

CY7C1338G

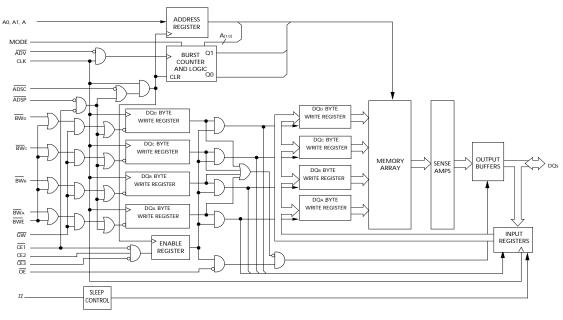
4-Mbit (128 K × 32) Flow-Through Sync SRAM

Features

- 128 K × 32 common I/O
- 3.3 V core power supply (V_{DD})
- 2.5 V or 3.3 V I/O supply (V_{DDQ})
- Fast clock-to-output times □ 8.0 ns (100-MHz version)
- Provide high-performance 2-1-1-1 access rate
- User-selectable burst counter supporting Intel[®] Pentium[®] interleaved or linear burst sequences
- Separate processor and controller address strobes
- Synchronous self-timed write
- Asynchronous output enable
- Offered in Pb-free 100-pin TQFP package
- "ZZ" sleep mode option

Functional Description

The CY7C1338G is a 128 K × 32 synchronous cache RAM designed to interface with high-speed microprocessors with minimum glue logic. Maximum access delay from clock rise is


Logic Block Diagram

8.0 ns (100-MHz version). A 2-bit on-chip counter captures the first address in a burst and increments the address automatically for the rest of the burst access. All synchronous inputs are gated by registers controlled by a positive-edge-triggered clock input (CLK). The synchronous inputs include <u>all</u> addresses, all data inputs, address-pipelining chip enable (CE₁), depth-expansion chip <u>enables</u> (CE₂ and CE₃), burst control inputs (ADSC, ADSP, and ADV), write enables (BW_[A:D], and BWE), and global write (GW). Asynchronous inputs include the output enable (OE) and the ZZ pin.

The CY7C1338G allows either interleaved or linear burst sequences, selected by the MODE input pin. A HIGH selects an interleaved burst sequence, while a LOW selects a linear burst sequence. Burst accesses can be initiated with the processor address strobe (ADSP) or the cache controller address strobe (ADSC) inputs. Address advancement is controlled by the address advancement (ADV) input.

Addresses and chip enables are registered <u>at rising</u> edge of clock when either ad<u>dress</u> strobe processor (ADSP) or address strobe controller (ADSC) are active. Subsequent burst addresses can <u>be</u> internally generated as controlled by the advance pin (ADV).

The CY7C1338G operates from a +3.3 V core power supply while all outputs may operate with either a +2.5 or +3.3 V supply. All inputs and outputs are JEDEC-standard JESD8-5-compatible.

Errata: For information on silicon errata, see "Errata" on page 19. Details include trigger conditions, devices affected, and proposed workaround.

Cypress Semiconductor Corporation Document Number: 38-05521 Rev. *J 198 Champion Court

Contents

Selection Guide	3
Pin Configurations	3
Pin Definitions	
Functional Overview	5
Single Read Accesses	5
Single Write Accesses Initiated by ADSP	5
Single Write Accesses Initiated by ADSC	5
Burst Sequences	5
Sleep Mode	
Interleaved Burst Address Table	6
Linear Burst Address Table	6
ZZ Mode Electrical Characteristics	6
Truth Table	7
Partial Truth Table for Read/Write	8
Maximum Ratings	9
Operating Range	9
Electrical Characteristics	9
Capacitance	10
Thermal Resistance	10
AC Test Loads and Waveforms	10

Switching Characteristics	
Timing Diagrams	12
Ordering Information	16
Ordering Code Definitions	16
Package Diagrams	17
Acronyms	18
Document Conventions	18
Units of Measure	18
Errata	19
Part Numbers Affected	19
Product Status	19
Ram9 Sync/NoBL ZZ Pin Issues Errata Summary .	19
Document History Page	20
Sales, Solutions, and Legal Information	22
Worldwide Sales and Design Support	
Products	
PSoC® Solutions	
Cypress Developer Community	
Technical Support	

Selection Guide

Description	100 MHz	Unit
Maximum access time	8.0	ns
Maximum operating current	205	mA
Maximum standby current	40	mA

Pin Configurations

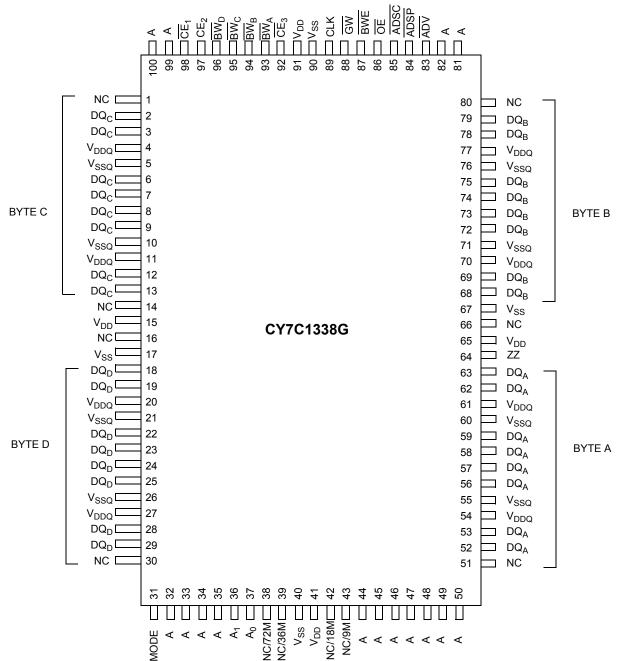


Figure 1. 100-pin TQFP (14 × 20 × 1.4 mm) pinout^[1]

Note

1. Errata: The ZZ pin (Pin 64) needs to be externally connected to ground. For more information, see "Errata" on page 19.

