to proceed to the external bus.

2-94

=

intel.
The Intel486 DX microprocessor will assert the
LOCK # pin after the write buffers are emptied dur-
ing a locked bus cycle. With the LOCK# pin assert-
ed, the microprocessor wili read the data, operate
on the data and place the results in a write buffer.
The contents of the write buffer will then be written

to external memory. LOCK# will become inactive
after the write part of the locked cycle.

6.4 Interrupt and Non-Maskable
Interrupt Interface

The Intel486 DX microprocessor provides two asyn-
chronous interrupt inputs, INTR (interrupt request)
and NMI (non-maskabie interrupt input). This section
describes the hardware interface between the in-
struction execution unit and the pins. For a descrip-
tion of the algorithmic response to interrupts refer to
Section 2.7. For interrupt timings refer to Section
7.210.

6.4.1 INTERRUPT LOGIC

The Intel486 DX microprocessor contains a two-
clock synchronizer on the interrupt line. An interrupt
request will reach the internal instruction execution
unit two clocks after the INTR pin is asserted, if
proper setup is provided to the first stage of the syn-
chronizer.

There is no special logic in the interrupt path other
than the synchronizer. The INTR signal is level sen-
sitive and must remain active for the instruction exe-
cution unit to recognize it. The interrupt will not be
serviced by the Intel486 DX microprocessor if the
INTR signal does not remain active.

The instruction execution unit will look at the state of
the synchronized interrupt signal at specific clocks
during the execution of instructions (if interrupts are
enabled). These specific clocks are at instruction
boundaries, or iteration boundaries in the case of
string move instructions. Interrupts will only be ac-
cepted at these boundaries.

An interrupt must be presented to the Inteld86 DX
microprocessor INTR pin three clocks before the
end of an instruction for the interrupt to be acknowl-
edged. Presenting the interrupt 3 clocks before the
end of an instruction allows the interrupt to pass
through the two clock synchronizer leaving one
clock to prevent the initiation of the next sequential
instruction and to begin interrupt service. If the inter-
rupt is not received in time to prevent the next in-
struction, it will be accepted at the end of next in-
struction, assuming INTR is still held active. The in-
terrupt service microcode will start after two dead
clocks.

PRELIMINARY I

]

intel.

The longest latency between when an interrupt re-
quest is presented on the INTR pin and when the
interrupt service begins is: longest instruction used
+ the two clocks for synchronization + one clock

required to vector into the interrupt service micro-
code.

6.4.2 NMI LOGIC

The NMI pin has a synchronizer like that used on the
INTR line. Other than the synchronizer, the NMI log-
ic is different from that of the maskable interrupt.

NMI is edge triggered as opposed to the level trig-
gered INTR signal. The rising edge of the NMI signal
is used to generate the interrupt request. The NMI
input need not remain active until the interrupt is ac-
tually serviced. The NMI pin only needs to remain
active for a single clock if the required setup and
hold times are met. NM! will operate properly if it is
held active for an arbitrary number of clocks.

The NMI input must be held inactive for at least four
clocks after it is asserted to reset the edge triggered
logic. A subsequent NMI may not be generated if the
NM! is not held inactive for at least two clocks after
being asserted.

The NMI input is internally masked whenever the
NMI routine is entered. The NMI input will remain
masked until an IRET (return from interrupt) instruc-
tion is executed. Masking the NMI signal prevents
recursive NMI calls. if another NMI occurs while the
NMI is masked off, the pending NMI will be executed
after the current NMI is done. Only one NMI can be
pending while NMI is masked.

6.5 Reset and Initialization

The Intel486 DX2 microprocessor has a built in self
test (BIST) that can be run during reset. The BIST is
invoked if the AHOLD pin is asserted for 2 clocks
before and 2 clocks after RESET is deasserted. RE-
SET must be active for 15 clocks with or without
BIST enabled. Refer to Section 8.0 for information
on Intel486 DX2 microprocessor testability. To en-
sure proper results, FLUSH# must not be asserted
while BIST is executing.

The Intel486 DX microprocessor registers have the
values shown in Table 1.5 after RESET is per-
formed. The EAX register contains information on
the success or failure of the BIST if the self test is
executed. The DX register always contains a compo-
nent identifier at the conclusion of RESET. The up-
per byte of DX (DH) will contain 04 and the lower
byte (DL) will contain a stepping identifier (see Table
1.5). The floating point registers are initialized as if
the FINIT/FNINIT (initialize processor) instruction

I PRELIMINARY

Intel486™ DX2 MICROPROCESSOR

was executed if the BIST was performed. if the BIST
is not executed, the floating point registers are un-
changed.

Table 6.2. Register Values after Reset

Register Initial Value Initial Value
(BIST) (No Bist)

EAX Zero (Pass) Undefined

ECX Undefined Undefined

EDX 0400 + Revision 1D 0400 + Revision ID

EBX Undefined Undefined

ESP Undefined Undefined

EBP Undefined Undefined

ES! Undefined Undefined

ED} Undefined Undefined

EFLAGS 00000002h 00000002h

EIP OFFFOh OFFFCh

ES 0000h 0000h

(&3] FOOOh* FOOOh*

SS 0000h 0000h

DS 0000h 0000h

FS 0000h 0000h

GS 0000h 0000h

IDTR Base=0, Limit=3FFh Base=0, Limit=3FFh

CRO 60000010h 60000010h

DR7 00000000h 00000000h

CwW 037Fh Unchanged

SwW 0000h Unchanged

™ FFFFh Unchanged

FIP 00000000h Unchanged

FEA 00000000h Unchanged

FCS 0000h Unchanged

FDS 0000h Unchanged

FOP 000h Unchanged

FSTACK Undefined Unchanged

Table 6.3. Component and Revision ID

intel486 DX2 CPU | Component | Revision
Stepping Name D ID
A 04h 32h
B 04h 33h

The Intel486 DX microprocessor will start executing
instructions at location FFFFFFFOH after RESET.
When the first InterSegment Jump or Call is execut-
ed, address lines A20-A31 will drop LOW for CS-rel-
ative memory cycles, and the Intel486 DX micro-
processor will only exscute instructions in the lower
one Mbyte of physical memory. This allows the sys-
tem designer to use a ROM at the top of physical
memory to initialize the system and take care of
RESETs.

2-95

Intel486™ DX2 MICROPROCESSOR

RESET forces the Inteld86 DX microprocessor to
terminate all execution and local bus activity. No in-
struction or bus activity will occur as long as RESET
is active.

All entries in the cache are invalidated by RESET.

6.5.1 PIN STATE DURING RESET

The Intel486 DX2 microprocessor recognizes and
can respond to HOLD, AHOLD, and BOFF# re-
quests regardless of the state of RESET. Thus, even
though the processor is in reset, it can still float its
bus in response to any of these requests.

While in reset, the Intel486 DX microprocessor bus
is in the state shown in Figure 6.4 if the HOLD,
AHOLD and BOFF # requests are inactive. Note that
the address (A31-A2, BE3 # -BEO #) and cycle defi-
nition (M/IO#, D/C#, W/R#) pins are undefined
from the time reset is asserted up to the start of the
first bus cycle. All undefined pins (except FERR #)
assume known values at the beginning of the first
bus cycle. The first bus cycle is always a code fetch
to address FFFFFFFOH. FERR# reflects the state
of the ES (error summary status) bit in the floating
point unit status word. The ES bit is initialized when-
ever the floating point unit state is initialized. The
floating point unit's status word register can be ini-
tialized by BIST or by executing FINIT/FNINIT in-
struction. Thus, after reset and before executing the
first FINIT or FNINIT instruction, the values of the
FERR# and the numeric status word register bits
0-7 depends on whether or not BIST is performed.
Table 6-4 shows the state of FERR# signal after
reset and before the execution of the FINIT/FNINIT
instruction.

Table 6.4
FPU Status
BIST FERR #
Word Register
Performed Pin Bits 0-7
Inactive Inactive
YES (High) (Low)
NO Undefined Undefined
(Low or High) (Low or High)}

2-96

intel.

After the first FINIT or FNINIT instruction, FERR #
pin and the FPU status word register bits (0-7) will
be inactive irrespective of the Built-In Self-Test
(BIST).

Power Down Mode (Upgrade Processor
Support)

The Power Down Mode on the Intel486 DX2 micro-
processor, when initiated by the upgrade processor,
reduces the power consumption of the Intel486 DX2
CPU (see Table 14-2 D.C. Specifications), as well as
forces all of its output signals to be 3-stated. The
UP# pin on the Intel486 DX2 microprocessor is
used for enabling the Power Down Mode.

Once the UP# pin is driven active by the upgrade
processor upon power-up, the intel486 DX2 micro-
processor’s bus is floated immediately. The Intel486
DX2 CPU enters the Power Down Mode when the
UP# pin is sampled asserted in the clock before the
falling edge of RESET. The UP# pin has no effect
on the power down status, except during this edge.
The Intel486 DX2 CPU then remains in the Power
Down Mode until the next time the RESET signal is
activated. For warm resets, with the upgrade proces-
sor in the system, the Intel486 DX2 CPU will remain
3-stated and re-enter the Power Down Mode once
RESET is de-asserted. Similarly for power-up resets,
if the upgrade processor is not taken out of the sys-
tem, the Intel486 DX2 CPU will 3-state its outputs
upon sensing the UP # pin active and enter the Pow-
er Down Mode after the falling edge of RESET.

PRELIMINARY I

Intel486™ DX2 MICROPROCESSOR

‘ojqe}s ese YD pue OOA Jeye Sw |)Ses| e L0} Pepesse eq 0} | ISIY eiinbel sjesel dn-Jemod "s1esel ulem 1o} yipm esind 13534 SHT1D S1 9

"NdD eyl Aq peziuBodes s1 1353Y IRUN ejeulwelepul s1 vQTH dn-jemod uQ 13534 Buunp Ajeussou peziubooss s) pioH 'S

18w 8q Isnw

sewn pioy pue dmes 0TOHY "(LSI8) 1s81-)1eS-Ul-iing ey} e3oAul 0} 13S3Y jo ebpe Bulje; eyy 0} Joud eBpe XD eul o} (eAnde) ybly ueaup eq pINoyYs QIOHY v
‘papessesp Buteq 13534 10 SHTID 0L Ulyym pejejs-g pesjuesent ese sindino ||y "epon 1se] INdino

81e1S-¢ BY) OAU! 0} 1 3S3Y 40 eBpe Bullre) eyl Joye SHTD OM PUe O} J0Ld SHTD OM] IO} (BAIIEB) MO] UBAUP 8q ISNL }} *AISTIOUOIYOUASE UBALP S! # HSMN1d USYUM 'dE
‘Jow 8q Isnw sewy pjoy pue dmes ¥ HSN4 ‘pauessesp Buieq 13SIH JO SHTID 0L UM pejels-g pesjuesend ese sindino |y ‘epon

1581 IniNO elels-¢ 8y) #v0Aul O} 1353Y Jo ebipe Buijiej oy} o1 Joud 86pe H1D eyl 10} (BAOE) MO| UBALP BG PINOYS U ‘AISNOUOIYOUAS UBALP S| #HSN4 UBUM 'BE
‘uonesedo

Jedoid ainsue 0} 1353y Jo ebpe Buyje) ey} sele S0 O0M) pue 0} Joud SHTD OM) 10} (sAndRUl) YBIY UsAUp g 1SNW)i 'AISNOUOIYDUASE UBAUPD SI #NOZY UBUM G2
‘Jew eq Isnw sewy pjoy pue dnjes

#Wo2y "uoneiedo sedoid einsus 0} | 353Y Jo obpe Buie; eyy o) Joud ebpe M1 8yl 40} (eAndeul) ybiy usAUp q ISNW) ‘AISNOUOILOUAS UBAUP SI # WOZY USUM B2
‘abpe 300§ syeds e uo uonubBoses esjuelend 03 Auo Jew eq ismu 02) ‘yndul snouosyouAse ue i 1383Y 'L

S31O0N

ce-greive

ﬂ YaH

£-040
*%-'%
#3207
LI w904
#4/h ‘#3/0
ARRN 3NN #0014 oy Ty
03d ‘iMd ‘#£38-038

Y 4 QINAHND 1Svg ‘woin ‘Ty- 'Sy

T EET R PR PR P RERRRE TR RERERRRP RO (€€ (

sindyng

ANRAY b3we
///7 #Say
/77 anozy

(suks)
#NOTY

ANAN

/77 AN fnech)

(ousks)
#HSN14

sndy|

QI0HY

|97, o] 0z,
e om0 g —————— O AARAYN H“ 77 1353
e et ou M (1T ——————] .mm.i A10 S1 ool ¥
|/|L\|/|\ /|. T\ __/ .
I I by 2)) \

1 1 3 1

Figure 6.4. Pin States during RESET

2-97

I PRELIMINARY

Intel486™ DX2 MICROPROCESSOR

intgl.

7.0 BUS OPERATION

7.1 Data Transfer Mechanism

All data transfers occur as a resuit of one or more
bus cycles. Logical data operands of byte, word and
dword lengths may be transferred without restric-
tions on physical address alignment. Data may be
accessed at any byte boundary but two or three cy-
cles may be required for unaligned data transfers.
See Section 7.1.3 Dynamic Bus Sizing and 7.1.6 Op-
erand Alignment.

The Intel486 DX microprocessor address signals are
split into two components. High-order address bits
are provided by the address lines, A2-A31. The byte
enables, BEO # -BE3 #, form the low-order address
and provide linear selects for the four bytes of the
32-bit address bus.

The byte enable outputs are asserted when their as-
sociated data bus bytes are involved with the pres-
ent bus cycle, as listed in Table 7.1. Byte enable
patterns which have a negated byte enable separat-
ing two or three asserted byte enables will never
occur (see Table 7.5). All other byte enable patterns
are possible.

Table 7.1. Byte Enables and Associated
Data and Operand Bytes

Byte

Enable Associated Data Bus Signals

Signal

BEO # Do-D7 (byte 0—least significant)

BE1# | D8-D15 (byte 1)

BE2# | D16-D23 (byte 2)

BE3# | D24-D31 (byte 3—most significant)
2-98

Address bits A0 and A1 of the physical operand’s
base address can be created when necessary. Use
of the byte enables to create A0 and A1 is shown in
Table 7.2. The byte enables can also be decoded to
generate BLE# (byte low enable) and BHE # (byte
high enable). These signals are needed to address
16-bit memory systems (see Section 7.1.4 Inter-
facing with 8- and 16-bit memories).

Table 7.2. Generating A0-A31 from
BEO#-BE3# and A2-A31

Intel486™™ DX CPU Address Signals

A31 ...l A2 BE3# |BE2# |BE1# | BEO #
Physical Base

Address
A3 ..o A2|A1|AD
A3 ..o A2[0|0 X X X Low
A3t ...l A2 0|1 X X Low | High
A3 .o A2[1]0 X Low | High | High
A3t ... A2| 1 | 1] Low [High [High | High

7.1.1 MEMORY AND 1/0 SPACES

Bus cycles may access physical memory space or
170 space. Peripheral devices in the system may ei-
ther be memory-mapped, or |/O-mapped, or both.
Physical memory addresses range from 00000000H
to FFFFFFFFH (4 gigabytes). |/0 addresses range
from 00000000H to 0000FFFFH (64 Kbytes) for pro-
grammed 1/0. See Figure 7.1.

PRELIMINARY I

|n‘te| o Intel486™ DX2 MICROPROCESSOR

FFFFFFFFH
PHYSICAL
MEMORY
4GBYTE
[}
Z
O00CFFFFH 1 ACCESSIBLE
64 KBYTE PROGRAMMED
00000000H 00000000H /O SPACE 541045-33
Physical Memory Space 170 Space
Figure 7.1. Physical Memory and I/0 Spaces
712 g:gm‘;ﬂ".g&’o SPACE 32-Bit Wide Organization
FFFFFFFFH FFFFFFFCH
The Intel486 DX microprocessor data path to memo-
ry and input/output (I/0) spaces can be 32-, 16- or
8-bits wide. The byte enable signals, BEO# -BE3 #,
allow byte granularity when addressing any memory 00000003 i) 00000000H
or 1/0 structure whether 8, 16 or 32 bits wide. BE3# BE2# BE1# BEO#
241245-34
The Intel486 DX microprocessor includes bus con-
trol pins, BS16# and BS8#, which allow direct con- 16-Bit Wide Organization
nection to 16- and 8-bit memories and 1/O devices. FFFFFFFFH FFFFFFFEH
Cycles to 32-, 16- and 8-bit may occur in any se-
quence, since the BS8# and BS16# signals are
sampled during each bus cycle.
32-bit wide memory and 1/O spaces are organized
as arrays of physical 4-byte words. Each memory or 0000000 1H =i} 00000000H
1/0 4-byte word has four individually addressable BHE# BLE#
bytes at consecutive byte addresses (see Figure 241245-35
7.2). The lowest addressed byte is associated with
data signals D0-D7; the highest-addressed byte Figure 7.2. Physical Memory
with D24-D31. Physical 4-byte words begin at ad- and I/0 Space Organization

dresses divisible by four.

I PRELIMINARY 299

Intel486™ DX2 MICROPROCESSOR

16-bit memories are organized as arrays of physical
2-byte words. Physical 2-byte words begin at ad-
dresses divisible by two. The byte enables BEO# ~
BE3+#, must be decoded to A1, BLE# and BHE # to
address 16-bit memories (see Section 7.1.4).

To address B8-bit memories, the two low order ad-
dress bits A0 and A1, must be decoded from BEO # —
BE3#. The same logic can be used for 8- and 16-bit
memories since the decoding logic for BLE # and AO
are the same (see Section 7.1.4).

7.1.3 DYNAMIC DATA BUS SIZING

Dynamic data bus sizing is a feature allowing proc-
essor connection to 32-, 16- or 8-bit buses for mem-
ory or I/0. A processor may connect to all three bus
sizes. Transfers to or from 32-, 16- or 8-bit devices
are supported by dynamically determining the bus
width during each bus cycle. Address decoding cir-
cuitry may assert BS16# for 16-bit devices, or
BS8# for 8-bit devices during each bus cycle. BS8 #
and BS16# must be negated when addressing 32-
bit devices. An 8-bit bus width is selected if both
BS16# and BS8+# are asserted.

BS16# and BS8+# force the Intel486 DX microproc-
essor to run additional bus cycles to complete re-
quests larger than 16- or 8 bits. A 32-bit transfer will
be converted into two 16-bit transfers (or 3 transfers
if the data is misaligned) when BS16+# is asserted.
Asserting BS8+# will convert a 32-bit transfer into
four 8-bit transfers.

Extra cycles forced by BS16# or BS8+# should be
viewed as independent bus cycles. BS16# or BS8#
must be driven active during each of the extra cycles
uniess the addressed device has the ability to
change the number of bytes it can return between
cycles.

intel.

The Intel486 DX microprocessor will drive the byte
enables appropriately during extra cycles forced by
BS8# and BS16#. A2-A31 will not change if ac-
cesses are to a 32-bit aligned area. Table 7.3 shows
the set of byte enables that will be generated on the
next cycle for each of the valid possibilities of the
byte enables on the current cycle.

The dynamic bus sizing feature of the Intel486 DX
microprocessor is significantly different than that of
the Intel386 microprocessor. Unlike the Intel386 mi-
croprocessor, the Intel486 DX microprocessor re-
quires that data bytes be driven on the addressed
data pins. The simplest example of this function is a
32-bit aligned, BS16# read. When the Intel486 DX
microprocessor reads the two high order bytes, they
must be driven on the data bus pins D16-D31. The
Intel486 DX microprocessor expects the two low or-
der bytes on DO-D15. The Intel386 microprocessor
expects both the high and low order bytes on DO-
D15. The Intel386 microprocessor always reads or
writes data on the lower 16 bits of the data bus when
BS16# is asserted.

The external system must contain buffers to enable
the Intel486 DX microprocessor to read and write
data on the appropriate data bus pins. Table 7.4
shows the data bus lines where the Intel486 DX mi-
croprocessor expects data to be returned for each
valid combination of byte enables and bus sizing op-
tions.

Valid data will only be driven onto data bus pins cor-
responding to active byte enables during write cy-
cles. Other pins in the data bus will be driven but
they will not contain valid data. Unlike the Intel386
microprocessor, the intel486 DX microprocessor will
not duplicate write data onto parts of the data bus
for which the corresponding byte enable is negated.

Table 7.3. Next Byte Enable Values for BSn# Cycles

Current Next with BS8 # Next with BS16 #
BE3# BE2# BE1# BEO# | BE3# BE2# BE1# BEO# | BE3# BE2# BE1# BEO#
1 1 1 0 n n n n n n n n
1 1 0 0 1 1 0 1 n n n n
1 0 0 0 1 0 0 1 1 0 1 1
0 0 0 0 0 0 0 1 0 0 1 1
1 1 0 1 n n n n n n n n
1 0 0 1 1 -0 1 1 1 0 1 1
0 0 0 1 0 0 1 1 0 0 1 1
1 0 1 1 n n n n n n n n
0 0 1 1 0 1 1 1 n n n n
0 1 1 1 n n n n n n n n

“n"” means that another bus cycle will not be required to satisfy the request.

2-100

PRELIMINARY I

intgl.

Intel486™ DX2 MICROPROCESSOR

Table 7.4. Data Pins Read with Different Bus Sizes

BE3# BE2# BE1# BEO# w/o BS8#/BS16# w BS8# W BS16#
1 1 1 0 D7-Do0 D7-Do D7-Do
1 1 0 0 D15-D0 D7-DoO D15-DO
1 0 0 0 D23-D0 D7-D0 D15-D0
0 0 0 0 D31-D0 D7-Do0 D15-D0
1 1 0 1 D15-D8 D15-D8 D15-D8
1 0 0 1 D23-D8 D15-D8 D15-D8
0 0 0 1 D31-D8 D15-D8 D15-D8
1 0 1 1 D23-D16 D23-D16 D23-D16
0 0 1 1 D31-D16 D23-D16 D31-D16
0 1 1 1 D31-D24 D31-D24 D31-D24

7.1.4 INTERFACING WITH 8-, 16- AND 32-BIT
MEMORIES

In 32-bit physical memories such as Figure 7.3, each
4-byte word begins at a byte address that is a multi-
ple of four. A2-A31 are used as a 4-byte word se-
lect. BEO# -BE3 # select individual bytes within the
4-byte word. BS8# and BS16+# are negated for all
bus cycles involving the 32-bit array.

32, DATA BUS (D0-D31)
Intel486 DX 7 32-817
cPU ADDRESS BUS (BEO#-BE3#,A2-A31) MEMORY
—
Tass* BS16#
"HIGH" "HIGH"
241245-36

Figure 7.3. Intel486™ DX Microprocessor
with 32-Bit Memory

16- and 8-bit memories require external byte swap-
ping logic for routing data to the appropriate data
lines and logic for generating BHE #, BLE # and A1.
In systems where mixed memory widths are used,
extra address decoding logic is necessary to assert
BS16# or BS8#.

Figure 7.4 shows the inteld86 DX microprocessor
address bus interface to 32-, 16- and 8-bit memo-
ries. To address 16-bit memories the byte enables
must be decoded to produce A1, BHE# and BLE#
(A0). For 8-bit wide memories the byte enables must
be decoded to produce A0 and At. The same byte
select logic can be used in 16- and 8-bit systems
since BLE # is exactly the same as A0 (see Table
7.5).

BEO#-BE3# can be decoded as shown in Table
7.5 to generate A1, BHE# and BLE #. The byte se-
lect logic necessary to generate BHE # and BLE # is
shown in Figure 7.5,

Intel486 DX Address Bus (A31-A2 BEQ#-BE3#) R 32-Bit
Microprocessor v Memory
» »
BS8# BS16#

A31-A2 .
Address ‘ "1 18-Bit
Decode D BHE®, BLE®, A1 _ Memory

BEO#-BE3# Byte
7] Select Logic
AO(BLE#), A1

8-Bit
A31-A2 Memory

g

241245-37

Figure 7.4. Addressing 16- and 8-Bit Memories

I PRELIMINARY

2-101

Intel486™ DX2 MICROPROCESSOR

intel.

Table 7.5. Generating A1, BHE # and BLE # for Addressing 16-Bit Devices

intel486™ DX CPU Signals 8, 16-Bit Bus Signals Comments
BE3# BE2+# BE1+# BEO # Al BHE # BLE # (A0)

H* H* H* H* X X X x—no active bytes
H H H L L H L
H H L H L L H
H H L L L L L
H L H H H H L
H* L* H* L* X X X x—not contiguous bytes
H L L H L L H
H L L L L L L
L H H H H L H
L* H* H* L* X X X x—not contiguous bytes
L* H* L H* X X X x—not contiguous bytes
L* H* L* L* X X X x—not contiguous bytes
L L H H H L L
L* L* H* L* X X X x—not contiguous bytes
L L L H L L H
L L L L L L L

BLE # asserted when D0O~D7 of 16-bit bus is active.

A1 low for all even words; A1 high for all odd words.

BHE # asserted when D8-D15 of 16-bit bus is active.

Kay:
x = don'tcare
H = high voltage level
L = low voltage level

* = anon-occurring pattern of Byte Enables; either none are asserted,
or the pattern has Byte Enables asserted for non-contiguous bytes

oo

241245-38

BEO#

BE1#
BE3#

)c I> 0 BHE#

241245-39

BLE# (OR AO)

241245-40

Figure 7.5. Logic to Generate A1, BHE # and BLE # for 16-Bit Busses

Combinations of BEO#-BE3# which never occur
are those in which two or three asserted byte en-
ables are separated by one or more negated byte
enables. These combinations are "‘don’t care” con-
ditions in the decoder. A decoder can use the non-
occurring BEQ # —BE3# combinations to its best ad-
vantage.

2-102

Figure 7.6 shows a intel486 DX microprocessor data
bus interface to 16- and 8-bit wide memories. Exter-
nal byte swapping logic is needed on the data lines
so that data is supplied to, and received from the
Intel486 DX microprocessor on the correct data pins
(see Table 7.4).

PRELIMINARY I

Intel486™ DX2 MICROPROCESSOR

LD0-D7 4 R
Intel486 DX 28015 4 o 32-sit
Microprocessor < D16-D23 _ 4 »| Memory
 D24-031 ", 4 ”
r Y r 3 N ’ v
BS8#
BS16# (A2-A31, BEO#~BE3#)
Byte "
Swap . 16 N 16-8Bit
Logic d d Memory
»
- A 4
Address Byte .8 N 8-Bit
Decode Swap ‘ > Memory
Logic
241245-41

Figure 7.6. Data Bus Interface to 16- and 8-bit Memories

7.1.5 DYNAMIC BUS SIZING DURING CACHE
LINE FILLS

BS8# and BS16# can be driven during cache line
fills. The Intel486 DX microprocessor will generate
enough 8- or 16-bit cycles to fill the cache line. This
can be up to 16 8-bit cycles.

The external system should assume that all byte en-
ables are active for the first cycle of a cache line fill.
The Intel486 DX microprocessor will generate prop-
er byte enables for subsequent cycles in the line fill.
Table 7.6 shows the appropriate AQ (BLE #), A1 and
BHE# for the various combinations of the Intel486
DX microprocessor byte enables on both the first
and subsequent cycles of the cache line fill. The *“*”
marks all combinations of byte enables that will be
generated by the Intel486 DX microprocessor during
a cache line fill.

7.1.6 OPERAND ALIGNMENT

Physical 4-byte words begin at addresses that are
multiples of four. It is possible to transfer a logical
operand that spans more than one physical 4-byte
word of memory or 1/0 at the expense of extra cy-
cles. Examples are 4-byte operands beginning at ad-
dresses that are not evenly divisible by 4, or 2-byte
words split between two physical 4-byte words.
These are referred to as unaligned transfers.

Operand alignment and data bus size dictate when
multiple bus cycles are required. Table 7.7 describes
the transfer cycles generated for all combinations of
logical operand lengths, alignment, and data bus siz-
ing. When multiple cycles are required to transfer a
multi-byte logical operand, the highest-order bytes
are transferred first. For example, when the proces-
sor does a 4-byte unaligned read beginning at loca-
tion x11 in the 4-byte aligned spacse, the three high
order bytes are read in the first bus cycle. The low
byte is read in a subsequent bus cycle.

Table 7.6. Generating A0, A1 and BHE # from the Intel486™ DX Microprocessor Byte Enables

kY

BE3# BE2# BE1# BEO#

First Cache Fill Cycle
A0

Any Other Cycle

A1l BHE # A0 A1 BHE #

o.;.no'_g_a_a

*

1
*0
*0

- —- a2 0O0000C0O
[N e R e N = =]

-~ 0000 -+200 = =

COO0OO0OO0OOCOODOO

[eleNoNaeNoNeNoNolNoNa
[eNeoNeRoRNeNeoNoNoNoNo)
- OO0 4+ 420000
- 2 2 0000000
QOO0 000000 =

I PRELIMINARY

2-103

Intel486™ DX2 MICROPROCESSOR

Table 7.7. Transfer Bus Cycles for Bytes, Words and Dwords

Byte-Length of Logical Operand

2

Physical Byte Address in

Memory (Low Order Bits) 0o

01

10 00 11

Transfer Cycles
over 32-Bit Bus

Transfer Cycles over
16-Bit Data Bus
= BS16# Asserted

Transfer Cycles over
8-Bit Data Bus
.= BS8# Asserted

KEY:

b = byte transfer h = high-order portion
w = 2-byte transfer | = low-order portion
3 = 3-byte transfer = mid-order portion
d = 4-byte transfer

The function of unaligned transfers with dynamic
bus sizing is not obvious. When the external systems
asserts BS16# or BS8# forcing extra cycles, low-
order bytes or words are transferred first (opposite
to the example above). When the Intel486 DX micro-
processor requests a 4-byte read and the external
system asserts BS16#, the lower 2 bytes are read
first followed by the upper 2 bytes.

in the unaligned transfer described abovs, the proc-
essor requested three bytes on the first cycle. If the
external system asserted BS16# during this 3-byte
transfer, the lower word is transferred first followed
by the upper byte. In the final cycle the lower byte of
the 4-byte operand is transferred as in the 32-bit ex-
ample above.

7.2 Bus Functional Description

The Intel486 DX microprocessor supports a wide va-
riety of bus transfers to meet the needs of high per-
formance systems. Bus transfers can be single cycle
or muitiple cycle, burst or non-burst, cacheable or
non-cacheabie, 8-, 16- or 32-bit, and pseudo-locked.
To support multiprocessing systems there are cache
invalidation cycles and locked cycles.

2-104

[6 [mib | mno| to |

4-Byte Operand

T T
byte with byte with
lowest highest
address address

This section begins with basic non-cacheable non-
burst single cycle transfers. It moves on to multiple
cycle transfers and introduces the burst mode.
Cacheability is introduced in Section 7.2.3. The re-
maining sections describe locked, pseudo-locked,
invalidate, bus hold and interrupt cycles.

Bus cycles and data cycles are discussed in this
section. A bus cycle is at least two clocks long and
begins with ADS# active in the first clock and ready
active in the last clock. Data is transferred to or from
the Intel486 DX microprocessor during a data cycle.
A bus cycle contains one or more data cycles.

Refer to Section 7.2.13 for a description of the bus
states shown in the timing diagrams.

7.21 NON-CACHEABLE NON-BURST SINGLE
CYCLE

7.2.1.1 No Wait States

The tastest non-burst bus cycle that the Intel486 DX
microprocessor supports is two clocks long. These
cycles are called 2-2 cycles because reads and
writes take two cycles each. The first 2 refers to

PRELIMINARY I

intgl.

reads and the second to writes. For example, if a
wait state needs to be added to a write, the cycle
would be called 2-3.

Basic two clock read and write cycles are shown in
Figure 7.7. The Intel486 DX microprocessor initiates
a cycle by asserting the address status signal
(ADS#) at the rising edge of the first clock. The
ADS# output indicates that a valid bus cycle defini-
tion and address is available on the cycle definition
lines and address bus.

The non-burst ready input (RDY #) is returned by the
external system in the second clock. RDY # indi-
cates that the external system has presented valid
data on the data pins in response to a read or the
external system has accepted data in response to a
write.

The Intel486 DX microprocessor samples RDY # at
the end of the second clock. The cycle is complete if
RDY# is active (LOW) when sampled. Note that
RDY # is ignored at the end of the first clock of the
bus cycle.

The burst last signal (BLAST #) is asserted (LOW)
by the Intel486 DX microprocessor during the sec-
ond clock of the first cycle in all bus transfers illus-
trated in Figure 7.7. This indicates that each transfer
is complete after a single cycle. The Intel486 DX
microprocessor asserts BLAST # in the last cycle of
a bus transfer.

The timing of the parity check output (PCHK#) is
shown in Figure 7.7. The Intel486 DX microproces-
sor drives the PCHK # output one clock after ready
terminates a read cycle. PCHK # indicates the parity
status for the data sampled at the end of the previ-
ous clock. The PCHK# signal can be used by the
external system. The Intel486 DX microprocessor
does nothing in response to the PCHK# output.

7.2.1.2 Inserting Wait States

The external system can insert wait states into the
basic 2-2 cycle by driving RDY # inactive at the end
of the second clock. RDY # must be driven inactive
to insert a wait state. Figure 7.8 illustrates a simple
non-burst, non-cacheable signal with one wait state
added. Any number of wait states can be added to
an Intel486 DX microprocessor bus cycle by main-
taining RDY # inactive.

The burst ready input (BRDY #) must be driven inac-
tive on all clock edges where RDY # is driven inac-
tive for proper operation of these simple non-burst
cycles.

I PRELIMINARY

Intel486™ DX2 MICROPROCESSOR

7.2.2 MULTIPLE AND BURST CYCLE BUS
TRANSFERS

Multiple cycle bus transfers can be caused by inter-
nal requests from the Intel486 DX microprocessor or
by the external memory system. An internal request
for a 64-bit floating point load or a 128-bit pre-fetch
must take more than one cycle. Internal requests for
unaligned data may also require multiple bus cycles.
A cache line fill requires multiple cycles to complete.
The external system can cause a multiple cycle
transfer when it can only supply 8 or 16 bits per
cycle.

Only multiple cycle transfers caused by internal re-
quests are considered in this section. Cacheable cy-
cles and 8- and 16-bit transfers are covered in Sec-
tions 7.2.3 and 7.2.5.

7.2.2.1 Burst Cycles

The Intel486 DX microprocessor can accept burst
cycles for any bus requests that require more than a
single data cycle. During burst cycles, a new data
item is strobed into the Intel486 DX microprocessor
every clock rather than every other clock as in non-
burst cycles. The fastest burst cycle requires 2
clocks for the first data item with subsequent data
items returned every clock.

The Intel486 DX microprocessor is capable of burst-
ing a maximum of 32 bits during a write. Burst writes
can only occur if BS8# or BS16# is asserted. For
example, the Intel486 DX microprocessor can burst
write four 8-bit operands or two 16-bit operands in a
single burst cycle. But the Intei486 DX microproces-
sor cannot burst muitiple 32-bit writes in a single
burst cycle.

Burst cyclss begin with the Intel486 DX microproc-
essor driving out an address and asserting ADS# in
the same manner as non-burst cycles. The Intel486
DX microprocessor indicates that it is willing to per-
form a burst cycle by holding the burst last signal
(BLAST #) inactive in the second clock of the cycle.
The external system indicates its willingness to do a
burst cycle by returning the burst ready signal
(BRDY #) active.

The addresses of the data items in a burst cycle will
all fall within the same 16-byte aligned area (corre-
sponding to an internal Intel486 DX microprocessor
cache line). A 16-byte aligned area begins at loca-
tion XXXXXXX0 and ends at location XXXXXXXF.
During a burst cycle, only BEO-3#, A, and Az may
change. Ag~Ag¢, M/IO#, D/C#, and W/R# will re-
main stable throughout a burst. Given the first ad-
dress in a burst, external hardware can easily calcu-
late the address of subsequent transfers in advance.
An external memory system can be designed to
quickly fill the Intel486 DX microprocessor internal
cache lines.

2-105

a
intel486™ DX2 MICROPROCESSOR |nte| R

o, ™ , T2 , n , 12 , T , T , T , T2 , T
1 : | : | : i : i
CLK l) |
) ! 1 ' ! X ! ; !
ADS# 1 | !) ' | I | 1
e i e A
A2-A31 L ! L ! | ! \ ! N
1 f 1
o L L 1 L |
BEO-3#) .] i |)] : |
W/R# | : : :) : : t \
| _,__|_/' h | _,__I_II ' 1
T TN TP SN RIS S
rov+ DOCOOOOOOROCCOOCCOORC00E, ! Z00000RK0CEON,. ! /XOCCEUCROICRON ! /KOOI ¢ /AKUAN
[\Y/
t ! 1 1 '] ! 1
| 1 ¢ ¢ [} |
1 SR U A U A U AR R U
| A i) 1 . [} |
] 1 : ! ’__I_, 1 ' :
DATA : E /J_P‘)t\ : { FROM CPU), E /(:1:0:]\ E FROM CPU
1 I])] 1 ! ' !
PCHKH# | : | ! | | | : i
I : Y : IRY
READ WRITE READ WRITE
241245-42
Figure 7.7. Baslic 2-2 Bus Cycle
no, ™ , T ., T2 , W , T2 , 12 , T
CLK : y I . . :
! ! ! ' ! ! !
ADS# : \ | ’ ' 1 \ | ’ E)
' ! ! : ! ! |
A2-A31] N . .
1 | 1 1
“D//Ig“ : X 1 1 ! X 1 1 !
BEO-3#] ; T , T T ,
| '] 3 |
W/ T\ : L | |
N " . 1 1 |
| 1 [1 1
1 i] ! 1 1 |
| 1
rove XXOOOACCORCCEXCKXORCNU OO, /CKRO00KR0000Y ¢ KRR\ /XXRRKR
; | | ' X | '
BLAST# \ X ' \ ' : ’ ' \ N : ’
i ! ! ! ! : !
DATA I; : : \cT»?u / : < 1FROM CPU | >—
! : READ : ! : WRITEE !
241245-43

Figure 7.8. Basic 3-3 Bus Cycle

2-106 PRELIMINARY I

=

intgl.

