

TESDF5V0A Bi-Directional ESD Protection Array

Small Signal Diode

Features

- ♦Meet IEC61000-4-2 (ESD) ±15kV (air), ±8kV (contact)
- Meet IEC61000-4-5 (Lightning) rating. 12A (8/20µs)
- ♦Protects two directional I/O lines
- ♦Working Voltage : 5V
- ♦Pb free version, RoHS compliant, and Halogen free

Mechanical Data

- ♦Case :SOT-23 standard package, molded plastic
- Terminal: Matte tin plated, lead free., solderable per MIL-STD-202, Method 202 guaranteed
- ♦High temperature soldering guaranteed: 260°C/10s
- ♦Weight : 0.008gram (approximately)
- ♦Marking Code : L50

Applications

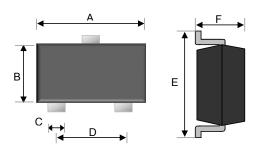
- ♦Cell Phone Handsets and Accessories
- Microprocessor based equipment
- ♦Industrial Controls
- Notebooks, Desktops, and Servers

Ordering Information

Part No.	Package	Packing	Packing Code	Marking
TESDF5V0A	SOT-23	3K / 7" Reel	RFG	L50

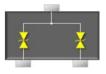
Maximum Ratings and Electrical Characteristics

Rating at 25°C ambient temperature unless otherwise specified.


Maximum Ratings

Type Number	Symbol	Value	Units
Peak Pulse Power (tp=8/20µs waveform)	Ppp	100	W
Peak Pulse Current (tp = 8/20µs)	IPP	2.5	А
ESD per IEC 61000-4-2 (Air) ESD per IEC 61000-4-2 (Contact)	VESD	±15 ± 8	KV
Junction and Storage Temperature Range	Tj, Tstg	-55 to + 150	°C

Electrical Characteristics


Type Number		Symbol	Min	Max	Units
Reverse Stand-Off Voltage		VRWM	-	5	V
Reverse Breakdown Voltag	l _R = 1mA	V _(BR)	6	-	V
Reverse Leakage Current	V _R = 5V	IR	-	1	uA
Clamping Voltage	I _{PP} = 1A	Vc	-	9.8	V
	I _{PP} = 2.5A		-	15	
Junction Capacitance	V _R =0V, f=1.0MHz	CJ	10 (Тур.)	pF

Dimensions	Unit (mm)		Unit (inch)	
Dimensions	Min	Max	Min	Max
A	2.80	3.00	0.110	0.118
В	1.20	1.40	0.047	0.055
С	0.30	0.50	0.012	0.020
D	1.80	2.00	0.071	0.079
E	2.25	2.55	0.089	0.100
F	0.90	1.20	0.035	0.043

Pin Configutation

Small Signal Diode

Rating and Characteristic Curves

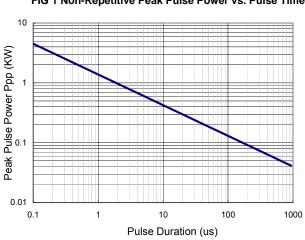
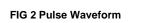
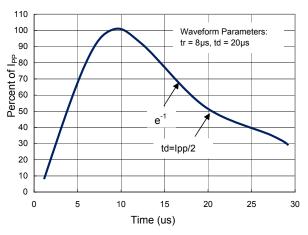




FIG 1 Non-Repetitive Peak Pulse Power vs. Pulse Time

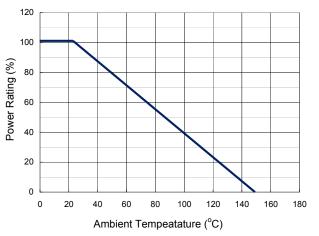


FIG 5 Clamping Voltage vs. Peak Pulse Current

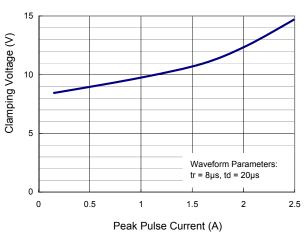
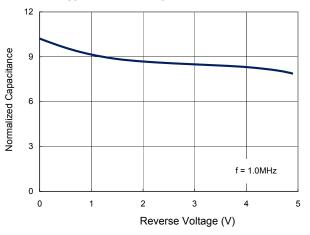



FIG 4 Typical Junction Capacitance

TESDF5V0A Bi-Directional ESD Protection Array

Small Signal Diode

Applications Information

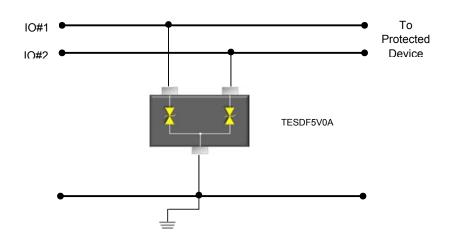
♦Designed for the bi-directional protection of 2 lines from the damage caused by Electro Static Discharge (ESD) and surge pulses

 $\diamond \mathsf{Be}$ used on lines where the signal polarities are above and below ground

 $\diamond \mathsf{Provides}$ a surge capability of 100 Watts peak Ppp per line for an 8/20 ms waveform.

Circuit Board Layout Recommendations

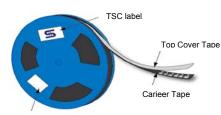
 $\diamond \mathsf{P}\mathsf{lace}$ the ESD protection array as close to the input terminal or connector as possible

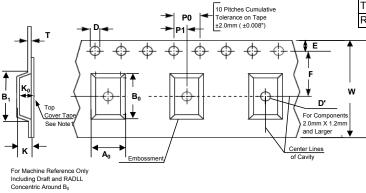

♦Keep parallel signal paths to a minimum

Minimize all printed-circuit board conductive loops including power and group loops

 \diamond Avoid using shared transient return paths to a common ground point

 $\diamond \textsc{Ground}$ planes should be used. For multilayer printed-circuit boards, use ground vias

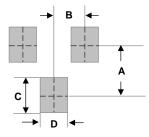

 $\diamond \mathsf{Below}$ picture is the typical application for bi-directional protection of two lines



Small Signal Diode

Tape & Reel specification

Any Additional Label (If Required)



Item	Symbol	Dimension (mm)
Carrier depth	К	1.22 Max.
Sprocket hole	D	1.50 +0.10
Reel outside diameter	А	180 ± 1
Reel inner diameter	D1	50 Min.
Feed hole width	D2	13.0 ± 0.5
Sprocke hole position	E	1.75 ±0.10
Sprocke hole pitch	P0	4.00 ±0.10
Embossment center	P1	2.00 ±0.10
Overall tape thickness	Т	0.6 Max.
Tape width	W	8.30 Max.
Reel width	W1	14.4 Max.

Direction of Feed

Suggested PAD Layout

Dimensions	Unit (inch)	Unit (mm)
A	0.079	2.00
В	0.037	0.95
С	0.035	0.90
D	0.031	0.80

Note 1: A_0 , B_0 , and K_0 are determined by component size. The clearance between the components and the cavity must be

within 0.05 mm min. to 0.5 mm max. The component cannot rote more than 10 ° within the determined cavity.

Note 2: If B₁ exceeds 4.2 mm(0.165") for 8 mm embossed tape, the tape may not feed through all tape feeders. Note 3: The suggested land pattern dimensions have been provided for reference only, as actual pad layouts

may vary despending on application.