Pin Definitions

Name	I/O	Description				
A ₀ , A ₁ , A	Input- synchronous	Address inputs used to select one of the 128 K address locations. Sampled at the rising edge of the CLK if ADSP or ADSC is active LOW, and CE_1 , CE_2 , and CE_3 are sampled active. $A_{[1:0]}$ feed the 2-bit counter.				
<u>BW</u> _A , <u>BW</u> _B , BW _C , BW _D	Input- synchronous	Byte write select inputs, active LOW. Qualified with BWE to conduct byte writes to the SRAM. Sampled on the rising edge of CLK.				
GW	Input- synchronous	bbal write enable input, active LOW . When asserted LOW <u>on the rising edge</u> of CLK, a global write conducted (all bytes are written, regardless of the values on $BW_{[A:D]}$ and BWE).				
BWE	Input- synchronous	Byte write enable input, active LOW. Sampled on the rising edge of CLK. This signal must be asserted LOW to conduct a byte write.				
CLK	Input-clock	Clock input . Used to capture all synchronous inputs to the device. Also used to increment the burst counter when ADV is asserted LOW, during a burst operation.				
CE ₁	Input- synchronous	Chip enable 1 input, active LOW . Sampled on the rising edge of CLK. Used in conjunction with CE_2 and CE_3 to select/deselect the device. ADSP is ignored if CE_1 is HIGH. CE_1 is sampled only when a new external address is loaded.				
CE ₂	Input- synchronous	Chip enable 2 input, active HIGH . Sampled on the rising edge of CLK. Used in conjunction with \overline{CE}_1 and \overline{CE}_3 to select/deselect the device. CE_2 is sampled only when a new external address is loaded.				
CE ₃	Input- synchronous	Chip enable 3 input, active LOW . Sampled on the rising edge of CLK. Used in conjunction with \overline{CE}_1 and CE_2 to select/deselect the device. \overline{CE}_3 is sampled only when a new external address is loaded.				
ŌĒ	Input- asynchronous	Output enable, asynchronous input, active LOW . Controls the direction of the I/O pins. When LOW, the I/ <u>O p</u> ins behave as outputs. When deasserted HIGH, I/O pins are tri-stated, and act as input data pins. OE is masked during the first clock of a read cycle when emerging from a deselected state.				
ADV	Input- synchronous	dvance input signal, sampled on the rising edge of CLK. When asserted, it automatically increments the address in a burst cycle.				
ADSP	Input- synchronous	Address strobe from processor, sampled on the rising edge of CLK, active LOW. When asserted LOW, addresses presented to the device are captured in the address registers. $A_{[1:0]}$ are also loaded into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized. ASDP is ignored when CE ₁ is deasserted HIGH.				
ADSC	Input- synchronous	Address strobe from controller, sampled on the rising edge of CLK, active LOW. When asserted LOW, addresses presented to the device are captured in the address registers. A _[1:0] are also loaded into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized.				
ZZ ^[2]	Input- asynchronous	ZZ "sleep" input, active HIGH. When asserted HIGH places the device in a non-time-critical "sleep" condition with data integrity preserved. During normal operation, this pin has to be low or left floating. ZZ pin has an internal pull-down.				
DQs	I/O- synchronous	Bidirectional data I/O lines . As inputs, they feed into an on-chip data register that is triggered by the rising edge of CLK. As outputs, they deliver the data contained in the memory location specified by the addresses presented during the previous clock rise of the read cycle. The direction of the pins is controlled by OE. When OE is asserted LOW, the pins behave as outputs. When HIGH, DQs are placed in a tri-state condition.				
V _{DD}	Power supply	Power supply inputs to the core of the device.				
V _{SS}	Ground	Ground for the core of the device.				
V _{DDQ}	I/O power supply	Power supply for the I/O circuitry.				
V _{SSQ}	I/O ground	Ground for the I/O circuitry.				
MODE	Input- static	Selects burst order . When tied to GND selects linear burst sequence. When tied to V_{DD} or left floating selects interleaved burst sequence. This is a strap pin and should remain static during device operation. Mode pin has an internal pull-up.				

Note
2. Errata: The ZZ pin (Pin 64) needs to be externally connected to ground. For more information, see "Errata" on page 19.

Name	I/O	Description
NC		No connects. Not Internally connected to the die.
NC/9M, NC/18M, NC/36M, NC/72M, NC/144M, NC/288M, NC/576M, NC/1G	-	No connects . Not internally connected to the die. NC/9M, NC/18M, NC/36M, NC/72M, NC/144M, NC/288M, NC/576M and NC/1G are address expansion pins that are not internally connected to the die.

Functional Overview

All synchronous inputs pass through input registers controlled by the rising edge of the clock. Maximum access delay from the clock rise (t_{C0}) is 8.0 ns (100-MHz device).

The CY7C1338G supports secondary cache in systems utilizing either a linear or interleaved burst sequence. The interleaved burst order supports Pentium and i486[™] processors. The linear burst sequence is suited for processors that utilize a linear burst sequence. The burst order is user-selectable, and is determined by sampling the MODE input. Accesses can be initiated with either the processor address strobe (ADSP) or the controller address strobe (ADSC). Address advancement through the burst sequence is controlled by the ADV input. A two-bit on-chip wraparound burst counter captures the first address in a burst sequence and automatically increments the address for the rest of the burst access.

<u>Byte</u> write operations are qualified with the byte write enable (\overline{BWE}) and byte write select $(\overline{BW}_{[A:D]})$ inputs. A global write enable (\overline{GW}) overrides all byte write inputs and writes data to all four bytes. All writes are simplified with on-chip synchronous self-timed write circuitry.

