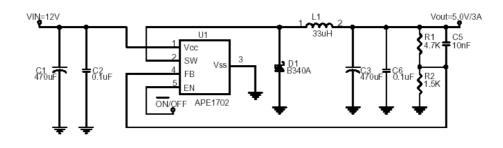
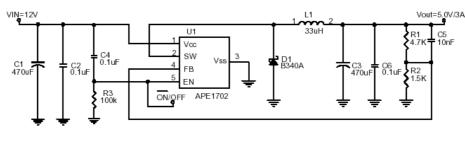


APE1702

150KHz, 3A PWM BUCK DC/DC CONVERTER


FEATURES

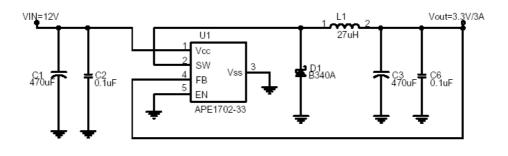
- Output Voltage : 3.3V, 5V, 12V and Adjustable Output Voltage
- Adjustable Version Output Voltage Range, 1.23V to 19.5V+4%
- 150KHz +15% Fixed Switching Frequency.
- Voltage Mode Non-synchronous PWM Control.
- Thermal-shutdown and Current-limit Protection.
- ON/OFF Shutdown Control Input.
- Short Circuit Protect(SCP)
- Operating Voltage can be up to 22V
- Output Load Current 3A
- 5-Lead TO-263/TO-220
- Low Power Standby Mode.
- Built-in Switching Transistor on Chip
- RoHS Compliant


DESCRIPTION

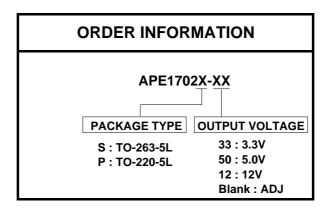
The APE1702 series are monolithic IC designed for a step-down DC/DC converter, and own the ability of driving a 3A load without additional transistor. It saves board space. The external shutdown function can be controlled by logic level and then come into standby mode. The internal compensation makes feedback control having good line and load regulation without external design. Regarding protected function, thermal shutdown is to prevent over temperature operating from damage, and current limit is against over current operating of the output switch. if current limit function occurs and VFB is down below 0.5V the switching frequency will be reduced. The APE1702 series operates at a switching frequency of 150KHz thus allow smaller sized filter components than what would be needed with lower frequency switching regulators. Other features include a guaranteed +4% tolerance on output voltage under specified input voltage and output load conditions, and +15% on the oscillator frequency. The output version included fixed 3.3V, 5V, 12V and an adjustable type. The chips are available in a 5-Lead TO-263 and 5-Lead TO-220 package.

TYPICAL APPLICATION 1. ADJUSTABLE OUTPUT VOLTAGE VERSION

2. ADJUSTABLE OUTPUT VOLTAGE VERSION WITH DELAYED STARTUP

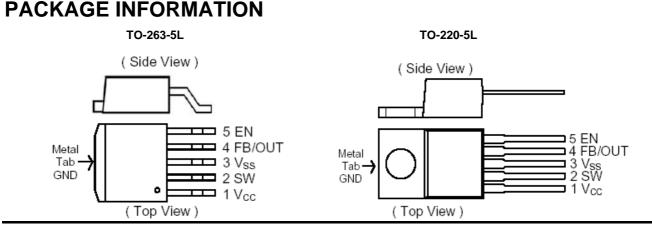

Vout = $V_{FB} \times (1 + \frac{R1}{R2})$ $V_{FB} = 1.23V$ $R2 = 0.47K \sim 2.6K$

Data and specifications subject to change without notice



TYPICAL APPLICATION

3. FIXED OUTPUT VOLTAGE VERSION


ORDERING INFORMATIO

ABSOLUTE MAXIMUM RATINGS (at T_A=25°C)