Burst cycles are not limited to cache line fills. Any
multiple cycle read request by the Intel486 DX mi-
croprocessor can be converted into a burst cycle.
The Intel486 DX microprocessor will only burst the
number of bytes needed to complete a transfer. For

example, eight bytes will be bursted in for a 64-bit
floating point non-cacheable read.

The external system converts a multiple cycle re-
quest into a burst cycle by returning BRDY # active
rather than RDY # (non-burst ready) in the first cycle
of a transfer. For cycles that cannot be bursted such
as interrupt acknowledge and halt, BRDY # has the
same effect as RDY#. BRDY # is ignored if both
BRDY # and RDY # are returned in the same clock.
Memory areas and peripheral devices that cannot
perform bursting must terminate cycles with RDY #.

7.2.2.2 Terminating Multiple and
Burst Cycle Transfers

The Intel486 DX microprocessor drives BLAST # in-
active for all but the last cycle in a multiple cycle
transfer. BLAST # is driven inactive in the first cycle
to inform the external system that the transfer could
take additional cycles. BLAST# is driven active in
the last cycle of the transfer indicating that the next
time BRDY# or RDY# is returned the transfer is
complete.

BLAST # is not valid in the first clock of a bus cycle.
It should be sampled only in the second and subse-
quent clocks when RDY # or BRDY # is returned.

The number of cycles in a transfer is a function of
several factors including the number of bytes the mi-
croprocessor needs to complete an internal request
(1, 2, 4, 8, or 16), the state of the bus size inputs
(BS8+# and BS16#), the state of the cache enable
input (KEN #) and alignment of the data to be trans-
ferred.

When the Intel486 DX microprocessor initiates a re-
quest it knows how many bytes will be transferred
and if the data is aligned. The external system must
tell the microprocessor whether the data is cache-
able (if the transfer is a read) and the width of the
bus by returning the state of the KEN#, BS8+# and
BS16# inputs one clock before RDY # or BRDY # is
returned. The Intel486 DX microprocessor deter-
mines how many cycles a transfer will take based on
its internal information and inputs from the external
system.

BLAST # is not valid in the first clock of a bus cycle

because the Intel486 DX microprocessor cannot de-
termine the number of cycles a transfer will take until

I PRELIMINARY

Intel486™ DX2 MICROPROCESSOR

the external system returns KEN#, BS8# and
BS16#. BLAST# should only be sampled in the
second and subsequent clocks of a cycle when the
external system returns RDY # or BRDY #.

The system may terminate a burst cycle by returning
RDY# instead of BRDY#. BLAST# will remain
deasserted until the last transfer. However, any
transfers required to complete a cache line fill will
follow the burst order, e.g., if burst order was 4, 0, C,
8 and RDY # was returned at after 0, the next trans-
fers will be from C and 8.

7.2.2.3 Non-Cacheable, Non-Burst, Multiple
Cycle Transfers

Figure 7.9 illustrates a 2 cycle non-burst, non-cache-
able multiple cycle read. This transfer is simply a
sequence of two single cycle transfers. The Inteld86
DX microprocessor indicates to the external system
that this is a multiple cycle transfer by driving
BLAST # inactive during the second clock of the first
cycle. The external system returns RDY # active in-
dicating that it will not burst the data. The external
system also indicates that the data is not cacheable
by returning KEN# inactive one clock before it re-
turns RDY # active. When the Intel486 DX micro-
processor samples RDY # active it ignores BRDY #.

Each cycle in the transfer begins when ADS# is
driven active and the cycle is complete when the
external system returns RDY # active.

The Intel486 DX microprocessor indicates the last
cycle of the transfer by driving BLAST # active. The
next RDY # returned by the external system termi-
nates the transfer.

7.2.2.4 Non-Cacheable Burst Cycles

The external system converts a multiple cycle re-
quest into a burst cycle by returning BRDY # active
rather than RDY # in the first cycle of the transfer.
This is illustrated in Figure 7.10.

There are several features to note in the burst read.
ADS# is only driven active during the first cycle of
the transfer. RDY# must be driven inactive when
BRDY # is returned active.

BLAST # behaves exactly as it doss in the non-burst
read. BLAST # is driven inactive in the second clock
of the first cycle of the transfer indicating more cy-
cles to follow. In the last cycle, BLAST# is driven
active telling the external memory system to end the
burst after returning the next BRDY #.

2-107

Intel486™ DX2 MICROPROCESSOR

Ti

'
i
CLK [/

1

ADS#

A2-A31%
M/10#

T

T2 Ti

/o

D/c#

X

W/R#
BEQ-3#

RDY#

I
:
L X
[}
i [}
) Sl A0

AU XY ! IR !
| | 1 i

OO U A A)

BRDY#
1 1] ' 1
1 ! 1 ! 1
KEN# ! 1 ! i !
[} ‘] |]
1 : 1 : t
i L !
D SR T W W |
1 \ ! j 1
1 1 | | |
@)
! | 1 ' |
13t DATA 2nd DATA 241245-44
Figure 7.9. Non-Cacheable, Non-Burst, Muitiple Cycle Transfers
no, T , 12 T2, N, T
t ! | 1
CLK) . . i
' ! : | !
ADS# f \ | , J) |
' L : | 1
A2-A31 : \) | 1
M/10% , : +
o/cs L A k! !
BE0-3# !] 1 I '
rove JOCRORRMNOAOMINNY VY \ommumnm
THPPOTIN FPPTONS YRR BPPPO
erove AXEXRKRIARCAXRAXXNRRANARAXY ¢ /XA)HNNNWHHH
! . : ' '
KEN® : : : ' I
| 1 | i I
1 : :] [}
L ¥ 1 |
e TN] 0\ [
i : : i !
) ' I
DATA ; E o @ |
! ' ! ! ! 241245-45

Figure 7.10. Non-Cacheable Burst Cycle

2-108

PRELIMINARY l

intel.

7.2.3 CACHEABLE CYCLES

Any memory read can become a cache fill operation.
The external memory system can allow a read re-
quest to fill a cache line by returning KEN# active
one clock before RDY # or BRDY # during the first
cycle of the transfer on the external bus. Once
KEN# is asserted and the remaining three require-
ments described below are met, the Intel486 DX mi-
croprocessor will fetch an entire cache line regard-
less of the state of KEN#. KEN# must be returned
active in the last cycle of the transfer for the data to
be written into the internal cache. The Intel486 DX
microprocessor will only convert memory reads or
prefetches into a cache fill.

KEN# is ignored during write or I/0 cycles. Memory
writes will only be stored in the on-chip cache if
there is a cache hit. I/0 space is never cached in
the internal cache.

To transform a read or a prefetch into a cache line
fill the following conditions must be met:

1. The KEN# pin must be asserted one clock pri-
or to RDY # or BRDY # being returned for the
first data cycle.

2. The cycle must be of the type that can be inter-
nally cached. (Locked reads, 1/0 reads, and
interrupt acknowledge cycles are never cach-
ed).

3. The page table entry must have the page
cache disable bit (PCD) set to 0. To cache a
page table entry, the page directory must have
PCD=0. To cache reads or prefetches when
paging is disabled, or to cache the page direc-
tory entry, control register 3 (CR3) must have
PCD=0.

4. The cache disable (CD) bit in control register 0
(CRO) must be clear.

External hardware can determine when the Intel486
DX microprocessor has transformed a read or pre-
fetch into a cache fill by examining the KEN#,
M/10#, D/C#, W/R#, LOCK#, and PCD pins.
These pins convey to the system the outcome of
conditions 1-3 in the above list. In addition, the In-
tel486 DX drives PCD high whenever the CD bit in
CRO is set, so that external hardware can evaluate
condition 4.

Cacheable cycles can be burst or non-burst.

I PRELIMINARY

Intei486™ DX2 MICROPROCESSOR

7.2.3.1 Byte Enables during a Cache Line Fill

For the first cycle in the line fill, the state of the byte
enables should be ignored. In a non-cacheable
memory read, the byte enables indicate the bytes
actually required by the memory or code fetch.

The Intel486 DX microprocessor expects to receive
valid data on its entire bus (32 bits) in the first cycle
of a cache line fill. Data should be returned with the
assumption that ali the byte enable pins are driven
active. However if BS8# is asserted only one byte
need be returned on data lines DO-D7. Similarly if
BS16+# is asserted two bytes should be returned on
D0O-D15.

The Intel486 DX microprocessor will generate the
addresses and byte enables for all subsequent cy-
cles in the line fill. The order in which data is read
during a line fill depends on the address of the first
item read. Byte ordering is discussed in Section
7.2.4.

7.2.3.2 Non-Burst Cacheable Cycles

Figure 7.11 shows a non-burst cacheable cycle. The
cycle becomes a cache fill when the Intel486 DX
microprocessor samples KEN# active at the end of
the first clock. The Inteld86 DX microprocessor
drives BLAST # inactive in the second clock in re-
sponse to KEN#. BLAST# is driven inactive be-
cause a cache fill requires 3 additional cycles to
complete. BLAST# remains inactive until the last
transfer in the cache line fill. KEN# must be re-
turned active in the last cycle of the transfer for the
data to be written into the internal cache.

Note that this cycle would be a single bus cycle if
KEN# was not sampled active at the end of the first
clock. The subsequent three reads would not have
happened since a cache fill was not requested.

The BLAST # output is invalid in the first clock of a
cycle. BLAST# may be active during the first clock
due to earlier inputs. Ignore BLAST # until the sec-
ond clock.

During the first cycle of the cache line fill the exter-
nal system should treat the byte enables as if they
are all active. In subsequent cycles in the burst, the
Intel486 DX microprocessor drives the address lines
and byte enables (see Section 7.2.4.2 for Burst and
Cache Line Fill Order).

2-109

intel486™ DX2 MICROPROCESSOR

oo, T T2

CLK) [
! !
ADS#

A2-A31
/104

|

D/C#

]
]
L]
1
1
1
W/R# r

X

X

BEO-3# t

RDY#

BRDY#

A0 * A0 | ZA0Ouenonmn ¢ 0N « A
| 1 | 1 '

t

KEN® E \ !/ ! ! : : : \ / :
BuasTe EXE/l\:/I\:’!\E\:/_
oata i Y Y, Y, G,
ey e e e
I ‘ I l I . ' . 2;1245-46

Figure 7.11. Non-Burst, Cacheable Cycles

7.2.3.3 Burst Cacheable Cycles

Figure 7.12 illustrates a burst mode cache fill. As in
Figure 7.11, the transfer becomes a cache line fill
when the external system returns KEN# active at
the end of the first clock in the cycle.

2-110

The external system informs the Intel486 DX micro-
processor that it will burst the line in by driving
BRDY # active at the end of the first cycle in the
transfer.

Note that during a burst cycle ADS# is only driven
with the first address.

PRELIMINARY I

intgl.

Intel486™ DX2 MICROPROCESSOR

RDY#

BRDY#

Ti N T1 ' T2 . T2 . T2 . T2 . Ti
)]) 1 1)
CLK) t ' t 1
t | |]
! 1) | | !
i L) 1 L]
ADS# | \ t ’) 1 ' i
] ' 1 1 |
\ ' ' | ' ;
A4-A31, N ' ! ! !
M/10#, 1 1] 1 T
! '
D/C#, N x ' ' [l
W/R# X 0 T 1 1 ;
L ' ' t 1 !
A2-A3, 1 x ! ' X 1 x 1 x T
BEO-3# t '] | i
] T Ll T T
1

OOan0a00RN0NY/ \oml \oml \oml \omm

AR | 000N | /00N | A0 A
[} | t]

1 | i

| [} t

. : 1 ') !

1 : 1 1 : +
KEN# : \ : ’ : : \ . / 5

1 : ; ; X
BLAST# . x X / ‘) | \ : l

| : : : ! '
DATA ; ; @—@ @ /‘:r:o",\

| ' ') 1 1
PCHK#) 5 s \ E x E X , x

241245-47

Figure 7.12. Burst Cacheable Cycle

7.2.3.4 Effect of Changing KEN# during a
Cache Line Fill

KEN# can change multiple times as long as it ar-
rives at its final value in the clock before RDY # or
BRDY # is returned. This is illustrated in Figure 7.13.
Note that the timing of BLAST# follows that of
KEN# by one clock. The Intel486 DX samples
KEN# every clock and uses the value returned in
the clock before ready to determine if a bus cycle

I PRELIMINARY

would be a cache line fill. Similarly, it uses the value
of KEN# in the last cycle, before early RDY # to
load the line just retrieved from the memory into the
cache. KEN# is sampled every clock, it must satisfy
setup and hold time.

KEN# can also change multiple times before a burst

cycle as long as it arrives at its final value one ciock
before ready is returned active.

2111

Intel486 ™" DX2 MICROPROCESSOR |nte| R

o, ™ , T2 ., T2 , 12 , T , 12
) I 1 1 | ! |
CLK 1)) [| 1 |
\) | 1) ' 9
1 1 1 I
] T T 1
ADS# ! \ | ’ 1 1 | _:_/_:_
1 1 1 | 1
| [1 | [
A4-A31, , ' ' ' !] !
M/I0%, 1 X j j j
D/C#, 1 i : | ! : '
1 1 1 [

W/R” : 1 1 1 | 1)
A2-A3, " ’ | ' ' '
BEO-3# | x ; : ! !

\ T T

[
e A OOMOMONNT O DO ¢ A0tadta < /0
! ' : | 1 1

'
1 1 N } .
KEN# : ' \ : , 1 ' !
. : ! : ! ! !
|] | ' .] .
] T T] T A\
BLAST# 1 x : / : \ ' ’] ' |
T | 1
' | : ' I X)

| ' | | /—\ |

DATA ' L L L A L _/'_‘:}—
. : : : \CPU / : CPU
241245-48
Figure 7.13. Effect of Changing KEN #

7.2.4 BURST MODE DETAILS data into the chip when either RDY # or BRDY # are
active. Driving BRDY # and RDY # inactive adds a
wait state to the transfer. A burst cycle where two

7.2.4.1 Adding Walit States to Burst Cycles clocks are required for every burst item is shown in

Burst cycles need not return data on every clock. ' !9ure 7.14.

The Intel486 DX microprocessor will only strobe

2112 PRELIMINARY I

[]
|nte| R intel486™ DX2 MICROPROCESSOR

Ti . T1 . T2 . T2 , T2 . T2 , T2 , T2 \ T2 '
] 1 1 1]]

CLK) 1 1 1 1 []

1) '
! . : I | |) . !

1 T T T T T T
ADS# | | ' 1 1 '] ']
1 _|_} ' 1 1 i 1 | |

|] 1 1 1 1 1]
A4-A31, | ' ! ! ! ' ' ' !
M/10%, | ' 1 [1 ' 1 ' |
D/C#, 1 1 1 1 1 | 1 | .
W/R¥ - ! : ! ! ! : ! .
L . " . . .
A2-A3, y ' ' i ' ' X '
BEO-3# 1 ! [! ! 1 N

| T T T T T

rove ERMCARKRRNARARRERRAE \ORR & N+ VY KRR WK \RKRRARR
1 1 1 ' ' 1 ' '

1]] 1 1 ' !
anove YOO ¢ 00007 D000 | 007000 | A7 TN

] t
1] 1] b
' h N ; X A
KEN® Coo\/ : : : YR
! \ | : | : | i '
! [l 1 1 1 I 1 1 :
BLAST# X X E / i E E E i \ X '
’] 1 1 1 1 ' [
| ' 1 ' | ' ' 1 !
DATA ' X /7o\ H /70\ : /g;)u\ : <<:T§u>
. : \CFU , : \ CPU , : \ l : :
241245-49
Figure 7.14. Slow Burst Cycle
7.2.4.2 Burst and Cache Line Fill Order Table 7.7. Burst Order
The burst order used by the Intei486 DX microproc- First Second Third Fourth
essor is shown in Table 7.7. This burst order is fol- Addr. Addr. Addr. Addr.
Ipwed by any burst cycle (cache or not), cache line 0 4 8 c
fill (burst or not) or code prefetch.
4 0 C 8
This burst order is optimized for a two-way inter- 8 c 0 8
leaved memory architecture. This means that if the C 8 4

memory is built as 64-bit (versus 32-bit) words which ‘

are multiplexed into the 32-bit data bus, the Intel486 An example of burst address sequencing is shown in
CPU will read all 64 bits before accessing the next Figure 7.15.

location.

The microprocessor presents each request for data
in an order determined by the first address in the
transfer. For example, if the first address was 104
the next three addresses in the burst wili be 100,
10C and 108.

I PRELIMINARY 2113

Intel486™ DX2 MICROPROCESSOR

Ti , Tt ., T2, T2 T2, T2 Ti
CLK : 1 1] | :
' : : : : '
ADS# 1 \ ‘ , | i j X
| 1) 1 i
! : ! : ! .
AZ-A31 E X : 104 : X1oo: X!OC: Xma;
. : : : :)
rove XKUY VIR + \ERRY WA+ KRN
' : : ! : '
srove KOCOCOCOUMCEONONN ¢ /00000 | 20000 ¢ 20000 A
A N N R
! 1 ' ['
e AN R A A
! : : : : !
L T L T I |
BLAST# | X ! 7 : ‘ ' \ | !
: : ! : : .
OATA ! : 70 70 /0\ /7
! : CPU CPU \c_P'ly \CPL/
! ' ' ' ' ' 241245-50

Figure 7.15. Burst Cycle Showing Order of Addresses

The sequences shown in Table 7.7 accommodate
systems with 64-bit busses as well as systems with
32-bit data busses. The sequence applies to all
bursts, regardiess of whether the purpose of the
burst is to fill a cache line, do a 64-bit read, or do a
pre-fetch. If sither BS8# or BS16# is returned ac-
tive, the Intel4d86 DX microprocessor completes the
transfer of the current 32-bit word before progress-
ing to the next 32-bit word. For example, a BS16#
burst to address 4 has the following order: 4-6-0-2-
C-E-8-A.

7.2,4.3 Interrupted Burst Cycles

Some memory systems may not be able to respond
with burst cycles in the order defined in Table 7.7.
To support these systems the Intel486 DX micro-
processor allows a burst cycle to be interrupted at

2-114

any time. The Intel486 DX microprocessor will auto-
matically generate another normal bus cycle after
being interrupted to complete the data transfer. This
is called an interrupted burst cycle. The external sys-
tem can respond to an interrupted burst cycle with
another burst cycle.

The external system can interrupt a burst cycle by
returning RDY # instead of BRDY #. RDY # can be
returned after any number of data cycles terminated
with BRDY #.

An example of an interrupted burst cycle is shown in
Figure 7.16. The Intel486 DX microprocessor imme-
diately drives ADS# active to initiate a new bus cy-
cle after RDY # is returned active. BLAST # is driven
inactive one clock after ADS# begins the second
bus cycle indicating that the transfer is not complete.

PRELIMINARY I

intel486™ DX2 MICROPROCESSOR

CLK [

ADS#

B A R W

e X

10C

'
X1oal

!

|

t

'

104
[

T

1

1

|

|

|
A2-A31 ! J

L

t

1
et VY ORI e RN RV
! t 1 1

RDY#
| ' 1 | |]
| |
seov+ SOCOCONK0OOMOMMNNN | ANOMOOMMMMA 000 /A
1 ! R | ' : 1
KEN#* : : : : :
Sl N N N s
BLasTe Y 7 7 [
——— =
| 1 | ! ' ' 1
DATA ' : [N\ /7 l VAN A
| ! AL/ \cPu/ ! CPU CPU

241245-51

Figure 7.16. Interrupted Burst Cycle

KEN# need not be returned active in the first data
cycle of the second part of the transfer in Figure
7.16. The cycle had been converted to a cache fill in
the first part of the transfer and the Intel486 DX mi-
croprocessor expects the cache fill to be completed.
Note that the first half and second half of the trans-
fer in Figure 7.16 are each two cycle burst transfers.

The order in which the Intel486 DX microprocessor
requests operands during an interrupted burst trans-
fer is determined by Table 7.7. Mixing RDY # and
BRDY # does not change the order in which oper-
and addresses are requested by the Intel486 DX mi-
Croprocessor.

I PRELIMINARY

An example of the order in which the Intel486 DX
microprocessor requests operands during a cycle in
which the external system mixes RDY# and
BRDY # is shown in Figure 7.17. The Intel486 DX
microprocessor initially requests a transfer begin-
ning at location 104. The transfer becomes a cache
line fill when the external system returns KEN# ac-
tive. The first cycle of the cache fill transfers the
contents of location 104 and is terminated with
RDY #. The Intel486 DX microprocessor drives out a
new request (by asserting ADS #) to address 100. if
the external system terminates the second cycle
with BRDY #, the Inteld86 DX microprocessor will
next request/expect address 10C. The correct order
is determined by the first cycle in the transfer, which
may not be the first cycle in the burst if the system
mixes RDY # with BRDY #.

2-115

intel486™ DX2 MICROPROCESSOR

CLK [i

'
'
-—-—-—-—J"'w 1 r—-—*-"w '
ADS# ' t
|

A2-A31

A

100 10C

[}
—p

|
! 1
! '
1 "
] X voo104
1]
' '

BRDY#

]
rove OO AN Y VY WA
| | | t
1 : t
OOOCCRORRXNCERRCRKRERXOOORRRON, /X0 /00 /oo
' i

KEN# E \i/ : 1; : __é__/ :
s T T T\
w—— @& G @@

241245-52

Figure 7.17. Interrupted Burst Cycle with Unobvious Order of Addresses

7.2.5 8- AND 16-BIT CYCLES

The Intel486 DX microprocessor supports both 16-
and 8-bit external busses through the BS16# and
BS8# inputs. BS16# and BS8+# aliow the external
system to specify, on a cycle by cycle basis, whether
the addressed component can supply 8, 16 or 32
bits. BS16# and BS8+# can be used in burst cycles
as well as non-burst cycles. If both BS16# and
BS8+# are returned active for any bus cycle, the In-
tel486 DX microprocessor will respond as if only
BS8# were active.

The timing of BS16# and BS8+# is the same as that

of KEN#. BS16# and BS8# must be driven active
before the first RDY# or BRDY # is driven active.

2-116

Driving the BS16# and BS8# active can force the
Intel486 DX microprocessor to run additional cycles
to complete what would have been only a single
32-bit cycle. BS8# and BS16# may change the
state of BLAST# when they force subsequent cy-
cles from the transfer.

Figure 7.18 shows an example in which BS8#
forces the Intel486 DX microprocessor to run two
extra cycles to complete a transfer. The Intel486 DX
microprocessor issues a request for 24 bits of infor-
mation. The external system drives BS8 # active in-
dicating that only eight bits of data can be supplied
per cycle. The intel486 DX microprocessor issues
two extra cycles to complete the transfer.

PRELIMINARY I

Intel486™ DX2 MICROPROCESSOR

o, m , T2 , W , T2 , m , T2 , T
CLK : . : . : y :
) ! 1 ! | ' !
ADS# ! \ ; ’ 1 \ : ’ ! \ | ’ 1 \
! . | L 1 L I
A2-A31 " ! ! ! ! ' !
e v X
W/R# 1 \ X 1 | |]
. ! ! N] s ! N
oea-3# i SRR SR SR |
| ' ! : ! \ I
oove SR © OO | AOcaocaononnn + A
| 1 1 1 I : i |
T | N 1 1
e R T e U R S
l : ' i ! : !
T 1 T T |
BLAST# . X E / ! \ : / ! \ E \ ' ’
| f [} | | \ 1
oata | A s U R 2\
) ! &Y/ ! R/ ! i
' ' ' ' ' ' 241245-53
Figure 7.18. 8-Bit Bus Size Cycle

Extra cycles forced by the BS16# and BS8# should
be viewed as independent bus cycles. BS16# and
BS8# should be driven active for each additional
cycle unless the addressed device has the ability to
change the number of bytes it can return between
cycles. The Inteld86 DX microprocessor will drive
BLAST# inactive until the last cycle before the
transfer is complete.

Refer to Section 7.1.3 for the sequencing of ad-
dresses while BS8# or BS16# are active.

I PRELIMINARY

BS8# and BS16# operate during burst cycles in ex-
actly the same manner as non-burst cycles. For ex-
ample, a single non-cacheabls read could be trans-
ferred by the Intel486 DX microprocessor as four
8-bit burst data cycles. Similarly, a single 32-bit write
could be written as four 8-bit burst data cycles. An
example of a burst write is shown in Figure 7.19.
Burst writes can only occur if BS8# or BS16# is
asserted.

2-117

Intel486™ DX2 MICROPROCESSOR

CLK ! . 1

[
_'—‘ t [
ADS#

ADDR X
G G SR

-t--F-4--4----4--

|
L
i

SPEC 1 1
] T
1 1
il
| 1)
| 1 t 1 |

rove NONCARAVRVARRRARERNY + VIR \KRRV - VKRR \KAKKKKN

BRDY#

BSB#

|

AOOOOMOMMMNN | /000 ¢ A0 | 2000 | Amum
1

S

7

1
]
BLAST# ; X
X
! /
DATA +
| \

FROM CPU

o

241245-54

Figure 7.19. Burst Write as a Result of BS8# or BS16 #

7.26 LOCKED CYCLES

Locked cycles are generated in software for any in-
struction that performs a read-modify-write opera-
tion. During a read-modify-write operation the proc-
essor can read and modify a variable in external
memory and be assured that the variable is not ac-
cessed between the read and write.

Locked cycles are automatically generated during
certain bus transfers. The xchg (exchange) instruc-
tion generates a locked cycle when one of its oper-
ands is memory based. Locked cycles are generat-
ed when a segment or page table entry is updated
and during interrupt acknowledge cycles. Locked cy-
cles are also generated when the LOCK instruction
prefix is used with selected instructions.

2-118

Locked cycles are implemented in hardware with the
LOCK# pin. When LOCK# is active, the processor
is performing a read-modify-write operation and the
external bus should not be relinquished until the cy-
cle is complete. Multiple reads or writes can be
locked. A locked cycle is shown in Figure 7.20.
LOCK# goes active with the address and bus defini-
tion pins at the beginning of the first read cycle and
remains active untii RDY # is returned for the last
write cycle. For unaligned 32 bits read-modify-write
operation, the LOCK# remains active for the entire
duration of the multiple cycle. It will go inactive when
RDY # is returned for the last write cycle.

PRELIMINARY I

intel486™ DX2 MICROPROCESSOR

M/io%
D/c#

1
+
i

ADS# '

|
1
|
A2-A31 i
i
i
BEO-3# 1

—

W/R#

DATA

o
[}
! ! l
rov# EACERCOUECOCROCRUCROROOON, | /XG0 /XXX
1 1 1

1

]
[l
1]
T
]
]
LOCK# ,
]
1

T

READ

241245-55

Figure 7.20. Locked Bus Cycle

When LOCK# is active, the Intel486 DX microproc-
essor will recognize address hold and backoff but
will not recognize bus hold. It is left to the external
system to properly arbitrate a central bus when the
Intel486 DX microprocessor generates LOCK #.

7.2.7 PSEUDO-LOCKED CYCLES

Pseudo-locked cycles assure that no other master
will be given control of the bus during operand trans-
fers which take more than one bus cycle. Examples
include 64-bit floating point read and writes, 64-bit
descriptor loads and cache line fills.

Pseudo-locked transfers are indicated by the
PLOCK# pin. The memory operands must be
aligned for correct operation of a pseudo-locked cy-
cle. .

PLOCK# need not be examined during burst reads.
A 64-bit aligned operand can be retrieved in one
burst (note: this is only valid in systems that do not
interrupt bursts).

The system must examine PLOCK# during 64-bit
writes since the Intel486 DX microprocessor cannot
burst write more than 32 bits. However, burst can be
used within each 32-bit write cycle if BS8# or
BS16# is asserted. BLAST will be deasserted in re-
sponse to BS8# or BS16#. A 64-bit write will be
driven out as two non-burst bus cycles. BLAST # is
asserted during both writes since a burst is not pos-
sible.

I PRELIMINARY

PLOCK # is asserted during the first write to indicate
that another write follows. This behavior is shown in
Figure 7.21.

The first cycle of a 64-bit floating point write is the
only case in which both PLOCK# and BLAST # are
asserted. Normally PLOCK# and BLAST # are the
inverse of each other.

During all of the cycles where PLOCK # is asserted,
HOLD is not acknowiedged until the cycle com- -
pletes. This results in a large HOLD latency, espe-
cially when BS8# or BS16# is asserted. To reduce
the HOLD latency during these cycles, windows are
available between transfers to allow HOLD to be ac-
knowledged during non-cacheable, non-bursted
code prefetches. PLOCK# will be asserted since
BLAST # is negated, but it is ignored and HOLD is
recognized during the prefetch.

PLOCK# can change several times during a cycle
settling to its final value in the clock ready is re-
turned.

7.2.8 INVALIDATE CYCLES

Invalidate cycles are needed to keep the Inteld86
DX microprocessor’s internal cache contents con-
sistent with external memory. The Intel486 DX mi-
croprocessor contains a mechanism for listening to
writes by other devices to external memory. When
the processor finds a write to a Section of external

2-119

intel486™ DX2 MICROPROCESSOR

le—10.2" 1.963"

Side
Space

Free | 1.840"

Pentium™ OverDrive™ Processor
Fan/Heat Sink Unit

§Adhasivo

[T

i
0.4" T
b
0.010"
[} l 1.37"
. A Pt
Pentium™ QverDrive™ Processor 0.160"

241245-56

Figure 7.21. Pseudo Lock Timing

memory contained in its internal cache, the proces-
sor’s internal copy is invalidated.

Invalidations use two pins, address hold request
(AHOLD) and valid external address (EADS#).
There are two steps in an invalidation cycle. First,
the external system asserts the AHOLD input forcing
the Intel486 DX microprocessor to immediately relin-
quish its address bus. Next, the external system as-
serts EADS# indicating that a valid address is on
the Inteld86 DX microprocessor's address bus.
EADS# and the invalidation address, Figure 7-22
shows the fastest possible invalidation cycle. The
Intel486 DX CPU recognizes AHOLD on one CLK
edge and floats the address bus in response. To
allow the address bus to float and avoid contention,
EADS# and the invalidation address should not be
driven until the following CLK edge. The microproc-
essor reads the address over its address lines. If the
microprocessor finds this address in its internal
cache, the cache entry is invalidated. Note that the
Intel486 DX microprocessor's address bus is input/
output unlike the Intel386 microprocessor’s bus,
which is output only.

The Intel486 DX microprocessor immediately relin-
quishes its address bus in the next clock upon as-
sertion of AHOLD. For example, the bus could be 3
wait states into a read cycle. If AHOLD is activated,
the Inteld86 DX microprocessor will immediately

2-120

float its address bus before ready is returned termi-
nating the bus cycle.

When AHOLD is asserted only the address bus is
floated, the data bus can remain active. Data can be
returned for a previously specified bus cycle during
address hold (see Figures 7.22, 7.23).

EADS # is normally asserted when an external mas-
ter drives an address onto the bus. AHOLD need not
be driven for EADS# to generate an internal invali-
date. If EADS # alone is asserted while the Intel486
DX microprocessor is driving the address bus, it is
possible that the invalidation address will come from
the Intel486 DX microprocessor itssif.

Note that it is also possible to run an invalidation
cycle by asserting EADS# when HOLD or BOFF #
is asserted.

Running an invalidate cycle prevents the Intel486
DX microprocessor cache from satisfying other inter-
nal requests, so invalidations should be run only
when necessary. The fastest possible invalidate cy-
cle is shown in Figure 7.22, while a more realistic
invalidation cycle is shown in 7.23. Both of the ex-
amples take one clock of cache access from the
rest of the Intel486 DX microprocessor.

PRELIMINARY I

intel486™ DX2 MICROPROCESSOR

intgl.

T2

Tt

Ti

Ti

T2

T

Ti

CLK
ADS#
ADDR

AHOLD
EADS#

AN

DATA

BREQ

241245-57

Figure 7.22. Fast internal Cache Invalidation Cycle

T2

T

Ti

T

Ti

T2

T

Ti

CLK

ADS#

ADDR

AHOLD

EADS#

PSR PRI IR0 0444440

DATA

BREQ

241245~58

Figure 7.23. Typical Internal Cache invalidation Cycle

2-121

I PRELIMINARY

intel486™ DX2 MICROPROCESSOR

7.2.8.1 Rate of Invalidate Cycles

The Intel486 DX microprocessor can accept one in-
validate per clock except in the last clock of a line
fill. One invalidate per clock is possible as long as
EADS # is negated in ONE or BOTH of the following
cases:

1. In the clock RDY # or BRDY # is returned for
the last time.

2. In the clock following RDY # or BRDY # being
returned for the last time.

This definition allows two system designs. Simple
designs can restrict invalidates to one every other
clock. The simple design need not track bus activity.
Alternatively, systems can request one invalidate
per clock provided that the bus is monitored.

7.2.8.2 Running Invalidate Cycles Concurrently
with Line Fills

Precautions are necessary to avoid caching stale
data in the Intel486 DX microprocessor’s cache in a
system with a second level cache. An example of a
system with a second level cache is shown in Figure
7.24. An external device can be writing to main
memory over the system bus while the Intel486 DX
microprocessor is retrieving data from the second
level cache. The Inteld86 DX microprocessor will
need to invalidate a line in its internal cache if the
external device is writing to a main memory address
also contained in the Intel486 DX microprocessor’s
cache.

2-122

intel.

Intei486 DX
Microprocessor

i i Address, Data & Control Bus

Second
Level
Cache

iy

System Bus

U U

External
Memory

External
Bus Master

241245-59

Figure 7.24. System with Second Level Cache

A potential problem exists if the external device is
writing to an address in external memory, and at the
same time the Intel486 DX microprocessor is read-
ing data from the same address in the second level
cache. The system must force an invalidation cycle
to invalidate the data that the Intel486 DX micro-
processor has requested during the line fill.

If the system asserts EADS # before the first data in
the line fill is returned to the Intel486 DX microproc-
essor, the system must return data consistent with
the new data in the external memory upon resump-
tion of the line fill after the invalidation cycle. This is
illustrated by the asserted EADS# signal labeled 1
in Figure 7.25.

If the system asserts EADS# at the same time or
after the first data in the line fill is returned (in the
same clock that the first RDY# or BRDY # is re-
turned or any subsequent clock in the line fill) the
data will be read into the Intel486 DX microproces-
sors input buffers but it will not be stored in the on-
chip cache. This is illustrated by asserted EADS #
signal labeled 2 in Figure 7.25. The stale data will be
used to satisfy the request that initiated the cache fill
cycle.

PRELIMINARY I

Intel486™ DX2 MICROPROCESSOR

T1 T2, 12

CLK 1

STz, 12, 12 T2

ADS#

ADDR

+
7

AHOLD

]
4
EADS# X
1

'
ROY#
1 1

BRDY#

1

1

-

'

'

'

1

'

T0 L
>—‘—.—< hu—
'

'

1

]

1

1

1

|

T

'

'

'

ARAVTAARARARARARRREAY + VINEAY & VARRRK/ VAR WY+ KRG \KRNRAKR
! ' : : |
CANAARACARRRRRRAVRRARRY + VERRRE/+ WRRRRRL: Z2RKAXL ZNKRRRL /XA ! /X0
|

g

I
T
KEN# |
|
1
1

DATA
i

NOTES:

1. Data returned must be consistent if its address equals the invalidation address in this clock
2. Data returned will not be cached if its address equals the invalidation address in this clock

241245-60

Figure 7.25. Cache Invalidation Cycle Concurrent with Line Fiil

7.29 BUS HOLD

The Intel486 DX microprocessor provides a bus
hold, hold acknowledge protocol using the bus hold
request (HOLD) and bus hold acknowledge (HLDA)
pins. Asserting the HOLD input indicates that anoth-
er bus master desires control of the Intel486 DX mi-
croprocessor’'s bus. The processor will respond by
floating its bus and driving HLDA active when the
current bus cycle, or sequence of locked cycles is
complete. An example of a HOLD/HLDA transaction
is shown in Figure 7.26a. Unlike the Intel386 micro-
processor, the Intel486 DX microprocessor can re-
spond to HOLD by floating its bus and asserting
HLDA while RESET is asserted.

Note that HOLD will be recognized during un-aligned
writes (less than or equal to 32-bits) with BLAST #
being active for each write. For greater than 32-bit or
un-aligned write, HOLD# recognition is prevented
by PLOCK# getting asserted.

I PRELIMINARY

For cacheable and nonbursted or bursted cycles,
HOLD is acknowledged during backoff only if HOLD
and BOFF # are asserted during an active bus cycle
(after ADS # asserted) and before the first RDY # or
BRDY # has been returned (see Figure 7.26b). The
order in which HOLD and BOFF # go active is unim-
portant (so long as both are active prior to the first
RDY # /BRDY# returned by the system). Figure
7.26b shows the case where HOLD is asserted first;
HOLD could be asserted simultaneously or after
BOFF # and still be acknowledged.

The pins floated during bus hoid are: BEO# -BE3 #,
PCD, PWT, W/R#, D/C#, M/IO#, LOCK#,
PLOCK#, ADS#, BLAST#, D0-D31, A2-A31,
DPO-DP3.

7.2.10 INTERRUPT ACKNOWLEDGE

The Inteld86 DX microprocessor generates interrupt
acknowledge cycles in response to maskable inter-
rupt requests generated on the interrupt request in-
put (INTR) pin. Interrupt acknowledge cycles have a
unique cycle type generated on the cycle type pins.