Three synchronous chip selects (\overline{CE}_1 , CE_2 , \overline{CE}_3) and an asynchronous output enable (\overline{OE}) provide for easy bank selection and output tri-state control. ADSP is ignored if \overline{CE}_1 is HIGH.

Single Read Accesses

A single read access is initiated when the <u>following</u> conditions are satisfied at <u>clock</u> rise: (1) \overline{CE}_1 , \overline{CE}_2 , and \overline{CE}_3 are all asserted active, and (2) ADSP or ADSC is asserted LOW (if the access is initiated by ADSC, the write inputs must be deasserted during this first cycle). The address presented to the address inputs is latched into the address register and the burst counter/control logic and presented to the memory core. If the \overline{OE} input is asserted LOW, the requested data will be available at the data <u>outputs</u> a maximum to t_{CDV} after clock rise. ADSP is ignored if \overline{CE}_1 is HIGH.

Single Write Accesses Initiated by ADSP

This access is initiated when the following conditions are satisfied at clock rise: (1) CE_1 , CE_2 , CE_3 are all asserted active, and (2) ADSP is asserted LOW. The addresses presented are loaded into the address register and the burst inputs (GW, BWE, and BW_[A:D]) are ignored during this first clock cycle. If the write inputs are asserted active (see Write Cycle Descriptions table for appropriate states that indicate a write) on the next clock rise, the

appropriate data will be latched and writt<u>en</u> into the device. Byte writes are allowed. During byte writes, BW_A controls DQ_A and BWB controls DQ_B . BWC controls DQ_C , and BW_D controls DQ_D . All I/Os are tri-stated during a byte write. Since this is a common I/O device, the asynchronous OE input signal must be deasserted and the I/Os must be tri-stated prior to the presentation of data to DQs. As a safety precaution, the data lines are tri-<u>stat</u>ed once a write cycle is detected, regardless of the state of \overline{OE} .

Single Write Accesses Initiated by ADSC

This write access is initiated when the following conditions are satisfied at <u>clock</u> rise: (1) \overline{CE}_1 , \overline{CE}_2 , and \overline{CE}_3 are all asserted active, (2) ADSC is asserted LOW, (3) ADSP is deasserted HIGH, and (4) the write <u>input</u> signals (GW, <u>BWE</u>, and BW_[A:D]) indicate a write access. ADSC is ignored if ADSP is active LOW.

The addresses presented are loaded into the address register and the burst counter/control logic and delivered to the memory core. The information presented to $DQ_{[A:D]}$ will be written into the specified address location. Byte writes are allowed. During byte writes, \overline{BW}_A controls DQ_A , \overline{BW}_B controls DQ_B , \overline{BW}_C controls DQ_C , and \overline{BW}_D controls DQ_D . All I/Os are tri-stated when a write is detected, even a byte write. Since this is a common I/O device, the asynchronous OE input signal must be deasserted and the I/Os must be tri-stated prior to the presentation of data to DQs. As a safety precaution, the data lines are tri-stated once a write cycle is detected, regardless of the state of \overline{OE} .

Burst Sequences

The CY7C1338G provides an on-chip two-bit wraparound burst counter inside the SRAM. The burst counter is fed by A[1:0], and can follow either a linear or interleaved burst order. The burst order is determined by the state of the MODE input. A LOW on MODE will select a linear burst sequence. A HIGH on MODE will select an interleaved burst order. Leaving MODE unconnected will cause the device to default to a interleaved burst sequence.

Sleep Mode

The ZZ input pin is an asynchronous input. Asserting ZZ places the SRAM in a power conservation "sleep" mode. Two clock cycles are required to enter into or exit from this "sleep" mode. While in this mode, data integrity is guaranteed. Accesses pending when entering the "sleep" mode are not considered valid nor is the completion of the operation guaranteed. The device <u>must</u> be deselected prior to entering the "sleep" mode. CEs, ADSP, and ADSC must remain inactive for the duration of t_{ZZREC} after the ZZ input returns LOW.

Interleaved Burst Address Table

(MODE = Floating or V_{DD})

First Address A1:A0	Second Address A1:A0	Third Address A1:A0	Fourth Address A1:A0
00	01	10	11
01	00	11	10
10	11	00	01
11	10	01	00

Linear Burst Address Table

(MODE = GND)

First Address A1:A0	Second Address A1:A0	Third Address A1:A0	Fourth Address A1:A0
00	01	10	11
01	10	11	00
10	11	00	01
11	00	01	10

ZZ Mode Electrical Characteristics

Parameter	Description	Test Conditions	Min	Мах	Unit
I _{DDZZ}	Sleep mode standby current	$ZZ \ge V_{DD} - 0.2 V$	_	40	mA
t _{ZZS}	Device operation to ZZ	$ZZ \ge V_{DD} - 0.2 V$	-	2t _{CYC}	ns
t _{ZZREC}	ZZ recovery time	ZZ <u><</u> 0.2 V	2t _{CYC}	-	ns
t _{ZZI}	ZZ active to sleep current	This parameter is sampled	-	2t _{CYC}	ns
t _{RZZI}	ZZ inactive to exit sleep current	This parameter is sampled	0	_	ns

Truth Table

The truth table for CY7C1338G follows. [3, 4, 5, 6, 7]

