MOTOROLA ■ SEMICONDUCTOR **TECHNICAL DATA**

MJ8504 MJ8505

Designers Data Sheet

SWITCHMODE SERIES NPN SILICON POWER TRANSISTORS

The MJ8504 and MJ8505 transistors are designed for highvoltage, high-speed, power switching in inductive circuits where fall time is critical. They are particularly suited for line operated switchmode applications such as:

- Switching Regulators
- Inverters
- Solenoid and Relay Drivers
- **Motor Controls**
- Deflection Circuits

Fast Turn-Off Times

75 ns Inductive Fall Time -25°C (typ)

150 ns Inductive Crossover Time -25°C (typ)

1.25 µs Inductive Storage Time -25°C (typ)

Operating Temperature Range -65 to +200°C

100°C Performance Specified for:

Reverse-Biased SOA with Inductive Loads

Switching Times with Inductive Loads

Saturation Voltages

Leakage Currents

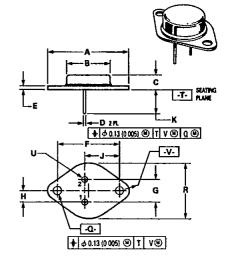
MAXIMUM RATINGS

Rating	Symbol	MJ8504	MJ8505	Unit
Collector-Emitter Voltage	VCEO	700	800	Vďc
Callector-Emitter Voltage	VCEV	1200	1400	Vdc
Emitter Base Voltage	VEB	8.0	8.0	Vdc
Collector Current — Continuous Peak (1)	I _C	10 15	10 15	Adc
Base Current — Continuous Peak (1)	I _B	8 12	8 12	Adc
Total Power Dissipation @ T _C = 25°C @ T _C = 100°C Derate above 25°C	PD	175 100 1.0	175 100 1.0	Watts W/ ^O C
Operating and Storage Junction Temperature Range	Tj, T _{\$tg}	-65 to +200		°C

THERMAL CHARACTERISTICS

Symbol	Max	Unit	
ReJC	1.0	oc/W	
ΤL	275	°С	
	ll		
		R _θ JC 1.0	

(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle ≤ 10%.


10 AMPERE

NPN SILICON POWER TRANSISTORS

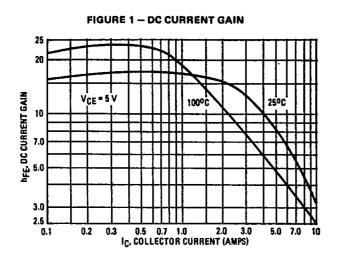
700 and 800 VOLTS **175 WATTS**

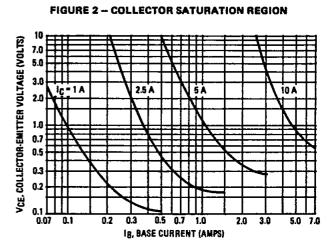
Designer's Data for "Worst Case" Conditions

The Designers Data Sheet permits the design of most circuits entirely from the information presented. Limit data - representing device characteristics boundaries are given to facilitate "worst case" design.

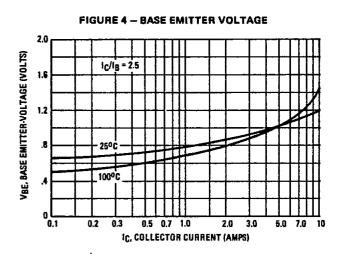
- 1. D.MENS'ONING AND TOLERANCING PER ANSI Y14 5M, 1982.
- 2. CONTROLLING D.MENS'ON: INCH.
 3. ALL RULES AND NOTES ASSOCIATED WITH REFERENCED TO 201AA OUTLINE SHALL APPLY.

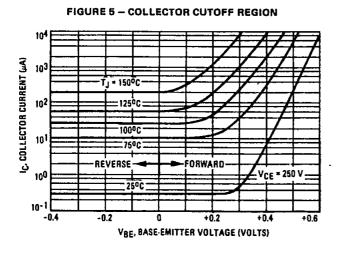
	MILLIMETERS		INCHES			
DM	MAN	MAX	MIN	MAX		
A	-	39.37	L <u>-</u> _	1 550		
В	ì	21 08	1	0 830		
C	635	8.25	0.250	0.325		
D	0.97	109	0 038	0 043		
E	140	177	0 055	0 070		
۴	30 15 BSC		1 187 BSC			
G	10 92	10 92 6SC		0 430 BSC		
H	5 46	46 BSC 0 215 B		BSC		
J	16.89	16.89 BSC		0.665 BSC		
K	11 18	12 19	0 440	0 480		
a	3.64	4 19	0 151	0 165		
R	-	26 67	_ - _	1 050		
Ų	4 83	5.33	0.190	0 210		
V	3 84	4 19	0 151	0 165		