2-123

Intel486™ DX2 MICROPROCESSOR

CLK

ADS#
A2-A31
M/10%
D/C#
W/R#
BEQ-3#

DATA

HOLD

HLDA

i, T

-

AN

i
1
rove - KRR R XN AN KRR A XA RAARK AN AKX)0HNOO'HHHHMHHHN
|
|

\ FROM CPU »

—

S

L

241245-61

Figure 7.26a. HOLD/HLDA Cycles

ADS#
M/10#
D/C#
W/R#
KEN#
BRDY#

RDY#

HOLD

HLDA
BOFF#

RAYRAYAY

ok A NA NN\ S
-
/
\
\

241245-A3

2124

Figure 7.26b. HOLD Request Acknowledge During BOFF #

PRELIMINARY I

]

intgl.

An example interrupt acknowledge transaction is
shown in Figure 7.27. Interrupt acknowledge cycles
are generated in locked pairs. Data returned during
the first cycle is ignored. The interrupt vector is re-
turned during the second cycle on the lower 8 bits of

the data bus. The Intel486 DX microprocessor has
256 possible interrupt vectors.

Intel486™ DX2 MICROPROCESSOR

The state of A2 distinguishes the first and second
interrupt acknowledge cycles. The byte address
driven during the first interrupt acknowledge cycle is
4 (A31-A3 low, A2 high, BE3#-BE1# high, and
BEO# low). The address driven during the second
interrupt acknowledge cycle is 0 (A31-A2 low,
BE3#—BE1# high, BEO# low).

Ti

CLK

ADS#

'

1
1
i 4 CLOCKS

Ti

-
po.
—
~
=

] 1 ' [}
1 1]
| : | ! \ :
' 1 ' 1) 1
! X g | : ; '
ADDR : x ! ' ! : : x !
! i ! i . ! . i
RDY# 1 1
' | i : ' ' i !
1 1 '))] | m
DATA : - ' ' - : : \cru/
) | 1 ‘ ') ' !
] I ¥ 1 (]
LOCK# 1 \ ! I ' ' : , | ’
1 1 1 1) v T +
' ' ' . 241245-62
Figure 7.27. Interrupt Acknowledge Cycles
2-125

I PRELIMINARY

Intel486™ DX2 MICROPROCESSOR

Each of the interrupt acknowledge cycles are termi-
nated when the external system returns RDY# or
BRDY #. Wait states can be added by withhoiding
RDY # or BRDY #. The Intel486 DX microprocessor
automatically generates four idle clocks between the
first and second cycles to allow for 8259A recovery
time.

7.2.11 SPECIAL BUS CYCLES

The Intel486 DX microprocessor provides four spe-
cial bus cycles to indicate that certain instructions
have been executed, or certain conditions have oc-
curred internally. The special bus cycles in Table 7.8

are defined when the bus cycle definition pins are in

the following state: M/IO#=0, D/C#=0 and
W/R# = 1. During these cycles the address bus is
driven low while the data bus is undefined.

Two of the special cycles indicate hait or shutdown.
Another special cycle is generated when the In-
tel486 DX microprocessor executes an INVD (invali-
date data cache) instruction and could be used to
flush an external cache. The Write Back cycle is
generated when the Intel486 DX microprocessor ex-
ecutes the WBINVD (write-back invalidate data
cache) instruction and could be used to synchronize
an external write-back cache.

intel.

The external hardware must acknowledge these
special bus cycles by returning RDY # or BRDY #.

Table 7.8. Speclal Bus Cycle Encoding

Special
BE3# | BE2# | BE1# | BEO# Bus Cycie
1 1 1 0 Shutdown
1 1 0 1 Flush
1 0 1 1 Halt
0 1 1 1 Write Back

7.2.11.1 Halt indication Cycle

The Intel486 DX microprocessor halts as a result of
executing a HALT instruction. Signaling its entrance
into the halt state, a halt indication cycle is per-
formed. The hait indication cycle is identified by the
bus definition signals in special bus cycle state and a
byte address of 2. BEO# and BE2+# are the only
signals distinguishing halt indication from shutdown
indication, which drives an address of 0. During the
halt cycie undefined data is driven on DO-D31. The
halt indication cycle must be acknowledged by
RDY # or BRDY # asserted.

M/i0#
D/C#

|
1
|
A2-A31 i
'
1
BEO-3# |

1
1
X T 100
1
T
1

BRDY#

rov+ 00O 00RO R e/ \mol \mol \oml '

S
°
o

S pROUG RN P

KEN#

BOFF#

BLAST#

DATA

Figure 7.28. Restarted Read Cycle

2-126

PRELIMINARY I

Intel486™ DX2 MICROPROCESSOR

UK AR AR A A
|

A K A A K KX KA KA XA AKX)HHW

X

PURUIRSESE |

Ti . Mmoo, T2 , T
1 ' [
cLK 1 . .
| 1
ADS# ! '
I 1
] 1 1
1 1 1
ADDR ' X 1100
SPEC L | |
| T !
\ I [}
RDY#
|]]
BRDY#
1 1
] 1 [}
T T [
BOFF# . 1 '
1
! t |
1] 1
1] '——‘-—‘
DATA ' 1 FROM CPU
! b A——t
; . .

FROM CPU

241245-64

Figure 7.29. Restarted Write Cycle

A halted Intel486 DX microprocessor resumes exe-
cution when INTR (if interrupts are enabled) or NMI
or RESET is asserted.

7.2.11.2 Shutdown Indication Cycle

The Intel486 DX microprocessor shuts down as a
result of a protection fault while attempting to pro-
cess a double fault. Signaling its entrance into the
shutdown state, a shutdown indication cycle is per-
formed. The shutdown indication cycle is identified
by the bus definition signals in special bus cycle
state and a byte address of 0.

7.2.12 BUS CYCLE RESTART

In a multi-master system another bus master may
require the use of the bus to enable the Intel486 DX
microprocessor to complete its current bus request.
In this situation the Intel486 DX microprocessor will
need to restart its bus cycle after the other bus mas-
ter has completed its bus transaction.

A bus cycle may be restarted if the external system
asserts the backoff (BOFF #) input. The Intel486 DX
microprocessor samples the BOFF# pin every
clock. The Intel486 DX microprocessor will immedi-
ately (in the next clock) float its address, data and
status pins when BOFF# is asserted (see Figure
7.28). Any bus cycle in progress when BOFF # is

I PRELIMINARY

asserted is aborted and any data returned to the
processor is ignored. The same pins are floated in
response to BOFF# as are floated in response to
HOLD. HLDA is not generated in response to
BOFF#. BOFF# has higher priority than RDY # or
BRDY #. If either RDY# or BRDY # are returned in
the same clock as BOFF #, BOFF # takes effect.

The device asserting BOFF # is free to run any cy-
cles it wants while the Intel486 DX microprocessor
bus is in its high impedance state. If backoff is re-
quested after the Intel486 DX microprocessor has
started a cycle, the new master should wait for
memory to return RDY # or BRDY # before assum-
ing control of the bus. Waiting for ready provides a
handshake to insure that the memory system is
ready to accept a new cycle. If the bus is idle when
BOFF # is asserted, the new master can start its
cycle two clocks after issuing BOFF #.

The external memory can view BOFF # in the same
manner as BLAST #. Asserting BOFF # tells the ex-
ternal memory system that the current cycle is the
last cycle in a transfer.

The bus remains in the high impedance state until
BOFF # is negated. Upon negation, the Intel486 DX
microprocessor restarts its bus cycle by driving out
the address and status and asserting ADS#. The
bus cycle then continues as usual.

2-127

Intel486™ DX2 MICROPROCESSOR

Asserting BOFF # during a burst, BS8# or BS16#
cycle will force the Inteld86 DX microprocessor to
ignore data returned for that cycle only. Data from
previous cycles will still be valid. For example, if
BOFF # is asserted on the third BRDY # of a burst,
the Intel486 DX microprocessor assumes the data
returned with the first and second BRDY #’s is cor-
rect and restarts the burst beginning with the third
item. The same rule applies to transfers broken into
multiple cycle by BS8+# or BS16#.

Asserting BOFF# in the same clock as ADS# will
cause the Intel486 DX microprocessor to float its
bus in the next clock and leave ADS# floating low.
Since ADS# is floating low, a peripheral may think
that a new bus cycle has begun even though the
cycle was aborted.

intgl.

There are two possible solutions to this problem.
The first is to have all devices recognize this condi-
tion and ignore ADS # until ready comes back. The
second approach is to use a “two clock’ backoff: in
the first clock AHOLD is asserted, and in the second
clock BOFF# is asserted. This guarantees that
ADS # will not be floating low. This is only necessary
in systems where BOFF# may be asserted in the
same clock as ADS #.

7.2.13 BUS STATES
A bus state diagram is shown in Figure 7.30. A de-

scription of the signals used in the diagram is given
in Table 7.9.

(RDY# ASSERTED + (BRDY# o BLAST#)ASSERTED) «
(HOLD + AHOLD + NO REQUEST)
BOFF# NEGATED

REQUEST PENDING «
(RDY# ASSERTED + (BRDY# « BLAST#)ASSERTED) o
HOLD NEGATED «
AHOLD NEGATED o
BOFF# NEGATED *

REQUEST PENDING *
HOLD NEGATED »

AHOLD NEGATED »
BOFF# NEGATED

Otherwise, ignore HOLD.

BOFF#
ASSERTED

* HOLD is only factored into this state transition if Ty, was entered while a
non-cachsable, non-bursted, code prefetch was in progress.

BOFF# NEGATED/

L]
<
K & BOFF#
&
e NEGATED

/ ¥
BOFF# ASSERTED

AHOLD NEGATED »
BOFF# NEGATED o
(HOLD NEGATED *)

floated to a high impedance state.

241245-65
Figure 7.30. Bus State Diagram
Table 7.9. Bus State Description
State Means
Ti Bus is idle. Address and status signals may be driven to undefined valuses, or the bus may be

T1 First clock cycle of a bus cycle. Valid address and status are driven and ADS # is asserted.

T2 Second and subsequent clock cycles of a bus cycle. Data is driven if the cycle is a writs, or data is
expected if the cycle is a read. RDY # and BRDY # are sampled.

asserted.

T1b First clock cycle of a restarted bus cycle. Valid address and status are driven and ADS# is

Tb Second and subsequent clock cycles of an aborted bus cycle.

2-128

PRELIMINARY I

intgl.

7.2.14 FLOATING POINT ERROR HANDLING

The Intel486 DX microprocessor provides two op-
tions for reporting floating point errors. The simplest
method is to raise interrupt 16 whenever an un-
masked floating point error occurs. This option may
bg enabled by setting the NE bit in control register 0
(CRO).

The Intel486 DX microprocessor also provides the
option of allowing external hardware to determine
how floating point errors are reported. This option is
necessary for compatibility with the error reporting
scheme used in DOS based systems. The NE bit
must be cleared in CRO to enable user-defined error
reporting. User-defined error reporting is the default
condition because the NE bit is cleared on reset.

Two pins, floating point error (FERR #) and ignore
numeric error IGNNE #), are provided to direct the
actions of hardware if user-defined error reporting is
used. The Intel486 DX microprocessor asserts the
FERR# output to indicate that a floating point error
has occurred. FERR # corresponds to the ERROR #
pin on the intel387 math coprocessor. However,
there is a difference in the behavior of the two.

In some cases FERR# is asserted when the next
floating point instruction is encountered and in other
cases it is asserted before the next floating point
instruction is encountered depending upon the exe-
cution state of the instruction causing the exception.

The following class of floating point exceptions drive
FERR # at the time the exception occurs (i.e., before
encountering the next floating point instruction).

1. The stack fault, invalid operation, and denormal
exceptions on all transcendental instructions, in-
teger arithmetic instructions, FSQRT, FSEALE,
FPREM(1), FXTRACT, FBLD, and FBSTP.

2. Any exceptions on store instructions (including
integer store instructions).

I PRELIMINARY

intel486™ DX2 MICROPROCESSOR

The following class of floating point exceptions drive
FERR# only after encountering the next floating
point instruction.

1. Exceptions other than on all transcendental in-
structions, integer arithmetic instructions,
FSQRT, FSCALE, FPREM(1), FXTRACT, FBLD,
and FBSTP.

2. Any exception on all basic arithmetic, load, com-
pare, and control instructions (i.e., all other in-
structions).

For both sets of exceptions above, the Intel387
Math Coprocessor asserts ERROR# when the error
occurs and does not wait for the next floating point
instruction to be encountered.

IGNNE # is an input to the Intel486 DX microproces-
sor.

When the NE bit in CRO is cleared, and IGNNE # is
asserted, the Intel486 DX microprocessor will ignore
a user floating point error and continue executing
floating point instructions. When IGNNE # is negat-
ed, the Inteld86 DX microprocessor will freeze on
floating point instructions which get errors (except
for the control instructions FNCLEX, FNINIT,
FNSAVE, FNSTENV, FNSTCW, FNSTSW, FNSTSW
AX, FNENI, FNDISI and FNSETPM). IGNNE# may
be asynchronous to the Intel486 DX clock.

In systems with user-defined error reporting, the
FERR # pin is connected to the interrupt controller.
When an unmasked floating point error occurs, an
interrupt is raised. If IGNNE # is high at the time of
this interrupt, the Inteld86 DX microprocessor will
freeze (disallowing execution of a subsequent float-
ing point instruction) until the interrupt handler is in-
voked. By driving the IGNNE# pin low (when clear-
ing the interrupt request), the interrupt handler can
allow execution of a floating point instruction, within
the interrupt handler, before the error condition is
cleared (by FNCLEX, FNINIT, FNSAVE or
FNSTENV). If execution of a non-control floating
point instruction, within the floating point interrupt
handler, is not needed, the IGNNE # pin can be tied
HIGH.

2-129

Intel486™ DX2 MICROPROCESSOR

intel.

RESET

1/0 PORT OFOH
Address decoder

3

A

Processor Bus

l 5v
CLR J
Q]
Q
PR
L 5y
g 5V
CLR _J
Q D
o
Q
—_—) PR
— 8259A ?__ 5V
> Programmabie
Interrupt
IRQ13 | Controller

FERR#

Intel486 DX2
cPU

IGNNE#

INTR

241245-96

2-130

Figure 7.31. DOS Compatible Numerics Error Circuit

PRELIMINARY I

intel.

Intel486™ DX2 MICROPROCESSOR,

8.0 Intel486 DX2 CPU TESTABILITY

Testing the Intel486 DX2 microprocessor can be di-
vided into three categories: Built-In Self Test (BIST),
Boundary Scan, and external testing. BIST performs
basic device testing on the Intel486 DX2 CPU, in-
cluding the non-random logic, control ROM (CROM),
translation lookaside buffer (TLB), and on-chip
cache memory. Boundary Scan provides additional
test hooks that conform to the IEEE Standard Test
Access Port and Boundary Scan Architecture (IEEE
Std.1149.1). The Intel486 DX2 microprocessor also
has a test mode in which all of its outputs are 3-stat-
ed. Additional testing can be performed by using the
test registers within the Intel486 DX2 CPU.

8.1 Built-In Self Test (BIST)

The BIST is initiated by holding the AHOLD (address
hold) pin HIGH for 2 CLKs before and 2 CLKs after
RESET going from HIGH to LOW as shown in Figure
6.4. The BIST takes approximately 600 thousand
clocks, or approximately 24 milliseconds with a
50 MHz Intel486 DX2 microprocessor. No bus cy-
cles will be run by the Intel486 DX2 microprocessor
until the BIST is concluded. Note that for the In-
tel486 DX2 microprocessor the RESET must be ac-
tive for 15 clocks with or without BIST being enabled
for warm resets.

The results of BIST is stored in the EAX register.
The Intel4d86 DX2 microprocessor has successfully
passed the BIST if the contents of the EAX register
are zero. If the results in EAX are not zero then the
BIST has detected a flaw in the microprocessor. The
microprocessor performs reset and begins normal
operation at the completion of the BIST.

The non-random logic, control ROM, on-chip cache
and translation lookaside buffer (TLB) are tested
during the BIST.

The cache portion of the BIST verifies that the
cache is functional and that it is possible to read and
write to the cache. The BIST manipulates test regis-
ters TR3, TR4 and TR5 while testing the cache.
These test registers are described in Section 8.2.

The cache testing algorithm writes a value to each
cache entry, reads the value back, and checks that
the correct value was read back. The algorithm may
be repeated more than once for each of the 512
cache entries using different constants.

The TLB portion of the BIST verifies that the TLB is
functional and that it is possible to read and write to
the TLB. The BIST manipulates test registers TR6
and TR7 while testing the TLB. TR6 and TR7 are
described in Section 8.3.

I PRELIMINARY

8.2 On-Chip Cache Testing

The on-chip cache testability hooks are designed to
be accessible during the BIST and for assembly lan-
guage testing of the cache.

The Intel486 DX2 microprocessor contains a cache
fill buffer and a cache read buffer. For testability
writes, data must be written to the cache fill buffer
before it can be written to a location in the cache.
Data must be read from a cache location into the
cache read buffer before the microprocessor can
access the data. The cache fill and cache read buff-
or are both 128 bits wide.

8.2.1 CACHE TESTING REGISTERS TR3, TR4
AND TR5

Figure 8.1 shows the three cache testing registers:
the Cache Data Test Register (TR3), the Cache
Status Test Register (TR4) and the Cache Control
Test Register (TR5). External access to these regis-
ters is provided through MOV reg,TREG and MOV
TREG, reg instructions.

Cache Data Test Register: TR3

The cache fill buffer and the cache read buffer can
only be accessed through TR3. Data to be written to
the cache fili buffer must first be written to TR3. Data
read from the cache read buffer must be loaded into
TR3.

TR3 is 32 bits wide while the cache fill and read
buffers are 128 bits wide. 32 bits of data must be
written to TR3 four times to fill the cache fill buffer.
32 bits of data must be read from TR3 four times to
empty the cache read buffer. The entry select bits in
TRS5 determine which 32 bits of data TR3 will access
in the buffers.

Cache Status Test Register: TR4

TR4 handles tag, LRU and valid bit information dur-
ing cache tests. TR4 must be loaded with a tag and
a valid bit before a write to the cache. After a read
from a cache entry, TR4 contains the tag and valid
bit from that entry, and the LRU bits and four valid
bits from the accessed set.

Cache Control Test Register: TR5
TRS5 specifies which testability operation will be per-

formed and the set and entry within the set which
will be accessed.

2-131

Intel486™ DX2 MICROPROCESSOR

The seven bit set select field determines which of
the 128 sets will be accessed.

The functionality of the two entry select bits depend
on the state of the control bits. When the fill or read
buffers are being accessed, the entry select bits
point to the 32-bit location in the buffer being ac-
cessed. When a cache location is specified, the en-
try select bits point to one of the four entries in a set.
Refer to Table 8.1.

Five testability functions can be performed on the
cache. The two control bits in TR5 specify the oper-
ation to be executed. The five operations are:

1. Write cache fill buffer

2. Perform a cache testability write
3. Perform a cache testability read
4, Read the cache read buffer

5. Perform a cache flush

intgl.

Table 8.1 shows the encoding of the two control bits
in TR5 for the cache testability functions. Table 8.1
also shows the functionality of the entry and set se-
lect bits for each control operation.

The cache tests attempt to use as much of the nor-
mal operating circuitry as possible. Therefore when
cache tests are being performed, the cache must be
disabled (the CD and NW bits in control register
must be set to 1 to disable the cache. See Section
5).

8.2.2 CACHE TESTABILITY WRITE

A testability write to the cache is a two step process.
First the cache fill buffer must be loaded with 128
bits of data and TR4 loaded with the tag and valid
bit. Next the contents of the fill buffer are written to a
cache location. Sample assembly code to do a write
is given in Figure 8.2.

31

DATA

TR3
Cache Data
Test Register

31

1 10 9 8 7

6 5§ 4 3 2

LRU Bits Valid Bits R4
Tag Valid| (used only {used only ache Status
during reads)| during reads) st Register
a1 1 10 4 3 2 10
TRS5
Set Select Entry | Control |Cache Control
Select Test Register
% = unused
Figure 8.1. Cache Test Registers
Table 8.1. Cache Control Bit Encoding and Effect of
Control Bits on Entry Select and Set Select Functionality
Control Bits Operation Entrl\:f Sel:ct Bits Set Select Bits
Bit1 | Bito unction
0 0 Enable { Fill Buffer Write Select 32-bit location in fill/read _
Read Buffer Read | buffer
0 1 Perform Cache Write Select an entry in set. Selact a set to write to
1 0 Perform Cache Read Select an entry in set. Select a set to read from
1 1 Perform Fiush Cache — —
2-132

PRELIMINARY I

Inté ® intel486™ DX2 MICROPROCESSOR

Sample Assembly Code

An example assembly language sequence to perform a cache write is:
; eax. ebx. ecx. edx contain the cache line to write
; edi contains the tag information to load
; CRO already says to enable reads/write to TRS

fill the cache buffer

mov e5i,0 7 set up command

mov trS,esi ; load to TRS

mov tr3,eax ; load data into cache fill buffer
mov esi,4

mov tr5,esi
mov tr3,ebx
mov esi,8

mov tr5,esi
mov tr3,ecx
mov esi,Och
mov tr5,esi
mov tr3,edx

load the Cache Status Register

we ws we

mov tr4,edi’ ; load 21-bit tag and valid bit

perform the cache write

“s ws ws

mov esi,l
mov tr5,esi ;s write the cache (set 0, entry 0)

An example assembly language sequence to perform a cache read is:
data into eax, ebx, ecx, edx; status into edi

read the cache line back

mov esi,2
mov tr5,esi ; do cache testability read (set 0, entry 0)

read the data from the read buffer

- . e

mov es51i,0

mov tys,esi
mov eax,tr3
mov esi,4

mov tr5,esi
mov ebx,trd
mov 51,8

mov trS,esi
mov ecx,tr3
mov esi,Och
mov tr5,esi
mov edx,tr3

read the status from TR4

mov edi,tr4

Figure 8.2. Sample Assembly Code for Cache Testing

I PRELIMINARY 2-133

Intel486™ DX2 MICROPROCESSOR

Loading the fill buffer is accomplished by first writing
to the entry select bits in TR5 and setting the control
bits in TR5 to 00. The entry select bits identify one of
four 32-bit locations in the cache fill buffer to put 32
bits of data. Following the write to TR5, TR3 is writ-
ten with 32 bits of data which are immediately
placed in the cache fill buffer. Writing to TR3 initiates
the write to the cache fill buffer. The cache fill buffer
is loaded with 128 bits of data by writing to TRS and
TR3 four times using a different entry select location
each time.

TR4 must be loaded with the 21-bit tag and valid bit
(bit 10 in TR4) before the contents of the fill buffer
are written to a cache location.

The contents of the cache fill buffer are written to a
cache location by writing TR5 with a control field of
01 along with the set select and entry select fields.
The set select and entry select field indicate the lo-
cation in the cache to be written. The normal cache
LRU update circuitry updates the internal LRU bits
for the selected set.

Note that a cache testability write can only be done
when the cache is disabled for replaces (the CD bit
is control register 0 is reset to 1). Also note that care
must be taken when directly writing to entries in the
cache. If the entry is set to overlap an area of mem-
ory that is being used in external memory, that
cache entry could inadvertently be used instead of
the external memory. Of course, this is exactly the
type of operation that one would desire if the cache
were to be used as a high speed RAM.

8.2.3 CACHE TESTABILITY READ

A cache testability read is a two step process. First
the contents of the cache location are read into the
cache read buffer. Next the data is examined by
reading it out of the read buffer. Sample assembly
code to do a testability read is given in Figure 8.2.

Reading the contents of a cache location into the
cache read buffer is initiated by writing TR5 with the
control bits set to 10 and the desired seven-bit set
select and two-bit entry select. In response to the
write to TR5, TR4 is loaded with the 21-bit tag field
and the single valid bit from the cache entry read.
TR4 is also loaded with the three LRU bits and four
valid bits corresponding to the cache set that was
accessed. The cache read buffer is filled with the
128-bit value which was found in the data array at
the specified location.

The contents of the read buffer are examined by
performing four reads of TR3. Before reading TR3
the entry select bits in TR5 must loaded to indicate
which of the four 32-bit words in the read buffer to

2-134

intel.

transfer into TR3 and the control bits in TR5 must be
loaded with 00. The register read of TR3 will initiate
the transfer of the 32-bit value from the read buffer
to the specified general purpose register.

Note that it is very important that the entire 128-bit
quantity from the read buffer and also the informa-
tion from TR4 be read before any memory refer-
ences are aliowed to occur. If memory operations
are allowed to happen, the contents of the read buff-
er will be corrupted. This is because the testability
operations use hardware that is used in normal
memory accesses for the Intel486 DX2 microproc-
essor whether the cache is enabled or not.

8.2.4 FLUSH CACHE

The control bits in TR5 must be written with 11 to
flush the cache. None of the other bits in TR5 have
any meaning when 11 is written to the control bits.
Flushing the cache will reset the LRU bits and the
valid bits to 0, but will not change the cache tag or
data arrays.

When the cache is flushed by writing to TR5 the
special bus cycle indicating a cache flush to the ex-
ternal system is not run (see Section 7.2.11, Special
Bus Cycles). The cache should be flushed with the
instruction INVD (Invalidate Data Cache) instruction
or the WBINVD (Write-back and Invalidate Data
Cache) instruction.

8.3 Translation Lookaside Buffer
(TLB) Testing

The Intel486 DX2 microprocessor TLB testability
hooks are similar to those in the Intel386 microproc-
essor. The testability hooks have been enhanced to
provide added test features and to include new fea-
tures in the Intel486 DX2 microprocessor. The TLB
testability hooks are designed to be accessible dur-
ing the BIST and for assembly language testing of
the TLB.

8.3.1 TRANSLATION LOOKASIDE BUFFER
ORGANIZATION

The Intel486 DX2 microprocessors TLB is 4-way set
associative and has space for 32 entries. The TLB is
logically split into three blocks shown in Figure 8.3.

The data block is physically split into four arrays,
each with space for eight entries. An entry in the
data block is 22 bits wide containing a 20-bit physi-
cal address and two bits for the page attributes. The
page attributes are the PCD (page cache disable) bit
and the PWT (page write-through) bit. Refer to Sec-
tion 4.5.4 for a discussion of the PCD and PWT bits.

PRELIMINARY I

intel486™ DX2 MICROPROCESSOR

Page
Protaction
Bits

4 Bits

T Tag
17 Bits
8 Tags

Physical
Address
20 Bits

Page
Attributes

2 Bits 8 Entries

LRU
Bits

-

8
Entries

241245-66

Figure 8.3. TLB Organization

The tag block is also split into four arrays, one for
each of the data arrays. A tag entry is 21 bits wide
containing a 17-bit linear address and four protec-
tion bits. The protection bits are valid (V), user/su-
pervisor (U/S), read/write (R/W) and dirty (D).

The third block contains eight three bit quantities
used in the pseudo least recently used (LRU) re-
placement algorithm. These bits are called the LRU
bits. The LRU replacement algorithm used in the

TLB is the same as used by the on-chip cache. For a
description of this algorithm refer to Section 5.5.

8.3.2 TLB TEST REGISTERS TR6 AND TR7

The two TLB test registers are shown in Figure 8.4.
TR6 is the command test register and TR7 is the
data test register. External access to these registers
is provided through MOV req, TREG and MOV
TREG,reg instructions.

31 1211 10 8 8 7 6 5 0
TR6
Linear Address V| D |D#|U|[U# TLB Command
Test Register
3 1211 10 9 8 7 6 5 4 3 21
Physical Address PCD|PWT| L2 |L1t
LAU Bits

¥ = unused

Replacement Pointsr Select (Writes)

Replacement Pointer (Writes)

Hit Indication (Lookup) Hit Location (Lookup)

Figure 8.4. TLB Test Registers

I PRELIMINARY

2-135

Intel486™ DX2 MICROPROCESSOR

Table 8.2. Meaning of a Pair of TR6 Protection Bits

intgl.

TR6 Protection Bit TR6 Protection Bit# Meaning on Meaning on
(B) (B#) TLB Write Operation TLB Lookup Operation
0 0 Undefined Miss any TLB TAG BitB
0 1 Write 0 to TLB TAG BitB Match TLB TAG BitBif 0
1 0 Write 1 to TLB TAG BitB Match TLB TAG Bit B if 1
1 1 Undefined Match any TLB TAG Bit B

Command Test Register: TR6

TR6 contains the tag information and control infor-
mation used in a TLB test. Loading TR6 with tag and
control information initiates a TLB write or lookup
test.

TR6 contains three bit fields, a 20-bit linear address
(bits 12-31), seven bits for the TLB tag protection
bits (bits 5-11) and one bit (bit 0) to define the type
of operation to be performed on the TLB.

The 20-bit linear address forms the tag information
used in the TLB access. The lower three bits of the
linear address select which of the eight sets are ac-
cessed. The upper 17 bits of the linear address form
the tag stored in the tag array.

The seven TLB tag protection bits are described be-
low.

V: The valid bit for this TLB entry

D,D#: The dirty bit for/from the TLB entry

U,U#: The user/supervisor bit for/from the TLB
entry

W,W#: The read/write bit for/from the TLB entry

Two bits are used to represent the D, U/S and R/W
bits in the TLB tag to permit the option of a forced
miss or hit during a TLB lookup operation. The
forced miss or hit will occur regardless of the state
of the actual bit in the TLB. The meaning of these
pairs of bits is given in Table 8.2

The operation bit in TR6 determines if the TLB test
operation will be a write or a lookup. The function of
the operation bit is given in Table 8.3.

Table 8.3. TR6 Operation Bit Encoding

test write, TR7 contains the physical address and
the page attribute bits to be stored in the entry. After
a TLB test lookup hit, TR7 contains the physical ad-
dress, page attributes, LRU bits and entry location
from the access.

TR7 contains a 20-bit physical address (bits 12-31),
two bits for PCD (bit 11) and PWT (bit 10) and three
bits for the LRU bits (bits 7-9). The LRU bits in TR7
are only used during a TLB lookup test. The func-
tionality of TR7 bit 4 differs for TLB writes and lo0k-
ups. The encoding of bit 4 is defined in Tables 8.4
and 8.5. Finally TR7 contains two bits (bits 2-3) to
specify a TLB replacement pointer or the location of
a TLB hit.

Table 8.4. Encoding of Bit 4 of TR7 on Writes

TR?7 Replacement Pointer

Bit 4 Used on TLB Write
0 Pseudo-LRU Replacement Pointer
1 Data Test Register Bits 3:2

Table 8.5. Encoding of Bit 4 of TR7 on Lookups

TR7 Meaning after TLB

Bit 4 Lookup Operation
0 TLB Lookup Resulted in a Miss
1 TLB Lookup Resulted in a Hit

TR6 TLB Operation
Bit0 to Be Performed
0 TLB Write
1 TLB Lookup

Data Test Register: TR7

TR7 contains the information stored or read from the
data block during a TLB test operation. Before a TLB

2-136

A replacement pointer is used during a TLB write.
The pointer indicates which of the four entries in an
accessed set is to be written. The replacement
pointer can be specified to be the internal LRU bits
or bits 2-3 in TR7. The source of the replacement
pointer is specified by TR7 bit 4. The encoding of bit
4 during a write is given by Table 8.4.

Note that both testability writes and lookups affect
the state of the internal LRU bits regardless of the
replacement pointer used. All TLB write operations
(testability or normal operation) cause the written
entry to become the most recently used. For exam-
ple, during a testability write with the replacement
pointer specified by TR7 bits 2-3, the indicated en-
try is written and that entry becomes the most re-
cently used as specified by the internal LRU bits.

PRELIMINARY I

n

intal.

There are two TLB testing operations: write entries
into the TLB, and perform TLB lookups. One major
enhancement over TLB testing in the Intel386 micro-

processor is that paging need not be disabled while
executing testability writes or lookups.

Note that any time one TLB set contains the same
linear address in more than one of its entries, look-
ing up that linear address will give unpredictable re-
sults. Therefore a single linear address should not
be written to one TLB set more than once.

8.3.3 TLB WRITE TEST

To perform a TLB write TR7 must be loaded fol-
lowed by a TR6 load. The register operations must
be performed in this order since the TLB operation is
triggered by the write to TR6.

TR7 is loaded with a 20-bit physical address and
values for PCD and PWT to be written to the data
portion of the TLB. In addition, bit 4 of TR7 must be
loaded to indicate whether to use TR7 bits 3-2 or the
internal LRU bits as the replacement pointer on the
TLB write operation. Note that the LRU bits in TR7
are not used in a write test.

TR6 must be written to initiate the TLB write opera-
tion. Bit 0 in TR6 must be reset to zero to indicate a
TLB write. The 20-bit linear address and the seven
page protection bits must also be written in TR6 to
specify the tag portion of the TLB entry. Note that
the three least significant bits of the linear address
specify which of the eight sets in the data block will
be loaded with the physical address data. Thus only
17 of the linear address bits are stored in the tag
array.

8.3.4 TLB LOOKUP TEST

To perform a TLB lookup it is only necessary to write
the proper tags and control information into TR6. Bit
0 in TR6 must be set to 1 to indicate a TLB lookup.
TR6 must be loaded with a 20-bit linear address and
the seven protection bits. To force misses and
matches of the individual protection bits on TLB
lookups, set the seven protection bits as specified in
Table-8.2.

A TLB lookup operation is initiated by the write to
TR6. TR7 will indicate the result of the lookup opera-
tion following the write to TR6. The hit/miss indica-
tion can be found in TR7 bit 4 (see Table 8.5).

TR7 will contain the following information if bit 4 indi-
cated that the lookup test resulted in a hit. Bits 2-3
will indicate in which set the match occurred. The 22
most significant bits in TR7 will contain the physical
address and page attributes contained in the entry.

I PRELIMINARY

Intel486™ DX2 MICROPROCESSOR

Bits 97 will contain the LRU bits associated with
the accessed set. The state of the LRU bits is previ-
ous to their being updated for the current lookup.

If bit 4 in TR7 indicated that the lookup test resulted
in a miss the remaining bits in TR7 are undefined.

Again it should be noted that a TLB testability lookup
operation affects the state of the LRU bits. The LRU
bits will be updated if a hit occurred. The entry which
was hit will become the most recently used.

8.4 3-State Output Test Mode

The Intel486 DX2 microprocessor provides the abili-
ty to float all its outputs and bidirectional pins. This
includes all pins floated during bus hold as well as
pins which are never floated in normal operation of
the chip (HLDA, BREQ, FERR# and PCHK#).
When the intel486 DX2 microprocessor is in the 3-
state output test mode external testing can be used
to test board connections.

The 3-state test mode is invoked by driving
FLUSH# low for 2 clocks before and 2 clocks after
RESET going low. The outputs are guaranteed to 3-
state no later than 10 clocks after RESET goes low
(see Figure 6.4). The Intel486 DX2 microprocessor
remains in the 3-state test mode until the next
RESET.

8.5 Inteld86™ DX2 Microprocessor
Boundary Scan (JTAG)

The Intel486 DX2 microprocessor provides testabili-
ty features compatible with the |IEEE Standard Test
Access Port and Boundary Scan Architecture (IEEE
Std.1149.1). The test logic provided allows for test-
ing to insure that components function correctly, that
interconnections between various components are
correct, and that various components interact cor-
rectly on the printed circuit board.

The boundary scan test logic consists of a boundary
scan register and support logic that are accessed
through a test access port (TAP). The TAP provides
a simple serial interface that makes it possible to
test all signal traces with only a few probes.

The TAP can be controlled via a bus master. The
bus master can be either automatic test equipment
or a component (PLD) that interfaces to the four-pin
test bus.

2-137

Intei486™ DX2 MICROPROCESSOR

8.5.1 BOUNDARY SCAN ARCHITECTURE

The boundary scan test logic contains the following
elements:

— Test access port (TAP), consisting of input pins
TMS, TCK, and TDI; and output pin TDO.

— TAP controller, which interprsts the inputs on the
test mode select (TMS) line and performs the
corresponding operation. The operations per-
formed by the TAP include controlling the in-
struction and data registers within the compo-
nent.

— Instruction register (IR), which accepts instruc-
tion codes shifted into the test logic on the test
data input (TDI) pin. The instruction codes are
used to select the specific test operation to be
performed or the test data register to be ac-
cessed.

— Test data registers: The Intel486 DX2 microproc-
essor contains three test data registers: Bypass
register (BPR), Device Identification register
(DID), and Boundary Scan register (BSR).

The instruction and test data registers are separate
shift-register paths connected in parallel and have a
common serial data input and a common serial data
output connected to the TAP signals, TDI and TDO,
respectively.

8.5.2 DATA REGISTERS

The Intel486 DX2 CPU contains the two required
test data registers; bypass register and boundary
scan register. In addition, they also have a device
identification register.

]

intel.
Each test data register is serially connected to TDI
and TDO, with TDI connected to the most significant
bit and TDO connected to the least significant bit of
the test data register. Data is shifted one stage (bit

position within the register) on each rising edge of
the test clock (TCK).

In addition the Intel486 DX2 CPU contains a runbist
register to support the RUNBIST boundary scan in-
struction.

8.5.2.1 Bypass Register

The Bypass Register is a one-bit shift register that
provides the minimal length path between TDI and
TDO. This path can be selected when no test opera-
tion is being performed by the component to allow
rapid movement of test data to and from other com-
ponents on the board. While the bypass register is
selected, data is transferred from TDI to TDO with-
out inversion.

8.5.2.2 Boundary Scan Register

The Boundary Scan Register is a single shift register
path containing the boundary scan cells that are
connected to all input and output pins of the Intel486
DX2 CPU. Figure 8.5 shows the logical structure of
the boundary scan register. While output cells deter-
mine the value of the signal driven on the corre-
sponding pin, input cells only capture data; they do
not affect the normal operation of the device. Data is
transferred without inversion from TD! to TDO
through the boundary scan register during scanning.
The boundary scan register can be operated by the
EXTEST and SAMPLE instructions. The boundary
scan register order is described in Section 8.5.5.