Cycle Description	Address Used	CE ₁	CE ₂	CE ₃	ZZ	ADSP	ADSC	ADV	WRITE	OE	CLK	DQ
Deselected cycle, power-down	None	Н	Х	Х	L	Х	L	Х	Х	Х	L–H	Tri-state
Deselected cycle, power-down	None	L	L	Х	L	L	Х	Х	Х	Х	L–H	Tri-state
Deselected cycle, power-down	None	L	Х	Н	L	L	Х	Х	Х	Х	L–H	Tri-state
Deselected cycle, power-down	None	L	L	Х	L	Н	L	Х	Х	Х	L–H	Tri-state
Deselected cycle, power-down	None	Х	Х	Х	L	Н	L	Х	Х	Х	L–H	Tri-state
Sleep mode, power-down	None	Х	Х	Х	Н	Х	Х	Х	Х	Х	Х	Tri-state
Read cycle, begin burst	External	L	Н	L	L	L	Х	Х	Х	L	L–H	Q
Read cycle, begin burst	External	L	Н	L	L	L	Х	Х	Х	Н	L–H	Tri-state
Write cycle, begin burst	External	L	Н	L	L	Н	L	Х	L	Х	L–H	D
Read cycle, begin burst	External	L	Н	L	L	Н	L	Х	Н	L	L–H	Q
Read cycle, begin burst	External	L	Н	L	L	Н	L	Х	Н	Н	L–H	Tri-state
Read cycle, continue burst	Next	Х	Х	Х	L	Н	Н	L	Н	L	L–H	Q
Read cycle, continue burst	Next	Х	Х	Х	L	Н	Н	L	Н	Н	L–H	Tri-state
Read cycle, continue burst	Next	Н	Х	Х	L	Х	Н	L	Н	L	L–H	Q
Read cycle, continue burst	Next	Н	Х	Х	L	Х	Н	L	Н	Н	L–H	Tri-state
Write cycle, continue burst	Next	Х	Х	Х	L	Н	Н	L	L	Х	L–H	D
Write cycle, continue burst	Next	Н	Х	Х	L	Х	Н	L	L	Х	L–H	D
Read cycle, suspend burst	Current	Х	Х	Х	L	Н	Н	Н	Н	L	L–H	Q
Read cycle, suspend burst	Current	Х	Х	Х	L	Н	Н	Н	Н	Н	L–H	Tri-state
Read cycle, suspend burst	Current	Н	Х	Х	L	Х	Н	Н	Н	L	L–H	Q
Read cycle, suspend burst	Current	Н	Х	Х	L	Х	Н	Н	Н	Н	L–H	Tri-state
Write cycle, suspend burst	Current	Х	Х	Х	L	Н	Н	Н	L	Х	L–H	D
Write cycle, suspend burst	Current	Н	Х	Х	L	Х	Н	Н	L	Х	L–H	D

Notes

3. X = "Don't Care." H = Logic HIGH, L = Logic LOW.
 4. WRITE = L when any one or more byte write enable signals (BW_A, BW_B, BW_C, BW_D) and BWE = L or GW= L. WRITE = H when all byte write enable signals (BW_A, BW_B, BW_C, BW_D), BWE, GW = H.

5.

The DQ pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW_X. Writes may occur only on subsequent clocks after the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH prior to the start of the write cycle to allow the outputs to tri-state. OE is a don't care for the remainder of the write cycle. 6.

OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are tri-state when OE is inactive or when the device is deselected, and all data bits behave as output when OE is active (LOW).

Partial Truth Table for Read/Write

The partial truth table for Read/Write for CY7C1338G follows. ^[8, 9]

Function	GW	BWE	BWD	BWc	BWB	BWA
Read	Н	Н	Х	Х	Х	Х
Read	Н	L	Н	Н	Н	Н
Write byte A	Н	L	Н	Н	Н	L
Write byte B	Н	L	Н	Н	L	Н
Write bytes B, A	Н	L	Н	Н	L	L
Write byte C	Н	L	Н	L	Н	Н
Write bytes C, A	Н	L	Н	L	Н	L
Write bytes C, B	Н	L	Н	L	L	Н
Write bytes C, B, A	Н	L	Н	L	L	L
Write byte D	Н	L	L	Н	Н	Н
Write bytes D, A	Н	L	L	Н	Н	L
Write bytes D, B	Н	L	L	Н	L	Н
Write bytes D, B, A	Н	L	L	Н	L	L
Write bytes D, B	Н	L	L	L	Н	Н
Write bytes D, B, A	Н	L	L	L	Н	L
Write bytes D, C, A	Н	L	L	L	L	Н
Write all bytes	Н	L	L	L	L	L
Write all bytes	L	Х	Х	Х	Х	Х

Notes

X = "Don't Care." H = Logic HIGH, L = Logic LOW.
 Table only lists a partial listing of the byte write combinations. Any combination of BW_X is valid. Appropriate write will be done based on which byte write is active.

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Storage temperature65 °C to +150 °C
Ambient temperature with power applied
Supply voltage on V_{DD} relative to GND–0.5 V to +4.6 V
Supply voltage on V_{DDQ} relative to GND –0.5 V to +V_{\text{DD}}
DC voltage applied to outputs in tri-state–0.5 V to V_{DDQ} + 0.5 V

Electrical Characteristics

DC input voltage –0.5 V to V_{DD} + 0.5 V Static discharge voltage (per MIL-STD-883, method 3015) > 2001 V

Operating Range

Range	Ambient Temperature	V _{DD}	V _{DDQ}
Commercial	0 °C to +70 °C	3.3 V – 5% / + 10%	2.5 V - 5% to V_{DD}