Maximum Supply Voltage(VCC)	+24V
ON/OFF PIN Input Voltage(VEN)	-0.3V to V_{CC}
Feedback PIN Voltage(VFB)	-0.3V to 16V
Output Voltage to Ground(VOUT)	-0.7 to 24V
Power Dissipation(PD)	(T _J -T _A)/Rth _{JA}
Storage Temperature Range(TST)	-65°C To 150°C
Operating Temperature Range(TOP)	-40°C To 125°C
Operating Supply Voltage(VOP)	+4.5V to +22V
Thermal Resistance from Junction to $Case(Rth_{JC})$	3.5°C/W
Thermal Resistance from Junction to Ambient(Rth_{JA})	20°C/W

Note. Rth JA is measured with the PCB copper area(need connect to Metal tab) of approx. 3 in² (multi-layers)

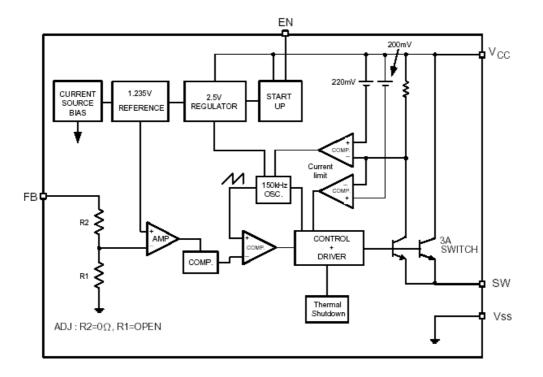
ELECTRICAL SPECIFICATIONS

(V_IN=12V, T_A=25 $^\circ\!\mathrm{C}$, unless otherwise specified)

Parameter	SYM	TEST CONDITION	MIN	TYP	MAX	UNITS
Quiescent Current	I _{CCQ}	V _{FB} =12V force driver off	-	4	8	mA
Feedback Bias Current	I _{FB}	V _{FB} =1.3V	-	-10	-50.0	nA
	ιFB	(ADJ Version Only)	-	-10	-100.0	
Shutdown Supply Current	I _{SD}	V _{EN} =5V	-	35	100	uA
	ISD	V _{CC} =22V	-	35	100	uA
Current Limit	I _{CL}	Pear Current, No outside circuit V _{FB} =0V force driver on	3.3	-	-	A
Max. Duty Cycle (ON)	DC	V _{FB} =0V force driver on	-	100	-	%
Min. Duty Cycle (OFF)		V _{FB} =12V force driver off	-	0	-	%
Oscillation Frequency	F _{osc}		127	150	173	KHz
	I OSC		110	-	173	KHz
Oscillation Frequency of Short	F _{SCP}	(Adjustable) When $V_{FB} < 0.5V$		60	_	KHz
Circuit Protect	I SCP	(Fixed) When < V _{OUT} x 40%	-	00	-	KHz
Saturation Voltage	V _{SAT}	V _{SAT} I _{OUT} =2A, No outside circuit - 1.3		1.5	V	
Saturation Voltage	V SAT	V _{FB} =0V force driver on	ר ך	1.5	1.6	v

ELECTRICAL SPECIFICATIONS(Cont.)

Parameter		SYM	TEST CONDITION	MIN	TYP	MAX	UNITS
EN PIN Logic In	put Threshold Volta	V _{IH}	High (regulator ON)	2	1.3	-	V
		V _{IL}	Low (regulator OFF)	-	1.5	0.6	V
EN PIN Input Current		I _{SH}	V _{EN} =2.5V(OFF)	-	-0.1	-0.5	uA
	linent	I _{SL}	V _{EN} =0.5V(ON)	-	-	-0.01	uA
SW PIN=0V	SW PIN		No outside circuit	_		-200	
Leakage	I _{SWL}	V _{FB} =12V force driver on	-	-200	uA uA		
SW PIN=-0.8V	Current		V _{CC} =22V force driver off	-	-5	-	mA
Thermal Shutdo	wn Temp.	TSD		-	135	-	°C