BOUNDARY SCAN

REGISTER

SYSTEM
LOGIC
INPUT

SYSTEM
LOGIC

A 4

TCK

SYSTEM
3-STATE

241245-67

Figure 8.5. Logical Structure of Boundary Scan Register

2-138

PRELIMINARY I

intgl.

8.5.2.3 Device ldentification Register

The Device ldentification Register contains the man-
ufacturer's identification code, part number cods,
and version code in the format shown in Figure 8.6.
Table 8.6 lists the codes corresponding to the In-
tel486 DX2 CPU.

8.5.2.4 Runbist Register

The Runbist Register is a one bit register used to
report the results of the Intel486 DX2 CPU BIST
when it is initiated by the RUNBIST instruction. This
register is loaded with a “1" prior to invoking the
BIST and is loaded with “0” upon successful com-
pletion.

8.5.3 INSTRUCTION REGISTER

The Instruction Register (IR) allows instructions to
be serially shifted into the device. The instruction
selects the particular test to be performed, the test
data register to be accessed, or both. The instruc-

Intel486™ DX2 MICROPROCESSOR

tion register is four (4) bits wide. The most significant
bit is connected to TDI and the least significant bit is
connected to TDO. There are no parity bits associat-
ed with the Instruction register. Upon entering the
Capture-IR TAP controller state, the Instruction reg-
ister is loaded with the default instruction “0001",
SAMPLE/PRELOAD. Instructions are shifted into
the instruction register on the rising edge of TCK
while the TAP controller is in the Shift-IR state.

8.5.3.1 Intel486 DX2 CPU Boundary Scan
Instruction Set

The Intel486 DX2 CPU supports all three mandatory
boundary scan instructions (BYPASS, SAMPLE/
PRELOAD, and EXTEST) along with two optional in-
structions (IDCODE and RUNBIST). Table 8.7 lists
the Inteld86 DX2 CPU boundary scan instruction
codes. The instructions listed as PRIVATE cause
TDO to become enabled in the Shift-DR state and
cause “0” to be shifted out of TDO on the rising
edge of TCK. Execution of the PRIVATE instructions
will not cause hazardous operation of the Intel486
DX2 CPU.

31302828/ 27262524232221201918171615141312/1110 98 7 6 5 4 3 2 1/0

MANUFACTURER
VERSION PART NUMBER IDENTITY 1
241245-68
Figure 8.6. Format of Device Identification Register
Table 8.6. Device Identification Codes
Component Code Version Code Part Number Code Manufacturer identity
Intel486 DX2 CPU (Ax) 00h 0432h 09h
Intel486 DX2 CPU (Bx) 00h 0433h 09h
2-139

I PRELIMINARY

Intel486™ DX2 MICROPROCESSOR

Table 8.7. Boundary Scan instruction Codes

Instruction Code Instruction Name
0000 EXTEST

0001 SAMPLE

0010 IDCODE

0011 PRIVATE

0100 PRIVATE

0101 PRIVATE

0110 PRIVATE

0111 PRIVATE

1000 RUNBIST

1001 PRIVATE

1010 PRIVATE

1011 PRIVATE

1100 PRIVATE

1101 PRIVATE

1110 PRIVATE

1111 BYPASS

EXTEST The instruction code is “0000”. The EX-

SAMPLE/
PRELOAD

2-140

TEST instruction allows testing of cir-
cuitry external to the component pack-
age, typically board interconnects. It
does so by driving the values loaded
into the Inteld86 DX2 CPU’s boundary
scan register out on the output pins cor-
responding to each boundary scan cell
and capturing the values on Intel486
DX2 CPU input pins to be loaded into
their corresponding boundary scan reg-
ister locations. /0 pins are selected as
input or output, depending on the value
loaded into their control setting loca-
tions in the boundary scan register. Val-
ues shifted into input latches in the
boundary scan register are never used
by the internal logic of the Intel486 DX2
CPU.

NOTE:

After using the EXTEST instruction, the
Intel486 DX2 CPU must be reset before
normal (non-boundary scan) use.

The instruction code is “0001”. The
SAMPLE/PRELOAD has two functions
that it performs. When the TAP control-
ter is in the Capture-DR state, the SAM-
PLE/PRELOAD instruction allows a
“snap-shot” of the normal operation of

IDCODE

BYPASS

RUNBIST

intal.

the component without interfering with
that normal operation. The instruction
causes boundary scan register cells as-
sociated with outputs to sample the val-
ue being driven by the Intel486 DX2
CPU. It causes the cells associated with
inputs to sample the value being driven
into the Intel486 DX2 CPU. On both out-
puts and inputs the sampling occurs on
the rising edge of TCK. When the TAP
controlier is in the Update-DR state, the
SAMPLE/PRELOAD instruction pre-
loads data to the device pins to be driv-
en to the board by executing the
EXTEST instruction. Data is preloaded
to the pins from the boundary scan reg-
ister on the falling edge of TCK.

The instruction code is “0010". The ID-
CODE instruction selects the device
identification register to be connected
to TDI and TDO, allowing the device
identification code to be shifted out of
the device on TDO. Note that the de-
vice identification register is not altered
by data being shifted in on TDI.

The instruction code is “1111". The
BYPASS instruction selects the bypass
register to be connected to TDI or TDO,
effectively bypassing the test logic on
the Intel486 DX2 microprocessor by re-
ducing the shift length of the device to
one bit. Note than an open circuit fault
in the board level test data path will
cause the bypass register to be select-
ed following an instruction scan cycle
due to the pull-up resistor on the TDI
input. This has been done to prevent
any unwanted interference with the
proper operation of the system logic.

The instruction code is “1000”. The
RUNBIST instruction selects the one (1)
bit runbist register, loads a value of “1”
into the runbist register, and connects it
to TDO. it also initiates the built-in self
test (BIST) feature of the Intel486 DX2
CPU, which is able to detect approxi-
mately 60% of the stuck-at faults on the
Intel486 DX2 CPU. The Intel486 DX2
CPU AC/DC Specifications for Vg and
CLK must be met and reset must have
been asserted at least once prior to ex-
ecuting the RUNBIST boundary scan in-
struction. After loading the RUNBIST in-
struction code in the instruction register,
the TAP controller must be placed in
the Run-Test/Idle state. BIST begins on
the first rising edge of TCK after enter-
ing the Run-Test/ldle state. The TAP

PRELIMINARY I

L]

intgl.
controller must remain in the Run-Test/
Idie state until BIST is completed. It re-
quires 1.2 million clock (CLK) cycles to
complete BIST and report the result to
the runbist register. After completing
the 1.2 million clock (CLK) cycles, the
value in the runbist register should be
shifted out on TDO during the Shift-DR
state. A value of 0" being shifted out
on TDO indicates BIST successfully
completed. A valus of “1” indicates a
failure occurred. After executing the
RUNBIST instruction, the Intel486 DX2
CPU must be reset prior to normal oper-
ation.

8.5.4 TEST ACCESS PORT (TAP)
CONTROLLER

The TAP controller is & synchronous, finite state ma-
chine. It controls the sequence of operations of the
test logic. The TAP controller changes state only in
response to the following events:

1. arising edge of TCK

2. power-up.

Intel486™ DX2 MICROPROCESSOR

The value of the test mode state (TMS) input signal
at a rising edge of TCK controls the sequence of the
state changes. The state diagram for the TAP con-
troller is shown in Figure 8.7. Test designers must
consider the operation of the state machine in order
to design the correct sequence of values to drive on
TMS.

8.5.4.1 Test-Logic-Reset State

In this state, the test logic is disabled so that normal
operation of the device can continue unhindered.
This is achieved by initializing the instruction register
such that the IDCODE instruction is loaded. No mat-
ter what the original state of the controller, the con-
troller enters Test-Logic-Reset state when the TMS
input is held high (1) for at least five rising edges of
TCK. The controller remains in this state while TMS
is high. The TAP controller is also forced to enter
this state at power-up.

8.5.4.2 Run-Test/Idle State

A controller state between scan operations. Once in
this state, the controller remains in this state as long

Select-DR-Scan

Capture-!

.o.

0

» Shift-DR

0
R

Pause-

Update-DR

o
<

(=]

Shift-IR

a

1

0
1
0
1

1

Update-iR

! [

241245-69

Figure 8.7. TAP Controller State Diagram

I PRELIMINARY

2-141

intel486™ DX2 MICROPROCESSOR

as TMS is held low. in devices .supporting the
RUNBIST instruction, the BIST is performed during
this state and the result is reported in the runbist
register. For instruction not causing functions to exe-
cute during this state, no activity occurs in the test
logic. The instruction register and all test data regis-
ters retain their previous state. When TMS is high
and a rising edge is applied to TCK, the controller
moves to the Select-DR state.

8.5.4.3 Select-DR-Scan State

This is a temporary controller state. The test data
register selected by the current instruction retains its
previous state. If TMS is held low and a rising edge
is applied to TCK when in this state, the controller
moves into the Capture-DR state, and a scan se-
quence for the selected test data register is initiated.
If TMS is held high and a rising edge is applied to
TCK, the controller moves to the Select-IR-Scan
state.

The instruction does not change in this state.

8.5.4.4 Capture-DR State

In this state, the boundary scan register captures
input pin data if the current instruction is EXTEST or
SAMPLE/PRELOAD. The other test data registers,
which do not have parallel input, are not changed.

The instruction does not change in this state.

When the TAP controller is in this state and a rising
edge is applied to TCK, the controller enters the
Exit1-DR state if TMS is high or the Shift-DR state if
TMS is low.

8.5.4.5 Shift-DR State

in this controlier state, the test data register con-
nected between TDI and TDO as a result of the cur-
rent instruction, shifts data one stage toward its seri-
al output on each rising edge of TCK.

The instruction does not change in this state.

When the TAP controller is in this state and a rising
edge is applied to TCK, the controller enters the
Exit1-DR state if TMS is high or remains in the Shift-
DR state if TMS is low.

8.5.4.6 Exit1-DR State
This is a temporary state. While in this state, if TMS

is held high, a rising edge applied to TCK causes the
controller to enter the Update-DR state, which termi-

2-142

intel.

nates the scanning process. If TMS is held low and a
rising edge is applied to TCK, the controller enters
the Pause-DR state.

The test data register selected by the current in-
struction retains its previous value during this state.
The instruction does not change in this state.

8.5.4.7 Pause-Dr State

The pause state allows the test controller to tempo-
rarily halt the shifting of data through the test data
register in the serial path between TDI and TDO. An
example of using this state could be to allow a tester
to reload its pin memory from disk during application
of a long test sequence.

The test data register selected by the current in-
struction retains its previous value during this state.
The instruction does not change in this state.

The controlier remains in this state as long as TMS
is low. When TMS goes high and a rising edge is
applied to TCK, the controller moves to the Exit2-DR
state.

8.5.4.8 Exit2-DR State

This is a temporary state. While in this state, if TMS
is held high, a rising edge applied to TCK causes the
controfier to enter the Update-DR state, which termi-
nates the scanning process. If TMS is held low and a
rising edge is applied to TCK, the controlier enters
the Shift-DR state.

The test data register selected by the current in-
struction retains its previous value during this state.
The instruction does not change in this state.

8.5.4.9 Update-DR State

The boundary sgan register is provided with a
latched parallel output to prevent changes at the
parallel output while data is shifted in response to
the EXTEST and SAMPLE/PRELOAD instructions.
When the TAP controller is in this state and the
boundary scan register is selected, data is latched
onto the parallel output of this register from the shift-
register path on the falling edge of TCK. The data
held at the latched parallel output does not change
other than in this state.

All shift-register stages in test data register selected
by the current instruction retains its previous value
during this state. The instruction does not change in
this state.

PRELIMINARY I

intel.

8.5.4.10 Select-IR-Scan State

This is a temporary controller state. The test data
register selected by the current instruction retains its
pravious state. If TMS is held low and a rising edge
is applied to TCK when in this state, the controlier
moves into the Capture-IR state, and a scan se-
quence for the instruction register is initiated. If TMS
is held high and a rising edge is applied to TCK, the
controller moves to the Test-Logic-Reset state.

The instruction does not change in this state.

8.5.4.11 Capture-IR State

In this controller state the shift register contained in
the instruction register loads the fixed value “0001"
on the rising edge of TCK.

The test data register selected by the current in-
struction retains it previous value during this state.
The instruction does not change in this state.

When the controller is in this state and a rising edge
is applied to TCK, the controller enters the Exit1-iR
state if TMS is held high, or the Shift-IR state if TMS
is held low.

8.5.4.12 Shift-IR State

In this state the shift register contained in the in-
struction register is connected between TDI and
TDO and shifts data one stage towards its serial out-
put on each rising edge of TCK.

The test data register selected by the current in-
struction retains its previous value during this state.
The instruction does not change in this state.

When the controller is in this state and a rising edge
is applied to TCK, the controlier enters the Exit1-IR
state if TMS is held high, or remains in the Shift-IR
state if TMS is held low.

8.5.4.13 Exit1-IR State

This Is a temporary state. While in this state, if TMS
is held high, a rising edge applied to TCK causes the

I PRELIMINARY

Intel486™ DX2 MICROPROCESSOR

controller to enter the Update-IR state, which termi-
nates the scanning process. If TMS is held low and a
rising edge is applied to TCK, the controller enters
the Pause-IR state.

The test data register selected by the current in-
struction retains its previous value during this state.
The instruction does not change in this state.

8.5.4.14 Pause-IR State

The pause state allows the test controller to tempo-
rarily halt the shifting of data through the instruction
register.

The test data register selected by the current in-
struction retains its previous value during this state.
The instruction does not change in this state.

The controller remains in this state as long as TMS
is low. When TMS goes high and a rising edge is
applied to TCK, the controller moves to the Exit2-IR
state.

8.5.4.15 Exit2-IR State

This is a temporary state. While in this state, if TMS
is held high, a rising edge applied to TCK causes the
controller to enter the Update-IR state, which termi-
nates the scanning process. If TMS is held low and a
rising edge is applied to TCK, the controller enters
the Shift-IR state.

The test data register selected by the current in-
struction retains its previous value during this state.
The instruction does not change in this state.

8.5.4.16 Update-IR State

The instruction shifted into the instruction register is
latched onto the parallel output from the shift-regis-
ter path on the falling edge of TCK. Once the new
instruction has been latched, it becomes the current
instruction.

Test data registers selected by the current instruc-
tion retain the previous value.

2-143

Intel486™ DX2 MICROPROCESSOR

8.5.5 BOUNDARY SCAN REGISTER CELL

The boundary scan register contains a cell for each
pin, as well as cells for control of /0 and 3-state
pins. :

The following is the bit order of the Intel486 DX2
CPU boundary scan register: (from left to right and
top to bottom).

TDI — WRCTL ABUSCTL BUSCTL MISCCTL
ADS# BLAST# PLOCK# LOCK# PCHK#
BRDY # BOFF# BS16# BS8# RDY# KEN#
HOLD AHOLD CLK HLDA WR# BREQ BEO#
BE1# BE2# BE3# MIO# DC# PWT PCD
EADS# A20M# RESET FLUSH# INTR NMI
UP# FERR# IGNNE# D31 D30 D29 D28 D27
D26 D25 D24 DP3 D23 D22 D2t D20 D19 D18
D17 D16 DP2 D15 D14 D13 D12.D11 D10 D9
D8 DP1 D7 D6 D5 D4 D3 D2 D1 DO DPO A31
A30 A28 A28 A27 A26 A25 A24 A23 A22 A21
A20 A19 A18 A17 A16 A15 A14 A13 A12 A1
A10 A9 A8 A7 A6 RESERVED A5 A4 A3
A2 — TDO

2-144

intgl.

“RESERVED” corresponds to no connect “NC" sig-
nals on the Intel486 DX2 CPU.

All the *CTL cells are controi cells that are used to
select the direction of bidirectional pins or 3-state
output pins. If “1” is loaded into the control cell
(*CTL), the associated pin(s) are 3-stated or select-
ed as input. The following lists the control cells and
their corresponding pins.

1. WRCTL controls the D31-0 and DP3-0 pins.
2. ABUSCTL controls the A31-A2 pins.

3. BUSCTL controls the ADS#, BLAST#,
PLOCK#, LOCK#, WR#, BEO#, BE1#, BE2#,
BE3#, MIO#, DC#, PWT, and PCD pins.

4. MISCCTL controls the PCHK#, HLDA, BREQ,
and FERR # pins.

8.5.6 TAP CONTROLLER INITIALIZATION

The TAP controller is automatically initialized when a
device is powered up. In addition, the TAP controller
can be initialized by applying a high signal level on
the TMS input for five TCK periods.

PRELIMINARY I

[]
|nte| R Intel486™ DX2 MICROPROCESSOR

8.5.7 BOUNDARY SCAN DESCRIPTION LANGUAGE (BSDL)

-- Intel 1486(tm)DX2 CPU BSDL description

entity Intel486TM_DX2 is
generic(PHYSICAL_PIN_MAP : string := °*PGA_17x17");

port (A20M : in bit;
ABUS2 : out bit;
ABUS3 : out bit;
ABUS : inout bit_vector (4 to 31); -- Address bus (words)
ADS : out bit;
AHOLD : in bit;
BE : out bit_vector(0 to 3);
BLAST : out bit; é
BOFF : in bit; \
BRDY : in bit; e ‘
BREQ :out bit; o

BS8 : in bit;
BS16 : in Dbit: 0

%

CLK :in bit; \
DBUS : inout bit_vector(0§ 1) ; g a bus
HLDA : out bit\ Q

HOLD : in ; o)

KEN

NC1 : in

DC : out bit;

DP : inout bit_vect

EADS : in bit;

FERR : out bit; \

FLUSH : in bit

IGNNE : in

INTR i i Q &
LOCK : B

MIO : 'Y

NC ¥ I¥nkag Q ee to 12); -- No Connects
NMI : in &; Q

PCD : ou i

PCHK : o‘ b

PLOCK 2 ou b&

PWT ut bit;

RDY n bit;

RES i bit;

n

b , TDI : in bit; -- Scan Port inputs
T : out bit; -- Scan Port output
uP : in bit;

vce : linkage bit_vector(l to 24); -- VCC
Vss : linkage bit_vector(l to 28); -- VSS
WR : out bit);

use STD_1149_1_1990.all;

attribute PIN_MAP of InteldB86TM_DX2 : entity is PHYSICAL_PIN_MAP;

constant PGA_17x17 : PIN_MAP_STRING := -- Define Pin Out of PGA
*A20M : D15, * &
*ABUS2 : Ql4, * &
*ABUS3 : R15, * &
ABUS : {(S16, Q12, siS, Q13, R13, Q11, sS13, R12, &
" s7, @10, s5, R7, Q9, Q3, RS, Q4, @8, Q5,* &
. Q7, S$3, @6, R2, 82, S1, Rl, P2, P3, Q1)," &
*ADS : 817, * &
*AHOLD : Al7, * &
*BE : (K15, Jleé, J15, F17), " &
24124597

intel486™ DX2 CPU BSDL Model for Boundary Scan
I PRELIMINARY 2-145

Intel486™ DX2 MICROPROCESSOR

R6) |
: (86, S S10,4511,
M17, Li7, X
. Bl,; B BS, 4
*WR : N17 % ‘
f

attribute Tap_Scan_In of nal is true;
attribute Tap_Scan_Mode o : al is true;
attribute Tap_Scan_Out of gnal is true;
attribute Tap_Scan_Clock o \ signal is (25.0e6, BOTH);

attribute Instructiol th of InteldB86TM_DX2: entity is 4;

attribute Instruc code of Intel486TM_DX2: entity is

"BYPASS (11 &
"EXTEST (0 &
"SAMPLE (00 A &
"IDCODE (0010},* &

"RUNBIST (1000),°* &
"PRIVATE (0011,0100,0101,0110,0111,1001,1010,1011,1100,1101,1110)°*;

attribute Instruction_Capture of Inteld86TM_DX2: entity is °*0001°*;
-- there is no Instruction_Disable attribute for Inteld86TM_DX2

attribute Instruction_Private of Inteld486TM_DX2: entity is *private*;

attribute Instruction_Usage of Inteld486TM_DX2: entity is
*RUNBIST (registers BIST: " &
result 0; &
clock CLK in Run_Test_Idle;&
length 1200000);
attribute Idcode_Reglister of Intel4B6TM_DX2: entity is

*0000° --version
0000010000010001" & ~--new part number
00000001001 & --manufacturers identity
1; ~-required by the standard

attribute Register_Access of Intel4B6TM_DX2:
*BIST|[1} (RUNBIST)" ;

entity is

*BLAST R16, * &

*BOFF D D7, &

*BROY H1S, * &

*BREQ Q15 * &

*BS8 D16, * &

*BS16 €17, * &

*CLK €3, * &

*DBUS (P, N2, N1, H2, M3, J2, L2, L3, F2, D1, E3, * &

. cl, G3, D2, K3, F3, J3, D3, C2, Bl, Al, B2, * &

. A2, A4, A6, B6, C7, C6, CB, A8, CO, B8),* &

*oC MIS, * &

DP (N3, F1, Hl, A5}, * &

*EADS B17, * &

*FERR cid, * &

*FLUSH c15, * &

"HLDA P15, * &

"HOLD E15, * &

* IGNNE AlS, * &

*INTR alé, * &

"KEN FIS, * &

“LOCK NIS, * & "

"MIO N16, * & ey &
NG (R17, G15, Cl0, €12, €13, B0, B12, LI

. Al0, Al2, Al3),* &

"NC1 . sS4, * &

“NMI : B1S, * &

*PCD D17, v &

*BCHK 1017, v &

*PLOCK : 016, * &

*PWT D L5, * &

*RDY : Fl6, * &

"RESET : C16, * & \

*TCK D a3, v &

*TDI D Al4, * &

*TDO Bl6, * & Q~b

"TMS Bl4, * &

wup cl1, * &

vee (RB, R9, R . R14 K16, * &
. at, Hls, 6, E2, Bil, * &
. R3,

rvss ML, &
. El7, * &

241245-98

Intel486™ DX2 CPU BSDL Model for Boundary Scan (Continued)

2-146

PRELIMINARY I

|n intel486 ™ DX2 MICROPROCESSOR

-_(t\t'i"t’t*ittttttt!'l'lﬂttttttiiti'"'tf'tl’tﬂ'l-'ttil’"tttiivt'ttttt'i)

--{ The first cell is closest to TDO

_,('rvv:*atr'n'-'a-rtnt'a'ww"t'twwtttt't'tt'tttttwtw*tr't'f'tt'tr't'wt')

altribute Boundary_Length of Inteld86TM_DX2: entlty is 105; :
attiibute Boundary_Cells of Inteld486TM_DX2: entity is "BC_2, BC_l1, BC_6";

attribute Boundary_Register of Intel486TM_DX2: entity ls
"0

"13 (BC_6, ABUS(14), bidir, X, 102,
*l4 (BC_6, ABUS(15), bidir, X, 102,
*i5 ({BC_6, ABUS(l6), bidir, X, 102,

(BC_2, ABUS2, output3, X, 102, 1, 2},* &

1 (BC_2, ABUS3, output3, X, 102, 1, Z},* &

2 (BC_6, ABUS(4), bidir, X, 102, 1, 2Z).° &

3 (BC_6, ABUS(S), bldir, X, 102, 1, 2)," &
"4 (BC_1, NC1, input, X)," &

“5 (BC_6, ABUS(6), bidir, X, 102, 1, 2),* &

"6 (BC_6, ABUS(7), bidir, X, 102, 1, 2),* &

7 {BC_6, ABUS(8), bidir, X, 102, 1, 2),* &

"8 (BC_6, ABUS(9}, bidir, X, 102, 1, 2Z),° &

"9 (BC_6, ABUS(10), bidir, X, 102, 1, 2),* &

"10 (BC_6, ABUS(1l), bidir, X, 1062, 1, 2Z),* &

11 (BC_6, ABUS{12), bigir, x, 102, 1, 2Z},* &

*12 (BC_6, ABUS(13), bidir, X, 102, 1, 2),"’: &

1, . &

1, . &

1, &

&

*lo (BC_6, ABUS(20), bidir, X, 10g,
20 (BC_6, ABUS(21), bidir, X,

21 (BC 6, ABUS(22), bidir, X, 1,

*22 (RC_G, ABUS(23), bidir, X 1, &

23 (BC 6, ABUS(24), bidir, x 1,)

24 (BCT6, ABUS(25), bidir, {ili

*25 (BC_6, ABUS(26),
*26 (BC_6, ABUS(27),
*27 (BC 6, ABUS(28),

*16 (BC_6, ABRUS(17), bidir, X, 102,),

“17 (BC_6, ABUS(18), bidir, X, 102, Ve
“IR (BC_6, ABUS(19), bidir, X, 102, z),* %

2),

.2,

*28 (BC_6, ABUS(29), &
*29 (BC_6,. ABUS(30), &
"30 (BC_6, ABUS(31) " &
*31 (BC_6, DP{0), . &
*32 (BC_6, DBUS . &
*33 _) . &
°34 . 2 i 1, . &
*35 1, . &
*36 , 1, . &
*37 i 1, ¢ &
=38 1, . &
39 id , 103, 1, 2Z), &
“40 bidi , 103, 1, Z).° &
"41 bidir,” X, 103, 1, 2),* &
42 bidir, X, 103, 1, 2)," &
*43 bidir, x, 103, 1, 2),° &
44 bidir, x, 103, 1, 2), &
45 bidir, X, 103, 1, 2), &
“46 bidir, X, 103, 1, 2),* &
47 bidir, x, 103, 1, 2), &
48 bidir, X, 103, 1, 2), &
"49 _ bidir, x, 103, 1, 2).,*° &
“S0 (BC_6, DBUS(I1S6]), bidir, %, 103, 1, 2),°* &
51 (BC_6, DBUS(17), pbidir, X, 103, 1, 2), &
52 (BC_6, DBUS(18), bidir, X, 103, 1, 2Z). &
*53 (BC_6, DBUS(19), bidir, X, 103, 1, 2),° &
54 (BC_6, DBUS{20), bidir, X, 103, 1, 2), &
S5 (BC_6, DBUS(21), bidir, x, 103, 1, 2),* &
"56 (BC_6, DBUS(22), bidir, X, 103, 1, 2Z),* &
"S7 (BC_6, DBUS(23), bidir, X, 103, 1, 2Z),° &
"SR (BC_6, DP(3), bidir, x, 103, 1, 2),° &
"59 (BC_6, DBUS(24), bidir, X, 103, 1, Z},* &
"60 (BC_6, DBUS(25), bigir, x, 103, 1, 2),* &
61 (BC_6, DBUS(26}, bidir, X, 103, 1, 2), &
"62 (BC_6, DBUS(27), bidir, X, 103, 1, Z)," &
*63 (BC_6, DBUS(28), bidir, %, 103, 1, Z)," &
*64 (BC_6, DBUS(29)}), bidir, X, 103, 1, 2),° &
"65 (BC_6, DBUS(30), bidir, X, 103, 1, 2),* &
66 (BC_6, DBUS(31), bidir, x, 103, 1, 2Z)," &
67 (BC_1, IGNNE, input, X), &

“68 (BC_2, FERR, output3, X, 100, 1, 2),° &
"69 (BC_1, UP, input, X),* &

70 (BC_1l, NMI, input, X), &

71 (BC_1, INTR, input, X), &

241245-99

Intel486 ™™ DX2 CPU BSDL Model for Boundary Scan (Continued)

I PRELIMINARY 2.147

intel486™ DX2 MICROPROCESSOR Inté o

72 (BC__1, FLUSH, Input, X),* &

73 (BC_1l, RESET, input, X), &

74 (BC_1l, A20M, input, X), &

=75 (BC_l, EADS, input, Xxj),* &

76 (BC_2, PCD, outputd, X, 101, 1, Z), \

*77 (BC_2, PWT, output3, X, 1011, 32),"

78 (BC_2, DC, output3, X, 1g¢1, 1, 2} &

*79 (BC_2, MIO, output3, X, . 1, &

*80 (BC_2, BE(3), output3, X, 1, &

"81 (BC_2, BE(2), output3, . 1 &

*82 (BC_2, BE(1l), output3, 01,), " &

83 (BC_2, BE(0), v .t &

*84 (BC_2, BREQ, ' . &

"85 (BC_2, WR, &

"86 (BC_2, HLDA, &

87 (BC_l, CLK,

*88 (BC_1, AHOLD,

*89 (BC_1, HOLD,

"90 (BC_1, KEN,

"91 (BC_l1, RDY, E :

"92 (BC_l, BSS8 &

*93 (BC_l, B ,e &

*94 (BC_1, R ut 3 &

*95 (Bc_lr,‘;’» ' P, " &

96 (BC_2, ' PCHK, u X, 100, 1, 2z2), &

"97 (BC_2, LOCK, , X, 101, 1, z),* &

*98 (BC_2, PLO t3, x, 101, 1, 2),° &

*99 (BC_2, B utl, x, 101, 1, 2),° &

100 (BC_2, AB& \ tput3, X, 10i, 1. 2). &

101 (BC_2, . control, 1})," & -~ DISMISC

102 (BC_2 control, 1)," & -- DISBUS

103 (BC A control, 1)," & -- DISABUS

*104 (9 *, control, 1)*; -~ DISWR
end Intel486TMPNIX2;

241245-A1

Intel486™ DX2 CPU BSDL Model for Boundary Scan (Continued)

2-148 PRELIMINARY I

intgl.

Intel486™™ DX2 MICROPROCESSOR

9.0 DEBUGGING SUPPORT

The Intel486 microprocessor family provides several
features which simplify the debugging process. The
three categories of on-chip debugging aids are:

1) the code execution breakpoint opcode (0CCH),

2) the single-step capability provided by the TF bit
in the flag register, and

3) the code and data breakpoint capability provided
by the Debug Registers DR0-3, DR6, and DR7.

9.1 Breakpoint instruction

A single-byte-opcode breakpoint instruction is avail-
able for use by software debuggers. The breakpoint
opcode is 0CCH, and generates an exception 3 trap
when executed. In typical use, a debugger program
can “plant” the breakpoint instruction at all desired
code execution breakpoints. The single-byte break-
point opcode is an alias for the two-byte general
software interrupt instruction, INT n, where n=3.
The only difference between INT 3 (OCCh) and INT n
is that INT 3 is never IOPL-sensitive but INT n is
IOPL-sensitive in Protected Mode and Virtual 8086
Mode.

9.2 Single-Step Trap

If the single-step flag (TF, bit 8) in the EFLAG regis-
ter is found to be set at the end of an instruction, a

I PRELIMINARY

single-step exception occurs. The single-step ex-
ception is auto vectored to exception number 1. Pre-
cisely, exception 1 occurs as a trap after the instruc-
tion following the instruction which set TF. In typical
practice, a debugger sets the TF bit of a flag register
image on the debugger's stack. It then typically
transfers control to the user program and loads the
flag image with a signal instruction, the IRET instruc-
tion. The single-step trap occurs after executing one
instruction of the user program.

Since the exception 1 occurs as a trap (that is, it
occurs after the instruction has already executed),
the CS:EIP pushed onto the debugger’s stack points
to the next unexecuted instruction of the program
being debugged. An exception 1 handler, merely by.
ending with an IRET instruction, can therefore effi-
ciently support single-stepping through a user pro-
gram.

9.3 Debug Registers

The Debug Registers are an advanced debugging
feature of the Intel486 microprocessor family. They
allow data access breakpoints as well as code exe-
cution breakpoints. Since the breakpoints are indi-
cated by on-chip registers, an instruction execution
break-point can be placed in ROM code or in code
shared by several tasks, neither of which can be
supported by the INT3 breakpoint opcode.

2-149

intel486™ DX2 MICROPROCESSOR

The Intel486 microprocessor contains six Debug
Registers, providing the ability to specify up to four
distinct breakpoints addresses, breakpoint control
options, and read breakpoint status. Initially after re-
set, breakpoints are in the disabled state. Therefore,
no breakpoints will occur unless the debug registers
are programmed. Breakpoints set up in the Debug
Registers are autovectored to exception number 1.

9.3.1 LINEAR ADDRESS BREAKPOINT
REGISTERS (DR0-DR3)

Up to four breakpoint addresses can be specified by
writing into Debug Registers DRO-DR3, shown in
Figure 9.1. The breakpoint addresses specified are
32-bit linear addresses. Inteld86 microprocessor
hardware continuously compares the linear break-
point addresses in DRO-DR3 with the linear ad-
dresses generated by executing software (a linear
address is the result of computing the effective ad-
dress and adding the 32-bit segment base address).
Note that if paging is not enabled the linear address

]

intgl.
equals the physical address. If paging is enabled,
the linear address is translated to a physical 32-bit
address by the on-chip paging unit. Regardless of

whether paging is enabled or not, however, the
breakpoint registers hold linear addresses.

9.3.2 DEBUG CONTROL REGISTER (DR7)

A Debug Control Register, DR7 shown in Figure 9.1,
allows several debug control functions such as en-
abling the breakpoints and setting up other control
options for the breakpoints. The fields within the De-
bug Control Register, DR7, are as follows:

LENi (breakpoint length specification bits)

A 2-bit LEN field exists for each of the four break-
points. LEN spaecifies the length of the associated
breakpoint field. The choices for data breakpoints
are: 1 byte, 2 bytes, and 4 bytes. Instruction execu-
tion breakpoints must have a length of 1 (LENi =
00). Encoding of the LENi field is as follows:

31 16 15 0
BREAKPOINT 0 LINEAR ADDRESS DRO
BREAKPOINT 1 LINEAR ADDRESS DR1
BREAKPOINT 2 LINEAR ADDRESS DR2
BREAKPOINT 3 LINEAR ADDRESS DR3
Intg! reserved. Do not define. DR4
Intgl reserved. Do not define. DR5

J8E B[] ome
LEN |R(W| LEN [R{W| LEN [R{W] LEN |R|W G G|L|G|L|G[L|G|L|G|L DR7
3 |3(3 2 |2[{2f 1 [1{1} 0 [0]0O D E|E|3[3|2]2]1[1]0]0
31 ' 16 15 0
NOTE:
@ indicates Intel reserved: Do not define; SEE SECTION 2.3.10

Figure 9.1. Debug Registers

2-150

PRELIMINARY I

intgl.

intel486™ DX2 MICROPROCESSOR

Usage of Least

DR2=00000005H; LEN2 = 00B

a four-byte, dword-
aligned breakpoint field.
AOand Alin
Breakpoint Address

LENi Breakpolint Significant Bits In 31 o
Encoding | Fleld Width Breakpoint Address
Reglster |, (1=0-3) 00000008H
00 1 byte All 32-bits used to bkpt fid2 00000004H
specify a single-byte
breakpoint field. 00000000H
01 2 bytes A1-A31 used to specify
a two-byte, word- DR2=00000005H; LEN2 = 01B
aligned breakpoint field. 31 0
A0 in Breakpoint
Ad Register is not
A s:drfass egister is no 00000008H
do not use 00000000H
this encoding
1 4 bytes A2-A31 used to specify

Register are not used.

The LENi field controls the size of breakpoint field i
by controliing whether all low-order linear address
bits in the breakpoint address register are used to
detect the breakpoint event. Therefore, all break-
point fields are aligned; 2-byte breakpoint fields be-
gin on Word boundaries, and 4-byte breakpoint
fields begin on Dword boundaries.

The following is an example of various size break-
point fields. Assume the breakpoint linear address in
DR2 is 00000005H. In that situation, the foliowing
illustration indicates the region of the breakpoint
field for lengths of 1, 2, or 4 bytes.

I PRELIMINARY

DR2=00000005H; LEN2 = 11B

31 0
00000008H

«— bkptfid2 — 00000004H

| | | 00000000H

RWi (memory access qualifier bits)

A 2-bit RW field exists for each of the four break-
points. The 2-bit RW field specifies the type of usage
which must occur in order to activate the associated
breakpoint.

2-151

Intel4d86™ DX2 MICROPROCESSOR

RW Usage
Encoding Causing Breakpoint
00 Instruction execution only
01 Data writes only
10 Undefined—do not use this encoding
11 Data reads and writes only

RW encoding 00 is used to set up an instruction
execution breakpoint. RW encodings 01 or 11 are
used to set up write-only or read/write data break-
points.

Note that Instruction execution breakpoints are
taken as faults (i.e., before the instruction exe-
cutes), but data breakpoints are taken as traps
(i.e., after the data transfer takes place).

Using LENi and RWi to Set Data Breakpoint i

A data breakpoint can be set up by writing the linear
address into DRi (i = 0-3). For data breakpoints,
RWi can = 01 (write-only) or 11 (write/read). LEN
can = 00, 01, or 11.

If a data access entirely or partly falls within the data
breakpoint field, the data breakpoint condition has
occurred, and if the breakpoint is enabled, an excep-
tion 1 trap will occur.

Using LENi and RWi to Set Instruction Execution
Breakpoint i

An instruction execution breakpoint can be set up by
writing address of the beginning of the instruction
(including prefixes if any) into DRi (i = 0~3). RWi
must = 00 and LEN must = 00 for instruction exe-
cution breakpoints.

If the instruction beginning at the breakpoint address
is about to be executed, the instruction execution
breakpoint condition has occurred, and if the break-
point is enabled, an exception 1 fault will occur be-
fore the instruction is executed.

Note that an instruction execution breakpoint ad-
dress must be equal to the beginning byte address
of an instruction (including prefixes) in order for the
instruction execution breakpoint to occur.

GD (Giobal Debug Register access detect)

The Debug Registers can only be accessed in Real
Mode or at privilege level 0 in Protected Mods. The
GD bit, when set, provides exira protection against
any Debug Register access even in Real Mode or at
privilege level 0 in Protected Mode. This additional
protection feature is provided to guarantee that a
software debugger can have full control over the De-

2-152

a2

intgl.
bug Register resources when required. The GD bit,
when set, causes an exception 1 fault if an instruc-
tion attempts to read or write any Debug Register.
The GD bit is then automatically cleared when the

exception 1 handler is invoked, allowing the excep-
tion 1 handler free access to the debug registers.