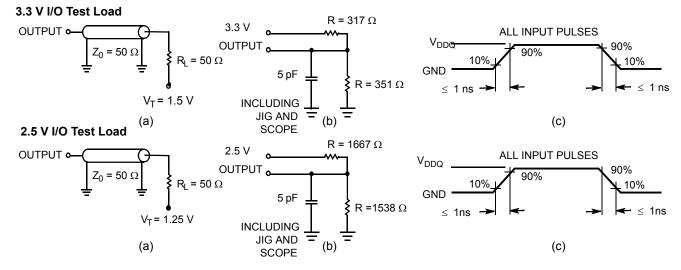
Over the Operating Range

Parameter [10, 11]	Description	Test Conditions		Min	Мах	Unit
V _{DD}	Power supply voltage			3.135	3.6	V
V _{DDQ}	I/O supply voltage			2.375	V _{DD}	V
V _{OH}	Output HIGH voltage	for 3.3 V I/O, I _{OH} = -4.0 mA		2.4	-	V
		for 2.5 V I/O, I _{OH} = –1.0 mA		2.0	-	V
V _{OL}	Output LOW voltage	for 3.3 V I/O, I _{OL} = 8.0 mA		-	0.4	V
		for 2.5 V I/O, I _{OL} = 1.0 mA		_	0.4	V
V _{IH}	Input HIGH voltage	for 3.3 V I/O		2.0	V _{DD} + 0.3	V
		for 2.5 V I/O		1.7	V _{DD} + 0.3	V
V _{IL}	Input LOW voltage ^[10]	for 3.3 V I/O		-0.3	0.8	V
		for 2.5 V I/O		-0.3	0.7	V
I _X	Input leakage current except ZZ and MODE	$GND \le V_I \le V_{DDQ}$		-5	5	μA
	Input current of MODE	ut current of MODE Input = V _{SS}		-30	-	μA
		Input = V _{DD}		_	5	μA
	Input current of ZZ	Input = V _{SS}		-5	-	μA
		Input = V _{DD}		-	30	μA
I _{OZ}	Output leakage current	$GND \le V_I \le V_{DDQ}$, output disable	ed	-5	5	μA
I _{DD}	V _{DD} operating supply current	V _{DD} = Max, I _{OUT} = 0 mA, f = f _{MAX} = 1/t _{CYC}	10-ns cycle, 100 MHz	-	205	mA
I _{SB1}	Automatic CE power-down current – TTL inputs	$\begin{array}{l} Max \; V_{DD}, \; device \; deselected, \\ V_{IN} \geq V_{IH} \; or \; V_{IN} \leq V_{IL}, \; f = f_{MAX}, \\ inputs \; switching \end{array}$	10-ns cycle, 100 MHz	-	80	mA
I _{SB2}	Automatic CE power-down current – CMOS inputs	$\begin{array}{l} \mbox{Max } V_{DD}, \mbox{ device deselected}, \\ V_{IN} \geq V_{DD} - 0.3 \mbox{ V or } V_{IN} \leq 0.3 \mbox{ V}, \\ f = 0, \mbox{ inputs static} \end{array}$	10-ns cycle, 100 MHz	_	40	mA
I _{SB3}	Automatic CE power-down current – CMOS inputs	$\begin{array}{l} Max \; V_{DD}, \; device \; deselected, \\ V_{IN} \geq V_{DDQ} - 0.3 \; V \; or \; V_{IN} \leq 0.3 \; V, \\ f = f_{MAX}, \; inputs \; switching \end{array}$	10-ns cycle, 100 MHz	_	65	mA
I _{SB4}	Automatic CE power-down current – TTL inputs	$\begin{array}{l} \mbox{Max } V_{DD}, \mbox{ device deselected}, \\ V_{IN} \geq V_{DD} - 0.3 \mbox{ V or } V_{IN} \leq 0.3 \mbox{ V}, \\ f = 0, \mbox{ inputs static} \end{array}$	10-ns cycle, 100 MHz	_	45	mA
						I

Notes

10. Overshoot: $V_{IH(AC)} < V_{DD} + 1.5 V$ (pulse width less than $t_{CYC}/2$), undershoot: $V_{IL(AC)} > -2 V$ (Pulse width less than $t_{CYC}/2$). 11. $T_{Power-up}$: Assumes a linear ramp from 0 V to $V_{DD(min)}$ within 200 ms. During this time $V_{IH} < V_{DD}$ and $V_{DDQ} \le V_{DD}$.

Capacitance


Parameter ^[12]	Description	Test Conditions	100-pin TQFP Max	Unit
C _{IN}	Input capacitance	T _A = 25 °C, f = 1 MHz,	5	pF
C _{CLK}	Clock input capacitance	V _{DD} = 3.3 V, V _{DDQ} = 3.3 V	5	pF
C _{I/O}	Input/Output capacitance		5	pF

Thermal Resistance

Parameter ^[12]	Description	Test Conditions	100-pin TQFP Package	Unit
Θ_{JA}	Thermal resistance (junction to ambient)	Test conditions follow standard test methods and procedures for measuring thermal impedance, per	30.32	°C/W
Θ ^{JC}	Thermal resistance (junction to case)	EIA/JESD51.	6.85	°C/W

AC Test Loads and Waveforms

Figure 2. AC Test Loads and Waveforms

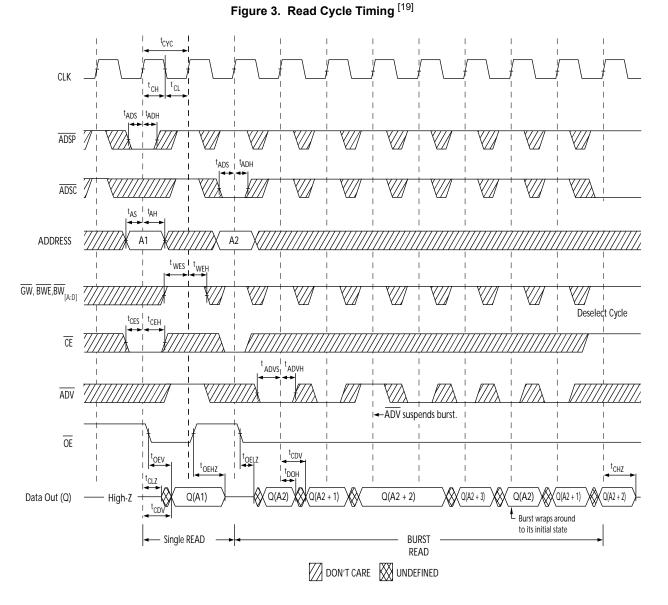
Note 12. Tested initially and after any design or process change that may affect these parameters.