Version	Characteristics	Symbol	Conditions	MIN	TYP	MAX	UNITS
APE1702-ADJ	Output Feedback Voltage	V _{FB}	4.5V < V _{CC} < 22V 0.2A < I _{LOAD} <3A VOUT programmed for 3.3V	1.193/ 1.180	1.23	1.267/ 1.280	v
	Efficiency	η	V _{CC} =12V, I _{LOAD} =3A	-	74	-	%
APE1702-3.3V	Output Voltage	V _{out}	4.75V < V _{CC} < 22V 0.2A < I _{LOAD} <3A	3.168/ 3.135	3.3	3.432/ 3.465	v
	Efficiency	η	V _{CC} =12V, I _{LOAD} =3A	-	75	-	%
APE1702-5.0V	Output Voltage	V _{out}	7V < V _{CC} < 22V 0.2A < I _{LOAD} <3A	4.80/ 4.75	5.0	5.20/ 5.25	v
Effici	Efficiency	η	V _{CC} =12V, I _{LOAD} =3A	-	80	-	%
APE1702-12V	Output Voltage	V _{out}	15V < V _{CC} < 22V 0.2A < I _{LOAD} <3A	11.52/ 11.4	12	12.48/ 12.6	v
	Efficiency	η	V _{CC} =15V, I _{LOAD} =3A	-	89	-	%

PIN DESCRIPTIONS

PIN SYMBOL	PIN DESCRIPTION
V _{ss}	GND Pin
FB	Control Voltage Feedback Control for ADJ Version
EN	ON/OFF Shutdown
OUT	Output Voltage Feedback Control for Fixed Version
SW	Switching Output
V _{cc}	IC Power Supply Pin

BLOCK DIAGRAM

FUNCTION DESCRIPTION

PIN FUNCTION

VCC

This is positive input supply for the IC switching regulator. A suitable input bypass capacitor must be presented at this pin to minimize voltage transients and to supply the switching currents needed by the regulator.

VSS

Circuit ground.

SW

Internal Switch. The voltage at this pin switches between (+VCC - VSAT) and approximately - 0.5V, with a duty cycle of approximately VOUT / VCC. To minimize coupling to sensitive circuitry, the PC board copper area connected to this pin should be minimized.

FEEDBACK

Senses in the regulated output voltage to complete the feedback loop.

FUNCTION DESCRIPTION

EN

Allows the switching regulator circuit to be shutdown using logic level signals thus dropping the total input supple current to approximately 100uA. Pulling this pin below a threshold voltage of approximately 1.3V turns the regulator on, and pulling this pin above 1.3V (up to a maximum of VCC) shuts the regulator down. if this shutdown feature is not needed, the EN pin can be wired to the ground pin.

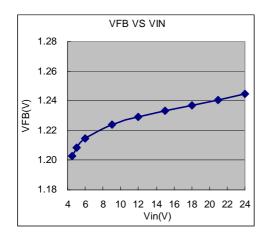
THERMAL CONSIDERATIONS

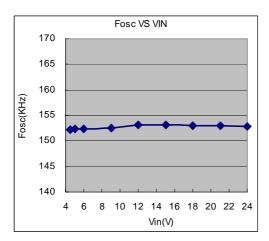
The TO-263-5L package needs a heat sink under most conditions. The size of the heat sink depends on the input voltage, the output voltage, the load current and the ambient temperature. The APE1702 junction temperature rises above ambient temperature for a 2A load and different input and output voltages.

The data for these curves was taken with the APE1702 (TO-263-5L package) operating as a buck-switching regulator in an ambient temperature of 25°C (still air). These temperature increments are all approximate and are affected by many factors. Higher ambient temperatures required more heat sinker.