GE and LE (Exact data breakpoint match, global and
local)

The breakpoint mechanism of the Intel486 micro-
processor family differs from that of the Intel386.
The Intel486 microprocessor always does exact
data breakpoint matching, regardless of GE/LE bit
settings. Any data breakpoint trap will be reported
exactly after completion of the instruction that
caused the operand transfer. Exact reporting is pro-
vided by forcing the Intel486 microprocessor execu-
tion unit to wait for completion of data operand
transfers before beginning execution of the next in-
struction.

When the Intel486 microprocessor performs a task
switch, the LE bit is cleared. Thus, the LE bit sup-
ports fast task switching out of tasks, that have
enabled the exact data breakpoint match for their
task-local breakpoints. The LE bit is cleared by the
processor during a task switch, to avoid having ex-
act data breakpoint match enabled in the new task.
Note that exact data breakpoint match must be re-
enabled under software control.

The Intel486 microprocessor GE bit is unaffected
during a task switch. The GE bit supports exact data
breakpoint match that is to remain enabled during all
tasks executing in the system.

Note that Instruction execution breakpoints are al-
ways reported exactly.

Gi and Li {breakpoint enabis, global and local)

if sither Gi or Li is set then the associated breakpoint
(as defined by the linear address in DRI, the length
in LENi and the usage criteria in RWi) is enabled. if
sither Gi or Li is set, and the Intel486 microproces-
sor detects the ith breakpoint condition, then the ex-
ception 1 handler is invoked.

When the Intel486 microprocessor performs a task
switch to a new Task State Segment (TSS), all Li
bits are cleared. Thus, the Li bits support fast task
switching out of tasks that use some task-local
breakpoint registers. The Li bits are cleared by the
processor during a task switch, to avoid spurious ex-
ceptions in the new task. Note that the breakpoints
must be re-enabled under software control.

All Intel486 microprocessor Gi bits are unaffected
during a task switch. The Gi bits support breakpoints
that are active in all tasks executing in the system.

PRELIMINARY I

intel.

9.3.3 DEBUG STATUS REGISTER (DR6)

A Debug Status Register, DR6 shown in Figure 9.1,
allows the exception 1 handler to easily determine
why it was invoked. Note the exception 1 handler
can be invoked as a result of one of several events:

1) DRO Breakpoint fault/trap.
2) DR1 Breakpoint fault/trap.
3) DR2 Breakpoint fault/trap.
4) DRS3 Breakpoint fault/trap.
5) Single-step (TF) trap.

6) Task switch trap.

7) Fault due to attempted debug register access
when GD=1.

The Debug Status Register contains single-bit flags
for each of the possible events invoking exception 1.
Note below that some of these events are faults (ex-
ception taken before the instruction is executed),
while other events are traps (exception taken after
the debug events occurred).

The flags in DR6 are set by the hardware but never
cleared by hardware. Exception 1 handler software
should clear DR6 before returning to the user pro-
gram to avoid future confusion in identifying the
source of exception 1.

The fields within the Debug Status Register, DRS,
are as follows:

Bi (debug fault/trap due to breakpoint 0-3)

Four breakpoint indicator flags, B0-B3, correspond
one-to-one with the breakpoint registers in DRO-
DR3. A flag Bi is set when the condition described
by DRi, LENi, and RWi occurs.

If Gi or Liis set, and if the ith breakpoint is detected,
the processor will invoke the exception 1 handler.
The exception is handlied as a fault if an instruction
execution breakpoint occurred, or as a trap if a data
breakpoint occurred.

I PRELIMINARY

Intel486™ DX2 MICROPROCESSOR

IMPORTANT NOTE: A flag Bi is set whenever the
hardware detects a match condition on enabled
breakpoint i. Whenever a match is detected on at
least one enabled breakpoint i, the hardware imme-
diately sets all Bi bits corresponding to breakpoint
conditions matching at that instant, whether enabled
or not. Therefore, the exception 1 handler may see
that multiple Bi bits are set, but only set Bi bits corre-
sponding to enabled breakpoints (Li or Gi set) are
true indications of why the exception 1 handler was
invoked.

BOD (debug fault due to attempted register access
when GD bit set)

This bit is set if the exception 1 handler was invoked
due to an instruction attempting to read or write to
the debug registers when GD bit was set. if such an
event occurs, then the GD bit is automatically
cleared when the exception 1 handler is invoked,
allowing handler access to the debug registers.

BS (debug trap due to single-step)

This bit is set if the exception 1 handler was invoked
due to the TF bit in the flag register being set (for
single-stepping).

BT (debug trap due to task switch)

This bit is set if the exception 1 handler was invoked
due to a task switch occurring to a task having a
Intel486 microprocessor TSS with the T bit set. Note
the task switch into the new task occurs normally,
but before the first instruction of the task is execut-
ed, the exception 1 handler is invoked. With respect
to the task switch operation, the operation is consid-
ered to be a trap.

9.3.4 USE OF RESUME FLAG (RF) IN FLAG
REGISTER

The Resume Flag (RF) in the flag word can sup-
press an instruction execution breakpoint when the
exception 1 handler returns to a user program at a
user address which is also an instruction execution
breakpoint.

2-153

Intel486™ DX2 MICROPROCESSOR

intgl.

10.0 INSTRUCTION SET SUMMARY

This section describes the Inteil486 DX2 microproc-
essor instruction set. Tables 10.1 through 10.3 list all
instructions along with instruction encoding dia-
grams and clock counts. Further details of the in-
struction encoding are then provided in Section
10.2, which completely describes the encoding
structure and the definition of all fields occurring
within the Intel486 DX2 microprocessor instructions.

10.1 Intel486™ DX2 Microprocessor
Instruction Encoding and Clock

Count Summary

To calculate elapsed time for an instruction, multiply
the instruction clock count, as listed in Tables 10.1
through 10.3 by the processor core clock period
(e.g., 20 ns for a 50 MHz Intel486 DX2 microproces-
sor).

For more detailed information on the encodings of
instructions, refer to Section 10.2 Instruction Encod-
ings. Section 10.2 explains the general structure of
instruction encodings, and defines exactly the en-
codings of ali fields contained within the instruction.

INSTRUCTION CLOCK COUNT ASSUMPTIONS

The Intel486 DX2 microprocessor instruction core
clock count tables give clock counts assuming data
and instruction accesses hit in the cache. The com-
bined instruction and data cache hit rate is over
90%.

A cache miss will force the Intel486 DX2 microproc-
essor to run an external bus cycle. The Intel486 DX2
microprocessor 32-bit burst bus is defined as
r—b—w.

Where:

r = The number of bus clocks in the first cycle of a
burst read or the number of clocks per data
cycle in a non-burst read.

b = The number of bus clocks for the second and
subsequent cycles in a burst read.

w = The number of bus clocks for a write.

The fastest bus the Intel486 DX2 microprocessor
can support is 2—1—2 assuming 0 wait states. The
clock counts in the cache miss penalty column as-
sume a 2—1—2 bus. For slower busses add r—2
clocks to the cache miss penalty for the first dword
accessed. Other factors also affect instruction clock
counts,

Instruction Clock Count Assumptions

1. The external bus is available for reads or writes
at all times. Else add bus clocks to reads until
the bus is available.

2-154

2.

3.

10.

i1,

12

Accesses are aligned. Add three core clocks to
each misaligned access.

Cache fills complete before subsequent access-
es to the same line. If a read misses the cache
during a cache fill due to a previous read or pre-
fetch, the read must wait for the cache fill to
complete. If a read or write accesses a cache
line still being filled, it must wait for the fill to
complete.

. If an effective address is calculated, the base -

register is not the destination register of the pre-
ceding instruction. If the base register is the
destination register of the preceding instruction
add 1 to the core clock counts shown. Back-to-
back PUSH and POP instructions are not affect-

ed by this rule. :

. An effective address calculation uses one base

register and does not use an index register.
However, if the effective address calculation
uses an index register, 1 core clock may be
added to the clock count shown.

. The target of a jump is in the cache. If not, add r

clocks for accessing the destination instruction
of a jump. If the destination instruction is not
completely contained in the first dword read,
add a maximum of 3b bus clocks. If the destina-
tion instruction is not completely contained in
the first 16 byte burst, add a maximum of anoth-
er r+ 3b bus clocks. ’

. If no write buffer delay, w bus clocks are added

only in the case in which all write buffers are full.

. Displacement and immediate not used together.

If displacement and immediate used together, 1
core clock may be added to the core clock
count shown.

. No invalidate cycles. Add a delay of 1 bus clock

for each invalidate cycle if the invalidate cycle
contends for the internal cache/external bus
when the Intel486 DX2 CPU needs to use it.
Page translation hits in TLB. A TLLB miss will add
13, 21 or 28 bus clocks + 1 possible core clock
to the instruction depending on whether the Ac-
cessed and/or Dirty bit in neither, one or both of
the page entries needs to be set in memory.
This assumes that neither page entry is in the
data cache and a page fault does not occur on
the address translation.

No exceptions are detected during instruction
execution. Refer to Interrupt core Ciock Counts

- Table for extra clocks if an interrupt is detected.

Instructions that read multiple consecutive data
items (i.e. task switch, POPA, etc.) and miss the
cache are assumed to start the first access on a
16-byte boundary. If not, an extra cache line fill
may be necessary which may add up to (r+3b)
bus clocks to the cache miss penalty.

PRELIMINARY I

intgl.

intel486™ DX2 MICROPROCESSOR

Table 10.1. intel486™ DX2 Microprocessor integer Core Clock Count Summary

INSTRUCTION FORMAT Cache Hit Notes
INTEGER OPERATIONS
MOV = Move:
regt to reg2 | 1000100W |11 reg1 regzl 1
reg2 to regl I 1000101w |11 regi regzl 1
memory to reg | 1000101w Imod reg r/ml 1
reg to memory | 1000100w]mod reg r/ml 1
Immediate to reg I 110001 1w |11OOD reglimmediatedata 1
or 1011w reg immediate data 1
Immediate to Memory [[1100011w [mod 000 r/m| disPlacement 1
Memory to Accumulatar 1010000w | fuli displ 1
Accumulator to Memory 1010001 w | full displ 1
MOVSX/MOVZX = Move with Sign/Zero
reg2 to reg1 | 00001111 I 1011211wl11 reg1 regzl 3
memory to reg | 00001111 I 1011zl1w|mod reg r/ml 3
2 Instruction
0 MOvzZX
1 MOVSX
PUSH = Push
reg |11111111I11 110 rag[4
or 01010 reg 1
memory l11111111|mod110 r/ml 4
immediate 01101080 | immediate data 1
PUSHA = Push All 01100000 11
POP = Pop
reg I 10001111 |11 000 regl 4
or 01011 reg 1
memory | 10001111 |mod 000 r/m] 5
POPA = Pop All 01100001 [
XCHG = Exchange
reg1 with reg2] 100001 1w |11 reg1l regzl k]
Accumulator with reg 10010 reg 3
Memory with reg I 1000011w]mod reg r/ml 5
NOP = No Operation 10010000 1
LEA = Load EA to Register [10001101 [mod reg rm]
no index register 1
with index register 2
PRELIMINARY 2155

|]
Intel486™ DX2 MICROPROCESSOR |n‘te| R

Table 10.1. Intel486™ DX2 Microprocessor Integer Core Clock Count Summary (Continued)

INSTRUCTION FORMAT Cache Hit Notes
INTEGER OPERATIONS (Continued)
Instruction TIT
ADD = Add 000
ADC = Add with Carry 010
AND = Logical AND 100
OR = Logical OR 001
8SUB = Subtract 10t
$BB = Subtract with Borrow 011
XOR = Logical Exclusive OR 110
reg1 to reg2 | 00TTTOOW I11 regl rsgzl 1
reg2 to reg1 | Q0TTTO1w]11 reg1 regzl 1
memory to register [00TTTO1w Imod reg r/ml 2
register to memory I OOTTTOOWlmod reg r/ml 3 u/L
immediate to register I 100000sw]11 7T rsglimmedia(eregistst 1
immediate to accumulator 00TTT10w | i iate data 1
immediate to memory | 100000sw Imod TTT r/ml' iate data 3 u/t
Instruction T
INC = Increment 000
DEC = Decrement 001
reg Il111111wl11 TYT regl 1
or 01TTT reg 1
memory [1t11111w [mod TTT /m] 3 wL
Instruction 717
NOT = Logical Complement 010
NEG = Negate 011
reg |1111011w|11 TTT regl 1
memory l 111\011wlmodTTT r/m] 3 u/L
CMP = Compare
reg? with reg2] 0011100w l11 reg1l reg2| 1
reg2 with reg1 I 001110tw [11 rogi rsgzl 1
memory with register ‘ 0011100w |mod reg r/m' 2
register with memory I 0011101w Imod reg r/ml 2
immediate with register | 100000sw l11 111 regl immediate data . 1
immediate with acc. immediate data 1
immediate with memory | 100000sw Imod 111 r/mlimmedialedata 2
TEST = Logical Compare
reg1 and reg2 | 1000010w l11 regl rsg2| 1
memory and register I 1000010w Imod reg r/ml 2
immediate and register I 111101tw [11 000 reglimmediatsdata 1
immediate and acc. I 1010100w l iate data 1
immediate and memory I 1111011w Imod 000 r/m]immediatedata 2

2-156 PRELIMINARY I

Intd o intel486™ DX2 MICROPROCESSOR

Table 10.1. intel486™ DX2 Microprocessor Integer Core Clock Count Summary (Continued)

INSTRUCTION FORMAT Cache Hit Notes
INTEGER OPERATIONS (Continued)
MUL = Multiply (unsigned)
acc. with register 111101tw {11 100 reg
Multiplier-Byte 13/18 MN/MX, 3
Word 13/28 MN/MX, 3
Dword 13/42 MN/MX, 3
acc. with memory 1111011w {mod 100 r/m
Multiplier-Byte 13/18 MN/MX, 3
Word 13/26 MN/MX, 3
DOword 13742 MN/MX, 3
IMUL = Integer Multiply (signed)
acc. with register | 1111011w |11 101 reg
Muitiplier-Byte 13718 MN/MX, 3
Word 13/26 MN/MX, 3
Dword 13/42 MN/MX, 3
acc. with memory 1111011w |mod 101 r/m
Multiplier-Byte 13/18 MN/MX, 3
Word 13/26 MN/MX, 3
Dword 13/42 MN/MX, 3
reg1 with reg2 00001111 r1o1o1111I11 regl reg2
Multiplier-Byte 13/18 MN/MX, 3
Word 13/26 MN/MX, 3
Dword 13/42 MN/MX, 3
register with memory 00001111 10101111 |mod reg r/m
Muitiplier-Byte 13/18 MN/MX, 3
Word 13/26 MN/MX, 3
Oword 13742 MN/MX, 3
ragl with imm. to reg2 01101081 {11 reg! reg2 | immediate data
Multiplier-Byte 13/18 MN/MX, 3
Word 13/26 MN/MX, 3
Oword 13/42 MN/MX, 3
mem. with Imm. to reg. 01101081 [mod reg r/m| immediate data
Multiplier-Byte 13/18 MN/MX, 3
Word 13/26 MN/MX, 3
Oword 13/42 MN/MX, 3
DIV = Divide (unsigned)
acc, by register 1111011w |11 110 reg
Divisor-Byte 16
Word 24
Dword 40
acc. by memory [11110‘1w1mod110 r/m
Divisor-Byte) 16
Word 24
Dword 40
IDAV = Integer Divide (sig!
acc. by register 1111011w J11 111 reg
Divisor-Byte 19
Word 27
Dword 43

PRELIMINARY 2.157

Intel486™™ DX2 MICROPROCESSOR

intel.

Table 10.1. intel486 ™ DX2 Microprocessor Integer Core Clock Count Summary (Continued)

reg by immediate count

INSTRUCTION FORMAT Cache Hit Notes
INTEGER OPERATIONS (Continued)
acc. by memory I1111011meod111r/ﬂ
Divisor-Byte 20
Word 28
Dword 44
CBW/CWDE = Convert Byte to Word/
Convert WordtoDword | 10011000 3
CWD/CDQ = Convert Word to Dword/
Convert Dword to 3
Instruction TIT
ROL = Rotate Left 000
ROR = Rotate Right 001
RCL = Rotate through Carry Lett 010
RCR = Rotate through Carry Right 011
SHL/SAL = Shift Logical/Arithmetic Left 100
SHA = Shift Logical Right 101
SAR = Shift Arithmetic Right 111
Not Through Carry (ROL, ROR, SAL, SAR, SHL, and SHR)
regby 1 [1101000w [11 TTT reﬂ 3
memory by 1 I 1101000w Imod TTT r/mI 4
reg by CL [1101001w |11 7Y reg| 3
memory by GL [1101001w [mod TTT wm| 4
reg by immediate count I 1100000w |11 TTT reqlimmedialea—bitdam 2
mem by immediate count [1100000w Irnod TTT r/m|immediate 8-bit data 4
Through Carry (RCL and RCR)
reg by 1 |1101000w 11 TTT rag] 3
memory by 1 [1101000w [mod TTT wm| 4
regby CL { 1101001w [11 TTT reg] 8/30 | MN/MX, 4
memory by CL [1101001w [mod TTT wm| 9/31 MN/MX, 5

I 1100000w |11 TTT

reg | immediate 8-bit data

8/30 MN/MX, 4

mem by immediate count L1100000w |mod TTT r/m]immediatas-bitdata 9/31 MN/MX, 5
Instruction T
SHLD = Shift Left Double 100
SHRD = Shift Right Double 101
register with immediate | 00001111 I10TTT100 J11 reg2 reg1|imm8-bitgala 2
memory by immediate I 00001111 IIOTTT100 Imod reg r/mlimmB«bitdata 3
register by CL 00001111 [10TTT101 [11 rege regi] 3
memary by CL I 00001111 |1OTTT101 lmod reg r/ml 4
BSWAF - Byte Swap [00001111 J11001 reg] 1
XADD = Exchange and Add
regt, reg2 I 00001111 |1100000w |11 reg2 reg1| 3
memory, reg l 00001111 [1100000w Imod rog r/m] 4 u/L
CMPXCHG = C and
reg1, reg2 l 00001111 I1011000w 111 reg2 reg1| [
memory, reg l 00001111 I1011000w [mod reg r/mI 7/10 8
2-158

PRELIMINARY I

|n'l'e| » Intel486™ DX2 MICROPROCESSOR

Table 10.1. Intel486™ DX2 Microprocessor Integer Core Clock Count Summary (Continued)
INSTRUCTION FORMAT Cache Hit Notes
CONTROL TRANSFER (within segment)
NOTE: Times are jump taken/not taken
Joec = Jump on coe
8-bit displacement I 0111tttn I 8-bit disp. | 3N T/NT, 23

ull displacement [00001111 | 1000tttn | tildispiacement 3 TINT, 23

NOTE: Times are jump taken/not taken
8ETccee = Set Byte on cccc (Times are cocc true/false)

reg | 00001111 l 1001tttn L11 000 regl 4/3
mernory [00001111 | 1001tttn [mod 000 rm| as4
Mnemonic Condition tttn
ceee

o] Overtiow 0000

NO No Overflow 0001

B/NAE Balow/Not Above or Equal 0010

NB/AE Not Below/Above or Equal 0011

E/Z Equal/Zero 0100

NE/NZ Not Equal/Not Zero 0101

BE/NA Below or Equal/Not Above 0110

NBE/A Not Below or Equal/Above o111

s Sign 1000

NS Not Sign 1001

PIPE Parity/Parity Even 1010

NP/PO Not Parity/Parity Odd 1011

L/NGE Less Than/Not Greater or Equal 1100

NL/GE Not Less Than/Greater or Equal 1101

LE/NG Less Than or Equal/Greater Than 1110
NLE/G Not Less Than or Equal/Greater Than 1111

LOOP = LOOP CX Times [11100010 | ebitdisp. | 718 L/NL, 23

LOOPZ/LOOPE = Loop with [11100001 | etitdep. | o6 L/NL, 23
Zero/Equal

LOOPNZ/LOOPNE = Loop while | 11100000 I 8-bit disp. l 9/6 L/NL, 23
Not Zero

JCXZ = Jump on CX Zero I 11100011 | 8-bit disp. | 8/5 T/NT, 23

JECXZ = Jump on ECX Zero [11100011 l 8-bit disp. | 8/5 T/NT, 23

(Address Size Prefix Differentiates JCXZ for JECXZ)
JMP = Unconditional Jump (within segment)

Short [11101011 | sbitdisp. | 3 7,23
Direct full dispiacement 3 7.23
Register Indirect I 11111111 I11 100 regl 5 7,23
Memory Indirect I 111119114 |mod 100 r/mI 5 7

CALL = Call {within

Direct 11101000 | full displacement 3 7,23

Register indirect [11519111 141 010 req] 5 7,23

Memory Indirect l 11111111lmod010 r/ml 5 7

RET = Return from CALL (within segment)
11000011 5

Adding immediate to SP | 11000010 I 16-bit disp. | 5

I PRELIMINARY 2-159

a
Intel486™ DX2 MICROPROCESSOR |nte| o
Table 10.1. Intel486™ DX2 Microprocessor Integer Core Clock Count Summary (Continued)

INSTRUCTION FORMAT Cache Hit Notes
CONTROL TRANSFER (within segment) (Continued)

ENTER = Enter Procedure l 11001000 l16-bitdisp.,s-bi1levs‘

Level = 0 14
Level = 1 17
Level (L) > 1 17+3L 8

LEAVE = Leave Procedure

11001001 5

MULTIPLE-SEGMENT INSTRUCTIONS
MOV = Move

reg. to segment reg. I 1000111011,1 srog3d regl 3/9 RV/P,8
memory to segment reg. I 10001110 Irnodsrsga r/ml 3/9 RV/P,9
segment reg. to reg. I 10001100 |11 srag3 regl 3
segment reg. to memory [10001100 |mod sreg3 r/ml 3

PUSH = Push

segment reg. 000sreg2110 3

(ES, CS, SS, or DS)

segment rag. (FS or GS) | 00001111 I10 8reg3000 3
POP = Pop
segment reg. G00sreg211 1 3/9 RV/P, 9
{ES, SS, or DS)
segment reg. (FS or GS) { 00001111 [10 sregao] ar RV/P,9
LDS = Load Pointer to DS [11000101 [mod reg e/m] 612 RV/P,9
LES = Load Pointer to ES [11000100 [mod reg r/m] /12 RV/P,9
LF8 = Load Pointer to FS { 00001111 [10110100 [mod reg r/m] 62 RV/P,8
LGS = Load Pointer to GS [00001111 [10110101 [mod reg r/m] /12 RV/P,9
LSS = Load Pointer to 88 [00001111 [10110010 [mod reg r/m] N2 RV/P.9
CALL = Call
Direct intersegment 10011010 | unsigned full ofiset, selector 18 R, 7,22
10 same level 20 P9
thru Gate to same level 35 P9
1o inner level, no parameters 68 P9
1o inner level, x parameter (d) words 77+4X P, 11,9
to TSS 7+TS P, 10,9
thru Task Gate 38+TS P, 10,9
Indirect intarsegment 11111111 |mod 011 /m 17 R7
to same level 20 P.B
thru Gate to same level 35 P.B
to inner fevel, no parameters 89 P.®
to inner level, x parameter (d) words 77+4X+n P, 11,8
to TSS 37+TS P, 10,8
thru Task Gate 38+TS P, 10,8
RET = Return from CALL
intersegment 11001011 13 R,7
o same level 17 P9
10 outer levet 35 P9
intersegment adding | 11001010 l 18-bit disp.
imm. to SP 14 R 7
1o same level 18 P8
10 outer leve! 38 P8

2-160

PRELIMINARY

intgl.

Intel486™ DX2 MICROPROCESSOR

Table 10.1. intel486™ DX2 Microprocessor Integer Core Clock Count Summary (Continued)

I PRELIMINARY

INSTRUCTION FORMAT Cache Hit Notes
MULTIPLE-SEGMENT INSTRUCTIONS (Continued)
JMP = Unconditional Jump
Direct intersegment unsigned full offset, selector 17 R, 7,22
to same level 19 P9
thru Call Gate to same level 32 P.9
thru TSS 42+7TS P, 10,9
thru Task Gate 43+TS P, 10,9
Indirect intersegment 11111111 [mod 101 /m 13 R 7.8
to same level 18 P8
thru Cafl Gate to same level N P9
thru TSS 41+TS P, 10,9
thru Task Gate 42+7TS P, 10,9
BIT MANIPULATION
BT = Test bit
register, immediate | 00001111 l 10111010 I11 100 roqlimm.a-bitdah 3
memory, immediate I Q0001111 l 10111010 |mod100 r/mlimm.ﬂ—bildatl 3
reg1, reg2 ' 00001111]10100011 |11 rngrqnl 3
memory, reg | 00001111 | 10100011 [mod reg r/m] 8
instruction 7
BTS = Test Bitand Set 101
BTR = Test Bit and Reset 110
BTC = Test Bit and Compliment 111
register, immediate] Q0001111 I 10111010 I11 TTT roglimm.ﬂ-bndah 6
memory, immediate] 00001111 I 10111010 ImodTTT r/mlimm.B—Mdlh 8 u/L
reg1, reg2 Ioooonn I 10TTTO11 I11 rogz-uml [
memory, reg l 00001111 | 10TTTO11 Imod reg r/ml 13 u/L
BSF = Scan Bit Forward
reg1, reg2 I 00001111 I 10111100 I11 reg2 rog1l 6/42 MN/MX, 12
memory, reg | 00001111 | 10111100 Imod reg r/mI 7/43 MN/MX, 13
BSR = Scan Bit Reverse
reg1, rag2 | 00001111 | 10111101 111 reg2 reg1l 6/103 | MN/MX, 14
memory, reg | 00001111 | 10111101 Imod reg r/m[7/104 | MN/MX, 15
STRING INSTRUCTIONS
CMPS = Compare Byte Word 8 16
LODS = Load Byte/Word 5
to AL/AX/EAX
MOVS = Move Byte/Word 1010010w 7 16
SCAS = Scan Byte/Word .
£708 = Store Byterword 5
from AL/AX/EX
XLAT = TransistsStrng ‘
2-161

intel486™ DX2 MICROPROCESSOR

intgl.

Table 10.1. Intel486™ DX2 Microprocessor Integer Core Clock Count Summary (Continued)

INSTRUCTION

FORMAT

Cache Hit Notes

REPEATED STRING INSTRUCTIONS

REPE CMPS = Compare String
(Find Non-Match)
C=0
Cc>0

REPNE CMPS = Compare String
(Find Match)
C=0
c>0

REP LODS = Load String
C=0
C>0

REP MOVS = Move String
C=0
C=1
C>1

REPE SCAS = Scan String
{Find Non-AL/AX/EAX)
c=0
c>0

REPNE SCAS = Scan String
{Find AL/AX/EAX)
c=0
c>o0

REP STOS = Store String
c=0
c>o0

FLAG CONTROL

CLC = Clear Carry Flag

STC = Set Carry Flag

CMC = Complement Carry Flag

CLD = Clear Direction Flag

STD = Set Direction Flag

CLI = Clear interrupt
Enable Flag

STl = Set Interrupt
Enable Flag

LAHF = Load AH into Flag
SAHF = Store AH into Flags
PUSHF = Push Flags

POPF = Pop Flags
DECIMAL ARITHMETIC

AAA = ASCII Adjust for Add

AAS = ASCH Adjust for
Subtract

AAM = ASCII Adjust for
Muitiply

Repeated by Count in CX or ECX {C = Countin CX or ECX)

11110011 1010011w

-

[11110010 [1010011w |

[11110011 [1010110w |

[11110011 [1010010w |

[11110011 [1010111w]

11110010 l 1010111w|

11110011 | 1010101w |

11111000

11111001

11110101

11111100

11111101

11111010

11111011

10011111

10011110

10011100

10011101

00110111

o
-
o
-
o
o
o
(=]
o
[=]
(=]
o

7+7c 16,17

7+7¢ 16,17

7+4c 16,18

13 16

12+3c 16,19

7+5¢ 20

7+5¢ 20

7+4c

4/3 RV/P

9/6 RAV/P

2-162

PRELIMINARY

intgl.

Intel486™ DX2 MICROPROCESSOR

Table 10.1. Intel486™ DX2 Microprocessor Integer Core Clock Count Summary (Continued)

I PRELIMINARY

INSTRUCTION FORMAT Cache Hit Notes

DECIMAL ARITHMETIC (Continued)

AAD = ASCHI Adjust for | 11010101 | 00001010 | 14

Divide

DAA = Decimal Adjust for Add 2

DAS = Decimal Adjust for Subtract 2

PROCESSOR CONTROL INSTRUCTIONS

HLT = Han .

MOV = Move To and From Control/Debug/Test Registers
CRO from register | 00001111 l 00100010 |11 000 regl 17
CR2/CR3 from register | 000011119 l 00100010 |11 808 regl 4
Reg from CRD-3 I 00001111 | 00100000 l11 eee regl 4
DRO-3 from register [00001111 | 00100011 l11 eee rsgl 10
DR6-7 from register l 00001111 | 00100011 |11 eeeo regl 10
Register from DR6-7 | 00001111 I 00100001 |11 LX) regl 9
Register from DRO-3 | 00001111 | 00100001 111 eee regl 9
TR3 from register I 00001111] 00100110 I11 011 regl 4
TR4-7 from register { 00001111 l 00100110 IH CLL:] regl 4
Register from TR3 | 00001111 I 00100100 |11 011 regl 3
Register from TR4-7 | 00001111 | 00100100 l11 L] regl 4

CLTS = Cilear Task Switched Flag | 00001111 ! 00000110 | 7

INVD = invalidate Data Cache I 00001111 l 00001000 | ' 4

WBINVD=eru-Baekmdlnvalldnhl 00001111 I 00001001 | 5

Data Cache

INVLPG = Invalidate TLB Entry
INVLPG memory | 00001111 I 00000001 |mod 111 /m 12/11 H/NH

PREFIX BYTES

Address Size Prefix 1

LOCK = Bus Lock Prefix 1

Operand Size Prefix 1

Segment Override Prefix
os 1
os: 1
Es 1
Fs 1
s 1
55 1

2-163

Intel486™ DX2 MICROPROCESSOR

intel.

Table 10.1. Intel486™ DX2 Microprocessor Integer Core Clock Count Summary (Continued)

INSTRUCTION FORMAT Cache Hit Notes
PROTECTION CONTROL
ARPL = Adjust Requested Privilege Level

From register I 01100011 |11 regi regzl]
From memory | 01100011 |mod reg r/ml 9
LAR = Load Access Rights

From register Loooonn [00000010 111 reg1 reg2J 1
From memory I 00001111 [00000010 [mod reg r/ml 11
LGDT = Load Global Descriptor

Table register | 00001111 | 00000001 Imod010 r/ml 12
LIDT = Load Interrupt Descriptor

Table register | 00001111 | 00000001]modOH r/ml 12
LLDT = Load Local Descriptor

Tabie register from reg. | 00001111 | 00000000 |11 010 regl 1
Table register from mem. l 00001111] 00000000 Imod 010 r/ml 11
LMSW = Load Machine Status Word

From register ! 00001111 | 00000001 111 110 rsgl 13
From memory l 00001111 | 00000001 lmod 110 r/ml 13
LSL = Load Segment Limit

From register . 00001111 | 00000011 l11 regt ragzl 10

From memory l 00001111 I 00000011—Imod 16g r/ml 10
LTR = Load Task Register

From Register [oooonnJ 00000000 |11 011 rﬂ] 20
From Memory | 00001111 | 00000000 lmod 011 r/m] 20
SGDT = Store Global Descriptor Table

| 00001111 | 00000001 |mod Q00 r/ml 10
SIDT = Store interrupt Descriptor Table
I 00001111] 00000001—Imod 001 r/m] 10

SLDT = Store Local Descriptor Table

To register | 00001111 | 00000000 |11 000 regl 2
To memory | 00001111 | 00000000 Imod 000 r/ml 3
SMSW = Store Machine Status Word

To register | 00001111 | 00000001 |11 100 regl 2
To memory | 00001111 | 00000001 Imod 100 r/m| 3
STR = Store Task Register

To register | 00001111 l 00000000 111 001 regl 2
To memory I 00001111 [00000000 Imod 001 r/ml 3
VERR = Verify Read Access

Register | 00001111 | 00000000 |11 100 v/ml 11
Memory | 00001111 [00000000 Imod 100 r/m| "
VERW = Verify Write Access

To register | 00001111 [00000000 |11 101 regl 1
To memory | 00001111 I 00000000 lmod 101 r/ml 1"
2-164

PRELIMINARY l

n
|nte| » intel486T™ DX2 MICROPROCESSOR

\

Table 10.1. Intel486T™ DX2 Microprocessor Integer Core Clock Count Summary (Continued)

INSTRUCTION FORMAT Cache Hit Notes
INTERRUPT INSTRUCTIONS
INT n = Interrupt Type n 11001101] type I INT+4/0 | Rv/P, 21
INT 3 = Interrupt Type 3 INT+0 21
INTO = Interrupt 4 it
Overflow Fiag Set
Taken INT+2 21
Not Taken 3 21
BOUND = interrupt 5 if Detect I 01100010 |mod reg r/m
Value Out Range
If in range 7 21
If out of range INT+24 21
IRET = interrupt Retumn
Real Mode/ Virtual Mode 15
Protected Mode
To same level 20 9
To outer levet 36 9
To nested task (EFLAGS.NT = 1) TS+32 9,10
External Interrupt INT+11 21
NMI = Non-Maskable Interrupt INT+3 21
Page Fault INT +24 21
VM86 Exceptions
CLI INT+8 21
ST INT+8 21
INTn INT+9
PUSHF INT+9 21
POPF INT+8 21
IRET INT+9
N
Fixed Port INT +50 21
Variable Port INT+51 21
out
Fixed Port INT + 50 21
Variable Port INT+51 21
INS INT+50 21
ouTs INT+50 21
AEP INS INT+51 21
REP OUTS INT+51 21
Task Switch Clock Counts Table
Method Value for TS
Cache Hit
VM/Intel486 DX2 CPU/286 TSS To Intel486 DX2 CPU TSS 162
VM/Intel486 DX2 CPU/286 TSS To 286 TSS 143
VM/Intel486 DX2 CPU/286 TSS To VM TSS 140

I PRELIMINARY 2165

[3
Intel486™™ DX2 MICROPROCESSOR "“tel o

Interrupt Clock Counts Table
Method Value for INT
Cache Hit Notes
Real Mode 26
Protected Mode)
Interrupt/ Trap gate, same level 44 9
Interrupt/ Trap gate, different level 71 9
Task Gate 37 + TS 9,10
Virtual Mode
Interrupt/ Trap gate, different level 82
Task gate , 37+ TS 10
Abbreviations Definition
16/32 16/32 bit modes
u/L unlocked/locked
MN/MX minimum/maximum
L/NL loop/no loop
RV/P real and virtual mode/protected mode
R real mode
P protected mode
T/NT taken/not taken
H/NH hit/no hit
NOTES:

1.
2.
3.

4.

5.

6
7
8
9.
10
11

Assuming that the operand address and stack address fall in different cache sets.
Always locked, no cache hit case.

Clocks = 10 + max(ioga(/m(),n)

m = multiplier value (min clocks for m=0)

n = 3/6for tm

Clocks = (quotient{count/operand length)}*7 +9

8 if count < operand length (8/16/32)

[quotient(count/operand length)} *7+9

= 9 if count < operand length (8/16/32)

Won

Clocks

. Equal/not equal cases (penalty is the same regardless of lock).
. Assuming that addresses for memory read (for indirection), stack push/pop, and branch fall in different cache sets.
. Penalty for cache miss: add 6 clocks for every 16 bytes copied to new stack frame.

Add 11 clocks for each unaccessed descriptor load.

. Refer to task switch clock counts table for value of TS.
. Add 4 extra clocks to the cache miss penalty for each 16 bytes.

For notes 12-13: (b = 0-3, non-zero byte number);

12,

13.

(i = 0-1, non-zero nibble number);
(n = 0-3, non bit number in nibble);

Clocks = 8+4 (b+1) + 3(+1) + 3(n+1)
= 6 if second operand = 0
Clocks = 9+4(b+1) + 3(+1) + 3(n+1)

= 7 if second operand = 0

For notes 14-15: (n = bit position 0-31)

14,

15,

16.
17.
18.
19.

20.
21,

22,
23.

Clocks = 7 + 3(32—n)

6 if second operand = 0

Clocks = 8 + 3(32—n)

7 if second operand = 0

Assuming that the two string addresses falt in different cache sets.

Cache miss penalty: add 6 clocks for every 16 bytes compared. Entire penalty on first compare.
Cache miss penalty: add 2 clocks for every 16 bytes of data. Entire penalty on first load.
Cache miss penalty: add 4 clocks for every 16 bytes moved.

(1 clock for the first operation and 3 for the second)

Cache miss penalty: add 4 clocks for every 16 bytes scanned.

(2 clocks each for first and second operations)

Refer to interrupt clock counts table for value of INT

Clock count includes one clock for using both displacement and immediate.

Refer to assumption 6 in the case of a cache miss.

2-166 PRELIMINARY I

INtal.