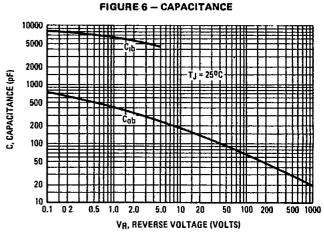

PIN 1. BASE 2. EMITTER CASE COLLECTOR

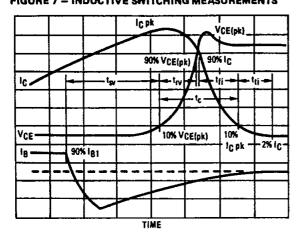

> **CASE 1-06** TO-204AA (TO-3)

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)


Characteria Charac		881-4	Tue	Mex	Unit
Characteristic OFF CHARACTERISTICS	Symbol	Min	Тур	Mex	, Unit
	Typna	700			Vdc
Collector-Emitter Sustaining Voltage (Table 1) MJ8504 (IC = 100 mA, IB = 0) MJ8505	VCEO(sus)	800			Vac
Collector Cutoff Current	CEV		ł		mAdc
(VCEV = Rated Value, VBE(off) = 1.5 Vdc)	1	-	-	0,25	
(V _{CEV} = Rated Value, V _{BE(off)} = 1.5 Vdc, T _C = 150°C)				5.0	
Collector Cutoff Current (VCE = Rated VCEV, RBE = 50 Ω , TC = 100°C)	CER	_ _		5.0	mAdc
Emitter Cutoff Current	IEBO	-	_	1.0	mAdc
(V _{EB} = 7.0 Vdc, I _C = 0)			<u> </u>		<u> </u>
SECOND BREAKDOWN					
Second Breakdown Collector Current with base forward biased	ls/b		See Figure 12		
Clamped Inductive SOA with Base Reverse Biased	RBSOA	 	See Fig	jure 13	
ON CHARACTERISTICS (1)					···
DC Current Gain	hFE	7.5	-	-	-
(I _C = 1.5 Adc, V _{CE} = 5.0 Vdc)			ļ		14.1
Collector-Emitter Saturation Voltage (IC = 5.0 Adc, Ig = 2.0 Adc)	VCE(sat)		_	2.0	Vdc
(IC = 10 Adc, Ig = 4.0 Adc)	1 1	_		5.0	
(I _C = 5.0 Adc, I _B = 2.0 Adc, T _C = 100°C)	1	_	_	3.0	
Base-Emitter Saturation Voltage	VBE(sat)				Vdc
(IC = 5.0 Adc, IB = 2.0 Adc)	,,	_	_	1.5	
(I _C = 5.0 Adc, I _B = 2.0 Adc, T _C = 100°C)	<u>ll</u>		_	1.5	L
DYNAMIC CHARACTERISTICS					
Output Capacitance	Cob	90	_	450	ρF
(V _{CB} = 10 Vdc, I _E = 0, f _{test} = 1.0 kHz)			<u> </u>		<u> </u>
SWITCHING CHARACTERISTICS		 			
Resistive Load (Table 1)					1
Delay Time (V _{CC} = 500 Vdc, I _C = 5.0 A,	ta		0.050	0.20	μς
In = 2.0 A. Vacinti = 5.0 Vdc. to = 50 us.	t _r		0.175	2.0	μ5
Storage Time Duty Cycle ≤ 2.0%)	ts		1.25	4.0	μs
Fall Time	tf		0.60	2.0	μς
Inductive Load, Clamped (Table 1)		·····			,
Storage Time (IC = 5.0 A(pk), V _{clamp} = 500 Vdc, I _{B1} = 2.0 A,	tsv		1.75	5.5	μς
Crossover Time VBE(off) = 5 Vdc. TC = 100°C	tc	-	0.400	2.0	μς
Storage Time (I _C = 5.0 A(pk), V _{clamp} = 500 Vdc, I _{B1} = 2.0 A,	tsv		1.25	-	μs
VREINT = 5 Vdc, Tc = 25°C)	tc		0.150		μs
Fall Time	tfi		0.075		μς


(1) Pulse Test: PW - 300 μ s, Duty Cycle < 2%.





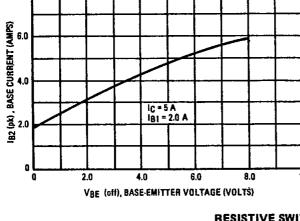


FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS

FIGURE 8 - PEAK REVERSE BASE CURRENT

8.0

SWITCHING TIMES NOTE

In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCHMODE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measurements must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined.

t_{SV} = Voltage Storage Time, 90% IB1 to 10% VCE(pk)

try = Voltage Rise Time, 10-90% VCE(pk)

tfi = Current Fall Time, 90-10% IC

tti = Current Tail, 10-2% IC

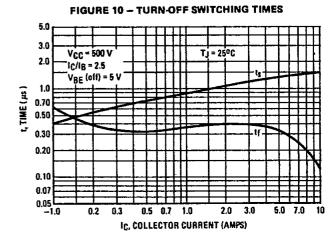
t_C = Crossover Time, 10% VCE(pk) to 10% IC

An enlarged portion of the inductive switching waveforms is shown in Figure 7 to aid in the visual identity of these

For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN-222A:

$$P_{SWT} = 1/2 V_{CC} I_C(t_c) f$$

In general, $t_{rv} + t_{fi} \approx t_{c}$. However, at lower test currents this relationship may not be valid.