Switching Characteristics

Over the Operating Range

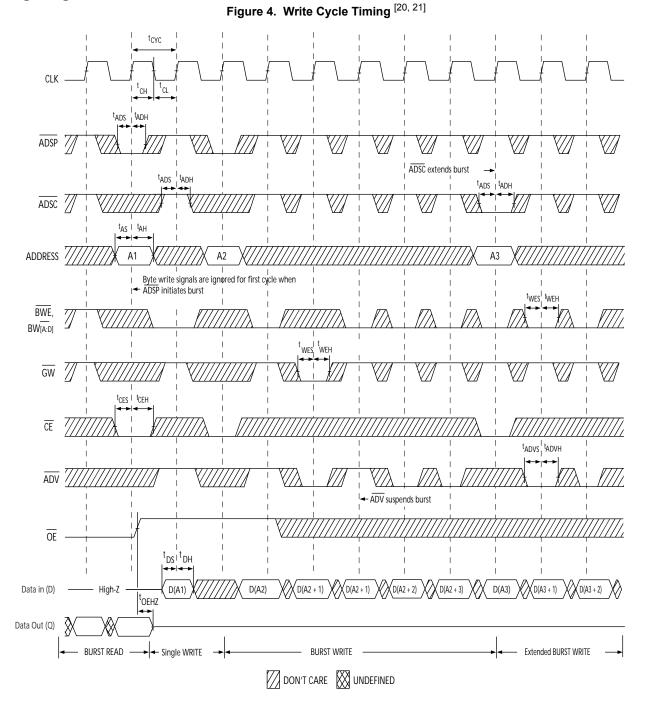
Parameter [13, 14]	Description	-1	00	Unit
Parameter	Description	Min	Max	Unit
t _{POWER}	V _{DD} (typical) to the first access ^[15]	1	-	ms
Clock				
t _{CYC}	Clock cycle time	10	-	ns
t _{CH}	Clock HIGH	4.0	-	ns
t _{CL}	Clock LOW	4.0	-	ns
Output Times				
t _{CDV}	Data output valid after CLK rise	-	8.0	ns
t _{DOH}	Data output hold after CLK rise	2.0	-	ns
t _{CLZ}	Clock to low Z [16, 17, 18]	0	_	ns
t _{CHZ}	Clock to high Z ^[16, 17, 18]	-	3.5	ns
t _{OEV}	OE LOW to output valid	-	3.5	ns
t _{OELZ}	OE LOW to output low Z ^[16, 17, 18]	0	_	ns
t _{OEHZ}	OE HIGH to output high Z ^[16, 17, 18]	-	3.5	ns
Setup Times		·		•
t _{AS}	Address set-up before CLK rise	2.0	_	ns
t _{ADS}	ADSP, ADSC set-up before CLK rise	2.0	_	ns
t _{ADVS}	ADV set-up before CLK rise	2.0	_	ns
t _{WES}	GW, BWE, BW _X set-up before CLK rise	2.0	_	ns
t _{DS}	Data input set-up before CLK rise	1.5	_	ns
t _{CES}	Chip enable set-up	2.0	_	ns
Hold Times				·
t _{AH}	Address hold after CLK rise	0.5	_	ns
t _{ADH}	ADSP, ADSC hold after CLK rise	0.5	_	ns
t _{WEH}	GW, BWE, BW _X hold after CLK rise	0.5	-	ns
t _{ADVH}	ADV hold after CLK rise	0.5	_	ns
t _{DH}	Data input hold after CLK rise	0.5	_	ns
t _{CEH}	Chip enable hold after CLK rise	0.5	_	ns

Notes


13. Timing reference level is 1.5 V when V_{DDQ} = 3.3 V and is 1.25 V when V_{DDQ} = 2.5 V.
14. Test conditions shown in (a) of Figure 2 on page 10 unless otherwise noted.
15. This part has a voltage regulator internally; t_{POWER} is the time that the power needs to be supplied above V_{DD(minimum)} initially before a read or write operation can be initiated.

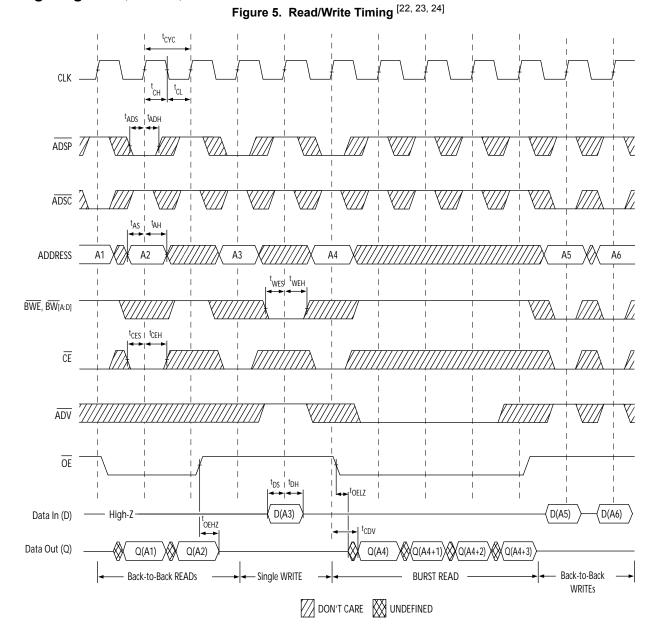
16. t_{CHZ}, t_{CLZ}, t_{OELZ}, and t_{OEHZ} are specified with AC test conditions shown in part (b) of Figure 2 on page 10. Transition is measured ±200 mV from steady-state voltage.
17. At any given voltage and temperature, t_{OEHZ} is less than t_{OELZ} and t_{CHZ} is less than t_{CLZ} to eliminate bus contention between SRAMs when sharing the same data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed to achieve high Z prior to low Z under the same system conditions.
18. This parameters is appended and part to 400% total.