Table 10.2. Intel486™ DX2 Microprocessor 1/0 Instructions Core Clock Count Summary

Intel486™ DX2 MICROPROCESSOR

Protected | Protected
INSTRUCTION FORMAT st | moce Mode | VIRUBEE | Notey
(CPL<IOPL)|(CPL > IOPL),
1/0 INSTRUGTIONS
N = Input from:
Fixed Port [1110010w | portrumber | 17 12 32 30
Variable Port v | ow i %
OUT = Output to:
Fixed Port r1110011w] poftnumber_l 19 14 34 32
Variable Port 1110111w 19 13 a3 32
INS = Input Byte/Word 0110110w 20 13 35 33
from DX Port
OUTS = Output Byte/Word 0110111w 20 13 35 33 1
to DX Port
REP INS = Input String I n11oo11io11o110w] 19+11c| 13+11c | 33+11c | 32+11c 2
REP OUTS = Output String [11110011 |01101!1w| 20+8c | 14+8c 34+8c 33+8¢ 3
NOTES:
1. Two clock cache miss penalty in all cases.
2. ¢ = count in CX or ECX.
3. Cache miss penalty in all modes: Add 2 clocks for every 16 bytes. Entire penalty on second operation.
2-167

I PRELIMINARY

[|
intel486™ DX2 MICROPROCESSOR |n'l'e| o

Table 10.3. Intel486™ DX2 Microprocessor Floating Point Core Clock Count Summary

Cache Hit
INSTRUCTION FORMAT Avg {Lower | Notes
Range...
Upper Range)
DATA TRANSFER
FLD = Real Load to ST(0)
32-bit memory I 11011 001 | mod 000 r/m I s-i-b/disp. l 3
64-bit memory l 11011101 | mod 000 r/m[s-i-b/disp. | 3
80-bit memory] 11011 011 | mod 101 r/m I s-i-b/disp. | 6
ST() |11o11 oo1|11ooo ST(i)[4
FILD = Integer Load to ST(0)
16-bit memory | 11011 11t | mod 000 r/m] s-i-b/disp.] 14.5(13-16)
32-bit memory | 11011 011 | mod 000 r/m| s-i-b/ disp.] 11.5(8-12)
64-bit memory I 11011 111 I mod 101 r/ml 8-i-b/disp. | 16.8(10-18)
FBLD = BCD Load to ST(0) | 11011 111 rmod 100 r/m] 8-i-b/disp. | 75(70-103)
FST = Store Real from ST(0)
32-bit memory (11011 001 I mod 010 ¢/m l s-i-b/disp. | 7 1
64-bit memory I 11011 101 lmod 010 r/m [8-i-b/disp. | 8 2
ST {11011 10111010 st 3
FSTP = Store Real from ST(0) and Pop
32-bit memory | 11011 001 | mod 011 r/m I 8--b/disp. | 7 1
64-bit memory | 11011 101 I mod 011 ¢/m | s-i-b/disp. | 8 2
80-bit memory | 11011 011 I mod 111 r/ml s-i-b/disp. I [
ST() |11o11 101[11001 ST(i)l 3
FIST = Store Integer from ST(0)
16-bit memory | 11011 111 I mod 610 r/m| s-i-b/disp. I 33.4(29-34)
32-bit memory I 11011 01 1J mod 010 r/m | s-i-b/disp.] 32.4(28--34)
FISTP = Store integer from ST(0) and Pop
16-bit memary | 11011 111 I mod 011 r/m | s-i-b/disp. I 33.4(29-34)
32-bit memary I 11011 011 | mod 011 /m | s-i-b/disp. I 33.4(29-34)
64-bit memory I 11011 111 l mod 111 r/ml s-i-b/disp. | 33.4(29-34)
FBSTP = Store BCD from [11011 111]mod 110 wm| sibrasp. | 176(172-176)
ST(0) and Pop
FXCH = Exchange $T(0) and ST(i) [11011 001 I 11001 sm)| 4
COMPARISON INSTRUCTIONS
FCOM = Compare ST(0) with Real
32-bit memory l 11011 000 I mod 010 r/ml s-i-b/ disp. I 4
64-bit memary I 11011 1 OOJ mod 010 r/mL s-Hb/disp. I 4
STG) {11011 oo0]11010 sta] s
FCOMP = Compare ST(0) with Reat and Pop
32-bit memory {11011 000|mod 011 wm| sibrasp. | 4
64-bit memory {11011 100]mod 011 rim| sibsdisp. | a
ST() |11o11 ooolnon ST(i)l 4

2168 PRELIMINARY I

intal.

Intel486™ DX2 MICROPROCESSOR

Table 10.3. Intel486™ DX2 Microprocessor Floating Point Core Clock Count Summary (Continued)

I PRELIMINARY

Cache Hit
INSTRUCTION FORMAT Avg (Lower | Notes
Range ...
Upper Range)
COMPARISON INSTRUCTIONS (Continued)
FCOMPP = Compare ST(0) with 111011 110’1101 1OD1| 5
ST(1) and Pop Twice
FICOM = Compare ST(0) with Integer
16-bit memory | 11011 % 10] mod 010 r/ml s-i-b/disp. I 18(16-20)
32-bit memory | 11011 o1o| mod 010 r/m—[s-i-b/disp. I 16.5(15-17)
FICOMP = Compare ST(0) with integer
16-bit memory I 11011 11 Ol mod Q11 r/mT s-i-b/disp. l 18(16-20)
32-bit memory l 11011 01 OJLnod 011 r/mI s-i-b/disp. | 16.5(15-17)
FTST = Compare ST(0) with 0.0 l11011 001'1110 0100] 4
FUCOM ~ Unordered compare [11011 10111100 st0] 4
ST(0) with ST(1)
FUCOMP = Unordered compare [11011 101|11‘01 ST(i)l 4
ST(0) with ST(i) and Pop
FUCOMPP = Unordered compare 111011 010|1110 1001' 5
ST(0) with ST()) anct Pop Twice
FXAM = Examine ST(0) I11011 001h110 0101| 8
CONSTANTS
FLDZ = Load +0.0 into ST(0) I11011 001h110 1110I 4
FLD1 = Load + 1.0 Into ST(0) |11011 001]1110 10(]0| 4
FLDPI = Load 7 Into ST(0) 111011 001’1110 1011[8
FLDLﬂ=toldlogz(10)lntoST(0) I11011 001[1110 1001] 8
FLDL2E = Load logx(e) Into ST(0) I11011 0011110 1010| 8
FLDLG2 = Load log4o(2) into ST(0) |11o11 oo1|111o 11oo| 8
FLDLN2 = Load loge(2) into ST(0) [11011 oo1|111o 1101] 8
ARITHMETIC
FADD = Add Real with ST(0)
ST(0) «— ST(0) + 32-bit memory | 11011 000 I mod 000 rlmr s-i-b/disp. I 10(8-20)
ST(0) «— ST(0) + 64-bit memory I 11011 100 l mod 000 r/m | s-i-b/disp. I 10(8-20)
ST(d) «— ST(0) + ST() | 11011 d0O I 11000 ST(i)] 10(8-20)
FADDP = Add real with ST(0) and |11o11 110]11000 ST(i)l 10(8-20)
Pop (ST(I) «— ST(0) + ST())
FSUB = Subtract real from ST(0)
ST(0) «— ST(0) — 32-bit memory I 11011 000 I mod 100 r/m I 8-i-b/disp. 10(8-20)
ST(0) « ST(0) — 64-bit memory I 11011 100 I mod 100 r/mr $-i-b/disp. 10(8-20)
ST(d) «— ST(0) — ST} ’ 11011 dgo I 1110d ST(i)l 10(8-20)
FSUBP = Subtract real from ST(0) l 11011 110 l 11101 ST() l 10(8-20)
and Pop (ST(l) « ST(0) — ST(I))
2-169

Intel486™ DX2 MICROPROCESSOR

Table 10.3. Intel486™ DX2 Microprocessor Floating Point Core Clock Count Summary (Continued)

intel.

Cache Hit
INSTRUCTION FORMAT Avg (Lower | Notes
Aange...
Upper Range)

ARITHMETIC (Continued)
FSUBR = Subtract real reversed (Subtract ST(0) from real)

8T(0) «— 32-bit memory — ST(0) | 11011 000 I mod 101 r/m | s-i-b/disp. 10{8-20)

ST(0) «— 64-bit memory — ST(0) | 11011 100 [mod 101 o/m | s-i-b/disp. 10(8-20)

ST(d) «— ST(j) ~ ST(0) | 11011 d 00T1 110d ST() | 10{8-20)
FSUBRP = Subtract real reversed | 11011 110 l 11100 STGH) | 10(8-20)

and Pop (ST(l) « ST(l) — ST(0))

FMUL = Multiply real with ST(0)

ST(0) «— ST(0) X 32-bit memory | 11011 000 I mod 001 r/m | s-i-b/disp. 11

ST(0) «— ST(0) x 64-bit memory | 11011 100 | mod 001 r/m | s-i-b/disp. 14

ST(d) « ST(0) x ST() |11011 d00]11001 ST(i)l 18
FMULP = Multiply ST(0) with ST(i) | 11011 110 | 11001 ST(i)J 18

and Pop (ST(i) «— ST(0} x ST(I)}

FDIV = Divide ST(0) by Real

ST(0} « ST(0)/32-bit memory l 11011 00 O—I mod 110 /m | s-i-b/disp. 73 3

8T(0) <~ ST(0)/64-bit memory | 11011 100 l mod 110 r/m | s-i-b/disp. 73 3

ST(d) «— ST(0)/ST({i) | 11011 dO0O0 I 1111d STE) | 73 3
FDIVP = Divide STO)by STM)and | 11011 110]11111 ST 7 3

Pop (ST(l) « ST(0)/ST(}))

FDIVR = Divide real reversed (Real/ST(0))

ST(0) «— 32-bit memory/ST(0) ’ 11011 000 I mod 111 r/m l s-i-b/disp. 73 3

ST(0) «— 64-bit memory/ST(0) l 11011 100 I mod 111 r/m I s-i-b/disp. 73 3

ST(d) «— STH/ST() [11011 dool1111d sT0)] 7 3
FDIVRP = Divide real reversed and ’ 11011 110 | 11110 ST() l 73 3

Pop (ST(i) «— ST{I)/ST(0))

FIADD = Add Integer to ST(0)

ST{0) «~ ST(0) + 16-bit memory | 11011 110 | mod 000 r/ml s-i-b/disp. 24(20-35)

ST(0) « ST(0) + 32-bit memory | 11011 010 | mod 000 r/ml s-i-b/disp. 22,5(19-32)
FISUB = Subtract integer from ST(0)

ST(0) « STO) — 16bitmemory (11011 110] mod 100 r/m| sibidisp. 24(20-35)

ST(0) «— ST(0) — 32-bit memory | 11011 010 | mod 100 r/m | s-i-b/disp. 22.5(19-32)
FISUBR = Integer Subtract Reversed

ST(0) « 16-bitmemory — ST() [11011 110 mod 101 /m| sib/disp. 24(20-35)

ST(0) «— 32-bit memory — ST(0) | 11011 010 | mod 101 r/m | s-i-b/disp. 22.5(19-32)
FIMUL = Muitiply Integer with ST(0)

ST(0) «— ST(0) x 16-bit memory l 11011 110 | mod 001 r/m I s-i-b/disp. 25(23-27)

ST(0) «— ST(0) x 32-bit memory [11011 010 | mod 001 r/m [s-i-b/disp. 23.5(22-24)
FIDIV = Integer Divide

ST(0) «— ST(0)/16-bit memory | 11011 110 | mod 110 r/m [s-i-b/disp. 87(85-89) 3

ST(0) «— ST(0)/32-bit memory I 11011 010 | mod 110 t/m I s-i-b/disp. 85.5(84--86) 3
2-170

PRELIMINARY I

-
|nte| o Intel486 ™™ DX2 MICROPROCESSOR

Table 10.3. Intel486 ™™ DX2 Microprocessor Floating Point Core Clock Count Summary (Continued)

Cache Hit
INSTRUCTION FORMAT Avg (Lower | Notes
Range...
Upper Range)
ARITHMETIC (Continued)
FIiDIVR = integer Divide Reversed
ST(0) «— 16-bit memory/ST(0) l 11011 11 Olmod 111 r/ml s-i-b/disp. l 87(85-89) 3
ST(0) «— 32-bit memory/ST(0) | 11011 010 I mod 111 r/m | s-i-b/disp.] 85.5(84-86) 3
FSQRT = Square Root r1 1011 001 [11111010] 85.5(83-87)
FSCALE = Scale ST(0) by ST(1) |11011 001 [1111 1101| 31(30-32)
FXTRACT = Extract components r1 1011 001 I 11110100 I 19(16-20)
of ST(0)
FPREM = Partial Reminder l 1101100 1l1 111 1 OM 84(70-138)
FPREM1 > Partial Reminder (IEEE) | 11011001 I 1111 0101 | 94.5(72-167) 2
FRNDINT = Round ST(0) to Integer F 101100 1h1 1111 ‘E] 26.1(21-30)
FABS = Absolute value of ST(0) ﬂ1011 001]1110 0001] 3
FCHS = Change sign of ST(0) ﬂ1o11 oo1|111o oooo] 6
TRANSCENDENTAL
FCOS = Cosine of ST(0) | 11011 00 1L1 111 11 ﬂ 241(193-279) | 6,7
FPTAN = Partial tangent of ST(0) | 11011 001 I 1111 0010 I 244(200-273) | 6,7
FPATAN = Partial arctangent l 11011 001f1111 0O ﬂ 288(218-303) 6
FSIN = Sine of ST(0) ﬂ 1011001 | 1111 11 1o| 241(193-279) | 6.7
FSINCOS = Sine and coslneof ST(0) {11011 001 l 1111 1011 l 291(243-329) | 6,7
Faxm1 = 25T _ 4 [11011 oa1]1111 oooo] | 2420140-279) | 6
FYL2X = ST(1) X logx(ST(0)} | 11011001 | 1111 0001 | 311(196-329) | 6
FYL2XP1 = ST(1) % loga(ST(0) + 1.0) [1101t 001 ‘i1 111 ooﬂ 313(171-326) 6
PROCESSOR CONTROL.
FINIT = Initialize FPU |11o11 o11b1o oo1ﬂ 17 4
FSTEWAX = Storestatusword | 11011 111]1110 0000] 3 5
into AX
FSTSW = Store status word ,T 1011 101fmod 111 /m , s-i-b/disp.] 3 5
Into memory
FLDCW = Load control word ,TI 011 001 |mod 101 r/m[s-i-b/disp. I 4
FSTCW = Store control word ’T 1011 001 [mod 111 r/m, s--b/digp. ! 3 5
FCLEX = Clear exceptions |11011 011|1110 0010| 7 4 -
FSTENV = Store envir | 11011 001 I mod 110 r/m I s-i-b/disp. |
Real and Virtual modes 16-bit Address 67 4
Real and Virtual modes 32-bit Address 87 4
Protected mode 16-bit Address 56 4
Protected mode 32-bit Address 56 4
FLDENY = Load 11011 001 {mod 100 r/ri s-i-b/disp.
Real and Virtual modes 16-bit Address 44
Real and Virtual modes 32-bit Address 44
Protected mode 16-bit Address 34
Protected mode 32-bit Address 34

I PRELIMINARY 2171

]
Intel486™ DX2 MICROPROCESSOR |nte| R

Table 10.3. Intel486™ DX2 Microprocessor Floating Point Core Clock Count Summary (Continued)

Cache Hit
INSTRUCTION FORMAT Avg (Lower | Notes
Range ...
Upper Range)
PROCESSOR CONTROL (Continued)
FSAVE = Save state 11011 101|mod 110 r/m s-i-b/disp.
Real and Virtual modes 16-bit Address 154 .4
Real and Virtual modes 32-bit Address 154 4
Protected mode 16-bit Address 143 4
Protected mode 32-bit Address 143 4
FRSTOR — Restore state 11011 101 | mod 100 r/m 8-i-b/
Real and Virtual modes 16-bit Address 131
Real and Virtual modes 32-bit Address 131
Protected mode 16-bit Address 120
Protected mode 32-bit Address 120
FINCSTP = Increment Stack Pointer |11o11 oo1l1111 0111] 3
FDECSTP=DW|.MMMMI11011 001‘1111 0110! 3
FFREE = Free 8T() [11011 10111000 s} 3
FNOP = No operations |11011 oo1|11o1 ooool 3
WAIT = Waltunth PU rendy
(Minimum/Maximum) 1/3
NOTES:

1. If operand is 0 clock counts = 27.
2. If operand is 0 clock counts = 28.
3. If CW.PC indicates 24 bit precision then subtract 38 clocks.
It CW.PC indicates 53 bit precision then subtract 11 clocks.
4. If there is a numeric error pending from a previous instruction add 17 clocks.
5. If there is a numeric error pending from a previous instruction add 18 clocks.
6. The INT pin is polled several times while this instruction is executing to assure short interrupt latency.
7. If ABS(operand) is greater than /4 then add n clocks. Where n = (operand/(w/4)).

2172 PRELIMINARY I

In@ o Intel486™ DX2 MICROPROCESSOR

X addressing byte, the scale-index-base byte, follows

102 Instruction Encoding the mod r/m byte to fully specify the addressing
mode.

10.2.1 OVERVIEW
Addressing modes can include a displacement im-
mediately following the mod r/m byte, or scaled in-
dex byte. If a displacement is present, the possible
sizes are 8, 16 or 32 bits.

All instruction encodings are subsets of the generat
instruction format shown in Figure 10.1. Instructions
consist of one or two primary opcode bytes, possibly
an address specifier consisting of the “mod r/m”
byte and “scaled index” byte, a displacement if re-

quired, and an immediate data field if required. If the instruction specifies an immediate operand,

the immediate operand follows any displacement
bytes. The immediate operand, if specified, is always

Within the primary opcode or opcodes, smaller en- the last field of the instruction.

coding fields may be defined. These fields vary ac-
cording to the class of operation. The fields define
such information as direction of the operation, size
of the displacements, register encoding, or sign ex-
tension.

Figure 10.1 illustrates several of the fields that can
appear in an instruction, such as the mod field and
the r/m field, but the Figure does not show all fields.
Several smaller fields also appear in certain instruc-
tions, sometimes within the opcode bytes them-
selves. Table 10.4 is a complete list of all fields ap-
pearing in the Intel486 DX2 microprocessor instruc-
tion set. Further ahead, following Table 10.4, are de-
tailed tables for each field.

Almost all instructions referring to an operand in
memory have an addressing mode byte following
the primary opcode byte(s). This byte, the mod r/m
byte, specifies the address mode to be used. Certain
encodings of the mod r/m byte indicate a second

TTTTTTTT|TTTTTTTT| mod TTTr/m| ssindexbase [d32|16|8 | none data32| 168 | none
\7 0Y7 9\7657320JL765v32L\ RS y Y
opcode “modr/m” ‘'s-i-b” address immediate
(one or two bytes) \ byte byte y displacement data
(T represents an ¥ (4, 2, 1 bytes (4, 2, 1 bytes
opcode bit.) register and address or none) or none)
mode specifier
Figure 10.1. General Instruction Format
Table 10.4. Fields within Iintel486™ DX2 Microprocessor Instructions
Field Name Description Number of Bits
w Specifies if Data is Byte or Full Size (Full Size is either 16 or 32 Bits) 1
d Specifies Direction of Data Operation 1
S Specifies if an Immediate Data Field Must be Sign-Extended 1
reg General Register Specifier 3
mod r/m Address Mode Specifier (Effective Address can be a General Register) 2 for mod;
3 forr/m

ss Scale Factor for Scaled Index Address Mode 2
index General Register to be used as Index Register 3
base General Register to be used as Base Register 3
sreg2 Segment Register Specifier for CS, S8, DS, ES 2
sreg3 Segment Register Specifier for CS, SS, DS, ES, FS, GS 3
tttn For Conditional Instructions, Specifies a Condition Asserted

or a Condition Negated 4

NOTE:

Tables 10.1-10.3 show encoding of individual instructions.

I PRELIMINARY . 2173

intel486™ DX2 MICROPROCESSOR

10.2.2 32-BIT EXTENSIONS OF THE
INSTRUCTION SET

The Intel486 DX2 supports all Intel486 extensions to
the 8086/80186/80286 instruction set.

With the Intel486 microprocessor, the 8086/80186/
80286 instruction set was extended in two orthogo-
nal directions: 32-bit forms of all 16-bit instructions
are added to support the 32-bit data types, and
32-bit addressing modes are made available for all
instructions referencing memory. This orthogonal in-
struction set extension is accomplished having a De-
fault (D) bit in the code segment descriptor, and by
having 2 prefixes to the instruction set.

Whether the instruction defaults to operations of 16
bits or 32 bits depends on the setting of the D bit in
the code segment descriptor, which gives the de-
fault length (either 32 bits or 16 bits) for both oper-
ands and effective addresses when executing that
code segment. In the Real Address Mode or Virtual
8086 Mode, no cods segment descriptors are used,
but a D value of 0 is assumed internally by the In-
tel486 DX2 microprocessor when operating in those
modes (for 16-bit default sizes compatible with the
8086/80186/80286).

Two prefixes, the Operand Size Prefix and the Effec-
tive Address Size Prefix, allow overriding individually
the Default selection of operand size and effective
address size. These prefixes may precede any op-
code bytes and affect only the instruction they pre-
cede. If necessary, one or both of the prefixes may
be placed before the opcode bytes. The presence of
the Operand Size Prefix and the Effective Address
Prefix will toggle the operand size or the effective
address size, respectively, to the value “opposite”
from the Default setting. For example, if the default
operand size is for 32-bit data operations, then pres-
ence of the Operand Size Prefix toggles the instruc-
tion to 16-bit data operation. As another example, if
the default effective address size is 16 bits, pres-
ence of the Effective Address Size prefix toggles the
instruction to use 32-bit effective address computa-
tions.

These 32-bit extensions are available in all Intel486
microprocessor modes, including the Real Address
Mode or the Virtual 8086 Mode. In these modes the
default is always 16 bits, so prefixes are needed to
specify 32-bit operands or addresses. For instruc-
tions with more than one prefix, the order of prefixes
is unimportant.

2-174

intgl.

Unless specified otherwise, instructions with 8-bit
and 16-bit operands do not affect the contents of
the high-order bits of the extended registers.

10.2.3 ENCODING OF INTEGER
INSTRUCTION FIELDS

Within the instruction are several fields indicating
register selection, addressing mode and so on. The
exact encodings of these fields are defined immedi-
ately ahead.

10.2.3.1 Encoding of Operand Length (w) Fleld

For any given instruction performing a data opera-
tion, the instruction is executing as a 32-bit operation
or a 16-bit operation. Within the constraints of the
operation size, the w field encodes the operand size
as either one byte or the full operation size, as
shown in the table below.

Operand Size Operand Size
w Field During 16-Bit During 32-Bit
Data Operations | Data Operations
0 8 Bits 8 Bits
1 16 Bits 32 Bits

10.2.3.2 Encoding of the General
Register (reg) Fleld

The general register is specified by the reg field,
which may appear in the primary opcode bytes, or as
the reg field of the “mod r/m” byte, or as the r/m

field of the “mod r/m” byte.

Encoding of reg Field When w Field
is not Present in Instruction

Register Selected | Register Selected
reg Field| During 16-Bit During 32-BIt

Data Operations | Data Operations
000 AX EAX
001 CX ECX
010 DX EDX
011 BX EBX
100 SP ESP
101 BP EBP
110 Sl ESI
111 DI EDI

PRELIMINARY I

intgl.

Intel486™ DX2 MICROPROCESSOR

Encoding of reg Field When w Field 3-Bit sreg3 Field
is Present In Instruction 2-Bit Segment
Register Specified by reg Fleld '3 Fleld Register
During 16-Bit Data Operations: sreg Selected
Function of w Fleld 000 ES
reg 001 cs
(whenw = 0) (whenw = 1) 010 ss
000 AL AX 011 DS
001 CL CX 100 FS
010 DL DX 101 GS
011 BL BX 110 do not use
100 AH SP 11 do notuse
101 CH BP
110 DH Sl
111 BH Di 10.2.3.4 Encoding of Address Mode
Except for special instructions, such as PUSH or
Register Specified by reg Fleld POP, where the addressing mode is pre-determined,
During 32-Bit Data Operations the addressing mode for the current instruction is
specified by addressing bytes following the primary
reg Function of w Fleld o/poo%e. The t;)rimary aggressirfmgdt:’yte is thef“mod
= = r/m" byte, and a second byte of addressing informa-
(whenw = 0) (whenw = 1) tion, the “s-i-b” (scale-index-base) byte, can be
000 AL EAX specified.
001 CL ECX
010 DL EDX The s-i-b byte (scale-index-base byte) is specified
011 BL EBX when using 32-bit addressing mode and the “mod
100 AH ESP r/m” byte has r/m = 100 and mod = 00, 01 or 10.
101 CH EBP When the sib byte is present, the 32-bit addressing
110 DH ES| mode is a function of the mod, ss, index, and base
fields.
111 BH EDI

10.2.3.3 Encoding of the Segment
Register (sreg) Fleld

The sreg field in certain instructions is a 2-bit field
allowing one of the four 80286 segment registers to
be specified. The sreg field in other instructions is a
3-bit field, allowing the Inteld86 DX2 Microprocessor
FS and GS segment registers to be specified.

2-Bit sreg2 Field

281 Regiter
sreg2 Fleld Selected
00 ES
01 cs
10 SsS
11 DS

I PRELIMINARY

The primary addressing byte, the “mod r/m” byte,
also contains three bits (shown as TTT in Figure
10.1) sometimes used as an extension of the pri-
mary opcode. The three bits, however, may also be
used as a register field (reg).

When calculating an effective address, either 16-bit
addressing or 32-bit addressing is used. 16-bit ad-
dressing uses 16-bit address components to calcu-
late the effective address while 32-bit addrsssing
uses 32-bit address components to calculate the ef-
fective address. When 16-bit addressing is used, the
“mod r/m” byte is interpreted as a 16-bit addressing
mode specifier. When 32-bit addressing is used, the
“mod r/m” byte is interpreted as a 32-bit addressing
mode specifier.

Tables on the following three pages define all en-

codings of all 16-bit addressing modes and 32-bit
addressing modes.

2-175

n
Intel486 ™ DX2 MICROPROCESSOR “‘]‘tel o

Encoding of 16-bit Address Mode with “mod r/m” Byte

mod r/m Effective Address mod r/m Effective Address
00 000 DS:[BX + Sl] 10 000 DS:[BX + S!+d16]
00 001 DS:[BX + Di] 10 001 DS:[BX + DI+ d16]
00010 SS:[BP+Si] 10010 SS:[BP+Si+d16]
00011 SS:[BP+DI) 10011 SS:[BP + DI+ d16]
00 100 Ds:[si] 10100 DS:[SI+d16]
00 101 DS:(DI] 10101 DS:[DI+d16]
00110 DS:d16 10110 $S:[BP +d16]
00 111 DS:(BX] 10111 DS:[BX +d16]
01 000 DS:[BX+ Si+d8] 11 000 register—see below
01001 DS:[BX + DI +d8] 11 001 register—see below
01010 SS:[BP + SI+d8] 11010 register—see below
01011 SS:[BP + Di+d8] 11011 register—see below
01100 DS:([S!+d8} 11100 register—see below
01101 DS:[Di+d8] 11101 register—see below
01110 SS:[BP +d8] 11110 register—see below
01111 DS:(BX +d8] 11111 register—see below
Register Specified by r/m Register Specified by r/m
During 16-Bit Data Operations During 32-Bit Data Operations
mod r/m Function of w Field mod r/m Function of w Field
(when w=0) (whenw =1) (when w=0) {(whenw = 1)
11 000 AL AX 11 000 AL EAX
11 001 CcL CcX 11 001 CL ECX
11010 DL DX 11010 DL EDX
11011 BL BX 11011 BL EBX
11100 AH SP 11100 AH ESP
11101 CH BP 11101 CH EBP
11110 DH Sl 11110 DH ESI
11111 BH DI 11 111 BH EDI

2176 PRELIMINARY I

intgl.

Intel486™ DX2 MICROPROCESSOR

Encoding of 32-bit Address Mode with “mod r/m"” byte (no “s-i-b” byte present)

mod r/m Effective Address mod r/m Effective Address
00 000 DS:[EAX] 10 000 DS:[EAX+d32]

00 001 DS:[ECX] 10001 DS:[ECX -+ d32]
00010 DS:[EDX] 10010 DS:[EDX +d32]

00 011 Ds:[EBX] 10011 DS:[EBX+ d32]

00 100 s-i-b is present 10100 s-i-b is present
00101 DS:d32 10101 SS:[EBP +d32)

00 110 DS:[ESI] 10110 DS:[ESI+d32]

00 111 Ds:[EDI] 10 111 DS:[EDI +d32]

01 000 DS:[EAX + d8] 11 000 register—see below
01 001 DS:[ECX +d8] 11 001 register—see below
01010 DS:[EDX +d8] 11010 register—see below
01011 DS:[EBX +d8} 11 011 register—see below
01100 s-i-b is present 11100 register—see below
01101 SS:[EBP+d8] 11101 register—see below
01110 DS:[ESI+d8] 11110 register—see below
01111 DS:[EDI+d8] 11111 register—see below

Register Specified by reg or r/m
during 16-Bit Data Operations:

Register Specified by reg or r/m
during 32-Bit Data Operations:

mod r/m Function of w field mod r/m Function of w field
(when w=0) (whenw=1) {whenw=20) (whenw=1)

11000 AL AX 11 000 AL EAX
11 001 CL CX 11 00t CL ECX
11010 DL DX 11010 DL EDX
11011 BL BX 11 011 BL EBX
11100 AH SP 11100 AH ‘ ESP
11101 CH BP 11101 CH EBP
11110 DH Sl 11110 DH ESI
11111 BH DI 11111 BH EDI

I PRELIMINARY

2-177

Intel486™ DX2 MICROPROCESSOR

intgl.

Encoding of 32-bit Address Mode (“mod r/m” byte and “s-I-b” byte present)

mod base Effective Address ss Scale Factor
00 000 DS:[EAX + (scaled index)] 00 x1
00 001 DS:[ECX + (scaled index)] 01 x2
00010 DS:[EDX + (scaled index)] 10 x4
00011 DS:[EBX + (scaled index)} 11) x8
00 100 SS:[ESP + (scaled index)]
00 101 DS:[d32 + (scaled index)]
00110 DS:[ESI + (scaled index)] index Index Register
00 111 DS:[EDI + (scaled index)} 000 EAX
001 ECX
01 000 DS:[EAX + (scaled index) + d8] 010 EDX
01 001 DS:[ECX + (scaled index) + d8} 0114 EBX
01010 DS:[EDX + (scaled index) + d8] 100 no index reg**
01011 DS:[EBX + (scaled index) + d8] 101 EBP
01 100 SS:[ESP + (scaled index) + d8] 110 ESI
01101 SS:[EBP + (scaled index) + d8) 111 EDI
01110 DS:[ESI + (scaled index) + d8]
01111 DS:[EDI + (scaled index) + d8] **IMPORTANT NOTE:
Whe?n index field is 100, inlc:k;,ﬁtigg I:c; (i)réde)r(‘ ‘;eg;stgg'e’sthneor:
10000 DS:[EAX + (scaled !ndex) +daz] ::uﬂael Igoljﬂxlng?:gﬁa\:eog&dres: is undefinead.
10 001 DS:[ECX + (scaled index) + d32]
10010 DS:[EDX + (scaled index) + d32]
10011 DS:[EBX + (scaled index) + d32]
10 100 SS:[ESP + (scaled index) + d32]
10101 8S:[EBP + (scaled index) + d32]
10110 DS:[ESI+ (scaled index) + d32]
10 111 DS:[EDI + (scaled index) + d32]
NOTE:
Mod field in “mod r/m” byte; ss, index, base fields in
“s-i-b” byte.
2-178

PRELIMINARY I

intgl.

10.2.3.5 Encoding of Operation
Direction (d) Field

In many two-operand instructions the d field is pres-
ent to indicate which operand is considered the
source and which is the destination.

intel486™ DX2 MICROPROCESSOR

Direction of Operation

0 | Register/Memory <- - Ragister

“reg” Field Indicates Source Operand;

“mod r/m” or “mod ss index base" Indicates
Destination Operand

1 | Register <- - Register/Memory

“reg" Field Indicates Destination Operand;
“mod r/m” or “mod ss index base” Indicates
Source Operand

10.2.3.6 Encoding of Sign-Extend (s) Field

The s field occurs primarily to instructions with im-
mediate data fields. The s field has an effect only if
the size of the immediate data is 8 bits and is being
placed in a 16-bit or 32-bit destination.

Mnemonic Condition tttn

(0] Overflow 0000
NO No Overflow 0001
B/NAE Below/Not Above or Equal 0010
NB/AE Not Below/Above or Equal 0011
E/Z Equal/Zero 0100
NE/NZ Not Equal/Not Zero 0101
BE/NA Below or Equal/Not Above 0110
NBE/A Not Below or Equal/Above 0111
S Sign 1000
NS Not Sign 1001
P/PE Parity/Parity Even 1010
NP/PO Not Parity/Parity Odd 1011
L/NGE Less Than/Not Greater or Equal | 1100
NL/GE Not Less Than/Greater or Equal | 1101
LE/NG Less Than or Equal/Greater Than | 1110
NLE/G Not Less or Equal/Greater Than | 1111

10.2.3.8 Encoding of Control or Debug
or Test Register (eee) Field

For the loading and storing of the Control, Debug
and Test registers.

When Interpreted as Control Register Field

Effect on Effect on
] Immediate Iimmediate
Datas Data 16/32
0 None None
1 Sign-Extend Data8 to Fill None
16-Bit or 32-Bit Destination

eee Code Reg Name
000 CRO
010 CR2
011 CR3

Do not use any other encoding

10.2.3.7 Encoding of Conditional
Test (tttn) Field

For the conditional instructions (conditional jumps
and set on condition), tttn is encoded with n indicat-
ing to use the condition (n=0) or its negation (n=1),
and ttt giving the condition to test.

I PRELIMINARY

When Interpreted as Debug Register Field

eee Code Reg Name
000 DRO
001 DR1
010 DR2
011 DR3
110 DRé
111 DR7

Do not use any other encoding

When Interpreted as Test Register Fleld

eee Code Reg Name
011 TR3
100 TR4
101 TR5
110 TR6
111 TR7
Do not use any other encoding
2-179

Intel486™ DX2 MICROPROCESSOR

intgl.

Instruction Optional
First Byte Second Byte Flelds

1 11011 OPA 1 mod 1 OPB r/m s-i-b disp
2 11011 MF OPA mod oPB r/m s-i-b disp
3 11011 d P OPA 1 1 oPB ST()
4 11011 0 1 1 1 1 oP
5 11011 0 1 1 1 1 OP

16-11 10 9 8 7 6 5 4 3 210

10.2.4 ENCODING OF FLOATING POINT
INSTRUCTION FIELDS

Instructions for the FPU assume one of the five
forms shown in the following table. In all cases, in-
structions are at least two bytes long and begin with
the bit pattern 11011B.

OP = Instruction opcode, possible split into two
fields OPA and OPB

MF = Memory Format
00—32-bit real
01—32-bit integer
10—64-bit real
11—16-bit integer

P = Pop
0—Do not pop stack
1—Pop stack after operation

d = Destination

0—Destination is ST(0)
1—Destination is ST(i)

2-180

R XOR d = 0—Destination (op) Source
R XOR d = 1—Source (op) Destination

ST()) = Register stack element /

000 = Stack top

001 = Second stack element
[]
L]
L

111 = Eighth stack element

mod (Mode field) and r/m (Register/Memory specifi-
er) have the same interpretation as the correspond-
ing fields of the integer instructions.

s-i-b (Scale index Base) byte and disp (displace-
ment) are optionally present in instructions that have
mod and r/m fields. Their presence depends on the
values of mod and r/m, as for integer instructions.

PRELIMINARY I

1.

2.

intgl.

intel486™ DX2 MICROPROCESSOR

11.0 DIFFERENCES BETWEEN THE Intel486™ DX2
MICROPROCESSOR AND THE Intel386™
MICROPROCESSOR PLUS THE INTEL387 MATH
COPROCESSOR EXTENSION

The differences between the Intel486 DX2 micro-
processor and the Intel386 microprocessor are due
to performance enhancements. The differences be-
tween the microprocessors are listed below.

Instruction clock counts have been reduced to
achieve higher performance. See Section 10.

The Intel486 DX2 microprocessor bus is signifi-
cantly faster than the Intel386 microprocessor
bus. Differences include an internally doubled
clock, parity support, burst cycles, cacheable cy-
cles, cache invalidate cycles and 8-bit bus sup-
port. The Hardware Interface and Bus Operation
Sections (Sections 6 and 7) of the data sheet
should be carefully read to understand the In-
tel486 DX2 microprocessor bus functionality.

. To support the on-chip cache new bits have been

added to control register 0 (CD and NW) (Section
2.1.2.1), new pins have been added to the bus
(Section 6) and new bus cycle types have been
added (Section 7). The on-chip cache needs to
be enabled after reset by clearing the CD and
NW bit in CRO.

. The complete Intel387 math coprocessor instruc-

tion set and register set have been added. No
I/0 cycles are performed during Floating Point
instructions. The instruction and data pointers are
set to O after FINIT/FSAVE. Interrupt 9 can no
longer occur, interrupt 13 occurs instead.

. The Intel486 DX2 microprocessor supports new

floating point error reporting modes to guarantee
DOS compatibility. These new modes required a
new bit in control register 0 (NE) (Section 2.1.2.1)
and new pins (FERR# and IGNNE#) (Section
6.2.13 and 7.2.14).

. In some cases FERR # is asserted when the next

floating point instruction is encountered and in
other cases it is asserted before the next floating
point instruction is encountered, depending upon
the execution state the instruction causing ex-
ception (see Sections 6.2.13 and 7.2.14). For
both of these cases, the intel387 Math Coproc-

PRELIMINARY

10.

11.

12.

13.

14.

essor asserts ERROR# when the error occurs
and does not wait for the next floating point in-
struction to be encountered.

Six new instructions have been added:
Byte Swap (BSWAP)
Exchange-and-Add (XADD)

Compare and Exchange (CMPXCHG)
Invalidate Data Cache (INVD)

Write-back and Invalidate
(WBINVD)

Invalidate TLB Entry (INVLPG)
There are two new bits defined in control regis-

ter 3, the page table entries and page directory
entries (PCD and PWT) (Section 4.5.2.5).

Data Cache

. A new page protection feature has been added.