As is common with most switching transistors, resistive switching is specified at 25°C and has become a benchmark for designers. However, for designers of high frequency converter circuits, the user oriented specifications which make this a "SWITCHMODE" transistor are the inductive switching speeds (tc and tsv) which are guaranteed at 100°C.

RESISTIVE SWITCHING PERFORMANCE

2.0 VCC = 500 V 1.0 -1c/lg = 2.5

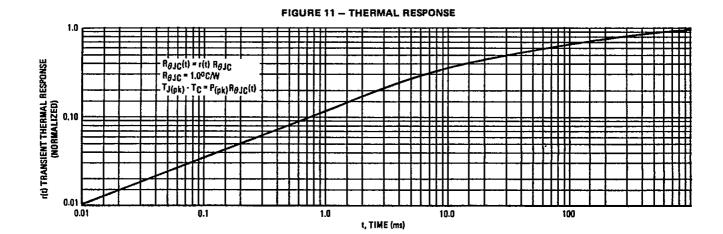

0.70 TJ = 25°C 0.50 0.30 0.20 0.10 0.07 0.05 0.03 0.02 L -1.0 02 0.5 0.7 1.0 IC, COLLECTOR CURRENT (AMPS)

FIGURE 9 - TURN-ON SWITCHING TIMES

RESISTIVE SWITCHING **RBSOA AND INDUCTIVE SWITCHING** VCEO(sus) -0 +15 470 Ω 250 µF 47 Ω R1 2 W TURN ON TIME 330 Ω 20 INPUT }R2 γ 2 5 W Ig1 adjusted to obtain the forced phe qerited 50 Ω ξ 100 Ω TURN OFF TIME PW Varied to Attain Use inductive switching driver as the input to IC = 100 mA . All Diodes - 1N4934 All NPN - MJE200 430 Ω the resistive test circuit Adjust to All PNP - MJE210 250 µF obtain o Adjust R1 to obtain IB1 V_{BE(off)} = -5.0 V For switching and RBSOA, R2 = 0 For VCEO(sus), R2 = -CIRCUIT V_{CC} = 500 V R_L = 100 Ω L_{coil} = 180 μH H_{coil} = 0 05 Ω VCC = 20 V L_{coil} = 80 mH V_{CC} = 10 V R_{coil} = 0.7 Ω V_{clamp} = 500 V Pulse Width = 50 μs INDUCTIVE TEST CIRCUIT **OUTPUT WAVEFORMS** RESISTIVE TEST CIRCUIT t₁ Adjusted to Obtain I_C TEST CIRCUITS MR816 L_{coil}(I_{Cpk}) Vcc Lcoil (ICpk) Vclemp Test Equipment Scope — Tektronix 475 or Equivalent

TABLE 1 - TEST CONDITIONS FOR DYNAMIC PERFORMANCE

SAFE OPERATING AREA INFORMATION

FIGURE 12 - FORWARD BIAS SAFE OPERATING AREA

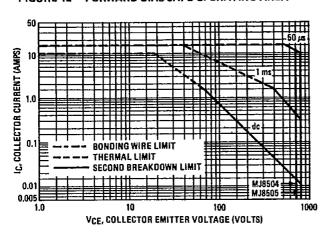
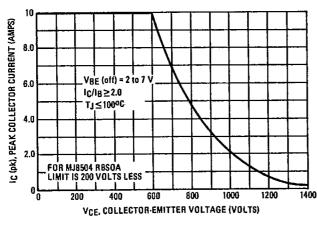
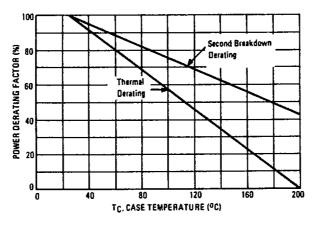



FIGURE 13 – RBSOA, REVERSE BIAS SWITCHING SAFE OPERATING AREA

FORWARD BIAS

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.


The data of Figure 12 is based on $T_C = 25^{o}C$; $T_J(pk)$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when $T_C \ge 25^{o}C$. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 12 may be found at any case temperature by using the appropriate curve on Figure 14.

 $T_{J(pk)}$ may be calculated from the data in Figure 11. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

REVERSE BIAS

For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage-current condition allowable during reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 13 gives the complete RBSOA characteristics.

FIGURE 14 - POWER DERATING