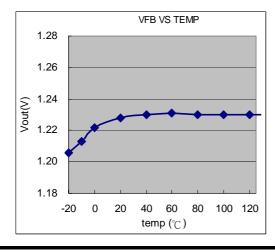
For the best thermal performance, wide copper traces and generous amounts of printed circuit board copper (need connect to the VSS pins) should be used in the board layout, (One exception is the SW pin, which should not have large areas of copper.) to the surrounding air, and moving air lowers the thermal resistance even further.

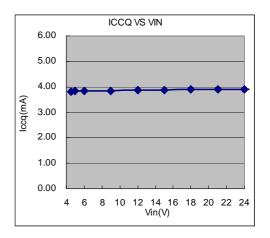
Package thermal resistance and junction temperature increments are all approximate. The increments are affected by a lot of factors. Some of these factors include board size, shape, thickness, position, location, and even board temperature. Other factors are, trace width, total printed circuit copper area, copper thickness, single or double-sided, multi-layer board and the amount of solder on the board.

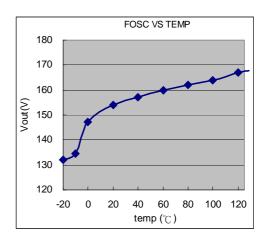

The effectiveness of the PC board to dissipate heat also depends on the size, quantity and spacing of other components on the board, as well as whether the surrounding air is still or moving. Furthermore, some of these components such as the catch diode will add heat to the PC board and the heat can vary as the input voltage changes. For the inductor, depending on the physical size, type of core material and the DC resistance, it could either act as a heat sink taking heat away from the board, or it could add heat to the board.