This feature required a new bit in control register
0 (WP) (Section 2.1.2.1 and 4.5.3).

A new Alignment Check feature has been add-
ed. This feature required a new bit in the flags
register (AC) (Section 2.1.1.3) and a new bit in
control register 0 (AM) (Section 2.1.2.1).

The replacement algorithm for the translation
lookaside buffer has been changed from a ran-
dom algorithm to a pseudo least recently used
algorithm like that used by the on-chip cache.
See Section 5.5 for a description of the algo-
rithm.

Three new testability registers, TR3, TR4 and
TRS5, have been added for testing the on-chip
cache. TLB testability has been enhanced. See
Section 8.

The prefetch queus has been increased from 16
bytes to 32 bytes. A jump always needs to exe-
cute after modifying code to guarantee correct
execution of the new instruction.

After reset, the ID in the upper byte of the DX
ragister is 04. The contents of the base regis-
ters including the floating point registers may be
different after reset.

2-181

Intei486™ DX2 MICROPROCESSOR

intgl.

12.0 PENTIUM™ OVERDRIVE™ PROCESSOR SOCKET

This chapter contains the specifications for the
Pentium OverDrive Processor Socket for systems
based on the Intel4d86 DX2 Microprocessor. All of
the specifications described herein are based on the
specifications of the Intel486 DX2 Microprocessor.

One of the most important features of the Intel486
family architecture, compared with previous Intel ar-
chitectures, is its "‘end user sasy” upgradability via
the Pentium OverDrive Processor Socket. Inclusion
of the socket in systems based on the Intel486 fami-
ly of microprocessors provides the end user with an
easy and cost-effective way to increase system per-
formance. The paradigm of simply installing an addi-
tional component into an empty socket to achieve
enhanced system performance is familiar to the mil-
lions of end users and dealers who have purchased
Intel Math CoProcessor upgrades to boost system
floating point performance. The Pentium OverDrive
Processor will provide up to 50% integer perform-
ance improvement and up to 150% floating point
performance improvement over the base system
performance. The Pentium OverDrive Processor
takes advantage of Intel's Pentium processor tech-
nology to provide this performance improvement.

The Pentium OverDrive Processor will implement a
superset of the Intel486 DX2 Microprocessor sig-
nals. The new signals for the socket, in addition to
the Intel486 DX2 CPU signals, support a writeback
protocol for the on-chip cache in Intel's future proc-
essors. Implementation of the cache writeback ca-
pability for the Pentium OverDrive Processor Socket
is optional, although implementation of the Level 1
writeback protocol enables maximum performance
gain. The signals required to implement this write-
back are detailed in a separate document and are
marked reserved in this databook. For more informa-
tion, please contact Intel.

As a new system architecture feature, the provision
of the Pentium OverDrive Processor Socket as a
means for PC users to take advantage of the ever
more rapid advances in software and hardware tech-
nology will help to maintain the competitiveness of
Intel architecture PC-compatible systems over other
architectures.

The majority of upgrade installations which take ad-

vantage of the Pentium OverDrive Processor Socket
will be performed by end users and resellers. There-

2-182

fore, it is important that the design be “end user
easy”, and that the amount of training and technical
expertise required to install the Pentium OverDrive
Processors be minimized. Upgrade installation in-
structions should be clearly described in the system
user's manual. In addition, by making installation
simple and foolproof, PC manufacturers can reduce
the risk of system damage, warranty claims and
service calls. Feedback from intel’s Math CoProces-
sor upgrade customers highlights three main charac-
teristics of end user easy designs: accessible Over-
Drive Processor Socket location, clear indication of
upgrade component orientation, and minimization of
insertion force.

Upgrade Socket Location: The Pentium OverDrive
Processor Socket can be located on either the
motherboard or modular CPU card. The socket
should be easily accessible for installation and readi-
ly visible when the PC case is removed. The Pentium
OverDrive Processor Socket should not be located
in a position that requires removal of any other hard-
ware (such as hard disk drives) in order to install the
Pentium OverDrive Processor.

Component Orientation: The most common mis-
take made by end users and resellers when install-
ing Math CoProcessor upgrades is incorrect orienta-
tion of the chip. This can result in irreversible dam-
age to the chip and/or the PC. To solve this prob-
lem, Intel has designed the Pentium OverDrive Proc-
essor Socket and the Pentium OverDrive Processor
with a keying mechanism to ensure proper orienta-
tion of the upgrade component by the PC user. The
keying mechanism for the Pentium OverDrive Proc-
essor is four missing pins on one corner of the de-
vice. To be effective as a keying mechanism the cor-
responding locations in the socket must be plugged.
The Pentium OverDrive Processor Socket is de-
signed to be backward compatible with the 169-pin
OverDrive Socket of intel486 SX and Intel486 DX
systems. In order to maintain compatibility, the Pen-
tium OverDrive Processor Socket should include the
Key Pin at location E5. In addition, the location of
the key corner should be clearly marked on the
motherboard or CPU card, for example by silk
screening.

Insertion Force: The third major concern voiced by

end users refers to how much pressure should be
exerted on the upgrade chip and PC board for prop-

PRELIMINARY I

intgl.

er installation without damage. This becomes even
more of a concern with the larger components which
require up to 200 pounds of pressure for insertion
into a standard screw machine socket. This level of
pressure can easily result in cracked traces and
stress to solder joints. To minimize the risk of sys-
tem damage, it is recommended that a Zero Inser-
tion Force (ZIF) socket be used for the Pentium
OverDrive Processor Socket. Designing with a ZIF
socket eliminates the need to design in additional
structural support to prevent flexing of the PC board
during installation, and results in improved end user
and reseller product satisfaction due to easy "“drop-
in" installation.

12.0.1 Pentium™ OVERDRIVE™ PROCESSOR
SOCKET OVERVIEW

The Pentium OverDrive Processor Socket is de-
signed such that when a Pentium OverDrive Proces-
sor is installed in the socket, the original CPU relin-
quishes control of the system to the Pentium Over-
Drive Processor by backing off the bus. The circuit
design requirements for the Pentium OverDrive
Processor Socket are discussed in Section 12.1. In
addition to the Pentium OverDrive Processor Socket
circuits, there are layout considerations for the sock-
et and processor spatial requirements. These issues
are discussed in Section 12.2. Because the Pentium
OverDrive Processor must function in the socket,
the Pentium OverDrive Processor Socket heat dissi-

Intel486™ DX2 MICROPROCESSOR

pation specifications must be implemented. Section
12.3 shows the Pentium OverDrive Processor heat
dissipation requirements for a hypothetical system
design at 25 MHz and 33 MHz. Because the system
must operate correctly with any OverDrive Proces-
sor without a BIOS change, BIOS and software re-
strictions and recommendations are provided in
Section 12.4. Section 12.5 discusses Pentium Over-
Drive Processor Socket test requirements. Finally,
Sections 12.6 and 12.7 specify the pinout and elec-
trical characteristics of the Pentium OverDrive Proc-
essor, respectively.

12.1 Pentium™ QverDrive™
Processor Circuit Design

The Pentium OverDrive Processor Socket is de-
signed to reside on the same processor bus as the
Intel486 DX2 CPU. This socket specifies a UP# out-
put (Upgrade Present) pin which should be connect-
ed directly to the UP # input pin of the Intel486 DX2
Microprocessor. When the Pentium OverDrive Proc-
essor occupies the socket, the UP# signal (active
low) forces the intel486 DX2 Microprocessor to
3-state all outputs and reduce power consumption.
When the Pentium OverDrive Processor is not in the
socket, a pullup resistor, internal to the Intel486 DX2
Microprocessor, drives UP# inactive and allows the
Intel486 DX2 Microprocessor to control the proces-
sor bus.

CTRL
ADDR
DATA

DATA ADDR CTRL

7 /L——— RESERVED up# O———C) UP#

Pentium
OverDrive Intel486 DX2
Processor CPU
Socket

DATA ADDR CTRL

>
€Lk I
B

l—> CLK

241245-83

Figure 12.1. Pentium™ OverDrive Processor Socket Circuit Diagram

I PRELIMINARY

2-183

Intel486™ DX2 MICROPROCESSOR

12.2 Socket Layout

This section discusses four aspects for the Pentium
OverDrive Processor Socket: compatibility, size, up-
gradability, and vendors.

12.2.1 BACKWARD COMPATIBILITY

The Pentium OverDrive Processor Socket for
Intel486 DX2 Microprocessor-based systems is de-
signed to be compatible with the OverDrive Proces-
sor for Intel486 SX CPU- and Intel486 DX CPU-
based systems.

The Pentium OverDrive Processor Socket has a
fourth row of contacts around the outside of the 169
contacts defined for the Intel4d86 SX CPU- and
Intel486 DX CPU-based OverDrive Processor sock-
ets. The three inner rows, with inner key pin, are
100% compatible with the 169-pin PGA OverDrive
Processor, for Intel486-based systems. For back-
ward compatibility, the inner row key pin location
(ES) must be included in the Pentium OverDrive
Processor Socket.

12.2.2 MECHANICAL DESIGN

L)
intel.
CONSIDERATIONS

The Pentium OverDrive Processor is designed to fit
in a standard 240-lead (19 x 19) PGA socket with
four corner pins removed. The Pentium OverDrive
Processor uses an active heat sink, and therefore,
requires vertical clearance to allow adequate air cir-
culation.

The maximum and minimum dimensions of the Pen-
tium OverDrive Processor package with a fan/heat
sink are shown in Table 12.1. The fan/heat sink unit
is divided into the size of the actual heat sink, and
the required free space above the heat sink. The
total height required for the Pentium Over;)rive Proc-
essor from the motherboard will depend on the
height of the PGA socket. The total external height
given in Table 12.1 is only measured from the PGA
pin stand-offs. Table 12.1 also details the minimum
clearance needed around all four sides of the PGA
package.

Table 12.1. Pentium OverDrive Processor, 236-Pin, PGA Package Dimensions with Active Heat Sink Attached

Length and Width (inches) Height (Inches)
Component
Minimum Maximum Minimum Maximum
PGA Package 1.950 1.975 0.140 0.180
Adhesive N/A N/A 0.008 0.012
Heat Sink Unit 1.830 1.850 N/A N/A
Heat Sink N/A N/A 0.790 0.810
Req'd Free Space N/A N/A 0.400 0.400
External Total 1.950 1.975 1.338 1.402
Space From Package 0.200 0.200 N/A N/A
|e—0.2" 1.963"
Free } 1.840" {
Side |
Space }
0.4” T
Pentium™ QverDrive™ Processor T 1.2¢
Fan/Heai Sink Unit 0.010"
§Adhasive : { 1.37"
P i ™ H f ?
entium™ QverDrive™ Processor 0.160"
IIIIIIIIIIIIIIIIIII 241245-56

Figure 12-2, 236-Pin PGA Package with Heat Sink Attached

2-184

PRELIMINARY I

intgl.

Since the Pentium OverDrive Processor dissipates
more power than the Intel486 CPU family members,
it requires a larger cooling capacity. To facilitate the
task of cooling the Pentium OverDrive Processor, In-
tel will ship the product with a fan/heat sink. No ex-
ternal connections (i.e., power) will be required for
the fan/heat sink. All the needed connections will be
made through the pins of the processor. The amount
of extra power needed for the fan is accounted for in

Intel486™ DX2 MICROPROCESSOR

12.2.3 “END USER EASY”
RECOMMENDATIONS

PC buyers value easy and safe upgrade installation.
PC manufacturers can make upgrade component in-
stallation in the Pentium OverDrive Processor sock-
ot simple and foolproof for the end user and reseller
by implementing the suggestions listed in Table
12.2.

the Icc numbers of the processor (see Section
12.3). To ensure adequate air circulation, the addi-
tional clearance specified in Table 12.1 must be pro-
vided.

Table 12.2. Socket and Layout Considerations

“End User Easy”

Feature Implementation

Visible Pentium OverDrive
Processor Socket

The Pentium OverDrive Processor Socket should be easily visible when
the PC’s cover is removed. Label the Pentium OverDrive Processor
Socket and the location of pin 1 by silk screening this information on the
PC board.

Make the Pentium OverDrive Processor Socket easily accessible to the
end user (j.e., do not place the Pentium OverDrive Processor Socket
under a disk drive). Be sure to leave enough clearance to open the Zero
Insertion Force (ZiF) socket.

Accessible Pentium OverDrive
Processor Socket

Foolproof Chip Orientation This Pentium OverDrive Processor Socket must insure proper orientation
of not only the Pentium OverDrive Processor but also the OverDrive
Processor for Intel486 SX CPU based systems. The PGA package of the
Pentium OverDrive Processor is oriented by the four corner pins that
have been removed from the “pin 1" corner. These four contacts (A2,
A3, B1 and C1) in the socket should be plugged, such that PGA pins
cannot be inserted, to assure correct orientation. The 169 pin, PGA
package of the OverDrive Processor for Intel486 SX CPU systems is
oriented by the “key” pin located in the inside corner of the “pin 1"
corner. All inside contacts (11 innermost rows) should be plugged,
except the “key” pin (E5), to insure correct orientation and alignment.
The total number of contacts for the Pentium OverDrive Processor
Socket is therefore 237; a standard 240-pin socket plus the inside “key"
pin and less the four outside corner pins. Supplying a 237-pin socket as
the Pentium OverDrive Processor Socket eliminates the possibility of end
users or resellers damaging the PC board or the Pentium OverDrive
Processor by powering up the system with the Pentium OverDrive
Processor in an incorrect orientation.

Zero Iinsertion Force
Pentium QverDrive
Processor Socket

The high pin count of the Pentium OverDrive Processor makes the
insertion force required for installation into a screw machine PGA socket
excessive. Even most Low Insertion Force (LIF) sockets often require
more than 60 Ibs. of insertion force. A Zero Insertion Force (ZIF) socket
insures that the chip insertion force does not damage the PC board. Be
sure to allow enough clearance for the ZIF socket handle. Do not use a
LIF or screw machine socket.

“Plug and Play” Jumper or switch changes should not be needed to electrically configure

the system for the Pentium OverDrive Processor.

Thorough Documentation Describe the Pentium OverDrive Processor Socket and the Pentium

OverDrive Processor installation procedure in the PC’s User’s Manual.

I PRELIMINARY 2-185

intel486™ DX2 MICROPROCESSOR

12.2.4 ZIF SOCKET VENDORS

The following lists provide socket vendor information
based on products offered for the OverDrive Socket
for Intel486 DX and Intel486 SX CPU Systems

NOTE:
This is not a comprehensive list. Intel cannot guar-
antee that these sockets will meet every PC manu-
facturer’s specific requirements.

Zero Insertion Force OverDrive Processor
Sockets and Vendors:

1. AMP inc.
219 American Avenue
Greensboro, N.C. 27409-1803
Part Number: TBD
Contact: James Crompton - (919) 855-2338

2. Yamaichi Electronics
1420 Koll Circle, Suite B
San José, CA 95112
Part Number: TBD
Contact: Jim Bennett, Sales Manager -
(408) 452-0797

12.3 Thermal Design Considerations

The Pentium OverDrive Processor and system chas-
sis have several unique design requirements due to
the attached active heat sink. The following sections
provide sample maximum system operating temper-
ature calculations so systems may be designed to
comply with the thermal requirements of the
Pentium OverDrive Processor.

Thermal Calculations for a Hypothetical System

The following equation can be used to calculate the
maximum operating temperature of a system:

Talin) = Tgink — (Power * 6g))
The parameters are defined as follows:

Ta(in): The temperature of the air going into the fan/
heat sink.

Tsink: Temperaturs of heat sink base, as measured
in the center.

Power: Dissipation in Watts = Vgg * Icc

0gy: Heat Sink to Internal Temperature [Ta(in)] Ther-
mal Resistance

Ta (out): The temperature of the air outside the sys-
tem.

2-186

intgl.

Since the Pentium OverDrive Processor uses an ac-
tive heat sink, fg (as shown in Table 12.3) is rela-
tively constant, regardless of the airflow provided to
the processor. Table 12.4 details the maximum cur-
rent requirements of the Pentium OverDrive Proces-
sor. The maximum ambient temperature specifica-
tion for the Pentium OverDrive Processor is 55°C for
both 25 MHz and 33 MHz processors with the heat
sink attached. Therefors, the internal temperature of
the air (Ta (in)) may not exceed 55°C under the
worst case operating conditions specified for the
system. This ensures that the value of Tgnk does
not exceed 85°C.

Table 12.3. Thermal Resistance ("C/W)—0sg,
Processor Type 6g — °C/W
Fan/Heat Sink 24

Table 12.4. OverDrive Processor Typical and
Maximum Igc Values

System Processor Processor
Frequency Typlcal ¢ Maximum lge
(MH2) (mA) {mA)
25 T8D 1900
33 TBD 2500

Igc is dependent upon the Vg level of the system,
processor bus loading, software code sequences,
and silicon process variations.

Maximum Ta(in) is specified and be verified using
the equation and parameters provided

Talin) = Tgink — (Power * bg))

Ta(in) = 85°C — ((2.5A * 5V) * 2.4°C/W)

Ta(in) = 85°C — ((12.5W * 2.4°C/W)

Talin) = 85°C — 30°C

Talin) = 85°C

Assuming the internal system ambient Ta(in) is with-
in 5°C-10°C of Ta(out), this would allow the maxi-
mum Ta(out) temperature to be approximately
45°C-50°C. It is the responsibility of the system de-
signer to ensure Ta(in) meets this specification by
providing sufficient airflow around the Pentium Over-

Drive Processor to remove the heated air expelled
by the fan/heat sink.

PRELIMINARY I

intgl.

12.4 BIOS and Software

The following should be considered when designing
the Pentium OverDrive Processor Socket for an In-
tel486 DX2 microprocessor-based system.

12.4.1 OverDrive PROCESSOR DETECTION

The component identifier and stepping/revision
identifier for the Pentium OverDrive Processor is
readable in the DH and DL registers respectively,
immediately after RESET, where

DH = 15h
DL = 30h-3Fh

As with the Intel486 DX2 microprocessor specifica-
tion, it is recommended that the BIOS save the con-
tents of the DX register, immediately after RESET,
so that this information can be used later, if required.

12.4.2. TIMING DEPENDENT LOOPS

The Pentium OverDrive Processor for Intel486 DX2
microprocessor-based systems executes instruc-
tions at a multiple of the frequency of the input
clock. This Pentium OverDrive Processor also will
use advanced design techniques to decrease the
number of clocks per instruction (cpi) from that of

the Intel486 DX2 microprocessor. Thus software, -

such as instruction-based timing loops, will execute
faster on the Pentium OverDrive Processor than on
aither the Intel486 DX CPU or the inteld86 DX2 mi-
croprocessor at the same input clock frequency. In-
structions such as NOP, LOOP, and JMP $+2 are
frequently used by the BIOS to implement timing
loops that are required, for example, to enforce re-
covery time between consecutive accesses for /0
devices. These instruction-based, timing-loop imple-
mentations may require modification to be compati-
ble with this Pentium OverDrive Processor Socket.

I PRELIMINARY

Intel486™ DX2 MICROPROCESSOR

In order to avoid any incompatibilities, timing loops
can be implemented in hardware rather than in soft-
ware. This provides transparency and also does not
require any change in BIOS or 1/0 device drivers in
the future when moving to higher processor clock
speeds.

As an example, a timing loop may be implemented
as follows: The software performs a dummy 1/0 in-
struction to an unused 170 port. The hardware for
the bus controller logic recognizes this 1/0 instruc-
tion and delays the termination of the 1/0 cycle by
keeping RDY # or BRDY # deasserted for the appro-
priate amount of time.

12.5 Test Requirements

The Pentium OverDrive Processor Socket’s electri-
cal functionality can be verified by fully testing the
PC with a populated Pentium OverDrive Processor
Socket. We recommend that the system is tested
with all avallable OverDrive Processors to ensure
that there are no BIOS issues. The socket can be
electrically tested with the OverDrive Processor for
Intel486 SX/Intel486 DX CPU-based systems. The
Pentium OverDrive Processor should also be used
to test the hardware and software when it is avail-
able. The BIOS requirements to maintain compatibil-
ity with all OverDrive Processors are discussed in
Section 12.4 of this document. All OverDrive Proces-
sors undergo thorough application software compat-
ibility testing prior to their introduction.

12.6 Pentium™ OverDrive™
Processor Socket Pinout

The Pentium OverDriva Processor Socket pinout is
shown in Figures 12.3 and 12.4. As mentioned in
Section 12.2, the key pins are critical for component
orientation and should be used on any Pentium
OverDrive Processor Socket.

2-187

intel486™ DX2 MICROPROCESSOR

12.6.1 PINOUT

All NC and RES pins must remain unconnected

A B C D E F 6 H J K L M N P Q R S T U
19 o o 0o o 0O o 0O o o 0O o 0O o o o o o o o 19
NC RES Vgg Voo Vg INIT Vg5 Vss Ve VYoo Veo Ves VYss RES Vgs Voo Vss RES RES
18 o O O O 0O 0 0O 0O 0O 0O O O O O O o 18
RES AHOLD EADS# BS16# BOFF¥ Vgq BE3# Vgg Vgg PCD Vgg Vgg Vgg W/R® Vgg PCHK# INC ADS# RES
17 0O 0 0o 0O 0O 0O O 0O 0O 0O 0O 0 O O O o o o o 17
Vgs INTR RES RESET BSB¥ Vo RDY# Voo Voo BEI# Voo Voo o Voo M/IO¥ Voo PLOCKWBLAST® A4 Vgq
16 o 0O 0o o 0 O O O O ©° o O O O O O O ©° 16
Voo IGNNE# NMI FLUSH¥ A20M# HOLD KEN# STPCLK#BROY# BE2# BEO* PWT 0/C# LOCK# HLDA BREQ A3 A6 Vg
15 o O O O ® ®¢ & e O O O O 15
Vgg RES UP# INC PLUG PLUG PLUG PLUG PLUG PLUG A2 Vo Vgs Vss
14 O o O e ® O O O O 14
Vgs FERR# INC NC PLUG PLUG A7 AB A1D Vgg
13 O o O e ® O O 0O O 13
Vgs INC INC SMIACT¥ PLUG PLUG A5 ATl Vgg Vgs
Pentium OverDrive Processor Socket for
12 o o o o 5V 1486 DX2 CPU-based systems o o o o |12
¥ss Vss VYeo INC A9 Veo V55 Vss
11] o O 0 O 11
Voo INC SMI# INC A3 Voo Ves Voo
10 o O O O o O O O 10
Yoo Vss Voo D3O TOP SIDE VIEW A6 Yoo Vss Voo
9 o 0 o O 237 Contact PGA o o o0 o g
Ve 029 D31 D28 A20 Voo V55 Voo
8 o O o0 O o O O O 8
Vss Vss Voo D26 A22 A15 A12 Vg
Rev.8/4/93
7 O O O O e ® O O O O 7
RES D24 D25 D27 PLUG PLUG A24 Yoo Vg5 Vss
6 O O O O o O O O 6
RES DP3 Vg Voo PLUG PLUG A21 A18 Al4 Vgq
5 O O O O 0O e e ® O O O O 5
Vgs D23 Vgg Voo KEY PLUG PLUG PLUG PLUG PLUG A19 Vgg INC Vg
4 o 0 0o 0o 0o 0o o O 0 0O O 0 O O O O o o o 4
Yoo RES Vgg CLK D17 DI0 DI5 D12 DP2 DI6 D14 D7 D4 DPO A30 A17 Voo A23 V¢
3 ® O O O O o 0o 0 o o o 0 o o o o o o 3
PLUG D22 D21 DB D13 Voo DB Ve D3 D5 Voo DB Ve D1 A29 Vgg A25 A26 Vgg
2 ® O O O O O O 0O O 0O 0o 0O 0o o0 o o o o o 2
PLUG D20 D19 D11 D9 Vg DP1 Vgg Vss VYoo Vss V¥ss Vss D2 DO A31 A28 A27 RES
1 [®] ® O O O O 0O O O O O 0O 0o o o o o o 1
\{EY PLUG PLUG Voo Vg5 RES RES Vgg VYoo Voo Vee Vss RES RES Vg Voo V¥gs RES RES
A B C D E F G H J K L M N P Q R S T U
241245-57
NOTE:

2-188

Figure 12-3. Pentium OverDrive Processor Socket Pinout
for 5V Intel486 DX2 CPU-Based Systems (Top Side View)

PRELIMINARY I

Intd ® intel486™ DX2 MICROPROCESSOR

u T S R Q ©P N M L K J H G F E D C B A

19 0 0 0 0 O 0 O O O O O O O 0O O O o o o 19
RES RES Vgg Voo Vss RES Vgg Vgs Voo Voo Yoo Ves Vss INIT Vg Voo Vgg RES NC

18] © o 0O o o o 0 0O O O O 0O o O o o o 18
RES ADS® INC PCHK# Vgg W/R¥ Vgg Vgg Vg PCD Vgg Vgs BE3# Vg BOFF# BS16# EADS# AHOLD RES

17] © O O O 0 o0 o 0o 0O O o o O o o o 17
Vss A4 BLAST#PLOCK® Voo M/IO% Voo Ve Voo BET® Voo Voo RDY# Vo BSB¥ RESET RES INTR Vg

16 0 0 0 0 O 0 O O O O O O O O O ©O© 0o o o 16
Ve AB A3 BREQ HLDA LOCK# D/C# PWT BEO# BE2# BRDY#STPCLK# KEN# HOLD A20M¥FLUSH# NMI IGNNE# Vo

15 © o 0 O e e @ e € ¢ O O 0O O 15
Vss Vgs Voo A2 PLUG PLUG PLUG PLUG PLUG PLUG INC UP# RES Vg

14] O 0 O O e ® O O O O 14
Vgs A10 A8 A7 PLUG PLUG NC INC FERR# vgo

13 O 0 O O e ® O O O O 13
Vgs Vss AT1 A5 PLUG PLUG SMIACT# INC INC Vgg

Pentium OverDrive Processor Socket for

12 o o o o 5V 1486 DX2 CPU-based systems O O O o |12
Vss Vss Voo A9 INC Vo Vg5 Vs

1Ml © 0o O © O O O O 11
Voo Vss Voo A3 INC SMI* INC Vo

10 o 0o O o O O O O 10
Voo Ves Voo AlE BOTTOM SIDE VIEW 030 Vee Vs Voo

9 o 0o o o 237 Contact PGA o 9
Vee Vss Voo A20 028 D31 D29 Vg

8 0O O O o O O O O 8
Vgs A12 A15 A22 D26 Vo Vg Vss

Rev.8/4/93

7 0O O O ® ® O O [e] 7
Vgs Vss Voo A24 PLUG PLUG D27 D025 024 RES

6 o O O O e O O O O 6
Vss At4 A18 A21 PLUG PLUG Vg Vg5 DP3 RES

5 o O © ® ®e ® O O O O o 5
Vgs INC Vgg A19 PLUG PLUG PLUG PLUG PLUG KEY Voo Vsg D23 Vg

4 o 0 0O 0O 0O o 0 O 0O 0O O 0O O 0O o 0O o o o 4
Vec A23 VYo A7 A30 DPO D4 D7 D14 DI6 DPZ D12 DI5S 010 D17 CLK Vgg RES Vg

3 (o] 0O 0O 0O 0O O O 0O O 0O O O O 0O O O e 3
Vss A26 A25 Vg A29 DI Voo D6 Voo D5 D3 Voo DB Voo DI3 D18 D21 D22 PLUG

2 o O 0O 0O 0O o O 0O 0O 0O 0o 0O o o o o O 2
RES A27 A28 A31 D0 D2 Vg5 Vss Vss Yoo VYss Vss OP1 Vg 08 DIl DI9 D20 PLUG

1 o o 0 0o 0 0O 0O 0O 0 0o 0 0O 0o o0 o ® ® O 1
RES RES Vs Vo VYss RES RES Vgg Voo Yoo Voo Vss RES RES Vgg Voo PLUG PLUG KV
u T S R Q P N M L K J H G F E D C B A

241245-58
NOTE:
All NC and RES pins must remain unconnected

Figure 12-4. Pentium OverDrive Processor Socket
Pinout for 5V Intei486 DX2 CPU-Based System (Bottom Side View)

I PRELIMINARY : 2.189

intel486™ DX2 MICROPROCESSOR

Table 12.6. Pentium OverDrive Processor Socket Pin Cross Reference

Address Data Control . Control Res(1) Vee Vss
A2 | R15 [DO | Q2 | A20M# | E16 | RDY# G17 | A6 A4 [L1 | A5 | Mmi18
A3 |S16 | D1 | P3 | ADS# T18 | RESET D17 | A7 A9 [L3 | A8 | M19
A4 | T17 [D2 | P2 | AHOLD | B18 | SMi# C11 | A18 A10 | L17 | A12 | N2
A5 | R13 (D3 |J3 | BEO# L16 | SMIACT# | D13 | A19 A1 | L19 | A13 | N18
A6 | Ti16 | D4 | N4 | BE1# K17 | STPCLK# | H16 | B4 A16 | M17 | A14 | N1
A7 |R14 | D5 | K3 | BE2# K16 | UP# C15 | B15 c8 N3 [A15 | Ot
A8 | S1a | D6 | M3 | BE3# G18 | W/R# P18 | B19 c1o | N17 | A17 | Q18
A9 | R12 | D7 | M4 | BLAST# | S17 ci7 ci2| Q17 | Bs | Qt9
A10 | T14 | D8 | G3 | BOFF# | E18 F1 D1 |R1 | B10 | R3
A11 | S13 | D9 | E2 | BRDY# | J16 G1 D5 | Ri9 | B12 | S1
A12 | T8 | D10 | F4 | BREQ R16 N1 D6 |S4 |[ca | S5
A13 | R11 | D11 | D2 | BSs# E17 P1 D19 | s7 | c5 | S19
A14 | T6 | D12 | H4 | BS16# D18 P19 F3 |se |[ce |T7
A15 | s8 | D13 | E3 | CLK D4 T F17 | s10 | C19 | T9
A16 | R10 [D14 | L4 | D/C# N16 T19 H3 | s11 | E1 | T10
A17 | R4 [D15 | G4 | DPO P4 Position Ut H17 | s12 | E19 | 11
A18 | S6 | D16 | K4 | DP1 G2 U2 J1 | s15 | F2 | T12
A19 | R5 | D17 | E4 | DP2 J4 KEY E5 | uis J17 | U4 | F18 | T13
A20 [R9 | D18 | D3 | DP3 Bs | KEY Al | uUts J1g |us | Gi1g | Ti5
A21 | R6 | D19 | C2 | EADS# | C18 | PLUG A2 mcm | K[uto [HE | us
A22 | R8 | D20 | B2 | FERR# | B14 | PLUG A3 K2 |U1t | H2 | Us
A23 | T4 | D21 | c3 | FLUSH# | D16 | PLUG B1 | A19 K19 | u16 | H18 | Ue
A24 | R7 | D22 | B3 | HLDA Q16 | PLUG C1 | D14 Hig | U7
A25 | S3 | D23 | B5 | HOLD F16 | PLUG E6 INC J2 | us
A26 [T3 | D24 | B7 | IGNNE# | Bis | PLUG E14 J18 | u12
A27 | T2 | D25 |c7 | INIT Fig | PLUG E15 | B11 L2 |us
A28 | s2 | D26 | D8 | INTR B17 | PLUG F5 | B13 L18 | U14
A29 | @3 | D27 | D7 | KEN# | G16 | PLUG F15 | C13 M1 | Uis
A30 | Q4 | D28 | D9 | Lock# | P | PLUG ps | C14 M2 | u17
A31 | R2 | D20 | B9 | Msi0# | P17 | PLUG P15 | D11
D30 | D10 | NMI cie | PLUG Qs | D12
D31 | co | PcD K18 | PLUG Q6 | D15

PCHK# | R18 | PLUG Q14 | S18

PLOCK# | R17 | PLUG Qs | T5

PWT M16

NOTE:

1. All RES pins are reserved for later use by Intel. To ensure proper operation of the microprocessor, alt RES and N/C pins
should be left unconnected. Please contact Intel for design information.

12.6.2 PIN DESCRIPTION

The signal pin descriptions for the Pentium Over-
Drive Processor are identical to the pin descriptions
for the Intel486 DX2 Microprocessor except for the
Upgrade Present pin (UP#) and KEY pin. The pin
descriptions for these two signals are shown in Ta-
ble 12.7.

2-190

12.6.3 RESERVED PIN SPECIFICATION

Many pins in the Pentium OverDrive Processor
Socket are defined as reserved (RES). The function
of these pins is documented separately. These sig-
nals will be used to implement a Write Back level 1
(on-chip) cache protocol. These pins must not be
connected unless they are used to implement a level
1 Write Back solution using the information available
separately. To insure proper operation, pins marked
as NC must be left unconnected as well.

PRELIMINARY I

intgl.

Intel486™ DX2 MICROPROCESSOR

Table 12.7. Pentium OverDrive Processor Socket Pin Description

Processor operation.

Symbol LType l Name and Function
Intel486 DX2 CPU INTERFACE
UP# (o] The Upgrade Present pin is used to signal the Intel486 DX2 microprocessor to float its

outputs and stop driving the bus. It is active low and is never floated. UP # is driven
low at power-up and remains active for the entire duration of the Pentium OverDrive

KEY PIN

KEY

in these locations.

The Key pin is an electrically non-functional pin which provides backward compatibility
to the OverDrive Processor for Intel486 SX/Intel486 DX CPU-based systems and is
used to ensure correct orientation for 169-pin upgrade products. Proper orientation of
the Pentium OverDrive Processor is insured by the four socket contacts which must
be plugged (A2, A3, B1 and C1); the Pentium OverDrive Processor will not have pins

12.7 D.C./A.C. Specifications

The electrical specifications in this section represent
the electrical interface of the Pentium OverDrive
Processor. The Pentium OverDrive Processor will be

compatible to the maximum ratings and A.C. Specifi-
cations of the Inteld86 DX2 Microprocessor. Table

12.8 provides the D.C. Operating Conditions for the

Pentium OverDrive Processor.

Table 12.8. Pentium OverDrive Processor Socket D.C. Parametric Values(1)

Symbol Parameter Min Max Unit Notes
ViL Input Low Voltage -0.3 +0.8 \
ViH input High Voltage 2.0 Vec + 0.3 v
VoL Output Low Voltage 0.45 v {Note 2)
VoH Output High Voltage 24 Vv (Note 3)
Icc Power Supply Current
CLK = 25 MHz 1900 mA
CLK = 33 MHz 2500
M Input Leakage Current +15 pA (Note 4)
IH Input Leakage Current 200 pA (Note 5)
I Input Leakage Current —400 BA (Note 6)
ILo Output Leakage Current +15 nA
Cin input Capacitance 13 pF Fc = 1 MHz()
Co 170 or Output Capacitance 17 pF Fc = 1 MHz(")
Cok CLK Capacitance 15 pF Fc = 1 MHz(7)
NOTES:

1. Functional operating range: Vg = 5V; Tg = 0°C to +80°C.
2. This parameter is measured at:

— Address, Data, BEn 4.0 mA

— Definition, Control 50 mA
3. This parameter is measured at:

— Address, Data, BEn -1.0mA

— Definition, Control —0.9 mA

4. This parameter is for inputs without pullups or puildowns and 0 < Vjy < Vge.
5. This parameter is for inputs with pulldowns and Viy = 2.4V.
6. This parameter is for inputs with pullups and V) = 0.45V.

7. Not 100% tested.

I PRELIMINARY

2-191

Intel486™ DX2 MICROPROCESSOR

intgl.

13.0 CONVERTING AN EXISTING
Intel486™ DX CPU DESIGN

Converting an Intel486 DX CPU system design to an
intel486 DX2 CPU design provides more perform-
ance for a small difference in cost. Three conversion
possibilities are available as shown in Table 13.1,
Migrating from a 33 MHz Intel486 DX CPU to a 50
MHz Intel486 DX2 CPU could increase performance
by 35%, and migrating from a 25 MHz Intel486 DX
CPU to a 50 MHz intel486 DX2 CPU could increase
performance by an average of 70%. See the In-
tel486™ DX2 Microprocessor Performance Brief
(Order #241254) for more details on performance.
Conversion can be as easy as replacing one or two
devices.

Table 13.1. Converting Intel486™ DX CPU
Designs to Inteld86™ DX2 CPU Designs

Initial Converted Typical
Design Design Performance
(intel486 DX CPU)|(Intel486 DX2 CPU) Gain
25 MHz 50 MHz 70%
33 MHz 50 MHz 35%
33 MHz 66 MHz 70%

A few system details should be checked first to be
sure the design is ready for the Intel486 DX2 CPU.
Check with your BIOS vendor to be sure any BIOS
issues have been resolved. The BIOS for the In-
tel486 DX CPU may have timing loops. Since the
Intel486 DX2 CPU runs instructions twice as fast as
the Intel486 DX CPU, timing loops may no longer
return the required results. Most of the timing loops
have been removed from a standard BIOS, but there
may be some versions that need updating. Another
BIOS issus that may not be critical, is the processor
identification code. There are different ID codes in
the Intel486 DX CPU and the Intel486 DX2 CPU.
The BIOS may need to be modified to identify the
Intel486 DX2 CPU properly. Refer to Table 6.3 for
the component ID code.

Other system parameters to watch out for are the
thermal and power supply spacifications. Table 14.2
details the Power Supply Current information, and
Table 15.2 outlines the Thermal Resistance. Since
the processor core runs twice as fast for the same
input clock, the Intel486 DX2 CPU uses more power
and generates more heat than the Intel486 DX CPU.
Be sure that there is adequate cooling and adequate
power built into the design. A heat sink is a recom-
mended method to help provide cooling for the In-
tel486 DX2 CPU.

2-192

The system checks mentioned above are common
to all conversions from an Intel486 DX CPU to an
Intel486 DX2 CPU regardiess of the speed of the
processor or system.