18. This parameter is sampled and not 100% tested.


Timing Diagrams

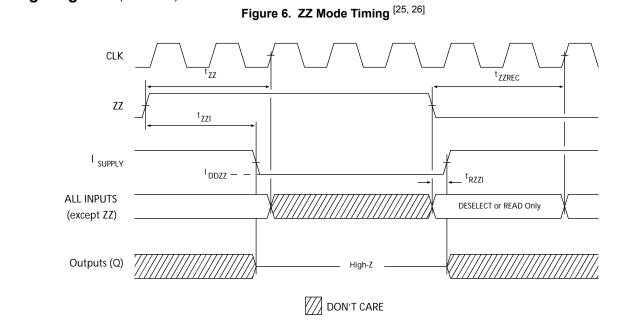
Note 19. On this diagram, when \overline{CE} is LOW: \overline{CE}_1 is LOW, CE_2 is HIGH and \overline{CE}_3 is LOW. When \overline{CE} is HIGH: \overline{CE}_1 is HIGH or CE_2 is LOW or \overline{CE}_3 is HIGH.

Timing Diagrams (continued)


Notes

^{20.} On this diagram, when \overline{CE} is LOW: \overline{CE}_1 is LOW, CE_2 is HIGH and \overline{CE}_3 is LOW. When \overline{CE} is HIGH: \overline{CE}_1 is HIGH or CE_2 is LOW or \overline{CE}_3 is HIGH. 21. Full width write can be initiated by either \overline{GW} LOW; or by \overline{GW} HIGH, \overline{BWE} LOW and $\overline{BW}_{[A:D]}$ LOW.

Timing Diagrams (continued)



Notes

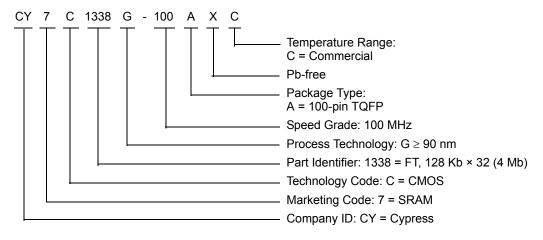
Notes 22. On this diagram, when \overline{CE} is LOW: \overline{CE}_1 is LOW, CE_2 is HIGH and \overline{CE}_3 is LOW. When \overline{CE} is HIGH: \overline{CE}_1 is HIGH or CE_2 is LOW or \overline{CE}_3 is HIGH. 23. The data bus (Q) remains in high Z following a WRITE cycle, unless a new read access is initiated by \overline{ADSP} or \overline{ADSC} . 24. GW is HIGH.

Timing Diagrams (continued)

Notes

25. Device must be deselected when entering ZZ mode. See Cycle Descriptions table for all possible signal conditions to deselect the device. 26. DQs are in high Z when exiting ZZ sleep mode.

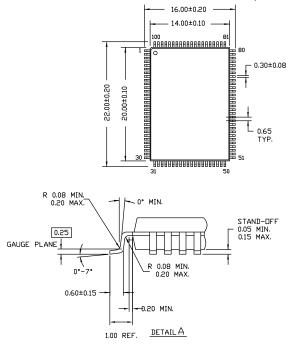
Ordering Information

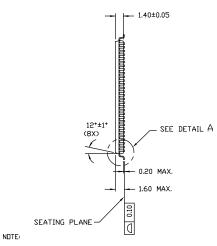

Cypress offers other versions of this type of product in many different configurations and features. The following table contains only the list of parts that are currently available.

For a complete listing of all options, visit the Cypress website at www.cypress.com and refer to the product summary page at http://www.cypress.com/products or contact your local sales representative.

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives and distributors. To find the office closest to you, visit us at http://www.cypress.com/go/datasheet/offices.

Speed (MHz)	Ordering Code	Package Diagram	Part and Package Type	Operating Range
100	CY7C1338G-100AXC	51-85050	100-pin TQFP (14 × 20 × 1.4 mm) Pb-free	Commercial


Ordering Code Definitions



Package Diagrams

1. JEDEC STD REF MS-026

2. BDDY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE BDDY LENGTH DIMENSIONS ARE MAX PLASTIC BDDY SIZE INCLUDING MOLD MISMATCH

3. DIMENSIONS IN MILLIMETERS

51-85050 *D

Acronyms

Acronym	Description		
CE	Chip Enable		
CMOS	Complementary Metal Oxide Semiconductor		
EIA	Electronic Industries Alliance		
I/O	Input/Output		
JEDEC	Joint Electron Devices Engineering Council		
OE	Output Enable		
SRAM	Static Random Access Memory		
TQFP	Thin Quad Flat Pack		
TTL	Transistor-Transistor Logic		

Document Conventions

Units of Measure

Symbol	Unit of Measure			
°C	degree Celsius			
MHz	megahertz			
μA	microampere			
mA	milliampere			
mm	millimeter			
ms	millisecond			
mV	millivolt			
nm	nanometer			
ns	nanosecond			
Ω	ohm			
%	percent			
pF	picofarad			
V	volt			
W	watt			

Errata

This section describes the Ram9 Sync/NoBL ZZ pin, JTAG and Chip Enable issues. Details include trigger conditions, the devices affected, proposed workaround and silicon revision applicability. Please contact your local Cypress sales representative if you have further questions.

Part Numbers Affected

Density & Revision	Package Type	Operating Range
4Mb-Ram9 Synchronous SRAMs: CY7C133*G	All packages	Commercial/ Industrial

Product Status

All of the devices in the Ram9 4Mb Sync/NoBL family are qualified and available in production quantities.