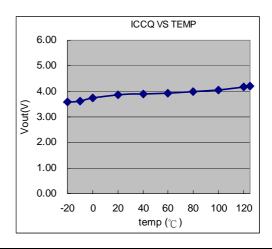

APE1702

Typical Characteristics

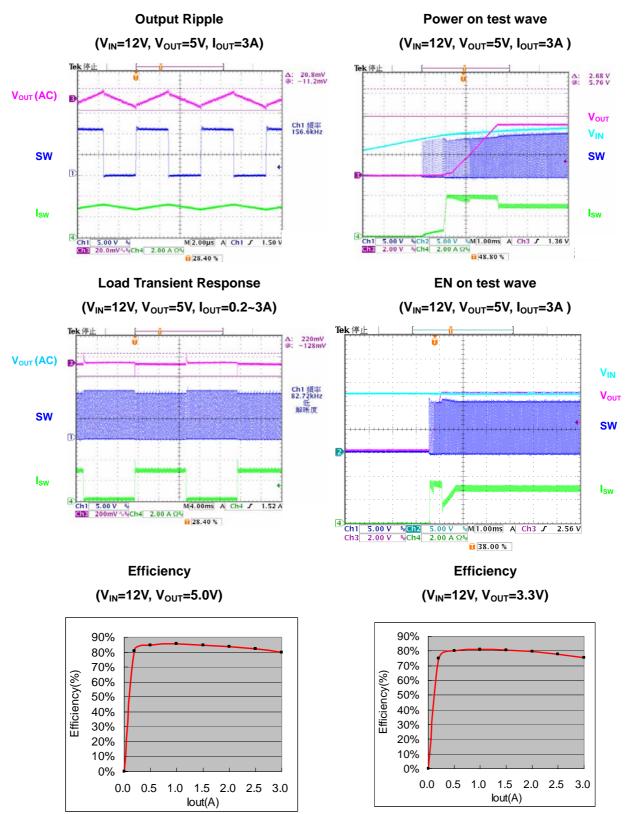

VFB VS VIN


FOSC VS VIN

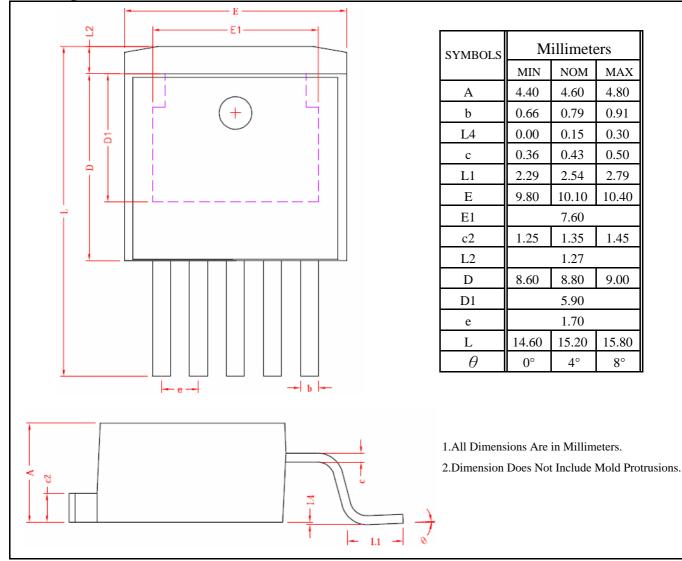

VFB VS TEMPERATURE

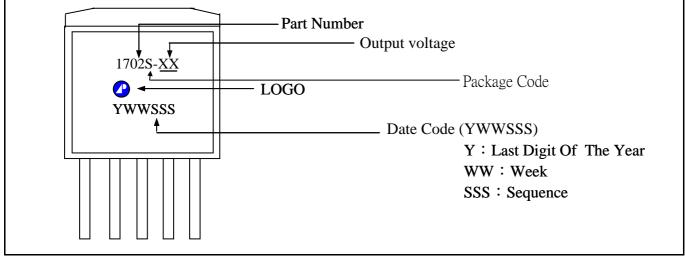

ICCQ VS VIN

FOSC VS TEMPERATURE



ICCQ VS TEMPERATURE

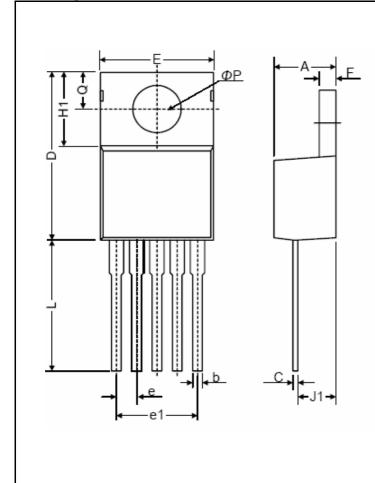

Typical Characteristics



ADVANCED POWER ELECTRONICS CORP.

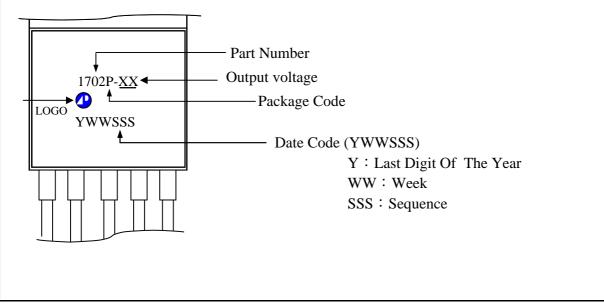
Package Outline : TO-263-5L

Part Marking Information & Packing : TO-263-5L



9

ADVANCED POWER ELECTRONICS CORP.


Package Outline : TO-220-5L

SYMBOLS	Millimeters				
	MIN	MIN NOM			
Α	4.07	4.45	4.82		
b	0.76	0.89	1.02		
С	0.36	0.50	0.64		
D	14.22	14.86	15.50		
Ε	9.78	10.16	10.54		
e	1.57	1.71	1.85		
e1	6.68	6.68 6.81 6.93			
F	1.14	1.27	1.40		
H1	5.46	6.16	6.86		
J1	2.29	2.74	3.18		
L	13.21	13.97	14.73		
φp	3.68	3.81	3.94		
Q	2.54	2.73	2.92		

All Dimensions Are in Millimeters.
Dimension Does Not Include Mold Protrusions.

Part Marking Information & Packing : TO-220-5L