A few system implications exist for converting from
one frequency to another as shown in Figure 13.1.
The first case is migrating from a 25 MHz Intel486
DX CPU to a 50 MHz Intel486 DX2 CPU (the bus
runs at the same speed for both parts). System
hardware modifications need not be made to plug in
the 50 MHz Intel486 DX2 CPU and achieve the de-
sired performance. When all instructions are running
out of the on-chip cache, performance increases by
a maximum of 100%.

The second case is migrating from a 33 MHz In-
tel486 DX CPU to a 50 MHz intel486 DX2 CPU. This
conversion is a two step process. The first step is to
change the frequency source for the CPU from 33
MHz to 25 MHz. The Intel486 DX2 CPU can then be
inserted into the system. Without any tuning of the
memory and depending on the application, only a
modest performance improvement may be ob-
served. For programs running entirely out of the on-
chip cache, however, performance can increase up
to 50%. There are many factors which contribute to
the performance of an application, including whether
there is a second-level (L2) cache, the cache size if
present, the memory subsystem design, and many
other factors beyond the scope of this introduction.
A comprehensive memory subsystem design guide,
AP469: Cache and Memory Design Considerations
for Intel486™ DX2 Microprocessor, is available
which includes more detailed information on how
each of these many factors affects Intel486 DX2
CPU-based system performance.

Becauss the Inteld86 DX2 core runs twice as fast as
its external bus, it is-more sensitive to wait states.
The Intel486 DX2 CPU needs to be fed instructions
and data quickly. Either a high performance memory
subsystem is needed or an external cache should be
added. An external cache benefits the Intel486 DX2
CPU even more than it benefits the Intel486 DX
CPU, and helps to hide the effects of a slower mem-
ory subsystem. The Intel486 DX CPU gains an aver-
age of 3%-9% performance by the addition of a
second-level cache, but the Intel486 DX2 CPU gains
an average of 20-30% performance by adding a
second level cache. It should be noted however,
that an external cache does not preclude the bene-
fits of tuning the memory subsystem.

PRELIMINARY I

Intel486™ DX2 MICROPROCESSOR

REMOVE
Intel486 DX
CPU

25 MHz Intei486™ DX CPU

VERSION
FOR
Intel486 DX22,/

INSTALL
NEW BIOS
VERSION

DOES
SYSTEM
HAVE
ADEQUATE
POWER AND
COOLING?

MODIFY
POWER AND
COOLING

INSERT
Intel486™ DX2
CPU

241245-92

33 MHz Intei486™

REMOVE
Intel486 DX
CPU

}

REPLACE
33 MHz CPU
CRYSTAL
WITH 25 MHZ

DX CPU

VERSION
FOR
Intel486 DX22,

INSTALL
NEW BIOS
VERSION

DOES
SYSTEM
HAVE
ADEQUATE
POWER AND

COOLING?

MODIFY
POWER AND
COOLING

INSERT
Intel486 ™™ px2
CPU

IS
PERFORMANCE
GAIN
ADEQUATE?

TUNE
MEMORY
SYSTEM

241245-93

Figure 13.1. Flowchart for Intel486™ DX CPU to Intel486™ DX2 CPU Conversion

I PRELIMINARY

2-193

Intel486™ DX2 MICROPROCESSOR

The graph shown in Figure 13.2 shows a set of
benchmarks known to have a poor cache hit rate.
This is shown for purposes of memory tuning and
not to be taken as absolute performance. Please re-
fer to the /Intel486™ DX2 Microprocessor Perform-
ance Brief (Order # 241254) for performance de-
tails.

With the absence of a second-level cache, the mem-
ory subsystem becomes critical to gaining perform-
ance when converting from a 33 MHz Intel486 DX
CPU to a 50 MHz Intel486 DX2 CPU. For siow mem-
ory systems without tuning, the 50 MHz Intel486
DX2 CPU can possibly run slower than the 33 MHz
Intel486 DX CPU (see Figure 13.2). By tuning the
memory design, the 50 MHz Intel486 DX2 CPU can
reach equivalent performance to the 33 MHz In-
tel486 DX CPU running applications with low cache
hit rates, and increase performance for applications
with higher hit rates. Tuning the memory design can
be done sasily by either removing a wait state from
the memory design (if timing permits), and/or adding
faster DRAM and removing wait state(s) from the
memory design.

Changing the wait state configuration for the system
is often done by programming the DRAM controller
in the chip set on the motherboard. Each chip set is
programmed differently at the BIOS level, requiring a
BIOS modification. For testing purposes, the chip
set may be programmed on the fly from a DOS pro-
gram if the register locations are known.

intgl.

A typical ISA chip set with an L2 cache, for example,
aliows 6-4-4-4 bus cycles at 33 MHz with 80 ns
DRAMs for the Intel486 DX CPU. Without modifying
the memory subsystem, the 50 MHz Intel486 DX2
CPU achieved an average of 7%-12% improve-
ment over the 33 MHz Intel486 DX CPU. By reduc-
ing the bus cycles at 25 MHz to 5-2-2-2 (still with
80 ns DRAMSs), the 50 MHz Intel486 DX2 CPU im-
proved to achieve an average of 15%-20% more
performance than the 33 MHz Intel486 DX CPU. By
replacing the DRAMs with faster devices (70 ns) bus
cycles could be reduced to 4-2-2-2 at 25 MHz, im-
proving the performance of the 50 MHz Intel486
DX2 CPU even greater.

A typical EISA solution is shown in Figure 13.3, using
the Intel 82350DT Chip Set, which was specifically
designed to permit variation in CPU type and fre-
quency.

in an 82350DT based design the memory subsys-
tem is controlled by the combination of a flexible
Programmable State Tracker (PST) and a highly
configurable 82359 DRAM Controller. The PST,
which is typically implemented as a 3 to 5 PLD solu-
tion, is responsible for converting the CPU’s. clock-
dependent handshake protocol into a clock-less
memory interface protocol. The 82359 in turn uses
the clock-less memory interface protocol to control
main memory as well as to forward host CPU cycles
to the EISA bus if needed. As a result of this clock-

—— 33 MHz —0— 33 MHz
Intel486 DX Intel486 DX
CPU CPU
w/ cache

—— 50 MHz =0~ 50 MHz
Intel486 DX2 Intel486 DX2
CPU cPu
w/ cache

140.00% v~ -

120.00% -

100.00% d

80.00% 1 -

60.00% +- -

Average Parformance

40.00% -

20.00% -

0.00%

0000(0)

0(0) 2(6) 3(6)

3!2'1(6) 312'|(6) 322'2(7) 322'2(8) 422'2(8) 4332’:(8) 644;(9)
2(6) 3(6)

Decreasing Memory Subsystem Performance - Read Bus
Cycles (Page Miss) / Write Bus Cycles (Page Miss)

3(8) 3(8) 4(7)

241245-94

Figure 13.2. Performance of 50 MHz Intel486™ DX2 CPU vs. 33 MHz Intel486™ DX CPU

2-194

PRELIMINARY I

Intel486™ DX2 MICROPROCESSOR

S6—GrZi¥e

H sng-x

~ind
-ies

—Pohz——moid—Nﬁhn——hno;

dav
13394

Lg-8¢i

118-8¢1

ADINPON

sng vsi3

05578
viva
iig ago
AYONIN (o1 e
NIV
viva
31A8 N3A3

8oDjie3u] youksy

eyooy /Ndo

HITI0NLNOD
Nvaa
65578

sSng 1SOH

Figure 13.3. Typical 82350DT System Architecture

2-195

I PRELIMINARY

Intel486™ DX2 MICROPROCESSOR

less protocol, the system design becomes indepen-
dent of the CPU and cache combination being used
and the speed of the CPU clock. Therefore, whenev-
er a new CPU and cache combination is to be used
with an 82350DT based system, the only re-design
that is necessary is to the CPU subsection, leaving
the main memory and EISA subsections unchanged.
Typically, this CPU subsection re-design entails
modifying only the PST functionality and the pro-
grammable registers of the 82359.

There are five steps to determine whether wait
states can be removed from the main memory de-
sign of an 82350DT system when converting from a
33 MHz Intel486 DX CPU to a 50 MHz Intel486 DX2
CPU. An overview of these five steps is covered
here; the system designer is referred to the
823500T EISA Chip Set Design Guide (Order
#296911) for detailed design information.

1. Calculate the 82359 delay line tap values for opti-
mal 25 MHz operation

2. Determine all memory cycle lengths for operation
at 25 MHz

3. Re-evaluate the PST design (deterministic &
snoop cycle trackers)

4. Modify the PLD equations for the PST

5. Update system BIOS to reflect new 82359 pro-
grammable register values

Step one is to perform a timing analysis of the main
memory subsystem to determine the minimum num-
ber of CPU clocks required for each memory cycle.
Once the memory cycle lengths are known, the PST
design can be re-evaluated with the goal of remov-
ing unnecessary wait states. Before the system de-
signer can determine the memory cycle lengths, the
delay line timings of the 82359 must be analyzed.

The timing for the DRAM control and address sig-
nals of the 82359 is based on four integrated asyn-
chronous delay line elements which can be con-
trolled by the 82359 programmable registers. Once
the delay line tap values have been verified or modi-
fied, the system designer should determine the mini-
mum number of CPU clocks required for the differ-
ent memory cycles (i.e., read page hit, page miss
write, burst read, etc.). Armed with the delay line tap
programming values and the number of CPU clocks
required for each type of memory cycle, the system
designer can now evaluate the PST design to deter-
mine if any unneeded wait states can be removed.

The PST for an 82350DT based system can be sep-

arated into four primary functions: bus cycle control
(including arbitration and posted write control), cycle

2-196

»

intgl.
length tracking, CPU “Ready” generation, and
cache invalidation control. Although the PST con-
tains a number of state machines only a few of the
state machines need to be re-evaluated to deter-
mine whether any wait states can be removed for
converting from a 33 MHz Intel486 DX CPU to a
50 MHz Intel486 DX2 CPU. The state machines that

need to be re-evaluated are the deterministic cycle
tracker and the snoop cycle tracker.

The deterministic cycle tracker is responsible for
generating RDY or BRDY to the CPU and cache for
cycles that are deterministic in length. All main mem-
ory cycles, except locked cycles which require EISA
arbitration, are deterministic cycles. Once the deter-
ministic cycle tracker knows that a deterministic cy-
cle is occurring, it uses the 82359 CYCLN(2:0) and
PAGEHIT# outputs to determine when to generate
RDY or BRDY to the CPU. For burst cycles the de-
terministic cycle tracker also uses the IF(1:0) and
SPEED(1:0) outputs of the 82359 for generating
BRDY. After this analysis has been completed the
system designer can then determine if the determi-
nistic cycle tracker can be optimized to take advan-
tage of converting from a 33 MHz Intel486 DX CPU
to a 50 MHz Intel486 DX2 CPU.

The other state machine that must be re-evaluated
for correct system functionality is the snoop cycle
tracker. The snoop cycle tracker state machine de-
sign must meet two goals; respond to a SNUPRQ
with a SNUPACK # within 180 ns (based on an EISA
burst write cycle), and maintain a snoop cycle fre-
quency capability that is equal to or faster than the
fastest system bus master write cycle frequency.
Due to the change of CPU clock frequency from
33 MHz to 25 MHz, the system designer must re-
evaluate the snoop cycle tracker state machine to
determine if the two design goals are still being met
in the 50 MHz Intel486 DX2 CPU implementation.

In conclusion, when converting an 82350DT based
design from a 33 MHz Intel486 DX CPU to a 50 MHz
Intel486 DX2 CPU the system designer must re-eval-
uate the main memory cycle timings to determine
whether the PST and 82353 programmable registers
need to be modified to take advantage of the in-
creased performance benefits of the 50 MHz In-
tel486 DX2 CPU. Once the system designer has de-
cided to modify the PST and the 82359 programma-
ble registers, the conversion from a 33 MHz Intel486
DX CPU to a 50 MHz Intel486 DX2 CPU is usually
just as simple as modifying the PLD equations, re-
programming the PST PLDs, and upgrading the sys-
tem BIOS to reflect the new 82359 programmable
register values.

PRELIMINARY I

intgl.

Intel486™ DX2 MICROPROCESSOR

14.0 ELECTRICAL DATA

The following sections describe recommended elec-
trical connections for the Intei486 DX2 microproces-
sor, and its electrical specifications.

14.1 Power and Grounding

14.1.1 POWER CONNECTIONS

The Intel486 DX2 microprocessor is implemented in
CHMOS V technology and has modest power re-
quirements. However, its high clock frequency out-
put buffers can cause power surges as multiple out-
put buffers drive new signal levels simultaneously.
For clean on-chip power distribution at high frequen-
¢y, 24 V¢c and 28 Vgg pins feed the Intel486 DX2
microprocessor.

Power and ground connections must be made to all
external Voc and GND pins of the Intel486 DX2 mi-
croprocessor. On the circuit board, all Vg pins must
be connected on a Vg plane. All Vgg pins must be
likewise connected on a GND plane.

14.1.2 POWER DECOUPLING
RECOMMENDATIONS

Liberal decoupling capacitance should be placed
near the Intel486 DX2 microprocessor. The Intel486
DX2 microprocessor driving its 32-bit paralle! ad-
dress and data busses at high frequencies can
cause transient power surges, particularly when driv-
ing large capacitive loads.

Low inductance capacitors and interconnects are
recommended for best high frequency electrical per-
formance. Inductance can be reduced by shortening
circuit board traces between the Intel486 DX2 micro-
processor and decoupling capacitors as much as
possible. Capacitors specifically for PGA packages
are also commercially available.

I PRELIMINARY

14.1.3 OTHER CONNECTION
RECOMMENDATIONS

N.C. pins should always remain unconnected.

For reliable operation, always connect unused in-
puts to an appropriate signal level. Active LOW in-
puts should be connected to Vgc through a pullup
resistor. Pullups in the range of 20 K are recom-
mended. Active HIGH inputs should be connected to
GND.

14.2 Maximum Ratings

Table 14.1 is a stress rating only, and functional op-
eration at the maximums is not guaranteed. Function
operating conditions are given in 14.3 D.C. Specifi-
cations and 14.4 A.C. Specifications.

Extended exposure to the Maximum Ratings may af-
fect device reliability. Furthermore, although the In-
tel4d86 DX2 microprocessor contains protective cir-
cuitry to resist damage from static electric discharge,
always take precautions to avoid high static voltages
or elactric fields.

Table 14.1. Absolute Maximum Ratings

Case Temperature under Bias ... —65°C to +110°C
Storage Temperature —65°Cto +150°C
Voltage on Any Pin with
Respectto Ground......... —0.5to Vgg + 0.5V
Supply Voltage with
RespecttoVgg —0.5Vto +6.5V
2-197

Intel486™ DX2 MICROPROCESSOR

14.3 Intel486 DX2 D.C. Specifications

Functional Operating Range: Vog = 5V £5%; Tcasg = 0°C to +85°C

Table 14-2. DC Parametric Values

Symbol Parameter Min Max Unit Notes
ViL Input Low Voltage -03 +0.8 Vv
VIH Input High Voltage 20 Voo 0.3 A
VoL Output Low Voltage 0.45 e@ A (Note 1)
VoH Output High Voltage 2.4 “ @ \ (Note 2)
Icc Power Supply Current e &

(66 MHz) mA (Note 3)

(50 MHz)
lcce Power Supply Current in *@“) £ mA (Note 8)

Power Down Mode & % i
Iy Input Leakage Current % &0 +15 pA (Note 4)
li Input Leakage Current S ‘% v 200 pA (Note 5)
I Input Leakage Curren ‘&?“ —400 pA (Note 6)
Lo Output Leakage Cur§ t15 pA
Cin Input Capacitance 13 pF Fc = 1 MHz (Note 7)
Co 1/0 or Output Capacitance 17 pF Fc = 1 MHz (Note 7)
Colk CLK Capacitance 15 pF Fc = 1 MHz (Note 7)
NOTES:

1. This parameter is measured at:
Address, Data, BEn 4.0 mA
Definition, Control 5.0 mA

2. This parameter is measured at:
Address, Data, BEn —1.0 mA
Definition, Control —~0.9 mA

3. Typical supply current:

775 mA @ 50 MHz
975 mA @ 66 MHz

4. This parameter is for inputs without internal pullups or pulldowns and 0 < Vjy < Ve
5. This parameter is for inputs with internal pulldowns and Vi = 2.4V.
6. This parameter is for inputs with internal pullups and V| = 0.45V.

7. Not 100% tested.

8. The Iccr specification in the above table is a target value. It has not been tested.

14.4 A.C. Specifications

The A.C. specifications, given in Table 14.3, consist
of output delays, input setup requirements and input
hold requirements. All A.C. specifications are rela-
tive to the rising edge of the CLK signal.

A.C. specifications measurement is defined by Fig-

ures 14.1-14.7. All timings are referenced to 1.5V
unless otherwise specified. Inputs must be driven to

2-198

the voltage levels indicated by Figure 14.3 when
A.C. specifications are measured. Intel486 DX2 mi-
croprocessor output delays are specified with mini-
mum and maximum fimits, measured as shown. The
minimum Intel486 DX2 microprocessor delay times
are hold times provided to external circuitry. Intel486
DX2 microprocessor input setup and hold times are
specified as minimums, defining the smallest ac-
ceptable sampling window. Within the sampling win-
dow, a synchronous input signal must be stable for
correct Intel486 DX2 microprocessor operation.

PRELIMINARY I

Inu ® Intel486™ SX MICROPROCESSOR

QUICK PIN REFERENCE (Continued)

Symbol rType l Name and Function
BUS ARBITRATION (Continued)
HLDA Q | Hold acknowledge goes active in response to a hold request presented on the HOLD pin.

HLDA indicates that the Intel486 SX microprocessor/Intel OverDrive Processor has given
the bus to another local bus master. HLDA is driven active in the same clock that the
Intel486 SX microprocessor/Intel OverDrive Processor floats its bus. HLDA is driven
inactive when leaving bus hold. HLDA is active HIGH and remains driven during bus hoid.

BOFF # 1 The backoff input torces the Intel486 SX microprocessor/Intel OverDrive Processor to
float its bus in the next clock. The microprocessor will float all pins normally floated during
bus hotd but HLDA will not be asserted in response to BOFF #. BOFF # has higher
priority than RDY # or BRDY #; if both are returned in the same clock, BOFF # takes
effect. The microprocessor remains in bus hold until BOFF # is negated. if a bus cycle
was in progress when BOFF # was asserted the cycle will be restarted. BOFF # is active
LOW and must meet setup and hold times 45 and 11g for proper operation.

CACHE INVALIDATION

AHOLD 1 The address hold request allows another bus master access to the processor’s address
bus for a cache invalidation cycle. The Intel486 SX microprocessor/intel OverDrive
Processor will stop driving its address bus in the clock following AHOLD going active.
Only the address bus will be floated during address hold, the remainder of the bus will
remain active. AHOLD is active HIGH and is provided with a small internal pulidown
resistor. For proper operation AHOLD must meet setup and hold times tyg and tyg.

EADS # | This signal indicates that a valid external address has been driven onto the Intel486 SX
microprocessor/Intel OverDrive Processor address pins. This address will be used to
perform an internal cache invalidation cycle. EADS # is active LOW and is provided with
an internal pullup resistor. EADS # must satisfy setup and hold times t12 and t13 for

proper operation.
CACHE CONTROL
KEN# | The cache enable pin is used to determine whether the current cycle is cacheable. When

the Intel486 SX microprocessor/Intel OverDrive Processor generates a cycle that can be
cached and KEN # is active one clock before RDY # or BRDY # during the first transfer
of the cycle, the cycle will become a cache line fill cycle. Returning KEN # active one
clock before RDY # during the last read in the cache line fill will cause the line to be
placed in the on-chip cache. KEN # is active LOW and is provided with a small internal
pullup resistor. KEN # must satisfy setup and hold times t14 and t45 for proper operation.

FLUSH # 1 The cache flush input forces the Inteld486 SX microprocessor/intel OverDrive Processor
to flush its entire internal cache, FLUSH # is active low and need only be asserted for one
clock. FLUSH # is asynchronous but setup and hold times tpg and t21 must be met for
recognition in any specific clock. FLUSH# causes the Intel486 SX microprocessor/Intel
OverDrive Processor to enter the tri-state test mods.

PAGE CACHEABILITY
PWT O | The page write-through and page cache disable pins reflect the state of the page
PCD O | attribute bits, PWT and PCD, in the page table entry, page directory entry or control

register 3 (CR3) when paging is enabled. If paging is disabled, the CPU ignores the PCD
and PWT bits and assumes they are zero for the purpose of caching and driving PCD and
PWT pins. PWT and PCD have the same timing as the cycle definition pins (M/IO#,
D/C#, and W/R #). PWT and PCD are active HIGH and are not driven during bus hold.
PCD is masked by the cache disable bit {CD) in Control Register 0.

I 2-463

-
Intel486™ DX2 MICROPROCESSOR |n‘l'e| o

Table 14.4.2 66 MHz Intel486 DX2 Microprocessor A.C. Characteristics
Voo = 5V 1£85%; Teage = 0°C to +85°C; C; = 50 pF unless otherwise specified (Note 2)
as

Symbol Parameter Min| Max | Unit| Figure Notes
Frequency 8 33 |MHz 1X Clock Driven to Intel486 DX2

4 CLK Period 30| 125 | ns 141

ta CLK Period Stability 0.1%| A Adjacent Clocks

to CLK High Time 11 ns 141 atav

t3 CLK Low Time 11 ns 141 at0.8v

17 CLK Fall Time 3 ns 14.1 2V to 0.8V

ts CLK Rise Time 3 ns 1441 0.8Vto

15 A2-A31, PWT, PCD, BEO-3#, 3 14 | ns 145
M/IO#,D/C#,W/R#, ADS#, e
LOCK#, FERR#, BREQ, HLDA
Valid Delay

t7 A2-A31, PWT, PCD, BEO-3#,

M/IO#, D/C#, W/R#, ADS#,
LOCK# Float Delay

ts PCHK # Valid Delay 4 ote 3)

tga BLAST#, PLOCK# Valid Delay . &%, ns (Note 3)

tg BLAST#, PLOCK # Float Delay &% s 6 | (Note 1)

to DO-D31, DPO-3 Write Dajg(RyF 145 [(Note3)
Delay g

t1q D0-D31, DP0-3 Wij s 146 |(Note 1)
Delay)

t12 EADS# Setup Time ns 14.2

t13 EADS # Hold Time ns 14.2

tia KEN#, BS16#, BS8 P& 5 ns | 14.2

t15 KEN#, BS16#, # Hold Tim 3 ns 14.2

te RDY #, BRD¥ %Time 5 ns 143

t17 RDY #, B *Hold Time 3 ns 14.3

tis HOLD, AH@ED, Setup Time 6 ns | 142

t18a BOFF # Setup Time 7 ns 14.2

tig HOLD, AHOLD, BOFF # Hold Time | 3 ns 14.2

too RESET, FLUSH#, A20M#, NMI, 5 ns 14.2 (Note 4)
INTR, IGNNE # Setup Time

to1 RESET, FLUSH #, A20M #, NMI, 3 ns 14.2 (Note 4)
INTR, IGNNE # Hold Time

top D0-D31, DP0-3, A4-A31 Read 5 ns |14.2,143
Setup Time

tog D0-D31, DP0-3, A4-A31 Read 3 ns [14.2,14.3
Hold Time

NOTES:

1. Not 100% tested. Guaranteed by design characterization.

2. All timing specifications assume G = 50 pF. Charts 14.4.3 provides the charts that may be used to determine the delay
due to derating, depending on the lumped capacitive loading, that must be added to these specification values.

3. The minimum Intel486 DX2 output valid delays are hold times provided to external circuitry.

4. A reset pulse width of 15 CLK cycles is required for warm resets. Power-up resets require RESET to be asserted for at
least 1 ms after Vo and CLK are stable.

2-200 PRELIMINARY I

]
lntd o Intel486™ DX2 MICROPROCESSOR

Table 14.4.3. Intel486 DX2 Microprocessor A.C. Characteristics for Boundary Scan Test Signals

Vee = 5V 15%, Teage = 0°C to +85°C,C = O pF
All Inputs and Outputs are TTL Leve! (Note 4)
Symbol Parameter Min Max Unit Figure Notes
to4 TCK Frequency 25 MHz 1x Clock
tos TCK Period 40 ns (Note 2)
tos TCK High Time 10 ns at2.0v
to7 TCK Low Time 10 ns at 0.8V
tog TCK Rise Time 4 ns (Note 1)
tog TCK Fall Time 4 ns (Note 1) -
t30 | TDI, TMS Setup Time 8 ns 14.7 (Note 3)
t31 TDI, TMS Hold Time 7 ns 14.7 (Note 3)
t32 TDO Valid Delay 3 25 ns 147 (Note 3)
t33 TDO Float Delay TBD
ta34 All Qutputs (Non-Test) Valid Delay 3 25 ns 14.7 (Note 3)
t35 All Outputs (Non-Test) Float Delay 36 ns 147 (Note 3)
t36 All Inputs (Non-Test) Setup Time 8 ns 14.7 (Note 3)
t37 All inputs (Non-Test) Hold Time 7 ns 14.7 (Note 3)
NOTES:

1. Rise/Fall times are measured between 0.8V and 2.0V. Rise/Fall times can be relaxed by 1 ns per 10 ns increase in TCK
period.

2. TCK period > CLK period.

3. Parameter measured from TCK.

4. Boundary Scan A.C. Specifications in the above table are target values. They have not been characterized. Therefore
they are subject to change.

I PRELIMINARY 2-201

a
Intel486™ DX2 MICROPROCESSOR |n'te| o

! u ! 24124570
Figure 14.1. CLK Waveforms
Tx Tx Tx Tx
o [C_
DG
EADS# [AN §
15
e | K \
(18) 19
s [TR X
RESET, FLUSH#, . 21 \Y
20M¥, IGNNE#,
waows, owee: [K
@2 @3
| \\\\\\ NN
241245-71
Figure 14.2. Input Setup and Hold Timing
TZ Tx Tx Tx
CLK |:
’ (19
RDY#, BRDY# |: NN 1.5V
In—@—><—@—>
DP(:)O-;[;? [w §_1'5V
241245-72

Figure 14.3. Input Setup and Hold Timing

2-202 PRELIMINARY I

lnté o Intel486™ DX2 MICROPROCESSOR

T, Tx Tx Tx
CLK [\ ;l
BRDY#, RDY# [m
DO-D31 m'{
opo-ops | AW VALID \
MIN :
MAX
PCHK# [VALID NE
. 241245-73
Figure 14.4. PCHK # Valid Delay Timing
Tx Tx Tx Tx
CcLK [\ ;(
MIN
A2-A31, PWT, PCD, @ MAX
BEO-3#,M/10#,]
D/C#, W/R#, ADS#, |: VALID n VALID n+1
LOCK#, FERR#, BREQ, ————
HLDA AX
DO-D31, DPO-3, [YALID n VALID n+1
(WRITE) —)
MIN ‘
BLAST#, PLOCK# [VALID n VALID n+1
241245-74
Figure 14.5. Output Valid Delay Timing
Tx
CLK I:
A2-A31, PWT, PCD,
BEO-3#, M/10#,
D/C#,W/R#, ADS#, [
LOCK#, FERR#, BREQ,
HLDA
DO-D31, DPO-3, |:
(WRITE)
BLAST#, PLOCK#* [
241245-75

Figure 14.6. Maximum Float Delay Timing

PRELIMINARY 2.203

a
Intel486™ DX2 MICROPROCESSOR |nte| o

fe——-125

re—131
XX XX XXX }XX
XXOQOOOQQOOQOK XXX
t34 re—1t35
o R —

t36»je—137

_/

TCK.

TDI, TMS

TDO

Input
Signals

241245-76

Figure 14.7. Test Signal Timing Diagram

14.4.1 TYPICAL OUTPUT VALID DELAY VERSUS LOAD CAPACITANCE UNDER WORST CASE
CONDITIONS FOR THE 50 MHz AND 66 MHz INTEL486 DX2 CPVU

nom+6
| l:‘@

z
: nom+4
<
o
B ' o
> nom+2
2 2 A
3 g \2
-
<
Q
nom-~

Q& 25 50 75 100 125 150
(picofarads)

NOTE: o & P!

This graph will not be linear outside of the G| range shown.

nom=nominal value given in A.C. Characteristics table.

241245-77

14.4.2 TYPICAL OUTPUT RISE TIME VERSUS LOAD CAPACITANCE UNDER WORST-CASE

CONDITIONS
7
> €
3 A
Y s £
>
[
c 4
% O
E 3 N
g Gl
g 2
7.8 &
g %1
[
st 5 75 100 125 150
&Q’ ¢, (picofarads)
241245-80
NOTE:
This graph will not be linear outside of the C_ range shown.

2-204 PRELIMINARY I

.
|nte| o Intel486™ DX2 MICROPROCESSOR

14.4.3.a TYPICAL LOADING DELAY VERSUS CAPACITIVE LOADING UNDER WORST-CASE
CONDITIONS FOR A HIGH TO LOW TRANSITION ON THE INTEL486 DX2 CPU

: A
) /

s 7

Loading Delay 2 /
(ns) 1

0 25 50 100 150

Copacitive Loading (pF)

241245-78

14.4.3.b TYPICAL LOADING DELAY VERSUS CAPACITIVE LOADING UNDER WORST-CASE
CONDITIONS FOR A LOW TO HIGH TRANSITION ON THE INTEL486 DX2 CPU

. T
2 —

1.5 /
1

Loading Delay 0.5 /
(ns) ’

Q, ~

0 25 50 100 150

Capacitive Loading (pF)

241245-79

I PRELIMINARY 2-205

Intel486™ DX2 MICROPROCESSOR

15.0 MECHANICAL DATA

SEATING
D PLANE]
D1 ~—l A (e
51—-— l— A3T4:_
“;E-:E' PPPOROEPROILPPEORRO® ‘
L__@@@@@@@@@@@@@@@@@ f
PPPPPRAPEPRIOPRPOOOE@ o
T lece @@ e
[ONOXO)] IONONO)
©O® — @00 ST
@00 ®e0 28 (ALL PINS)
@O / \ oXoRC)
[ONCXO] [oJOXON i
©® 06 ©® 0 T
PIN C3 [ONOXO)] @eE SWAGGED
Neoeo N S 00 N
(©XC} @O0
g%\g ©60
oyl koxeiexexciekoexcioick - RoXC,
PPRPPRPRPPRPRARRPPOERY®
Lp@@@@@@@@@@@@@@ i
2.'29 REF SWAGGED —A A
1.22 : (:l:L) BASE Ay
(NDEX CORNER) PLANE
241245-81
Family: Ceramic Pin Grid Array Package
Symbol Millimeters Inches
Min Max Notes Min Max Notes
A 356 | 457 0.140 | 0.180
Aq 064 | 114 | soupuD | 0.025 | 0.045 | SOLIDLID
Ap 2.8 35 | soupuo | o.410 | 0.140 | SOLIDLID
Ag 114 | 140 0.045 | 0.055
B 043 | o051 0.017 | 0.020
D 4407 | 4483 1.735 | 1.765
D, 4051 | 4077 1505 | 1.605
o 220 | 279 0.000 | 0.110
L 254 | 330 0.100 | 0.130
N 168 168
S 152 | 254 0.060 | 0.100

2-206

Figure 15.1. 168 Lead Ceramic PGA Package Dimensions

PRELIMINARY |

Intel486™ DX2 MICROPROCESSOR

intel.

Table 15.1. Ceramic PGA Package Dimension Symbols

Lseytt':;;r Description of Dimensions
A Distance from seating plane to highest point of body
A4 Distance between seating plane and base blane (lid)
Az Distance from base plane to highest point of body
Ag Distance from seating plane to bottom of body
B Diameter of terminal lead pin
D Largest overall package dimension of length
D4 A body length dimension, outer lead center to outer lead center
N Linear spacing between true lead position centerlines
L Distance from seating plane to end of lead
S, Other body dimension, outer lead center to edge of body

NOTES:
1. Controliing dimension: millimeter.
2. Dimension “e1" (“e") is non-cumulative.

3. Seating plane (standoff) is defined by P.C. board hole size: 0.0415-0.0430 inch.

4. Dimensions “B”, “B¢”* and “C” are nominal.
5. Details of Pin 1 identifier are optional.

15.1 Package Thermal Specifications

The Intel486 DX2 microprocessor is specified for op-
eration when T¢ (the case temperature) is within the
range of 0°C-85°C. Tc may be measured in any en-
vironment to determine whether the Intel486 DX2
microprocessor is within specified operating range.
The case temperature should be measured at the
center of the top surface opposite the pins.

The ambient temperature (Ta) is guaranteed as long
as T is not violated. The ambient temperature can
be calculated from @,c and 6,5 from the following
equations.

Ti=Tc+P*oy
Ta=Ty=P*
Ta=Tc — (P* 6ca)
Te =Ta + P*[6ya — 640l

where T), Ta, Tc = Junction, Ambient and Case
Temperature respectively. 6,c, 8,4 = Junction-to-
Case and Junction-to-Ambient Thermal Resistance,
respectively.

P = Maximum Power Consumption

The values for 8 and 8, are given in Table 13.2
for the 1.75 sq. in., 168-pin, ceramic PGA.

Table 13.3 shows the T, allowable (without exceed-
ing Tc) at various airflows and operating frequencies

(fouo)-

Note that T is greatly improved by attaching “fins”
or a “heat sink” to the package. P (the maximum
power consumption) is calculated by using the maxi-
mum Icc at 5V as tabulated in the DC Characteris-
tics of Section 14.

Table 15.2. Thermal Resistance ("C/W) 6 ¢ and 6ca for the 50 MHz and 66 MHz Intel486™ DX2 CPU

fca vs Airflow—{t/min (m/sec)
%ic 0 200 400 600 800 1000
(0) (1.01) (2.03) (3.04) (4.06) (5.07)
With Heat Sink* 25 105 7.0 45 3.5 3.0 25
Without Heat Sink 2.0 16 14.0 10.5 8.0 8.0 7.5
*0.350" high omnidirectional heat sink (Al alloy 8063, 40 mil fin width, 155 mil center-to-center fin spacing).
2-207

I PRELIMINARY

Intel486™ DX2 MICROPROCESSOR

L |
—
]
I
I
[
1.540" —/—
I
I
I
]
I
—]

0.063"

0.060"

I J I N O N I O I
{:'__'IJDDDDDDDEIEIDE
1000000000000
D O00D0DOoOo00o0O0O0oOo0o0o0an
D O000000OoOofooOooAnd
JO0O000ocO0OO0oOoOooa0ad
O o0pDOo00o0oooOoo0oo0oaAd
00000 OooDOoOo0ooand
o000 000O00000an0
D 00000 00O0oOoo0o0oand
N 00000000 00add
000000000000
| OO M0OEarmor
f 1.536"

0 nnnnnnanT:

241245-A2

Table 15.3. Maximum Ty at Various Airflows In°C

Airflow-ft/min (m/sec)
0 200 400 600 800 1000
(0) (1.01) (2.03) (3.04) (4.06) (5.07)
Ta with Heat Sink 50 MHz 32.6 50.0 62.5 67.5 70.0 725
66 MHz 18.9 409 56.7 62.9 66.1 69.3
T a without Heat Sink 50 MHz 5.2 15.1 326 40.1 45.1 47.6
66 MHz -15.8 -3.2 18.9 28.3 34.6 37.8
2-208

PRELIMINARY I

intgl.

Intel486™ DX2 MICROPROCESSOR

16.0 SUGGESTED SOURCES FOR
INTEL486™ DX2 ACCESSORIES

Following are some suggested sources of accesso-
ries for the Intel486 DX2. They are not an endorse-
ment of any kind, nor a warranty of the performance
of any of the listed products and/or companies.

Sockets

1. McKenzie Technology
44370 Old Palmspring Blvd.
Fremont, CA 94538
Tel: (415) 651-2700

2. E-CAM Technology, Inc.
14455 North Hayden Rd.
Suite 208 ‘
Scottsdale, AZ 85260
Tel: (602) 443-1949

3. Augat Inc. (for sockets with decaps)
Interconnection Products Group
33 Perry Ave.
P.O. Box 779
Attieboro, MA 02703
Tel: (508) 222-2202

I PRELIMINARY

Heat Sinks/Fins

1.

AAVID Engineering, Inc.
One Kool Path

P.O. Box 400

Laconia, NH 03247
Tel: (603) 528-3400

TTL Crystals/Osclllators

1.

. M-Tron

NFL Frequency Controls, inc.
357 Beloit Strest

Burlington, W1 53105

Tel: (414) 763-3591 ?

P.O. Box 630

Yankton, SD 57078

Tel: (605) 665-9321

Debugging Tower

1.

Emulation Technology

2344 Walsh Ave., Building F
Santa Clara, CA 95051
Tel: (408) 982-0664

2-208

intei486™ DX2 MICROPROCESSOR

intgl.

17.0 REVISION HISTORY

Revision -003 of the Intel486 DX2 Microprocessor
Data Book contains many updates and improve-
ments to the original version. A revision summary of
major changes is listed below:

PGA Pin Table Pins B10 and C12 are no-connects

Section 6.5
Section 7.2.9
Figure 7.26b

Section 12.0

2-210

Added clarification for the built in
self test (BIST) during reset.

Added explanation of bus hold and
hold acknowledge protocol.

Added figure to illusrate HOLD re-
quest acknowledge during BOFF #,

Replaced references to the Up-
grade Socket with the Pentium
OverDrive Processor Socket.

Section 12.2.2 Modified section to reflect changes

in physical dimensions of heat sink
unit.

Section 12.2.3 Modified End User Easy section.
Section 12.2.4 Changed section to only show ZIF

Section 12.3

Section 12.6

socket vendors.

Modified section to reflect maximum
Tsink and Icc specification chang-
es.

Changed Pentium OverDrive Proc-
essor Socket pinout and pin table to
reflect changes in orientation and
NC pins.

PRELIMINARY I