Ram9 Sync/NoBL ZZ Pin Issues Errata Summary

The following table defines the errata applicable to available Ram9 4Mb Sync/NoBL family devices.

Item	Issues	Description	Device	Fix Status
1.		When asserted HIGH, the ZZ pin places device in a "sleep" condition with data integrity preserved. The ZZ pin currently does not have an internal pull-down resistor and hence cannot be left floating externally by the user during normal mode of operation.	() ,	For the 4M Ram9 (90 nm) devices, there is no plan to fix this issue.

1. ZZ Pin Issue

PROBLEM DEFINITION

The problem occurs only when the device is operated in the normal mode with ZZ pin left floating. The ZZ pin on the SRAM device does not have an internal pull-down resistor. Switching noise in the system may cause the SRAM to recognize a HIGH on the ZZ input, which may cause the SRAM to enter sleep mode. This could result in incorrect or undesirable operation of the SRAM.

- TRIGGER CONDITIONS Device operated with ZZ pin left floating.
- SCOPE OF IMPACT When the ZZ pin is left floating, the device delivers incorrect data.
- WORKAROUND Tie the ZZ pin externally to ground.
- FIX STATUS

Fix was done for the 72Mb RAM9 Synchronous SRAMs and 72M RAM9 NoBL SRAMs devices. Fixed devices have a new revision. The following table lists the devices affected and the new revision after the fix.

Document History Page

Rev.	ECN No.	Issue Date	Orig. of Change	Description of Change
**	224369	See ECN	RKF	New data sheet.
*A	278513	See ECN	VBL	Updated Features (Removed 66 MHz frequency related information). Updated Selection Guide (Removed 66 MHz frequency related information). Updated Electrical Characteristics (Removed 66 MHz frequency related information). Updated Switching Characteristics (Removed 66 MHz frequency related information). Updated Ordering Information (Updated part numbers (Added Pb-free BGA package), changed TQFP package to Pb-free TQFP package, added commen on the BGA Pb-free package availability below the table).
*В	333626	See ECN	SYT	Updated Features (Removed 117 MHz frequency related information). Updated Selection Guide (Removed 117 MHz frequency related information) Updated Pin Configurations (Modified Address Expansion balls in the pinouts for 100-pin TQFP and 119-ball BGA Packages as per JEDEC standards). Updated Pin Definitions. Updated Functional Overview (Updated ZZ Mode Electrical Characteristics (Replaced 'Snooze' with 'Sleep')). Updated Truth Table (Replaced 'Snooze' with 'Sleep'). Updated Electrical Characteristics (Updated test conditions for V _{OL} and V _{OH} parameters, removed 117 MHz frequency related information). Updated Thermal Resistance (Replaced TBD's for Θ_{JA} and Θ_{JC} to their respective values). Updated Ordering Information (By shading and unshading MPNs as per availability, removed comment on the availability of BGA Pb-free package).
*C	418633	See ECN	RXU	Changed status from Preliminary to Final. Changed address of Cypress Semiconductor Corporation from "3901 North First Street" to "198 Champion Court". Updated Electrical Characteristics (Removed I _{OS} parameter and its details, updated Note 11 (Changed test condition from V _{IH} \leq V _{DD} to V _{IH} $<$ V _{DD}), changed "Input Load Current except ZZ and MODE" to "Input Leakage Curren except ZZ and MODE"). Updated Ordering Information (Updated part numbers, replaced Package Name column with Package Diagram in the Ordering Information table). Updated Package Diagrams.
*D	480368	See ECN	VKN	Updated Maximum Ratings (Added the Maximum Rating for Supply Voltage on V _{DDQ} Relative to GND). Updated Ordering Information (Updated part numbers).
*E	2896584	03/20/2010	NJY	Updated Ordering Information (Removed obsolete part numbers). Updated Package Diagrams.
*F	3036754	09/23/2010	NJY	Added Ordering Code Definitions. Added Acronyms and Units of Measure. Minor edits and updated in new template.
*G	3365114	09/07/2011	PRIT	Updated Package Diagrams.

Document History Page (continued)

	ocument Title: CY7C1338G, 4-Mbit (128 K × 32) Flow-Through Sync SRAM ocument Number: 38-05521						
Rev.	ECN No.	Issue Date	Orig. of Change	Description of Change			
*H	3589101	05/10/2012		Updated Features (Removed 133 MHz frequency related information, removed 119-ball BGA package related information). Updated Functional Description (Removed the Note "For best-practices recommendations, please refer to the Cypress application note <i>System Design Guidelines</i> on www.cypress.com." and its reference, removed 133 MHz frequency related information). Updated Selection Guide (Removed 133 MHz frequency related information). Updated Pin Configurations (Removed 119-ball BGA package related information). Updated Functional Overview (Removed 133 MHz frequency related information). Updated Operating Range (Removed Industrial Temperature Range). Updated Electrical Characteristics (Removed 133 MHz frequency related information). Updated Capacitance (Removed 119-ball BGA package related information). Updated Thermal Resistance (Removed 119-ball BGA package related information). Updated Switching Characteristics (Removed 133 MHz frequency related information). Updated Package Diagrams (Removed 119-ball BGA package related information).			
*	3751125	09/21/2012	PRIT	No technical updates. Completing sunset review.			
*J	3984870	05/02/2013	PRIT	Added Errata.			
*К	4039556	06/25/2013	PRIT	Added Errata Footnotes. Updated in new template.			

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products	
Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
	cypress.com/go/plc
Memory	cypress.com/go/memory
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC[®] Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/go/support

© Cypress Semiconductor Corporation, 2006-2013. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 38-05521 Rev. *J

Revised June 25, 2013

Page 22 of 22

Intel and Pentium are registered trademarks and i486 is a trademark of Intel Corporation. All products and company names mentioned in this document may be the trademarks of their respective holders